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PREFACE

An important activity of the U.S. Geological Survey is the dissemination of 

technical information related to water resources. A small but significant 

part of this technical information consists of informal unpublished documents 

that supplement available published reports and specifically relate to or 

are relevant for technical training of water-resources professionals. 

Although many of these training documents are very narrowly focused, it is 

useful to publish some of them as the need or opportunity arises in order 

for the information to become more widely available. This report is one of 

these training doucments. These documents, which focus on narrowly defined 

elements of ground-water hydrology, will be useful for training water- 

resources professionals, either in formal training courses, technical 

workshops or self study.



TECHNICAL TRAINING NOTES IN GROUND-WATER HYDROLOGY: RADIAL FLOW TO A WELL

by

GORDON D. BENNETT, THOMAS E. REILLY, AND MARY C. HILL

ABSTRACT

The theory of radial, or axially-symmetric, ground-water flow to a 
well is an important specialized topic of ground-water hydraulics. This 
training note develops the basic concepts of radial flow and its 
representation in numerical models. A number of problems to be solved by 
the reader are included with answers to the problems provided at the end 
of the text. The discussion focuses on the physical characteristics of the 
radial flow system in the vicinity of a well, particularly those 
characteristics that are common to most well-aquifer systems; the concepts 
of finite difference simulation and flow-net analysis are used to 
illustrate these characteristics. This training note does not include 
detailed discussion of the various solutions to the differential equations 
for nonequilibrium flow to a well, as this would exceed its intended scope.

INTRODUCTION

A knowledge of the hydraulics of flow to wells is essential to the 
study of ground-water flow systems. The reasons for this are twofold: 
first, wells provide the mechanism through which a large part of the discharge 
from the ground-water system occurs; second, observation and testing of the 
ground-water regime, whether related to hydraulics or water quality, usually 
takes place through wells of some sort.

The purpose of this training note is to explain the physical principles 
governing ground-water flow to a well. The material reviews and builds 
upon the basic concepts of radial flow as given, for example, in Bennett 
(1976, p. 34-52). Emphasis has been placed on those characteristics of the 
radial flow pattern that are common to most well-aquifer systems; the 
concepts of finite-difference simulation and flow net analysis are utilized 
to illustrate these characteristics. Discussions of the various solutions 
to the differential equations of transient radial flow are not included, as 
this would exceed the intended scope of this document.

The term "radial flow," as used in this report, denotes axially 
symmetric flow toward a well--that is, flow which is directed toward a well 
coaxial with the z (vertical) axis of the cylindrical coordinate system, 
and is symmetrical about that axis, so that the angular coordinate need not 
appear in the flow equations.



GENERAL CHARACTER 1ST ICS OF RADIAL FLOW

Figure 1 shows a well located at t 
This well taps a confined aquifer which 
where it is exposed to the head of the 
of the island is designated re . The we 
horizontal flow occurs radially inward 
the well. No vertical flow occurs. Be 
well is at its center, the problem 
given radial distance from the well, th 
direction; moreover, the assumption of 
to consider variations in the vertical, 
coordinates (figure 1) are used, only 
(r) from the axis of the well, need 
1976, Part III for a more complete di

The cross-sectional area of 
to the flow direction: thus

ie center of a circular island, 
crops out along the island's perimeter, 
urrounding water, he . The radius 
1 is pumped at a rate Q^,, and 
rom the perimeter of the island to 
ause the island is circular and the 

exhibits radial symmetry that is, at a 
same condition will prevail in any 

horizontal flow makes it unnecessary
Thus, if polar or cylindrical 

one coordinate, the radial distance 
appear in our equations (see Bennett, 
scussion)4

Flow is in the negative r directior  that is, inward along the r axis.
flow at any radius, r, is an area perpendicular 
it is a cylindrical surface extending through

the aquifer at the radius r, as shown ir
aquifer is b, the magnitude of this area
this problem is one in which the cross
the flow path, becoming progressively smaller as we approach the well
shown in figure 3. |

figure 2. If the thickness of the 
at any radius is simply 2-irbr. So 

sectional area of flow changes along
as

flowWe now apply Darcy's law to the 
figure 2. We are dealing with a steady- 
effects; the discharge entering the aqui 
island is the same as that entering the 
cylindrical surface coaxial with the wel 
Darcy's law for flow across the surface

x dh dh
K(area)   = -K-2Trbr  

dr dr

crossing the cylindrical area of 
state situation, with no storage 
fer along the perimeter of the 
well, and the flow across any 
1 has ^his same value, Q^,. Thus, 
shown i!n figure 2 is simply

dh
where   is the gradient of head in the 

dr
r direction i.e., in the direction

rict siopposite to the flow. If we maintain st 
of the well, Qw, must be treated as a negative 
inward, in the direction of decreasing r 
discharge as a positive term. With the 
considered positive, therefore, we drop 
of (1) obtaining

dh
2irKbr   

dr

(1)

gn conventions, the discharge 
quantity, since it is directed

However, we will think of well 
understanding that Qw will be 
the negative sign on the right side

(2)



CYLINDRICAL COORDINATES

POLAR COORDINATES 
Problem viewed from above

(r,0) x = rcos8 
y= r sin 0

SEA

DATUM

Figure 1 - A well tapping a confined aquifer at the center of an island.
Horizontal flow occurs radially inward from the perimeter of the 
island to the well. Thus, flow is in the negative r direction.



Figure 2 - Cross-sectional area of flow at a radius r from the well 
of fig. 1.

Figure 3 - Decrease in cross-sectional area with decreasing radius

WELL



The discharge Qw is the same for any value of r we choose; thus the 
left side of the equation is a constant. On the right side of the equation, 
the terms 2, IT, b and K are all constant; thus for the right side as a whole

dh
to remain constant, must increase as r decreases. In other words, to

dr
compensate for the progressive decrease in flow area, the gradient must 
steepen progressively as we approach the well. This is the cause of the 
familiar drawdown "cone," or "cone of depression," in the water levels 
surrounding a pumping well; close to the well, flow areas become very small, 
and hydraulic gradients must become correspondingly steep.

Equation (2) is a differential equation which we can rearrange as 

dh Qw 1 

dr 2irKb r 

Exercise 1: differentiate the equation

Qw 
h =      In r + C (4)

2irKb 

to show that it is a solution to the differential equation (3). C is a constant

Thus, (4) can be shown to be a solution of (3). Equation (4) must also 
address the boundary condition of the problem that at the radius of the 
island, re , head is equal to h e . This can be done by properly defining 
c as follows.

At re we know that the following must be true:

Qw 

2irKb

Equation (4) will satisfy the boundary condition if:

Qw 
C = h e -     In re .

h e =    In re + C.

Thus, we have

h = h e -    (In re ) +    (In r). (5) 
2irKb 2TrKb

Verify that (5) satisfies the boundary condition by substituting he and re 
for h and r, respectively.



W£>1

loga
Equation (5) is one form of the 

course also be expressed in terms of 
base, the results show that head in the 
varies with the logarithm of radial dis 
flow to a well at the center of an is!a 
to be encountered in practice. It is 
problem of steady radial flow for consideration 
variation of head is a characteristic 
at least in the region close to the well.

LATERAL HYDRAULIC CONDUCTANCE

In this discussion, our purpose is 
focus on the hydraulic conductance, in the radial direction, of a cylindrical 
shell within the aquifer, such as the one shown in figure 4. The shell 
extends from an inner radius r to an outer radius r . Equation (5) can be

applied at the outer surface of the shell by setting r equal to r , obtaining
2

1 known Thiem equation. It can of
rithms to the base 10; using either 

vicinity of a discharging well 
tance from the well. The problem of 
nd is a fictitious one, not likely 

used here because it isolates the
and because the logarithmic 

most problems of flow to a well,

to use

IN RADIAL FLOW

radial flow analysis to

= h e - (In r
Qw ,

- (In r ) 
ZnKb 2

(6)

Similarly, we can obtain an expression for h , the head along thei
inner surface of the segment, by setting r equal to r in (5).

Exercise 2: Show that if we do this, aid subtract the resulting expression 
for h from equation (6) we obtain

Qw , h - h =    (In r - In r )
ZirKb

The term (In r2 - In r ) can also
can take the form

Qw
h - h = 
2

In (r /r ) 
2 L

The hydraulic conductance of a block of
of the flow rate through the block to the head
calculate a conductance in the radial d 
shell by solving (8) for the ratio

(L 2-irKb
C r =

(7)

be written In (r2 /r 1 ), so that (7)

(8)

In many problems it is helpful to use the concept of hydraulic conductance,
porous

rection, C r , across our cylindrical

material is simply the ratio 
difference across it. We can

i.e.,

(9)



Figure 4 - Cylindrical shell for calculation of hydraulic conductance 
using log formula

Figure 5 - Shell for hydraulic conductance calculation using distance and 
area of flow



Equation (9) tells us that two different cylindrical shells will have 
the same radial hydraulic conductance so long as they have the same ratio 
of outer to inner radius, r /r.

In the above approach we have calcul 
ratio of flow to computed head loss, 
approached from a slightly different 
law, we may calculate conductance as 
cross-sectional flow area, divided by 
latter approach in a radial flow probl 
shell coaxial with the z axis; we wish 
in the radial direction. The shell has

ated hydraulic conductance as a 
Hydraulic conductance may also be 
int of view that is, using Darcy's

product of hydraulic conductivity and 
istance; of flow (KA/L). Now consider this 
m. Figure 5 shows a cylindrical 
to calculate hydraulic conductance

pen 
the

cli

a mean radius r,m ), and a

calculate hydraulic conductance in the
of flow as Ar. The cross-sectional area actually

at the outer radius to 2irr b at

an outer radius r , an inner radius

radial width Ar (or r - r.). Tot- i
radial

c 
the inner

direction, we take the distance
varies continuously from 

radius; however, we assume

that we can use an area calculated at the mean radius, rm , as a reasonable 
approximation. This area is simply 2nr]mb, and radial conductance using 
our formula (C r= KA/L) is therefore

K-
Cr =

m

Ar

Exercise 3: Table 1 lists values of r , 

shells, each chosen so that r /r = 2. 

for each shell using equation (10), tak 

Your results should show the same
the cylindrical segments, 
shells are chosen in this 
distance from the well is 
of flow, Ar, leading to a 
tion (9) to calculate the

The problem 
way, the incr 
offset by a 
constant 
radial conduc

answer, C r = 150 gpd/ft, for each of 
"llustrates that when the cylindrical 
ase in flow area with increasing 

corresponding increase in the distance 
hydraulic conductance. Had we used egua- 

ances, we again would have found
the same result for each shell, since the

(10)

r , rm , and Ar for several cylindrical 

Calculate the radial conductance 

ng the term K2irb as 100 gpd/ft.

ratio r2 /r 1 has the same value

for each shell and the log term will thus be the same for each. The calculated
results using equation (9) would actual
those obtained using (10); that is
of 144 gpd/ft for each shell, rather
use of the mean radius, rm , to calculat
an approximation, which becomes exact a
percentage difference between the two r
larger the ratio, r2 / ri» the Iar9er tne 
formula.

y differ by a few percent from 
equation (9) would give a conductance 
than 150 gpd/ft. This is because the 

flow area in equation (10) is only 
Ar tends to zero around rm . The 

-usults is related to Ar/rm and the 
difference becomes between the two



Finally, we note that equation (9) can be derived from (10) by considering
the region between r and r to be occupied by an an infinite number of

coaxial cylindrical shells, each of infinitesimal width dr, as shown in

figure 6. The conductance of each shell is given by      . The
dr

shells constitute a set of conductances in series; the conductance of the 
entire segment from r to r2 can be obtained assuming one-dimensional flow by

applying the rule for conductances in series, which has the form

111 1 (11) 

C eq GI  2 C r 

For our case, the form of each term in the summation would be given by

Cj

1 dr
The summation thus becomes an integration of the term      

2irKb r

between the limits r and r , and the result is identical to equation (9),

as the reader may verify. Another very similar approach would be to inte­ 
grate equation (3) between the limits r and r , obtaining (8) as a solution, 
from which (9) follows.

