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PREFACE

An important activity of the U.S. Geological Survey is the dissemination of
technical information related to water resources. A small but significant
part of this technical information consists of informal unpublished documents
that supplement available published reports and specifically relate to or
are relevant for technical training of water-resources professionals.
Although many of these training documents are very narrowly focused, it is
useful to publish some of them as the need or opportunity arises in order
for the information to become more widely available. This report is one of
these training doucments. These documents, which focus on narrowly defined
elements of ground-water hydrology, will be useful for training water-
resources professionals, either in formal training courses, technical

workshops or self study.

vii



TECHNICAL TRAINING NOTES IN GROUND-WATER HYDROLOGY: RADIAL FLOW TO A WELL

by
GORDON D. BENNETT, THOMAS E. REILLY, AND MARY C. HILL

ABSTRACT

The theory of radial, or axially-symmetric, ground-water flow to a
well is an important specialized topic of ground-water hydraulics. This
training note develops the basic concepts of radial flow and its
representation in numerical models. A number of problems to be solved by
the reader are included with answers to the problems provided at the end
of the text. The discussion focuses on the physical characteristics of the
radial flow system in the vicinity of a well, particularly those
characteristics that are common to most well-aquifer systems; the concepts
of finite difference simulation and flow-net analysis are used to
illustrate these characteristics. This training note does not include
detailed discussion of the various solutions to the differential equations
for nonequilibrium flow to a well, as this would exceed its intended scope.

INTRODUCTION

A knowledge of the hydraulics of flow to wells is essential to the
study of ground-water flow systems. The reasons for this are twofold:
first, wells provide the mechanism through which a large part of the discharge
from the ground-water system occurs; second, observation and testing of the
ground-water regime, whether related to hydraulics or water quality, usually
takes place through wells of some sort.

The purpose of this training note is to explain the physical principles
governing ground-water flow to a well. The material reviews and builds
upon the basic concepts of radial flow as given, for example, in Bennett
(1976, p. 34-52). Emphasis has been placed on those characteristics of the
radial flow pattern that are common to most well-aquifer systems; the
concepts of finite-difference simulation and flow net analysis are utilized
to illustrate these characteristics. Discussions of the various solutions
to the differential equations of transient radial flow are not included, as
this would exceed the intended scope of this document.

The term "radial flow," as used in this report, denotes axially
symmetric flow toward a well--that is, flow which is directed toward a well
coaxial with the z (vertical) axis of the cylindrical coordinate system,
and is symmetrical about that axis, so that the angular coordinate need not
appear in the flow equations.



GENERAL CHARACTERIST

!

ICS OF RADIAL FLOW

Figure 1 shows a well located at the center of a circular island.

This well taps a confined aquifer which

where it is exposed to the head of the surround1ng water, he.

of the island is designated re. The we]

crops out along the island's perimeter,
The radius

1 is pumped at a rate Q,, and

horizontal flow occurs radially inward from the perimeter of the island to

the well. No vertical flow occurs.
well is at its center, the problem exhi
given radial distance from the well, th
direction; moreover, the assumption of
to consider variations in the vertical.
coordinates (figure 1) are used, only or
(r) from the axis of the well, need appe
1976, Part III for a more complete discu

Flow is in the negative r direction
The cross-sectional area of flow at any
to the flow direction; thus it is a cyli

the aquifer at the radius r, as shown in figure 2.
aquifer is b, the magnitude of this area at any radius is simply 2nbr.

Be¢

i

ause the island is circular and the
its radial symmetry--that is, at a
same condition will prevail in any
orizontal flow makes it unnecessary
Thus, |if polar or cylindrical

e coordinate, the radial distance

dar in our equations (see Bennett,

ssion)4

——that is, inward along the r axis.
radius, r, is an area perpendicular
ndrical surface extending through
If the thickness of the
So

this problem is one in which the cross sectional area of flow changes along
the flow path, becoming progressively sma]]er as we approach the well,

shown in figure 3.

We now apply Darcy's law to the fla
We are dealing with a steady-

figure 2.
effects; the discharge entering the aqui
island is the same as that entering the
cylindrical surface coaxial with the wel
Darcy's law for flow across the surface

= -K(area) dh Ke 2nbr an
W = dr i dr

dh
where E- is the gradient of head in the
r

opposite to the flow.
of the well,

discharge as a positive term. With the
considered positive, therefore, we drop
of (1) obtaining

2n Kb an
= ™ ]
R dr

If we maintain st
Qu, must be treated as a ne
inward, in the direction of decreasing r

w crossing the cylindrical area of
state situation, with no storage
fer along the perimeter of the
well, and the flow across any

1 has this same value, Q,. Thus,
shown in figure 2 is simply

(1)

r dire%tion--i.e., in the direction
rict sﬂgn conventions, the discharge
gative quantity, since it is directed
. However, we will think of well
understanding that Qy will be

the negative sign on the right side

(2)
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Figure 1 - A well tapping a confined aquifer at the center of an island.
Horizontal flow occurs radially inward from the perimeter of the
island to the well. Thus, flow is in the negative r direction.



Figure 2 - Cross-sectional area of fl
of fig. 1.

Figure 3 - Decrease in cross-sectionad

1 area‘with decreasing radius.




The discharge Qy is the same for any value of r we choose; thus the
left side of the equation is a constant. On the right side of the equation,
the terms 2, n, b and K are all constant; thus for the right side as a whole

dh
to remain constant,-a; must increase as r decreases. In other words, to
compensate for the progressive decrease in flow area, the gradient must
steepen progressively as we approach the well. This is the cause of the
familiar drawdown "cone,” or "cone of depression,” in the water levels
surrounding a pumping well; close to the well, flow areas become very small,
and hydraulic gradients must become correspondingly steep.

Equation (2) is a differential equation which we can rearrange as

dh Qv 1
-— -, (3)
dr  2ukKb r

Exercise 1: differentiate the equation

Qw
h = 1n r +C (4)
2m Kb

to show that it is a solution to the differential equation (3). C is a constant.
Thus, (4) can be shown to be a solution of (3). Equation (4) must also
address the boundary condition of the problem--that at the radius of the

island, re, head is equal to he. This can be done by properly defining
c as follows.

At ro we know that the following must be true:

Qw
2nKb

Tn ro + C.
Equation (4) will satisfy the boundary condition if:
C=he—-———]n?"e.

2n Kb

Thus, we have

Qw
(In re) +
2nKb 2nKb

h =hg - (In r). (5)

Verify that (5) satisfies the boundary condition by substituting hg and rg
for h and r, respectively.



Equation (5) is one form of the well known Thiem equation. It can of
course also be expressed in terms of lagarithms to the base 10; using either
base, the results show that head in the vicinity of a discharging well
varies with the lTogarithm of radial distance from the well. The problem of
flow to a well at the center of an island is a fictitious one, not likely
to be encountered in practice. It is used here because it isolates the
problem of steady radial flow for consideration, and because the logarithmic
variation of head is a characteristic of most\prob]ems of flow to a well,
at least in the region close to the well. ‘

LATERAL HYDRAULIC CONDUCTANCE |IN RADIAL FLOW

In this discussion, our purpose is| to use radial flow analysis to
focus on the hydraulic conductance, in the radial direction, of a cylindrical
shell within the aquifer, such as the one shown in figure 4., The shell

extends from an inner radius rl to an outer radius ry. Equation (5) can be

applied at the outer surface of the shell by setting r equal to r2, obtaining

‘ Qy
h, = he - (In r#) + e (In r ) (6)
2wKb anb 2
Similarly, we can obtain an expres%ion for hl, the head along the

inner surface of the segment, by setting r equal to r, in (5).

1

Exercise 2: Show that if we do this, and subtract the resulting expression
for h from equation (6) we obtain

h -h = -nr)) (7)

) | (Inr

2nKb 2

The term (Inr, - 1n rl) can also be written 1In (rz/rl), so that (7)
can take the form

|
h -h = In (r /r) ¥ (8)
2 1 20Kb 2 1
In many problems it is helpful to use the concept of hydraulic conductance.
The hydraulic conductance of a block of porous material is simply'the ratio
of the flow rate through the block to the head difference across it. Wg can
calculate a conductance in the radial direction, Cp, across our cylindrical
shell by solving (8) for the ratio QW/(hz-hl), jee.,
Qu 2w Kb
Cp = = (9)
h, -h 1n(r2/rl)




Figure 4 - Cylindrical shell for calculation of hydraulic conductance
using log formula

~_

Figure 5 - Shell for hydraulic conductance calculation using distance and
area of flow




Equation (9) tells us that two different cylindrical shells will have
the same radial hydraulic conductance so long as they have the same ratio

of outer to inner radius, rz/rl.

i
In the above approach we have calg

ratio of flow to computed head loss.

ulated hydraulic conductance as a

Hydraulic conductance may also be

approached from a slightly different point of view--that is, using Darcy's

law, we may calculate conductance as th

cross-sectional flow area, divided by d

latter approach in a radial flow proble

shell coaxial with the z axis; we wish

in the radial direction. The shell has
rptry

), and a

r,, a mean radius ry (or

calculate hydraulic conductance in the
of flow as Ar., The cross-sectional are
anzb at the outer radius to anlb at t

that we can use an area calculated at ﬂ
approximation.
our formula (Cp= KA/L) is therefore

Ke 27 rmb

Cr
Ar

e product of hydraulic conductivity and
istance of flow (KA/L). Now consider this
m. Figure 5 shows a cylindrical
to calculate hydraulic conductance

an outer radius rys an inner radius

radial width ar (or ry=r;). To

|
radial |direction, we take the distance
a actually varies continuously from
he inner radius; however, we assume

he mean radius, ry, as a reasonable

This area is simply 2mryb, and radial conductance using

(10)

Exercise 3: Table 1 1ists values of rl,irz, ms and ar for several cylindrical

shells, each chosen so that rz/r'1 = 2.
for each shell using equation (10), tak

JYour results should show the same
the cylindrical segments. The problem
shells are chosen in this way, the incr
distance from the well is offset by a ¢
of flow, Ar, leading to a constant hydr

tion (9) to calculate the radial conductances, we again would have found

the same result for each shell, since t

for each shell and the log term will th
results using equation (9) would actual
those obtained using (10); that is, equ
of 144 gpd/ft for each shell, rather th
use of the mean radius, rp, to calculat
an approximation, which becomes exact a
percentage difference between the two r
larger the ratio, rz/rl, the larger the
formula.

Calculate the radial conductance
ing the term K2nb as 100 gpd/ft.

answer, C. = 150 gpd/ft, for each of
illustrates that when the cylindrical
ease in flow area with increasing
orresponding increase in the distance
aulic conductance. Had we used equa-

’

he ratio r2/r1 has the same value

us be the same for each. The calculated
ly differ by a few percent from

ation (9) would give a conductance

an 150 gpd/ft. This is because the

o flow area in equation (10) is only

$ Ar tends to zero around rp. The
esults is related to Ar/ry and the
difference becomes between the two




Finally, we note that equation (9) can be derived from (10) by considering
the region between r and r, to be occupied by an an infinite number of

coaxial cylindrical shells, each of infinitesimal width dr, as shown in

2n rkb

figure 6. The conductance of each shell is given by . The

dr

shells constitute a set of conductances in series; the conductance of the
entire segment from r, tor, can be obtained assuming one-dimensional flow by
applying the rule for conductances in series, which has the form

1 1 1 1 (11)

= + t e . —

Ceq 1 G Cr

For our case, the form of each term in the summation would be given by

1 1 (12)
Ci 2ariKb
dr
1 dr
The summation thus becomes an integration of the term 5 Kb. —_—
T r

between the limits r and rs and the result is identical to equation (9),
as the reader may verify. Another very similar approach would be to inte-
grate equation (3) between the limits r, and r,, obtaining (8) as a solution,
from which (9) follows.

