ESTIMATING FLOOD HYDROGRAPHS AND VOLUMES FOR ALABAMA STREAMS

By D.A. Olin and J.B. Atkins

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 88-4041

Prepared in cooperation with the ALABAMA HIGHWAY DEPARTMENT and the

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

Notice: The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Alabama Highway Department or the Federai Highway Administration.

1988

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 520 19th Avenue Tuscaloosa, Alabama 35401 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Box 25425, Federal Center Denver, Colorado 80225

CONTENTS

Page

Abstract	1
Introduction	2
A flood hydrograph simulation method	2
Testing Georgia's dimensionless hydrograph on Alabama streams	3
Standard error of estimate	6
Verification	6
Bias	9
Regionalization of basin lagtime and flood volume	9
Lagtime regression analysis	9
Verification of lagtime equations	10
Bias	10
Sensitivity	16
Flood volume	16
Hydrograph-width relation	18
Application of technique	20
Example problem	20
Summary	23
Selected references	24
Glossary	25
01099013 666666666666666666666666666666666666	20

ILLUSTRATIONS

Figure l.	Map showing hydrologic areas and Fall Line, and location of gaging stations used for flood hydrograph testing	5
2-4.	Graphs showing:	5
	 Change (percent) in lagtime resulting from errors in measuring drainage area, main channel slope, 	
	and impervious area	17
	3. Hydrograph-width relation for dimensionless hydrograph	19

4. Simulated hydrograph for sample creek in example problem.. 22

TABLES

Table	1.	Time and discharge ratios of the dimensionless hydrograph	
		from Georgia	4
	2.	Rural and urban stations selected to test Georgia's	
		dimensionless hydrograph and selected basin characteristics	7
	3.	Summary of peak discharge regression equations for rural and	
		urban streams in Alabama	8
	4.	Stations and drainage basin characteristics used in lagtime	
			11
	5.	Lagtime equations	14
		Lagtime equations split-sample test results	15
		Relation of discharge ratios to hydrograph width ratios for	
		Georgia's dimensionless hydrograph	18
	8.	Simulated coordinates of the flood hydrograph for sample	
		creek in example problem	21

CONVERSION FACTORS

For use of readers who prefer to use metric (International System) units, conversion factors for inch-pound units used in this report are listed below:

Multiply inch-pound unit	by	To obtain
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	259.0	hectare (ha)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)

ESTIMATING FLOOD HYDROGRAPHS AND VOLUMES FOR ALABAMA STREAMS

By D.A. Olin and J.B. Atkins

Abstract

The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 square miles.

Computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia (Inman, 1986) and used in similar studies in Tennessee (Robbins, 1986). These computer programs and methods were applied to streams in Alabama for this study. Data for 120 storms from 37 stations were selected to test the method. Results showed applicability of the method to Alabama.

The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 square miles, without significant in-channel storage or regulations. Equations are also given for estimating basin lagtime and flood volume for both rural and urban ungaged streams in Alabama.

INTRODUCTION

Flood hydrographs and volumes associated with peak discharges of specific recurrence intervals (design floods) are needed for the economic design of bridges for highways, railroads, and other structures at or near streams. Hydrographs may also be useful in estimating the length of time that roads and bridges would be inundated. For ungaged streams, this information was difficult to obtain; therefore, a method was needed to estimate a flood hydrograph and flood volume for these streams. The objective of this study was to define a simplified method of simulating flood hydrographs for peak discharges of specific recurrence interval at ungaged streams in Alabama.

An average statewide dimensionless hydrograph (definitions can be found in glossary) for Georgia computed by Inman (1986) was tested in Alabama. To use Georgia's dimensionless hydrograph in Alabama, estimates of both the peak discharge for a specific recurrence interval flood and the basin lagtime are needed. The peak discharge can be estimated by using flood magnitudes taken from Olin (1985). Regional equations for estimating basin lagtime are provided in this report. The scope of this study was statewide for both rural and urban streams. The simulating method for flood hydrographs was developed and tested for large and small rural and urban drainage basins in Georgia (Inman, 1986), and was successfully tested and used in Tennessee (Robbins, 1986). On this basis, the method was tested to see if applicable to streams in Alabama.

This report was prepared by the U.S. Geological Survey in cooperation with the Alabama Highway Department and is based on flood data collected through 1985 as a part of cooperative programs with the Alabama Highway Department and other State and Federal agencies.

This is the first report that gives a method for estimating flood hydrographs and volumes for selected recurrence interval floods for ungaged streams in Alabama. Previous reports have been published giving methods of estimating the magnitude and frequency of floods in Alabama (Olin, 1985) and flood depths (Olin, 1986).

A FLOOD HYDROGRAPH SIMULATION METHOD

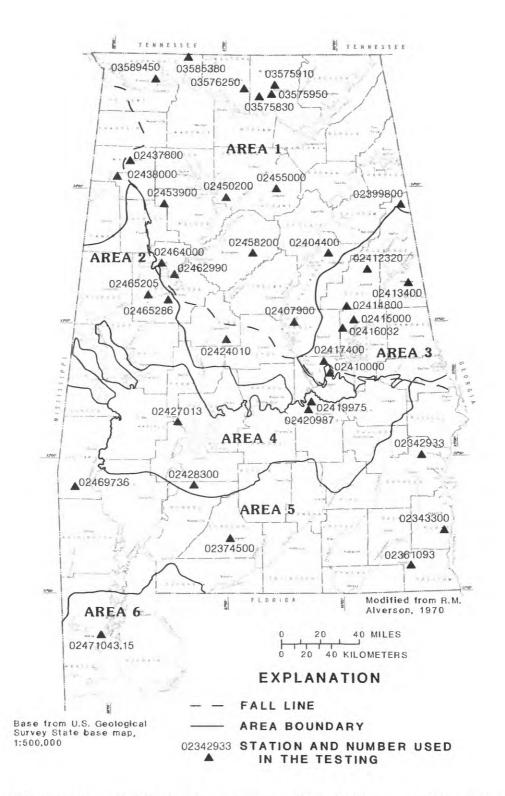
A statewide average dimensionless hydrograph can be used to estimate a hydrograph at an ungaged site for a specific recurrence interval. A method used by Inman (1986) in Georgia has been adopted for application to Alabama streams. Stations were identified that had both rainfall and runoff data. Data for events with simple (single peak) hydrographs and short-duration storms were chosen and stored in the computer. For each storm at each station an observed unit hydrograph, lagtime, and volume were computed. Lagtime is needed to compute the time coordinates of the dimensionless hydrograph.

