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CONVERSION FACTORS

The metric (International System) units are used in this report. For 

those readers who prefer to use the inch-pound system, the conversion factors 

for the terms used in this report are listed below:

Multiply metric unit 

meter (m) 

kilometer (km) 

meters per second (m/s)

3.281

0.6214

3.281

To obtain inch-pound unit

feet (ft)

mile (mi)

feet per second (ft/s)

Sea level: In this report "sea level" refers to the National Geodetic Vertical 

Datum of 1929 (NGVD of 1929) a geodetic datum derived from a general 

adjustment of the first-order level nets of both the United States and Canada, 

formerly called Sea Level Datum of 1929.
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A VERTICALLY AVERAGED SPECTRAL MODEL FOR

TIDAL CIRCULATION IN ESTUARIES:

PART 1. MODEL FORMULATION

By Jon R. Burau and Ralph T. Cheng

ABSTRACT

A frequency dependent computer model based on the two-dimensional verti­ 

cally averaged shallow-water equations is described for general application 

in tidally dominated embayments. This model simulates the response of both the 

tides and tidal currents to user-specified geometries and boundary conditions. 

The mathematical formulation and practical application of the model are dis­ 

cussed in detail. Salient features of the model include the ability to 

specify (1) stage at the open boundaries as well as within the model grid, 

(2) velocities on open boundaries (river inflows and so forth), (3) spatially 

variable wind stress, and (4) spatially variable bottom friction. Using 

harmonically analyzed field data as boundary conditions, this model can be used 

to make real time predictions of tides and tidal currents.
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INTRODUCTION

This report describes the theoretical background and formulation of a 

computer program that solves the linearized shallow-water equations using a 

spectral approach. In this model the shallow-water equations are modified into 

a time-independent form after assuming that the tides and tidal currents are 

harmonic functions in time. This model was developed for hydrodynamic studies 

of San Francisco Bay, California, as part of an inter-agency modeling effort 

supported in part by the California State Water Resources Control Board and the 

California Department of Water Resources. Historically, circulation modeling 

in San Francisco Bay has been done separately on individual subembayments 

within the overall system (Cheng and Casulli, 1982; and Smith and Cheng, 1987). 

Application of traditional time-stepping methods to solve the nonlinear 

shallow-water equations at the spatial resolution necessary to represent the 

bathymetry of San Francisco Bay is beyond the practical limit of available 

computer resources, particularly when simulations of many tidal cycles are 

considered. However, San Francisco Bay as an overall system is considered a 

weakly nonlinear system; therefore, much of its response to tidal forcing is 

nearly linear. By neglecting nonlinear terms in the governing shallow-water 

equations, the spectral model equations become linear. These linear equations 

then can be efficiently solved in the frequency domain without resorting to 

time-stepping procedures. When the spectral model equations are approximated 

using the finite-element method, a very detailed spatial distribution of the 

flow properties can be obtained by using a sufficiently fine computational 

grid. As an alternative to solving the full system of equations for the entire 

San Francisco Bay system, a frequency based algorithm, a spectral model, was 

developed.
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Literature Review and Model Overview

Time-stepping models have been used for years to solve many practical 

coastal and estuarine circulation problems. Typically, the primitive and non- 

conservative forms of the depth-averaged shallow-water equations have been 

solved using either finite-difference methods (Leendertse and Gritton, 1971) 

or hybrid methods which employ finite-element techniques in space and finite- 

difference methods in time (King and others, 1973; Gray and Lynch, 1977; and 

Cheng, 1978). Over the past few years, solutions of the full three-dimensional 

shallow-water equations have been attempted (Blumberg and Mellor, 1981; and 

Sheng, 1983). Use of these models still is not practical because of huge data 

requirements and the computer time needed to run three-dimensional models.

The shallow-water equations can be rearranged into the form of a wave 

equation (Lynch and Gray, 1979) by substituting the conservative form of the 

momentum equations into the time derivative of the continuity equation. The 

principal advantage of a wave-equation model is that numerical noise or spuri­ 

ous oscillations, often found in discrete solutions to the shallow-water 

equations when applied to complex geometries, are reduced (Platzman, 1981; 

Gray and Lynch, 1979; and Gunge and others, 1980).

Models based on the wave equation and models that solve the primitive or 

nonconservative shallow-water equations require repeated solution with time, 

making them computationally inefficient. For these time-stepping models, the 

time step is generally limited by either a stability condition or an accuracy 

requirement that determines the maximum allowable time step (Roache, 1982). 