DISCRETIZATION IN NONEQUILIBRIUM FLOW SIMULATION IN THE R-Z PLANE

We now wish to address the problem of simulating transient flow to a
well allowing for vertical as well as radial movement. We use cylindrical
coordinates, with the axis of the well taken as the z axis. We assume that
symmetry exists around the z axis, so that the angular coordinate, o,
need not appear in our equations. Thus, we are considering flow which can
be fully represented in the r-z plane. Many problems of flow to a partially
penetrating well or seepage from a circular pond fall into this category;
an example is provided in figure 7, which shows flow lines and lines of
equal head in the r-z plane for a well which is screened in an isolated
depth interval within an unconfined aquifer, and is supplied by uniform
recharge over a circular area of the aquifer's surface.



m r ry Ar Cp
(ft) | (ft) ft) | (ft) |(gpd/ft)
1.5 1 2 1
3 2 4 2
6 4 8 4
96 64 128 64
-
192|128  [286  |[128

Table 1 - Worksheet for calculation 4f radial hydraulic conductance

~_

Figure 6 - Hydraulic conductance of fiinite cylindrical shell as an
integration of elemental shells in series

10




To address problems of this type, we require a method of simulating
flow in the r-z plane. Figure 8 illustrates an approach to the problem. A
rectangular array of nodes is established in the r-z plane; however, we
must keep in mind that we are using the r-z plane to represent three-
dimensional flow through a cylindrical section extending from the well
radius, ry, to some outer radius, re. Each point on the model plane actually
represents a circle extending 360 degrees around the z axis in three-
dimensional space; when we consider a rectangular area in the r-z plane,
we are actually talking about a cylindrical ring or shell of rectangular
cross section, also extending 360 degrees around the z axis; and so on.
Along the radial axis of the following problem, we will use an expanding
mesh spacing, in which the radius represented by each node will be twice
that represented by the node interior to it. The innermost vertical column
of nodes falls along the radius of the well, ry; the outermost column falls
on a radius re, which ideally should be chosen so as to lie beyond any
measurable influence of the well during the period of simulation. Along
the vertical axis, spacings are chosen in whatever way the problem requires.
(To simplify the present discussion, we will assume that the vertical mesh
spacing, Az, is constant-that is, that the spacing between any two adjacent
rows in the mesh is the same. In a subsequent problem, however, we will
use two different values of Az--one in a semiconfining layer, and another
in the underlying aquifer.)

Figure 9 shows the system in three dimensions, with a section cut away
to show the intersection of the three dimensional flow volume with a vertical
plane. In our finite-difference formulation, we will use the face-centered
approach--not because it is inherently any better than a block-centered
approach, but because it forces us to visualize and formulate conductances
as they are actually used in the finite-difference solution process.

Three rectangular areas are shown on figure 9, each representing the
instersection of a cylindrical ring or shell of rectangular cross section
with the r-z plane. These three cylindrical shells (A, B, and C) represent
the volume elements for defining lateral (radial) hydraulic conductance,
vertical hydraulic conductance, and storage capacity, respectively. Shell
A, which is used for the definition of lateral conductance, extends in the
radial direction--i.e., along a row--between two nodes, and extends vertically
half the distance to the rows above and below. Shell B, which is used for
the definition of vertical conductance extends along the vertical--i.e.,
along a column--between two nodes, and extends inward and outward to radial
distances which are chosen so that the vertical conductance will be equally
distributed to either side of the column. This concept is discussed in
more detail subsequently. Shell C, is used for the definition of storage
capacity, which is defined as the volume of water released from storage in
a given volume of aquifer, in response to a unit decline in head within
that volume. Note that shell C surrounds a node, extending halfway to the
adjacent rows above and below, and extending inward and outward to radial
distances chosen so that the storage capacity is equally distributed to
either side of the node.

11
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Lateral Conductance

By virtue of our assumption of a u
thickness of shell A turns out to be eq
Thus, the Tateral conductance of shell
(9), taking the thickness as Az rather
we take the outer radius, rz+1, to be t

term is simply In 2. For the problem,
2nkKlAz  2nK|Az

Cr - -
In 2 0.693

where K| represents lateral hydraulic c
Fa+l

ratio = 1is constant throughout the m

Fa

the same for all lateral conductances a
between rows may arise due to variation
another, if layers of different hydraul

niform vertical mesh spacing, the
ual to the vertical spacing, Az.
A can be calculated using equation
than b. In the following problem,
wice the inner radius, rz, the log
therefore, equation (9) becomes

(13)

pnductivity. Note that because the

odel mesh, this expression remains

long any given row (differences
in thel term K| from one row to

ic conductivity are simulated.)

Finally, it should be noted that allong the upper row of the mesh of figure
9, the lateral hydraulic conductance values are not based on a full-thickness
shell such as A, but rather of a shell of half|thickness, Az/2, which
extends downward from the row but not above it. Similarly, along the lower
row of the mesh, lateral hydraulic conductance values are based on a shell
which extends upward from the row but not below it, and again the thickness

used in calculation is Az/2.

The vertical conductance of shell
the product of the vertical hydraulic ¢
flow, divided by the distance of flow,
view of shell B. Because we are dealin
the cross-sectional area of flow is the
shell--that is, the shaded annular area
9, shell B extends vertically between t
fall on the vertical column located at
indicated by the dashed circle in figur
flow extends inward from ry to an inter
ra to an outer radius ra+1/2.

radius ra.1/2. Thus the area of flow i

A = [ (ra+1/2)? -(ra-172)%].

14

The tota] area
between the area of a circle of radius ra+1/2

|
Vertical CoLductance

in figure 9 can be calculated as
nductivity and cross sectional area of
K;A/az). Figure 10 shows an isolated
with vertical velocity components,
area of the upper surface of the

of figure 10. As shown in figure
o nodes of the model mesh; these nodes
adius ry. This radius, ry, is

10. The cross sectional area of
or radius, ra.1/2, and outward from
f flow is the difference
Fnd the area of a circle of

given| by



Figure 11 shows a plan view of the cross-sectional area of flow, again
with ra indicated by a dashed circle. The area has been divided into two
segments: A , which is interior to ry, and A , which is exterior to rj.

We wish to choose the inner and outer radii, ra.1/2 and ra+1/2, in such a
way that the vertical hydraulic conductance between two nodes will be
distributed evenly, half outside the radius of the node, and half inside
that radius. This is achieved by making the two areas Aj and A; equal.

For the radial node spacing of our problem, in which each node falls at a
radius which is twice that of the node interior to it, the radii ra.j/2 and
ra+1/2 must be given by

ra-1/2 = ra/2/5 (14)
ra+1/2 = ra/8/% (15)

in order for the areas A and A to be equal.

Exercise 4: verify that for any value of r,, the area between ra/275 and
ra is equal to the area between ry and ra/gsg.

Using equations (14) and (15), the cross sectional area for vertical
flow is given by
6w rz2

A= w {(ra/B75)-(ra/ 2752} = — (16)

5
The vertical hydraulic conductance of shell B is thus given by

KA Kyp(6n/5)rg2  3.77Krg?

L Az ¥4
where K; is the hydraulic conductivity in the vertical direction.

[Note: These results hold only if we are using

Fa+l . . . Ta+l )
—— = 2 in our model design. More generally, if = a, and if
Ta Ta

we wish to have an equal distribution of area outside and interior
to the node, then the area must be taken from an inner radius of
ral2/(a2+1)J1/2 to an outer radius of ara[2/(a2+1)]1/2., The area of

a2-1
vertical flow then becomes 2n{

bra2 W]
a2+l 2
From equation (17), the vertical conductance of shell B is seen to be the

3.77K,
product of a constant term,

, and the square of the radius around
Az
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which the shell is centered. If we are calculating the vertical hydraulic
conductance of successive shells, moving radially outward along a model
row, the conductance of each shell will be four times that of the shell
interior to it, since the radius of each shell is twice that of the shell

. , . : Fa+l
interior to it. (Again, this holds only for = 2; for the more general
Fa
Fa+l
case, = a, the conductance of each shell would be o2 times that of
Fa

the shell interior to it. In any case, if the vertical hydraulic conductance
of a single shell is determined, that of successive shells along the same
model row can be obtained readily; however, differences between rows will
arise if different values of K; are 1ncorporated simulating layers of
different hydraulic conductivity.)

Finally, it should be noted that along the inner vertical column of
nodes in the mesh of figure 9 (i.e., the column along ry) vertical hydraulic
conductance values are based on a cylindrical shell which extends radially
outward from ry but not interior to it. This shell thus has half the base
area, and half the vertical conductance which a full shell at the same
radius would have. Similarly, along the outer vertical column of nodes
(i.e., the column along rg), conductance values are based on a shell which
extends inward from rg but not beyond it. Again, area of flow and the
vertical conductance are half those of a full shell at the same radijus.

Storage Capacity

Unlike shells A and B in figure 9, which are taken between two nodes
for the purpose of calculating hydraulic conductance, shell C is distributed
around a single node, and is used to illustrate the calculation of storage
capacity associated with that node. The storage capacity of the shell is
the specific storage multiplied by the volume of the shell; the shell
volume, in turn, is simply the base area of the shell multiplied by its
thickness. The shell extends vertically halfway to the adjacent nodes
above and below; since we are assuming an even mesh spacing, the thickness
is simply Az, 1ike that of shell A. The node around which shell C is
centered is located at a radius ry--i.e., it lies on the same vertical
column as the nodes of shell B. Like shell B, shell C extends outward to a
radius ra+1/2, or ra/8/5, and inward to a radius ra. 162 or ry 5. Thus,
it has the same base area as shell B--the area given by equatlon (16).
Moreover, as shown for shell B, the base area of the section of shell C
beyond ry is equal to base area of the section interior to rz. The volumes
of these two sections are therefore equal, and it follows that the storage
capacity of the section beyond ry will equal that of the section interior
to ra. In other words, storage capacity is evenly distributed around ra.

17
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2

SC ra

5
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Model Design

Figure 12 shows a partially penetrating well in a semi-confined aquifer.
The confining unit is 100 feet thick and is overlain by a water-table aquifer
in which heads may be considered constant. The hydraulic conductivity of
the confining unit, in both the lateral and vertical directions, is 0.1 gallon
per day square foot. The specific storage of the confining unit may be
considered zero. The aquifer is 100 feet thick, its lateral hydraulic
conductivity is 100 gallons per day per square foot, and its anisotropy (ratio
of lateral to vertical hydraulic conductivity) is 100. The specific storage
of the aquifer is 10~® per foot. The discharging well is screened from 30
to 70 feet below the top of the aquifer; the screen radius is 1 foot.
Water Tevels throughout the system prior to pumping are 100 feet above
datum (which is the top of the confining unit), and remain at this level
in the overlying water-table aquifer throughout pumping.