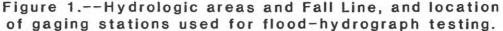
Inman (1986) computed unit hydrographs and lagtimes using the O'Donnell method (1960) for 355 floods from 80 gaging stations in Georgia; 19 of which were located in urban areas. Using three to five storms, the average observed lagtime was computed for each station. The observed unit hydrographs were

also averaged for each station. The average unit hydrograph was then transformed into four unit hydrographs having generalized rainfall-excess durations of one-fourth, one-third, one-half, and three-fourths lagtime. The transformation process resulted in hydrographs having lower peak discharges and wider time bases as the duration of rainfall excess increased. These four unit hydrographs were then each made dimensionless by dividing the time scale by the average observed lagtime and dividing the discharge scale by the peak discharge of each hydrograph.

The average dimensionless hydrographs for all stations were combined to generate one typical (average) dimensionless hydrograph for each of the four generalized durations. From these four generalized duration dimensionless hydrographs, along with the average basin lagtime and the actual peak discharge for each observed storm, simulated hydrographs were computed. The widths of these simulated hydrographs were compared to the widths of the observed hydrographs at 50 and 75 percent of peak flow. Inman (1986) found that Georgia's dimensionless hydrograph based on a rainfall-excess duration of one-half lagtime compared best with the observed data. The standard error of estimates was ± 31.8 percent at 50 percent of peak flow width, and ± 35.9 percent at 75 percent of peak flow width. The standard error of estimate of the width comparisons is based on mean-square differences between observed and estimated widths.

The one-half lagtime duration dimensionless hydrograph was applied to other hydrographs from Georgia not used in its development for verification of the model. Hydrographs for 138 floods from 37 gaging stations in Georgia having drainage areas of 20 to 500 square miles were used for this test. A theoretical flood hydrograph was simulated using the average station lagtime and peak discharge for each flood and was compared to the observed hydrograph. The standard error of estimates were ± 39.5 percent for 50 percent of peak flow width, and ± 43.6 percent for 75 percent of peak flow width.


A second verification was conducted to determine the total or accumulative prediction error of the entire simulating procedure on the largest flood hydrographs at 31 gaging stations in Georgia with drainage areas from 20 to 500 square miles. Simulated hydrographs were computed by using the dimension-less hydrograph, an estimated lagtime from a regional lagtime equation, and a peak discharge estimated from regional flood-frequency equations. The standard errors of estimate were ± 51.7 and ± 57.1 percent at the 50 and 75 percent of peak flow widths, respectively. These errors are representative of what might be expected if the procedure is applied to ungaged basins. The time and discharge ratios of the Georgia dimensionless hydrograph are listed in table 1.


TESTING GEORGIA'S DIMENSIONLESS HYDROGRAPH ON ALABAMA STREAMS

Georgia's dimensionless hydrograph was tested in Alabama using flood hydrographs from 37 gaging stations. The stations were selected from the six rural hydrologic areas and urban streams (Olin, 1985) on the basis of having both discharge and associated rainfall. The location of the six rural hydrologic areas and location of the stations selected are shown in figure 1 and

Time ratio (t/LT)	Discharge ratio (Qt/Qp)	Time ratio (t/LT)	Discharge ratio (Qt/Qp)
0.25	0.12	1.35	0.62
•30	•16	1.40	•56
•35	•21	1.45	•51
•40	•26	1.50	•47
•45	•33	1.55	.43
•50	•40	1.60	•39
•55	•49	1.65	.36
•60	•58	1.70	•33
•65	•67	1.75	•30
•70	•76	1.80	•28
•75	•84	1.85	•26
•80	•90	1.90	•24
•85	•95	1.95	•22
•90	•98	2.00	•20
•95	1.00	2.05	.19
1.00	•99	2.10	•17
1.05	•96	2.15	.16
1.10	•92	2.20	•15
1.15	•86	2.25	.14
1.20	.80	2.30	.13
1.25	•74	2.35	.12
1.30	•68	2.40	•11

Table 1.--Time and discharge ratios of the dimensionless hydrographfrom Georgia(Inman, 1986)

in table 2. Fifteen stations were selected from Hydrologic Areas 1 and 6, one from Area 2, five from Area 3, two from Area 4, four from Area 5, and ten urban stations statewide. A total of 76 events were selected from the 27 rural stations. The drainage areas of these basins range from 0.59 to 481 square miles. Forty-four urban events were chosen from ten stations which have drainage areas ranging from 0.16 to 41.8 square miles and impervious areas ranging from 20.0 to 42.9 percent.

Standard Error of Estimate

Georgia's dimensionless hydrograph was tested in Alabama using the same procedures that were used in the development of the model in Georgia (Inman, 1986). An average unit hydrograph and average basin lagtime were determined for each of the 37 stations using three to five observed storms. This was accomplished using the computer programs (S.E. Ryan, U.S. Geological Survey, written commun., 1986) used by Inman (1986). Average dimensionless unit hydrographs with rainfall-excess durations of one-forth, one-third, one-half, and three-quarters lagtime were computed for all stations and compared to the observed hydrographs. This comparison, based on the delta percent difference in the widths (in hours) of the hydrographs at 50 and 75 percent of the peak flow, showed that the one-half lagtime duration gave the best results. Comparison of the average dimensionless unit hydrographs for a rainfall-excess duration of one-half lagtime to the Georgia dimensionless hydrograph indicated that the Georgia hydrograph would be appropriate for use in Alabama. Using the average basin lagtime and observed peak discharges for 76 hydrographs from 27 rural stations, hydrographs were simulated using Georgia's dimensionless hydrograph and compared to the observed hydrographs. The standard error, based on the one-half lagtime duration dimensionless hydrograph, was ± 26.7 and ± 26.2 percent at 50 and 75 percent of peak flow widths, respectively. Similarly, 44 urban hydrographs were compared using Georgia's dimensionless hydrograph and the standard error of estimate at the 50 and 75 percent peak flow widths was +18.4 and +20.2 percent, respectively. The final check used both the rural and the urban stations combined, and the standard error of estimate at 50 and 75 percent peak flow widths was +23.9 and +24.1 percent, respectively.