Therefore, application of time-stepping methods to problems involving long-term 

simulations (on the order of several days) with detailed numerical grids can be 

computationally impractical, if not impossible. To resolve this dilemma, 

spectral models, which circumvent the need to step with time, are increasingly 

being used in estuarine studies.
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Spectrum, or spectral, models were first outlined by Hansen (1950), 

although earlier work on this general formulation is variously credited to 

Defant (1919). Hansen (1950) describes a formulation based on the assumption 

that the total tidal energy at any given point can be represented by the 

summation of partial tides. This basic approach has been applied for years by 

the National Oceanic and Atmospheric Administration (Schureman, 1985; and 

Dennis and Long, 1971), the U.S. Geological Survey (Cheng and Gartner, 1985), 

and others who harmonically decompose tides and tidal currents into partial 

tides of known frequency.

Pearson and Winter (1977) and Westerlink and others (1983) rearranged the 

shallow-water equations into a linear group and a nonlinear group. They 

assume that the time-dependent variables in the linear group are periodic and 

can be represented by frequency-dependent Fourier components. The linear terms 

then are solved in the frequency domain (a spectral approach) while the 

nonlinear terms are solved iteratively at each step in time. Their method uses 

Fourier techniques to obtain the solutions, wherein the solutions are 

subsequently analyzed to determine the dominant frequencies. The strength of 

this approach is in the inclusion of the nonlinear terms. Unfortunately, this 

is achieved at the expense of a time-dependent solution requiring iteration at 

each time step.

Le Provost and Poncet (1978) present a spectral method based on a pertur­ 

bation technique in which the quadratic friction term is represented using 

a generalized Fourier series involving elliptic integrals. Snyder and others 

(1979) describe a time-independent (spectral type) model based on a generaliza­ 

tion of the "harmonic method" of Dronkers (1964) in which the current magni­ 

tude is represented through a truncated Taylor series that leads to a tract­ 

able representation of the friction term. Nonlinear terms are included in 

this method by means of an iteration procedure that updates the fundamental 

frequencies with contributions from the higher order harmonics.

Walters (1986) extended the work of Snyder and others (1979) by employing 

the finite-element method to their formulation. Simple linear triangular 

elements are used and shown to be sufficient in modeling simple problems.
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Earlier works by Walters (1983) and Gray and Lynch (1979) show that spectral 

model solutions are free of spurious subgrid scale oscillations that commonly 

plague fully nonlinear formulations.

Kawahara and Hasegawa (1978) apply a completely different spectral ap­ 

proach in which Galerkin's method is used to integrate the shallow-water 

equations with respect to time. They assume that the tidal flow is periodic by 

applying trigonometric shape functions in time. In more recent papers, 

Kawahara and others (1981) extend this approach to two-layer flows.

In the model developed for this study, we focus only on the lowest order 

solution; that is, astronomical tides or tidal currents. The spectral model, 

at this level of approximation, is unable to resolve the overtides (or higher 

harmonics) which principally result from the nonlinear interaction between the 

tidal forcing and basin bathymetry. Higher order solutions are capable of 

resolving the higher harmonics or overtides of the principal tidal forcings.

MODEL FORMULATION 

Linearizing the Shallow-Water Equations

The spectral model is based on the linearized shallow-water equations. 

Therefore, the spectral model inherits all the assumptions associated with 

the shallow-water equations. These equations describe gravity wave propagation 

in vertically well-mixed shallow embayments. We begin the formulation from 

the set of fully nonlinear shallow-water equations. For detailed descriptions 

of these equations and their underlying assumptions, see Dronkers (1964), 

Pritchard (1971), King and others, (1973), and La'Mehaute (1976).

The commonly used nonlinear, vertically averaged shallow-water equations 

are the continuity equation,
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the x-momentum equation,

+ V ^ = f V - R ^ - «Hay IV g ax 2 P
___ o

and the y-momentum equation,

u + vat " " ax v ay 6 ay 2pQ ay

where

__ , s . 2o H (r v r v ; V v '

x,y = Cartesian coordinates in the horizontal plane;

t = t ime;

u,v = depth-averaged, tidal velocities in the x- and

	y-directions;

C = elevation of the water surface referenced to mean tide;

h = depth of basin below mean tide;

H = h + C, total water depth;

p = reference density of water;

p = density of water;

T = guV(u2+v2 )C 2 , the x-component of bottom stress;
X

T = gvY(u2+v )C , the y-component of bottom stress;

T = C,p w sin<J>, the x-component of wind stress;x da

T = C p w2 cos<{», the y-component of wind stress;

C = Chezy friction coefficient;

C, = drag coefficient for wind stress = 0.0026 (Smith and Cheng, 1987);

W = windspeed;

4> = wind direction measured clockwise from the positive y-axis;

A^ = horizontal eddy viscosity coefficient;

f = Coriolis parameter;

g = Acceleration due to gravity; and

V2 = The Laplacian operator.
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These equations assume a hydrostatic pressure distribution and, following 

the Boussinesq approximation, use a reference density in all terms of the 

equations except the density-gradient terms in the momentum equations.

