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CONVERSION FACTORS

For those readers who may prefer to use metric (International System)
units rather than inch-pound units, the conversion factors for the terms
used in this report are given below:

Multiply inch-pound unit By To obtain metric unit
Acre 0.4047 hectare (ha)
Acre-foot (acre-ft) 1,233 cubic meter (m3)
Acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m3/yr)
Acre-foot per acre per year 3,047 cubic meter per hectare per
[(acre-ft/acre)/yr] year [(m3/ha)/yr]

Cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
Foot (ft) 0.3048 meter (m)
Foot per mile (ft/mi) 0.1894 meter per kilometer (m/km)
Inch (in.) 25.4 millimeter (mm)

25,400 micrometer (um)
Mile (mi) 1.609 kilometer (km)
Ounce, avoirdupois (0z) 28.35 gram (g)
Ounce, fluid (f1. 0z) 29.57 milliliter (mL)

0.02957 1iter (L)

Square mile (mi2) 2.590 square kilometer (kmZ)
Ton, short 0.9072 ton, metric

To convert degrees Celsius (°C) to degrees Fahrenheit (°F), use the
following formula: °F = 9/5(°C)+32.

Microsiemens per centimeter at 25 degrees Celsius (uS/cm) replaces
micromhos per centimeter at 25 degrees Celsius used for specific conductance
in older reports. The two units are equivalent.

Milligrams per kilogram (mg/kg) is a unit expressing the concentration
of a chemical constituent in solid material as weight (milligrams) of a
chemical constituent per weight (kilogram) of dry solid material; 1 mg/kg is
approximately equal to 1 part per million (ppm).

Micrograms per 1iter (ug/L) is a unit expressing the concentration of a
chemical constituent in solution as weight (micrograms) of solute per unit
volume (1iter) of water.

Milligrams per liter (mg/L) is a unit expressing the concentration of a
chemical constituent in solution as weight (milligrams) of solute per unit
volume (1iter) of water; 1 mg/L equals 1,000 micrograms per liter (pg/L).
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GEOCHEMISTRY OF SOILS AND SHALLOW GROUND WATER, WITH EMPHASIS ON
ARSENIC AND SELENIUM, IN PART OF THE GARRISON DIVERSION UNIT,
NORTH DAKOTA, 1985-87

By Donald A. Goolsby, R. C. Severson, and S. A. Wilson,
U.S. Geological Survey,
and

Kurt Webber, U.S. Bureau of Reclamation

ABSTRACT

The Garrison Diversion Unit is being constructed to transfer water from
the Missouri River (Lake Sakakawea) to areas in east-central and southeastern
North Dakota for expanded irrigation of agricultural lands. During initial
investigations of irrigation return flows in 1969-76, the potential effects
of toxic elements were considered, and the U.S. Bureau of Reclamation
concluded these elements would have no adverse effects on streams receiving
return flows. After the development of problems associated with selenium in
irrigation return flows in the western San Joaquin Valley, Calif., in 1985,
the U.S. Bureau of Reclamation initiated additional studies, including an
investigation conducted in cooperation with the U.S. Geological Survey, to
assist in collecting and evaluating trace-element data. Also, in 1986, with
the passage of the Garrison Diversion Unit Reformulation Act, Congress
mandated that soil surveys be conducted to determine if there are "*** sojl
characteristics which might result in toxic or hazardous irrigation return
flows."

In order to address this issue, an investigation was conducted during
1985-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of
Reclamation to determine the occurrence and distribution of arsenic, selenium,
and other trace elements in the soils of six potential irrigation areas along
the Garrison Diversion Unit route and in the James River basin. A total of
165 soil samples were collected and analyzed for total concentrations of as
many as 42 elements, including arsenic and selenium. In addition, 81 of the
samples were analyzed for water-extractable concentrations of 14 elements,
including arsenic and selenium, to aid in determining the extent to which
they might be mobilized by the irrigation water. 1In a detailed phase of the
investigation, 376 water samples were collected in one of the six potential
irrigation areas, the west Oakes irrigation area. Most of these samples were
analyzed for arsenic, selenium, and as many as 28 other elements.

Results of the investigation indicate that soils in the potential
irrigation areas contain small concentrations of arsenic, selenium, and
other trace elements. The geometric mean concentrations of total arsenic
and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which



are considerably smaller than those measured in the western San Joaquin
Valley, Calif., and soils from other areas in the western United States.
Water-extractable concentrations of arsenic and selenium, determined on 1:5
soil to water extractions, generally were less than 10 percent of the total
concentrations. The geometric mean water-extractable concentrations for both
elements were 0.02 milligram per kilogram or less.

The median and maximum concentrations of all constituents and properties
indicative of irrigation drainage were tens to hundreds of times smaller in
the Oakes test area drains than in western San Joaquin Valley drains. The
maximum arsenic concentration in ground-water samples was 44 micrograms per
liter, and the median concentration was 4 micrograms per liter. The maximum
concentration in drain samples was 11 micrograms per liter, and the median
concentration was 3 micrograms per liter.

Only 22 percent of the water samples collected from wells in the Oakes
test area contained detectable concentrations (1 microgram per liter or more)
of selenium. However, selenium was detected in 63 percent of the samples
collected from sites on drains. The greater incidence of detection of sele-
nium in the drain samples is interpreted as an effect of the more oxidizing
environment of the drains, which are about 8 feet below land surface near the
top of the water table. The median selenium concentration in the drain
samples, however, was only 1 microgram per liter, and the maximum concentra-
tion in 63 drain samples was 4 micrograms per liter. For comparison, the
median selenium concentrations reported for drains in the western San Joaquin
valley, Calif., ranged from 84 to 320 micrograms per liter. Water from two
observation wells had the largest selenium concentrations (8 and 9 micrograms
per liter) measured during the investigation. These were the only two samples
that exceeded any of the water-quality regulations, standards, or criteria for
selenium.

Mercury and boron were the only other trace elements that exceeded
standards and criteria. The median concentration of mercury was less than
0.1 microgram per liter, and the maximum concentration was 0.8 microgram per
liter. The chronic freshwater-aquatic-life criterion for mercury (0.012
microgram per liter) is about 10 times less than the laboratory detection
l1imit and is derived from bioconcentration factors based on methylmercury.
Two boron samples exceeded the irrigation criteria of 750 micrograms per
liter. Comparisons with criteria and standards indicate that the concentra-
tions of trace elements determined in samples from wells and drains in the
Oakes test area during this investigation should not adversely affect human
and aquatic life or irrigated crops.

The data collected indicate that the soils and ground water in the
Garrison Diversion Unit contain small concentrations of trace elements,
including arsenic and selenium. Based on a detailed study of soils and
ground water in the west Oakes irrigation area, however, there is no evidence
that expanded irrigation will mobilize these elements in concentrations large
enough to adversely affect aquatic life in the James River ecosystem, based
on current regulations, standards, and criteria. Data are not currently
available to make definitive statements about selenium concentrations in
ground water in Garrison Diversion Unit irrigation areas other than the west









Expansion of irrigation in the James River basin of North Dakota is
proposed as part of the GDU (fig. 1). Although there are no surface exposures
of Cretaceous age shales within the irrigable areas of the GDU, a few outcrops
occur in the walls of the James River valley, and Cretaceous age shale chips
occasionally are found in the gravelly substratum of some soils in the GDU.
During initial investigations of the potential effects of irrigation on
mobilization of toxic trace elements from soils in the GDU, the U.S. Bureau
of Reclamation concluded these elements would have no adverse effects on
receiving streams (Harza Engineering Co., 1976). After the development of
problems associated with selenium in irrigation return flows in the western
San Joaquin Valley, Calif., the U.S. Bureau of Reclamation initiated
additional investigations in the GDU to collect additional data on trace
elements in soils and ground water and to reevaluate the effects trace
elements, particularly arsenic and selenium, may have on receiving streams.

Purpose and Scope

In order to provide a basis for evaluating the potential for mobiliza-
tion, transport, and concentration of trace elements during normal operation
of the GDU, the U.S. Geological Survey in cooperation with the U.S. Bureau of
Reclamation conducted an investigation during 1985-87 to obtain information on
the natural occurrence and distribution of trace elements in soils and water
in areas proposed for irrigation. The major emphasis of the investigation was
to determine the total and water-extractable concentrations of arsenic and
selenium in soils and dissolved concentrations of these elements in water and
to evaluate the potential for mobilization of these elements as a result of
irrigation with water from the GDU. The results of the investigation,
including sample collection and analysis procedures, are summarized in this
report. Additional results and data collected during the investigation are
presented in reports by Severson and others (1988), Wald and others (1989),
and Wilson and others (1989a, 1989b, 1989c).

Aggroach

This investigation was conducted in two phases--a reconnaissance phase
and a detailed phase. The purpose of the reconnaissance phase was to review
available data and define the occurrence and distribution of potentially toxic
elements in soils in areas that are authorized to receive irrigation water
from the GDU. The irrigation areas sampled and the number of soil and water
samples collected are given in table 1. A1l samples were analyzed for total
concentrations of 42 elements, including arsenic and selenium. In addition,
81 samples were analyzed for water-extractable concentrations of 14 elements,
including three anions--chloride, fluoride, and sulfate.

