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CONVERSION FACTORS

For the convenience of readers who prefer to use metric International System
(SI) units rather than the inch-pound terms used in this report, the following
conversion factors may be used:

Multiply By To obtain
Length
inch (in.) 25.4 "millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Volume
gallon (gal) 3.785 liter (L)
gallon (gal) 3.785x10"? cubic meter (m?)
Flow
gallon per minute (gal/min) 0.06308 liter per second (L/s)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
Transmigsivity
squared foot per day (£t2/4) 0.09290 meter per day (m/d)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)

Specific Capacity

gallon per minute per foot 0.2070 liter per second per meter

[(gal/min)/ft] [(L/s)/m]

Sea level: 1In this report, "sea level" refers to the National Geodetic
Vertical Datum of 1929 (NGVD of 1929)-- a geodetic datum derived from a
general adjustment of the first-order level nets of both the United States and
Canada, formerly called "Mean Sea Level of 1929."



GROUND-WATER RESOURCES
OF THE YORK JAMES PENINSULA OF VIRGINIA

By R.J. Laczniak and A.A. Meng III

ABSTRACT

An unconfined aquifer underlain by six confined aquifers and intervening
confining units comprise the hydrogeologic framework of the York-James
Peninsula. The three lowermost aquifers--the upper, middle, and lower Potomac
aquifers--are the thickest and most productive. These aquifers supplied about
87 percent of the total estimate of ground water withdrawn (39 million gallons
per day (Mgal/d)) in 1983. The middle and lower Potomac aquifers, in the
western part of the Peninsula, contain water of the best quality for potable
supply within York-James Peninsula.

A three dimensional, digital flow model that simulates ground-water flow
conditions prior to and throughout the history of ground-water development
provides information about the flow of ground water through the multiaquifer
system and addresses concerns about the future use of this resource. The
model shows that reduction of ground-water flow to and induced flow from sur-
face waters have largely compensated for most of the ground water withdrawals.
Model simulation shows that these two flow components accounted for 87 percent
of the total water withdrawn (38 Mgal/d) in the final pumping period
(1981-83). Most of the surface water that recharges the ground-water flow
system was from sources containing salty water (Chesapeake Bay and Atlantic
Ocean). This recharge was mainly to parts of aquifers not used for freshwater
supply, and rates of recharge were relatively slow, Most of the water
withdrawn from confined aquifers was replaced by water flowing through the
overlying and underlying confining units.

Four scenarios of increased withdrawal are used to evaluate the availabi-
lity of ground water for meeting future freshwater supply needs. Results
indicate that (1) increased withdrawals are expected to continue to lower
water levels throughout the aquifers and that these water-level declines will
limit yields from aquifers before available recharge is depleted, (2) the
severity of water-level decline could be lessened by locating projected
withdrawals away from established pumping centers, (3) the severity of water-
level decline could be lessened by using ground water as a supplemental
supply, (4) withdrawal from the deeper confined aquifers appears to have a
minimal effect on water levels in the Yorktown-Eastover aquifer (uppermost
confined aquifer), (5) the distribution and rate of recharge induced from
sources containing salty water (surface water or underlying aquifer) depend on
the location and quantity of water (surface or underlying aquifer) depend on
the location and quantity of water withdrawn, and (6) withdrawal from the
Yorktown-Eastover aquifer in York County induces recharge from overlying
brackish surface water sources.



INTRODUCTION

Ground water is an important resource of the York-James Peninsula that
historically has provided a significant part of the water supplied to the
population and industries throughout the peninsula. Since about 1890, the use
of ground water has increased steadily. The steady use (withdrawal) of ground
water has lowered water levels throughout the aquifers creating cone-like
depressions in the water-level surface. These cones of depression have
expanded outward from centers of heavy ground-water withdrawal causing inter-
ference among ground-water users.

Census projections predict rapid growth of the peninsula's population
centers and increases in both industrial and agricultural development.
Continued growth and development will increase the demand for freshwater
supplies. Any increased use of ground water will further lower water levels,
thus causing more interference among ground-water users as cones of depression
expand outward, and possibly, accelerate the movement of salty water into the
freshwater parts of aquifers. These potentially adverse effects of increased
ground-water withdrawal are of major concern to those involved in managing the
water resources of the Peninsula. The severity and extent to which these
adverse effects will occur are unknown; thus, the reliability of ground water
as a source for meeting future water needs is uncertain. 1In 1982, the U.S.
Geological Survey, in cooperation with the Virginia Water Control Board, the
cities of Newport News and Williamsburg, and the counties of Charles City,
Hanover, James City, New Kent, and York, began a comprehensive study to assess
the ground-water resources of the York-James Peninsula.

Purpose and Scope

The purpose of this report is to describe the availability and quality of
ground water in the York-James Peninsula. The report presents hydrologic data
collected during the study and the results from a digital flow model developed
to aid in the assessment of the ground-water resource. Specifically, the
report describes (1) the aquifers and confining units composing the ground-
water flow system, (2) the flow of ground water through the multiaquifer
system, (3) the withdrawal of ground water from aquifers, (4) the quality of
water within each aquifer, (5) the hydraulic characteristics of aquifers and
confining units, (6) the digital-flow model that simulates ground-water flow,
and (7) the effects of increased ground-water withdrawal as projected by model
simulations.

Hydrologic data on aquifers and confining units within the York-James
Peninsula were collected, compiled, and analyzed. These data were used to
develop a digital model to simulate ground-water flow. The digital flow model
provided hydrologic information describing the regional response of the
multiaquifer system to simulated increases in ground-water withdrawal. The
information presented in this report is intended to improve understanding of
the ground-water resources of the York-James Peninsula.

Location of Study Area

The study area is located in the central part of the Coastal Plain phy-
siographic province of Virginia and includes most of the landmass commonly
referred to as the York-James Peninsula (fig. l). The study area is bounded









were installed to obtain additional hydrologic information. The stations pro-
vided: (1) hydrogeologic data to refine identified hydrogeologic units, (2)
water-quality data to define lateral and vertical changes in the chemical com-
position of ground water within the multiaquifer system, (3) vertical
hydraulic conductivity values of confining units, and (4) the mineral com-
position of aquifer and confining-unit sediments.
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HYDROGEOLOGY

The Coastal Plain physiographic province of Virginia is underlain by
layered, sedimentary deposits that generally thicken and dip eastward. These
deposits consist of clay, silt, sand, and gravel, with variable amounts of
shell material. Except for some local calcareous cementations, this sedimen-
tary section is devoid of consolidated sediments. These local cementations
are usually associated with shell beds and form thin, lithified strata
referred to as "shell rock" by local drillers. The unconsolidated sediments
overlie a hard rock surface, commonly referred to as "basement"™, which also
slopes eastward. This sloping rock surface emerges at the Fall Line, marking
the western limit of the onlapping Coastal Plain deposits, and continues west-
ward forming the Piedmont physiographic province. The sediments of the study
area attain a thickness of 2,246 feet (Cederstrom, 1957), at the southeastern
end of the York-James Peninsula.