In linearizing the momentum equations, the terms that are underlined in 

equations 2 and 3 are dropped. The dropped terms include the advective 

acceleration terms, which become important in shallow areas and where rapid 

changes in bathymetry and diverging flows are being considered. Numerical 

experiments have shown the necessity of including advective acceleration terms 

in order to simulate large-scale eddying phenomena (Ponce and Yabusaki, 1980).

The baroclinic terms 0^   =  and 0  * ^  are linear terms, but they also are2p 3x 2p dy
o o

dropped in this formulation. These terms represent the lateral pressure 

gradient resulting from a horizontal density gradient. In situations where the 

freshwater inflow is a large percentage of the total tidal prism, these terms 

can be large and their omission can lead to errors in the computations. See 

Pritchard (1971) and Smith and Cheng (1987) for more information on baroclinic 

forcing. The horizontal momentum diffusion terms, A V2u and A^V2v, which 

in this case are based on an eddy-viscosity formulation (Schlichting, 1979; 

Tennekes and Lumley, 1972; and Rodi, 1984) also are dropped. From a 

dimensional analysis, these terms can be shown to be generally small; their 

omission will not greatly affect the computed results.

Following either the Chezy or Manning formulations (Chow, 1959; and White, 

1979), friction is generally considered to be proportional to the square of 

the mean velocity. In the spectral model, however, the bottom stress is 

assumed to be a linear function of velocity,

1 . b, , 1 . b,~(r ) «- 7x1, and ~(r )   -yv,p QH v x' p QH v y'

where y is a bottom stress coefficient.

Furthermore, the continuity equation is also linearized by assuming that 

the water-surface variations are small with respect to the mean depth (C « h) 

and thus (h - H).
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After linearizing the continuity and momentum equations, the two- 

dimensional shallow-water equations become:

|£ + fj(hu) + f^(hv) - 0 (continuity), (4)

f^ + gf^ - fv + 711 - (r3 ) C,W2 sin<£ (x-momentura) , (5a) ot ox tip d

T~ + g^ + fu + TV - (r~ ) C ,W2 cos<£ (y-momentuin) . (5b) at ay np d

Spectral Model Governing Equation 

Assumption of Frequency Dependence

Assuming that the energy of the tides and the tidal currents reside in 

distinct packets or line spectra, the time dependence of these variables can be 

represented by the following summations of harmonic functions:

N
r(x,y,t) - X Z (x,y)cos[co t - 4 (x,y)] (6a) 

n-1 n n n

N
u(x,y,t) - X Un (x,y)cos[cont - Vn (*,y)] 

n-1

N />] < 6c >
V \ A , J I «-/    -^\--F./*---l J^ J^ -   J '  >

n-1 

where

v(x,y,t) - X Vn(x,y)cos[u;nt - * n 
n-1

GO = angular speed (frequency) of the nth tidal n
constituent;

Z (x,y) = water-surface amplitude for the nth tidal constituent; 
n

(x,y),V (x,y) = amplitudes of the nth tidal constituent for velocity

in the x,y directions;

$ (x,y) = phase lags for water-surface elevation for the nth 

tidal constituent;

(x,y),6 (x,y) = phase lags for the u and v velocities, respectively, 
n n

for the nth tidal constituent; and 

N = number of tidal constituents.
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The tidal frequencies GO are known from astronomical considerations,
n

whereas the amplitudes for stage and velocity, Z ,U ,V , and their associated
n n n

phases <j> ,fy ,0 , are the unknowns. The amplitudes and phases in equation 6 
n n n

are known as harmonic constants. Once the harmonic constants are known, time 

series of tides and tidal currents can be computed using equation 6.