The purpose of the detailed phase was to provide comprehensive informa-
tion on potentially toxic elements in the soil profile, shallow ground water,
and drains in the west Oakes irrigation area (fig. 1). These data would aid
in defining conditions and processes that could mobilize potentially toxic
elements. Soil samples were analyzed for total concentrations of 38 elements
(Severson and others, 1988). Water samples were collected from 104 wells
in a preliminary survey. Based on results from the survey, water samples
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were collected seasonally from 63 shallow wells and 23 sites on drains. The
water samples were analyzed for major and trace elements (including arsenic,
mercury, and selenium), nitrite plus nitrate-nitrogen, and total organic
carbon. The number of samples collected is given in table 1.

RECONNAISSANCE EVALUATION OF THE GEOCHEMISTRY OF SOILS
IN THE GARRISON DIVERSION UNIT

In the reconnaissance phase, soil samples were collected at six possible
GDU irrigation areas. Four of these areas are within the James River basin
and two areas are outside the basin along the diversion route (table 1,
fig. 1). Within each proposed irrigation area, soil-sampling sites were
selected in locations believed to represent conditions that might have lead to
accumulations of potentially toxic trace elements, such as selenium. These
sites, characterized by organic-rich soils, high water tables, temporary
ponding of water subject to evapotranspiration, and topographic depressions,
were selected to represent worst-case conditions.

Setting

The James River (fig. 1), a tributary to the Missouri River, occupies
approximately 5,480 miZ in east-central North Dakota within the Central
Lowland physiographic province (Fenneman, 1946). The James River valley,
which is underlain predominantly by glacial lakebeds created when glacial
sediments dammed parts of the glacial river channel, is several miles wide.
Tributaries and drainage systems conveying precipitation runoff to the James
River are incised into the gently rolling glacial drift, which is covered by
prairie vegetation. Numerous depressions in the glacial drift, many of which
are occupied by prairie-pothole wetlands or lakes, normally do not contribute
runoff to the river. About 3,300 miZ of the basin area captures runoff
internally and does not contribute it to the river system.

The James River has an extremely flat slope. The channel gradient
decreases from about 2.5 ft/mi in the headwaters to about 0.05 ft/mi in the
glacial Lake Dakota plain. Because of the slight gradient, the river channel
tends to be stable and has minimal sediment-transport capacity.

Under the GDU Reformulation Act of 1986 (Public Law 99-294), 130,940
acres in the James River basin and adjacent areas were authorized for
irrigation development. The six largest areas are shown in figure 1, and
the authorized acreages are given in table 1. At the present time (1989),
irrigation with water from the GDU has been limited to about 1,000 acres in
the west Qakes irrigation area.

Methods for Collecting and Processing of Soil Samples

Collection of soil samples from potential irrigation areas for the
reconnaissance-phase evaluation was done during two sampling periods--
September 1985 and July 1987 (Wilson and others, 1989a, 1989c). During the
first sampling period, 81 soil samples were collected and analyzed for total



concentrations of 42 elements and water-extractable concentrations of 14
elements. During the second sampling period, 84 soil samples were collected
and analyzed for only total element concentrations of 42 elements. The
irrigation areas, number of sites sampled, and number of samples collected
are given in table 1.

During both sampling periods, soil samples at each site were collected in
continuous profiles to a depth of 18 ft. Soils collected from the unsaturated
zone were obtained with a U.S. Bureau of Reclamation drilling apparatus. A
soil tube that was 5 ft long and 4 in. in diameter was used to sample surface
soils to a depth of 6 ft at most locations. Below a depth of 6 ft, samples
were collected using a 6-in. continuous flight spiral auger. The surface of
the core material from the soil tube and the auger flight then was scraped
with a stainless steel blade to remove any contaminated material from the
core. The collected soil material was laid out on plywood boards in the
field. The soils were described, classified, and photographed by U.S. Bureau
of Reclamation personnel. For each soil horizon, samples were collected from
the interior of the core and placed in kraft paper bags. The samples then
were frozen to minimize possible chemical alterations, packed in coolers, and
shipped to the U.S. Geological Survey laboratories in Lakewood, Colo. The
samples, once received and assigned a laboratory number, were dried in their
original bags using forced air at ambient temperature. The dried samples then
were disaggregated using a mechanical mortar and pestle and the less than
2-mm fraction was isolated for further processing. The less than 2-mm
fraction was ground to pass through a 100-mesh sieve using a Bico! vertical
grinder. Approximately 5 g of ground material then were placed in a 3-oz
cardboard container, a paper mixing card was inserted, and the sample was
mixed mechanically for 1 hour using a tumble mixer.

Methods for Determining Total Concentrations of Elements in Soils

The following discussion of analytical methods provides an overview of
the methods used in this study. In addition to the references cited under
each method, details for all procedures are given in Baedecker (1987).

Soil samples submitted for total elemental analysis were analyzed using a
combination of inductively-coupled argon plasma/optical emission spectroscopy
(ICAP/OES), hydride generation/atomic absorption spectroscopy (HG/AAS), and,
when requested, cold vapor/atomic absorption spectroscopy (CV/AAS) for
mercury. A summary of each method follows.

Inductively-Coupled Argon Plasma/Optical Emission Spectroscopy
Samples were analyzed simultaneously for the total element concentrations

of 39 elements using a Jarrell-Ash Model 1160 ICAP/OES system. Each sample
(0.20 g) was dissolved using a low temperature digestion procedure using

1The use of trade names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey or
the U.S. Bureau of Reclamation.



concentrated hydrochloric, hydrofluoric, nitric, and perchloric acids (Crock
and others, 1983). Lutetium was added at the start of the digestion to serve
as an internal standard (5 mg/kg, final concentration). The acidic sample
solution was taken to dryness and the residue was redissolved with 1 mL of
aqua regia and then diluted to 10 g with 1-percent nitric acid. Reagent
blanks, reference materials, and sample replicates all were digested by

the same procedure and analyzed at the same time as the samples. Minimum
detection limits are given in table 2. The percent relative standard
deviation (RSD) for replicate determinations of most elements was about 5
percent.

Hydride Generation/Atomic Absorption Spectroscopy

Total arsenic and selenium concentrations were determined by HG/AAS
(Briggs and Crock, 1986; Crock and Lichte, 1982). One gram of sample was
digested with hydrofiluoric, nitric, perchloric, and sulfuric acids. After
digestion, the sample was diluted to 100 mL with 10-percent hydrochloric acid
and allowed to sit overnight to ensure the conversion of selenium-VI to
selenium-IV. The sample was reacted with sodium borohydride in a continuous
flow system to generate the appropriate gaseous hydride compound. The hydride
gas was separated from the aqueous phase using a specially designed phase
separator and swept into a quartz atomization cell (Hatfield, 1987) positioned
in the 1ight path of the atomic absorption spectrometer. Arsenic was
quantified using a series of external standards and the appropriate linear
regression procedure. Selenium was quantified using the method of standard
additions. The minimum detection 1imits for arsenic and selenium are given in
table 2. The RSD for the determination of both elements is about 10 percent.

Cold Vapor/Atomic Absorption Spectroscopy

Total mercury was determined by CV/AAS (Kennedy and Crock, 1987). A
0.1-g sample was digested with nitric acid and a 25-percent (weight/volume)
sodium dichromate solution in an aluminum heating block for 3 hours at
110 °C. The sampie was allowed to cool (overnight) and the contents were
quantitatively transferred to a 16-mm x 100-mm disposable glass test tube.
The mass was adjusted to 12.00 g with deionized water. An aliquot of the
sample was removed and combined with a solution of hydroxylamine hydrochloride
followed by stannous chloride in a continuous flow system to produce a vapor
of elemental mercury. The mercury vapor was separated from the aqueous phase
using a specially designed phase separator, and the vapor was swept into a
cold vapor cell positioned in the 1ight path of the atomic absorption
spectrometer. Quantification of mercury was obtained using a series of
external aqueous standards and the appropriate linear regression procedures.
The minimum detection 1imit is given in table 2. The RSD for the method is
about 10 percent.

