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CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATIONS

Multiply By To _obtain
acre 0.4047 hectare
acre-foot 1,233 cubic meter

acre 4, ou7 ’ square meter
|
i
|
!
|
|

cubic foot per second 0.02832 cubic meter per second
foot 0.3048 meter

gallon 3.785 liter

inch 2.54 centimeter

mile 1.609 kilometer

square mile 2.590 square kilometer

ton (short, 2,000 pounds) 0.9072 megagram

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius
(°C) as follows:

°C = 5/9 (°F -~ 32)
Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit
(°F) as follows: ‘

°F = 9/5 (°C) + 32
Sea level: In this report, "sea level" refers to the National Geodetic
Vertical Datum of 1929--a geodetic datum derived from a general adjustment of

the first-order level nets of the United States and Canada, formerly called
Sea Level Datum of 1929.

Abbreviatiods
kg/d kilogram per day
mg/kg milligram per kilogram
mg/L milligram per liter
mm millimeter
pCi/L picocurie per liter
ug/L microgram per liter
um micrometer
uS/cm microsiemens per centimeter
at 25 degrees Celsius T
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SELENIUM AND ASSOCIATED TRACE ELEMENTS IN SOIL, ROCK, WATER,
AND STREAMBED SEDIMENT OF THE PROPOSED SANDSTONE

RESERVOIR, SOUTH-CENTRAL WYOMING

By David L. Naftz and C.S. Venable Barclay

ABSTRACT

The proposed Sandstone Reservoir is currently (1990) being considered by
the Wyoming Water Development Commission to store unused and unappropriated
water in the Little Snake River drainage basin in south-central Wyoming. The
reservoir, on Savery Creek about 10 miles upstream from the confluence with
the Little Snake River, would impound 52,000 acre-feet of water. As part of
the environmental assessment for the project, the U.S. Geological Survey
investigated the possible effects that filling the reservoir might have on
selenium and associated trace-element concentrations in reservoir water and
bottom sediment,

The mean concentration of selenium (0.38 milligrams per kilogram) in soil
samples collected inside the proposed reservoir boundary was slightly larger
than the mean concentration of selenium in soils from selected areas of
Montana and Wyoming. Results of sequential extractions on six soil samples
indicate the largest concentrations of selenium are associated with the more
resistant geochemical phases. These resistant phases will not be readily
soluble during initial saturation of the soils by water from the reservoir.

The concentration of selenium in most of the samples of clastic rocks
collected in the drainage basin of the proposed Sandstone Reservoir generally
was within the normal range of values reported for similar lithofacies in
Upper Cretaceous and Tertiary rocks of the Western United States (0.1 to
1.0 milligrams per kilogram). Substantial selenium enrichment (up to
150 milligrams per kilogram) was determined for uranium-bearing rocks
collected near the Ketchum Buttes uranium deposits in the reservoir drainage
basin.

Concentrations of selenium, arsenic, molybdenum, and uranium in water
samples from the study area did not exceed the U.S. Environmental Protection
Agency recommended maximum concentration for public-water supplies. The
largest concentrations of dissolved plus suspended selenium (3 milligrams per
liter) and arsenic (22 milligrams per liter) and gross-alpha activity were
determined for water samples from streams that drain the Ketchum Buttes
uranium deposits. Concentrations of total arsenic, total uranium, and
suspended gross-alpha activity in surface-water samples were related posi-
tively to discharge during runoff from lowland snowmelt in the reservoir
drainage basin.

Concentrations of selenium and arsenic in streambed-sediment samples from
inside the drainage basin of the proposed reservoir decreased (selenium
decreased from 1 to less than 0.5 milligrams per kilogram and arsenic
decreased from 7 to 5 milligrams per kilogram--both in the less than
53-micrometer size fraction) in a downstream direction toward the proposed



damsite.

The largest concentrations of selenium (1.1 milligrams per kilogram)

and arsenic (7.0 milligrams per kilogram) were determined in streambed-

sediment samples from Little Savery Creek,
material from the Ketchum Buttes uraniu
(0.1 to 1.1 milligrams per kilogram) in

|

hich receives weathered detrital
deposits. Selenium concentration
streambed-sediment samples from

streams in the drainage basin of the proposed reservoir usually was less than

the selenium concentration (0.9 to 8

milligrams per kilogram) in

bottom-sediment samples from areas in Wyoming and Utah that possess potential

selenium toxicity to plants and animals.