The geologic age of the sedimentary section ranges from Early Cretaceous
to Holocene and has a highly varied depositional history. About 70 percent of
the sedimentary section consists of Cretaceous sediments, with the remainder
consisting mostly of Tertiary sediments. The Cretaceous sediments are mainly
continental in origin and consist of alternating sand and clay. These sand
and clay deposits are laterally discontinuous and highly variable in
thickness. The alternating depositional sequences of the Cretaceous section
are attributed to fluvial-deltaic processes. Throughout the Early Cretaceous
Epoch, large quantities of weathered-rock material were transported out of the
western mountainous highlands of the Piedmont and Blue Ridge physiographic
provinces by streams and deposited in the lowlands at the edge of the
Continental margin. As these sediments accumulated, large delta lobes
prograded oceanward. Within the forming deltas, different fluvial environ-
ments produced a variety of interfingering continental deposits ranging from
carbonaceous clay and silty clay to sand and gravel.

Tertiary sediments of marine origin overlie the Cretaceous deposits.
These marine sediments form areally extensive and predictable layered
depositional sequences. The uniform depositional patterns of the Tertiary
section are the result of generally constant and widespread environmental con-
ditions resulting from the inundation of the Coastal Plain landmass by many
transgressions of the sea. The Tertiary marine environments produced deposits
ranging from clay to sand with varying amounts of shell.

A thin series of Pleistocene sediments overlie the Tertiary deposits.
These sediments formed as a result of fluctuating sea levels during the latest
ice age and mostly occur as a series of terrace-type deposits of fluvial or
marine origin. As sea levels declined, because of the expansion of the polar
ice caps, the Coastal Plain sediments were deeply entrenched and eroded along
stream valleys. Streams cut into and through aquifers and confining units
near land surface, thus increasing the influence of streams on the ground-
water flow system. As sea levels rose, because of the melting of glacial ice,
the deeply incised stream valleys were infilled and the headlands were eroded.
Deposits range from peat to silty clay and sand to gravel.

A thin veneer of Holocene sediments overlie the Pleistocene deposits in
the eastern part of the study area. These sediments are the result of gra-
dually rising sea levels occurring since the Pleistocene. The Holocene sedi-



ments occur mostly as fringing estuarine, lagoonal, and tidal deposits, These
sediments are hydrologically similar to the underlying Pleistocene deposits
and, therefore, are combined in the model analysis. Erosional and depositional
processes of the Pleistocene Epoch produced the drowned river valleys and
broad, stair-step-like terrace landforms of the York-James Peninsula.

Aquifers and Confining Units

The alternating sand and clay deposits of the Coastal Plain physiographic
province of Virginia form a layered series of aquifers and confining units
that compose the hydrogeologic framework. Aquifers consist mainly of sand, or
interbedded sand and clay, while confining units consist mainly of silt and
clay. The hydrogeologic framework was developed from correlation of litholo-
gic and geophysical logs, water-quality analyses, water-level data, and
paleontologic and hydraulic analyses of core samples. The locations of
control wells are shown in figure 2. The alternating sand and clay deposits
form seven confined aquifers, an overlying water-table aquifer, and intervening
confining units (table 1). Nomenclature is similar to that presented by Meng
and Harsh (1984). Corresponding geologic formations, ages, and hydrogeologic
units described by previous investigators also are included in table l. Only
six of the seven confined aquifers listed in table 1 exist within the limits
of the study area--the Virginia Beach aquifer, of Late Cretaceous age, is not
present and therefore is not discussed in this report. Hydrogeologic
descriptions, hydrologic characteristics, and a range of well yields for the
aquifers are given in table 2. Hydrogeologic sections, shown in figures 3 and
4, illustrate the relative positions of hydrologic units throughout the
peninsula. The areal extents and structure tops of each confined aquifer
relative to sea level are shown in figures 5-10. The thicknesses and areal
extents of intervening confining units are shown in figures 11-17. The
aquifers and confining units of the York-James Peninsula are described briefly
below. For a more detailed discussion on hydrogeologic characteristics, depo-
sitional patterns and settings, and geophysical log correlations, the reader
is referred to Meng and Harsh (1984).

The Columbia aquifer includes Holocene and Pleistocene sediments. It is
the uppermost aquifer and is a water-table aquifer throughout its extent.
The aquifer is present only in the eastern part of the study area and primarily
consists of a thin series of Pleistocene terrace deposits. The thickness of
the Columbia aquifer is highly variable and generally ranges between 10 to 40
feet but also attains thicknesses greater than 80 feet in Pleistocene
paleochannels. The aquifer consists of interbedded and intermixed sand, silt,
and clay, generally overlying a gravelly base.

The Yorktown-Eastover aquifer is the uppermost aquifer of Tertiary age
and includes sediments of the Pliocene Yorktown Formation and the Miocene
Eastover Formation. It is present throughout the study area, except along
stream valleys where the aquifer has been removed by erosion (fig. 5). The
thickness of the aquifer is highly variable and generally depends on the ele-
vation of the land surface. Thickness ranges from a featheredge at the updip
limit to 160 feet thick at well S9E 5 in the city of Hampton. The lithology
of the aquifer is complex, varying from gravelly-to-silty sand, interbedded
with silt, clay, and shell. The Yorktown-Eastover aquifer is the water-table
aquifer in the western and central parts of the study areas and is overlain by
the Yorktown confining unit in the eastern part of the study area. The
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Table 1.-Hydrogeologic units in the York-James Peninsula