Methods for Determining Water-Extractable Concentrations of
Elements in Soils

For the water-extraction analyses, a representative 5-g aliquot of ground
soil was weighed into a tared 3-oz polyethylene bottle. Deionized water (25



Table 2.--Minimum detection 1imits for total element concentrations in

Garrison Diversion Unit soils

[mg/kg, milligrams per kilogram; ICAP/OES, inductively-coupled
argon plasma/optical emission spectroscopy; HG/AAS,
hydride generation/atomic absorption spectroscopy; CV/AAS,
cold vapor/atomic absorption spectroscopy]

Unit of Method of Minimum detection

Element measure analysis limit
Aluminum Percent ICAP/OES 0.05
Arsenic mg/kg HG/AAS 0.1
Barium mg/kg ICAP/OQES 1
Beryllium mg/kg ICAP/OQES 1
Bismuth mg/kg ICAP/OES 0
Cadmium mg/kg ICAP/OES 2
Calcium Percent ICAP/OES 0.05
Cerium mg/kg ICAP/OES 4
Chromium mg/kg ICAP/OES 1
Cobalt mg/kg ICAP/OES 1
Copper mg/kg ICAP/0QES 1
Europium mg/kg ICAP/OES 2
Gallium mg/kg ICAP/OQES 4
Gold mg/kg ICAP/OES 8
Holmium mg/kg ICAP/OES 4
Iron Percent ICAP/OES 0.05
Lanthanum mg/kg ICAP/OES 2
Lead mg/k3 ICAP/OES 4
Lithium mg/kg ICAP/OES 2
Magnesium Percent ICAP/OQES 0.005
Manganese mg/kg ICAP/QES 4
Mercury mg/kg CV/AAS 0.02
Molybdenum mg/kg ICAP/OES 2
Neodymium mg/kg ICAP/OES 4
Nickel mg/kg ICAP/OES 2
Niobium mg/kg ICAP/OES 4
Phosphorus Percent ICAP/OES 0.005
Potassium Percent ICAP/OES 0.05
Scandium mg/kg ICAP/OES 2
Selenium mg/kg HG/AAS 0.1
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Table 2.--Minimum detection 1imits for total element concentrations in

Garrison Diversion Unit soils--Continued

Unit of Method of Minimum detection

Element measure analysis limit
Silver mg/kg ICAP/OES 2
Sodium Percent ICAP/OES 0.005
Strontium mg/kg ICAP/OES 2
Tantalum mg/kg ICAP/OQES 40
Thorium mg/kg ICAP/QES 4
Tin mg/kg ICAP/OES 10
Titanium Percent ICAP/OES 0.005
Uranium mg/kg ICAP/OES 100
Vanadium mg/kg ICAP/OES 2
Ytterbium mg/kg ICAP/OES 1

Yttrium mg/kg ICAP/OES 2
Zinc mg/kg ICAP/OES 2
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mL) was added and the container was sealed producing a 1:5 soil to water
mixture. The bottle then was placed on a Hembach horizontal shaker and the
soil/water mixture was shaken overnight. The suspension was removed the next
day, centrifuged, and filtered through a 0.45-pym filter. The solution was
split into two parts, and one aliquot was acidified with concentrated nitric
acid. Lutetium was added (5 mg/kg, final concentration) to the acidified
aliquot and the solution was analyzed directly on the ICAP/OES system
described above. Replicates and certified water standards also were analyzed.

Water-extractable arsenic and selenium were quantified after a persulfate
digestion. In the persulfate digestion procedure, a 20-g aliquot of sample
was pipetted into a 30-mL Teflon bomb. Two 2-mL aliquots of saturated
potassium persulfate solution were added and the sample was allowed to sit for
1 hour. A 2-mL aliquot of concentrated hydrochloric acid then was added, the
container covered with a watch glass, and the sample heated at 110 °C for 1
hour. The container then was uncovered and the solution heated until the
volume was reduced to about 5 mL. About 4 mL of conzentrated hydrochloric
acid then was added, and the solution was heated at 110 °C for 1 hour. The
solution then was quantitatively transferred to a 2-oz polyethylene bottle,
and the tared mass was adjusted to 40 g using deionized water. The acidified
solutions were analyzed using the HG/AAS method described above.

The extractable anions (chloride, fluoride, and sulfate) were determined
by ion chromatography.

Total Concentrations of Arsenic, Selenium, and
Other Elements in Soils

Results for total analyses made on 165 samples collected from the GDU
during the reconnaissance phase are presented in Wilson and others (1989a,
1989c). The range in concentrations measured in these samples for 32 elements
is given in table 3. An additional 10 elements were analyzed for, but the
concentrations were smaller than the minimum detection 1imits (table 2). For
comparison, the range in concentrations for these same 32 elements measured in
northern Great Plains soils (Severson and others, 1978; Severson and Tidball,
1979) also is given in table 3. The maximum total arsenic concentration
measured in GDU samples was 34 mg/kg. Only two of the 165 GDU samples
analyzed, however, had total arsenic concentrations larger than 10 mg/kg
(table 4), and, in 62 percent of the samples, the concentrations did not
exceed 5 mg/kg. A comparison of the maximum, minimum, and geometric mean
concentrations of total arsenic in GDU soil samples with soil samples analyzed
in several other studies in the western United States is given in table 5.

The geometric mean concentration of total arsenic in the GDU samples was 4.15
mg/kg compared with 7.1, 8.8, and 6.1 mg/kg, respectively, in soil samples
from the northern Great Plains, Panoche Fan in the western San Joaquin Valley,
and a study of soils in the western United States (table 5). On the basis

of these data, it would appear that total arsenic concentrations in soil,
which potentially could be mobilized by irrigation water from the GDU, are
considerably smaller than those reported in soils from other regional studies.

Examination of the reconnaissance study data for total selenium shows
that only five samples had concentrations larger than 1 mg/kg (table 4).
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Table 3.--Results of chemical analyses from Garrison Diversion Unit

soils collected during the reconnaissance phase with northern

Great Plains soils

[Does not include elements whose concentrations did not exceed the
minimum detection 1imits; Data for northern Great Plains from
Severson and others, 1978, and Severson and Tidball, 1979;
mg/kg, milligrams per kilogram; <, less than]

Unit of Measured range, Measured range,
Element measure Garrison Diversion Unit northern Great Plains
Aluminum Percent 2.1 - 7.3 3.4 - 12
Arsenic mg/kg 1.0 - 34 <0.1 - 26
Barium mg/kg 120 -1,300 420 -2,300
Calcium Percent 0.68- 15 <0.014- 7.0
Cerium mg/kg 18 - 61 <22 - 130
Chromium mg/kg 9.0 - 83 11 - 160
Cobalt mg/kg 3.0 - 16 <1.0 - 23
Copper mg/kg <1.0 - 29 4.3 - 110
Gallium mg/kg 5.0 - 15 4.2 - 29
Iron Percent 0.52- 4.6 0.26 - 6.5
Lanthanum mg/kg 10 - 36 <10 - 49
Lead mg/kg 6.0 - 22 5.1 - 41
Lithium mg/kg 6.0 - 37 7.0 - 40
Magnesium Percent 0.21- 4.7 0.18 - 2.7
Manganese mg/kg 110 -2,800 <200 -3,800
Mercury mg/kg <0.02- 0.12 0.01 - 0.07
Molybdenum mg/kg 2.0 - 4.0 1.0 - 12
Neodymium mg/kg 6.0 - 33 <46 - 140
Nickel mg/kg 6.0 - 38 4.3 - 64
Phosphorus Percent 0.02- 0.13 <0.044- 0.13
Potassium Percent 0.84- 2.5 1.3 - 2.7
Scandium mg/kg 2.0 - 10 3.0 - 17
Selenium mg/kg <0.1 - 2.1 0.1 - 20
Sodium Percent 0.67- 2.3 0.22 - 1.6
Strontium mg/kg 67 - 730 58 - 440
Thorium mg/kg <4.0 - 70 3.0 - 13
Titanium Percent 0.05- 0.28 0.11 - 0.37
Vanadium mg/kg 18 - 130 20 - 96
Ytterbium mg/kg <1.0 - 12 0.78 - 5.8
Yttrium mg/kg 5.0 - 20 3.1 - 54
Zinc mg/kg 15 - 95 14 - 170
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Table 4.--Frequency distribution of arsenic and selenium concentrations in

Garrison Diversion Unit soils collected during the reconnaissance phase

[mg/kg, milligrams per kilogram; >, greater than; <, less than]

Concentration
(mg/kg) Number of samples Percentage of samples
Total arsenic
1.0" 3.0 41 25
3.1- 5.0 61 37
5.1-10 61 37
>10 2 1
Total selenium
<0.1 69 42
0.1-0.5 81 49
0.6-1.0 10 6
1.1-2.0 4 2.4
>2.0 1 0.6
Water-extractable arsenic
<0.02 21 26
0.02-0.03 29 36
0.04-0.06 24 30
0.07-0.08 5 6
>0.08 2 2
Water-extractable selenjum
<0.02 41 50.5
0.02-0.03 34 42
0.04-0.06 2 2.5
0007-0008 2 205
>0.08 2 2.5
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Of these, two were in the Turtle Lake irrigation area, one was in the Lincoln
Valley irrigation area, and three were in the west Oakes irrigation area
(fig. 1). Out of the 165 samples analyzed, 69 (42 percent) had concentrations
that were less than the minimum detection 1imits (0.1 mg/kg), and 150 (91
percent) had concentrations of 0.5 mg/kg or less (table 4). A comparison of
the maximum, minimum, and geometric mean concentrations of total selenium
measured in GDU soils with concentrations determined in soils in other studies
in the western United States is given in table 5. The maximum total selenium
measured in GDU soils (2.1 mg/kg) was one-half to one-tenth the maximum con-
centrations reported in the other studies, and the geometric mean in the GDU
soils (0.13 mg/kg) was one-half to one-fifth the geometric mean reported in
the other studies (table 5). The maximum and minimum selenium concentrations
reported for 170 soil samples from three agricultural fields in the western
San Joaquin Valley were 5.9 and 0.4 mg/kg, respectively (Fujii and others,
1987). Median concentrations in each of the three agricultural fields ranged
from 0.6 to 1.2 mg/kg. These medians were six to 12 times larger than the
median of 0.10 mg/kg determined for GDU soils (table 5). On the basis of
these data, it would appear that total selenium concentrations in soil, which
potentially could be mobilized by irrigation water from the GDU, are several
times smailer than concentrations measured in the western San Joaquin Valley
and other areas in the western United States.