The expressions for C, and similarly for u and v can be written in complex

notation as:
N * 

f(x,y,t) - 1/2{Z [rn (x,y)exp(-iwnt) + rn (x,y)exp(iwnt)]}, (7a)
n-1

N * 
u(x,y,t) - 1/2{Z [u (x,y)exp(-iu t) + u (x.y)exp(iw t)]}, (7b)

1 11 II ll ll

N ^ 
v(x,y,t) - 1/2(2 [v (x.y)exp(-iw t) + v (x.y)exp(iw t)]}, (7c)

1
11 ii II II

C , u , and v are complex variables that are functions of both the 
n n n

amplitude and phase of the nth component shown in equation 6. These variables

commonly are called modal quantities because they represent the nth frequency
* * * 

or the nth mode of a given tidal forcing. The £ , u , v quantities

represent the complex conjugates of C , u , and v , respectively.
n n n

The governing equation of the spectral model is obtained for the nth 

tidal frequency by substituting equation 7 into the linearized shallow-water 

equations 4 and 5. The resulting equations are multiplied by exp( n ) which 

produces a final equation set with both real and imaginary components. When 

these equations are arranged to equal zero, both the imaginary and real parts 

of the equation must be identically equal zero. Fortunately, the real and 

imaginary parts yield equivalent expressions; thus, the solution of either is 

sufficient. The real portion of these relations yield:

) +T~(hv ) - 0 (continuity), (8)

iw u + g -  - fv + 7 u - (W /h)sin# (x-momentum), (9) n n & dx n n n v s'

iw v + g -  -»- fu + 7 v - (W /h)cos# (y-momentum) , (10) 
n n & 3y n n n v s' J
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where

"s - 5(V (V'o)CdW2 '

and 6(o) ) is a dirac delta function such that 
n

fi(«n ) - 1, if «n - 0, 

5(u>n ) - 0, if u> / 0.

The wind stress is incorporated into the spectral model only in the zero 

frequency mode. Wind forcing is placed in the zero frequency because the wind, 

in general, is not correlated with any given astronomical frequency. An 

extension to variable wind is possible, but is beyond the scope of the present 

discussion.

The above relations (equations 8, 9, and 10) are derived for the nth 

frequency where the complete solution results from superposition of all N 

frequencies indicated by the summations in equation 6.

The velocities, u and v , are solved from the momentum equations in terms 
n n

of C as

gq n
Un * ' ^Hf^aT ' (q^)57 + Wx /*' 

n n

gqn 3r n fe ^n
V - - ( 2 r2)a + ( 2 I 2 )a + W /h,n V q 2 +f2 3y X q 2 +f 2/ 3x V ^n n

where

qn - - iwn + 7n' (13) 

W
wx " s

w

n

10 Spectral Model for Tidal Circulation in Estuaries



In equations 11 and 12, the coefficients of 3£ /3x and 3£ /8y are constants for 

each frequency, and the wind stress must be specified. Therefore, the modal

velocities u , v are functions of the modal water-surface gradients alone. 
n n

Finally, by substituting u and v from equations 11 and 12 into equation 

8, the governing equation for the modal water-surface elevation is given as:

_] + fg(

where the V( ) is the gradient operator and the V»( ) is the divergence opera­ 

tor. The notation in equation 16 can be greatly simplified by denoting

q 
°xx " Dyy " gh(^TF) (17a)

°xy " - Dyx " gh( q^F) (17b)

and defining a second rank tensor, D as

D D xx xy
D D yx yy

Equation 16 in vectorial form is a complex Helmholtz equation,

iw f -i- V«(DVf ) = f-(W ) + |-(W ), 
TT n = n dx x ay y' '

for the complex modal water-surface elevation. Equation 18, which is time 

independent and involves one unknown, £ , determines the spatial variation in 

the modal water surface elevation for frequency co . The solution of equation 

18 for £ gives both the amplitude and phase distributions of the tidal 

elevation for the nth constituent.

Once C becomes known and its gradients determined, the modal velocities 

are calculated using equations 11 and 12. Finally, after £ , u , and v have 

been calculated for all desired astronomical frequencies using equations 11, 

12, and 18, the linear combination of the solution for each frequency gives the
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instantaneous solutions for C, u, and v. Thus, equation 18 represents the 

basic governing equation of the problem; calculation of the modal velocities 

from equations 11 and 12 and the time-dependent values of the tides and tidal 

currents as given in equation 6 are merely subsequent calculations that do not 

affect the solution.