INTRODUCTION

The Wyoming Water Development Commission is currently (1990) considering
the construction of a reservoir to storé unused and unappropriated water
resources in the Little Snake River basin, south-central Wyoming, for both in-

basin and out-of-basin needs.

Cretaceous age, the Browns Park Formatio
landslide deposits of Quaternary age derive
and near the proposed reservoir (pl. 1). O
others (1961, p. 13-22), sediments deposite
United States are locally seleniferous an

The proposed Sandstone Reservoir would store
runoff from most of the Savery Creek drainage basin (fig. 1).

Marine rocks of
of Tertiary age, and alluvial and
from these rocks are present in
the basis of data in Anderson and
by Cretaceous seas in the Western
are potential parent materials of

seleniferous soils. Furthermore, concentrations of selenium greater than
100 mg/kg have been reported in rock samples from the Browns Park Formation
upgradient of the proposed reservoir (Dribus and Nanna, 1982, p. 62).

Water from the proposed Sandstone Reservoir will flood soils and rock
outcrops containing potentially large concentrations of selenium. Flooding of
seleniferous soils could increase the selenium and associated trace-element
concentrations in the reservoir water by dissolution, desorption, and oxida-
tion of selenium-bearing materials. The reservoir also has the potential to
receive increased amounts of selenium from weathering and washoff of selenif-
erous materials in the drainage area of |the proposed reservoir. By deter-
mining the selenium available for dissolution, desorption, and oxidation in
the area flooded by the proposed Sandstone [Reservoir and in the drainage area
of the proposed reservoir, the potential for water-quality degradation can be
assessed and possible mitigation implemented. An investigation conducted by
the U.S. Geological Survey in cooperation with the Wyoming Water Development
Commission was designed to provide infarmation about the potential for
selenium and associated trace elements to contaminate water stored in the
proposed Sandstone Reservoir.

Purpose and Scope

This report describes the range of selenium and associated trace-element
concentrations in soil, rock, water, and streambed-sediment samples in the
drainage area of the proposed Sandstone Reservoir. The concentrations of
selenium and associated trace elements were determined only for scil samples
collected in the area to be flooded by the proposed reservoir. Partial-
dissolution techniques were used to determirje the potential for the dissolu-
tion and mobilization of total selenium in soils to be flooded by reservoir
water.


































features are areally more extensive along the east side of Savery Creek, where
springs are numerous near the unconformable contact of the westerly dipping
Browns Park Formation and the underlying Cretaceous rocks (Barclay, 1976).
Both large, composite landslide deposits and much smaller, discrete slumps and
flows are in the vicinity of the proposed reservoir; these features range in
size from a few acres to several hundred acres. A minimum of 14 landslides
will be at least partially inundated by the reservoir when it is filled to the
normal pool elevation (Rollins, Brown, and Gunnell, Inc., 1982, p. 9). Only
the large, composite landslide deposits are shown on plate 1.

Occurrence of Coal, Uranium, and Copper

The site of the proposed Sandstone Reservoir is near the eastern margin
of the Little Snake River coalfield (Ball and Stebinger, 1910) and the Little
Snake River Known Recoverable Coal Resource Area (KRCRA) (Barclay and others,
1978; Dames and Moore, 1979a-e). Coal in the mapped area occurs in the lower
part of the Allen Ridge Formation and in the upper part of the Mesaverde
Group. A few thin coal beds are exposed near the base of the Allen Ridge
Formation on the north side of Big Sandstone Creek in the NW 1/4 sec. 31,
T. 14 N., R. 88 W. (pl. 1). Several thick coal seams crop out along Loco
Creek above the sandstone of Loco Creek in the upper part of the Mesaverde
Group. In the upper part of the Mesaverde Group near Savery, small amounts of
coal are currently being mined for local, household use. Coals in the
Mesaverde Group vary in rank from volatile bituminous C to subbituminous A
(Ball and Stebinger, 1910; Hatch and Barclay, 1979). About 263 million short
tons of demonstrated reserve-base coal were identified in the Mesaverde Group
in eight recently denied Preference Right Lease Applications south and west of
the proposed Sandstone Reservoir site (U.S. Bureau of Land Management, 1988,
p. 1.