In general, the total concentrations of other elements in soils from the
study area are within the typical range of element concentrations (table 3)
determined in previous studies (Severson and Tidball, 1979). There were
eight elements, however, whose range exceeded those previously measured.
These elements were calcium, magnesium, mercury, sodium, strontium, thorium,
vanadium, and ytterbium (table 3). In most cases, this difference was less
than a factor of two and may reflect differences in analytical techniques,
normal statistical error, or the presence of a single sample with anomalously
large concentrations of elements.

Concentrations of Water-Extractable Elements in Soils

Extraction of soil samples using a 1:5 soil to water extraction procedure
has been used to identify and compare concentrations of elements that may be
leached from soil as a result of irrigation. The results of the 1:5 water-
extraction analyses made on 81 of the 165 soil samples collected from the GDU
during the reconnaissance phase are presented in Wilson and others (1989a) and
are given in table 6. Water-extractable arsenic concentrations ranged from
less than 0.02 to 0.20 mg/kg. The median, arithmetic mean, and geometric mean
concentrations were all 0.03 mg/kg. A frequency distribution for water-
extractable arsenic concentrations (table 4) shows that only two samples out
of the 81 samples analyzed had concentrations larger than 0.08 mg/kg. One of
these samples was from the New Rockford irrigation area (0.13 mg/kg), and the
other was from the west Oakes irrigation area (0.20 mg/kg).

For water-extractable selenium, the concentrations measured in 81
samples ranged from less than the detection 1imit of 0.02 mg/kg to 0.16 mg/kg
(table 6). The median, arithmetic mean, and geometric mean concentrations
were <0.02 mg/kg, 0.02 mg/kg, and <0.02 mg/kg, respectively. A frequency
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distribution for selenium (table 4) shows that only two samples had concentra-
tions larger than 0.08 mg/kg. One of these was in the New Rockford irrigation
area (0.16 mg/kg); the other was in the west Oakes irrigation area (0.16
mg/kg). These were the same areas that had the two largest arsenic concentra-
tions; however, they were not the same samples.

The water-extraction data show that, for most elements, the extractable
ion concentrations are quite small. Developing accurate models to predict the
concentrations of elements that may be leached by irrigation water based on
water-extraction analyses is difficult, at this time, due to the general lack
of reliable information on extractable elements, especially selenium. Five
locations in the GDU had total selenium concentrations larger than 1 mg/kg.
Samples from one of these locations were analyzed for water-extractable con-
centrations of selenium. The water-extraction analyses showed that 10 to 15
percent of the selenium was extractable using the 1:5 soil to water extraction
analysis. This compares with 10- to 45-percent water-extractable selenium in
several western San Joaquin Valley soil samples (Wilson and others, 1989%a).

It should be noted that, on the basis of internal experimentation (K. C.
Stewart and S. A. Wilson, U.S. Geological Survey, written commun., 1989), the
1:5 extraction analysis generally removes more selenium than more traditional
saturation-paste analyses. Based on the experiments and the samples analyzed
to date, it appears that the soils analyzed during the reconnaissance phase of
the investigation do not contain anomalously large trace-element concentra-
tions, especially regarding arsenic and selenium.

DETAILED EVALUATION OF THE GEOCHEMISTRY OF SOILS AND SHALLOW
GROUND WATER IN THE WEST OAKES IRRIGATION AREA

A detailed evaluation of trace-element distributions in soils and shallow
ground water in a part of the west Oakes irrigation area referred to as the
Oakes test area was conducted during 1986-87. The purpose of the evaluation
was to obtain detailed information on the occurrence of potentially toxic
elements in soils and shallow ground water in the area, to statistically
describe the distribution of these elements, and to determine conditions and
processes that could result in the mobilization and transport of these
elements. The two elements of primary concern in the evaluation were arsenic
and selenium.

Description of the West Oakes Irrigation Area

The west Oakes irrigation area is located in the James River valley north
of the North Dakota-South Dakota State line (fig. 1). The area includes
23,660 acres, most of which is situated on lacustrine and deltaic deposits of
ancestral glacial Lake Dakota. The Oakes test area (fig. 1) is a 5,000-acre
feature within the west Oakes irrigation area established by the U.S. Bureau
of Reclamation as a prototype to evaluate the effectiveness and environmental
consequences of proposed irrigation techniques. At the present time (1989),
the Oakes test area is the only area that has been irrigated with water
provided by the GDU. Because of the limited water available from reservoirs
on the James River, irrigation with surface water is limited to about 1,000
acres. An additional 1,300 acres in the area are being irrigated with ground
water from private wells (U.S. Bureau of Reclamation, written commun., 1989).
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Climate

The following discussion of climate is synthesized from Schuh and Shaver
(1988) and the U.S. Bureau of Reclamation (written commun., 1989). The
climate of the area is arid to subhumid. The average annual precipitation
is about 19 in. but has ranged from 9.14 in. in 1936 to 29.64 in. in 1960.
Annual precipitation at the Qakes test area for the period 1979-88 is shown
in figure 2. One of the wettest years during the period of record occurred
in 1986, the first year of the detailed evaluation.

Hydrogeology

The Oakes aquifer, which underiies the west Oakes irrigation area, is
about 8 mi wide and 16 mi long (Armstrong, 1980). Aquifer materials consist
of deltaic sand and gravel, lacustrine sand, channel-fill sand and gravel,
and eolian sand (Schuh and Shaver, 1988). The composition of these materials
ranges from fine sand to coarse gravel interbedded with silt and clay. The
thickness of the aquifer ranges from a few feet to nearly 100 ft (Armstrong,
1980). At the Oakes test area, the thickness of the aquifer averages about
25 ft but varies from about 8 ft n the west side to 50 ft on the east side
(Arden Mathison, U.S. Bureau of Reclamation, oral commun., June 1989).

The aquifer is unconfined and, at the QOakes test area, water-table depth
ranges from less than 7 ft below land surface at low altitudes to more than 19
ft below land surface at high altitudes (Wald and others, 1989). The average
water-table depth is about 12 ft below land surface. The normal water-level
fluctuation is about 3 ft, and the water table is highest in May and lowest
in March (U.S. Bureau of Reclamation, written commun., 1989). The regional
pattern of ground-water flow in the Oakes test area is from east to west
(fig. 3). The water-table gradient in the Oakes test area is 3 to 4 ft/mi.

Recharge to the Oakes aquifer is primarily from direct infiltration of
precipitation and snowmelt (Armstrong, 1980). Natural discharge from the
aquifer is primarily due to evapotranspiration (Schuh and Shaver, 1988) and is
greatest in low-1lying areas and depressions where the water table is closest
to the land surface. Estimates of evapotranspiration made by the U.S. Bureau
of Reclamation for the period 1980-88 indicate that evapotranspiration ranged
from 13.7 in. during 1987 to 21.8 in. during 1983 (U.S. Bureau of Reclamation,
written commun., 1989). The discharge of ground water through evapotranspira-
tion has a significant effect on ground-water quality. This will be discussed
in a later section of the report.

Ground-Water Drains

An extensive network of subsurface pipe drains was installed in the Oakes
test area during 1983-85 to provide a means to control the water table. The
subsurface drains consisted of perforated, corrugated plastic pipe and were
placed about 8 ft below land surface. The drain discharge accumulates into
three open outlet collector drains that discharge water from the Oakes test
area into the James River. The drainage network and areas drained by the
three major open outlet drains are shown in figure 4. The north drain (J.R.
12.6-0.7) discharges to the James River about 3 mi south of Oakes. The middle
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horizons and the differences between soil horizon pairs is small. This
relation indicates that soils are relatively uniform in soil formation across
small distance intervals as indicated by element composition. For other
elements that are more indicative of exchange, sorption, or precipitation
reactions (arsenic, copper, lead, nickel, selenium, and sodium), the greatest
variation is between pairs of soil horizons. This relation indicates a lack
of uniformity between soil profiles within short distances and may reflect the
effects of mobilizing processes. These interpretations are considered to be
tentative because of the limited number of samples evaluated and because
analyzed samples represented composites of different soil horizons from
profile to profile.