METHOD OF SOLUTION 

Method of Weighted Residuals Galerkin Method

Although there are many varied approaches to obtain numerical solutions of 

boundary value problems involving equation 18, these methods generally can 

be divided into two major categories: (1) finite-difference methods and (2) 

finite-element methods. Every numerical technique has certain strengths and 

weaknesses which need to be weighed against the nature of the differential 

equation and the specific problem being solved. In general, for the 

finite-element method, the computational grids are not regular, and the 

strength of the finite-element method resides in its ability to accommodate the 

placement of the computational emphasis where it is needed or desired. Because 

tidal current is strongly controlled by bathymetry, the advantages associated 

with being able to accurately define the basin geometry using the finite- 

element method suggest the use of this approach over the use of the 

finite-difference method.

The following sections provide a brief outline of the finite-element 

method applied to the spectral model governing equation. By applying the 

finite-element method, the governing partial differential equation is trans­ 

formed into a matrix equation that can be solved using a standard matrix 

solver. Although most of this material can be found in texts on the 

finite-element method, it is provided in this report for completeness and as a 

prelude to discussion of the specific formulation of the boundary conditions in 

this model. This section covers the concepts of weighted residuals, weighting 

functions, and element shape functions. Some terms in the governing equations 

either are rearranged into forms suitable for inclusion in the computer code or
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need specific modification to treat different boundary conditions, such as 

parallel flow or flux conditions including wind. For further reading on 

finite elements and further detailed explanation of certain topics in the 

following sections, see Huebner (1975), Finder and Gray (1977), Cheng (1978), 

and Zienkiewicz (1979).

The ultimate goal of any numerical solution scheme is to represent, in a 

discrete sense, the continuum response to a given governing equation subject to 

certain boundary conditions, such as the classic boundary value problem. In

the spectral model we seek the solution, C » to equation 18 at discrete
n _

locations known as nodes. Introducing an approximate solution C for C in 

equation 18 gives

iw C + V-(DVr ) - W , - R (19) 
n n    n a

where

Wd - fc (Wx > + fc (Wy > '

and R is the error, or residual, that results from the substitution of the 

approximate solution C in equation 18. As the approximate solution C 

approaches the exact solution, C > the residual, R, approaches zero. The 

finite-element method, therefore, seeks to force the residuals to zero, in some 

sense, so that the errors introduced by the approximate solution are minimized 

and spread over the entire domain. To distribute these errors over the entire 

domain we select a set of P linearly independent weighting functions, (W) , and 

then require that the weighted average of the residuals tend to zero as 

expressed by the following relation:

I 
J

W R dfl - 0, k - 1,2,3. ...P (20) K

where the integral in this expression is applied over the entire solution 

domain, ft. Integration over the entire domain is accomplished by performing 

individual integrations over M subregions, ft , 1=1, 2.... M called elements so 

that

f W, R dfl - S [f , T v WvRdO(I) ], k - 1,2....... P. (21)
Jfl k 1-1 J 0U)
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Consider a typical finite-element mesh (fig. 1) where the domain is 

subdivided into a number of triangular elements. Although the elements can be 

any polygon, we use triangles here for simplicity and to be consistent with the 

final selection and use of triangular elements in the computer code. A typical 

element is defined by the node numbers i,j,k where the coordinates of the

vertices are x.,y., x.,y., and x,,y,, respectively, i i k k

as
n

If the approximate solutions, C > are defined in each subregion or element

then the approximate solution, C > for the entire domain is the union
n

of all the elemental solutions C v " x with the requirement that the boundary 

joining neighboring elements be continuous and have, at least, piecewise 

continuous first-order derivatives. This is known in the literature as C-zero 

order continuity or C° continuity.

r Plane passing through three nodal values of f

Node (I) 
Element ft

 *  x

FIGURE 1.- Subdivided domain ft and piecewise linear solution surface, f (x, y ).
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A graphical representation of the approximate solution defined on an 

element is shown in figure 2. The elemental solution in figure 2 is a plane 

which results from choosing linear triangles as the element type. The 

approximate solution C in the individual subdomain or element ft is defined 

as:

C N vi '(x v) + C N (I) (xy)+C N^'Cx.y) (22)j _  <.-- r j f i _ A' 4 V A »y/i»,, k A i ./ / T i _ *  T, \"- > J /n n. i n. 1 n-, K.i j J k

where the N's represent shape functions and the superscripts indicate that the 

shape functions are defined over the element ft only. The top picture in 

figure 2 graphically depicts this mathematical form of the elemental solution.

The lower three figures represent the functions, N. , N. , and N, called
1 J k

shape functions, defined at each of the nodes. The shape functions have the

property of retaining a value of 1 at the node where it is defined and zero at 

the other nodes in the element. Mathematically this property is described by 

the Kronecker delta, N.(x.,y.) = 6. .. Furthermore, the shape functions for a 

given element are zero everywhere except in that element. In other words, 

N^Oc.y) - 0, if (x,3 

equations being banded.

