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CONVERSION FACTORS

Multiply By To obtain

foot (ft) 0.3048 meter

mile (mi) 1.609 kilometer

acre 0.4047 hectare

square mile (miz) 2.590 square kilometer

inch per year (in/yr) 25.4 millimeter per year

foot per second (ft/s) 0.3048 meter per second

foot per day (ft/day) 0.3048 meter per day

gallon per minute (gal/min) 0.06308 liter per second

million gallons per day (Mgal/d) 0.04381 cubic meter per second

square foot per day 0.09294 square meter per day
(££2/4)

Sea level: 1In this report "sea level" refers to the National Geodetic
Vertical Datum of 1929--a geodetic datum derived from a general adjustment of
the first-order level nets of both the United States and Canada, formerly
called "Sea Level Datum of 1929."



SIMULATION OF GROUND-WATER FLOW IN THE ST. PETER AQUIFER
IN AN AREA CONTAMINATED BY COAL-TAR DERIVATIVES,
ST. LOUIS PARK, MINNESOTA

By D. L. Lorenz and J. R. Stark

ABSTRACT

A model constructed to simulate ground-water flow in part of the Prairie
du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to
test hypotheses about the movement of ground water contaminated with coal-tar
derivatives and to simulate alternatives for reducing the downgradient move-
ment of contamination in the St. Peter aquifer. The model, constructed for
a previous study, was applied to simulate the effects of current ground-water
withdrawals on the potentiometric surface of the St. Peter aquifer. Multi-
aquifer wells served as conduits for vertical exchange of water from the
St. Peter aquifer to the Prairie du Chien-Jordan aquifer. Model simulations
predict that the multiaquifer wells have the potential to limit downgradient
migration of contaminants in the St. Peter aquifer caused by cones of depres-
sion created around the multiaquifer wells. Differences in vertical leakage
to the St. Peter aquifer may exist in areas of bedrock valleys. Model simula-
tions indicate that these differences are not likely to affect significantly
the general patterns of ground-water flow.

Model simulations also indicated that drawdown caused by pumping two
wells, each pumping at 75 gallons per minute and located about 1 mile south-
east of the source of contamination, would be effective in controlling move-
ment and volume of contaminated ground water in the immediate area of the
source of contamination. Some contamination may already have moved beyond
the influence of these wells, however, because of a complex set of hydraulic
conditions.

INTRODUCTION

Ground water in the St. Peter aquifer, St. Louis Park, Minnesota, was
contaminated by activities at a coal-tar distillation and wood-preserving
plant that operated from 1918 to 1972 (Hult and Schoenberg, 1984). Coal-tar
derivatives--a mixture of many compounds--are the major contaminants. Polynu-
clear aromatic hydrocarbons (PAH) are a class of compounds found in coal-tar
derivatives. These compounds are of particular concern to human health be-
cause some are carcinogenic (U.S. Environmental Protection Agency, 1980).

This project and report are a result of a cooperative agreement between
the U.S. Environmental Protection Agency and the U.S. Geological Survey. This
report is one of several reports by the U.S. Geological Survey that document
ground-water contamination at St. Louis Park, Minnesota. Hult and Schoenberg
(1984) present an overview of the problem. Hult (1984) and Stark and Hult
(1985) discuss contamination of the Prairie du Chien-Jordan aquifer and docu-
ment the construction and calibration of a three-dimensional ground-water-flow
model used to evaluate pumping strategies to control ground-water movement in
the Prairie du Chien-Jordan aquifer. This report evaluates various pumping
strategies to control ground-water movement in the St. Peter aquifer. The
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boundaries of the Prairie du Chien and Jordan layers also were assigned to
boundary cells in the St. Peter layer. The justification for this assignment
is that (1) at the boundaries of the modeled area, where the Prairie du Chien-
Jordan aquifer is not affected by pumping stress, water levels measured in the
St. Peter aquifer are presently similar to water levels in the Prairie

du Chien-Jordan aquifer, and (2) available data indicate that the potentiomet-
ric surface of the St. Peter aquifer has not declined significantly from 1880
to 1980. Although a downward vertical hydraulic gradient across the basal

St. Peter confining bed may have existed during the late 1800's, the vertical-
head difference between the St. Peter and the Prairie du Chien-Jordan aquifers
probably was small.

A sensitivity analysis of hydrologic properties was conducted for the
1885 steady-state calibration. During the sensitivity analysis, values were
evaluated for (1) transmissivity and vertical hydraulic conductivity for
each hydrogeologic unit in the model layers and (2) leakage to the top layer.
Values of transmissivity and leakage were varied by a factor of 2, and verti-
cal hydraulic conductivities were varied by a factor of 10. Leakage to the
top layer (St. Peter aquifer-glacial drift) was found to be the most sensitive
hydrologic property. Variation of this property resulted in about a 5- to
10-ft difference in hydraulic head in all layers. The model is not very
sensitive to changes in the values of the other properties.