Laboratory variation was estimated by selecting 12 samples at random and
analyzing them in duplicate. Variation partitioned among samples and between
analyses (table 7) indicates that, for most elements, the laboratory error
represents less than 5 percent of the total variation. The largest error
is for arsenic, and an examination of the data indicates that this error is
due to a large difference for a single pair of samples from site KW113A
(Severson and others, 1988, table 10). Laboratory precision for all elements
is sufficient so that trends in natural variation will not be obscured by
laboratory error.

Soil-Series Variability

Eight soil series, or variants of a soil series, were identified by
the field soil scientist logging the core. The soil series sampled, with
number of profiles of each in parentheses, are: Bearden (1), Embden (3),
Gardena (1), Glyndon (5), Hecla (13), Maddock (1), Stirum (1), and Ulen (7).
Sampling locations for each soil series are shown in figure 6. Samples were
not analyzed from each soil horizon individually, so differences within and
among soil series could not be made on a horizon-by-horizon basis. Instead,
samples were evaluated for each of three soil zones--oxidized, mottled
(varying oxidized and reduced conditions, and transition zones), and reduced.
The measured range, arithmetic mean, and standard deviation for the concentra-
tions of all elements in each of these three soil zones are given in table 8.
This summary indicates that the mean concentrations for most elements is the
same in each soil zone. A few elements have a tendency to increase (cobalt,
magnesium, manganese, and selenium) or decrease (barium and strontium) in
concentration with depth, but these trends probably are not statistically
significant.

In comparison to typical soil compositions for northern Great Plains
surface or A-horizon soils (table 9, geometric mean) as determined by Severson
and Tidball (1979), Oakes test area soils from the oxidized soil zone
(table 8, arithmetic mean) tend to have less-than-average concentrations of
most trace elements. This comparison of geometric and arithmetic means is
conservative. Typically, trace-element data exhibit a positively skewed
distribution and, therefore, geometric means are smaller than arithmetic means
for the same distribution. The soils in the Oakes test area generally are
more sandy than average soils from the northern Great Plains, and the smaller
trace-element concentrations probably reflect the lesser quantity of clay-size
minerals present in these soils. A few individual samples from the Oakes test
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area have element concentrations exceeding the upper concentration 1imit of
average northern Great Plains soils. As summarized in Severson and others
(1988, table 10), the following samples collected at sites shown in figure 6
contain element concentrations that substantially exceed the upper concentra-
tion limits for northern Great Plains soils (site numbers in fig. 6 shown in
parentheses after sample number):

Arsenic--sample KW116A (site KW113A);

Calcium--samples KW100A (site KW100A), KW161A (site KW160A), KW225A
(site KW222AC), KW256A (site KW255A), and KW288A (site KW288A);

Lead--sample KW314A (site KW314A);

Magnesium--sample KW255A (site KW255A);

Manganese--sample KW308A (site KW308A);

Nickel--sample KW116A (site KW113A); and

Vanadium--samples KW101A (site KW100A), KW117A (site KW113A), and KW139A
(site KW135A).

A1l samples containing anomalously large calcium concentrations were
associated with soil horizons characterized by carbonate-mineral accumulation.
Several of the Oakes test area soil samples that were characterized by
anomalously large element concentrations (samples KW116A, KW117A, KW225A, and
KW314A in table 10 of Severson and others, 1988) came from soil profiles in
which lignite was present in one or more soil horizons; however, other soil
profiles that contained lignite did not have anomalously large element
contents. Many samples containing anomalously large element concentrations
also were from soil horizons characterized by fine-grained soils (silt loam
or silty clay 1oam); however, several other samples from other fine-grained
soil horizons did not contain anomalously large element concentrations.

For purposes of statistical analysis, a weighted-average value was com-
puted for each element in each of the three soil zones (oxidized, mottled, and
reduced) by multiplying the concentration by the depth increment represented
by the sample and summing these values for the soil zone. The sum then was
divided by the total depth of the soil zone to determine an average concentra-
tion for the soil zone. Where certain soil horizons or depth zones were not
analyzed, the soil horizons above and below were averaged. This average con-
centration then was used for the missing depth increment. The oxidized soil
zone was identified from field notes as the soil zone that is freely drained
and not saturated with water. The mottled soil zone was identified as the
soil zone that is saturated occasionally with water. The reduced soil zone
was defined as the saturated soil zone below the permanent water table. The
permanent water table ranged in depth from less than 7 to more than 19 ft
within the study area.

Only soil series where more than one profile was sampled were included in
the analysis of variance to estimate relative variation among and within soil
series. The results of this analysis for the four soil series (Embden, Hecla,
Glyndon, and Ulen) and the three soil zones (oxidized, mottled, and reduced)
are given in table 10. A separate, one-way analysis-of-variance computation
was used for each of the three soil zones. Differences among soil series
generally are smaller than between samples from within the same soil series,
except for lithium, magnesium, phosphorus, and scandium in the oxidized soil
zone; lanthanum, phosphorus, scandium, titanium, and yttrium in the mottied
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Table 10.--Partitioning of variation ameng soil series and between samples

within soil series for three soil zones in the Oakes test area

[mg/kg, milligrams per kilogram]

Percentage of variance

Oxidized Mottled Reduced
soil zone soil zone soil zone
Unit Among Among Among

of soil Between soil Between soil Between
Element measure series samples series samples series samples
Aluminum Percent 0 100.0 35.0 65.0 44,1 55.9
Arsenic mg/kg 0 100.0 12.1 87.9 0 100.0
Barium mg/kg 14.1 85.9 28.2 71.8 36.9 63.1
Calcium Percent 35.6 64.4 0 100.0 16.6 83.4
Cerium mg/kg 10.6 89.4 38.2 61.8 37.5 62.5
Chromium mg/kg 35.6 64.4 32.7 67.3 41.8 58.2
Cobalt mg/kg 21.3 78.7 32.7 67.3 33.9 66.1
Copper mg/kg 38.9 61.1 3.9 96.1 13.8 86.2
Gallium mg/kg 0 100.0 0 100.0 33.4 66.6
Iron Percent 28.7 71.3 0 100.0 32.8 67.2
Lanthanum mg/kg 12.2 87.8 50.7 49.3 37.3 62.7
Lead mg/kg 8.3 91.7 0 100.0 35.6 64.4
Lithium mg/kg 61.3 38.4 26.2 73.8 32.1 67.9
Magnesium Percent 72.7 27.3 0 100.0 31.0 69.0
Manganese mg/kg 0 100.0 0 100.0 0 100.0
Neodymium mg/kg 10.5 89.5 47.7 52.3 40.5 59.5
Nickel mg/kg 5.6 94.4 22.2 77.8 7.0 93.0
Phosphorus Percent 68.1 31.9 52.5 47.5 51.7 48.3
Potassium Percent 0 100.0 36.1 63.9 25.2 74.8
Scandium mg/kg 59.1 40.1 50.3 49.7 31.4 68.6
Selenium mg/kg 33.4 66.6 43.7 56.3 0 100.0
Sodium Percent 0.6 99.4 47.1 52.9 0 100.0
Strontium mg/kg 45.2 54.8 34.5 65.5 24.9 75.1
Titanium Percent 26.0 74.0 52.9 47.1 32.6 67.5
Vanadium mg/kg 25.9 74.1 0 100.0 18.7 81.3
Yttrium mg/kg 21.8 78.2 52.3 47.7 37.0 63.0
Zinc mg/kg 44,2 55.8 0 100.0 5.7 94.3
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soil zone; and phosphorus in the reduced soil zone. This relation indicates
that soil taxonomy reflects differences in total element concentrations among
taxonomic units for only those elements listed above in each soil zone. The
differences in total element concentrations within a soil series generally are
greater than among soil series for most elements in each of the three soil
zones. Therefore, extrapolations for chemical composition of a soil series,
or the oxidized, mottled, or reduced soil zones from a soil series, cannot be
made across the study area where this same soil series is present.

Element Associations

R-mode factor analysis (Joreskog and others, 1976) of the weighted-
average values for the oxidized, mottled, and reduced soil zones was
performed using an oblique solution with extreme variables as the reference
axis. Correlations between the sample scores and the variables are given
in tables 11 through 13 for the three soil zones. Correlation coefficients
quantify the relation between an element and a factor. Positive coefficients
indicate element enrichment for a factor, whereas negative coefficients
indicate element depletion. Because an oblique solution was used, an element
can be associated with more than one factor. Factor analysis is used as an
aid in interpreting the relation among a large number of variables by grouping
them into a few factors. These element associations then are interpreted as
processes.