Verification

The largest discharge events from selected stations were used for verification of the method. Ten rural stations (five north and five south of the Fall Line) and nine urban stations statewide were chosen. In this test, the observed lagtime and peak discharge were not used. Lagtime was instead estimated from regional equations (discussed later) and estimated peak discharge was computed from regional equations (Olin, 1985 and given in table 3) for the observed recurrence interval flood. The standard error of prediction for 50 and 75 percent flow widths was +31.7 and +34.0 percent, respectively. These standard errors are less than the ones Inman reported for Georgia in 1986. One possible reason for this is the smaller data base used in Alabama.

6

Table 2.--Rural and urban stations selected to test Georgia's dimensionless hydrograph and selected basin characteristics

Rural stations

02458200

02465286

03575910

03575950

03589450

Station No.		area, A square mile)	S (feet per mile)		basin lagtime LT (hour)
	uth Fork Cowikee Creek near Batesville	112	13.9	5	15.5
02343300 Ab	bie Creek near Haleburg	146	8.20	5 5 1 1	16.4
	rder Creek near Evergreen	176	9.00	5	40.5
02399800 Li	ttle Terrapin Creek near Borden Springs	15.9	32.4	1	9.77
	int Creek near Marble Valley	12.7	33.0	1 1 3 3 3 3 3	8.75
02404400 Cha	occolocco Creek at Jackson Shoal near Lincoln	481	6.70	1	35.4
	terson Creek near Central	4.91	69.0	1	3.00
02412320 Eld	der Creek near Dempsey	1.79	99.7	3	3.04
02413400 Wed	lowee Creek above Wedowee	6.87	41.8	3	3.76
02414800 Hai	rbuck Creek near Hackneyville	7.97	67.2	3	3.88
02415000 Hi	llabee Creek near Hackneyville	190	22.2	3	13.2
02417400 St	earns Creek near Seman	1.27	74.8	3	1.74
02424010 Sa	ndy Creek near Centreville	. 59	72.9	1	2.02
02427013 Ca	ine Creek near Safford	2.69	83.3	1 4	2.07
	llatchee Creek near Vredenburgh	13.2	24.5	4	9.00
02437800 Bai	rn Creek near Hackleburg	13.1	35.2	4 1	9.76
02438000 But	ttahatchee River below Hamilton	277	6.20	1	23.5
02450200 Doi	rsey Creek near Arkadelphia	13.0	26.8	1	9.47
02453900 Che	eatham Creek near Carbon Hill	4.77	49.0	1 1 1 1	9.20
02455000 Loo	cust Fork near Cleveland	303	6.40	1	23.1
02462990 Yel	llow Creek at Northport	8.38	28.0	1	8.75
02464000 Noi	rth River near Samantha	223	5.20	1 1	30.6
02465205 Jay	y Creek near Coker	3.65	47.5	2	4.38
02469735 Soi	uwilpa Creek at Bolinger	7.25	25.8	5	5.58
03575830 Inc	lian Creek near Madison	49.0	15.2	1 1 2 5 1 1	10.8
03576250 Lir	nestone Creek near Athens	119	10.6	1	19.2
	st Fork Anderson Creek near Lexington	5.92	23.0	1	4.41
Urban statio	ons				
Station No.				Impervious area,	
		area,	S (feet	area,	basin
				IA	
		(square mil	e) 	(percent)	
2361093	Tributary to Beaver Creek Ross Clark Circle in Dothan				
02416032	Sugar Creek at Alexander City	1.67	38.1	20.2	1.68
2419975	-		16.0		
02420987	Hannon Slough at Montgomery	1.32	39.3	42.9	1.16
02450200	Willers Grack (Apploches Chrock)	15 6	10 0		1 01

in Birmingham

in Tuscaloosa 02471043.15^a Woodcock Creek (Airport Blvd)

in Huntsville

in Mobile

Village Creek (Apalachee Street)

Pinehaven Ditch at Huntsville

Sweetwater Creek at Florence

Cribbs Mill Creek (Second Avenue East)

Huntsville Spring Branch (Johnson Road)

15.6

2.75

1.85

.16

4.92

41.8

19.9

60.2

10.6

231.3

21.3

55.8

33.3

28.9

25.0

20.0

21.4

24.1

1.91

1.59

1.64

.335

3.26

1.49

Table 3.--Summary of peak discharge regression equations for rural and urban streams in Alabama

Rural Equations

Recurrenc Interval		Hydrologic Areas								
(Years)	1 & 6	2	33	4	5					
2	182A0.706	149A0.689(ST+1.0)219	270A ⁰ •569	292A0.631	226A ⁰ •567					
5	291A0.711	310A0.642(ST+1.0)172	419A0.566	480A0.647	376A ⁰ •577					
10	372A ⁰ •714	459A0.616 (ST+1.0)142	524A ⁰ •564	630A ^{0.653}	495A0.582					
25	483A0.717	696A ^{0•590} (ST+1.0)-•109	675A ^{0 • 559}	845A0.660	668A ^{0•587}					
50	571A0.720	904A ^{0•574} (ST+1•0)-•084	807A0•554	1024A0.665	813A0•591					
100	664A ⁰ •722	1144A ^{0.560} (ST+1.0)060	937A0•550	1215A0.669	972A ⁰ •595					

[Regression equations for indicated hydrologic areas, where A = drainage area in square miles, ST = storage in percent of basin] (Olin, 1985)

All regression coefficients are statistically significant at the 5 percent level.

Flood magnitude and frequency for urban streams

The following equations can be used to estimate flood magnitudes for streams draining urban areas with more than 5 percent impervious cover (Olin, 1985).

	• •
$Q(u)_2 = 150 \text{ A } 0.70 \text{ IA } 0.36$	Standard error of regression (percent) 26
$Q(u)_5 = 210 A 0.70 IA 0.39$	24
$Q(u)_{10} = 266 \text{ A } 0.69 \text{ IA } 0.39$	24
$Q(u)_{25} = 337 \text{ A } 0.69 \text{ IA } 0.39$	24
$Q(u)_{50} = 396 \text{ A } 0.69 \text{ IA } 0.38$	25
$Q(u)_{100} = 444 A 0.69 IA 0.39$	25

A = the contributing drainage area, in square miles, and

IA = impervious area, in percent. All regression coefficients are statistically significant at the 5 percent level.

Limitations of Equations

The peak discharge equations should be used only for streams that have drainage areas, and, in urban areas, percent impervious area within the ranges given below.