DISCRETIZATION IN NONEQUILIBRIUM FLOW SIMULATION IN THE R-Z PLANE

We now wish to address the problem of simulating transient flow to a 
well allowing for vertical as well as radial movement. We use cylindrical 
coordinates, with the axis of the well taken as the z axis. We assume that 
symmetry exists around the z axis, so that the angular coordinate, 0, 
need not appear in our equations. Thus, we are considering flow which can 
be fully represented in the r-z plane. Many problems of flow to a partially 
penetrating well or seepage from a circular pond fall into this category; 
an example is provided in figure 7, which shows flow lines and lines of 
equal head in the r-z plane for a well which is screened in an isolated 
depth interval within an unconfined aquifer, and is supplied by uniform 
recharge over a circular area of the aquifer's surface.



rm 

(ft)

1.5

3

6

96

192

ri 

(ft)

1

2

4

64

128

(

12

25

P2

ft)
2

4

8

8

6 i

AT 

(ft)

1

2

4

64

28

Cr 

(gpd/ft)

Table 1 - Worksheet for calculation elf radial hydraulic conductance

Figure 6 - Hydraulic conductance of 
integration of elemental

finite cylindrical shell as an 
shells in series

10



To address problems of this type, we require a method of simulating 
flow in the r-z plane. Figure 8 illustrates an approach to the problem. A 
rectangular array of nodes is established in the r-z plane; however, we 
must keep in mind that we are using the r-z plane to represent three- 
dimensional flow through a cylindrical section extending from the well 
radius, rw , to some outer radius, re . Each point on the model plane actually 
represents a circle extending 360 degrees around the z axis in three- 
dimensional space; when we consider a rectangular area in the r-z plane, 
we are actually talking about a cylindrical ring or shell of rectangular 
cross section, also extending 360 degrees around the z axis; and so on. 
Along the radial axis of the following problem, we will use an expanding 
mesh spacing, in which the radius represented by each node will be twice 
that represented by the node interior to it. The innermost vertical column 
of nodes falls along the radius of the well, rw ; the outermost column falls 
on a radius re , which ideally should be chosen so as to lie beyond any 
measurable influence of the well during the period of simulation. Along 
the vertical axis, spacings are chosen in whatever way the problem requires. 
(To simplify the present discussion, we will assume that the vertical mesh 
spacing, AZ, is constant-that is, that the spacing between any two adjacent 
rows in the mesh is the same. In a subsequent problem, however, we will 
use two different values of AZ one in a semiconfining layer, and another 
in the underlying aquifer.)

Figure 9 shows the system in three dimensions, with a section cut away 
to show the intersection of the three dimensional flow volume with a vertical 
plane. In our finite-difference formulation, we will use the face-centered 
approach not because it is inherently any better than a block-centered 
approach, but because it forces us to visualize and formulate conductances 
as they are actually used in the finite-difference solution process.

Three rectangular areas are shown on figure 9, each representing the 
instersection of a cylindrical ring or shell of rectangular cross section 
with the r-z plane. These three cylindrical shells (A, B, and C) represent 
the volume elements for defining lateral (radial) hydraulic conductance, 
vertical hydraulic conductance, and storage capacity, respectively. Shell 
A, which is used for the definition of lateral conductance, extends in the 
radial direction~i .e., along a row between two nodes, and extends vertically 
half the distance to the rows above and below. Shell B, which is used for 
the definition of vertical conductance extends along the vertical~i.e., 
along a column between two nodes, and extends inward and outward to radial 
distances which are chosen so that the vertical conductance will be equally 
distributed to either side of the column. This concept is discussed in 
more detail subsequently. Shell C, is used for the definition of storage 
capacity, which is defined as the volume of water released from storage in 
a given volume of aquifer, in response to a unit decline in head within 
that volume. Note that shell C surrounds a node, extending halfway to the 
adjacent rows above and below, and extending inward and outward to radial 
distances chosen so that the storage capacity is equally distributed to 
either side of the node.

11



CYLINDRICAL COORDINATES

Figure 7 - Flow net in the r-z plane for axially symmetric flow to a 

well sustained by uniform recharge to the water table

w -Ar-

Figure 8 - Node array

12
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Figure 9 - Shells used for definition of hydraulic conductance and 
storage capacity in axially symmetric flow
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Lateral Conductance

um
equal

iform 
to

By virtue of our assumption of a 
thickness of shell A turns out to be 
Thus, the lateral conductance of shell 
(9), taking the thickness as AZ rather 
we take the outer radius, ra+j, to be twice 
term is simply In 2. For the problem,

C r =
2rrK|_AZ 2-rrK|_AZ

In 2 0.693

where K|_ represents lateral hydraulic c
ra+l 

ratio    is constant throughout the m

vertical mesh spacing, the 
the vertical spacing, AZ.

A can be calculated using equation
than b.

the inner radius, ra , the log 
therefore, equation (9) becomes

i
the same for all lateral conductances along any given row (differences
between rows may arise due to variation in the

In the following problem,

(13)

bnductivity. Note that because the 

del mesh, this expression remains

term K|_ from one row to
another, if layers of different hydraulfic conductivity are simulated.)

Finally, it should be noted that along the upper row of the mesh of figure 
9, the lateral hydraulic conductance values are not based on a full-thickness
shell such as A, but rather of a shell of half 
extends downward from the row but not above it 
row of the mesh, lateral hydraulic conductance
which extends upward from the row but npt below it, and again the thickness 
used in calculation is Az/2.

thickness, Az/2, which
Similarly, along the lower 

values are based on a shell

Vertical Conductance

The vertical conductance of shell b in figure 9 can be calculated as 
the product of the vertical hydraulic conductivity and cross sectional area of 
flow, divided by the distance of flow, [KzA/Az). Figure 10 shows an isolated 
view of shell B. Because we are dealing with vertical velocity components,
the cross-sectional area of flow is the 
shell that is, the shaded annular area

area of the upper surface of the 
of figure 10. As shown in figure

9, shell B extends vertically between two node:; of the model mesh; these nodes 
fall on the vertical column located at radius *a . This radius, ra , is 
indicated by the dashed circle in figur^ 10. The cross sectional area of 
flow extends inward from ra to an interior radius, r a _i/2, and outward from
ra to an outer radius ra+]/2. The total area i
between the area of a circle of radius a+1/2

Df flow is the difference 
the area of a circle of

radius ra _i/2« Thus the area of flow ii given 

A = *[(r a+i/2)2 -(ra -l/2)2 ]-

by

14



Figure 11 shows a plan view of the cross-sectional area of flow, again 
with ra indicated by a dashed circle. The area has been divided into two 
segments: A , which is interior to ra , and A , which is exterior to ra . 
We wish to choose the inner and outer radii, ra _i/2 and ra+l/2» in such a 
way that the vertical hydraulic conductance between two nodes will be 
distributed evenly, half outside the radius of the node, and half inside 
that radius. This is achieved by making the two areas AI and A2 equal. 
For the radial node spacing of our problem, in which each node falls at a 
radius which is twice that of the node interior to it, the radii ra _i/2 and 
ra+l/2 must be given by

ra-1/2 = r/275 (14)

ra+l/2 = r a/875" (15)

in order for the areas A and A to be equal.

Exercise 4: verify that for any value of r^, the area between r a/2/5 and 
ra is equal to the area between ra and ra/8/5.

Using equations (14) and (15), the cross sectional area for vertical 
flow is given by

&rra2
A= IT {(ra/W-(ra/W} =     (16)

5

The vertical hydraulic conductance of shell B is thus given by

K ZA Kz (6ir/5)ra2 3.77K z ra2 
C z =    =         =       (17)

L AZ AZ

where Kz is the hydraulic conductivity in the vertical direction.

[Note: These results hold only if we are using
ra+1 ra+l
   = 2 in our model design. More generally, if    = a, and if
ra ra

we wish to have an equal distribution of area outside and interior 
to the node, then the area must be taken from an inner radius of 
ra [2/(a2 +l)]1/2 to an outer radius of ara [2/(a2 +l)]1/2 . The area of

a2 -! 
vertical flow then becomes 2ir{  }ra2 .]

C12 +1

From equation (17), the vertical conductance of shell B is seen to be the

3.77KZ
product of a constant term,    , and the square of the radius around

AZ

15



Figure 10 - Cylindrical shell extending inward and outward from the 
node column at radius ra

Figure 11 - Top view of cylindrical shell extending inward and outward 
from the node column at radius r

16



which the shell is centered. If we are calculating the vertical hydraulic 
conductance of successive shells, moving radially outward along a model 
row, the conductance of each shell will be four times that of the shell 
interior to it, since the radius of each shell is twice that of the shell

ra+l 
interior to it. (Again, this holds only for     = 2; for the more general

case,     = a, the conductance of each shell would be a2 times that of
ra 

the shell interior to it. In any case, if the vertical hydraulic conductance
of a single shell is determined, that of successive shells along the same 
model row can be obtained readily; however, differences between rows will 
arise if different values of Kz are incorporated, simulating layers of 
different hydraulic conductivity.)

Finally, it should be noted that along the inner vertical column of 
nodes in the mesh of figure 9 (i.e., the column along rw ) vertical hydraulic 
conductance values are based on a cylindrical shell which extends radially 
outward from rw but not interior to it. This shell thus has half the base 
area, and half the vertical conductance which a full shell at the same 
radius would have. Similarly, along the outer vertical column of nodes 
(i.e., the column along re ), conductance values are based on a shell which 
extends inward from re but not beyond it. Again, area of flow and the 
vertical conductance are half those of a full shell at the same radius.

Storage Capacity

Unlike shells A and B in figure 9, which are taken between two nodes 
for the purpose of calculating hydraulic conductance, shell C is distributed 
around a single node, and is used to illustrate the calculation of storage 
capacity associated with that node. The storage capacity of the shell is 
the specific storage multiplied by the volume of the shell; the shell 
volume, in turn, is simply the base area of the shell multiplied by its 
thickness. The shell extends vertically halfway to the adjacent nodes 
above and below; since we are assuming an even mesh spacing, the thickness 
is simply Az, like that of shell A. The node around which shell C is 
centered is located at a radius ra --i.e., it lies on the same vertical 
column as the nodes of shell B. Like shell B, shell C extends outward to a 
radius ra+i/2, or ra/W5", and inward to a radius ra_]/2 or ra/2/5. Thus, 
it has the same base area as shell B the area given by equation (16). 
Moreover, as shown for shell B, the base area of the section of shell C 
beyond ra is equal to base area of the section interior to ra . The volumes 
of these two sections are therefore equal, and it follows that the storage 
capacity of the section beyond ra will equal that of the section interior 
to ra . In other words, storage capacity is evenly distributed around ra .
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The base area of shell C, as given 
hydraulic storage capacity, which is simply 
and volume, is therefore given by

SC =
6irS'AZ

by equation (16) is 6Trra2 /5; the 
the product of specific storage

(18)

where S' is the specific storage of the 
hydraulic conductance, therefore, the s 
at ra is given by the product of a cons 
a row, the storage capacity of each 
that of the shell interior to it, since 
that at the node interior to it. Thus, 
determined along a given row, the remai

again 
rider car

n the <

aquifer material. As with vertical 
orage capacity of a shell centered 
ant an< ra2 . Moving outward along 

successive shell will be four times 
the racius at each node is twice 

v/hen one storage capacity is 
be calculated very quickly.

ame way as shell A, andShell C is distributed vertically
radially in the same way as shell B. It follovfs that the adjustments which 
we had to make along the upper and lower' rows for shell A must also be 
applied here, and the adjustments which we made along the inner and outer 
columns for shell B must similarly be applied. Along these boundaries, the 
shells used to define storage capacity have only half the volume of shells 
in the interior of the mesh, and the storage capacities must accordingly be 
cut in half; for "corner nodes", which fall on both a row boundary and a 
column boundary, storage capacity must be reduced to one quarter of the 
value for an interior node.