Optimum models for the oxidized soil zone (table 11) and the reduced soil
zone (table 13) each had six factors. The optimum model for the mottled soil
zone (table 12) had five factors. The soil matrix is represented by factor 1
for the oxidized and mottled soil zones and by factor 2 for the reduced soil
zone. Calcium and magnesium carbonate minerals are represented by factor 2
for the oxidized and mottled soil zones and by factor 3 for the reduced soil
zone. In the oxidized soil zone, the carbonate minerals are associated
positively with phosphorus and strontium and negatively with manganese. In
contrast, manganese forms a positive association with the carbonate factor
in the mottled soil zone, but there are no associations with the carbonate
factor in the reduced soil zone. Factor 4 in the oxidized soil zone contains
arsenic associated with titanium. No apparent explanation exists for this
association. Arsenic associates mainly with transition metals in the mottled
soil zone (factor 4) and in the reduced soil zone (factor 4). Factor 5 in the
oxidized soil zone and factor 4 in the mottled soil zone represent metals
associated with manganese oxides, whereas the manganese factor in the reduced
soil zone (factor 5) does not indicate these same associations. In the
reduced soil zone, these same metals are associated with iron on the arsenic
factor (factor 4). A sodium factor (factor 3) in the oxidized soil zone has
no counterparts in either of the other two soil zones. Factor 6 in the
oxidized soil zone appears to be related inversely to factor 3; elements that
relate positively with factor 3 relate negatively with factor 6 and vice
versa. Factor 6 in the oxidized soil zone (the selenium factor) has factor 5
in the mottled soil zone and factor 6 in the reduced soil zone as counter-
parts. However, selenium is associated with different elements in the three
soil zones. In the oxidized soil zone, selenium is associated with calcium
and magnesium phosphates and probably carbonates; in the mottled soil zone,
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selenium is associated with cobalt and scandium; and in the reduced soil zone,
selenium is associated with arsenic, nickel, and zinc. These differences in
selenium associations probably reflect differences in selenium chemistry under
oxidizing and reducing conditions.

Factor scores for the selenium factor from the oxidized, mottled, and
reduced soil zones, are shown in figures 7 through 9. Factor scores indicate
how close the composition of each sample is to the factor's assigned
theoretical end-member composition (J6reskog and others, 1976); a sample with
a large positive score on any factor indicates that the end-member composition
of that factor represents the sample composition fairly well. A score near
zero for a sample factor indicates that the sample composition is not similar
to the end-member composition. A large negative score indicates that the
composition of the sample opposes that of the end member, indicating depletion
of the element rather than enrichment. Each sample has as many factor scores
as there are factors. Thus, the combined scores define the mixture of end-
member compositions that compose the sample. The same general patterns are
shown in figures 7 through 9 with selenium and associated elements increasing
in enrichment from east to west-northwest across the study area.

The factor analysis indicates that element associations in the oxidized
soil zone differ from those in the mottled and reduced soil zones. These
differences reflect the way in which elements react to oxidizing or reducing
chemical conditions. If the natural water table is altered by irrigation and
drainage practices, then the element associations will be altered to reflect
the changes. If the changes are toward more oxidizing conditions (lowered
water table), then increased mobility of arsenic, selenium, and associated
elements and decreased mobility of cadmium, copper, lead, zinc, and associated
elements can be expected. If the changes are toward more reducing conditions
(raised water table), then the opposite trends in element mobility can be
expected. Changes could be expected to be greatest in the west-northwest part
of the study area, especially for selenium, as reflected in factor scores.
This trend seems reasonable because the ground-water gradient is from east to
west, and the northwest part of the area contains finer textured soils and
smaller depths to impermeable materials.

These interpretations of factor analysis and predictions of increased or
decreased element mobility, resulting from changes in oxidation-reduction
reactions, are qualitative. Quantitative predictions of increases or
decreases in actual element concentrations are not feasible from the existing
data. However, results of water-extraction analyses on soils collected in the
reconnaissance phase of this study suggest that, under oxidizing conditions,
only small amounts of arsenic and selenium will be mobilized. On the basis
of these results, the soils of the west Oakes irrigation area should react
similarly to increases in oxidation potential and release only small
quantities of selenium or arsenic.

Geochemistry of Shallow Ground Water

To evaluate the occurrence and distribution of trace elements in
shallow ground water in the Oakes test area, water samples were collected
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original level. Prior to further disturbance, the downhole water temperature
and dissolved oxygen concentration were measured using calibrated Yellow
Springs Instruments Models 57 and 58 dissolved oxygen/temperature meters. The
dissolved oxygen meters were calibrated in the morning and in the evening.

The meters, which were not shut off during the day, were determined to have
remained in calibration.

After the downhole measurements, ground-water samples were collected
by U.S. Bureau of Reclamation personnel. Five liters of ground water was
collected with a PVC bailer and placed in polyethylene containers that had
been rinsed previously with sample water. A1l samples were returned to
the U.S. Bureau of Reclamation headquarters in Oakes within 1 hour after
collection for processing.

Concurrent with ground-water sampling, water samples were collected
from drains at selected drain access sites. Samples were collected from the
centroid of drain flow using a teflon sampler. Water samples collected from
the drain sites were handled, processed, and analyzed in the same manner as
described for ground-water samples.

Water-sample processing methods.--Sample processing and preparation for
laboratory analysis were completed by U.S. Bureau of Reclamation chemistry
technicians and a U.S. Geological Survey hydrologic technician at the U.S.
Bureau of Reclamation headquarters in Oakes. Specific conductance and pH were
measured on sample aliquots using a Markson Electromark conductance meter and
an Orion Model 811 pH meter. Each sample then was composited (if necessary)
in a 6-L Teflon churn sptitter for sample splitting. A 250-mL aliquot was
drawn from the churn into a sample-rinsed 250-mL polyethylene bottle for
laboratory determination of pH, specific conductance, and carbonate and
bicarbonate concentrations. An additional 100-mL aliquot was drawn from the
churn into a sample-rinsed glass bottle for determination of total organic
carbon concentration.

Remaining sample water was filtered and separated into different aliquots
for chemical analysis. A peristaltic pump equipped with sample-rinsed sili-
cone rubber tubing was used to deliver sample water from the churn splitter
through a Geotech Plate filter apparatus containing a 142-mm diameter, 0.45-um
pore size membrane filter. Filtered water was collected directly in sample
bottles of appropriate size and preserved according to the analysis to be
performed on that sample aliquot. A 250-mL sample aliquot was filtered into
an acid-rinsed polyethylene bottle and was preserved with 2 mL of concentrated
nitric acid to a pH of less than two for analysis of major cations. A 250-mL
sample aliquot was filtered into a sample-rinsed polyethylene bottle for
analysis of major anions. A 500-mL sample aliquot was filtered into an acid-
rinsed polyethylene bottle for analysis of most trace elements. A 200-mL
sample aliquot was filtered into an acid-rinsed glass bottle and was preserved
with a mixture of nitric acid and potassium dichromate for analysis of
mercury. A 250-mL sample aliquot was filtered into a sample-rinsed brown
polyethylene bottle and was preserved with mercuric chloride for analysis of
nutrients (nitrogen and phosphorus). Nutrient samples were not processed
until after all mercury samples had been processed and stored in a sealed
cooler. Once processing was complete, samples were placed in iced coolers
for shipment to the appropriate analytical 1laboratory.
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Analytical methods.--Water samples collected for the preliminary survey
jn January 1986 were analyzed by the U.S. Geological Survey geochemistry
laboratory in Lakewood, Colo. Samples collected during the detailed study
(December 1986 through September 1987) were analyzed by the U.S. Bureau of
Reclamation laboratory in Bismarck, N.Dak., for all constituents except total
organic carbon. This constituent was analyzed by the U.S. Geological Survey
water-quality laboratory in Arvada, Colo. Analysis of nutrient and organic-
carbon samples normally was begun within 10 days of collection. Analysis of
the remaining constituents normally was completed within 100 days of
collection. The analytical methods and detection limits for determination
of chemical constituents are given in table 17.

Quality assurance.--Processed distilled-water blanks and duplicate
samples were analyzed by the U.S. Bureau of Reclamation and the U.S.
Geological Survey laboratories. A1l sample blanks indicated that constituent
concentrations were below detection limits. Values for 24 duplicate samples
analyzed by both laboratories (Wald and others, 1989) indicated no particular
laboratory biases or contamination. Analytical results for arsenic by the two
laboratories show that only five of the 24 analyses differed by more than 1
ug/L and only two analyses differed by more than 2 uyg/L. For selenium, only
two of the 24 duplicate analyses differed by more than 1 ug/L.

Variability and Chemical Composition

The following discussion is based on ground-water-quality data from 376
water samples collected from wells and drains in the west Oakes irrigation
area (Wald and others, 1989; Wilson and others, 1989b). Table 14 gives a
statistical summary of data from wells that generally are distributed through-
out the entire 23,660-acre west Oakes irrigation area (fig. 10). Data from
wells and drains distributed over the 5,000-acre Oakes test area (fig. 10) are
given in tables 15 and 16. The statistics include maximum, minimum, and mean
values, and several percentiles, including the median. For samples that had
values less than the analytical detection limits (table 17), a log-probability
rggg§ssion was used to estimate the mean and percentiles (Helsel and Cohn,

1 .

The chemical composition and ground-water type was determined using
trilinear diagrams (Piper, 1944; Back, 1966).

Areal varijability.--The concentrations of major cations and anions in
ground water are extremely variable within the west Qakes irrigation area.
The most variable ions are magnesium, sodium, sulfate, and chloride.
Concentrations of these ions determined on samples from 120 wells (fig. 10)
varied by factors of 20 to more than 200 (see statistics in tables 14 and 15.)