The well is pumped at a rate of 250,000 gallons per day; we assume
this pumpage to be uniformly distributed along the well screen. We wish to
know how long it will take for the system to reach equilibrium, and we
require the head distribution and the stream function distribution, as
functions of r and z, at this new equilibrium. (Stream functions are discussed
in part B of this section.)

We wish to design a digital model which will provide the head distribution
as a function of r, z, and time. We will use a vertical mesh specing of 50
feet in the confining unit and 20 feet in the aquifer. In the radial
direction, we will let rn41/rn = 2, where r, is the radius represented by a
given node, and rp41 is that represented by the succeeding node along the r
axis. We assume that the effect of the well at equilibrium will not extend
beyond 30,000 feet from the discharging well and we will define a vertical
no-flow boundary at that distance.

Figure 13 shows the array of nodes in the r-z plane which will make up
our model, superposed on the hydrologic features of figure 12. The column
number, J, of each column is indicated across the top of the array while
the row number, I, of each row is indicated along the left margin. Using
figure 13 do the following parts of the problem:

1. The radii associated with columns 1 and 16 are shown beneath the
column number of figure 13; enter the radii associated with each of the
remaining columns.

2. The depth (below the top of the confining bed) associated with rows
1, 2, 3, and 8 is shown on the left side of figure 13, to the right of the row
number; enter the depths associated with the remaining rows.

3. Along the right margin of figure 13, division marks have been
placed representing the depths midway between successive horizontal rows of
nodes. Enter the depth (below the top of the confining bed) represented by
each of these marks.

4, Blocks A, B, C, D, E, F, and G in figure 13 represent some of the
aquifer volume elements for which lateral hydraulic conductance must be
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specified in the model; that is, each of these rectangular blocks represents a
vertical cross section through one of these three-dimensional volume
elements. What is the geometric form of these elements?

5. Calculate the lateral hydraulic conductance of the volume element
represented by each of the blocks A through G of figure 13. In the case
where the volume element is composed of two layers of differing hydraulic
conductivity parallel to the direction of flow, the total hydraulic conductance
is simply the sum of the two individual lateral conductances. (The general
rule is that an equivalent conductance for conductances in parallel is the
sum whereas an equivalent conductance for conductances in series is calculated
by equation 11 as discussed previously).

6. To prepare for the calculation of vertical conductances, we divide the
aquifer into shells around each node, such that each shell extends from
an inner radius r/2/5 to an outer radius rv8/5, where r is the radius
represented by the node. The vertical marks along the lTower margin of
figure 13 represent these lines of division. The radius associated with
the division mark between nodes 1 and 2, and that associated with the
division between nodes 15 and 16, is shown on figure 13. Enter the radii
associated with each of the remaining division marks.

7. If we project these division marks to the surface (that is, to a
map view of the aquifer, each mark will trace a circle on that surface.
The area between two successive circles will then represent the base area
of a cylindrical shell. This area has been calculated for the interval
around column 15, and the results are shown between the appropriate division
marks at the bottom of figure 13. Enter the area for each of the remaining
intervals. (Note that the interval "around" column 1 does not extend inward
from column 1, and that the interval "around" column 16 does not extend
outward beyond column 16.)

8. Blocks H and I on figure 13 represent volume elements, or shells,
for which vertical hydraulic conductance must be calculated. Each of these
elements extends vertically between rows 4 and 5 of the mesh. Working
across this interval between rows 4 and 5, sketch the outlines of the
remaining blocks for which vertical hydraulic conductance must be specified
(i.e., sketch these blocks directly on figure 13; do this only for the
interval between rows 4 and 5). Calculate the vertical hydraulic conductance
of the volume elements represented by the four innermost blocks (i.e.,
those closest to ry) and by the three outermost blocks (those at columns
14, 15, and 16). Indicate your results on the figure.

9. Blocks J and K on figure 13 represent volume elements, or shells,
for which storage capacity must be calculated. Each of these blocks is
centered around a node in row 7 of the mesh. Sketch the outlines of the
remaining blocks in row 7 for which storage capacity must be specified
(i.e., sketch these blocks directly on figure 13). Calculate the storage
capacities of the volume elements represented by the four innermost blocks
(closest to ry) and by the three outermost blocks. Repeat these calculations
for the blocks directly underlying these, in row 8. Calculate the amount of
water released by a 1-foot drop in head in the block at row 7, column 16.
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Figure 13 - Model node array and volume elements used in calculating
simulation coefficients




10. On figure 13, indicate the nodes which are to be held at constant
head, and those which represent the well screen. Indicate the discharge
which must be withdrawn through each node representing the screen.

Stream Functions

Before proceeding to the second part of our problem, we will review
the concept of stream function.

In two-dimensional flow, streamlines or flowlines are lines within a
flow system to which the velocity vectors are everywhere tangent at a
particular instant of time. The fact that the velocity vectors are everywhere
tangential to the streamlines means that no flow can cross a streamline.
In a steady state problem, where the characteristics of the flow regime do
not change with time, the streamlines remain the same at all times; in this
situation, each streamline represents a fixed line within the system across
which there is never any flow. If we consider two streamlines extending
completely through the flow regime, the region between these lines is called
a stream tube. Since flow cannot cross either bounding streamline, the flow
through a stream tube is the same at any cross section along the length of
the stream tube. In this sense, a stream tube in a steady-state flow may be
thought of as a pipe or conduit extending through the flow system, always
carrying the same fraction of the total flow.

In a three-dimensional problem, we must deal with three-dimensional
stream surfaces rather than two-dimensional streamlines. Figure 14 shows
the flownet of figure 7 with some additional quantities identified. The
flowlines shown in figure 14 actually represent the lines of intersection
of three-dimensional stream surfaces with the vertical r-z plane; and the
areas between streamlines represent the intersection of three-dimensional
stream tubes with the r-z plane. Again, however, the axial symmetry of the
radial flow regime allows us to treat the problem in a two-dimensional
analysis, even though we are actually dealing with three-dimensional features.

The nine streamlines shown on figure 14 divide the flow regime into 10
stream tubes; the flowlines were constructed in such a way that the flow
carried in each of these stream tubes is 10 percent of the total flow
moving through the system. Each streamline has been labelled with a number
which gives the fraction of the total flow occurring above and interior to
that streamline; for example, the deepest streamline shown on the figure is
labelled 0.9, indicating that nine-tenths of the flow occurs above (i.e.,
interior to) this line, whereas one-tenth occurs below (i.e., outside of)
this 1ine. These fractions labelling the various flowlines are termed
stream functions. They are constant along a streamline because no flow
crosses from one side of a steamline to the other. Thus, we may look at
the streamlines as contours of the stream function values; and it follows
that if we can devise some way of calculating stream function values, and
can then contour the results, we can construct the streamlines corresponding
to these stream function values.

In figure 14, the 1.0 streamline follows the right margin of the
flownet at rg, the bottom of the flow net along the base of the aquifer, and
the left margin of the flow net at ry beneath the well screen; 100 percent
of the flow occurs above and interior to this line. The 0.0 streamline
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Column
Number, J: 1 2 3 4 5 6
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Figure 16 - Node array showing head|values
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9 10 1 12 13 14 15 16
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256 512 1024 2048 4096 8192 16,384 32,768
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The heads shown on figure 16 allow us to calculate the flow through
any lateral conductance in the mesh, simply by multiplying the head difference

across the conductance by the value of the conductance.
diagram of figure 15 as a worksheet for lour analysis.
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the base of the block to find the stream
Enter these values on figure 15 at the td
the nodes. Then move over to the stack o
columns 15 and 14 and repeat the procedun
block and working up. Note that the stre
the lowermost block is again 1.0, so that
calculations by subtracting from 1.0 agai
After each calculation, enter the stream
block, midway between the node columns.

intervals between columns 14 and 13, 13 a
and 9, and finally for the interval betwe
of the calculations have been computed fa

30

en columns 7 and 8.

Again, we divide by 250,000
Thus,
this block was 0.9993, and 0.15

gh the block, we find by

he upper surface of the block must
ready on figure 15, and on the work-
jons (table 2). Using the worksheet,
rough the "stack" of conductance
ting the fraction of total discharge
rom the stream function value at
function at the top of the block.

p of each block, midway between

f conductance blocks between

e, again beginning with the bottom
am fungtion value at the bottom of
we must begin the series of

n, as we did in the initial series.
functian value at the top of the
Repeat |this procedure for the

nd 12, |12 and 11, 11 and 10, 10

Note that many
n the worksheet (table 2).

gpd.

r you

67 gpd/ft (which was calculated



The procedure of calculation which we have used can be
described formally through the equations

Q1,9 = CX1,0(H1,941 - H1,9) (18)
and
n=NR Qn’J
¥1,0 = 1.0 - 1 (=) (19)
n=1I Qy

where Qp g is the flow through the lateral conductance block between node
I,J and node I,J+1; CXp j is the value of lateral hydraulic conductance for
this block; Hy g and Hy j41 are the head values at nodes I,J and I,J+1,
respectively; ¥1 g is the stream function at the top of the conductance
block between I, and I,J+1; Qy is the well discharge--that is, the total
flow through the system; and NR is the total number of rows in the model,
so that the summation of equation (19) includes the flow through the lateral
conductance between node I,J and node I,J+1, and the flow through all of
the lateral conductances vertically below this in the stack.

Now go back and interpolate within each vertical "stack" of stream
function values to locate the positions of the 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, and 0.1 stream function values within each stack. Note that all
of these values will not be present in every stack; in terms of the diagram
of fig. 14, the streamlines must intersect the upper constant-head boundary
of the model, illustrating accretion due to recharge. Thus, for example,
the 0.2 stream function does not appear in the outer part of the mesh,
toward re. Note also that as we approach the well screen, the flow tends
to be compressed into the screened interval; in terms of the model, this
means that most of the flow will ultimately be squeezed into the lateral
conductance blocks in the two rows which lead to the screen. Thus, toward
the left side of the model mesh (toward ry), virtually all of the interpolated
stream function values will fall within the lateral conductance blocks for
rows 5 and 6 of the model.