A further consideration enters if 
unconfined aquifer, and the uppermost 
table. In these cases, the storage capa

the
row

the uppermost row must account for the e
for nodes in the top row, in a water tab 
taken as the product of specific yield, 
(6rrr a )/5. Other modifications of the 
tion might include some provision for 
nodes at the top of the mesh, as water 1 
nodes from the model; these topics are b 
discussion.

modejl is used to represent an 
of the mesh is taken as the water 

city associated with nodes along 
fects of unconfined storage. Thus 
e simulation, storage capacity is 
y, andj the base area of the shell, 

model tol represent a water-table situa- 
adjusting the lateral conductance of

ivels fall, and for removing "dewatered" 
lyond tne scope of the present

RADIAL-FLOW

The problem which we will undertake 
parts. In the first, we will design a mO 
flow to a well; second, we use some resu 
flow net. We will observe how the simul
certain characteristics of the flow regime. Itj is important to keep in 
mind the internal characteristics and boundary 
model because these factors determine how 
approximates the real system under study
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Model Design

Figure 12 shows a partially penetrating well in a semi-confined aquifer. 
The confining unit is 100 feet thick and is overlain by a water-table aquifer 
in which heads may be considered constant. The hydraulic conductivity of 
the confining unit, in both the lateral and vertical directions, is 0.1 gallon 
per day square foot. The specific storage of the confining unit may be 
considered zero. The aquifer is 100 feet thick, its lateral hydraulic 
conductivity is 100 gallons per day per square foot, and its anisotropy (ratio 
of lateral to vertical hydraulic conductivity) is 100. The specific storage 
of the aquifer is 10"6 per foot. The discharging well is screened from 30 
to 70 feet below the top of the aquifer; the screen radius is 1 foot. 
Water levels throughout the system prior to pumping are 100 feet above 
datum (which is the top of the confining unit), and remain at this level 
in the overlying water-table aquifer throughout pumping.

The well is pumped at a rate of 250,000 gallons per day; we assume 
this pumpage to be uniformly distributed along the well screen. We wish to 
know how long it will take for the system to reach equilibrium, and we 
require the head distribution and the stream function distribution, as 
functions of r and z, at this new equilibrium. (Stream functions are discussed 
in part B of this section.)

We wish to design a digital model which will provide the head distribution 
as a function of r, z, and time. We will use a vertical mesh specing of 50 
feet in the confining unit and 20 feet in the aquifer. In the radial 
direction, we will let rn+i/rn = 2, where rn is the radius represented by a 
given node, and rn+i is that represented by the succeeding node along the r 
axis. We assume that the effect of the well at equilibrium will not extend 
beyond 30,000 feet from the discharging well and we will define a vertical 
no-flow boundary at that distance.

Figure 13 shows the array of nodes in the r-z plane which will make up 
our model, superposed on the hydrologic features of figure 12. The column 
number, J, of each column is indicated across the top of the array while 
the row number, I, of each row is indicated along the left margin. Using 
figure 13 do the following parts of the problem:

1. The radii associated with columns 1 and 16 are shown beneath the 
column number of figure 13; enter the radii associated with each of the 
remaining columns.

2. The depth (below the top of the confining bed) associated with rows
1, 2, 3, and 8 is shown on the left side of figure 13, to the right of the row
number; enter the depths associated with the remaining rows.

3. Along the right margin of figure 13, division marks have been 
placed representing the depths midway between successive horizontal rows of 
nodes. Enter the depth (below the top of the confining bed) represented by 
each of these marks.

4. Blocks A, B, C, D, E, F, and G in figure 13 represent some of the 
aquifer volume elements for which lateral hydraulic conductance must be
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specified in the model; that is, each of these rectangular blocks represents a 
vertical cross section through one of these three-dimensional volume 
elements. What is the geometric form of these elements?

5. Calculate the lateral hydraulic conductance of the volume element 
represented by each of the blocks A through G of figure 13. In the case 
where the volume element is composed of two layers of differing hydraulic 
conductivity parallel to the direction of flow, the total hydraulic conductance 
is simply the sum of the two individual lateral conductances. (The general 
rule is that an equivalent conductance for conductances in parallel is the 
sum whereas an equivalent conductance for conductances in series is calculated 
by equation 11 as discussed previously).

6. To prepare for the calculation of vertical conductances, we divide the 
aquifer into shells around each node, such that each shell extends from 
an inner radius r/2/5 to an outer radius r/8/5, where r is the radius 
represented by the node. The vertical marks along the lower margin of 
figure 13 represent these lines of division. The radius associated with 
the division mark between nodes 1 and 2, and that associated with the 
division between nodes 15 and 16, is shown on figure 13. Enter the radii 
associated with each of the remaining division marks.

7. If we project these division marks to the surface (that is, to a 
map view of the aquifer, each mark will trace a circle on that surface. 
The area between two successive circles will then represent the base area 
of a cylindrical shell. This area has been calculated for the interval 
around column 15, and the results are shown between the appropriate division 
marks at the bottom of figure 13. Enter the area for each of the remaining 
intervals. (Note that the interval "around" column 1 does not extend inward 
from column 1, and that the interval "around" column 16 does not extend 
outward beyond column 16.)

8. Blocks H and I on figure 13 represent volume elements, or shells, 
for which vertical hydraulic conductance must be calculated. Each of these 
elements extends vertically between rows 4 and 5 of the mesh. Working 
across this interval between rows 4 and 5, sketch the outlines of the 
remaining blocks for which vertical hydraulic conductance must be specified 
(i.e., sketch these blocks directly on figure 13; do this only for the 
interval between rows 4 and 5). Calculate the vertical hydraulic conductance 
of the volume elements represented by the four innermost blocks (i.e., 
those closest to rw ) and by the three outermost blocks (those at columns 
14, 15, and 16). Indicate your results on the figure.

9. Blocks J and K on figure 13 represent volume elements, or shells, 
for which storage capacity must be calculated. Each of these blocks is 
centered around a node in row 7 of the mesh. Sketch the outlines of the 
remaining blocks in row 7 for which storage capacity must be specified 
(i.e., sketch these blocks directly on figure 13). Calculate the storage 
capacities of the volume elements represented by the four innermost blocks 
(closest to rw ) and by the three outermost blocks. Repeat these calculations 
for the blocks directly underlying these, in row 8. Calculate the amount of 
water released by a 1-foot drop in head in the block at row 7, column 16.

21



Column No., J 1
Radius 1 

I
Row I 

No., I Depth
0  -

2345 6 7 8 S 10 11 12 13 14 15 16
32,768

50

100

1

2

3

4

5

6

7

8 200

     

             n

Semiconfinin a 
              

bed
                

Aquifer

Intermediate ^ 1 285 
radius

Area 15.082

Figure 13 - Model node array and volume e 
simulation coefficients

22

Intermediate 
depths

 0

"I 200

20,724

.01-

ements used in calculating



10. On figure 13, indicate the nodes which are to be held at constant 
head, and those which represent the well screen. Indicate the discharge 
which must be withdrawn through each node representing the screen.

Stream Functions

Before proceeding to the second part of our problem, we will review 
the concept of stream function.

In two-dimensional flow, streamlines or flowlines are lines within a 
flow system to which the velocity vectors are everywhere tangent at a 
particular instant of time. The fact that the velocity vectors are everywhere 
tangential to the streamlines means that no flow can cross a streamline. 
In a steady state problem, where the characteristics of the flow regime do 
not change with time, the streamlines remain the same at all times; in this 
situation, each streamline represents a fixed line within the system across 
which there is never any flow. If we consider two streamlines extending 
completely through the flow regime, the region between these lines is called 
a stream tube. Since flow cannot cross either bounding streamline, the flow 
through a stream tube is the same at any cross section along the length of 
the stream tube. In this sense, a stream tube in a steady-state flow may be 
thought of as a pipe or conduit extending through the flow system, always 
carrying the same fraction of the total flow.

In a three-dimensional problem, we must deal with three-dimensional 
stream surfaces rather than two-dimensional streamlines. Figure 14 shows 
the flownet of figure 7 with some additional quantities identified. The 
flowlines shown in figure 14 actually represent the lines of intersection 
of three-dimensional stream surfaces with the vertical r-z plane; and the 
areas between streamlines represent the intersection of three-dimensional 
stream tubes with the r-z plane. Again, however, the axial symmetry of the 
radial flow regime allows us to treat the problem in a two-dimensional 
analysis, even though we are actually dealing with three-dimensional features.

The nine streamlines shown on figure 14 divide the flow regime into 10 
stream tubes; the flowlines were constructed in such a way that the flow 
carried in each of these stream tubes is 10 percent of the total flow 
moving through the system. Each streamline has been labelled with a number 
which gives the fraction of the total flow occurring above and interior to 
that streamline; for example, the deepest streamline shown on the figure is 
labelled 0.9, indicating that nine-tenths of the flow occurs above (i.e., 
interior to) this line, whereas one-tenth occurs below (i.e., outside of) 
this line. These fractions labelling the various flowlines are termed 
stream functions. They are constant along a streamline because no flow 
crosses from one side of a steamline to the other. Thus, we may look at 
the streamlines as contours of the stream function values; and it follows 
that if we can devise some way of calculating stream function values, and 
can then contour the results, we can construct the streamlines corresponding 
to these stream function values.

In figure 14, the 1.0 streamline follows the right margin of the 
flownet at re , the bottom of the flow net along the base of the aquifer, and 
the left margin of the flow net at rw beneath the well screen; 100 percent 
of the flow occurs above and interior to this line. The 0.0 streamline
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follows the vertical at rw between the 
table; no flow occurs interior to this 
the upper surface of the flow net, representing 
system is one in which the flow is sustai 
the water table. Thus, for example, the 
streamlines begins at the water table, 
to intercept 10 percent of the total rec 
part of the well screen; it may be thought 
that particular fraction of the recharqe

of 
to

Stream functions exhibit a number 
properties; discussions of these can bei 
fluid mechanics. In general, stream 
flow systems and for axially symmetric 
the one we are considering. In terms 
use of stream functions is restricted 
ground-water problems, we must assume 
compressive storage at points in the 
streamlines can be defined, the fraction 
streamlines will generally vary from 
assign fractions to each streamline which 
(i.e., to one side of) that streamline.

top of the screen and the water
line. All of the streamlines intersect

the water table, since the 
ined by uniform areal recharge to 
stream tube between the 0.8 and 0.9 

where 1t covers an area sufficient 
hargej and extends to the lower

of as the conduit through which 
reaches the well.

of interesting and useful analytical 
found in most standard texts in 

functions are defined for two-dimensional 
three-cimensional systems such as 

grourd-water flow, at least, the 
steacy-state problems. In transient 

that water is being released from 
interior of the flow; thus, even if 

of the total flow between any two 
point to another, and we cannot 
will describe the flow above

Flow-net Construction

unit

Figure 15 represents the node array 
first part of this exercise; the dashed 
blocks (or shells) for the entire mesh, 
problem stated that the semi confining 
aquifer in which head remained constant 
design by holding the head constant in 
mesh. These nodes thus constitute the 
Recharge entering at, say, the top node 
in some way along the nodes of column 
the flow entering column 15 can reach 
the lateral conductances between those 
account for all of the flow past any ve 
considering lateral movement alone; we will us 
tion of stream functions.

for the model we designed in the 
lines outline the lateral conductance 
Referring back to figure 12, the 

was overlain by a water-table 
this ^as accommodated in the model 

he nodbs along the top row of the 
echarge points for the model, 
in column 15 will distribute itself 
by vertical flow; however, none of 
nodes of column 14 except through 

two coltimns. It follows that we can 
"tical [line through our model by

15 
tlie

Figure 16 again shows the node 
value of head associated with each node 
by running a simulation, using the mode 
the length of the first time step was 
each subsequent step was twice that of 
scheme, the end of the twentieth step 
The well discharge was simulated as 250 
20 time steps, the head distribution wa 
withdrawal of water from storage in the 
conditions had been reached, and the 
from the constant head nodes along the 
the streamlines are unchanging with tim 
can provide a gread deal of useful i
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arny of our model, but now with a
Thesfe head values were obtained 

as we designed it, for 20 time steps; 
Uken asi 0.001 day, and the length of

he stej) preceding it. Using this 
corresponded to a time of 1048 days. 
,000 gallons per day. At the end of 
no longer changing with time, and 

mesh wiis negligible; thus, steady-state 
punpage w.is being supplied by recharge 

ipper boundary. Under these conditions, 
i, and construction of a flow net 

nformation about the system.