The areal variability in major ion and dissolved-solids concentrations
is indicated by the map of specific conductance (fig. 11). The correlation
between specific conductance and all major jons is significant at the 0.001
probability level. Dissolved-solids concentration, which was not determined
for the samples, can be estimated by multiplying specific conductance by a
factor ranging from about 0.55 to 0.75 (Hem, 1985). The median specific
conductance of ground water in the area is about 790 yS/cm. By using a factor
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Table 17.--Laboratory analytical methods and detection limits for

determination of chemical constituents in water

[Modified from Wald and others, 1989, and Wilson and others, 1989b;
ICAP/OES, inductively-coupled argon plasma/optical emission

spectroscopy; IC, ion chromatography; HG/AAS, hydride

generation/atomic absorption spectroscopy; mg/L, milligrams
per liter; ug/L, micrograms per liter; None, detection limit

not given]

U.S. Geological Survey geochemistry laboratory, Lakewood, Colo.

Constituent Detection
determined Analytical method limit
Calcium ICAP/OES. 0.2 mg/L
Magnesium ICAP/OES. 0.01 mg/L
Sodium ICAP/OES. 0.2 mg/L

Potassium ICAP/OES. 1 mg/L
Sulfate IC. 1 mg/L
Chloride IC. 0.1 mg/L
Fluoride IC. 0.1 mg/L
Silica ICAP/OES. 0.01 mg/L
Nitrate-nitrogen IC. 0.1 mg/L
Orthophosphate IC. 0.2 mg/L
Aluminum ICAP/OES. 0.1 mg/L
Arsenic HG/AAS. 2 ug/L
Barium ICAP/OES. 10 ug/L
Beryllium ICAP/OES. 1 ug/L
Bismuth ICAP/OES. 10 pg/L
Boron ICAP/OES. 0.1 ug/L
Cadmium ICAP/QES. 1 ug/L
Chromium ICAP/OES. 1 ug/L
Cobalt ICAP/OQES. 3 ug/L
Copper ICAP/OES. 10 pg/L
Gallium ICAP/OES. 5 ug/L
Iron ICAP/OES. 3 ug/L
Lead ICAP/OES. 10 ug/L
Lithium ICAP/OES. 4 ug/L
Manganese ICAP/OES. 1 pg/L
Selenium HG/AAS. 2 pg/L
Silver ICAP/OES. 2 pg/L
Strontium ICAP/OES. 0.5 ug/L
Zinc ICAP/OES. 3 ug/L

See footnote at end of table.
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Table 17,-=Laboratory analytical methods and detection limits for

determination of chemical constituents in water--Continued

U.S. Bureau of Reclamation water-quality laboratory, Bismarck, N.Dak.

Constituent Detection
determined Analytical method limit
Calcium Atomic absorption, direct. 0.1 mg/L
Magnesium Atomic absorption, direct. 0.1 mg/L
Sodium Atomic absorption, direct. 0.1 mg/L
Potassium Atomic absorption, direct. 0.05 mg/L

Carbonate Titration. None
Bicarbonate Titration. None
Chloride Titration, AgNO3. 0.1 mg/L
Sulfate Colorimetry, automatic. 2 mg/L
Nitrate-nitrogen Colorimetry, automatic. 0.01 mg/L
Nitrite-nitrogen Colorimetry, automatic. 0.01 mg/L
Ammonia-nitrogen Colorimetry, automatic. 0.05 mg/L
Orthophosphate Colorimetry, automatic. 0.01 mg/L
Arsenic Atomic absorption, furnace. 1 ug/L
Boron Colorimetry, automatic. 40 ug/L
Cadmium Atomic absorption, furnace. 1 ug/L
Iron Atomic absorption, direct. 10 pg/L
Manganese Atomic absorption, direct. 2 uo/L
Mercury Atomic absorption, flameless. 0.1 pg/L
Molybdenum Atomic absorption, furnace. 1 ug/L
Selenium Atomic absorption, hydride, and furnace.?! 1 ug/L

See footnote at end of table.
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Table 17.--Laboratory analytical methods and detection limits for

determination of chemical constituents in water--Continued

U.S. Geological Survey water-quality laboratory, Arvada, Colo.

Constituent Detection
determined Analytical method limit
Calcium Atomic absorption, direct. 0.1 mg/L
Magnesium Atomic absorption, direct. 0.1 mg/L
Sodium Atomic absorption, direct. 0.1 mg/L
Potassium Atomic absorption, direct. 0.1 mg/L

Carbonate Titration. None
Bicarbonate Titration. None
Chloride Colorimetry, discrete analyzer, automatic. 0.1 mg/L
Sulfate Turbidimetry, automatic. 0.2 mg/L
Nitrate-nitrogen IC. 0.01 mg/L
Nitrite-nitrogen Colorimetry, diazotization, automatic. 0.01 mg/L
Ammonia-nitrogen Colorimetry, automatic. 0.01 mg/L
Orthophosphate Colorimetry, phosphomolybdate, automatic. 0.01 mg/L
Arsenic Atomic absorption, hydride, automatic. 1 pg/L
Boron Atomic emission, DC plasma. 10 ug/L
Cadmium Atomic absorption, chel-extraction. 1 pg/L
Iron Atomic absorption, direct. 10 pg/L
Manganese Atomic absorption, direct. 10 pg/L
Mercury Atomic absorption, flameless, automatic. 0.1 ug/t
Mo1ybdenum Atomic absorption, chel-extraction. 1 pg/L
Selenium Atomic absorption, hydride, automatic. 1 pg/L
Total organic Combustion, infrared. 0.1 mg/L

carbon

1Samples collected during December 1986 and March 1987 were analyzed

by atomic absorption/hydride generation.

Samples collected during June

and September 1987 were analyzed by atomic absorption/graphite furnace
(U.S. Bureau of Reclamation, written commun., 1989).
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Concentrations of arsenic and selenium showed definite patterns in areal
variability. Arsenic concentrations were largest in the middle part of the
west Oakes irrigation area and smallest in the northern and southern parts of
the area. Conversely, selenium concentrations were largest in the extreme
northern and southern parts of the area and smallest in the middie part. The
chemistry, concentrations, and distribution of arsenic and selenium will be
discussed in detail in a later section of the report.

Seasonal variability.--Water samples collected at quarterly intervals
from wells and drains in the Oakes test area were statistically analyzed for
seasonal differences in concentrations of chemical constituents. Samples were
collected in December (winter), March (spring), June (summer), and September
(fall). The statistical analysis (tables 15 and 16) was done by using
analysis of variance on rank transformations of the data from Wald and others
(1989). For the purposes of this analysis, values equal to and less than the
detection 1imit were assigned the same rank. For example, a value of 1 ug/L
and a value of <1 ug/L were assigned the same rank.

Results of the analysis of data from 63 wells showed significant seasonal
differences in concentrations (p = 0.05) for only three constituents--nitrite
plus nitrate-nitrogen, mercury, and molybdenum. Nitrite plus nitrate-nitrogen
concentrations (192 samples) were slightly larger in the fall than in the
other three seasons (fig. 12). Mercury concentrations were slightly larger in
the winter than in the other three seasons. It should be noted, however, that
in 72 of the 130 mercury samples (55 percent), mercury concentrations were
below the detection limit of 0.1 pg/L, and the maximum concentration measured
was 0.8 ug/L (table 15). Molybdenum concentrations (132 samples) were
smallest in the fall and largest in the spring.

Results of the analysis of data from 23 drains (63 samples) showed
significant differences in concentrations (p = 0.05) for seven constituents--
calcium, molybdenum, ammonia-nitrogen, orthophosphate, potassium, selenium,
and total organic carbon. Because concentrations of ammonia-nitrogen and
orthophosphate were small, they will not be discussed further. Calcium and
total organic carbon concentrations were smaller in the summer than in the
other three seasons. Potassium concentrations were smallest in the spring
and largest in the fall, and selenium concentrations were smaller in the
winter than in the other three seasons. Reasons for the measured seasonal
differences have not been determined. It should be noted, however, that the
near-record rainfall during 1986 and the resulting high water table that
submerged many of the drains may have been a factor.

The median concentration of nitrite plus nitrate-nitrogen in drain
samples was slightly larger in the summer than in the other three seasons
(fig. 12). However, the differences between seasons were not statistically
significant. Nitrite plus nitrate-nitrogen concentrations in the drains
were much larger than in wells for all seasons. A possible explanation for
this is that the drains collect water from the uppermost part of the saturated
soil zone near the water table, which would contain the largest concentrations
of nitrite plus nitrate-nitrogen from fertilizer application and aerobic
oxidation of nitrogen-containing organic material from plants. The water
from drains is well oxygenated (median dissolved oxygen concentration, 4.3
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Figure 12.—Seasonal distribution of dissolved nitrite plus nitrate-nitrogen concentrations in
water from wells and drains in the Oakes test area, 1986-87.
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mg/L) and nitrite plus nitrate-nitrogen would be the stable form of nitrogen.
The wells, in contrast, contained much lower concentrations of oxygen (median,
1.3 mg/L) and, in the presence of the abundant organic material, nitrate could
be denitrified, converting it to nitrogen gas.