Rural Stations

Hydrologic area	Variable	Minimum	Maximum	Units
1, 2, 5	A	1.0	1,500	square miles
3	A	1.0	800	square miles
4,6	Α	1.0	500	square miles
	Urba	an Stations		
Variable	Minimum	Maximum	Units	
Α	0.16	83.5	square miles	
IA	5.0	42.9	percent	

Note: Rural equations should be used in hydrologic area 4. Both rural and urban equations should not be used for streams where temporary in-channel or overbank storage significantly affects the magnitude of peak flow.

The first test for bias was performed using the simulated versus observed hydrograph widths. This test used residuals in percent of mean width (in hours) at the 50 and 75 percent of peak flow for the 19 stations used in the previous verification test. The mean errors are -1.04 percent at the 50 percent peak flow width and +2.80 percent at the 75 percent peak flow width.

A students t-test (Dixon and Massey, 1957) for a significance level of 1 percent was made on this mean of the differences (in hours) to see if the mean was biased.

The following steps were used to compute the t-values for the hydrograph width analysis:

- a. The difference between the observed value and the computed value at both 50 and 75 percent of the peak discharges was computed retaining the positive and negative signs.
- b. The mean of all the differences was computed.
- c. The standard deviation of all the differences (2.462 [in hours] for 50 percent and 2.964 [in hours] for 75 percent of the peak) was computed.
- d. The mean was multiplied by the number of observations (40) raised to the one-half power and then divided by the standard deviation to compute t.

The t-values (-1.448 for 50 percent and +0.002 for 75 percent) were compared to the standard table and had to fall between ± 2.423 to be unbiased. The test determined that these errors were not statistically different from zero at the 1 percent level of significance and, therefore, the simulated hydrograph widths are not biased.

A test for geographical bias was made by plotting the residual differences in the simulated and observed hydrograph widths at 50 and 75 percent of the peak flow on a map. Although the residuals varied considerably between some stations, no specific geographic trends could be detected. These two tests indicate no bias in the use of Inman's (1986) method to simulate hydrographs in Alabama.

REGIONALIZATION OF BASIN LAGTIME AND FLOOD VOLUME

Lagtime Regression Analysis

Seventy-six rural and twenty-one urban stations were available for use in the lagtime regression analyses. The rural lagtimes were from the 27 stations used in the testing of the dimensionless hydrograph and 29 other stations not used in the testing in Alabama. Also, nine stations from Georgia, seven from Mississippi, and four from Tennessee were available. The 10 urban stations used in the testing of the dimensionless hydrograph along with 11 other urban stations, where lagtime was computed in a rainfall-runoff modeling study by Olin and Bingham (1982), were available for use in the urban regression. Basin characteristics used as independent variables in the regressions were: Lagtime (LT), Drainage area (A), Main channel slope (S), Main channel length (L), (L/S^{O-5}) , and Impervious area (IA). The stations and their basin characteristics are listed in table 4.

In the first analysis of rural basins only LT, A, and S were used, and after examining the residuals, a slight geographical bias was detected north and south of the Fall Line (fig. 1). It was determined that 63 percent of the stations north of the Fall Line overestimated lagtimes, while 64 percent of the stations south of the Fall Line underestimated lagtimes.

Regression analyses were then performed for the rural stations north of the Fall Line and for rural stations south of the Fall Line. Drainage area and main channel slope were the only independent variables significant at the 5 percent level. The final two regional equations (table 5), one for the rural basins north of the Fall Line and one for rural basins south of the Fall Line, used only 71 stations; 42 north and 29 south of the Fall Line. The 42 stations north of the Fall Line had a standard error of estimate of +31.6 percent and R-square of 0.91. The 29 stations south of the Fall Line had a standard error of estimate of +31.2 percent and R-square of 0.90.

Lagtimes for 21 stations statewide were used for a regression for urban basins. Drainage area (A), main channel slope (S), and impervious area (IA) were the only independent variables significant at the 5 percent level. The urban equation is shown in table 5.

Verification of Lagtime Equations

The verification of the lagtime equations used the split-sample procedure. The stations in the three data sets (north of the Fall Line, south of the Fall Line, and urban) were arranged in descending order of drainage area magnitude. The data set was then divided into odd and even numbered stations. Separate equations were regressed for both the even and odd stations. The equation developed from each subset of stations was used to predict the lagtime for the other subset. Lagtimes predicted by the odd and even equations were then compared to the observed lagtimes to estimate the magnitude of the average prediction error, and to determine whether the same variables were significant. Both the odd and even equations developed were not significantly different than the regression equation based on all of the stations. Table 6 shows these results.

Bias

Two tests for bias were performed; one for parameter bias and another for geographical bias. The parameter-bias tests were made by plotting the residuals (difference between the observed and predicted lagtimes) against each independent variable for each station. Inspection of the plots showed that the equations were free of parameter bias throughout the range of all independent variables. These plots also proved the linearity assumptions of the equations.