Water table

Figure 14 - Flow net in the r-z plane for axially symmetric flow to a 
  well. Stream-function values are shown for each streamline 

and relative head values (as a percentage of maximum head 
difference) are shown for each line of equal head.
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90.30    h 91.94    h 94.37    h 96.79    H 98.70    H 99.72    h 99.98
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256 512 1024 2048 4096 8192 16,384 32,768
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The heads shown on figure 16 allow us to calculate the flow through
any lateral conductance in the mesh, sinnly by multiplying the head difference 
across the conductance by the value of tie conductance. We will use the
diagram of figure 15 as a worksheet for 
stream function values along re (column 
(row 8), and along rw (column 1) beneath

our analysis. We begin by noting
16), al 
the sc

stream function must be 1.0 on this perineter; this value has already been
entered on figure 15. Next, we focus on 
right-hand corner of the mesh--that is, 
between column 16 and column 15. Using 
calculate the flow through this block, 
the block is 0.02 feet and the conductan 
in part 5 of the problem previously), we 
181 gpd. Now we calculate the fraction
The total flow through the system is jus; the w 
so we divide the flow through our conductance b
that it represents about 0.0007, or 0.07 
system. At the bottom of the conductanc 
aquifer, the stream function value is 1. 
the flow occurs above or interior to tha
occurs through the block, 99.93 percent fiust occur above and interior to the 
upper surface of the block. So the stream function at the top of the 
conductance block must be 0.9993. This 
15, midway between columns 16 and 15, at 
block.

ong the base of the aquifer 
 een. As we have seen, the

the conductance block in the lower 
the lowermost block extending 
the head values from figure 16, we
because the difference in head across
ce is 9367 gpd/ft (which was calculated
find tie flow to be approximately
)f the total flow this represents.

511 discharge, 250,000 gpd; 
ock by 250,000, and see

percent, of the flow through the 
2 block, along the base of the 
), indicating that 100 percent of 
: point. If 0.07 percent of the flow

is already entered on figure 
the top of the lowermost conductance

the

Next, we move upward to the conduct 
one we have just considered. Again, we 
ductance here is double that for the lower 
is almost the same, the flow through this 
twice that through the lower one, or 363 
to find that this represents about 0.15 
since the stream function at the base of 
percent (0.0015) of the flow passes through 
subtraction that the stream function at 
be 0.9978. This also has been entered a 
sheet for the calculation of stream functions 
continue working upward in this manner 
blocks between columns 15 and 16, calcula 
through each block and subtracting this 
the base of the block to find the stream 
Enter these values on figure 15 at the 
the nodes. Then move over to the stack 
columns 15 and 14 and repeat the procedure 
block and working up. Note that the stream 
the lowermost block is again 1.0, so that 
calculations by subtracting from 1.0 agai 
After each calculation, enter the stream 
block, midway between the node columns, 
intervals between columns 14 and 13, 13 
and 9, and finally for the interval between 
of the calculations have been computed for
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ance block immediately above the 
calculate the flow; since the con- 

block, and the head difference 
block turns out to be approximately 

gpd. Again, we divide by 250,000 
percent of the total flow. Thus, 
this block was 0.9993, and 0.15 

the block, we find by 
upper surface of the block must 

ready on figure 15, and on the work- 
(table 2). Using the worksheet, 

through the "stack" of conductance 
ting the fraction of total discharge 
from the; stream function value at 
function at the top of the block, 

of eech block, midway between 
conductance blocks between 
again beginning with the bottom 
function value at the bottom of 

we must begin the series of 
n, as we did in the initial series, 
function value at the top of the 
Repeat this procedure for the 
nd 12, 12 and 11, 11 and 10, 10

columns 7 and 8. Note that many 
you en the worksheet (table 2).
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The procedure of calculation which we have used can be 
described formally through the equations

Ql.J = CX If j(H IiJ+1 - H I§J ) (18) 

and

n=NR Qn j
V IsJ = 1.0 - z (   ) (19)

n=I Qw

where QJ S J is the flow through the lateral conductance block between node 
I,J and node I,J+1; CXj^j is the value of lateral hydraulic conductance for 
this block; HJ^J and HJ^J+I are the head values at nodes I,J and I,J+1, 
respectively; tfj j is th*e stream function at the top of the conductance 
block between 1,3 and I,J+1; ^ is the well discharge that is, the total 
flow through the system; and NR is the total number of rows in the model, 
so that the summation of equation (19) includes the flow through the lateral 
conductance between node I,J and node I,J+1, and the flow through all of 
the lateral conductances vertically below this in the stack.

Now go back and interpolate within each vertical "stack" of stream 
function values to locate the positions of the 0.9, 0.8, 0.7, 0.6, 0.5, 
0.4, 0.3, 0.2, and 0.1 stream function values within each stack. Note that all 
of these values will not be present in every stack; in terms of the diagram 
of fig. 14, the streamlines must intersect the upper constant-head boundary 
of the model, illustrating accretion due to recharge. Thus, for example, 
the 0.2 stream function does not appear in the outer part of the mesh, 
toward re . Note also that as we approach the well screen, the flow tends 
to be compressed into the screened interval; in terms of the model, this 
means that most of the flow will ultimately be squeezed into the lateral 
conductance blocks in the two rows which lead to the screen. Thus, toward 
the left side of the model mesh (toward rw ), virtually all of the interpolated 
stream function values will fall within the lateral conductance blocks for 
rows 5 and 6 of the model.

Figure 15, because it represents the model mesh, has a logarithmic 
scale along the radial axis; to construct our flownet, we wish to transfer 
our values to an arithmetic scale diagram. Before doing this, we must 
decide at what points in the r-z plane our stream function values are to 
be plotted. To assign vertical coordinates, remember that in our method of 
calculation, we tacitly assumed that the vertical coordinate of each calculated 
stream function value was at the top of the conductance block through which 
flow was computed. We assigned vertical coordinates to the interpolated 
values through the process of vertical interpolation itself. To assign 
radial coordinates, we make the assumption that the radial coordinate of 
each stream function value falls at the logarithmic midpoint of the conductance 
block through which flow was calculated i.e., that for a conductance block 
extending from an inner radius of PJ to an outer radius of 2r^, the calculated 
stream function values actually apply at a radius of /2*r-j. This actually 
represents an assumption that our stream function values apply at a radius 
which "bisects" the lateral conductance, in the sense that the lateral 
conductance between r-j and /? r-j is equal to that between /2 r-j and 2ri. 
Values of these logarithmic midpoint radii are shown below the r axis on
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Table 2 - Work Sheet for the Calculation of Stream Functions

Between
columns

15 & 16

14 & 15

13 & 14

12 & 13

Row

8
7
6
5
4
3
2
1

8 
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

Head Drop
Between
Columns

Ah

(ft)

0.02
0.02

0.26
0.26
0.26
0.25
0.25
0.12
0

1.02
1.02
1.01
1.00
0.99
0.97
0.49
0

1.91
1.90
1.89
1.87
1.85
1.81
0.91
0

Lateral
Hydraulic
Conductanc

CL
(gpd/ft)

9,067
18,130

Flow through Cumulative Stream-
Conductance Flow

:e Block

Q

(gpd)

181
363

18,130 4,714
18,130 4,714
18,130 4,53J!
9,090

45.4
22.7

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

2,27;?
!>
0

9,248
18,49(1
18,31(1
18,13(1
17,95(1
8,817

24
0

17,316
34,450
34,270
33,900
33,54d
16,453

41
d

ZQ

(gpd)

181
544

9,248
27,738
46,048
64,178
82,128
90,945
90,967
90,967

17,318
51,768
86,038
119,938
153,478
169,931
169,972
169,972

Function
Value

1 £Q"w
(unitless)

0.9993
0.9978

0.9630
0.8890
0.8158
0.7433
0.6715
0.6362
0.6361
0.6361

0.9307
0.7929
0.6558
0.5202
0.3861
0.3203
0.3201
0.3201

32



Work Sheet for the Calculation of Stream Functions (continued)

Between
columns

11 & 12

10 & 11

9 & 10

7 & 8

Row

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

Head Drop 
Between
Columns

Ah

(ft)

2.42
2.43
2.44
2.42
2.37
2.32
1.16
0

2.43
2.57

2.52
2.34
1.16
0

1.64
2.20

2.18
1.60
0.78
0

0.21
0.65

0.65
0.21
0.09
0

Lateral 
Hydraulic
Conductance

CL
(gpd/ft)

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

9,067
18,130

9,067
18,130

9,067
18,130

Flow Through Cumulative Stream- 
Conductance Flow Function

Q

(gpd)

21,942
44,060
44,240
43,870
43,000
21,089

53
0

22,032
46,590

14,870
39,890

1,904
11,780

ZQ

(gpd)
21,942
66,002
110,242
154,112
197,112
218,201
218,254
218,254

22,085
68,675

14,870
54,760

1,904
13,684

Value

1 - £Q
IJj

(unitless)

0.9122
0.7360
0.5590
0.3836
0.2116
0.1272
0.1270
0.1270

0.9117
0.7253

0.9405
0.7810

0.9999
0.9453
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conductancefigure 15, for each stack of lateral 
function calculations. In setting up an 
use an exaggerated vertical scale, and it 
reasonably large field for example, a sc 
vertical axis and 500 feet to the inch on 
at the left side of your figure. The flow 
to re ; a radial dimension of 15,000 ft wi 
the primary features of the flow field, 
functions from Fig. 15 to the arithmetic 
location of the point at which each stream 
all of these points have been transferred 3 
corresponding to stream function values of 
0.7, 0.8 and 0.9, by contouring these val 
a sufficient amount of head data from fig 
flownet to allow the construction of lines 
80, 85, 90, and 95 feet of head respectively 
to the stream function values, the head 
locations themselves.

val

blocks used in our stream 
rithmetic flownet plot, we will 
will be an advantage to use a 
le of 20 feet to the inch on the 
the radial axis. The well should be
net need not extend the full distance 

11 be sufficient to illustrate 
ransfer the interpolated stream 
cale plot, indicating clearly the 
function value applies. When 
construct the nine streamlines 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

on the new plot. Next transfer 
16 to the arithmetic scale 
of equal head, corresponding to

Keiep in mind that in contrast 
ues actually apply at the node

les

The stream surfaces are not generally expected to be orthogonal (at right 
angles) to the surfaces of equal head because of the vertically exaggerated 
scale of the plot, and because the aquifer is anisotropic. However, where 
the flow occurs along one of the major axes of hydraulic conductivity, r or z, 
the condition of orthogonality applies.

When the head values have been contou 
flow net in the r-z plane for the equilibr 
system. Although both scales are arithmet 
distortion because of the vertical exaggeration 
us a number of important things about the

Flow-Net Interpretation

The streamlines and the lines of equa 
represent the intersection of three-dimens 
equal head with the vertical r-z plane. 
80 feet close completely around the screen 
values of head were constructed, these wou 
The surfaces for 90 and 95 feet close abov 
against the bottom of the aquifer rather 
Within the aquifer itself, significant dif 
in head along the vertical persist to a 
thousand feet from the well.

radi

More than three quarters of the head "oss in 
radial distance of 250 feet from the well. Inside 
occurs within the depth interval of the screen, in 
essentially horizontal. Most vertical movement i 
radial distances, where vertical hydraulic conduc

In the semi confining unit, the stream 
while the surfaces of equal head would app 
for the distortion of the vertical scale o
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ystem.
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d obviously do the same thing, 
the screen, but terminate 

than closing below the well, 
erences (greater than 0.1 ft.) 
ial distance of about four

the system occurs within a 
this radius, most of the flow 
a pattern which is 
found at greater

ances are higher.

surfaces are nearly vertical, 
ar essentially horizontal except 
the figure. Both the stream



surfaces and the surfaces of equal head are refracted at the contact between 
the semiconfining unit and the aquifer. Within the aquifer, the stream 
surfaces gradually reorient toward the horizontal pattern which prevails 
around the well screen, while the surfaces of equal head reorient into a 
pattern of closure around the screen. Because the aquifer itself is aniso- 
tropic (K|_/KZ = 100) and the scale of the cross-section is exaggerated, 
the stream surfaces are in general not orthogonal to the surfaces of equal 
head within the aquifer. However, close to the well and within the screened 
interval, where the flow in predominantly parallel to the r axis, the 
condition of orthogonality prevails. Immediately above and below the 
screened interval, at short radial distances from the well, flow is nearly 
vertical and head gradients in the vertical are very steep.