No occurrences of uranium mineralization have been identified in the area
of the proposed Sandstone Reservoir. However, uranium mineralization is
regionally ubiquitous (Dribus and Nanna, 1982; Weaver and others, 1978) in the
Browns Park Formation, and it has been found in the northern part of the
Savery Creek drainage basin (fig. 3). In that area, uranium-bearing minerals
are present most commonly as vug and fracture fillings or surface coatings in
brecciated and silicified limestone, and to a lesser extent as disseminations
in limonitic fluvial sandstone (Vine and Prichard, 1959). Uranophane and
meta-autunite are the principal uranium-bearing minerals in the mineralized
areas of the Browns Park Formation in, and adjacent to, the drainage basin
(Dribus and Nanna, 1982; Finch, 1967). Schroeckingerite, carnotite, weeksite,
and sabugalite also have been described as constituents of these uranium-
bearing rocks (Dribus and Nanna, 1982; Gruner and others, 1956; Magleby and
Mallory, 1954). Small amounts of uranium ore were produced from the Del Oro
No. 2 claim near Ketchum Buttes in sec. 8, T. 15 N., R. 89 W., and the Cloudy
Group claims in sec. 18, T. 15 N., R. 88 W. (Dribus and Nanna, 1982, p. A-8,
A-9; Elevatorski, 1976, p. A-8). Analyses of rock samples collected near
Ketchum Buttes indicate a uranium-oxide (U40q) content of 0.02 to 0.8 percent
(Magleby and Mallory, 1954, p. 12). Additionally, small amounts of uranium
(mostly <0.01 percent U30g) have been detected in both the basal conglomerate
and the overlying sandstone unit of the Browns Park Formation south of the map
area on plate 1.
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Uranium is present in radioactive, Precambrian, quartz-pebble conglomer-
ates that are exposed on the northwestern flanks of the Sierra Madre in the
eastern part of the Savery Creek drainage basin (Borgman and others, 1981;
Dribus and Nanna, 1982; Graff, 1978; Graff, 1979, p. 149-157; Graff and
Houston, 1977; Houston and Ebbett, 1977; Houston and others, 1977; Houston and
others, 1978; Karlstrom, Houston, Flurkdy and others, 1981; Karlstrom,
Houston, Schmldt and others, 1981). The source of the radioactivity is
probably the placer concentrations of zircon, a silicate of zirconium with
small amounts of uranium; thorium-rich monazite, a phosphate of the cerium
(Ce, La, Dy) metals; huttonite(?); a thorium-cerium silicate; and mixtures of
monazite and huttonite(?) (Karlstrom, Houston, Flurkey and others, 1981,
p. 139-142). Similar Precambrian conglomerates in the Medicine Bow Mountains
east of the study area contain the uranium-thorium silicates uranothorite,
thorogummite, and coffinite (Houston and others, 1979, p. 38-39). These
qQuartz-pebble conglomerates may be the source for some of the uranium mineral-
ization in the Browns Park Formation in the Ketchum Buttes and adjacent areas
of the Savery Creek drainage basin.

Copper and minor amounts of other assochated base and precious metals are
in the formerly mined deposits in the Encampment Mining District of the Sierra
Madre (Spencer, 1904). The copper is primarEly in sulfide minerals that are
associated with Precambrian mafic igneous rocks (Houston and others, 1975).

Laboratory Methods

The chemical analyses of the soil, rock, and streambed-sediment samples
were conducted by the U.S. Geological Survey laboratory in Arvada, Colo., and
by the Montana Bureau of Mines and Geology in Butte, Mont. Concentrations of
total selenium and arsenic (digestion by nitric, sulfuric, and perchloric
acids) were determined by automated continuous-flow hydride generation coupled
with atomic absorption spectrometry (Briggs and Crock, 1986). Inductively
coupled argon plasma-optical emission spectrometry was used to determine the
total concentrations (digestion by aqua regia and hydrofluoric and perchloric
acids) of additional and trace elements other than selenium and arsenic (Crock
and others, 1983).