N. (x,y) = 0, if (x,y)^ft . This property results in the final system of

Depending on the choice of weighting functions in equation 20, specific 

weighted residual techniques are (Finder and Gray, 1977): (1) subdomain 

method, (2) collocation method, (3) least-squares method, (4) method of 

moments, and (5) Galerkin's method. Galerkin's method is considered the most 

general formulation and is the method applied in this report. In Galerkin's 

method, the weighting functions are selected to be the same as the shape 

functions, N .
Iv

With the weighting functions chosen to be the same as the shape functions, 

that is:

Wk = Nk (23)

equation 20 becomes, 

M

Method of Solution 15



FIGURE 2.   Linear shape functions N. over a triangular element 0 and their linear combination.
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or

M* * f / *r \ I* f -r \. T* / T \

; ] - 0. (24)JQ (I) V-CDV^dflW - J NkW

(1) (2) (3)

The first and third terms in equation 24 can be easily evaluated; 

therefore, the following section will expand only the second term. By applying 

the following identity to reduce the order of differentiation (that is, a 

reduction of a second-order partial differential equation into the product of 

two first-order derivatives),

(25)

the second term in equation 24 becomes,

J0 (I) - . (26)

In order to apply Nuemann-type boundary conditions, the first term on the 

right-hand side of equation 26 is further reduced by Green's theorem to give

i) vVLi) V<2*fn >«» a> - r<i)<Nk2vfn> 'd* <1) -
li A   

where X represents the boundary of the element, and n is the unit outward- 

pointing unit normal to X

After these analytical treatments, the governing equation of the spectral 

model becomes:

,u>

f N W 
J 0 U> k (

] - 0. (28)
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Equation 22 can be rewritten in matrix form, with the x,y dropped for 

clarity:

or, more compactly yet,

(29)

where the notations [ ] and { } represent row and column vectors respectively.

Because the superscript (I) has been dropped, we make the assumption that £
n

and the integrals in equation 28 now represent the solution for the nth 

frequency on any arbitrary element within the domain. Substituting equation 29 

into equation 28, applying indicial notation [where (xj,X2) are (x,y)] using 

the summation convention, and expanding the divergence and gradient operators, 

equation 28 can be rewritten in vector form as:

<N)[N]<r n ) an -

J,
dA (30)

where the i,j=l,2 represent the x and y coordinate directions respectively, and 

HI* ri2 represent the tangential and unit outward pointing normals respectively.

Because D . is specified at the nodes and can vary at each node within an 

element, two approaches are possible in representing this function. One method

of D. . within an element obtained through av 

A second approach assumes that the tensor D.

assumes a constant value of D. . within an element obtained through averages of 

the nodal D. . values. A second approach assumes that the tensor D. . varies 

within the element according to the shape functions such that

D.^x.y) [D ](N).
 *- » J

(31)

In order to keep the analysis general, the latter method, which accounts for

variations of D . within the element, will be applied. However, the two
i» J 

approaches are identical if simple (linear) triangular shape functions are used

in equation 31 and an arithmetic average is applied in the first approach.
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With the above substitution for D ., equation 30 becomes:

an -

r (NJU.JD. . T-11 
J A i i,j dXj

dA - {N)W dfl. (32) 
a

Further modifications of equation 32 are necessary to apply the boundary 

conditions in the model.

Shape Function Selection

Because this model is based on the linearized shallow-water equations, the 

philosophy behind element selection was one of simplicity. Thus, triangular 

elements are used in this model. Linear elements have a planar functional 

mapping of the unknowns within each element. Because of this property, the 

first-order partial derivatives (gradients) of the solution variable(s) are 

constant within each element, and higher order derivatives are not defined.

Because the modal velocities are strictly functions of the gradients of

C , velocities are constant within linear elements. As a result, the 
n
velocities in this model are assumed to be spatially coincident with the 

element centroid.

Boundary Conditions

Three types of boundary conditions can be invoked in this model: (1) 

Parallel flow condition which ensures the conservation of mass at the shoreline 

boundaries, (2) the specification of velocities on the boundary (open boundary

condition), and (3) the specification of the dependent variable C anywhere in
n

the domain, including points on the boundary.
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Shoreline Boundaries

Two types of closed boundary conditions can be applied at the shoreline 

boundary. The first is a no-slip condition wherein the velocities in the 

elements adjacent to the shoreline boundary are forced to zero. This approach 

is sometimes considered too stringent when the element size is much larger than 

the boundary layer associated with a solid boundary. A less restrictive 

boundary condition that forces the velocity to be parallel to the shoreline 

boundary is used in this and many other models.