Chemical composition.--The chemical composition of ground water in the
Oakes test area is shown in figure 13. The cations--calcium, magnesium, and
sodium plus potassium--are plotted 2s their percentage of the milliequivalents
of total cations. Similarly, bicarbonate, chloride, and sulfate are plotted
as their percentage of the milliequivalents of total anions. The values
plotted represent the mean concentrations in water from each well sampled in
the Oakes test area.

The predominant jons in water from most wells are calcium and bicar-
bonate. As the total ion concentrations increase, the water type shifts from
a calcium bicarbonate type toward a sodium calcium sulfate bicarbonate type
(fig. 13). The most mineralized water is a calcium magnesium sodium sulfate
type. Water of this type tends to coincide with the areas where specific-
conductance values are large (fig. 11).

Analysis of the ground-water-quality data from the Oakes test area with
the chemical equilibrium model WATEQF (Plummer and others, 1976) showed that
water samples from wells and drains are saturated with respect to the
carbonate minerals, aragonite and calcite, and, in most samples, dolomite.
Water is considerably undersaturated with respect to gypsum except in a few
wells where the water is most mineralized and sulfate concentrations are
large. Most samples also were saturated with respect to iron-oxide minerals
and, in some cases, siderite (ferrous carbonate).

Chemical reactions that govern the major ion chemistry of ground waters
in the Oakes aquifer probably include dissolution and precipitation of
calcite, dissolution of gypsum, and ion exchange with clay minerals.
Evapotranspiration and precipitation of soluble minerals in the unsaturated
zone followed by dissolution of these minerals during periods of recharge
probably have a large effect on the chemical evolution of ground water in some
parts of the aquifer. However, the extent and nature of these reactions were
not determined in this investigation.

Arsenic and Selenium in Shallow Ground Water

Arsenic and selenium are two trace elements that were of primary concern
in this investigation because of their potentially toxic effects on aquatic
systems and the potential for mobilization of these elements in the GDU as a
result of irrigation. Much of the ccacern about these elements, particularly
selenium, is a result of documented effects of selenium from irrigation
drainage in the western San Joaquin Valley, Calif. (Gilliom and others, 1989;
Ohlendorf, 1989).

Geochemistry.--The geochemistry of arsenic and selenium has been
described in considerable detail by Welch and others (1988) and Jacobs (1989).
The following brief summary is derived largely from these two references.
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The chemistry of arsenic is similar to that of phosphorus. Arsenic
can exist in oxidation states of -3, 0, +3, and +5, of which 0 and +3 are
characteristic of reducing environments and +5 is characteristic of_ oxidizing
environments (fig. 14). The oxyanions AsO4~3, HAsO4~2, and HoAs03~! are the
most mobile forms of arsenic. In oxidizing soil and aquatic environments,
arsenic is strongly adsorbed on hydrous oxides and hydroxides of iron,
particularly goethite. In environments having oxidation potentials small
enough to reduce iron to the ferrous form, arsenic can be released from the
iron minerals and become mobile.

The chemistry of selenium is similar to that of sulfur. Selenium can
exist in oxidation states of -2, 0, +4, and +6. Selenides (-2; Se-2) and
elemental selenium (0; Se0) are stable in reducing env1ronments, selenites
(+4; Se03- 2) occur in mildly oxidizing environments, and selenates (+6;
Se04'2) occur in alkaline, strongly oxidizing environments. Selenides and
elemental selenium are virtually insoluble in water and are, thus, immobile.
Selenite compounds are relatively soluble, but selenite has a strong affinity
for sorption, particularly on goethite and other iron oxides. As a result,
selenite is relatively immobile. Other competing oxyanions, such as
phosphates, can replace and, thus, mobilize selenite. Selenate compounds,
like sulfates, are very soluble and quite mobile in soils and aquatic
environments. An Eh-pH diagram for selenium species is shown in figure 15.
Theoretically, in the pH range of 7 to 8, selenate would predominate only at
oxidation potentials (Eh) larger than about 0.4 volt.

Occurrence and distribution.--Arsenic and selenium concentrations
determined in 299 water samples collected from 120 wells (fig. 10) and 16
sites on drains (fig. 4) in the west Oakes irrigation area are given in tables
14 through 16. The median arsenic concentration was 4 ug/L, and less than 5
percent of the samples had concentrations exceeding 19 ug/L. The maximum con-
centration measured was 44 ug/L. For selenium, the median concentration was
less than the analytical detection limits (2 ug/L for data given in table 14;
1 yg/L for data given in tables 15 and 16). The maximum selenium concentra-
tion measured was 9 ug/L, and only two samples had concentrations larger than
5 ug/L. Estimates based on a log-probability regression for censored data
indicate that less than 5 percent of the samples had selenium concentrations
larger than 3 pg/L.

The areal distribution of arsenic and selenium is shown in figures 16

and 17, respectively. For wells having more than one analysis, the maximum
concentration was used. Small concentrations of arsenic, up to about 20 ug/L,
were detected in water from most wells, and five wells yielded water that had
concentrations larger than 20 pg/L. The largest concentration measured was 44
Hg/L in well W-188 located in about the center of the west Oakes irrigation
area. There was a general tendency for arsenic concentrations to be larger

in the middle part of the area than in the northern and southern parts of the
area.

In contrast to arsenic, the largest concentrations of selenium were
detected in water from wells in the extreme northern and southern parts of the
area (fig. 17). Selenium was detected in concentrations equal to or larger
than 2 ug/L in water from 13 of the 120 wells sampled, and two wells yielded
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water that had concentrations larger than 5 pug/L. These were wells W-133 (8
Hg/L) and W-277 (9 ug/L), both of which are located at the extreme edges of
the west Oakes irrigation area (fig. 17).

Of the 16 drain-sampling sites in the Oakes test area that were analyzed
for arsenic and selenium, only water samples from two drains had arsenic
concentrations larger than 10 ug/L. Both had maximum concentrations of 11
ug/L. Selenium, in contrast, was detected in small concentrations (2 to 3
Hg/L) in water from 13 of the 16 drain sites, and the maximum measured in
water from one drain site was 4 ug/L. A Wilcoxon-Mann-Whitney rank sum test
indicated that the concentrations of arsenic in the samples from drains were
statistically (p = 0.05) smaller than in samples from wells, and that concen-
trations of selenium were statistically larger in the samples from drains than
in the samples from wells.

There appears to be a negative correlation between arsenic and selenium
in that areas having the largest arsenic concen*rations have the smallest
selenium concentrations and vice versa. Also, constituents that are
correlated positively with arsenic tend to be correlated negatively with
selenium. The following is a summary of statistically significant (p = 0.05)
rank correlations between arsenic and selenium and other variables for samples
collected from 33 wells in the Oakes test area:

Sign of correlation coefficient

Correlated
variable Arsenic Selenium

Water level - +
Well depth + NS?
Dissolved oxygen NS +
Magnesium - NS
Sodium NS -
Potassium NS -
Sulfate NS -
Nitrite plus nitrate-nitrogen -

Arsenic NA2 -
Boron NS -
Iron NS -
Manganese NS -
Molybdenum + -

INot statistically significant.

ZNot applicable.
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The correlations indicate that oxidation-reduction (redox) potential may
be an important factor affecting the mobility of these two elements. Arsenic
is correlated negatively with nitrite plus nitrate-nitrogen concentrations,
but the other factors with which arsenic is correlated are not direct redox
indicators. The geochemistry of arsenic, however, indicates that arsenic,
probably in the form of HASO4’2 (fig. 14) would be strongly adsorbed on iron
oxides in the oxidizing environment associated with the drains and would be
less mobile than in the dissolved-oxygen-deficient environment associated with
wells that produce water from deeper in the aquifer.

Selenium concentrations are correlated positively with dissolved oxygen
and nitrite plus nitrate-nitrogen concentrations and negatively with iron
and manganese concentrations. This is consistent with the geochemistry of
selenium. Selenium is more mobile in an oxidizing environment (fig. 15) that
is characterized by larger concentrations of dissolved oxygen and nitrite plus
nitrate-nitrogen. Such an environment also would have much smaller concentra-
tions of iron and manganese than a reducing environment. Also, the drain
samples, which represent a more oxidizing environment than do the well
samples, have a much greater frequency of occurrence of detectable, although
small, concentrations of selenium than do the well samples. Unlike results of
studies conducted in the western San Joaquin Valley, however, selenium is not
correlated with salinity.

Element associations.--Factor analysis was used on the data from the 63
wells in the Oakes test area in an attempt to better understand the inter-
relation between the physical and water-quality variables. A brief descrip-
tion of factor analysis is given in the previous section of this report on
soil geochemistry. The optimum model selected, with no rotation, included
four factors (table 19). Factor 1 (principal factor) is a salinity or
dissolved-solids fact<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>