Operationally defined geochemical-phase determinations were performed
sequentially on selected dried soil samples by the U.S. Geological Survey
laboratory in Arvada, Colo., using a procedure developed by Steven Wilson
(U.S. Geological Survey, written commun., 1988). The procedure is described
in Supplement 1 at back of the report. Ihe selenium concentration of each
geochemical phase was determined by hydrlde\generatlon coupled with atomic
absorption spectrometry. 1

Chemical analyses of the water samples were conducted by the U.S.
Geological Survey laboratory in Arvada and by Barringer Laboratories, Inc.,
Golden, Colo. Dissolved trace-element concentrations were determined by
methods described in Skougstad and others (1979). Methods used for the
determination of radiochemical concentrations and activities are described in
Thatcher and others (1977).
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Geochemical data from the NURE (National Uranium Resource Evaluation)
program (Dribus and Nanna, 1982) were compiled for areas in the drainage area
of the proposed Sandstone Reservoir. Analytical methods that were used for
the NURE data are described by Dribus and Nanna (1982, p. 3-6).

OCCURRENCE, MOBILITY, AND TOXICITY OF SELENIUM

Large concentrations of selenium are common in rocks associated with
uranium roll-front deposits (Levinson, 1980, p. 880, 885). Roll-front uranium
deposits form as oxidizing meteoric solutions moved through the host sandstone
and dissolved the readily oxidizable minerals, such as pyrite (Howard, 1977).
As a result of the dissolution of pyrite and other minerals, the solution
begins to lose its oxidizing potential, resulting in the precipitation of
iron, selenium, and uranium minerals. As this process continues over millions
of years, selenium becomes increasingly concentrated in the roll-front
deposit.

Uranium deposits are present in the Browns Park Formation of Neogene age
in south-central Wyoming (Bradley, 1964, p. A57; Dribus and Nanna, 1982,
p. 57-65; Osterwald and others, 1966, p. 204-205). Known uranium deposits are
in the northwestern part of the drainage area of the proposed Sandstone
Reservoir (fig. 3).

The selenium in high-temperature sulfide ores and uranium roll-front
deposits is bound in sulfide minerals and is also common as native selenium
and selenide minerals (Coleman and Delevaux, 1957; Davidson, 1963; Howard,
1977), such as ferroselite (FeSej), clausthalite (PbSe), stilleite (ZnSe),
cadmoselite (CdSe), berzelianite (Cu%fe), and eucairite (AgCuSe). Polymetal-
lic sulfide minerals have been noted by Osterwald and others (1966) in the
copper mines and prospects in the eastern part of the drainage area of the
proposed Sandstone Reservoir area (fig. 3).

Selenium also is associated with fine-grained marine sediments in Upper
Cretaceous formations throughout the Western United States (Howard, 1977).
Because soils derived from these Cretaceous rocks comprise large areas of
farmland in the Western United States, a large volume of selenium data has
been collected. Seleniferous soils in Montana, North Dakota, South Dakota,
Wyoming, Nebraska, Kansas, and Colorado are derived primarily from sedimentary
rocks of Late Cretaceous age (Anderson and others, 1961, p. 24). Rocks of
Cretaceous age are present in the drainage area of the proposed Sandstone
Reservoir area (fig. 2).