Mn:g_glopﬁc Unat
York~Janes Virginia
Peninsula State Water laczniak
Stratigraphic Model Cederstrom Control Board Yarsh and Harsh
Period Epoch formation (this report) (1957) (1977) (1980) (1986)
Sands of Recent
Quatermary | Holxene Undi fferentiated Colunbia deposits and the Quaternary Columbia
Pleistocene sediments aqui fer Columbia Group aqui fer aqui fer
Yotktown Vater-table Yorktown
Pliocene Yorktown confining unit | Sands and shells aqui fer confining unit
Formation Yorktown- of the Yorktown Yorktown
Eastover Formation Aqui fer Yotktown-Eastover
Eastover aqui fer aquifer
Formation
St. Marys St. Marys St. Marys
Formation confining unit confining unit
Miocene Choptank Confining Confining St. Marys-
Formation wit uit Choptank .miferz
Calvert Calvert Calvert
Fomation confining unit confining unit
Tertiary Old Church Bagal sands of the
Oligocene Formation Chickahominy- | Calvert Formation | Upper Chickahowi ny-
Chickahominy Piney Point Sands of the artesian Piney Point
Formation | aquifer Chickahomiay aqui er Eocene aqui fer
Piney Poiat Formation and .
Eocene Formation Sands of the Paleocene
Nan jemoy Nan jenoy aqui fer
Formation Nan jemoy~ Formation Qufining Nan jemoy-
Mar]lboro Marlboro wit Mar]boro
Clay confining unit confining unit
Aquia Auia Sands of the Aquia
Formation aqui fer Aquis Formation _aquifer
Brightseat -
Paleocene Principal Upper Potomsc
Brightseat Upper Potomac | Sends of the artesian Confining confining wnit? |
Formation confining unit | Mateaponi aqui fer unit Brightseat -
Upper Potomec | Formation Upper Potomac
aquifer a@jfcz
Equivalent of Virginia Beach
Black Creek confining unit! Confining
Formation ! wit &
of North Virginia Beach | Not present Not present | Mot oresent 1
Late Carolina aqui ferl in area in aree in ares aqui fer &
Cretaceous
Upper Potomac Upper Potomsc
confining unit | Sands of the confining unit
Mattaponi Brightseat ~
Upper Potomac | Formation Upver Potomac
aqui fer aqui fer
Cretaceous Middle Potomac Principal Middle Potomsc
Potomac confining unit artesian Cret confining unit
Formation ddle Potomac aqui fer aqui fer Middle Potomac
aqui fer Sards of the aqui fer
Early Lower Potomac | Potomac Growp Lower Potomsc
Cretaceous confining wit confining unit
Lower Potomac Lower Potomac
aquifer aquifer

ot present in study area but present in model ares

2No: present in model area




Table 2.--Hydrogeologic descriptions, characteristics, and well yields of aquifers in the York-James Pen1n1|

[gal/min 1s gallons per minute]

Well yleld
(gal/min)
Aquifer name and description Hydrologic characteristics
Common May
range exceed

Columbia aquifer: Sand and gravel, commonly 3-30 40 Generally unconfined, semfconfined locally.
clayey; interbedded with silt and clay. Most productive in eastern area, very thin
Fluvial to marine in origin, deposition to missing 1n central and western areas.
resulted in terrace-type deposits from Water is very hard calcium-bicarbonate type.
varying Pleistocene sea levels. Highly susceptible to contamination from sur-

face pollutants. Elevated concentrations of iron

and nitrate in some areas. Possibility of

salty water i{n coastal regfions.
Yorktown-Eastover aquifer: Sand, common! 5-80 200 Multiaquifer unit. Mostly confined, uncon-
shelly; interbedded with si11t, clay, shell fined updip in outcrop areas. Thickness
beds, and gravel. Shallow, embayed marine dependent on altitude of land surface.
in or1?1n, deposition resulted in inter- Highest ylelds f{n eastern area, thin to
fingering near-shore deposits from marine missing in western area. Water is hard to
transgressions. ver¥ hard sodium calcium bicarbonate type.

Salty water in lower part of aquifer in

eastern area.
Chickahominy-Piney Point aquifer: Sand, 10-110 200 Important aquifer in central area; ytelds
moderatol{ glauconitic, shelly; inter- moderate to abundant supplies to domestic,
bedded with silt, clay, and thin, small industrial, and municipal wells.
indurated shell beds. Shallow, inner Water i{s soft to hard, calclium sodium
marine shelf in origin, deposition result bicarbonate type and generally suitable
of marine transgression. for most uses. Aquifer not present in westegﬂl

area.
Aquia aguifer: Sand, glauconitic, shelly; 15-210 350 Important aquifer in central area; ¥1elds
interbedded with thin, indurated shell moderate supplies to domestic, smal
beds and silty clay intervals. Shallow, industrial, and municipal wells. Water is
inner to middle marine shelf in origin, soft sodium bicarbonate type, with elevated
deposition result of marine transgression. iron, sulfide, and hardness locally.

Aquifer not present in eastern area.
Upper Potomac aquifer: Sand, very fine to 20-400 1,000 Multtaquifer unit. Restricted to subsur-
medium, micaceous, 1ignitic, and clayey; face, ylelds largest supply of water in
interbedded with silty clays; confined, study area. Water is soft sodium chloride
restricted to central and eastern areas. bicarbonate type with elevated chlorides in
Shallow, estuarine and marginal marine in eastern area.
origin, sediments result of first major
marine inundation of Cretaceous deltas.
Middle Potomac aquifer: Sand, fine to 20-160 700 Multiaquifer unit. Yields second largest
coarse, occasional gravels; interbedded supply of water in study area. Water is
with silty clays; generally confined, moderately hard, sodium chloride bicarbonate
unconfined 1n outcrop areas of north- type, with elevated chiorides in eastern area.
western Coastal Plain and major stream
valleys near Fall Line. Fluvial in
origin, sediments result of deltaic
deposition.
Lower Potomac aquifer: Sand, medium 100-800 1,500 Multiaquifer unit. Yields third largest

to Ver{ coarse, and gravels, clayey;
generally confined, unconfined only in
northwestern area of Coastal Plain.
Fluvial in origin, sediments result of
deltaic deposition.

supply of water. Water ts soft to very hard,
and of a sodium bicarbonate to sodium

chioride type, with elevated chlorides and dis-
solved solids in eastern area. Thickest of

all aquifers.
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Yorktown confining unit ranges in thickness from a featheredge at the western
limit to 40 feet at well 58F 18 in central York County (fig. 11). Along its
western limit, the Yorktown confining unit is highly dissected and commonly
caps the higher land elevations. In the eastern part of the study area, the
Yorktown confining unit is overlain by the Columbia aquifer.