Station No. Station name	Drainage area, DA (square mile)	length, L	slope, S (feet	ĽΤ Í	n Estimated lagtime from equations, LT (hour)
Stations north of the Fall Line	***********	~~~ ~~~~~ ~	*******		
02399800 Little Terrapin Creek near Borden Sprin 02404400 Choccolocco Creek at Jackson Shoal near Lincoln	gs 15.9 481	9.53 49.3	32.4 6.70	9.77 35.4	7•19 39•1
02400690 Jacks Creek near Fort Payne 02401500 Big Canoe Creek near Gadsden	6•76 253	5.91 38.0	33•0 7•50	8•26 35•0	4.84 28.9
02404000 Choccolocco Creek near Jenifer 02405500 Kelly Creek near Vincent 02406000 Talladega Creek near Talladega 02407900 Paint Creek near Marble Valley	277 193 101 12•7	37.5 25.5 23.1 7.35	6.80 8.90 22.2 33.0	27.0 13.0 8.75	30.3 25.1 17.3 6.47
02408340 Little Hatchet Creek near Goodwater	8.09	5.68	32•9	8.00	5.26
02408600 Hatchet Creek near Rockford 02410000 Paterson Creek near Central 02422500 Mulberry Creek at Jones 02423800 Little Cahaba River near Bierfield 02424010 Sandy Creek near Centreville	233 4•91 203 147 •59	37.0 3.60 36.0 19.8 1.40	13.9 69.0 13.7 10.0 72.9	19•0 3•00 24•0 21•0 2•02	26•4 3•94 24•9 22•0 1•48
02438000 Buttahatchee River below Hamilton 02450200 Dorsey Creek near Arkadelphia 02451550 Jaybird Creek near West Point 02451750 Vest Creek near Baldwin 02454200 Wolf Creek near Oakman	277 13•0 1•42 1•64 85•0	44.8 6.84 2.27 2.05 26.7	6.20 26.8 52.4 109.7 8.50	9•47 1•37 1•88	30.6 6.65 2.28 2.29 17.3
02455000 Locust Fork near Cleveland 02456000 Turkey Creek at Morris 02462600 Blue Creek near Oakman 02462800 Davis Creek below Abernant 02464000 North River near Samantha	303 80.9 5.32 45.3 223	58•4 19•3 4•30 9•40 34•5	6•40 24•7 65•0 14•8 5•20	10.3 4.90 8.00	31.8 15.5 4.11 12.4 28.0
03574405 Little Dry Creek near Garth 03575830 Indian Creek near Madison 03576250 Limestone Creek near Athens 03585380 West Fk Anderson Creek near Lexington 02412320 Elder Creek near Dempsey	3.91 49.0 119 5.92 1.79	3.94 16.7 26.5 5.75 2.88	286.2 15.2 10.6 23.0 99.7	4.12 10.8 19.2 4.41 3.04	3•17 12•8 19•8 4•69 2•41
02413400 Wedowee Creek above Wedowee 02414800 Harbuck Creek near Hackneyville 02415000 Hillabee Creek near Hackneyville 02417400 Stearns Creek near Seman	6.87 7.97 190 1.27	5•90 4•50 24•0 2•22	41.8 67.2 22.2 74.8	3.76 3.88 13.2 1.74	4.79 4.94 23.2 2.10
Stations in Georgia					
02207500 Yellow River near Covington 02217500 Middle Oconee River near Athens 02337500 Snake Creek near Whitesburg 02398000 Chattooga River at Summerville 03558000 Toccoa River near Dial	378 398 37.0 192 177	51.9 42.9 13.2 33.3 29.6	6•68 6•32 20•1 6•60 30•4	37.5 15.6 0 32.6	35.0 36.0 23.5 25.7 21.9
Stations in Tennessee					
03420400 Mud Creek near Summitville 03519640 Baker Creek near Greenback 03535160 Beaver Creek near Halls Crossroads 03597400 Wartrace Creek near Bell Buckle	7•30 16•0 14•1 9•59	4.05 8.79 6.78 6.08	30.6 17.4 15.8 31.7	5.03	5.05 7.58 7.20 5.71

Table 4.--Stations and drainage basin characteristics used in lagtime regression analyses

Station No. Station name	Drainage area, DA (square mile)	Channel length, L (mile)	slope, S (feet	Average basi lagtime, LT (hour)	n Estimated lagtime from equations, LT (hour)
Stations south of the Fall Line			*******		8948898888889 894
02342200 Phelps Creek near Marble Valley	6.76	5.20	42.3	6.00	6.22
2343700 Stevenson Creek near Headland	14.0	7.40	33.3	5.35	9.39
2362745 Hurricane Creek near Clayton	4.40	3.20	34.2	5.74	5.24
2363055 Moores Branch near Victoria	2.17	2.39	59.2	4.42	3.30
02365310 Grants Branch tributary near Fadette	1.44	1.53	34.8	3.05	2.99
02371200 Indian Creek near Troy	8.87	4.52	27.7	10.0	7.76
2372510 Catoe Creek near Andalusia	2.46	2.46	31.5	7•22	3.98
2374500 Murder Creek near Evergreen	176	23.8	9.00	40.5	43.3
02421300 ivy Creek at Mulberry	10•7	8.26	27•4	7.00	8.54
02427013 Caine Creek near Safford	2.69	2.60	83.3	2.13	3.43
02427300 Prairie Creek near Oak Hill	10.3	3.70	30.0	7.00	8.23
2428300 Tallatchee Creek near Vredenburgh	13.2	5.50	24.5	9.00	9.70
2437800 Barn Creek near Hackleburg	13.1	6.25	35.2	9•76	8.98
2437900 Woods Creek near Hamilton	14.3	7.58	31.5	8.75	9.60
)2442000 Luxapallila Creek near Fayette	130	25.9	10.3	26.0	36.2
02465205 Jay Creek near Coker	3.65	2.94	47.5	4.38	4.47
)2469735 Souwilpa Creek at Bolinger	7•25	4.40	25•8	5•58	7•11
)2471026 Watson Creek near Stockon	2.25	2.13	43.8	2.23	3.56
)2479583 Flat Creek near Wilmer	6.55	4.17	25.5	8.60	6.78
Stations in Georgia					
02343200 Pataula Creek near Lumpkin	70•0	14.0	22•2	31•3	22•8
)2349000 Whitewater Creek near Butler	93•4	15.7	17•8	46.6	27•5
)2357000 Spring Creek near Iron City	485	42.3	4.20	93•9	83.6
Stations in Mississippi					
2429980 Pollard Mill Branch near Paden	2.05	2.75	82•9	4.73	2.99
2447280 Lawson Branch near Betheden	1•11	2.00	32.0	2.17	2.67
2469672 Little Okatuppa Creek near Quitman	4.35	3.50	41.2	4.54	5.02
2473850 Tallahoma Creek tributary at Lake Como	3.21	3.40	31.5	4.10	4.55
02479094 Blown Pine Creek near Hattiesburg	1.92	3.30	31.9	3.63	3.51
)2481505 Mill Creek tributary near Lizana	2.29	2.20	46•1	5.62	3.56
02488540 New Hebron Guiley at New Hebron	2.50	2.15	44.7	3.15	3.74

Table 4.--Stations and drainage basin characteristics used in lagtime regression analyses--continued