Figure 15, because it represents the model mesh, has a logarithmic
scale along the radial axis; to construct our flownet, we wish to transfer
our values to an arithmetic scale diagram. Before doing this, we must
decide at what points in the r-z plane our stream function values are to
be plotted. To assign vertical coordinates, remember that in our method of
calculation, we tacitly assumed that the vertical coordinate of each calculated
stream function value was at the top of the conductance block through which
flow was computed. We assigned vertical coordinates to the interpolated
values through the process of vertical interpolation itself. To assign
radial coordinates, we make the assumption that the radial coordinate of
each stream function value falls at the logarithmic midpoint of the conductance
block through which flow was calculated--i.e., that for a conductance block
extending from an inner radius of r; to an outer radius of 2rj, the calculated
stream function values actually app%y at a radius of J?‘ri. This actually
represents an assumption that our stream function values apply at a radius
which "bisects" the lateral conductance, in the sense that the Tateral
conductance between rj and Y2 rij is equal to that between ¥2 rj and 2rj.
Values of these logarithmic midpoint radii are shown below the r axis on
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Table 2 - Work Sheet for the Calcul

ation of Stream Functions

Head Drop Lateral Flow through Cumulative Stream-
Between Hydraulic Conductance Flow Function
Columns Conductance B]opk Value
Between Ah CL Q zQ 1 - ZQ
columns Row ! T
(ft) (gpd/ft) (gp?)ﬁ (gpd) (unitless)
15 & 16 8 0.02 9,067 18 181 0.9993
7 0.02 18,130 36 544 0.9978
6
5
4 |
3 |
2
1
14 & 15 8
7 0.26
6 0.26 18,130 - 4,714
5 0.26 18,130 - 4,71
4 0.25 18,130 4,53
3 0.25 9,090 L2,27
2 0.12 45.4
1 0 22.7
13 & 14 8 1.02 9,067 9,24 9,248 0.9630
7 1.02 18,130 18,49 27,738 0.8890
6 1.01 18,130 18,31 46,048 0.8158
5 1.00 18,130 18,13 64,178 0.7433
4 0.99 18,130 17,95 82,128 0.6715
3 0.97 9,090 8,817 90,945 0.6362
2 0.49 45.4 22 90,967 0.6361
1 0 22.7 0 90, 967 0.6361
12 & 13 8 1.91 9,067 17,318 17,318 0.9307
7 1.90 18,130 34,450 51,768 0.7929
6 1.89 18,130 34,270 86,038 0.6558
5 1.87 18,130 33,900 119,938 0.5202
4 1.85 18,130 33,540 153,478 0.3861
3 1.81 9,090 16,453 169,931 0.3203
2 0.91 45.4 41 169,972 0.3201
1 0 22.7 0 169,972 0.3201
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Work Sheet for the Calculation of Stream Functions

(continued)

Head Drop Lateral

Flow Through Cumulative Stream-

Between Hydraulic Conductance Flow Function
Columns Conductance Value
Between Ah CL zQ 1 - ZQ
columns Row T
(ft) (gpd/ft) (gpd) (gpd) _ (unitless)
11 & 12 8 2.42 9,067 21,942 21,942 0.9122
7 2.43 18,130 44,060 66,002 0.7360
6 2.44 18,130 44,240 110,242 0.5590
5 2.42 18,130 43,870 154,112 0.3836
4 2.37 18,130 43,000 197,112 0.2116
3 2.32 9,090 21,089 218,201 0.1272
2 1.16 45.4 53 218,254 0.1270
1 0 22.7 0 218,254 0.1270
10 & 11 8 2.43 9,067 22,032 22,085 0.9117
7 2.57 18,130 46,590 68,675 0.7253
6
5
4 2.52
3 2.34
2 1.16
1 0
9& 10 8 1.64 9,067 14,870 14,870 0.9405
7 2.20 18,130 39,890 54,760 0.7810
6
5
4 2.18
3 1.60
2 0.78
1 0
7&8 8 0.21 9,067 1,904 1,904 0.9999
7 0.65 18,130 11,780 13,684 0.9453
6
5
4 0.65
3 0.21
2 0.09
1 0
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Flow-Net Interpretation

The streamlines and the lines of equal head on our flownet actually
represent the intersection of three-dimensfonal stream surfaces or surfaces of
equal head with the vertical r-z plane. The surfaces of equal head for 85 and
80 feet close completely around the screen; while no surfaces for lower
values of head were constructed, these would obviously do the same thing.

The surfaces for 90 and 95 feet close above the screen, but terminate

against the bottom of the aquifer rather than closing below the well.

Within the aquifer itself, significant differences (greater than 0.1 ft.)

in head along the vertical persist to a radial distance of about four

thousand feet from the well.

More than three quarters of the head ]
radial distance of 250 feet from the well.

0SS in‘the system occurs within a
Inside this radius, most of the flow

occurs within the depth interval of the screen, in a pattern which is
essentially horizontal. Most vertical movement is found at greater
radial distances, where vertical hydraulic|conductances are higher.

In the semiconfining unit, the stream|surfaces are nearly vertical,
while the surfaces of equal head would appear essentially horizontal except
for the distortion of the vertical scale of the figure. Both the stream
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surfaces and the surfaces of equal head are refracted at the contact between
the semiconfining unit and the aquifer. Within the aquifer, the stream
surfaces gradually reorient toward the horizontal pattern which prevails
around the well screen, while the surfaces of equal head reorient into a
pattern of closure around the screen. Because the aquifer itself is aniso-
tropic (K /K; = 100) and the scale of the cross-section is exaggerated,

the stream surfaces are in general not orthogonal to the surfaces of equal
head within the aquifer. However, close to the well and within the screened
interval, where the flow in predominantly parallel to the r axis, the
condition of orthogonality prevails. Immediately above and below the
screened interval, at short radial distances from the well, flow is nearly
vertical and head gradients in the vertical are very steep.

Because the flow is largely horizontal and radial close to the well,
the pattern here actually resembles that of the problem with which we
started--radial flow toward a well in the center of an island. Thus, the
Thiem equation (equation 5), could be used in an approximate sense to
describe the system in this region; and the logarithmic "drawdown cone"
around the well, predicted by the Thiem equation, characterizes this part
of the system. This is true in virtually all discharging well problems--i.e.,
there is always a region around the well in which the dominant process is
simply horizontal-radial flow, and in which head losses vary with the log
of radial distance, so that gradients become very steep at small values of r.

Estimation of Lateral Hydraulic Conductivity from Pumpage Response Data

In this section, the symbol K and the term hydraulic conductivity refer to
the lateral hydraulic conductivity of the aquifer.

Specific-capacity analysis--Some methods of estimating hydraulic
conductivity from specific capacity take advantage of the "Thiem condition
in the area close to the well. In the problem for which equation (5) was
formulated--radial flow to a well at the center of an island--we could
assume that the head in the well prior to pumping was the same as the head
at re during pumping-i.e., that the original or undisturbed head in the
aquifer was equal to that in the open water surrounding the island, hg.
The head in the well during pumping, hy, can be calculated by setting r=ry
in equation (5), i.e.

Qw (In re) + -E“_(m ) (20)
2w Kb 2wKb

hw=he-

The drawdown in the well due to the pumping, sy, is simply hg-hy. Solving
(20) for this term gives

Sw = g = hy = (In rg =1In ry) = = 1n (ra/ry) (21)
TR Y kb ¢ "7 onkb e
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Then solving (21) for the hydraulic conductivity, K, gives

Qu

2n wa

K =

In (re/ry) (22)

Now suppose we wish to apply equation 22 in a more realistic problem of
flow to a well, such as the one in our f{lownet; to do this, we must make
the assumption that essentially all of the head loss, or drawdown, occurs
close to the well, within some "radius of influence"--say 500 feet--and
that within this radius, the flow occurs in a horizontal radial pattern,
and is confined to the depth interval of the sqgreen. Thus in place of the
thickness of aquifer, b, of equation (22), we would use the screen length;
and in place of the radius of the island, we wauld use the arbitrarily
chosen radius of influence. In the problem illustrated in our flow net, we
can make the assumption that prior to pumping the head in the well was
equal to that along the constant head surface at the top of the semiconfining
bed--i.e., 100 feet above datum. From fligure 16, the head at the screen
during pumping is approximately 35.5 feet; thus neglecting entrance Tlosses
the drawdown in the well is approximately 64.5 feet. As part 11 of the
radial-flow problem, use this drawdown, t screen length of 40 feet, and a
"radius of influence" of 500 feet to calculate the hydraulic conductivity
of the aquifer material using equation 22. Repeat this calculation using a
radius of influence of 100 feet and 1000 feet. | Compare your answers to the
value of hydraulic conductivity given fo% our problem, 100 gpd/ftz. Note

that small values of rg yield small values of K; large values of rg yield
large values of K. Discuss the reasons for this relationship.

Distance-Drawdown Analysis--If ehuat1on (5) is differentiated with
respect to 1In r we obtain

dh }Q,,
d(in r) | 2:Kp |, (23)

since the terms hg and In re are both constants. This can be expressed in

|}

terms of common (base 10) Tlogarithms sim?1y by multiply by the constant 2.3.
So, equation (23) becomes,

dh 2. 3Qw
1 " kb (28)
og r ‘
d(io9,,r) e 3
or in terms of aquifer transmissivity
dh 2.30Qy
x (25)

d(1oglor) 2nT
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The familiar distance-drawdown method of determining aquifer transmissivity
from observation well data is based on equations 24-25. These equations

can be derived from various nonequilibrium analyses as well as from equation
(5), subject to the conditions that we are considering relatively small
values of r, where flow is essentially horizontal, and that sufficient time
has elapsed so that storage effects near the well are negligible; the
distance-drawdown method is often applied in nonequilibrium analyses where
these conditions are satisfied. Equation (25) tells us that if head is
plotted against the log of r (or against r on semilog paper, with radial
distance on the log axis) the plot should be a straight 1ine with slope
(2.3Qy/2nT). Thus determination of T should be possible simply by making
such a plot from observation well data, measuring the slope and solving for
T. Let's try to apply this method to the problem represented in our flow net.
As part 12 of the radial-flow problem, use the head data in figure 16 to
construct plots of head vs. distance on semilog paper for three different
depths--100 feet, 140 feet and 180 feet below the top of the semiconfining
bed. Carry each plot from the radius of influence, 32,768 feet, to the
radius of the screen, 1 foot, plotting head on the arithmetic scale against
radial distance on the log scale. Measure the slopes of these plots in the
interior part of the system (r<500ft.), in feet of head change per log

cycle of radial distance. (Note that the units of these slopes have the
units of feet, since the log term is dimensionless.) Calculate three values
of aquifer transmissivity by substituting the three measured values of
slope, in turn, into equation (25) and solving for T. The actual transmissivity
of our aquifer is 100 gpd/ft? x 100 ft = 10* gpd/ft. Discuss the reasons
for any discrepancies among the three values you have calculated, and
between these values and the actual transmissivity of the aquifer.

Now divide each calculated transmissivity by the aquifer thickness,
100 feet, to calculate a value of hydraulic conductivity for the aquifer
material. Explain any discrepancies between the calculated values and the
actual value, 100 gpd/ft2. Finally, divide the transmissivity calculated
from the head gradient at 140 ft by the thickness of the screened interval,
40 feet. Explain the discrepancies or agreement with the actual value
which you observe in this calculated result. Also, explain why the graph
of head for a depth of 140 feet flattens out further from the well.

Time of Travel Calculation
In flow-net analysis the expression

2
L

£ = (26)
Kah

is frequently used for the time of travel along a length L in a stream

tube, where K is hydraulic conductivity, n is effective porosity, and Ah

is the head loss over the distance L. This expression provides a convenient
and accurate method of calculation so long as the head gradient (ah/L)

is relatively constant over the interval L. In radial flow to a well, as
we have seen, gradients tend to be relatively uniform at large radial
distances, but change rapidly as we approach the well in the logarithmic
"cone of depression”; moreover the problem we have postulated deals with

an anisotropic system.