The 1885 simulation was calibrated by varying values of hydraulic proper-
ties (horizontal and vertical hydraulic conductivity and leakage to the top
layer) until model-computed hydraulic head matched measured water levels
(best-match simulation). The effect of variable leakage rates (rates which
varied with the absence or presence of the overlying Glenwood Shale) to the
upper model layer on hydraulic head was examined early in the calibration
process. Because of the high transmissivity of all hydrogeologic units in the
upper model layer, the effect of variable leakage was found to be not signifi-
cant, and a uniform value was considered acceptable. Model-computed hydraulic
heads for all layers where water-level data are available were generally
within 10 feet of measured water levels. The model-computed water balance is
shown in Stark and Hult (1985).

Model calibration was improved by simulating average winter steady-state
conditions for 1970 through 1977. The period 1970 through 1977 was selected
because water-level and water-use data were available, because it was a period
of significant ground-water withdrawal, and because during this period no
significant long-term changes in potentiometric surfaces occurred in the
system.

Hydraulic heads assigned to constant-head cells at the boundaries of the
Jordan and Prairie du Chien layers were 10 to 50 ft lower than heads assigned
during 1885 simulations because the potentiometric surface of the Prairie du
Chien-Jordan aquifer changed from 1885 to the 1970's. Heads assigned to
constant-head cells at the boundaries of the St. Peter layer (layer 4), how-
ever, were identical to heads used during earlier simulations because water
levels in the St. Peter aquifer had not changed significantly (generally less
than 10 ft) from 1885 to the 1970's,
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Average annual ground-water pumpage for 19;0-77 was incorporated into
the model simulations. The pumpage used was 8.3 billion gallons per year
from 121 high-capacity wells. Most of these wells are open to the Jordan,
to the Prairie du Chien parts of the Prairie du Chien-Jordan aquifer, or
to both. Pumpage from wells that are open to only one of the two units was
assigned to the corresponding model layer. Pumpage from wells open to both
the Prairie du Chien and Jordan parts of | the Prairie du Chien-Jordan aquifer
were divided in proportion to the transmissivities assigned to the open
interval in each unit. ‘
‘ |

Sensitivity analysis was also conducted for the 1970 through 1977 cali-
bration period. Adjustments were made t¢ the horizontal hydraulic conductivi-
ty assigned to the hydrogeologic unit in|each layer and leakage to the top
layer. All values, except leakage to the top layer, were increased and de-
creased by a factor of 2.0. Leakage was|varied by about + 20 percent because
the range of possible values was known from previous studies (Larson-Higdem
and others, 1975; Guswa and others, 1982). Leakage and the vertical hydraulic
conductivity of the basal St. Peter confining unit (layer 3) were the proper-
ties to which the model was most sensitive.

Model calibration for average winter steady-state conditions, 1970-77,
was accomplished by adjusting model hydrologic properties until the average
deviation between measured water level and model-calculated hydraulic heads
was minimized. Values of the adjusted p opertits used in the calibrated model
are shown in table 1. The model-calculated potentiometric surface and water
levels measured during January and February 1978 are shown for the Prairie du
Chien layer in Stark and Hult (1985, fig. 17). The average difference between
model-calculated and field-measured water levels was 4 ft in the Prairie du
Chien or Jordan layers or both and 6 ft in the St. Peter layer.

The model-computed water budget for the simulation that most closely
matches 1970-77 winter water levels (Stark and Hult, 1985) is significantly
different from the model-calculated budget for the 1885 simulation period.
Flow into the system and discharges from|the system increased. Flow into
the system is predominantly lateral inflow to the St. Peter aquifer (layer 4)
and leakage to the top layer. The increased flow into the system was caused
by increased pumpage, which lowered the hydraulic head in the aquifers and
changed their vertical and horizontal gradient.| Modeled lateral outflow
increased because hydraulic heads were lowered in constant-head cells along
the southern and eastern boundaries of the model. The hydraulic heads were
lowered to reflect the effects of pumping stress outside the modeled area.