Station No.		Drainage area, DA (square mile)	Percentage of impervious area, IA (percent)	Channel length, L (mile)	Channel slope, S (feet per mile)	Average basin lagtime LT (hour)	Estimated lagtime from equations, LT (hour)
Urban areas			*******		_~		
	ary to Beaver Creek at Ross Clark le in Dothan	1.81	30.5	2.23	31.8	1.39	1.23
02416032 Sugar	Creek at Alexander City	1.67	20•2	1.76	38 • 1	1.68	1.22
	Mile Branch at Biltmore Avenue contgomery	7.26	25.0	3.09	16.0	2.46	2.15
02420987 Hannon	Slough at Montgomery	1.32	42.9	1.31	39.3	1.16	1.04
02423580 Shades	Creek at Homewood	20.7	16•3	1.21	12.4	3.59	3.22
02457000 Fivemi	le Creek in Ketona	23.9	17.0	10.1	29.0	3.95	2.86
-	e Creek (Apalachee Street) Irmingham	15.6	33.3	7•88	19•9	1.91	2.50
02458300 Villag	e Creek (24th St) in Birmingham	26.0	25.0	10.8	17.8	2.45	3.07
02458450 Villag	e Creek (Avenue W) in Ensley	33.5	25.0	14.3	13.6	4.06	3.47
•	[,] Creek at Cleburne Ave near erly	20.1	36•8	6•63	15.2	2.51	2.80
	Mill Creek at Second Avenue East uscaloosa	2.75	28•9	3.76	60•2	1.59	1.24
	odcock Creek at Airport Blvd obile	1.85	25.0	1.35	10•6	1.64	1.55
02471065 Montli	mar Creek in Mobile	7•28	30•4	4.72	31.8	1.64	1.85
	ge Creek (Dunsmore Street) luntsville	1.15	10•2	2.08	29 5•6	•924	•808
03575696 Aldrid	ge Creek near Liiy Flagg	13.9	8.40	7.67	26.1	2.52	2.69
	oints Ditch in Huntsville	•62	20.0	1.42	27.8	•733	•963
03575890 Pinhoo	k Creek in Huntsville	22.5	12.0	1.24	27.8	2.40	2.94
03575910 Pineha	ven Ditch in Huntsville	•16	20•0	1.44	231.3	•335	•438
03575930 Brogla	n Branch at Homes Ave in Huntsville	∍ 8.87	19.3	5.88	35•6	1.75	2.03
	ille Spring Branch (Johnson Road) untsville	41.8	21•4	9.70	21.3	3•26	3.48
03589450 Sweetw	ater Creek at Florence	4.92	24•1	3.15	55.8	1.49	1.53

Table 4.--Stations and drainage basin characteristics used in lagtime regression analyses--continued

a Station number used only for this report.

Table 5.--Lagtime Equations

Area	Equation	Standard Error of estimate (percent)	Coefficient of determination, R ²
North of the Fall Line (ru	LT = $2.66(A)^{0.46}(S)^{-0.08}$	31.6	0.91
South of the Line (rural)	$LT = 5.06(A)^{0.50}(S)^{-0.20}$	31.2	•90
Statewide (urban)	$LT = 2.85(A)^{0.295}(S)^{-0.183}(IA)^{-0}$	122 21.0	•89

Limitations

The lagtime equations should be used only for streams that have drainage areas, main channel slopes, and, in urban areas, percent impervious area within the ranges given below.

Rural (North of the Fall Line)

Variable	Minimum	Maximum	Units
Α	0.59	481.0	square miles
S	5.20	296.2	feet per mile

Rural (South of the Fall Line)

Variable Minimum		Maximum	Units
A	1.11	485.0	square miles
S	4.20	83.3	feet per mile

	Urba	n (Statewide)	
Variable	Minimum	Maximum	Units
A	0.16	41.8	square miles
S	10.6	295.6	feet per mile
IA	8.40	42.9	percent

	Sample desig- nation				or Average standard error of prediction (percent)	
North	of Fall	Line	********	0.44 -0.11		
	Odd	21 L.	r = 2.92 (A)	$(s)^{0.44}$		
				<u>+</u> 29.0		0.92
	Even	21				
					<u>+</u> 39.9	.91
	Even	21 L7	r = 2.30 (A)	$^{0.48}(s)^{-0.035}$		
				+36.2		•90
	Odd	21				
	ہ ہے کہ ای کہ ان کے جہ ک				+31.5	.88
South	of Fall	Line		$(s)^{0.50}(s)^{-0.16}$		
	Odd	12 L.	r = 4.31(A)	(5)		
				+29.3		•93
	Even	14			+37.9	•90
				0.51 -0.27	<u>+</u> 37•9	• 90
	Even	14 L ⁴	r = 6.57(A	$^{0.51}(s)^{-0.27}$		
	Odd	15		<u>+</u> 36.8		.87
	odd	15			+31.6	•86
Urban	Odd	11 L'	r = 4.81(A)	(s) ^{0.25} (s) ^{-0.24}	IA) ^{-0.20}	
				+19.3		•94
	Even	10				
					+31.7	•93
	Even	10 L.	r = 1.46(P	$(S)^{0.37}$ $(-0.023)^{-0.023}$	(IA) -0.092	
				<u>+</u> 23.6		•89
	Odd	11			<u>+</u> 33.6	•89

Table 6.--Lagtime equations split-sample test results

Geographical bias was checked by plotting the residuals for each equation on a State map at the location of the stream gaging station. Although the residuals varied considerably between some stations, no specific geographic trends could be detected.

Sensitivity

The basin characteristics needed to use the lagtime equations must be measured from topographic maps or aerial photos. To determine how sensitive the equations are to errors made in the estimates of these characteristics, an analysis was made. For the rural equations the main channel slope was held constant and the drainage area was adjusted by ± 10 , ± 25 , and ± 50 percent, and the percent change in lagtime was determined. Then the drainage area was held constant and the main channel slope was changed by the same percentages. For the urban equation, the same analysis was made, but also included the percent of the basin covered with impervious area. The results of these analyses are shown in figure 2.


Flood Volume

Estimates of flood volumes may be useful in the design of a structure that will store floodwater for flood protection. Therefore, a theoretical (direct) equation that estimates flood volumes from basin and flood characteristics has been developed by summing the ordinates of the average dimensionless hydrograph (table 2). This equation was statistically tested by comparing the observed volumes (from 76 storms at 21 stations) with the volumes computed from the theoretical equation. These stations had drainage areas that ranged from 0.16 to 481 square miles; peak discharges ranged from 12.4 to 30,100 ft³/s (cubic feet per second); and lagtimes ranged from 0.335 to 44.3 hours. The user is cautioned not to use the equation for streams where the basin and flood characteristics are not within these ranges.

The volume equation and the standard error of estimate (taken from the comparison of the equation estimates to the observed volumes) are shown below.