For each mode, n, the parallel flow condition implies

= 0, (33)

where m> ^2 are direction cosines of the outward pointing unit normal to the 

boundary in the x^ and X2 directions, respectively (fig. 3). Substituting the 

expressions for u and v from equations 11 and 12 into equation 33 and 

rearranging terms, the parallel flow condition becomes

In order to implement this boundary condition, it is desirable to transform 

this equation into a local coordinate system, V,T, aligned with the outward 

pointing unit normal to the boundary (fig. 4). By definition,

!£n+ !£n ££n 
I7l 3x 1 + ^3x2 " dv

and,

i£n ££n
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rj = unit outward normal to the boundary

X

FIGURE 3. - Definition of coordinates. The Helmholtz equation is applied throughout the domain 0. 
The unit outward normal rj is defined on the domain boundary A where r\ can be represented by 
the direction cosines rj 1; rj 2 and T represents the unit tangent vector to the boundary.

FIGURE 4.-Example of the parallel flow condition applied to ^boundary segment where V represents 
the^elocity of the water. When the inner product of rj and V is forced to zero, V will be parallel
to T .
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where v is the normal direction (positive outward) and T the tangential 

direction (positive in the direction rotated 90 degrees counterclockwise to 

the outward pointing unit normal). With this coordinate transform, the 

parallel flow condition becomes:

n
Bv

 (q. (34)

The parallel flow condition is invoked in the model through the line 

integral applied in equation 32. Before applying equation 34 as the parallel 

flow condition, the line integral is rewritten in V,T coordinates through the 

following matrix operations,

dA, (35)

where the matrix A is a known matrix which performs a coordinate rotation into 

the (V,T) axes, with

Furthermore, n'

A =

,2 _

and
-1

and

-1
[D D ] 1 v r J »

where

21 12
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The second rank tensor, D, defined in equation 17, is anti-symmetric, where 

D22 = ^11 and ^21 = ~^12- It follows from the above equations that D and D

become

D and DT = D .

Using the above relations, equation 35 is transformed into the V,T coordinates,

f {N)r?iD i 1 ^T dA " f <N>[Dii j-11 + D19 T-11 ] dA. (36) J. 1 i,j dx I 11 dv 12 dr

Finally, substituting equation 34 into equation 36 for -r-  gives
d V

dA -I- f {N} [D1? T-13 ] dA.
LI& ii J^ -L^ oT

The product of (f/q )Dii is identically equal to Dio; therefore the -r  termsn oT

cancel. This implies that the parallel flow condition without wind stress is 

simply the natural boundary condition

r a {*
(NJn.D. T-11 dA = 0. 

J A 1>:I j

The parallel flow condition with wind can be expressed as

r ac / 
I n II {Nlrj.D. . ~i  dA = I {N}(ry 1 {W } 4- f?2^ )) dA.
J A X 1>J dXj J A X y

where {W } and {W } are given in equations 14 and 15. x y °

Open Boundaries Velocity Specification

Tidal velocities and net tributary discharges can be specified as model 

boundary conditions. Similar to the parallel flow condition, velocities are 

invoked in the model through the line integral in equation 32. Equations 11 

and 12 are rearranged so that the modal water-surface gradients are written in 

terms of velocity components as:
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df W
  S « l/g(fv - q u + r-sin<£) (x-momentum) , (37)
O X *  * ! 

ar w
  - - l/g(-fu - q v + r  cos<£) (y - momentum) . (38)

where u and v are specified as boundary conditions. Substituting equations 37 

and 38 into the line integral in equation 32 gives the following result after 

some rearrangement,

f arn r
J {N}r? iD i i Jx~~ dA " l h <1iu + ^2V> ' W ] {N} dA, (39) 
A >J D J A 

where the contribution from the wind to the flux boundary condition, W , is
o

W 
B " ( a 2 -»-f 2 ^ qnr71 " fr?2)sin<^ + (frll + q

Q

W "
n

and the quantity (HIU + nav) represents the component of any arbitrarily 

specified velocity u and v in the unit outward pointing normal direction.