The mobility of selenium in the surficial environment depends on the
oxidation state. 1In oxygenated waters, the Se(IV) oxyanions HSeO; and Se0%~
are strongly adsorbed by ferric oxides inzghe pH range of 2 to g (Howarg,
1977). The selenate Se(VI), oxyanion SeO4 1is neither strongly adsorbed nor
does it form insoluble compounds (Howard, 1977), resulting in its mobility in
oxidizing and alkaline waters (Levinson, 1980, p. 880; Rose and others, 1979,
p. 23-25). Surface water from the drainage area of the proposed Sandstone
Reservoir has a pH greater than 8.0 and total alkalinity (as CaCO3) ranging
from 83 to 186 mg/L, creating the potential for the transport of the selenate
oxyanion Se07”.
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Although selenium is recognized as an essential element in the diets of
many species, including humans, it can be toxic in large concentrations
(National Academy of Sciences and National Academy of Engineering, 1973,
p. 316). The toxic effects of selenium are variable and depend on the
chemical species of the selenium, the type and age of the organism affected,
the duration of exposure, the type of diet, and the presence and concentra-
tions of other elements, such as arsenic (National Academy of Sciences, 1977).
The only documented case of selenium toxicity to humans from a water source
(uncomplicated with selenium in the diet) concerned a 3-month exposure to well
water with a selenium concentration of 9 mg/L (National Academy of Sciences
and National Academy of Engineering, 1973, p. 86). Because of the lack of
data on the toxic effects of selenium in humans when ingested with water, it
is recommended that public water-supply sources contain no more than 0.01 mg/L
selenium (National Academy of Sciences and National Academy of Engineering,
1973, p. 86). It is recommended also that the maximum concentration for
selenium in livestock water be 0.05 mg/L (National Academy of Sciences and
National Academy of Engineering, 1973, p. 316).

Selenium in water can be toxic in all trophic levels of the aquatic food
chain. The ecological effects of selenium on aquatic organisms are summarized
by Deverel and others (1984). Selenium may concentrate in primary producers,
such as algae, and consequently may be bioconcentrated in more complex organ-
isms, such as invertebrates, fish, and waterfowl. Lemly (1985) determined a
bioconcentration factor (the concentration of selenium in the organism divided
by the concentration of selenium in the water) of 3,975 for tissue samples
from a largemouth bass in a reservoir receiving selenium from fly-ash ponds.

SELENIUM AND ASSOCIATED TRACE ELEMENTS
Soils

The total selenium concentration in soil samples, which were collected
inside the boundary of the proposed Sandstone Reservoir during July 1986,
ranged from 0.2 to 0.9 mg/kg (table 1). The largest selenium concentrations
of 0.9 to 1.3 mg/kg were determined for soil samples from sites S0-28-1,
S0-28-2, and SO-40-A (pl. 1). Of the six soil samples with a selenium concen-
tration greater than 0.5 mg/kg, four of the samples were from soils developed
from alluvial materials (pl. 1). Large selenium concentration in soils devel-
oped from alluvial materials indicates transport of selenium into the area
from other areas of the drainage basin. Sources of selenium in the drainage
basin include Cretaceous rocks (fig. 2) and uranium and copper occurrences to
the north and east of the reservoir (fig. 3).|

Leaching of selenium by periodic satu&ation of and percolation through
the alluvial soils could cause selenium to accumulate in deeper soil horizons.
According to Ronald Tidball (U.S. Geological Survey, oral commun., 1986), the
largest concentration of selenium in soils in the San Joaquin Valley of
California was present at 66 to 72 inches below the surface. Four sites, on
soils overlying alluvial material inside the proposed reservoir boundary
(pl. 1), were sampled to determine the changes in total selenium content with
depth. Soil samples were collected at depths to 3.7 feet below the land
surface. Although selenium concentration in these samples differed with depth
(fig. 4), no distinctive trends were detected, and the selenium concentration
did not exceed 0.9 mg/kg.
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Table 1.--Total selenium concentration in soil samples from the proposed
Sandstone Reservoir area to total selenium concentration in soil samples
from selected areas of Wyoming and Montana

[Detection ratio, number of samples with concentrations greater than detection
limit to the total number of samples. <, concentration less than indicated
detection 1imit for that analysis]

Sample- Total selenium concentration,
collection in milligrams per kilogram
locality Detection ratio Range Mean
Proposed Sandstone 40:40 0.2-0.9 0.38

Reservoir area

Powder River Basin, 57:64 <0.1-2.2 .30
Wyoming and Montana'

Big Horn Basin, 18:36 <0.1-1.1 .10
Wyoming'

Wind River Basin, 17:36 0.1-0.4 .10
Wyoming'

' Data from Ebens and Shacklette (1982)

The mean concentration of total selenium in soil samples from the
proposed Sandstone Reservoir area (mean = 0.38 mg/kg, number of samples = 40)
was compared to the mean concentration of selenium in soil samples from other
areas of Wyoming and Montana (table 1). The mean concentration of selenium in
soil samples from inside the proposed reservoir boundary was slightly larger
than the mean concentration of selenium in soils from selected areas of
Montana and Wyoming.