37



To develop a more convenient met
under these circumstances, we recall
representing steady-state conditions)
always carries the same fluid discharg
stream tube which is bounded by two su
flow. The bulk volume of the stream t
is designated V, and the volume of mov
therefore nV, where n is effective por
required to replace completely this v%
segment--that is, At is the time requ
the upstream surface of the segment, a
downstream surface. The flow rate thr

nVv
to —.
At
the stream tube segment must equal the
between the upstream and downstream su
know the flow rate through the stream
nVv
term —, and solve for At to determine

At
stream tube segment, that is

|
t

The time interval (At) require

At

|
|
|

Thus to calculate time of travel
simply divide the volume of water in t
through the stream tube. For our flow
tube is given_by Q,/10, where Q, is th
gallons to ft3 by multiplying gallons
stream tube segment can be determined
of the segment, in the r-z plane, on o
account any vertical scale distortion)

od of calculating time of travel

hat each stream tube (in a flow net
may be thought of as a conduit, which
e. Figure 17 shows a segment of a
rfaces taken at right angles to the
ube segment between the two surfaces
ing fluid within the segment is
osity. Let At designate the time
lume of water in the stream tube

red for a volume of water nV to pass
nd for an equal volume to cross the
ough the stream tube is then equal

d to completely replace the water in

time of travel of fluid particles
rfaces |of the segment. If we
tube, qg, we may equate it to the

the time of travel through the

ul (27)
Qs

hrough a stream tube segment we need
e segment, nV, by the flow rate

net, the flow through each stream
well discharge. (Remember to convert

y 0.134) The volume of a given

pproximately by estimating the area

r flownet (remembering to take into

and multiplying this area by 2nr,

where r is the mean radial distance frpm the well axis to the segment.

This volume is then multiplied by effe
moving water, and divided by Qy/10 to
segment.

As part 13 of the radial-flow pro
time of travel through the 0.4 - 0.5 s
(that is, from the bottom of the confi
stream tube (within the aquifer) into
calculation. Take the innermost segme
between the well screen and a radius o
between radii of 500 and 1000 feet. M
and 3000 feet. Assume the effective p

3¢

tive pprosity to yield the volume of
ield the time of travel through the

\
{

lem, use this method to estimate the
ream tube from the top of the aquifer
ing bed) to the screen. Divide the
ive segments for purposes of this

t as the portion of the streamtube
f 500 feet, and the next segment
ake the other divisions at 2000 feet
orosity to be 0.20.




Figure 17 - Stream tube segment showing mean radius, r, from well axis
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NOTE ON TRANSIENT RESPONSE

In the model design exercise, we divided the region around the well
into cylindrical elements coaxial with the well, for purposes of specifying
Y. WhEn we attempt to visualize

hydraulic conductance and storage capacit
the transient response of, for example, a

semic

nfined aquifer to well

discharge, it frequently is helpful to think of the region around the well

as divided in this way into a succession
Withdrawal of water from the well may be

of coa
though

ial cylindrical shells.
of as establishing, initially,

a hydraulic gradient between the well and the innermost shell; this causes flow

from this innermost shell into the well.
supplied primarily by withdrawal from co
well, that is within the innermost shell

In ge
pressi
and t

accompanied by a decrease in head with time. T
a gradient between the innermost shell and the second shell and creates inward
flow between the two; this flow is supplied by storage withdrawal in the
second shell and tends to reduce storage withdrawal in the innermost shell.
This process continues with time, so that the effect of pumpage spreads

progressively further out into the aquif
aquifer supplying the largest share of s
outward with time. Because we are consi

r. As

eral, this initial flow is

e storage close to the

is storage withdrawal is

is head decrease establishes

a result, the area of the

orage withdrawal shifts steadily

ering a

semiconfined aquifer, the

effect of pumping spreads vertically as well as radially outward generating

vertical flow, coupled with storage relea
the effect of pumping may reach the water
maintained with much smaller drawdowns, o
outflow may supply a part of the pumpage.
migrate radially outward with time, so th
functions as the major source of water sh

Ultimately a condition may be reached in which t
outflow at the free surface balances the jpumpage

achieved.
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SUMMARY

This note has illustrated some of the basic characteristics of radial
flow to a well. The particular example used in the simulation flow=-net
problem is certainly not representative of all radial flow systems; these
systems obviously differ widely depending on the existing or postulated
boundary and initial conditions, and the distribution of transmission and
storage properties within the flow regime. Certain characteristics, however,
are common to a wide variety of discharging well problems, and these are
illustrated in the example.

For example, the steep decline in head approaching the well--that is,
the logarithmic “"cone of depression" around the screen or open interval--is
present in all instances of flow to a well, because it is generated by the
decreasing area of flow in the radial flow pattern. This impiies that a
large fraction of the head loss associated with well discharge must always
occur near the well, within this logarithmic cone. Thus the material
near a well exercises a strong influence on well performance, or specific
capacity; and hydraulic conductivity estimates derived from specific capacity
testing normally characterize the material near the screen.

The presence of the logarithmic cone of depression immediately around
a discharging well is a function also of geometric controls on the processes
of recharge, vertical flow and storage release. These processes all depend
on horizontal (map) area. Near the well, the area available to support
these processes is limited relative to that at greater radial distances.
Thus, most of the accretion, storage release, or vertical flow convergence
associated with a discharging well tends to occur at some distance from the
well itself, where the available map area is greater. This in turn implies
that there will generally be a zone around the well in which the flow is
essentially horizontal, nearly equal to the well discharge, and restricted
largely to the screened or open interval of the well. This zone represents
the inner part of the cone of depression, and the straight-line portion of
a semitog plot of drawdown vs. distance. The radial distance from the well
to which this zone extends may vary greatly from one case to another,
depending on the aquifer hydraulic properties, aquifer thickness, screen
dimensions and boundary conditions; but generally there will always be some
radius within which these conditions are approximated.

While the geometry of the well-aquifer system thus dictates a number
of characteristics that are common to many radial flow problems, significant
differences also exist from one situation to another. These may include
differences in the boundary conditions of the problem, or differences in
the distribution of hydraulic properties within the zone of influence of
the well.

In some cases it has been possible to characterize a class or
category of well-flow problems in terms of idealized boundary conditions
and hydraulic property distribution, and to develop an analytical solution
to the differential equation of radial flow for that category. For example,
where the aquifer can be considered infinite in extent, perfectly confined
and homogeneous; the well is fully penetrating and operates at constant
discharge; and the pumpage is supplied entirely by withdrawal from compressive
storage within the aquifer, the solution of Theis (1935) can be applied.
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Where these conditions apply except that the well operates at a constant
drawdown rather than constant discharge, the solution of Jacob and Lohman

(1952) may be used.

vertical leakage through confining bed
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solution.
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flow have been presented in this note.
of a well, the interpretation of an aqu
ground water sampling event are address
Both finite difference and finite eleme
flow simulation; and virtually any two-
employed for this purpose, either throu
or through appropriate specifications o
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APPENDIXES

A-1 Derivation of Flow Equations--Axially Symmetric Flow, r-z Plane

Consider a ring shaped volume element of rectangular cross section, as
shown in figure A-1. As in the preceding problem, we will use cylindrical
coordinates and assume that flow occurs in both the r and z directions,
but that axial symmetry exists, so that we need not consider the angular
coordinate. We consider flow in the vertical direction to be positive if
directed upward, and flow in the radial direction to be positive if directed
outward. We assume that the medium exhibits simple two-dimensional
anisotropy, with principal axes of hydraulic conductivity in the horizontal
and vertical directions.

The volume element of figure A-1 extends from an inner radius r to an

outer radius r,, and from a lower surface at z

2
the radial width of the element is designated Ar, and its height is designated

; to an upper surface at z, ;
az. The inner cylindrical face of the element (at rl) has an area 2wr1AZ,
while the outer cylindrical face has an area anzaz. The radial flow into
the element through the inner cylindrical surface is given by Darcy's law as
) dh
qr.l- -K| * 2nr Az (;—;)1 (A1)
Where K| is the lateral hydraulic conductivity and (%2)1 is the radial head

gradient at r. The radial outflow from the element through the outer

cylindrical face is similarly
- . 2nr AZ ah _
q,é = =K ) (5;)2 (A=2)

The difference between radial inflow and radial outflow is therefore given by
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Figure A-1 - Cylindrical element volume
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oh oh
A, = Gr, = &K az{r, (=), = 1, (=), } (A-3)

The term in brackets is given by the radial derivative of the function r 3—,

or
multiplied by the radial width increment, ar, i.e.
dh oh 3 dh

r -r (=) 2 = (r=) Ar (A-4)

2(57)2 1ar’t ar ar
This is illustrated in figure A-2. The derivative on the right side of A-4

is in turn given (as the derivative of a product) by

2h

9 ah o ah

- (r —) Z [ —t — (A-5)
ar ar ar? ar

Thus we have for the difference between radial inflow and outflow

2
h h
qu - qrz = 2nK|Az (p a—i' + L) Ar (A-6)
ar ar

The vertical inflow to the element through the Tower annular face is given

by Darcy's law as
2 (ah

2
q23 = =K, n(r2 - rl) az)3 (A-7)

ah .
Where K, is the vertical hydraulic conductivity, (5--)3 is the vertical
z

gradient of head at the lower surface of the element (at 23), and n(ri - rf)

is the annular base area of the element.

Considering r to represent a mean radius of the element, we may
ar

Ar . c s
substitute the terms r iy for r, and r + s for r, in (A-7). This gives
qz = =Kz . 2nrAr(€E) (A-8)

3 az'3

45



Figure A-2 - Plot of the function

3h .
(r==) against r.
ar
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Similarly for the vertical outflow through the top of the element we have

- ah
qzu = -KZOZWFAP(§;)4 (A-9)

The difference between vertical inflow and outflow is therefore
ah

oh
- = 2rKzPAr[ (a) = (== -
Gz, = Az, = 20KzrAr[(—) - (=), ] (A-10)
or
32h
q23 - q4+ = 2nKzrar ("E) Az (A-11)
9z

The difference between total inflow and total outflow for the volume element

is therefore
2 2

dr = qp + 4z - qz = 2naraz{K (r— + —) + K;r —} (A-12)
1 2 3 Y Tz =
or
dp = qp + gz = qz = 2nraraz{K (32 . Bh) . K azh} (A-13)
rT AT Gz 9, 7 4 L5 +=2) + K, =
i 2 3 Y4 8# - ar 322

The rate of accumulation of water in storage in the element, assuming that
it does not contain a free surface, is given by the product of specific

storage, element volume, and time derivative of head, i.e.

dv oh
- = S'y(r2 - r2) AZ
dt 2 ! at (A-14)
. ‘ps . . Ar Ar
where S' is specific storage; or again using r - > for r and r + ra
for rys
dv ah
— = S'2nrArAZ—
dt at (A-15)
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Equating the rate of accumulation in

inflow and outflow from (A-13), and d

2
3°h 13h
KL{ - - -—J
ar® r3dr

(A-15) to the net difference between

ividing by the term 2nraraz, we have

0

ot

+ K
z
72

S (A-16)

Equation (A-16) is the partial differential equation for ground water flow

in cylindrical coordinates, where th

coordinate. It applies to all point

re is ﬁo variation with the angular

i
in the interior of the system, and

the term S' thus describes compressive or a%tesian storage processes.

|

A-II Water-Table Storaje as a Boundary Condition

No free surface effects were present in the radial flow problems which

we have considered.
(A-16), which embodies compressive st

situation, where the dominant storage

However, a question naturally arises as to how equation

orage, could apply to a water table

process is drainage or accumulation

associated with change in water-table
we must keep in mind that we are deal
simulate an unconfined aquifer, the f
of our model; the process of water ta
boundary, and is thus properly treate
(A-16). Compressive storage, as desc
equation (A-16), is present in the in
table aquifer, although its magnitude

water table effects. In any case, wh

position. In addressing this question

ng with a cross section. When we

ee surface will be the upper boundary
le sto*age occurs only along this

as a Eoundary condition of equation
ibed by the term on the right of
erior ?f the system even in a water

may be\neg]igib]e in comparison to

n we ane simulating a cross section

in an unconfined situation, it's jmportant to realize that water-table

effects must be addressed as a bounda

through the interior of the flow system.

condition, and are not distributed




Boulton (1954) shows that when areal recharge to the water table is
negligible, so that water table storage is the only process to be considered

at the free surface, the equation

ah ah 2 ah 2 ah
S -— = K - + K — - - A-17
Y st L(ar) z{(az) az} ( )

where Sy is specific yield, should be satisfied at all points on the water
table, as a boundary condition of equation (A-16). While other boundary
conditions on the free surface are certainly possible, a derivation of
condition (A-17) is presented in the following paragraphs to demonstrate
how the process of water-table storage can be accomodated even though a
compressive storage expression, S';;, is used in (A-16).