Because the flow is largely horizontal and radial close to the well, 
the pattern here actually resembles that of the problem with which we 
started radial flow toward a well in the center of an island. Thus, the 
Thiem equation (equation 5), could be used in an approximate sense to 
describe the system in this region; and the logarithmic "drawdown cone" 
around the well, predicted by the Thiem equation, characterizes this part 
of the system. This is true in virtually all discharging well problems i.e., 
there is always a region around the well in which the dominant process is 
simply horizontal-radial flow, and in which head losses vary with the log 
of radial distance, so that gradients become very steep at small values of r.

Estimation of Lateral Hydraulic Conductivity from Pumpage Response Data

In this section, the symbol K and the term hydraulic conductivity refer to 
the lateral hydraulic conductivity of the aquifer.

Specific-capacity analysis Some methods of estimating hydraulic 
conductivity from specific capacity take advantage of the "Thiem condition" 
in the area close to the well. In the problem for which equation (5) was 
formulated radial flow to a well at the center of an island we could 
assume that the head in the well prior to pumping was the same as the head 
at re during pumping-i.e., that the original or undisturbed head in the 
aquifer was equal to that in the open water surrounding the island, he . 
The head in the well during pumping, hw , can be calculated by setting r=rw 
in equation (5), i.e.

hw = h e -
Qw Qw
   (In re ) +    (In rw )
2-rrKb 2-rrKb

(20)

The drawdown in the well due to the pumping, sw , is simply he -hw . Solving 
(20) for this term gives

Qw Qw
sw = he - hw =    (In re - In rw ) =    In (re/rw )

2-rrKb 2-rrKb
(21)
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Then solving (21) for the hydraulic concuctivitfy, K, gives

Qw
2irbsw

Now suppose we wish to apply equation 22
flow to a well, such as the one in our 1
the assumption that essentially all of t
close to the well, within some "radius o
that within this radius, the flow occurs
and is confined to the depth interval of
thickness of aquifer, b, of equation (22
and in place of the radius of the island
chosen radius of influence. In the prob
can make the assumption that prior to pu
equal to that along the constant head su
bed~i.e., 100 feet above datum. From f

In (re /

in a n
lownet :
he heac
f infli
in a h
the sc

), we w
, we wo
lem ill
mping t
rface a
igure ]

rw ) (22)

ore realistic problem of
to do this, we must make
loss, or drawdown, occurs

ence"--say 500 feet  and
orizontal radial pattern,
reen. Thus in place of the
ould use the screen length;
uld use the arbitrarily
ust rated in our flow net, we
he head in the well was
t the top of the semi confining
6, the head at the screen

during pumping is approximately 35.5 feet; thus neglecting entrance losses 
the drawdown in the well is approximately 64.5 feet. As part 11 of the 
radial-flow problem, use this drawdown, a screen length of 40 feet, and a 
"radius of influence" of 500 feet to calculate the hydraulic conductivity 
of the aquifer material using equation 22. Repeat this calculation using a
radius of influence of 100 feet and 1000 
value of hydraulic conductivity given fo 
that small values of re yield small valu 
large values of K. Discuss the reasons

feet. 
r our p 
es of K 
for thi

Compare your answers to the 
roblem, 100 gpd/ft 2 . Note 
; large values of re yield 
s relationship.

Distance-Drawdown Analysis   If e 
respect to In r we obtain

dh

d(ln r)

is differentiated with

Qw
since the terms hp and   In rp are both 

e 2irKb e
terms of common (base 10) logarithms sim 
So, equation (23) becomes,

dh

d(logv 10
or in terms of aquifer transmissivity

dh
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constants. This can be expressed in 

)ly by multiply by the constant 2.3.

2.

27rKb
(24)

(25)



The familiar distance-drawdown method of determining aquifer transmissivity 
from observation well data is based on equations 24-25. These equations 
can be derived from various nonequilibrium analyses as well as from equation 
(5), subject to the conditions that we are considering relatively small 
values of r, where flow is essentially horizontal, and that sufficient time 
has elapsed so that storage effects near the well are negligible; the 
distance-drawdown method is often applied in nonequilibrium analyses where 
these conditions are satisfied. Equation (25) tells us that if head is 
plotted against the log of r (or against r on semilog paper, with radial 
distance on the log axis) the plot should be a straight line with slope 
(2.3QW/2TTT). Thus determination of T should be possible simply by making 
such a plot from observation well data, measuring the slope and solving for 
T. Let's try to apply this method to the problem represented in our flow net. 
As part 12 of the radial-flow problem, use the head data in figure 16 to 
construct plots of head vs. distance on semilog paper for three different 
depths 100 feet, 140 feet and 180 feet below the top of the semi confining 
bed. Carry each plot from the radius of influence, 32,768 feet, to the 
radius of the screen, 1 foot, plotting head on the arithmetic scale against 
radial distance on the log scale. Measure the slopes of these plots in the 
interior part of the system (r<500ft.), in feet of head change per log 
cycle of radial distance. (Note that the units of these slopes have the 
units of feet, since the log term is dimensionless.) Calculate three values 
of aquifer transmissivity by substituting the three measured values of 
slope, in turn, into equation (25) and solving for T. The actual transmissivity 
of our aquifer is 100 gpd/ft2 x 100 ft = 101* gpd/ft. Discuss the reasons 
for any discrepancies among the three values you have calculated, and 
between these values and the actual transmissivity of the aquifer.

Now divide each calculated transmissivity by the aquifer thickness, 
100 feet, to calculate a value of hydraulic conductivity for the aquifer 
material. Explain any discrepancies between the calculated values and the 
actual value, 100 gpd/ft2 . Finally, divide the transmissivity calculated 
from the head gradient at 140 ft by the thickness of the screened interval, 
40 feet. Explain the discrepancies or agreement with the actual value 
which you observe in this calculated result. Also, explain why the graph 
of head for a depth of 140 feet flattens out further from the well.

Time of Travel Calculation 

In flow-net analysis the expression

nL2
t =TT 

KAh

is frequently used for the time of travel along a length L in a stream 
tube, where K is hydraulic conductivity, n is effective porosity, and Ah 
is the head loss over the distance L. This expression provides a convenient 
and accurate method of calculation so long as the head gradient (Ah/L) 
is relatively constant over the interval L. In radial flow to a well, as 
we have seen, gradients tend to be relatively uniform at large radial 
distances, but change rapidly as we approach the well in the logarithmic 
"cone of depression"; moreover the problem we have postulated deals with 
an anisotropic system.
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To develop a more convenient met 
under these circumstances, we recall 
representing steady-state conditions)
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Figure 17 - Stream tube segment showing mean radius, r, from well axis
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NOTE ON TRANSIE

In the model design exercise, we di 
into cylindrical elements coaxial with t 
hydraulic conductance and storage capaci 
the transient response of, for example, 
discharge, it frequently is helpful to t 
as divided in this way into a succession 
Withdrawal of water from the well may be 
a hydraulic gradient between the well an 
from this innermost shell into the well, 
supplied primarily by withdrawal from coi 
well, that is within the innermost shell 
accompanied by a decrease in head with t 
a gradient between the innermost shell a 
flow between the two; this flow is suppl 
second shell and tends to reduce storage 
This process continues with time, so tha 
progressively further out into the aquif 
aquifer supplying the largest share of s - 
outward with time. Because we are consii 
effect of pumping spreads vertically as \ 
vertical flow, coupled with storage rele< 
the effect of pumping may reach the wate 
maintained with much smaller drawdowns, < 
outflow may supply a part of the pumpage 
migrate radially outward with time, so 
functions as the major source of water 
Ultimately a condition may be reached in 
outflow at the free surface balances the 
achieved.
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SUMMARY

This note has illustrated some of the basic characteristics of radial 
flow to a well. The particular example used in the simulation flow-net 
problem is certainly not representative of all radial flow systems; these 
systems obviously differ widely depending on the existing or postulated 
boundary and initial conditions, and the distribution of transmission and 
storage properties within the flow regime. Certain characteristics, however, 
are common to a wide variety of discharging well problems, and these are 
illustrated in the example.

For example, the steep decline in head approaching the well that is, 
the logarithmic "cone of depression" around the screen or open interval is 
present in all instances of flow to a well, because it is generated by the 
decreasing area of flow in the radial flow pattern. This implies that a 
large fraction of the head loss associated with well discharge must always 
occur near the well, within this logarithmic cone. Thus the material 
near a well exercises a strong influence on well performance, or specific 
capacity; and hydraulic conductivity estimates derived from specific capacity 
testing normally characterize the material near the screen.

The presence of the logarithmic cone of depression immediately around 
a discharging well is a function also of geometric controls on the processes 
of recharge, vertical flow and storage release. These processes all depend 
on horizontal (map) area. Near the well, the area available to support 
these processes is limited relative to that at greater radial distances. 
Thus, most of the accretion, storage release, or vertical flow convergence 
associated with a discharging well tends to occur at some distance from the 
well itself, where the available map area is greater. This in turn implies 
that there will generally be a zone around the well in which the flow is 
essentially horizontal, nearly equal to the well discharge, and restricted 
largely to the screened or open interval of the well. This zone represents 
the inner part of the cone of depression, and the straight-line portion of 
a semi log plot of drawdown vs. distance. The radial distance from the well 
to which this zone extends may vary greatly from one case to another, 
depending on the aquifer hydraulic properties, aquifer thickness, screen 
dimensions and boundary conditions; but generally there will always be some 
radius within which these conditions are approximated.

While the geometry of the well-aquifer system thus dictates a number 
of characteristics that are common to many radial flow problems, significant 
differences also exist from one situation to another. These may include 
differences in the boundary conditions of the problem, or differences in 
the distribution of hydraulic properties within the zone of influence of 
the well.

In some cases it has been possible to characterize a class or 
category of well-flow problems in terms of idealized boundary conditions 
and hydraulic property distribution, and to develop an analytical solution 
to the differential equation of radial flow for that category. For example, 
where the aquifer can be considered infinite in extent, perfectly confined 
and homogeneous; the well is fully penetrating and operates at constant 
discharge; and the pumpage is supplied entirely by withdrawal from compressive 
storage within the aquifer, the solution of Theis (1935) can be applied.
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Where these conditions apply except th 
drawdown rather than constant discharg 
(1952) may be used. Where partial pen 
solutions of Kirkham (1959) or Hantush 
vertical leakage through confining bed 
(1946) or Hantush and Jacob (1955) may 
release in the confining beds is signi 
may be used. The effect of vertical f 
table is given in the solutions of Bou

The references given above represent onl,y 
available analytical solutions for problems of 
are included here to illustrate the fact that 
elements, characterize problems of rad
differences can be expressed in terms o 
and hydraulic parameter distributions, analyti 
be found. In applying solutions of this sort 
carefully the degree to which the field 
conditions and distribution of hydraul 
solution. This conformity is never per 
sufficient to permit useful approximation.

Finally, some of the principles underlying the simulation of radial 
flow have been presented in this note, iln many situations the performance 
of a well, the interpretation of an aquifer test, or the evaluation of a

t the well operates at a constant 
the solution of Jacob and Lohman 

tration of the well is a factor, the 
(1961) may be applicable. Where 
is a factor, the solutions of Jacob

be app
icant the solution of Hantush (1960)
ow fron
ton (1954, 1963) and Neuman (1972).

icable; and where storage

a free surface, or water

a few examples of the 
radial flow to a well. They 

differences, as well as common 
and that where theseal flow

f relatively simple boundary conditions
cal solutions can sometimes 
it is important to examine 

situation conforms to the boundary 
: character!*sties assumed in the 
 ect, although frequently it is

ground water sampling event are address* 
Both finite difference and finite elemer 
flow simulation; and virtually any two-c 
employed for this purpose, either throuc 
or through appropriate specifications ol
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APPENDIXES

A-I Derivation of Flow Equations  Axially Symmetric Flow, r-z Plane 

Consider a ring shaped volume element of rectangular cross section, as 

shown in figure A-l. As in the preceding problem, we will use cylindrical 

coordinates and assume that flow occurs in both the r and z directions, 

but that axial symmetry exists, so that we need not consider the angular 

coordinate. We consider flow in the vertical direction to be positive if 

directed upward, and flow in the radial direction to be positive if directed 

outward. We assume that the medium exhibits simple two-dimensional 

anisotropy, with principal axes of hydraulic conductivity in the horizontal 

and vertical directions.