Soil samples from sites S0-28-1, S0-28-2, and SO-40-A, which have total
selenium concentrations of 0.9 to 1.3 mg/kg, were analyzed for an additional
31 trace elements. The results of these additional analyses (table 2)
indicate that most concentrations of trace elements were below expected
background concentrations in soils. Arsenic and molybdenum concentrations
were less than the detection limits of the laboratory analytical method used
for the analysis (table 2). Concentrations of barium, chromium, lead,
lithium, nickel, vanadium, and zinc were larger than the expected background
concentrations in soils.
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Figure 4.--Total selenium concentration in soil samcﬁes collected from different depths at sites

inside the boundary of the proposed Sandstone Reservoir.
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Table 2.--Concentrations of trace elements in selected soil samples with
selenium concentration of 0.9 to 1.3 milligrams per kilogram in soils sampled

[<, concentration less than indicated detection limit for that analysis;
--, no data]

Concentrations of trace elements, in milligrams per kilogram

Background
Soil sample Soil sample Soil sample concentration

Element S0-28-1 S0-28-2 SO-40-A in soils"
Arsenic <10 <10 <10 5
Barium 600 610 520 500
Beryllium 2 2 1 6
Bismuth <10 <10 <10 -
Cadmium 2 <2 <2 1
Cerium 61 64 54 5
Chromium 97 96 g4 50
Cobalt 1" 10 10 10
Copper 22 21 21 20
Europium 2 <2 2 --
Gallium 12 12 12 -
Gold <8 <8 <8 .001
Holmium <Y <Ay Y --
Lanthanum 34 36 31 -
Lead 21 18 16 20
Lithium 33 34 30 30
Molybdenum <2 2 2 2
Neodymium 32 33 27 --
Nickel 33 34 35 30
Niobium 7 6 7 15
Scandium 9 ] 8 -
Silver <2 <2 <2 .
Strontium 120 140 110 -
Tantalum <40 <40 <40 -
Thorium 10 10 9 13
Tin <20 <20 <20 10
Uranium <100 <100 <100 ]
Vanadium gl 99 89 80
Yttrium 18 19 18 -
Ytterbium 2 2 2 -
Zinc 91 85 78 50

' Background concentration in soils as reported by Levinson (1980).
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Extractable Selenium Concentration

Although the total selenium concentration was determined for all soil
samples, additional information was needed to determine the total selenium
concentration that might be dissolved and mobilized when soil will be satu-
rated as the reservoir fills with watex. Partial-dissolution techniques,
commonly called sequential extractions, have been used in environmental
(Cutter, 1985 and 1986; Mahan and others, 1987; Tessier and others, 1979) and
geochemical exploration (Chao, 1984) wdrk to determine empirically the
geochemical phase(s) with which the trace elements of interest could be
associated. Conceptually, each of the operationally defined geochemical
phases can behave differently under varying environmental conditions. Recent
results from Gruebel and others (1988) have indicated that sequential-
extraction techniques for selenium and argenic can produce unreliable results
Wwith respect to concentrations of selenium jand arsenic associated with both
the iron-oxide and organic phases; theﬂefore, results of the sequential-
extraction experiments from this study need to be used with caution.

Sequential extractions were conducted on six soil samples collected from
sites inside the boundary of the proposed rieservoir. Selenium concentration
in each of four geochemical phases and total selenium concentration in each
sample are listed in table 3. The largest concentration of selenium is
associated with the organic-matter and iron- and manganese-oxide phase, with
small concentrations of selenium associated with the water-soluble, weak
ion-exchange, and moderate ion-exchange phases. Because only small selenium
concentrations are associated with these phases, initial saturation of the
soil by construction of the reservoir will not release most of the selenium
concentration in the soil. The selenium associated with the iron- and
manganese-oxide phase will be relatively stable under oxidizing conditions.
Under possible reducing conditions on the reservoir bottom, the iron- and
manganese-oxide phase could become soluble, and the selenium probably would be
transformed to the immobile selenide phase. Horowitz and others (1988) found
that arsenic associated with iron and manganese oxides was remobilized under
reducing conditions in reservoir sediments and then reprecipitated in the
insoluble sulfide phase.