 $V = \frac{0.00169 \ Q_p LT}{A}$ SEr = $\frac{+23.2 \text{ percent}}{A}$

HYDROGRAPH-WIDTH RELATION

For some instances, it is only necessary to know the amount of time a certain flow will be exceeded and the complete hydrograph is not needed. For these situations, a hydrograph-width relation was defined by Inman (1986), and is shown in table 7 and figure 3. The hydrograph width, W, can be estimated for a specified discharge Q, by first computing the ratio Q/Qp (where Qp is the peak discharge computed from the flood-magnitude equations in table 3) and then multiplying the corresponding W/LT ratio (from table 7 and figure 3) by the estimated lagtime, LT. This is the period of time a specified discharge, Q, will be exceeded. Hydrograph width is denoted as W, in hours, and the width ratio, W/LT, was determined by subtracting the value of t/LT on the rising limb of the dimensionless hydrograph from the value of t/LT on the falling limb of the hydrograph at the same discharge ratio, Q/Qp.

Table 7Relation	on of discharge ratios to hydrograph width ratios	
	for Georgia's dimensionless hydrograph	
	[Modified from Inman (1986)]	

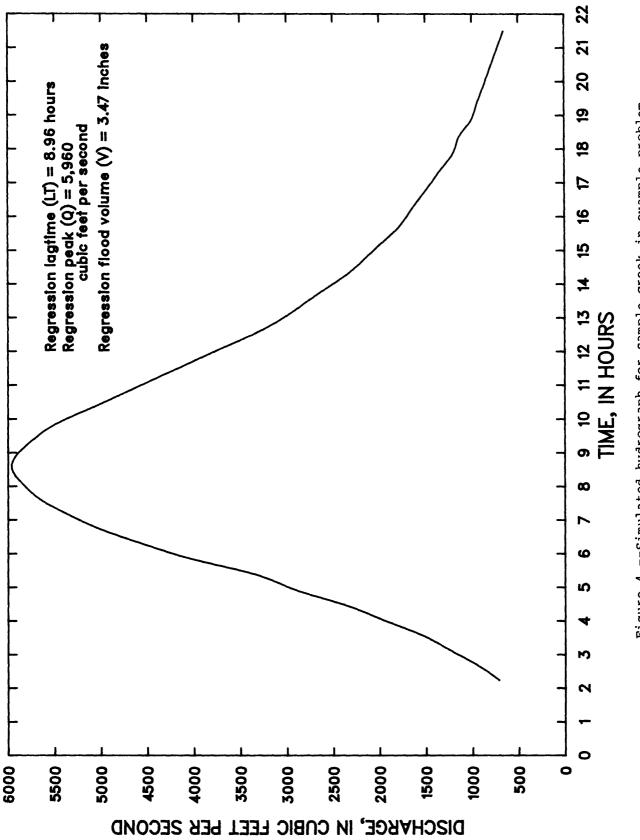
Discharge ratios Q/Qp	Width ratios W/LT
1.00	0
•95	.22
.90	• 32
•85	.40
• 80	• 48
•75	•55
• 70	.62
•65	•68
• 60	•76
• 55	•83
• 50	.91
•45	1.00
•40	1.09
• 35	1.20
• 30	1.33
• 25	1.47
• 20	1.66

Figure 3.--Hydrograph-width relation for dimensionless hydrograph (modified from Inman, 1986)

APPLICATION OF TECHNIQUE

The procedure for estimating a flood hydrograph and volume, and hydrograph width is outlined in the steps given below.

- 1. Determine the drainage area and the main channel slope from the latest topographic map. Impervious area is required for urban watersheds, and can be computed from topographic maps or aerial photos.
- 2. Locate the site in figure 1 to determine which hydrologic area it is in and, for rural stations, if it is north or south of the Fall Line.
- 3. Estimate the peak discharge from the flood magnitude equation for the particular hydrologic area in the flood frequency report (table 3 or Olin, 1985).
- 4. Compute the basin lagtime from the appropriate equation in table 5.
- 5. Compute the coordinates of the flood hydrograph by multiplying the value of lagtime by the time ratios and the value of peak discharge by the discharge ratios (table 1).
- 6. Compute the volume for the selected flood using flood volume equation.
- 7. Compute the hydrograph width for discharge ratio using either table 7 or figure 3.


Example Problem

The following illustrates the procedure for computing a flood hydrograph and volume for a 50-year flood at a bridge crossing on an ungaged rural stream.

- A site on a county road bridge crossing of a creek in Winston County is located on a topographic map. The drainage area is 26.0 square miles and the main channel slope is 35.0 feet per mile.
- 2. From figure 1 the site is located north of the Fall Line and in Hydrologic Area 1.
- 3. The peak discharge of 5,960 ft 3 /s is computed for the 50-year recurrence interval flood from the equation listed in table 3 for Hydrologic Areas 1 and 6 and a recurrence interval of 50 years.

				*	
Time ratio		= time	Q/Qp	=	Discharge
(t/LT)	x LT	hr.	from	x Qp	(ft ³ /s)
			table l	_	
0.25	8.96	2.24	0.12	5960	715
•30	8.96	2.69	.16	5960	954
•35	8.96	3.14	.21	59 6 0	1250
.40	8.96	3. 58	•26	5960	1550
•45	8.96	4.03	•33	5960	1970
•50	8.96	4.48	•40	5960	2380
•55	8.96	4.93	•49	5960	2920
•60	8.96	5.38	•58	5960	3460
•65	8.96	5.82	•67	5960	3990
•70	8.96	6.27	•76	5960	4530
•75	8.96	6.72	.84	5960	5010
•80	8.96	7.17	.90	5960	5360
•85	8.96	7.62	•95	5960	5660
•90	8.96	8.06	•98	5960	5840
•95	8.96	8.51	1.00	5960	5960
1.00	8.96	8.96	•99	5960	5900
1.05	8.96	9.41	.96	5960	5720
1.10	8.96	9.86	•92	5960	5480
1.15	8.96	10.3	•86	5960	5130
1.20	8.96	10.8	•80	5960	4770
1.25	8.96	11.2	•74	5960	4410
1.30	8.96	11.6	•68	5960	4050
1.35	8.96	12.1	.62	5960	3700
1.40	8.96	12.5	•56	5960	3340
1.45	8.96	13.0	•51	5960	3040
1.50	8.96	13.4	• 47	5960	2800
1.55	8.96	13.9	.43	59 60	2560
1.60	8.96	14.3	.39	596 0	2320
1.65	8.96	14.8	.36	596 0	2150
1.70	8.96	15.2	•33	5 96 0	1970
1.75	8.96	15.7	•30	5960	1790
1.80	8.96	16.1	•28	5960	1670
1.85	8.96	16.6	•26	5960	1550
1.90	8.96	17.0	•24	5960	1430
1.95	8.96	17.5	•22	5960	1310
2.00	8.96	17.9	.20	5960	1190
2.05	8.96	18.4	.19	596 0	1130
2.10	8.96	18.8	.17	5960	1010
2.15	8.96	19.3	.16	596 0	954
2.20	8.96	19.7	.15	5960	894
2.25	8.96	20.2	.14	596 0	834
2.30	8.96	20.6	.13	5960	775
2.35	8.96	21.1	.12	5960	715
2.40	8.96	21.5	.11	5960	656