The boundary condition expressed in equation (A-17) is obtained by
considering the motion of an individual fluid particle in the free surface.
An assumption is made that once a fluid particle becomes part of the free
surface it remains within that surface (under this assumption, there can be
no recharge crossing the water table from the unsaturated zone.) Pressure
is assumed to be constant (i.e., atmospheric) on the water table; and since
pressure in ground water systems is given by pg(h-z), in which p is
fluid density (assumed here to be constant) and g is the gravitational
constant, it follows that (h-z) must be constant for particles in the free

surface. Thus the derivation of (h-z) with respect to time, following the

motion of a particle in the free surface, must be zero, i.e.

— — t — — = (] (A-18)
Dt ot n ar n 9z

where -2) denotes differentiation following the motion of a particle in
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the free surface, v, is the component of

direction, v, its component in the vertic

Vr Vz
porosity; thus — and — are the componen
n n

Vr

the Darcy velocity in the radial

al direction, and n is effective

ts of the actual seepage velocity.

- therefore gives the rate of change of |the radial coordinate of the

particle with respect to time; multiplication of this term by 2—5———
r

that part of the rate of change of the te

movement of the particle along the r axis.

rate of change of (h-z) with time due to

An assumption is then made that Sy,

Simi
|

(h-2)

gives

rm (h-z) with time which is due to

Vz 3(h-z) .
larly =— gives the
n dz

vertical movement of the particle.

the sp%cific yield, can be

substituted for effective porosity in equation (A-18)--i.e., that the ratio

of actual seepage area to gross area is dqua] to the specific yield, which

is normally defined in terms of gravity d

ah oh !

substituting -Kj— for vp and -K,= for v
g Lar r z7

rainagﬁ. Making this change, and

2> (A-18) becomes

D(h-z) ah 38z KL 3h 3h 3z K ah ah 3z
e B P B R ol I (A-19)
, 5z 5z Y
In equation (A-19) the terms — and = are zero, while = = 1, Thus the
ot or 9z
equation becomes i
sh KL ah ., K, oah. oh
-— o a— —2 - — {(--)2 - -‘h} = 0 (A'ZO)
ot Sy ar Sy oz 4
Rearrangement of (A-20) yields the boundary condition of (A-17). In many

oh oh
cases the terms (5--)2 and (a--)2 are negli
r z

(A-17) reduces to

NELNNEL
Y 5t Z 8z

This boundary condition (equation A-21) h
Reilly (1984). Equation (A-21) describes

gibly s

as been

a cond
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mall compared to = so that
z

(A-21)

|
|

used by Neuman (1972) and

ition in which the downward




vertical flow per unit area in the free surface is equal to the release of water
from storage per unit area by gravity drainage. Whereas (A-17) is a difficult
condition to utilize either analytically or in simulation, (A-21) can be
approximated readily in a model by adding a row at the top of the mesh in

which only the processes of water table storage and vertical flow are simulated.

A-III Approximation of the Flow Equation in the Radial Flow Model

The differential equation (A-16),

can be rewritten
KL 982h a2h ah
Zimr TR o

(A-22) is obtained by noting that

ah ah 3(in 1 ah
on . n.1 (A-23)
ar 3(Inr) ar ra(inr)
and, differentiating (A-23) with respect to r,

2 2

3°h 1 3 ah ah -1 1 3%h 1 3h

> T = * - T IS 22 (A-24)

ar r ar 3(Inr) 3a(Inr) re r' 3(in r) r- 3(In r)

Substituting (A-23) and (A-24) into (A-16) yields equation (A-22).
Referring to figure A-3, the finite difference approximation for

32h
5 at a node i,j in a finite difference mesh in which columns (index j)
3(In r)

are spaced at uniform intervals of In r, while rows (index i) are spaced at

uniform intervals of z, is given by

3Zh hi, j-1 +hi,j+1 = 2hi j
( 2 19J = 2 (A-25)
3(In r) (ATn r)
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2
. . . o 3" h
Similarly the finite difference approximation for — at node i,j is

32°
ah hiclsj + hi+l,j - 2hi,j
(—)i,j = - (A-26)
9z (az)
- : N ah . .
The finite difference approximation for s is given by
*
ah hi,j - hi,j
T — (A-27)

st At
*

Where hj j denotes the head at the central node, (i,j) at a time At
prior to the time at which the heads of equations (A-25) and (A-26) are
taken,

Substituting (A-25), (A-26) and (A-27) into equation (A-22), and setting

r=rj, where rj is the radius associated with node i,j gives

KL hi,j-1 * hi j+1 = 2hy j . K hi—1,j * hi+1,j = 2hi,j

Z
sy A(In r)2 (a2)
* (A-28)
o Mad ML
At

It may not be immediately apparent that the model utilized in the radial
flow problem developed in this report addresses a system of equations of
the form of (A-28). The following development is presented to demonstrate
this,

Figure A-4 shows a sketch of a cylindrical volume element which contains
the central node, i,j. In the finite difference formulations used in our
model, inflow to node i,j in the outward radial direction is given by

~-2nK| Az

— (hi,j - hi,j-l) (A-29)

Qi,j-1/2 =
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Figure A-4.--Cylindrical element volume con/Laining the node i, j.



r-+1
where o is the ratio 2 which is assumed constant through the mesh and was
P
J
taken as 2 in our simulation.

hij = Mi,j-1 . . .
The term : in equation (A-29) can be considered a finite
n o

difference approximation to the term )at the inner radius, rj.i/2, of

oh
3(In r
the volume element, since In o is equivalent to (1In rj = 1In rj_l).
Radial outflow from node i, j to node i,j+1l is given by
-2nKLaz

———(hi,j41 = hi,g) (A-30)

Qi j+1/2 ==

Vertical inflow in the upward direction from node i-1,j to node i,j is
given by
Kzm(r2 54172 = r?j-1/2)

Q-1/2,5 = . (hi,j = hi-1,j) (A-31)

While vertical outflow from node i,j to node i+l,j is given by

Kz (r2j41/2 = r2j-1/2)
AZ

Q%+1/2,j = (hj+1,5 = hi,j) (A-32)

In equations (A-31) and (A-32), the term n(r2j+1/2 - rzj_l/z) is given

approximately by the expression

“("23'+l/2 = rzj-]_/Z) = ZTH"J‘A!" (A-33)
where
Ar = Pj+1/2 - rj_l/z
and the expression becomes exact if rj falls at the arithmetic midpoint of
rj-1/2 and rjs1/p. Substituting (A-33) into (A-31) gives
-KZ‘ZﬂP-Ar‘

-—————-1—-(h1,j - hi.1,5) (A-34)

Qi-1/2,j = "
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Again using a finite difference approx
by the term rja(In r), where a(in r) n
rj-1/2 to rj+172. This follows from t

~A(In r)

imation, the term aAr may be replaced
ow represents the change in 1n r from

he approximate relation

. 3(Inr)

1
= — A-35
Ar ar r ( )
This gives
=K 2nr 2p(1n rﬂ
G-1/2,§ = — (hi,j = hi-1,;) (A-36)
In the same way we have for (A-32)
=K 2nr 2A(1n r)
Qi+1/2,§ = ——— (his1,j = hi,j) (A-37)

Az

The rate of accumulation of water in SL

orage bt node i,j is approximated by

*
v, hij - M.
— = 5" 0201 ;A PA 7 e (A-38)
dt J At
or again using rj A(lIn r) for Ar,
*
dv hi,' ‘hi,'
— = S'arr A (In ripz—2 23 (A-39)

dt
Equating the difference between total
of accumulation in storage gives
Qi,j-1/2 = Qi,j+1/2 *
2rK Az

h: 5.9 + hy i41 = 2hy ) +
—— (ni,j-1 * hij+1 i,j)

= S'anjzA(ln r

5

At

inflow and total outflow to the rate

Qi-1/2,5 = Qi+1/2,j =
2rk,rifa(in r)
Az

{ *
hi,j = hi,j
Az
t

(hj-1,j + hi+1,j - 2h4,5)

(A-40)




or, dividing by 2razrj2a(in r) we have

KL

(hi,j-1 + i 541 = 2hj ) +
rjzA(]n r)(In o) »J »J 1sJ

Kz
(AZ)2 (h1'1sJ + h'i"'lsj - 2h193) =
*
hi,' - hi,'
gt 23 1a (A-41)

At

The inner and outer radii of the annular volume element of figure A-4,

rj-1/2 and rjs+1/2, were chosen so as to be given by

/2
Fj- = Iy (A-42)
j-1/2 i 2a

ri+1/2 = alrj f — (A-43)

Thus these radii have the same ratio as do successive node radii,

that is r
L, (A-44)
j=1/2
and A(In r) = In(rj+172) = In(rjo172) = Ina (A-45)

Therefore, substituting In a for A(In r) in (A-41) we have

KL

————r(hj,j-i +hi,j41 - 20i5)
rj (]n a)

Kz

+ 5 (h'i-l’j + hi‘l'].,j - Zhi,j)
(az)
*
hs s = hs s
Y 1,J 15J (A-46)
At
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Which is identical to equation (A-28). Thus the model used in our
problem actually addresses a set of difference equations of the form of

(A-28), and simulates the differential equations of (A-22) or (A-16).
|
|
Errors in the finite difference approx?mation are influenced by the

choice of the outer and inner radii, r. and r , for the shell used
j-1/2 jt+l/2

in developing equation (A-29) through (A-46). An argument can be made that

r. 12 should be chosen so as to fall at the arithmetic midpoint of the
J-
interval between rj.1 and rj, since in this case the relation of (A-33) would

be satisfied exactly; an argument can also be made (Azis and Settari, 1979)
for choosing rj.j/2 to equa]-—-—;;7F1—IS In any case, the errors associjated
with different choices of the intermediate radii will vary with the problem
being simulated. The choice of intermediate radii which we utilized is
intuitively appealing in that it provides an even distribution of storage

and vertical conductance around each node; however, it does noi guarantee
that errors in the results will be minimum. One final point which should

be noted is that any errors introduced by the choice of intermediate radii
can be reduced by reducinga , i.e. the rat%o c%:i, in the design of the

mesh. The closer « is to unity, the closer together all of the possible

choices of intermediate radius will be.