Transient C libratﬂon

| l
Transient simulations of the origin$1 mode] were conducted to further
refine values of hydrologic properties and to test assumptions of aquifer
storage. The period 1977-80 was selected for transient simulation because
water-use and seasonal potentiometric-surface data were available and because
changes in seasonal potentiometric surfaces, as/ great as 50 feet, had occurred.
|

\
|
\




Table l1.--Values of model hydrologic properties

(1970's steady-state simulation)

[K,, vertical hydraulic conductivity; K,, horizontal hydraulic conductivity;
ft/d, feet per day; in/yr, inches per year; NA, not applicable]

Horizontal
hydraulic
Hydrogeologic conductivity Thickness Anisotropy Leakage
unit (ft/4d) (feet) (Kz/Kx) (in/yr)
Glacial drift 180-160 variable 1.0 x 107> to NA
(Layers 1-4) 4.5 x 10°°
St. Peter aquifer 20 135 14 5.5
(Layer 4)
Basal St. Peter 20 30 4.5 x 1072 NA
confining unit
(Layer 3)
Prairie du Chien- 136-56 125 1 NA
group part of
Prairie du Chien-
Jordan aquifer
(Layer 2)
Jordan Sandstone 118-25 80 .1 NA

part of Prairie
Chien-Jordan
aquifer (Layer 1)

1Ranses in values reflect changes to model properties to account
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Each year in the period 1977-80 was ivided into three pumping seasons.
Each pumping season consisted of four t1 e stepi The "seasons" were selected
to simulate potentiometric-surface chang s resulting from measured changes in
pumpage in the model area, and to reflec seasonal variability in water with-
drawals. Changes in pumpage outside the |south and east boundaries of the
modeled area, primarily in downtown Minn apolls were simulated by changing
values of constant head at the boundarie e |pumping seasons are "spring"
(January-April), "summer" (May-September), and fall" (October-December).
Average seasonal water use was estimated for each season. Summer water use,
which averaged about 33 Mgal/d, was about 1.7 times the average spring and
fall rates of use. Because estimated ground-water withdrawals represent
seasonal averages, and because continuous water:level data are not available
for the aquifers, the model could not be\calibr ted for intervals shorter than

a pumping season.

The initial hydraulic heads for the [first seasonal simulation (spring
1977) were the heads calculated in the 1970-77 steady-state simulation. The
hydraulic heads calculated in each seasonal simulation were used as the start-
ing hydraulic heads in the simulation of the next season. Boundary hydraulic
heads assigned to constant-head cells in'the Jordan and Prairie du Chien
layers were modified before each seasonal simulation to reflect measured
changes in head at the southern and eastern boundaries of the model.

Values of hydrologic properties from the 1970-77 steady-state simulation
were used as initial values for transient simulations. Initial values of
aquifer storage coefficients were from Norvitch and others (1974) (table 2).

Sensitivity testing showed that tramsient simulations were not greatly
affected by variations in values of storage because equilibrium conditions
were approached quickly during each pumping season. Only 1 percent or less of
model inflow comes from storage on the basis of model-calculated water-balance
statistics for a typical season (Stark and Hult, 1985).

Model-calculated values of hydraulic head from transient simulations
generally are within 10 ft of measured water levels. Transient-model water-
balance statistics for January 1979 (spring pumping season) are similar to
water-balance statistics for the 1970-77 steady-state model. The similarities
indicate that the system approaches steady-state conditions each winter and
that the steady-state model can be used to approximate fall through spring
conditions in the aquifer. These data also indicate that average yearly with-
drawal data are good approximations of withdrawal rates for the fall and
spring pumping seasons. Differences between water-balance statistics for the
June 1979 (summer pumping season) simulation and for the January 1979 (spring
pumping season) simulation reflect the effects of increased summer withdrawals
in the modeled area and changes in hydraulic head at the boundaries because of
increased withdrawals outside the modeled area.
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Table 2.--Initial values of aquifer-storage coefficients
for transient model calibration

[Norvitch and others (1974)]

Hydrogeologic unit Storage coefficient

Glacial drift 1x 1074
(Layers 1-3)

Basal St. Peter aquifer 1x 1074
(Layer 4)

St. Peter confining unit 1x107°
(Layer 3)

Prairie du Chien group 4 x 1074

part of Prairie du Chien-
Jordan aquifer
(Layer 2)

Jordan Sandstone part of 7 x 10°°
Prairie du Chien-
Jordan aquifer
(Layer 1)
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St. Peter aquifer, March through May 1980.
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Table 3.--Measured water levels in the St. Peter aquifer and simulated
hydraulic heads in the St, Peter aquifer model layer,

March through May (spring pumping seasomn) 1980

‘ | Head, in feet
above sea level

Well Location

Map letter Meﬁsured Simulated Head
(fig. 8) Row Column water level head difference
A 5 28 858 869 +11
B 6 6 909 : 905 -4
c 6 18 857 : 879 +22
D 22 22 ' 867 867 0
E 24 23 ‘868 | 865 -3
F 26 26 861 | 860 -1
G 35 16 858 856 -2
H 36 5 868 878 +10
I 36 32 845 837 -8
J 36 34 830 | 833 +3
K 37 30 842 835 -7
L 38 13 836 | 838 +2
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