The Chickahominy-Piney Point aquifer is of middle Teritiary age and
includes sediments of the Miocene and Oligocene 0Old Church Formation and the
Eocene Chickahominy and Piney Point Formations. It is present throughout the
study area, except along the Fall Line. The aquifer crops out in a small area
along the James River and in a much more extensive area along the Pamunkey
River (fig. 6). In cross-section, the Chickahominy-Piney Point aquifer is
both lenticular and wedge-shaped. It is lenticularly shaped from the updip
limit to well 58F 50 just east of the city of Williamsburg and thickens to 82
feet at well 55H 6 in southern New Kent County. The aquifer thins to a
featheredge along the updip limit and to 30 feet at well 58F 18 in central
York County. East of wells 58F 18 and 58F 50, the Chickahominy-Piney Point
aquifer becomes wedge-shaped and thickens to 146 feet at well 59E 5 in the
city of Hampton. The lenticularly-shaped section consists of medium-to-coarse
glauconitic sand, interbedded with clay and indurated shellbeds. The wedge-
shaped section consists of coarse-to-very coarse quartz sand. The
Chickahominy-Piney Point aquifer is overlain by the Calvert confining unit
which thickens from a featheredge at the updip limit to 134 feet at well 59E 6
in the city of Hampton (fig. 13). The Calvert confining unit is overlain by
the St. Marys confining unit in the eastern half of the study area and by the
Yorktown-Eastover aquifer in the western half. The St. Marys confining unit
thickens to 70 feet at well 59E 5 in the city of Hampton (£fig. 12) and is also
overlain by the Yorktown-Eastover aquifer.

The Aquia aquifer is the lowermost aquifer of Teritiary age in the study
area and includes sediments of the Paleocene Aquia Formation. It is present
throughout the study area, except in a narrow band just east of the Fall Line
and in the extreme eastern part of the study area. The aquifer crops out
along both the James and Pamunkey Rivers (fig. 7). In cross-section, the
Aquia aquifer is lenticularly-shaped. It attains a thickness of 62 feet at
well 55H 1 in southeastern New Kent County and thins to a featheredge at both
its updip and downdip limits. The updip limit is erosional, while the downdip
limit is gradational--that is, the sandy aquifer sediments gradually change to
clay. The aquifer consist of fine-to-medium glauconitic sand with thin
interbedded silt and shell. The Aquia aquifer is overlain by the
Nanjemoy-Marlboro confining unit which ranges in thickness from a featheredge
along the updip limit to 80 feet at well 58F 18 in central York County (fig.
14). The Nanjemoy-Marlboro confining unit is overlain by the
Chickahominy-Piney Point aquifer.

The upper Potomac aquifer includes sediments of the upper part of the
Cretaceous Potomac Formation and the Paleocene Brightseat Formation. It is
the thinnest of the aquifers of Cretaceous age and is present throughout the
eastern two-thirds of the study area (fig. 8). The aquifer thickens from a
featheredge along the updip limit to 87 feet at well 59E 5 in the city of
Hampton and consists of fine-to medium, thickly-bedded sand interlayered with
thin clay. The upper Potomac aquifer is overlain by the upper Potomac con-
fining unit. The upper Potomac confining unit is highly variable in
thickness, ranging from 6 feet at well 57G 21 near the city of Williamsburg to
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74 feet at well 59D 20 in the city of Newport News (fig. 15). The upper
Potomac confining unit is overlain by the Aquia aquifer, except in the eastern
part of the study area, where the confining unit is overlain by the
Nanjemoy-Marlboro confining unit.

The middle Potomac aquifer includes sediments of the middle part of the
Cretaceous Potomac Formation and is the second thickest aquifer of the study
area. It is present throughout the study area and crops out along the James
and Pamunkey Rivers, just east of the Fall Line (fig. 9). The aquifer thickens
from a featheredge along the Fall Line to 428 feet at well 59E 5 in the city
of Hampton and consists of interlensing clay, silt, and medium to coarse sand
with interbedded gravel. The middle Potomac aquifer is overlain by the middle
Potomac confining unit. The middle Potomac confining unit is highly wvariable
in thickness, ranging from 10 feet at well 52K 9 in Hanover County to 64 feet
at well 56H 25 in James City County (fig. 16). The middle Potomac confining
unit is overlain by the upper Potomac aquifer throughout the study area,
except near the Fall Line, where the confining unit is overlain by the Aquia
aquifer.

The lower Potomac aquifer includes sediments of the lower part of the
Cretaceous Potomac Formation and is the lowermost and thickest aquifer in the
study area, except where it is missing near the Fall Line. It is restricted
to the subsurface (fig. 10) and thickens from a featheredge along the western
limit to 689 feet at well 59E 5 in the city of Hampton. The aquifer
consists of massively-bedded clayey sand, sandy clay, and coarse sand with
interbedded gravel. The lower Potomac aquifer overlies the pre-Creataceous
basement rock surface and is overlain by the lower Potomac confining unit.
The lower Potomac confining unit is highly variable in thickness, ranging from
19 feet at well 54G 10 in Charles City County to 78 feet at well 59E 5 in the
city of Hampton (fig. 17), and is overlain by the middle Potomac aquifer.

Occurrence, Movement, and Use of Ground Water

Ground water is defined as water in the subsurface that is under a
pressure equal to or greater than atmospheric pressure. Ground water is present
within the saturated zone in pore spaces between the sediment grains that form
aquifers and confining units and is a major source of water flowing to
streams, ponds, and reservoirs.

How water enters, moves through, and leaves the ground-water flow system
are important to the study of ground-water resources. These three components
are addressed in the "hydrologic cycle" that is illustrated in figure 18. The
hydrologic cycle describes the continuous movement of water above, on, and
below the surface of the earth. It has neither a beginning nor an end.
Discussion of ground water commonly begins with precipitation. Rain water
infiltrates the ground and percolates downward into the saturated zone. The
upper part of the saturated zone forms the water-table aquifer. Water moves
downward or laterally through this aquifer along flow paths toward discharge
sites such as seeps, springs, streams, the Chesapeake Bay, or Atlantic Ocean.
Water that moves downward in the water-table aquifer eventually encounters
less permeable (conductive) sediments. These finer-grained sediments, such as
silt and clay, partially impede downward movement of ground water, forcing more
lateral movement of water through the aquifer. The silt and clay deposits
form confining units that divide the remaining sedimentary section into a
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series of separate confined aquifers. However, some water still moves through
the confining unit and recharges the underlying aquifers.