A-IV - Answers to exercises and the radial-flow problem

Exercise 1:
Differentiate equation (4) with respect to r to show that it is a solution
to the differential equation (equation 3).

Equation (4) is :
Qu

2nKb

h = Inr+C (4)

The terms %Kb and C in equation 4 are constants. The derivative of

In r with respect to r is given by:
d(dnr) = 1
r r

Thus, when both sides of equation 4 are differentiated with respect

to r we obtain:

do- g 1
dr 2nkb r

This is equation 3, therefore equation 4 satisfies equation 3 and

is a solution to the differential equation.

Exercise 2:
To obtain equation 7, use equation 5 to calculate hl and

h, at r  and r respectively. This gives:

2 1
h =he = —— (In re) + (Inr))
2n Kb 2n Kb
and
QW
h2 = he - (In re) + (Tn rz)
2n Kb 2nKb

where the equation for h2 is the same as equation 6 in the text. If we
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subtract h1 from h2 as follows:

h h h W (1 ) + i (Inr,) =h
- = - nr -
2 21 Kb N 27 7€
|
Qw |
+ (In re) - (Inr)
27 Kb 2n Kb

the result is,

hz - hl

[}

(Inr, -[n rl)
2w Kb

which is equation 7.

Exercise 3: Calculation of radial conductances in table 1.

In all cases Cp = 150 gpd/ft. This| is becbuse in all cases rz/rl= 2, or

r,= 2rl To for calculate radial cohductanbes, use equation 10 to get:
2nkb (ry +r,)/2

r =

C

substituting 2rl for r, gives:

2nkb (3r,)/2

"y

()
-
1]

3nkb.

The final expression for the radial|conductance is independent of r.

60



Exercise 4:
Verify that for any radius, r,, the area between ry v275 and ry is
equal to the area between r, and ry/8/5.

The area between ry/2/5 and ry is:

A]. = ﬂ[raz - (Pav’m)zj

wry? (1 - 2/5)

v r 2 (3/5)

and the area between ry/8/5 and ry is:

Ay = nl(r/BT5)% - r,2]

r 2 (85 - 1)

nra? (3/5) = A

Thus, Ay = Ao,

RADIAL-FLOW PROBLEM:
Parts 1-3. See figure A-5 for the radii and depths
Part 4. They are cylindrical shells of rectangular cross section. From

the top they look like donuts.
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|
|
\
Part 5. The lateral conductances are calculated using, equation (13):
nkiaz
Cp = and 1n 2 = 0.693 .
In 2 |
Block Lateral Conductance
2nx 25 x 0.1 1
A 0.693 22.7
B = A= 22.7
C =A+G=22.7 + 9067 = 9090
D = C = 9090
2rx 20 x 100
E 0.693 = 18,130
F = E = 18,130
2nx 10 x 100 |
G* 0.693 =

9067

*G may be as low as 9062 if you

for v,

Fn]y use three significant digits

Part 6. Note that ri+] = 2rj; seé figur% A-5 for answers.
\
Part 7. Note that Aj41 = 4A;j(except for:columns 1 and 16); see figure
A-5 for answers,
Part 8. There are two equivalent methods of calculating vertical
conductance:
2
a) Equation (17): C, L3
AZ
77K,
Note that is constant between any
| AZ
two|rows. |Between rows 4 and 5 it equals
|
0.1885 gpd/ft.

b)

C; = (Area calculate

|

id for question 7) x K/Az
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= 1.012 x 108

Column Vertical conductance
number Method (a) Method (b)
1 1/2(0.1885 x 12) (1.886 x 1)/20
= 0.09425 = 0.00943
2 (0.1885 x 22) (15.082 x 1)/20
= 0.754 = 0.754
3 (0.1885 x 42) (60.33 x 1)/20
= 3.016 = 3.016
4 (0.1885 x 82) (241.3 x 1)/20
= 12.064 = 12.065
14 (0.1885 x 81922) (2.53 x 108 x 1)/20
= 1.265 x 107 = 1.265 x 10/
15 (0.1885 x 16,3842) (1.01 x 109 x 1)/20
= 5.060 x 107 = 5,05 x 10/
16 1/2(0.1885 x 32,7682) (2.02 x 109 x 1)/20

= 1,01 x 108

Discrepencies between methods (a) and (b) are due to round-off error.

Values from method (a) are shown on attached figure A-5.

Note that Cy . = 4 Cy,  (except for columns 1 and 16, which use 1/2
J+l J cells in the calculation).
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Part 9. There are two equiva]ent‘methods of calculating storage capacity:

a) Equation (18): sc = 6mS'Az 1 2
ﬂ_

Note that 6nS'Az 1is constant
!

along any row. For row 7 it equals

6r (10-6) 20 = 7.540 x 10-5
5

For row 8 it equals

6n (10-6) 10 = 3.770 x 10-5

b) SC = (Area calculated for question 7) x S' x Az
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For row 7:

Column
number

1

14

15

16

Storage capacity

Method (a)

1/2(7.540 x 10-5) 12
= 3,770 x 10-5
(7.54

= 3.

(7.540 x
= 1.206 x 10-3

(7.540 x 10-5) 81922
= 5,060

(7.540 x 10-5) 16,3842
= 20,240

Method (b)

1.886 x 10-6 x 20
= 3,772 x 10-5

15.082 x 10-6 x 20
= 3.016 x 10-4

60.33 x 10-6 x 20
= 1,207 x 10-3

241.3 x 10-6 x 20
= 4,826 x 10-3

(2.53 x 108) x 106 x 20
= 5,060

(1.01 x 109) x 10-6 x 20
= 20,200

1/2(7.540 x 10-5) 32,7682 (2.02 x 109) x 10-6 x 20

= 40,480

= 40,400

Discrepencies between methods (a) and (b) are due to round-off error.
Values from method (a) are shown on attached figure A-5.

Note that 5Cj41 = 4 SCj (except for columns 1 and 16)

For row 8, all values are 1/2 the value for the same colulmn in row 7

because Az is now 10 instead of 20.
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The water released by a l1-foot drop in head in the block at row 7,
column 16 is calculated by multiplying, S¢, which has units of square feet,

by 1 foot. So, |
|
A storage = 40,480 ftZ x 1 ft |
40,480 ft3
302,830 gallons

10. See figure A<5. |
The simulated discharge from each node #epresenting the screen is

|

|

Q/2, or 125,000 gallons per day.

Table A-1 gives the answers for ta&]e 2 on the calculation of stream

functions.
Figure A-6 gives the answers for tﬂe stream function calculations shown

on the model array.

The final flow net is shown in figure A-7, This is a quantitative flow

net that shows the pattern of flow|in the simlated system.
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Column Number, J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Radius 1 18 32 B4 128 258 512 1024 2048 40968 8192 18,384 32,768
Row | I I | l I I Intermediate
No.I  Depth depths
22.
R o e
—25
2 50 . R Semlconfumnq . R !
bed
| 9080 9090 75
3 100 e—90—0 0 (C ¢—e¢—o0—0—0—0—¢D ¢—0—0__0o—c¢
| o £ —110
o :
4 1 20 [ 3 9 - Y h & . 5. £- r Y Y -y - - o Q é-
o A V]
:: o'.‘bh 0.0\ \q,«cﬁ \‘]'_eo I § ;'“8 —130
5 140 : _j 8- 8- o 8- 8- o rY & 5. y' rY o <
.&_;5 18,130 Aquiter 18,130 150
6 160 (3ED¢ oy 08 en o [ [ ] ° [ ] . ° ] ° [ ]
8 & & 8 E F 170
X ?‘— 8
7 180 0,’? ¢5°~'S;J Jeo [P . ° ° ' ° I.{ ° ° ° b£ Lbé‘" @b
) p7
1.8d5x |1.508X|8.030x]2.413X G ,530 [10,120{ 20240 190
8 200 1%—%2— 62— 1;_{— —o—l—o—l—o—'— _l—o_|_o—l —.—I—o— —— | —0—| —200
y 2.530 10.119 40.477 161.9 847.6 2,591 5,181 10,382
'mmdiusme 1.285 5.080 20.238 80.95 3238 1,208 20,724
Area  1.888[15.082(80.33| 241.3|985.2|3,881| 154 | 818 | 2.47 | 0.88 [ 305 | 158 [ 632 | 253 | 1.01 | +—2.02x109
x10* ' x10*' x105 ' Xx108' x10% ' x107' X107 x10® ' x10°
| .
[J constant head
O Well screen

Figure A-5--Answers shown on model node array and volume elements used in
calculating simulation coefficients.
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Table - A-1
Table 2--Answers
Work Sheet for the Calculation of Stream Functions
Head drop Latera Flow through Cumulative Stream-
Between Hydraulic Conductance Flow Function
Columns Conductance [Block Value
Between Ah CL Q zQ 1 -ZQ
columns Row QT
(ft) (gpd/ft) _(gpd) (gpd) (unitess)
15 & 16 8 0.02 9,067 181 181 0.9993
7 0.02 18,130 \ 363 544 0.9978
6 0.02 18,130 - 363 907 0.9964
5 0.02 18,130 - 363 1,270 0.9949
4 0.02 18,130 363 1,633 0.9935
3 0.02 9,090 182 1,815 0.9927
2 0.01 45.4 0 1,815 0.9927
1 0 22.7 0 1,815 0.9927
14 & 15 8 0.26 9,067 2,357 2,357 0.9906
7 0.26 18,130 4,714 7,071 0.9717
6 0.26 18,130 4,714 11,785 0.9529
5 0.26 18,130 ,714 16,499 0.9340
4 0.25 18,130 | »532 21,031 0.9159
3 0.25 9,090 ! 5272 23,303 0.9068
2 0.12 45.4 5 23,308 0.9068
1 0 22.7 0 23,308 0.9068
13 & 14 8 1.02 9,067 »248 9,248 0.9630
7 1.02 18,130 18,490 27,738 0.8890
6 1.01 18,130 18,310 46,048 0.8158
5 1.00 18,130 18,130 64,178 0.7433
4 0.99 18,130 17,950 82,128 0.6715
3 0.97 9,090 8,817 90,945 0.6362
2 0.49 45.4 - 22 90,967 0.6361
1 0 22.7 0 90,967 0.6361
12 & 13 8 1.91 9,067 17,318 17,318 0.9307
7 1.90 18,130 34,450 51,768 0.7929
6 1.89 18,130 34,270 86,038 0.6558
5 1.87 18,130 3%,900 119,938 0.5202
4 1.85 18,130 33,540 153,478 0.3861
3 1.81 9,090 16,453 169,931 0.3203
2 0.91 45.4 41 169,972 0.3201
1 0 22.7 } 0 169,972 0.3201
|
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Table A-1 (continued)
Table 2--Answers (continued)
Work Sheet for the Calculation of Stream Functions