Table 8.-- Simulated coordinates of the flood hydrograph for sample creek in example problem

- 4. A lagtime of 8.96 hours is computed from the lagtime equation for streams located above the Fall Line.
- 5. The coordinates of the flood hydrograph are computed by multiplying the estimated lagtime of 8.96 hours by the time ratios and the peak discharge (5,960 ft^3/s) by the discharge ratios from table 1. Table 8 and figure 4 show the resultant hydrograph.
- 6. The flood volume, 3.47 inches, is computed from the volume equation.
- 7. If the length of time the road is overtopped is needed, and the overtopping discharge is $3,000 \text{ ft}^3/\text{s}$, the road overflow time is computed as follows:

a. Q/Qp = 3,000/5,960 = 0.50

- b. from figure 3 or table 7, W/LT = 0.91
- c. basin lagtime = 8.96 hours

SUMMARY

The dimensionless hydrograph developed for Georgia (Inman, 1986) was tested to see if it could be applied to Alabama streams. The test was made by comparing observed hydrographs for Alabama streams to those simulated using Georgia's (Inman, 1986) dimensionless hydrograph procedure. Test results at 50 and 75 percent of peak flow widths showed that the Georgia dimensionless hydrograph could be used in Alabama. Therefore, the coordinates of the Georgia dimensionless hydrograph can be used to simulate flood hydrographs for both rural and urban ungaged streams in Alabama using equations developed to estimate peak discharge and lagtime in Alabama. A total of 120 observed hydrograph. An additional 40 flood hydrographs were used for a verification test.

Multiple-regression analyses were used to develop relations between lagtime and selected basin characteristics. Drainage area and main channel slope were significant for the rural basins; drainage area, main channel slope, and percent impervious area were significant for the urban basins. Two equations were developed for the rural basins; one for areas north of the Fall Line and another for south of the Fall Line. There was no parameter or geographic bias in either the rural equation or the urban equation. All equations were verified by split-sample testing. A theoretical analysis was used to also develop a relation between flood volumes (the dependent variable), and drainage area, peak discharge, and basin lagtime (the significant independent variables). One equation applies state-wide for both rural and urban basins.

An estimated hydrograph can be computed by applying lagtime and the specified peak discharge to the dimensionless hydrograph time and discharge ratios. The coordinates of the estimated hydrograph are computed by multiplying the lagtime by the time ratios and the peak discharge by the discharge ratios. The volume of the flood hydrograph can be computed from the regionalized volume equation.

SELECTED REFERENCES

- Alverson, R.M., 1970, Deep well disposal study for Baldwin, Escambia, and Mobile Counties, Alabama: Geological Survey of Alabama Circular 58, 49 p.
- Dixon, W.J., and Massey, F.J., Jr., 1957, Introduction to statistical analysis: McGraw-Hill.
- Inman, E.J., 1986, Simulation of flood hydrographs for Georgia streams: U.S. Geological Survey Water-Resources Investigation Report 86-4004, 48 p.
- O'Donnell, Terrance, 1960, Instantaneous unit hydrograph derivation by harmonic analysis: Commission of Surface Waters, Publication 51, International Association of Scientific Hydrology, p. 546-557.
- Olin, D.A., 1985, Magnitude and frequency of floods in Alabama: U.S. Geological Survey Water-Resources Investigations Report 84-4191, 96 p., 1 plate.
- ---- 1986, Flood-depth frequency relations for streams in Alabama: U.S. Geological Survey Water-Resources Investigations Report 85-4296, 46 p.
- Olin, D.A., and Bingham, R.H., 1982, Synthesized flood frequency of urban streams in Alabama: U.S. Geological Survey Water-Resources Investigations Report 82-683, 35 p.
- Robbins, C.H., 1986, Techniques for estimating flood hydrographs and estimating flood volumes for ungaged basins in central Tennessee: U.S. Geological Survey Water-Resources Investigations Report 86-4192, 32 p.
- Sauer, V.B., Thomas, W.O., Stricker, V.A., and Wilson, K.V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p.

GLOSSARY

- Dimensionless hydrograph is a unit hydrograph where the discharge scale is divided by the peak discharge and the time scale is divided by the basin lagtime.
- Drainage area (A) -- in square miles, the contributing area determined by outlining the basin on the latest topographic map available and planimetering the area within the outline.
- Hydrograph width (W)--in units of time, is the width of a hydrograph at a specified discharge.
- Impervious area (IA) -- in percent, the contributing drainage basin occupied by impervious surfaces. This parameter was measured using the grid method and the latest topographic maps and aerial photos.
- (L/S 0.5) -- a ratio, where L and S have been previously defined.
- Lagtime (LT) -- in hours, the time from the centroid of the rainfall excess to the centroid of the resultant runoff hydrograph.
- Main channel length (L) -- in miles, the distance along the longest channel from the gaging station to the basin divide.
- Main channel slope (S)--in feet per mile, the average slope between points 10 and 85 percent of the total channel length from the gaging station to the basin divide.
- <u>R-squared</u> (R²), the coefficient of determination (square of the multiple correlation coefficient), measures how much variation in the dependent variable can be accounted for by the model (dependent variables).
- Standard error of estimate (SEr)--in percent, is the standard deviation of the distribution of the residuals about the regression line.
- Standard error of prediction (SEp)--in percent, is a measure of the estimating ability at all sites, gaged and ungaged.
- <u>Unit hydrograph</u> is the hydrograph of direct runoff resulting from a storm having 1 inch of rainfall excess (runoff) uniformly distributed over the drainage basin during a specified duration of time.