Water in confined aquifers also moves both laterally and vertically along
flow paths toward sites of discharge. Vertical movement of water within con-
fined aquifers is again impeded by confining units and the process is con-
tinuously repeated as water moves throughout the entire layered sequence of
sediments. Thus, the dominant direction of flow is lateral through the
aquifers and vertical through the confining units. Fresh ground water even-
tually encounters salty ground water in the lower aquifers of the eastern
parts of the study area. Density differences between these two types of water
forces the fresh ground water upwards. Upward moving fresh ground water again
is impeded by confining units but eventually discharges into the Chesapeake
Bay or Atlantic Ocean. Water evaporates from these surface reservoirs and
forms clouds which, in turn, produce rain to continue the hydrologic cycle
again.

The above paragraphs describe the general flow of ground-water for the
York-James Peninsula before wells were drilled to withdraw ground water. The
withdrawal of ground water from the aquifers has caused a steady decline in
water levels throughout the study area and has altered both local and regional
flow directions. The earliest documented wells in the study area date back to
about 1890. Records indicate that, from 1890 to about 1920, most wells
drilled into confined aquifers flowed naturally to land surface. As more
wells were drilled and water was depleted from the aquifers faster than it was
recharged, the potentiometric surface in the aquifers began to decline. Wells
eventually stopped flowing as the potentiometric surface declined below land
surface. In order to maintain needed supplies, pumps were installed. As the
need for water grew, the withdrawal of ground water was increased, further
lowering water levels in aquifers. Estimated annual ground-water withdrawal
from the model area is shown in figure 19. Withdrawal estimates include
water from flowing wells and commercial, industrial, and water-supply usage.
Domestic use was not included because it is assumed to represent only a small
percentage of non-returned water. Total withdrawal for 1983 was estimated to
be about 39 Mgal/d (million gallons per day). The relative significance of
each aquifer throughout the history of ground-water development is shown in
figure 20. Aquifer withdrawal rates were computed by adding ground-water use
values for all wells screened in an individual aquifer (Kull and Laczniak,
1986). For wells screened in multiple aquifers, aquifer withdrawal rates were
estimated from the ratio of the length of aquifer screened to the total length
of well screened. The 1983 estimated ground-water withdrawal from the model
area is given in table 3. The Potomac aquifers supplied about 87 percent of
the total withdrawal in 1983. The middle and upper Potomac aquifers have pro-
vided the major portion of the ground water to the Peninsula; however, the
importance of individual aquifers to local water supply varies throughout the
study area. Ground water is withdrawn primarily from the lower and middle
Potomac aquifers in the western part of the study area. The middle and upper
Potomac aquifers and the Chickahominy-Piney Point aquifer supply most of the
water in the central part of the study area. The Yorktown-Eastover and
Columbia aquifers supply the majority of water to the eastern part of the
study area because the deeper confined aquifers contain water with high con-
centrations of dissolved solids. The largest withdrawal of ground water from
the model area is near the town of West Point and was estimated to be about
15.6 Mgal/d for 1983. Other major centers of ground-water withdrawal that
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affect the flow of ground water within the study area are located (1) near the
cities of Suffolk and Williamsburg, (2) in the western part of the city of
Newport News, (3) in the central part of James City County, (4) in the eastern
parts of Hanover and Henrico counties, and (5) near the town of Smithfield.
Prior to pumping, ground water flowed through the confined aquifers toward and
eventually discharging to the Chesapeake Bay and Atlantic Ocean. Today,
because of the withdrawal of large volumes of water, the dominant direction of
flow in the confined aquifers is toward the major pumping centers.

Quality of Ground Water

Water quality is an important aspect of the ground-water resource in the
York-James Peninsula. Each ground-water user has a range of tolerance for
quality-related constituents based on individual need. A thorough knowledge
of the concentration and distribution of dissolved-chemical constituents in
ground water can further aid in identifying sources of ground water available
for specific water-supply needs. This section describes (1) the general
changes in the composition of ground water as it moves along a flow path
through the Coastal Plain sediments, (2) the general quality of ground water
in aquifers throughout the York-James Peninsula, (3) those factors affecting
ground-water quality, and (4) the water-quality problems commonly associated
with aquifers of the York-James Peninsula.
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Table 3.--Estimated ground-water withdrawals from mode! area
by aquifer, 1983

[Mgal/d is million gallons per day]

Withdrawail Percentage
Aquifer (Mgal/d) of total

Columbia 0.100 0.26
Yorktown-Eastover 1.373 3.52
Chickahominy-Piney Point 2.939 7.55
Aquia .903 2.32
Virginia Beach .008 .02
Upper Potomac 14.16 36.39
Middle Potomac 15.873 40.79
Lower Potomac 3.560 9.15

Total 38.916 100.00

Available water-quality data were compiled, wells sampled, and two ground-
water research stations installed and sampled in order to characterize the
general water quality of aquifers in the York-James Peninsula. Additional
sources of data were Federal and State agencies, local governments, and well-
drilling companies. Water-quality analyses with major cation-anion imbalances
greater than eight percent were considered unreliable and were not used. If
water-quality analyses were unavailable for aquifers in particular areas,
wells were sampled to obtain the needed data. One research station,
designated RS-l (wells 56H 25 to 56H 30, fig. 2) was installed in the
western part of James City County. A second research station, designated
RS-2 (wells 58F 50 to 58F 55, fig.2), was installed in the western part of the
city of Newport News. Each research station consists of six wells, each
screened in different aquifers in order to provide a vertical hydrologic pro-
file of water levels and water quality. Water-quality analyses and source
aquifers for wells sampled during the study are given in table 4. A statisti-
cal summary of all water-quality data compiled during this study is presented
by aquifer in tables 5-11. These tables provide the likely ranges of
dissolved-constituent concentrations for aquifers within the study area.