Head Drop Lateral ‘Flow through Cumulative Stream-
Between Hydraulic Conductance Flow Function
Columns Conductance Block Value
Between Ah CL Q zQ 1 - ZQ
columns Row T
(ft) (gpd/ft) (gpd) (gpd) (unitless)
11 & 12 8 2.42 9,067 21,942 21,942 0.9122
7 2.43 18,130 44,060 66,002 0.7360
6 2.44 18,130 44,240 110,242 0.5590
5 2.42 18,130 43,870 154,112 0.3836
4 2.37 18,130 43,000 197,112 0.2116
3 2.32 9,090 21,089 218,201 0.1272
2 1.16 45.4 53 218,254 0.1270
1 0 22.7 0 218,254 0.1270
10 & 11 8 2.43 9,067 22,033 22,033 0.9119
7 2.57 18,130 46,594 68,627 0.7255
6 2.86 18,130 51,852 120,579 0.5181
5 2.85 18,130 51,670 172,149 0.3114
4 2.52 18,130 45,690 217,839 0.1286
3 2.34 9,090 21,271 239,110 0.0436
2 1.16 45.4 53 239,163 0.0433
1 0 22.7 0 239,163 0.0433
9 & 10 8 1.64 9,067 14,870 14,870 0.9405
7 2.20 18,130 39,890 54,760 0.7810
6 3.82 18,130 69,260 124,020 0.5039
5 3.80 18,130 68,890 192,910 0.2284
4 2.18 18,130 39,520 232,430 0.0703
3 1.60 9,090 14,544 246,974 0.0121
2 0.78 45.4 35 247,009 0.0120
1 0 22.7 0 247,009 0.0120
7& 8 8 0.21 9,067 1,904 1,904 0.9924
7 0.65 18,130 11,780 13,684 0.9453
6 6.14 18,130 111,320 125,004 0.5000
5 6.13 18,130 111,140 236,108 0.0596
4 0.65 18,130 11,780 247,888 0.0084
3 0.21 9,090 1,909 249,797 0.0008
2 0.09 45.4 4.1 249,801 0.0008
1 0 22.7 0 249,801 0.0008
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Part 11. Calculate the lateral hydrau]ic}conductivity of the aquifer

using the drawdown at the well and equation (22), which is:
S
K = 2rbsy In{re/ry)
a) re = 500 ft
250,000 gpd 500
K= 2r (40 ft) (64J5 ft) In T 1) = 95.8 gpd/ft2
b) re =100 ft 5 K= 71.02 gpd/ft?
¢) re =1,000 ft ; K = 106,53 gpd/ft?

Actually, K = 100 gpd/ft2
Discussion:

Before discussing the relation
it is useful to discuss the physical
Equation 22 is based on the Thiem eq
this equation). The Thiem equation
purely one-dimensional radial proble
distance re. In a field case (or a
flownet), the flow field and boundan
In our flownet, the source of water
but rather is leakage from above ove
causes vertical movement which is no
The well is partially penetrating wh
Thus, the field situation is much mo
equation 22,

However, as stated in the probl
of the head loss occurs close to the

radial form in the screen zone in th

the formula may have some relevance.

between the computed K value and rg
perspective that equation 22 implies.
uation (equation 20 is one form of

is the mathematical solution to a

m with a constant head boundary at
more realistic problem such as our

y conditions are rarely that simple.
is not a constant head source at re

r the entire problem domain. This

t consistent with the Thiem assumptions.
ich also induced vertical movement.

re complex than that represented by

em, if we assume that essentially all

nd flow occurs in a purely

well a

is area close to the well, then use of

We are left however, with two problems,
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1) we do not know and can not measure an effective radius rg that is
appropriate and 2) we know that these assumptions are not completely correct.
In many cases (perhaps even most cases), however, these assumption are
reasonable. In these cases, estimating various effective radii give a

good estimate of the general range of values for the hydraulic conductivity.

In our problem, the actual hydraulic conductivity was 100 gpd/ftz.
Estimates using three very different effective radii gave a range of 71
to 107 gpd/ft2. This range gives a good indication of the actual hydraulic
conductivity. Thus, this formula, based on a overly simplified system
has value in quantifying field hydraulic conductivities.

In response to the relationship between hydraulic conductivity and
effective radius, as can be observed in equation 22, the hydraulic
conductivity (K) is proportional to the natural logarithm of the effective
radius (In rg). Thus, as rg increases so will K. Conceptually, the flow net
shows that only a part of the well discharge, Qy, occurs within the screened
interval at any given radial distance from the well; and that only a part
of the total head loss, sy, (or hg - hy), occurs within any arbitrarily
chosen "radius of influence", re. To the extent that the actual flow within
the screened interval is less than Q, we are using too large a flow
value in our calculation, and our method will overestimate K; when we
choose a large value of rg, this tends to be the case, because the further
we are from the well, the greater the percentage of the flow that falls
outside the screened interval. To the extent that the head loss within
our assumed value of rg is less than the full head loss in the flow
pattern, we are using too great a head loss value in our calculation and
our method will underestimate K; when we choose a small value of rg, this
tends to be the case, as a greater proportion of the total head loss then

occurs beyond rg.
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Part 12. Calculate T and K from distance - drawdown plots of heads at depths
of 100 feet, 140 feet and 180 feet below the top of the confining layer

using equation (25):
dh = 2.3 Qy
d (Togig r) 2r i
The distance drawdown plots for depths of 100 ft, 140 ft, and 180 ft are
shown on figure A-8., Graphically estimated slopes over 1 log cycle are:
a) 0.3 ft for the 100 ft deep curye, b) 21.5 ft for the 140 ft deep
curve, and ¢) 1.1 ft for the 180 ft deep curve. The calculations for
transmissivity and estimates of hydraulic|conductivity using thicknesses
of 100 and 40 ft are as follows:

a) 100 feet deep
0.3 ft = 2.3 (250,000 gpd),

1 2T ;s T = 305,000 gpd/ft
using b = 100 ft, K = 3,050 gpd/ft2
b) 140 feet deep
21.5 ft = 2.3 (250,000 gpd$
1 2T ; T = 4,260 gpd/ft
using b = 100 ft, K = 42.6 gpd/ft2

40 ft, K = 106 gpd/ft2

using b

c) 180 feet deep

1.1 ft = 2.3 (250,000 gpd)
1 onT ;3 T = 83,200 gpd/ft

using b = 100 ft, K = 832|gpd/ft2
|

|
|
|
|
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Discussion:

Discrepancies are due to the
does not take into account the ve
leakage from the overlying confin
pattern into the vertical interva
above and below the screened inte
depths--are relatively low becaus
When these Tow

depths are small.

discharge of the well in equation

fact that the distance-drawdown approach
rtical movement of water caused by

ing unit, or the convergence of the flow
1 tapped by the screen. Radial gradients
rval--that is, at the 100 ft and 180 ft

e the radial flow components at these
gradie‘ts are associated with the full

(25), unreasonably high values of

transmissivity are calculated. D

ivision by the aquifer thickness yields

correspondingly high values of hyhrau]ic conductivity. At the 140 foot

depth, the radial gradient reflects approximately the full discharge of

the well, distributed through a forty-fobt thickness of flow. When this

gradient is used in equation (25)

together with the full thickness of the

aquifer, 100 feet, a transmissivity is calculated which is only about 40

percent of the actual aquifer tra

divided by the full aquifer thick

!

smissivity. If this transmissivity is

ess, the resulting hydraulic conductivity
\

is similarly about 40 percent of the act#a] value. However, if the

calculated transmissivity is recognized as referring primarily to the

screened interval, and is divided

the resulting hydraulic conductivi

value.

of the flow regime, over most of {

is measured, is slightly greater t

The semilog plot of heads at

increasing distance from the well

taken as Qy, the discharge from th

The six percent discrepang

just by the thickness of that interval,
ty is relatively close to the true

y arises because the actual thickness
he int?rva] in which the semilog slope

han th# screened interval.

the 140 foot depth flattens out with

In equation (24), the flow rate is

e well, and the vertical thickness of




the flow is taken as b, the aquifer thickness. Because these terms are
both constants, we are led to the conclusion that the slop of the semilog
dh
plot, =———, should be constant--that is it should not vary with r,
d(]og10 r)
nor in fact with z. Our flownet, however, as well as the calculations we

have just done, show that these assumptions do not fit our problem very

well. A more general expression for the slope of the semilog plot would

be:
dh 2.3 Q(r,zl)
————— (r’zl ) T et m—
d log, . r 2rKaz
dh 10
where ———— (r,zl) represents the slope of a semilog plot of head vs.
d 10910 r

radial distance, in which the heads are all measured along a line of
fixed elevation, Z, 3 and Q(r,zl) represents the discharge flowing radially

toward the well at the elevation z, , or actually through a small increment

1

of height, Az, which is centered on z OQur flownet shows us that

L
if the elevation Z is within the screened interval--for example, the

140 foot depth--the flow Q(r,zl) must increase as we approach the well,

for two reasons: first, the total flow in the system increases as we
approach the well due to vertical accretion through the confining bed;

and second, the flow must converge vertically into the screened interval

as we approach the well. Thus, since Q(r,zl) increases with decreasing r,
the slope of the semilog plot must do the same. At radial distances

which are close to the well, both processes -- vertical accretion and

flow convergence -- are essentially complete; the total flow is distributed

more or less uniformly through a thickness equal to the screened interval.

At these distances, therefore, the slope of the semilog plot at the 140
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foot depth appears to be constant;| and equation (24) gives a reasonable
description of that slope so long as b is taken as the screened interval
rather than the aquifer thickness.| With fincreasing distance from the

well, as Q(r,zl) decreases, the slppe must decrease.

Part 13. Calculate the time of travel through the 0.4 to 0.5 stream
tube using equation (27):
At = qs,

where: V = A 2nrg

For these calculations, the area (A) is obtained by graphically

estimating the area between the .4 stream tube and the .5 stream tube in

the r-z plane as shown on figure A+9. The calculations for each segment are:

Segment 1:
A= 2,700 ft2, ro =250 ft, V= 4.24 x 105 ft3
[
0.2 V
At = —————— = 253 days
3,350 ft3/d
Segment 2:
A = 5,300 ft2, o =750 ft, V= 2.49 x 107 ft3
0.2 V |
At = ————— = 1,490 days
3,350 ftd/d
Segment 3:
A = 11,000 ft2, r. = 1,500 ft, V = 1.04 x 108 ft3
0.2 V \
At = ———r = 6,210 days

3,350 ftB/d
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Segment 4:

A = 12,600 ft2, r. =2,500 ft, V = 1.98 x 108 ft3
0.2 V
At = =————— = 11,800 days
3,350 ft3/d
Segment 5:
A = 14,400 ft2, r. =3,500, V = 3.17 x 108 ft3

0.2 V

At 18,900 days

3,350 ft3/d
Time of travel through the entire stream tube equals the sum of all segments

which is 38,700 days, or 106 years.
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