Open Boundaries Level Specification

Previous sections have indicated how flux and parallel flow conditions 

(Neumann-type boundary conditions) are handled in the model; as shown, these 

boundary conditions can be applied only after some analytical manipulation of 

the governing equations. Another type of boundary condition, where the 

solution variables are specified at the nodes, remains to be discussed. This 

is a Dirichlet boundary condition which is used to define the water-surface 

amplitude, C » at the open boundaries and at points within the domain. When 

stage data are available for a given study area, Dirichlet boundary conditions 

can be used to force the solution to exactly match the stage data at the 

corresponding locations in the model. Dirichlet boundary conditions are 

applied in the model by modifying the solution matrices.
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Matrix Representation of Governing Equation

In matrix form, equation 32 can be rewritten as:

([A] - [B]){Cn ) - -{C} + {E} - {G}. (40)

where the matrices [A] and [B] are evaluated within the domain as

[A] - iu I {N}[N] dfi, 

and

Jo i.j dx. dx. 
1 J

{C} enables the prescription of velocities along segment boundaries where

[C] - {hCijjU + r7 2 v) - W ] f {N)dA,
 * A

Finally, {£} and {G} are related to the wind stress forcing such that

E, - (N, ,wx ,dn

and

(G)
J

The resultant of the matrices ([A] - [B]) is commonly referred to as the 

stiffness matrix and the expression (-{C} + {£} - {G}) is known as the load

vector. If linear elements are used, W and W in the vectors {E}, {G} and {C}
x y

take on values specified at the nodes.
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The D. .'s in vector {C} require some additional comment. The D. . at the 

boundary nodes can be zero because the mean depth, h, can be specified as zero

there; however, the D. . within the element will not be zero. If linear
X »J 

triangular elements are used in this analysis, then the velocities within the

element are constant and are assumed to coincide with the center of the ele­ 

ment. Thus, the nodal average of the D. ,'s must be used in vector {C} to
1 > J 

enforce the specified velocity in the boundary elements.

NUMERICAL EXPERIMENTS

In this section, spectral model results for two separate problems involv­ 

ing identical geometries are compared with analytical solutions described by 

Lynch and Gray (1979). The numerical experiments were made using a rectangular 

basin with planar dimensions of 91.44 by 121.92 km with an undisturbed water 

depth of 12.192 m as shown in figure 5. The top, bottom, and left- hand side 

of this basin are closed to mass flux while the right-hand side is an open 

boundary. The finite-element grid used in the numerical experiments also 

is depicted in figure 5. In both experiments Coriolis forcing was not modeled,

and a constant bottom friction y = 0.0001 was used.
n

In the first numerical experiment, stage, in meters, is specified on the 

open boundary such that £ = (0.03048)cosu>t where u> = 2ir/T and T is the M2 tidal 

period of 12.4 hours. Results between the analytical solution and model 

results compare favorably as shown in figures 6A and 6B.

The second problem uses the same geometry and finite-element grid as the 

first problem, except that a zero amplitude stage is specified on the open 

boundary and a constant 5.5 m/s wind is applied over the entire domain in the 

negative x-direction. Model results compare almost identically with analytical 

solutions for sea level as shown in figure 6C. Velocities for both the 

analytical solution and the model were zero for the second problem.
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Closed boundary

121.92km

12.192m/

(0,0)

Top view

Side view

91.44km

Open boundary

Finite-element grid

FIGURE 5. Geometry and finite-element grid used in numerical experiments.
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FIGURE 6. Comparisons between analytical and model results.
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CONCLUSIONS

This report discusses the formulation, assumptions, and the strengths and 

weaknesses of a spectral model based on the linearized shallow-water equations. 

The spectral model solution method is an efficient algorithm designed 

specifically to handle tidal circulation dominated by astronomical forcing in 

complex embayments where the nonlinear effects are assumed small or unim­ 

portant. The efficiency of this method is achieved through a transformation of 

the governing equations into the frequency domain. With this transformation, 

the resulting governing equation takes the form of the classic Helmholtz 

equation that can be solved for the modal (or complex) water-surface amplitudes 

and phases. Once the distribution of the water-surface amplitudes for a given 

frequency is calculated from the Helmholtz equation, the modal velocities are 

evaluated using the momentum equations. The final instantaneous values for the 

water-surface elevations and velocities can be obtained subsequently by evalua­ 

tion of simple algebraic expressions. Because of the simplicity of the calcu­ 

lations for the instantaneous tides and tidal currents, extremely efficient 

long-term simulations of transport phenomena using this model are feasible. 

Finally, the spectral model results compare well with published analytical 

solutions.
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