The volume element of figure A-l extends from an inner radius r to an 

outer radius r2 , and from a lower surface at z3 to an upper surface at z^ ; 

the radial width of the element is designated Ar, and its height is designated 

AZ. The inner cylindrical face of the element (at r ) has an area 2irr AZ, 

while the outer cylindrical face has an area 2irr2 Az. The radial flow into 

the element through the inner cylindrical surface is given by Darcy's law as

3h
qr =-KL   arr^z (-) 1 

i ar (A-l)

ah 
Where Ki is the lateral hydraulic conductivity and ( ). is the radial headar l
gradient at r . The radial outflow from the element through the outer 

cylindrical face is similarly

ah 
\   A ' 2lVZ l->2 (A'2)

2 L. 2 3r 2

The difference between radial inflow and radial outflow is therefore given by
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Figure A-1 - Cylindrical element volume
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(A-3)

The term in brackets is given by the radial derivative of the function r  ,
ar

multiplied by the radial width increment, Ar, i.e.

dh ah a ah
r2 (r^2 ' r, (r'i - r (rr> Ar (A'4)
2 ar 2 i ar l ar ar

This is illustrated in figure A-2. The derivative on the right side of A-4 

is in turn given (as the derivative of a product) by

9 / 9ll N 92h 9h /» rN  (r  ) = r   +   (A-5) 
ar ar ar2 ar

Thus we have for the difference between radial inflow and outflow

2
q r - q r = 2TrK LAz ( r 3Jl + It) Ar (A-6)

ar ar

The vertical inflow to the element through the lower annular face is given 

by Darcy's law as

^z3 = -Kz *( r2 ' ri' (^} 3 (A'7)

ah
Where Kz is the vertical hydraulic conductivity, (   )  is the verticalaz 3

o o

gradient of head at the lower surface of the element (at z ), and ir(r - r )
321

is the annular base area of the element.

Considering r to represent a mean radius of the element, we may
Ar Ar 

substitute the terms r -   for rl and r +   for r2 in (A-7). This gives

q z = -Kz . 2*rAr ( ) (A-8) 
3 az 3
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Slope of tangent to curve

Figure A-2 - Plot of the function
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Similarly for the vertical outflow through the top of the element we have

-)  (A-9)
^ 'd Z

The difference between vertical inflow and outflow is therefore

or

q z - q z = 2irKz rAr ( ) Az
az

The difference between total inflow and total outflow for the volume element

is therefore
a 2 h ah v a 2 h,

q r - q r + q z - qz = 2TrArAz{KL (r . +  ) + Kz r   } (
1234 8r 9r 8ZZ

or
r /9 2 h I8h x 8 2 h, (

q r - q r + q z - qz = 2vrbrbz{Ki(  + -  ) + Kz  } 
1234 ar r ar 3z

The rate of accumulation of water in storage in the element, assuming that 

it does not contain a free surface, is given by the product of specific 

storage, element volume, and time derivative of head, i.e.

dv rl . 9 2x ^ n  = S'Tr(r2 - r, ) AZ  
dt 2 i at

Ar Ar 
where S 1 is specific storage; or again using r -   for r^ and r + --

for r2 ,

dv r,o 9h 
  = S'2TTrArAz 
dt at (A-15)
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Equating the rate of accumulation in (A-15) to the net difference between

inflow and outflow from (A-13), and Dividing by the term 2irrArAz, we have

ar
i ah+ -  
r ar

+ K lJ! - S' 3h+ N7    - 5  2 at (A-16)

ential equation for ground water flow

ere is rjio variation with the angular
i 

in th^ interior of the system, and

e or artesian storage processes.

Equation (A-16) is the partial diffe 

in cylindrical coordinates, where th 

coordinate. It applies to all point 

the term $' thus describes compressi\

A-II Water-Table Storage as a Boundary Condition

No free surface effects were pre|sent in the radial flow problems which 

we have considered. However, a question naturally arises as to how equation 

(A-16), which embodies compressive storage, could apply to a water table

situation, where the dominant storage 

associated with change in water-table 

we must keep in mind that we are deal 

simulate an unconfined aquifer, the f

of our model; the process of water table storage occurs only along this

boundary, and is thus properly treate 

(A-16). Compressive storage, as descr 

equation (A-16), is present in the in 

table aquifer, although its magnitude

water table effects. In any case, when we are simulating a cross section 

in an unconfined situation, it's important to realize that water-table

effects must be addressed as a bounda

through the interior of the flow system

process is drainage or accumulation 

position. In addressing this question 

ng with a cross section. When we 

ee surface will be the upper boundary

as a boundary condition of equation 

ibed by the term on the right of 

erior of the system even in a water

may be negligible in comparison to

y condition, and are not distributed



Boulton (1954) shows that when area! recharge to the water table is 

negligible, so that water table storage is the only process to be considered 

at the free surface, the equation

Sy . KL(-) + K { - \ ( 
y at L ar zu az az j v

where Sy is specific yield, should be satisfied at all points on the water 

table, as a boundary condition of equation (A-16). While other boundary 

conditions on the free surface are certainly possible, a derivation of 

condition (A-17) is presented in the following paragraphs to demonstrate

how the process of water-table storage can be accomodated even though a
ah

compressive storage expression, S 1   , is used in (A-16).
at

The boundary condition expressed in equation (A-17) is obtained by 

considering the motion of an individual fluid particle in the free surface. 

An assumption is made that once a fluid particle becomes part of the free 

surface it remains within that surface (under this assumption, there can be 

no recharge crossing the water table from the unsaturated zone.) Pressure 

is assumed to be constant (i.e., atmospheric) on the water table; and since 

pressure in ground water systems is given by pg(h-z), in which p is 

fluid density (assumed here to be constant) and g is the gravitational 

constant, it follows that (h-z) must be constant for particles in the free 

surface. Thus the derivation of (h-z) with respect to time, following the 

motion of a particle in the free surface, must be zero, i.e.

D(h-z) = a (h-z) + VT 3 (h-z) + 2 3 < h -z ) = o (A.18) 
Dt at n ar n az

where --    - denotes differentiation following the motion of a particle in 
Dt
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the free surface, v r is the component of

direction, vz its component in the vertical direction, and n is effective 
v r v z

porosity; thus   and   are the components of the actual seepage velocity, 
n n

  therefore gives the rate of change of

particle with respect to time; multiplication of this term by    - gives
9r

that part of the rate of change of the term (h-4) with time which is due to

movement of the particle along the r axis 

rate of change of (h-z) with time due to 

An assumption is then made that Sy,

the Darcy velocity in the radial

the radial coordinate of the

Similarly  
v z a(h-z)

9z
gives the

vertical movement of the particle, 

the specific yield, can be

substituted for effective porosity in equation (A-18)--i.e., that the ratio 

of actual seepage area to gross area is dqual to the specific yield, which

is normally defined in terms of gravity c(rainage. Making this change, and 
9h 9h

substituting -Ki_  for v r and -Kz  for vz , (A-18) becomes 
9 r 9 z

D(h-z) 9h 9Z KL 9h 9h 9z K 

~"~Dt a~t ~ aT " S^ a"r aT " 9 r " 5

9z 9z 
In equation (A-19) the terms   and   ar 

9t 9r
equation becomes

9h KL 9h 2 Kz 9 

9 1 Sy 9 r Sy 9

Rearrangement of (A-20) yields the bounda
9h 2 9h 2 

cases the terms (   ) and (   ) are negli 
9r 9z

(A-17) reduces to
9h 9h

C _ I/

^ 9t Z 9Z

This boundary condition (equation A-21) h

Reilly (1984). Equation (A-21) describes

z 9h

/ 9z i

3h 9z 

3z 9z

9Z 
B zero, while   = 1. 

9z

h dti 
-r - -t-} = 0
2 9Z

ry cond

gibly s

is been

a cond
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ition of (A-17)

(A-19)

Thus the

(A-20)

. In many
9h 

nail compared to   , so that 
9z

used by Neuman

ition in which

(A-21)

(1972) and

the downward



vertical flow per unit area in the free surface is equal to the release of water 

from storage per unit area by gravity drainage. Whereas (A-17) is a difficult 

condition to utilize either analytically or in simulation, (A-21) can be 

approximated readily in a model by adding a row at the top of the mesh in 

which only the processes of water table storage and vertical flow are simulated.

A-III Approximation of the Flow Equation in the Radial Flow Model 

The differential equation (A-16),

3 2 h 1 ah. a 2 h ah

can be rewritten

K, { . + --) + K   = S'   
ar2 r ar z az2 at

K L a 2 h a 2 h ah
+ Kz   = S'- (A-22)

r2 a (In r)2 az2 at 

(A-22) is obtained by noting that

ah a n adn r) 1 ah
ar a(ln r) ar r a(ln r) 

and, differentiating (A-23) with respect to r,

(A-23)

3 2 h 1 3 ah . ah -1 1 3 2 h 1 ^ _=_.  (    )+      _ = _.     ---_     (A-24)
3r r 3r 3(ln r) 3(ln r) r2 r 3(ln r) r 3(ln r)

Substituting (A-23) and (A-24) into (A-16) yields equation (A-22).

Referring to figure A-3, the finite difference approximation for 

3 2 h

a (In r)2
at a node i,j in a finite difference mesh in which columns (index j)

are spaced at uniform intervals of In r, while rows (index i) are spaced at 

uniform intervals of z, is given by

3 2 h hi i i + hi i+i - 2hi -:
     r i,j - -    
a (In r)2 J (Aln r)
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Figure A-3. Finite difference approxi
3 2 h

ation of      at node i, j. 
3(ln r)2



3 2 h 
Similarly the finite difference approximation for  -at node i,j is

3Z 

,3 2 h. h 1-l>j H

(AZ)

The finite difference approximation for   is given by
3t

*
3h hi -j - hi i
- =  -   - (A-27) 
3t At

Where h^j denotes the head at the central node, (i,j) at a time At 

prior to the time at which the heads of equations (A-25) and (A-26) are 

taken.

Substituting (A-25), (A-26) and (A-27) into equation (A-22), and setting 

r=rj, where rj is the radius associated with node i,j gives

i-l,j + h i+1J - 2h 1sj

(A-28)

V      + KZ ~     V
r,- A (In r) (AZ)

At

It may not be immediately apparent that the model utilized in the radial 

flow problem developed in this report addresses a system of equations of 

the form of (A-28). The following development is presented to demonstrate 

this.

Figure A-4 shows a sketch of a cylindrical volume element which contains 

the central node, i,j. In the finite difference formulations used in our 

model, inflow to node i,j in the outward radial direction is given by

-2irK[_Az
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Figure A-4. Cylindrical element volume con[taining the node i, j

lA 'I*
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where a is the ratio    which is assumed constant through the mesh and was
rj 

taken as 2 in our simulation.

h-j j - h-j ,j-i
The term  -    -   in equation (A-29) can be considered a finite 

In ot
3h

difference approximation to the term     at the inner radius, n i/o, of
3 (In r) J '

the volume element, since In a is equivalent to (In rj - In rj-i). 

Radial outflow from node i, j to node i,j+l is given by

-2irK|_Az 
Qi ,j + l/2 =    ^i,j +l - hi §J ) (A-30)

Vertical inflow in the upward direction from node i-l,j to node i , j is 

given by

-Kzir(r2 j +1 /2 - r2 j.