Precipitation that recharges the ground-water flow system typically con-
tains low concentrations of dissolved constituents. As precipitation
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Table 5.--Summary of water-quality analyses from Columbia aquifer in the York-James Peninsula

[N is number of samples, C, CO3 1s calcium carbonate, mg/L 1s milligrams per 1iter, Wg/L is
micrograms per liter, Us/cm is microsiemens per centimeter, °C is degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 17 86.00 2.90 42.21 43.00 25.51
Magnesium, dissolved, mg/L .. 17 14 .09 5.02 4.3 3.77
Potassium, dissolved, mg/L .. 12 4.3 .6 2.22 1.85 1.14
Sodium, dissolved, mg/L ..... 13 55 5.2 25.2 20 16.55
Alkalinity as CaCO3, mg/L ... 5 406 15 169.6 126 154.94
Chloride, dissolved, mg/L ... 19 93 9.7 34.28 27 22.48
Sulfate, dissolved, mg/L .... 17 29 1.32 9.81 6 9.13
Specific conductance,

Ms/cm ...ovvvvnnnnnn N 7 628 114 345.43 339 177.38
pH, standard units .......... 15 8.05 6.5 7.56 7.8 .5
Nitrogen, nitrite plus

nitrate dissolved, mg/L ... 1 -~ -- -- <.01 -
Phosphate, ortho., dissolved,

MI/Leeeeieiiierninensensnes 0 - - - - --
Organic carbon, total, mg/L . 0 -- -- - -- -
Hardness, total as CaCO3,

mg/L..... teseteeneseneannas 18 220 16 102.17 107.5 62.54
Fluoride, dissolved, mg/L ... 18 0.5 .21 --
Silica, dissolved, mg/L ..... 13 40 6.6 21.31 20 11.14
Iron, total,pg/L ............ 7 710 80 408.57 350 248.29
Iron, dissolved, Wa/L ....... 4 5200 90 1477.5 310 2484.17
Manganese, total, Wg/L ...... 5 5900 30 1250 70 2600
Manganese, dissolved, Mg/L .. 2 610 200 405 405 -—-
Dissolved solids, residue

at 180°C, mg/L.....ccvnunne 15 762 63 262 227 168

infiltrates into and moves downgradient through the ground-water flow system
toward discharge areas, its chemical composition is modified by contact with
minerals in the sediment. The water-quality diagram in figure 21 generalizes
the chemical changes in ground water moving downgradient along a regional pre-
pumping flow path (Back, 1966). Water in recharge areas (A in fig. 21) is
dominated by a mixture of sodium, calcium, and magnesium cations and bicar-
bonate anions. The chemical character of ground water changes to a calcium-
bicarbonate water downgradient from the recharge areas (B in fig. 21). This
change in chemical character occurs from the dissolution of calcite in shell
material found within the sediments. If ground water becomes saturated with
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Table 6.--Summary of water-quality analyses from Yorktown-Eastover aquifer
in the York-James Peninsula

[N is number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per 1iter, Yg/L is
micrograms per 1iter, Us/cm is microsiemens per centimeter, °C {s degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 34 261.00 1.80 59.93 56.50 45.18
Magnesium, dissolved, mg/L .. 34 39 .1 5.82 3.45 8.02
Potassium, dissolved, mg/L .. 25 16 .8 4.4 2.6 4.11
Sodium, dissolved, mg/L ..... 26 804 3.5 86.84 20.5 182.84
Alkalinity as CaCO3, mg/L ... 11 294 12 154.18 167 82.79
Chloride, dissolved, mg/L ... 35 1190 3.1 96.47 21.5 248.53
Sulfate, dissolved, mg/L .... 35 119 1.13 16.24 9.9 21.32
Specific conductance,

HS/C o ovvviiinnnennannnnsns 18 4380 285 720.89 427 938.04
pH, standard units .......... 21 8.9 7.1 7.63 7.55 .42
Nitrogen as NO; + NO3,

dissolved, mg/L ............ 4 .25 <.01 -- .1 -
Phosphate, ortho., dissolved,

mg/L........ Ceereerieenes ces 5 .52 .01 - .09 -
Organic carbon, total, mg/L . 1 - -- -- 4,6 -
Hardness, total as CaCOj,

mg/L.......... Ceeesresesaaas 30 812 5. 170.71 165 139.14
Fluoride, dissolved, mg/L ... 29 .9 <.01 -- .1 --
Silica, dissolved, mg/L ..... 26 40 9.7 18.04 15.5 8.48
Iron, total, /L ........ . 11 8700 30 2909.09 710 3677.08
Iron, dissolved, Wg/L ....... 13 120 <.01 -- 20 --
Manganese, total, g/L ...... 3 210 40 123.33 120 85.05
Manganese, dissolved, W/L .. 2 170 110 140 140 --
Dissolved solids, residue

at 180°C, mg/L ....ovvvunnns 29 2280 108 328 248 390
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Table 7.--Summary of water-quality analyses from Chickahominy-Piney Point aquifer
in the York-James Peninsula

[N is number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per 1iter, Yg/L is
micrograms per liter, Ys/cm is microsiemens per centimeter, °C is degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Max{mum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 64 99.00 1.10 19.96 19.00 16.67
Magnesium, dissolved, mg/L .. 64 100 .7 4.82 3 12.30
Potassium, dissolved, mg/L .. 59 83 1.4 10.38 8.5 10.49
Sodium, dissoived, mg/L ..... 59 3100 2.4 136.53 33 419.37
Alkalinity as CaCO3, mg/L ... 50 770 5 184.02 139 144.45
Chloride, dissolved, mg/L ... 69 4800 .5 118.51 4.2 589.92
Sulfate, dissolved, mg/L .... 67 470 1.6 16.34 7 56.91
Specific conductance,

VG = 47 3799 205 477.87 300 586.03
pH, standard units .......... 50 9.4 5.6 7.63 7.8 .73
Nitrogen as NO; + NO3,

dissolved, mg/L ........... 22 .35 <.01 - .03 -
Phosphate, ortho., dissolved,

A 42 .64 <.01 -- .03 --
Organic carbon, total, mg/L . 8 7.1 1.4 4.74 5.55 2.06
Hardness, total as CaCO3

mg/L..coeainnns Ceecsenrnens 66 140 6 59.72 56.5 37.53
Fluoride, dissolved, mg/L ... 67 3.2 .1 .73 .5 .65
Sil1ca, dissolved, mg/L ..... 62 71 2 38.45 39.02 16.2
Iron, total, Wg/L ....... . 12 2900 10 395.83 60 815.99