AZ

While vertical outflow from node i , j to node i+l,j is given by

i +l,j - h 1§J ) (A-32)

In equations (A-31) and (A-32), the term ir(r2 j+i/2 - r2 j-l/2) 1S given 

approximately by the expression

jr (A-33)

where
Ar = rj+l/2 - rj-l/2

and the expression becomes exact if rj falls at the arithmetic midpoint of 

rj-l/2 ancl rj+l/2* Substituting (A-33) into (A-31) gives

-K ^irr-jAr 
Qi 1/2 i =      (hi i - hi i i) (A-34)^' A/tjJ . ^ I ,J 1-1,J' * '
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Again using a finite difference approximati 

by the term rjA(ln r), where A(In r) 

rj-l/2 to rj+i/2- This follows from

A(ln r)

now

the

Ar

This gives

-K2Trr
J

ion, the term Ar may be replaced 

represents the change in In r from 

approximate relation

. 8(ln

n r)

(A-35)

(A-36)

In the same way we have for (A-32)

n r)

Az - h- U37)

The rate of accumulation of water in storage ^t node i,j is approximated by
*

dv
  = S'^Trr,- 
dt J

or again using rj A(ln r) for Ar,

dv , 

dt J

Equating the difference between total 

of accumulation in storage gives

2irK LAZ

inflow and total outflow to the rate

' 2h i,j)

hi -i i- h-j
(A-38)

n r)Az
hi i - hi

' 5j « 5,

At
(A-39)

2irK,r i "A(ln r)
-1,J ,J

" n
r)Az-

515

At
(A-40)



or, dividing by 2nAzrj2A(ln r) we have

KL
-->         (h-j i.i + h,- i+i - 2h-j i 
r/A(ln J

KZ
2

(AZ)

*

S 1 1>J " 1>J (A-41) 

At

The inner and outer radii of the annular volume element of figure A-4, 

rj-l/2 anc* rj+l/2> were chosen so as to be given by
/~2

r-j.i/2 = n/   (A-42) 
J 1/d J/ a2 +1

/T~
rJ+l/2 = arJ (A"43)

Thus these radii have the same ratio as do successive node radii, 

that is

-iii^ = a (A-44) 
PJ-l/2 

and A(ln r) = 1n(rj+i/2) - 1n(rj-l/2) = In o (A-45)

Therefore, substituting In a for A(ln r) in (A-41) we have

KL +h .. .
r,2 (ln a)2 lij'"1 ' 
j

KZ .
2 

(AZ)
*

h-i -j - h-j  ;
= $' -lli     111 (A-46) 

At
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Which is identical to equation

problem actually addresses a set of difference equations of the form of

(A-28), and simulates the differentia 

Errors in the finite difference 

choice of the outer and inner radii, 

in developing equation (A-29) througf

r should be chosen so as to fal 
J-l/2
interval between rj_]_ and rj, since 

be satisfied exactly; an argument can

for choosing rj_i/2 to equal

A-28). Thus the model used in our

1 equations of (A-22) or (A-16). 

approxjmation are influenced by the

J-l/2
and r

J+l/2
, for the shell used

(A-46). An argument can be made that 

at the arithmetic midpoint of the

n this case the relation of (A-33) would

also be made (Azis and Settari, 1979)

ln(rj/rj -1)
In any case, the errors associated

with different choices of the intermediate radii will vary with the problem 

being simulated. The choice of intermediate radii which we utilized is

intuitively appealing in that it prov 

and vertical conductance around each

des an even distribution of storage 

node; however, it does not guarantee

that errors in the results will be minimum. One final point which should 

be noted is that any errors introduced by the choice of intermediate radii 

can be reduced by reducing a , i.e. 

mesh. The closer a is to unity, the 

choices of intermediate radius will b

the ratio   , in the design of the 

:loser together all of the possible
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A-IV - Answers to exercises and the radial-flow problem

Exercise 1:

Differentiate equation (4) with respect to r to show that it is a solution 

to the differential equation (equation 3).

Equation (4) is :

h =_!!__ In r + C (4) 
2-rrKb

The terms 2rrKb and C in equation 4 are constants. The derivative of 

In r with respect to r is given by:

d(ln r) = 1 
dr r

Thus, when both sides of equation 4 are differentiated with respect 

to r we obtain:

dh = (L 1 
dr 2irKb r

This is equation 3, therefore equation 4 satisfies equation 3 and 

is a solution to the differential equation.

Exercise 2:

To obtain equation 7, use equation 5 to calculate h and 

h at r and r respectively. This gives:

Qw Qw 
h = he -     (In re ) +     (In r )

1 27rKb 27rKb 1 
and

Qw Qw
h = h e - -i- (In re ) +     (In r ) 

Z 2TrKb 2-rrKb Z

where the equation for h is the same as equation 6 in the text. If we
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subtract h from h as follows:

h2 - h 1 = h e - (In
Qw 

ZirKb

Qw 
+     (In

ZirKb

the result is,

Qw
h - h =    (In r - 1 1 2

which is equation 7.

Qw 
re ) +    (In rj - h e

Qw 
re ) -     (In r )

In rA )

Exercise 3: Calculation of radial conductances in table 1,

In all cases C r = 150 gpd/ft. This is because in all cases r2 / ri = 2, or

r = 2r To for calculate radial conductances, use equation 10 to get: 
2irKb (rA + r2 )/2

r - r 2 i

substituting 2r for r gives: 

2irKb (3r
C r =

i
or 

C r = SirKb.

The final expression for the radial conductance is independent of r.
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Exercise 4:

Verify that for any radius, ra , the area between ra /2/5 and ra is 

equal to the area between ra and ra/8/5. 

The area between ra/2/5 and ra is:

AI = ff[ra - (ra/2/5) ]

= Trra 2 (1 - 2/5)

= * ra 2 (3/5) 

and the area between ra/8/5 and ra is:

Ao = ir[(r,/$7!r) 2 - r 2 ]c. a u

= *ra 2 (8/5 - 1)

= *ra 2 (3/5) = A! 

Thus, AI = A2 .

RADIAL-FLOW PROBLEM:

Parts 1-3. See figure A-5 for the radii and depths

Part 4. They are cylindrical shells of rectangular cross section. From 

the top they look like donuts.
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Part 5. The lateral conductances 

2irK|_Az
C r =

In 2
and In 2 = 0.693 .

Block

A 

B 

C 

D

E 

F

G*

2-jrx 25 x 0.
0.693

are calculated using, equation (13)

1
H 22.7

= A = 22.7

= A + G = 22.7 + 9067 = 9090

= C = 9090

20 x 
O93

= E = 18,13^)

io x :
0.693

= 18,130

= 9067

*G may be as low as 9062 
for TT.

Part 6. Note that rj+i = 2rjj see figurp A-5 for answers.

Part 7. Note that A-J+I = 4Aj(except for columns 1 and 16); see figure

methods of calculating vertical

A-5 for answers.

Part 8. There are two equivalent 
conductance:

a) Equation (17): C z ==

two 

0.1

f you use three significant digits

AZ

Notes that
3.77KZ

is constant between any
AZ

rows. Between rows 4 and 5 it equals

85 gpd, 'ft.

b) Cz = (Area calculated for question 7) x K/AZ
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Column 

number

1

Vertical conductance

Method (a)

14

15

16

1/2(0.1885 x I 2 )

= 0.09425 

(0.1885 x 2 2 )

= 0.754 

(0.1885 x 42 )

= 3.016 

(0.1885 x 82 )

= 12.064 

(0.1885 x 81922 )

= 1.265 x 107 

(0.1885 x 16,3842 )

= 5.060 x 107 

1/2(0.1885 x 32,7682 )

= 1.012 x 108

Method (b)

(1.886 x 1)/20

= 0.00943 

(15.082 x 1)/20

= 0.754 

(60.33 x 1)/20

= 3.016 

(241.3 x 1)/20

= 12.065 

(2.53 x 108 x 1)/20

= 1.265 x 107 

(1.01 x 109 x 1)/20

= 5.05 x 10 7 

(2.02 x 109 x 1)/20

= 1.01 x 108

Discrepencies between methods (a) and (b) are due to round-off error, 

Values from method (a) are shown on attached figure A-5.

Note that C v . = 4 C v . (except for columns 1 and 16, which use 1/2 
J cells in the calculation).
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Part 9. There are two equivalent 

a) Equation (18): sc = 6irS'
5 

Note that

along any 

MIO'6 )
5 

For row 8 

&r(10-6 )
5

methods of calculating storage capacity 

AZ r *' ii a

fcrS'AZ5 ' 

row. 

20 = 7.

it equ 

10 = 3.

is constant

For row 7 it equals 

540 x ID'5

als 

770 x 10-5

b) SC = (Area calculated for question 7) x S 1 x AZ
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For row 7:

Column ______Storage capacity

number Method (a)________ Method (b)

1 1/2(7.540 x 10-5 ) I 2 1.886 x 10'6 x 20
- 3.770 x 10-5   3.772 x 1Q-5

2 (7.540 x 10-5) 22 15.082 x 10~6 x 20
= 3.016 x 10-4 = 3.016 x 10-4

3 (7.540 x 10-5) 42 60.33 x 10"6 x 20
= 1.206 x 10-3 = 1.207 x 10'3

4 (7.540 x 10-5) 82 241.3 x 10-6 x 20
= 4.826 x lO-3 - 4.826 x 10-3

14 (7.540 x 10-5) 81922 (2.53 x 1Q8) x 10-6 x 20
= 5,060 » 5,060

15 (7.540 x 10-5) 16,3842 (1.01 x 10$) x 10"6 x 20
= 20,240 = 20,200

16 1/2(7.540 x 10-5) 32,7682 (2.02 x 10$) x 10"6 x 20
= 40,480 » 40,400

Discrepencies between methods (a) and (b) are due to round-off error. 
Values from method (a) are shown on attached figure A-5.

Note that SCj+j » 4 SCj (except for columns 1 and 16)

For row 8, all values are 1/2 the value for the same colulmn in row 7 
because AZ is now 10 instead of 20. See figure A-5.
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The water released by a 1-fool; drop in head in the block at row 7, 

column 16 is calculated by multiplying, S^, which has units of square feet, 

by 1 foot. So,

A storage = 40,480 ft 2 x 1 ft; 
= 40,480 ft 3 
= 302,830 gallons

10. See figure A-5.

The simulated discharge from each node Representing the screen is 

Q/2, or 125,000 gallons per day.

Table A-l gives the answers for tattle 2 on the calculation of stream 

functions.

Figure A-6 gives the answers for tpe streeim function calculations shown 

on the model array.

The final flow net is shown in figure A-7 

net that shows the pattern of flow in the

This is a quantitative flow 

simlated system.
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Column Number, J
1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16

Radius

Row 
No. I Depth

1 0 G 

2 50 <

3 100 < 

4 120

5 140 c^
® r
£ = 

6 160 #£

7 180

1.81
8 200 10-a

Intermediate 
radius

Area 1.

2 4 8 18 32 64 1 28 258 512 1024 2048 4096 819218,38432,

n mZZTm m m rm m m n
LJ [*] [*J Lfj A LtJ L*J H LLJ LJnLJ LLJ l w l I* I I"J L^J U

Semico 
»      

be
9090

L#

f ^ ^ X H

Affl
. 18.130

o >? ? ?

* * J *
5X 1.508X6.030X2.413X

1CH ^0* ifj^

2.530 10.119 40.477 
1.265 5.060 20.238 80.95

388 H 5.082 80.33 241.3 985.2 3,881 1.54 8 
X10* X

nfining

d
9090

 £>*
   ^^

A£ I J\
    I       I      I      I      J       L_4   !__    tu
lifor

18,130

. . . . .<£<££
9037 K " ?

I f* I 2,530 10,120 20
4 I 4     .          

161.9 847.6 2.591 5.181 10,382 
323.8 1 ,29S 20,724

.18 2.47 9.88 3.95 1.58 6.32 2.53 1.01 
104 X1QS X105 X106 X107 X107 X108 X109

768

Intermediate 
depths 

Dou
9*^

   75

110

S 130
f

i*^n

170
i 

190
240 19°'    200

- 2.02X1 09 

      -fc- r

[~| Constant head 

O Well screen

Figure A-5 Answers shown on model node array and volume elements used in 
calculating simulation coefficients.
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Table - 
Table 2  

Work Sheet for the Calcul

A-l
Answers 

ation of Stream Functions

Between
columns

15 & 16

Row

8
7
6
5
4
3
2
1

Head drop
Between
Columns

Ah

(ft)

0.02
0.02
0.02
0.02
0.02
0.02
0.01
0

Latera
Hydrau
Conduc

CL

(gpd/ft)

9,067
18,130
18,130
18,130
18,130
9,090

45.
22.