. Iron, dissolved, Wg/L ....... 32 1300 10 103.72 25 235.8
Manganese, total, Wg/L ...... 7 110 10 28.57 10 36.71
Manganese, dissolved, Jg/L .. 6 100 2 29 19 36.41
Dissolved solids, residue

at 180°C, mg/L .....ccvtnne 64 9120 20 460 224 1151
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Table 8--Summary of water-quality analyses from Aquia aquifer
in the York-James Peninsula

[N 1s number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per liter, Wg/L is
micrograms per 1iter, Us/cm 1s microsiemens per centimeter, °C is degrees Celsuls, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quatity Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 124 82.00 <0.01 - 3.20 --
Magnesium, dissolved, mg/L .. 124 59 <.01 - 1.35 -
Potassium, dissolved, mg/L .. 113 62 1.3 10.81 10 7.41
Sodium, dissolved, mg/L ..... 120 3000 4.6 289.78 216.5 332.27
Alkalinity as CaC03, mg/L ... 65 521 49 314.23 331 85.27
Chloride, dissolved, mg/L ... 132 4400 .3 199.37 54.5 440.99
Sulfate, dissolved, mg/L .... 126 350 1.6 28.94 15 41
Specific conductance,

HS/CR . iiviiiiiiiiiiinenaen 61 5700 265 1278.18 1010 987.74
pH, standard units .......... 60 9.1 6.4 7.84 7.95 .52
Nitrogen as NO, + NO3,

dissolved, mg/L ........... 23 .52 <.01 - .1 -
Phosphate, ortho., dissolved,

7 52 2.1 <.01 - .45 --
Organic carbon, total, mg/L . 4 6.4 2.4 5.15 5.9 1.85
Hardness, total as CaC0j,

L 129 450 1.9 26.57 13 49.52
Fluoride, dissolved, mg/L ... 121 5.4 .1 2.28 2.4 1.27
Silica, dissolved, mg/L ..... 117 52 2.5 20.21 19 8.19
Iron, total, Wg/L............ 21 8700 .02 724.3 100 2018.41
Iron, dissolved, /L ....... 52 8200 3 449.9 45 1573.43
Manganese, total, Wg/L ...... 3 220 10 86.67 30 115.9
Manganese, dissolved, Wg/L .. 4 200 12 65 25 89.97
Dissolved solids, residue

at 180°C, mg/L ......c.eenn 118 7960 162 761 484 865
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Table 9.--Summary of water-quality analyses from upper Potomac aquifer
in _the York-James Peninsula

[N is number of samples, C; CO3 mg/L is milligrams per 1iter, Yg/L s micrograms per 1iter,
Hs/cm 1s microsiemens per centimeter, °C 1s degrees Celsius, -- indicates insufficient
number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 23 38.00 0.50 11.15 8.00 10.27
Magnesium, dissolved, mg/L .. 23 16 .2 3.5 2.7 3.39
Potassium, dissolved, mg/L .. 20 20 1.5 10.42 11 4.72
Sodium, dissolved, mg/L ..... 20 600 7.9 188.29 110 187.44
Alkalinity as CaCO3, mg/L ... 16 385 85 235.81 219 87.68
Chloride, dissolved, mg/L ... 28 2200 2.4 258.74 30 460.66
Sulfate, dissolved, mg/L .... 28 300 .6 37.71 17 57.97
Specific conductance,

BS/CM ooveriiinnnrnncennns 15 2450 192 816.8 480 721.93
pH, standard units .......... 13 8.4 6.9 7.91 8 .41
Nitrogen as NO; + NOj,

dissolved, mg/L ....... iee 6 .45 <.01 - .07 -
Phosphate, ortho., dissolved,

1 N 42 2.6 <.01 - .37 -
Organic carbon, total, mg/L . 0 -- -- -- - --
Hardness, total as CaCO3,

e 11 28 240 2. 44.58 27.15 51.1
Fluoride, dissolved, mg/L ... 27 5.5 .2 2.01 1.8 1.49
S1lica, dissolved, mg/L ..... 23 48 5.4 27.44 28 12.28
Iron, total, Wg/L............ 5 18000 70 4122 260 7809.68
Iron, dissolved, /L ....... 9 140 10 50.56 38 42.53
Manganese, total, Wg/L ...... 3 20 8 16 20 6.93
Manganese, dissolved, W/t .. 2 14 2 8 - --
Dissolved solids, residue

at 180°C, mg/L ...vvveviens 23 2500 260 920 520 884
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Table 10.--Summary of water-quality analyses from middle Potomac aquifer

in the York-James Peninsula

[N 1s number of samples, C, CO3 mg/L 1s milligrams per 1iter, Yg/L 1s micrograms per 1iter,
Us/cm 1s microsiemens per centimeter, °*C is degrees Celsius, -- 1ndicates insufficient
number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 107 45.00 <0.01 - 4.00 -
Magnesium, dissolved, mg/L .. 106 14 <.01 - 1.15 -
Potassium, dissolved, mg/L .. 99 24 .4 9.72 8.6 5.28
Sodium, dissolved, mg/L ..... 105 940 2.4 99.14 68 127.71
Alkalinity as CaCO3, mg/L ... 87 605 8 177.6 160 87.33
Chloride, dissolved, mg/L ... 115 1300 .01 -- 4 -
Sulfate, dissolved, mg/L .... 110 80.2 2 14.36 12 12.25
Specific conductance,

HS/CR .oitiiiiiieiinnnnns 69 5000 110 485.48 345 618.43
pH, standard units .......... 75 8.6 5.8 7.8 7.85 .46
Nitrogen as NO; + NO3,

dissolved, mg/L ........... . 12 0.66 .01 -- .05 -
Phosphate, ortho., dissolved,

. P 46 2.2 <.01 -- .26 --
Organic carbon, total, mg/L . 4 4 .3 1.72 1.3 1.8
Hardness, total as CaCOj,

L 2 S 1 Y 150 1 33.21 12 40.19
Fluoride, dissolved, mg/L ... 109 6.1 .1 1.13 .5 1.31
Silica, dissolved, mg/l ..... 86 45 2.9 25.69 26.5 8.82
Iron, total, Pg/L............ 11 3900 20 768.18 300 1190.91
Iron, dissolved, Wg/L ....... 36 2400 <.01 -- 35 196.34
Manganese, total, yg/L ...... 6 100 10 48.33 40 29.94
Manganese, dissolved, Jg/L .. 6 70 5 38.17 38 27.56
Dissolved solids, residue

at 180°C, mg/L ....ccvuenn 92 2660 115 361 231 383
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Table 11.--Summary of water-quality analyses from lower Potomac aquifer
in the York-James Peninsula