1 Flow through Cumulative Stream-
lie Conductance Flow
tance Block

Q £Q

(gpd) (gpd)

181 181
363 544
363 907
363 1,270
363 1,633
182 1,815

1 0 1,815
? 0 1,815

Function
Value

1 -IS
QT

(unitess)

0.9993
0.9978
0.9964
0.9949
0.9935
0.9927
0.9927
0.9927

14 & 15 8
7
6
5
4
3
2
1

13 & 14 8
7
6
5
4
3
2
1

12 & 13 8
7
6
5
4
3
2
1

0.26
0.26
0.26
0.26
0.25
0.25
0.12
0

1.02
1.02
1.01
1.00
0.99
0.97
0.49
0

1.91
1.90
1.89
1.87
1.85
1.81
0.91
0

9,067 2,357
18,130 4,714
18,130 4,714
18,130
18,130
9,090 ;

45.'
22.;

9,067
18,130
18,130
18,130
18,130
9,090

45.'
22.;

9,067
18,130
18,130
18,130
18,130
9,090

45. '
22. /

,
11
1!
11
i:

1,714
1,532
>,272

5
0

?,248
5,490
5,310
5,130
7,950
8,817

22
0

i:
3'
3'
3:
3:
it

7,318
1,450
1,270
,900
,540
,453

41
0

2,357
7,071

11,785
16,499
21,031
23,303
23,308
23,308

9,248
27,738
46,048
64,178
82,128
90,945
90,967
90,967

17,318
51,768
86,038

119,938
153,478
169,931
169,972
169,972

0.9906
0.9717
0.9529
0.9340
0.9159
0.9068
0.9068
0.9068

0.9630
0.8890
0.8158
0.7433
0.6715
0.6362
0.6361
0.6361

0.9307
0.7929
0.6558
0.5202
0.3861
0.3203
0.3201
0.3201



Table A-1 (continued)
Table 2 Answers (continued)

Work Sheet for the Calculation of Stream Functions

Between
columns Row

11 & 12 8
7
6
5
4
3
2
1

10 & 11 8
7
6
5
4
3
2
1

9 & 10 8
7
6
5
4
3
2
1

7 & 8 8
7
6
5
4
3
2
1

Head Drop
Between
Columns

Ah

(ft)

2.42
2.43
2.44
2.42
2.37
2.32
1.16
0

2.43
2.57
2.86
2.85
2.52
2.34
1.16
0

1.64
2.20
3.82
3.80
2.18
1.60
0.78
0

0.21
0.65
6.14
6.13
0.65
0.21
0.09
0

Lateral
Hydraulic
Conductance

CL
(gpd/ft)
9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

9,067
18,130
18,130
18,130
18,130
9,090

45.4
22.7

Flow through Cumulative Stream-
Conductance Flow
Block

Q

(gpd)

21,942
44,060
44,240
43,870
43,000
21,089

53
0

22,033
46,594
51,852
51,670
45,690
21,271

53
0

14,870
39,890
69,260
68,890
39,520
14,544

35
0

1,904
11,780

111,320
111,140
11,780
1,909

4.1
0

ZQ

(gpd)
21,942
66,002
110,242
154,112
197,112
218,201
218,254
218,254

22,033
68,627
120,579
172,149
217,839
239,110
239,163
239,163

14,870
54,760
124,020
192,910
232,430
246,974
247,009
247,009

1,904
13,684

125,004
236,108
247,888
249,797
249,801
249,801

Function
Value

1 - £Q
W

(unitless)

0.9122
0.7360
0.5590
0.3836
0.2116
0.1272
0.1270
0.1270

0.9119
0.7255
0.5181
0.3114
0.1286
0.0436
0.0433
0.0433

0.9405
0.7810
0.5039
0.2284
0.0703
0.0121
0.0120
0.0120

0.9924
0.9453
0.5000
0.0596
0.0084
0.0008
0.0008
0.0008
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DISTANCE, IN FEET
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a0ffX> 23,170 32,768
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Part 11. Calculate the lateral hyclraul 

using the drawdown at the 

Qw
K = 

a) r e = 500 ft

250,000 gpd
K = 2ir (40 ft)

gpq
(64^

b) re = 100 ft

c) re = 1,000 ft ; K 

Actually, K = 100 gpd/ft 2 

Discussion:

Before discussing the relation 

it is useful to discuss the physical 

Equation 22 is based on the Thiem 

this equation). The Thiem equation 

purely one-dimensional radial probl 

distance re . In a field case (or a 

flownet), the flow field and boundary 

In our flownet, the source of water 

but rather is leakage from above over 

causes vertical movement which is 

The well is partially penetrating 

Thus, the field situation is much 

equation 22.

However, as stated in the proble 

of the head loss occurs close to the 

radial form in the screen zone in 

the formula may have some relevance.

ic conductivity of the aquifer 

well and equation (22), which is:

500
5 ft) In "[""I") = 95.8 gpd/ft 2

= 71.(^2 gpd/ft 2 

= 106453 gpd/ft 2

between the computed K value and re

perspective that equation 22 implies, 

equation (equation 20 is one form of 

is the mathematical solution to a 

em with a constant head boundary at 

more realistic problem such as our

conditions are rarely that simple, 

is not a constant head source at re 

the entire problem domain. This 

consistent with the Thiem assumptions.

als^o induced vertical movement, 

complex than that represented by

not

which

more

this area

mi, if we assume that essentially all 

well and flow occurs in a purely

close to the well, then use of

We are left however, with two problems,
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1) we do not know and can not measure an effective radius re that is 

appropriate and 2) we know that these assumptions are not completely correct. 

In many cases (perhaps even most cases), however, these assumption are 

reasonable. In these cases, estimating various effective radii give a 

good estimate of the general range of values for the hydraulic conductivity.

In our problem, the actual hydraulic conductivity was 100 gpd/ft 2 . 

Estimates using three very different effective radii gave a range of 71 

to 107 gpd/ft 2 . This range gives a good indication of the actual hydraulic 

conductivity. Thus, this formula, based on a overly simplified system 

has value in quantifying field hydraulic conductivities.

In response to the relationship between hydraulic conductivity and 

effective radius, as can be observed in equation 22, the hydraulic 

conductivity (K) is proportional to the natural logarithm of the effective 

radius (In re ). Thus, as re increases so will K. Conceptually, the flow net 

shows that only a part of the well discharge, Qw , occurs within the screened 

interval at any given radial distance from the well; and that only a part 

of the total head loss, sw , (or h e - hw ), occurs within any arbitrarily 

chosen "radius of influence", re . To the extent that the actual flow within 

the screened interval is less than ^ we are using too large a flow 

value in our calculation, and our method will overestimate K; when we 

choose a large value of re , this tends to be the case, because the further 

we are from the well, the greater the percentage of the flow that falls 

outside the screened interval. To the extent that the head loss within 

our assumed value of re is less than the full head loss in the flow 

pattern, we are using too great a head loss value in our calculation and 

our method will underestimate K; when we choose a small value of re , this 

tends to be the case, as a greater proportion of the total head loss then

occurs beyond re .
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Part 12. Calculate T and K from di 

of 100 feet, 140 feet and 180 feet b 

using equation (25):

dh = 2.3
2nT

The distance drawdown plots for dept 

shown on figure A-8. Graphically es 

a) 0.3 ft for the 100 ft deep curve, b) 

curve, and c) 1.1 ft for the 180 rt deep 

transmissivity and estimates of hydraulic 

of 100 and 40 ft are as follows: 

a) 100 feet deep

0.3 ft = 2.3 (250,000 gpd)

is of 100 ft, 140 ft, and 180 ft are 

imated slopes over 1 log cycle are:

1 2irT

using b = 100 ft,

b) 140 feet deep

21.5 ft = 2.3 (250,(
1 2nT

using b = 100 ft, 

using b = 40 ft,

c) 180 feet deep

1.1 ft = 2.3 (250,0(
1 2irT

using b = 100 ft,

tance !- drawdown plots of heads at depths 

low the top of the confining layer

21.5 ft for the 140 ft deep 

curve. The calculations for 

conductivity using thicknesses

; T = 305,000 gpd/ft 

: = 3,0!50 gpd/ft 2

000
; T = 4,260 gpd/ft

= 42.6 gpd/ft 2 

: = 106 gpd/ft2

0
; T » 83,200 gpd/ft

= 832 gpd/ft2
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Discussion:

Discrepancies are due to the 

does not take into account the ve

fact that the distance-drawdown approach 

rtical movement of water caused by

above and below the screened inte 

depths are relatively low becaus 

depths are small. When these low 

discharge of the well in equation 

transmissivity are calculated. D

leakage from the overlying confining unit, or the convergence of the flow 

pattern into the vertical interval tapped by the screen. Radial gradients

val  that is, at the 100 ft and 180 ft 

B the radial flow components at these 

gradients are associated with the full

(25), treasonably high values of

vision by the aquifer thickness yields

correspondingly high values of hydraulic conductivity. At the 140 foot 

depth, the radial gradient reflects approximately the full discharge of 

the well, distributed through a flirty-foot thickness of flow. When this

gradient is used in equation (25)

aquifer, 100 feet, a transmissivity is calculated which is only about 40 

percent of the actual aquifer transmissivity. If this transmissivity is 

divided by the full aquifer thickness, t(ie resulting hydraulic conductivity 

is similarly about 40 percent of the actilial value. However, if the 

calculated transmissivity is recognized as referring primarily to the

screened interval, and is divided 

the resulting hydraulic conductivi

The semi log plot of heads at 

increasing distance from the well 

taken as Qw, the discharge from the well.

together with the full thickness of the

just by the thickness of that interval, 

ty is relatively close to the true

value. The six percent discrepancy arises because the actual thickness 

of the flow regime, over most of the interval in which the semilog slope 

is measured, is slightly greater than the1 screened interval.

the 14(

78

foot depth flattens out with

In ecuation (24), the flow rate is

and the vertical thickness of



the flow is taken as b, the aquifer thickness. Because these terms are 

both constants, we are led to the conclusion that the slop of the semilog

dh
plot,       , should be constant  that is it should not vary with r, 

g r)

nor in fact with z. Our flownet, however, as well as the calculations we 

have just done, show that these assumptions do not fit our problem very 

well. A more general expression for the slope of the semilog plot would 

be:

dh 2.3 Q(r,z, ) 
      (r,z ) =        L- 
d login r 2irKAz 

dh 10
where       (r»z,) represents the slope of a semilog plot of head vs. 

d Iog10 r

radial distance, in which the heads are all measured along a line of 

fixed elevation, z ; and Q(r,z ) represents the discharge flowing radially 

toward the well at the elevation z , or actually through a small increment 

of height, Az, which is centered on z . Our flownet shows us that 

if the elevation z , is within the screened interval   for example, the 

140 foot depth  the flow Q(r,z ) must increase as we approach the well, 

for two reasons: first, the total flow in the system increases as we 

approach the well due to vertical accretion through the confining bed; 

and second, the flow must converge vertically into the screened interval 

as we approach the well. Thus, since Q(r,z ) increases with decreasing r, 

the slope of the semilog plot must do the same. At radial distances 

which are close to the well, both processes   vertical accretion and 

flow convergence -- are essentially complete; the total flow is distributed 

more or less uniformly through a thickness equal to the screened interval. 

At these distances, therefore, the slope of the semilog plot at the 140
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foot depth appears to be constant; 

description of that slope so long 

rather than the aquifer thickness, 

well, as Q(r,z ) decreases, the si

nV 
At = q s ,

where: V = A 2irrm

estimating the area between the .4

and equation (24) gives a reasonable 

as b is taken as the screened interval

With increasing distance from the 

)pe must decrease.

Part 13. Calculate the time of travel tTrough the 0.4 to 0.5 stream 

tube using equation (27):

For these calculations, the area (A) is obtained by graphically

stream tube and the .5 stream tube in

the r-z plane as shown on figure A^9. The calculations for each segment are 

Segment 1:

A = 2,700 ft 2 , K, = 250 ft, V = 4.24 x 10 6 ft 3

0.2
At =

3,350 fi;3/d

Segment 2:

A = 5,300 ft 2 , rm = 750 ft, V = 2.49 x 10 7 ft 3 

0.2 V
At =

3,350 ft :Vd

Segment 3:

A = 11,000 ft 2 ,

0.2 V
At =

3,350 ft

= ;?53 days

= 1,,490 days

rm = 1,500 ft, V = 1.04 x 108 ft 3m

= 6 ,210 days
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Segment 4:

A = 12,600 ft 2 , rm = 2,500 ft, V = 1.98 x 108 ft 3

0.2 V
At =         = 11,800 days 

3,350 ft 3/d

Segment 5:

A = 14,400 ft 2 , rm = 3,500, V = 3.17 x 10 8 ft 3

0.2 V
At =         = 18,900 days 

3,350 ft3/d

Time of travel through the entire stream tube equals the sum of all segments 

which is 38,700 days, or 106 years.
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