[N 1s number of sampies, C, CO3 is caicium carbonate, mg/L 1s milligrams per 1iter, Jg/L
is micrograms per liter, Us/cm is microsiemens per centimeter, °C {s degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than values shown]

Water-quality Standard

constituent N Max imum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 14 45.00 1.00 9.31 5.00 13.11
Magnesium, dissolved, mg/L .. 14 20 <.01 -- 1 -
Potassium, dissolved, mg/L .. 12 19 3.9 7.56 5.2 4.77
Sodium, dissolved, mg/L ..... 12 1400 41 325 126 398.3
Alkalinity as CaCOj, mg/L ... 12 528 130 293 237 157.01
Chioride, dissolved, mg/L ... 14 2000 .1 340 106 559.25
Sulfate, dissolved, mg/L .... 14 120 8 42.11 31.75 34.09
Specific conductance,

HS/CB «ivviiiiiinnrenncnans 8 6000 308 1809.75 1135 1938.56
pH, standard units .......... 12 8.4 7.4 7.95 7.95 0.31
Nitrogen as NO; + NO3,

dissolved, mg/L ........... 3 <0.01 <.01 -- <.01 --
Phosphate, ortho., dissolved,

mg/L .oiiiinnnn, Ceisereeane 3 1.1 .09 .56 .5 .51
Organic carbon, total, mg/L . 2 1.5 .6 1.05 1.05 --
Hardness, total as CaCOj3,

mg/L ....... feeens ceeeranen 14 190 4 34.72 20.5 47.46
Fluoride, dissolved, mg/L ... 13 3 .3 1.45 1.2 1.2
Silica, dissoived, mg/L ..... 10 32 11 20.59 18.06 7.66
Iron, total, Wg/L ...ccvvvnns 4 5000 440 2610 2500 2231.98
Iron, dissolved, Wg/L ....... 10 2700 <.01 -- 40 196.34
Manganese, total, Mg/L ...... 4 150 10 57.5 35 62.92
Manganese, dissolved, W/L .. 5 810 17 209.4 40 339.1
Dissolved solids, residue

at 180 °C, mg/L...ccvverunnn 10 3860 172 1227 1026 1146
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EXPLANATION

B<+— A GENERAL DIRECTION OF GROUND-
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Figure 21. Change in relative chemical composition of ground water along
typical prepumping flow path in York-James Peninsula.
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calcium carbonate, the mineral calcite precipitates, forming hard, indurated
layers, such as are present in the Chickahominy-Piney Point aquifer. As
ground water continues to move along the flow path, it interacts with cation-
exchanging sediments. These sediments remove calcium dissolved in the ground
water and replace it with sodium. The result of this exchange process is a
sodium-bicarbonate water (C in fig. 21). This is the dominant water type in
the fresh ground-water flow system of the York-James Peninsula. Near the end
of the flow path, ground water becomes altered again as it intermixes with
salty ground water, yielding a sodium-chloride water (D in fig. 21). As salty
water begins to dominate, the ground water becomes unsuitable for potable use.

Water-quality analyses were selected from the western, central, and
eastern regions of the study area to document changes in the chemical com-
position of water quality for each aquifer. Characteristic changes in the
water quality within each aquifer are illustrated by water-quality diagrams in
figures 22-27. Throughout the western region of the study area aquifer-
outcrop areas abound in all aquifers except the lower Potomac aquifer. These
aquifers are characterized by a mixed sodium-calcium-magnesium-bicarbonate
type water. The lower Potomac aquifer, which does not crop out, receives no
direct recharge from precipitation and a sodium-bicarbonate type water predo-
minates. 1In the central region of the of the study area, the Yorktown-
Eastover and Chickahominy-Piney Point aquifers contain abundant shell material
and are characterized by a calcium-bicarbonate type water; the Aquia, upper
Potomac, and middle Potomac aquifers by a sodium-bicarbonate type water; and
the lower Potomac aquifer by an intermediate sodium-bicarbonate type and a
sodium-chloride type water. 1In the eastern region of the study area, the
Columbia aquifer is characterized by a mixed sodium-calcium-magnesium-
bicarbonate type water; the Yorktown-Eastover and Chickahominy-Piney Point
aquifers by a sodium-bicarbonate type water; and the Aquia, upper Potomac,
middle Potomac, and lower Potomac aquifers by a sodium-chloride type water.

Vertical differences in the quality of ground water among aquifers, at
research stations RS-1 and RS-2, are illustrated in figures 28 and 29, respec-
tively. Interestingly, these differences follow the general pattern of chemi-
cal evolution expected along lateral flow paths of individual aquifers. At
RS-1 (fig. 28), water in the Yorktown-Eastover and Chickahominy-Piney Point
aquifers contain a calcium-bicarbonate type water; the Aquia, upper Potomac,
and middle Potomac aquifers a sodium-bicarbonate type water; and the lower
Potomac aquifer an intermediate between a sodium-bicarbonate type water and a
sodium-chloride type water (fig. 28). At RS-2 (fig. 29), the Columbia aquifer
contains a calcium-bicarbonate type water; the Yorktown-Eastover and
Chickahominy-Piney Point aquifers a sodium-bicarbonate type water; and the
upper Potomac, middle Potomac, and lower Potomac aquifers a sodium-chloride
type water. At greater depths water is more evolved chemically because the
distance travelled along a flow path is proportionally greater. Thus, at any
geographical location in the peninsula, the water quality of an aquifer
generally depends on the distance from the Fall Line and the depth of the
aquifer. The difference in water quality downward through the sediment at
RS-1 (fig. 28) is slightly different than the generalized chemical changes in
ground water (fig. 21). This deviation may be a result of natural conditions
or of the alteration of regional flow patterns within aquifers by recent
ground-water withdrawals.

The U.S. Environmental Protection Agency (1976) and the U.S. Public
Health Service (1962) recommends limits for constituent concentrations in
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Figure 22. Relative chemical composition of ground water in Yorktown-Eastover
aquifer.
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Figure 23. Relative chemical composition of ground water in Chickahominy-Piney Point
aquifer.
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Figure 24. Relative chemical composition of ground water in Aquia aquifer.
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Figure 25. Relative chemical composition of ground water in upper Potomac
aquifer.
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