Analysis of Selenium Variance

The number of samples needed to define the concentration of selenium in
soil to be saturated by construction of Sandstone Reservoir is related
directly to the homogeneity of the soil. f the concentration of selenium is
homogeneous in all of the soil inside the reservoir boundary, then one sample
anywhere inside the reservoir boundary wili accurately represent the selenium
concentration in the soil, assuming no iampling and analytical errors.
However, many different variables affect the selenium concentration in the
soil beneath the proposed Sandstone Reservoir. For example, the concentration
of selenium in a soil can be affected by different components of the total
variance (for example, geology, geography, time, and analytical method). If
these components of variance are not assessed, the adequacy of the soil
sampling to determine the baseline selenium concentration in soil cannot be
evaluated.
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Table 3.--Concentration of selenium in each of four geochemical phases
for selected soil samples

[Concentration in milligrams per kilogram; <, concentration less than
indicated detection limit for that analysis]

Concentration of selenium for indicated geochemical phase’

Water- Organic
soluble matter and
Soil-sample and weak Moderate iron and
number ion- ion manganese Residue Total
(p1. 1) exchange exchange oxide material selenium?
S0-28-1 0.05 0.29 0.94 <0.1 1.3
S0-28-2 .02 .22 .84 < 1.1
*S0-28-2-D <.02 .53 .15 < 1.2
SO-40-A .08 .14 .87 <A .9
SO-40-B <.02 .22 .72 <1 .9
S0-47-2 .04 .04 .74 <1 .8

' Determined by sequential-extraction techniques.

? Determined by automated continuous-flow hydride generation coupled with
atomic absorption spectrometry.

* S0-28-2-D is a duplicate sample.

Because of the many variables possibly controlling the selenium concen-
tration in soil, the soil-sampling program was designed to test the geochem-
ical variability of selenium at different geographic scales as well as the
analytical variance. To calculate the significance of the variance compo-
nents, hierarchical or nested analysis of variance (ANOVA) was applied to the
soil samples collected inside the proposed reservoir boundary. For a detailed
description of the application and interpretation of nested ANOVA to soil-
sampling programs, the reader is referred to Klusman and others (1980).

An unbalanced, inverted nested-sampling design (Garrett and Goss, 1980)
was used to guide the sampling of soils inside the proposed Sandstone
Reservoir boundary (fig. 5). The four levels of the nested-sampling design
consisted of a level between 10-acre cells and three levels in the 10-acre
cells. The three levels in the 10-acre cells consisted of samples collected
200 feet apart, at various depths, and replicate samples for quantitative
analytical determinations.

Sampling locations were selected by assigning numbers to every 10-acre
cell inside the proposed reservoir boundary and then randomly selecting the
assigned numbers of 10-acre cells where soil samples would be collected. Soil
samples of the B-horizon were collected at 26 10-acre cells inside the pro-
posed reservoir boundary (fig. 6). In six of the 10-acre cells, an additiona’

21



PROPOSED SANDSTONE RESERVOIR
10-ACRE CELLS (NUMBER=26)

LEVEL 1
LEVEL 2
LEVEL 3 L il L] L ﬂi.
LEVEL 4
6 6 O 00k 0ed 40000 6 6 66 60Béb 060005 bbb0Bos b0

SAMPLES (NUMBER=45)

EXPLANATION

LEVELS USED FOR ANALYSIS OF
VARIANCE OF SELENIUM
CONCENTRATION IN SOIL SAMPLES

1 Variance between 10-acre celis
(26 samples)

2 Variance in 10-acre cell of samples
collected 200 feet apart
(6 samples)

3 Variance in 10-acre cell of samples
from different depths (8 samples)

4 Variance in 10-acre cell of
analytical erIicates (5 samples)

Figure 5.--Unbalanced, inverted nested-sampling design showing levels used for the analysis of variance of
selenium concentration in soil samples collected inside l*:undary of the proposed Sandstone Reservoir.
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107°22'30" 107°21°15"
I EXPLANATION

10-ACRE SAMPLING
CELL--Selected randomly

SOIL-SAMPLING SITES

¢ B-horizon soil sample
A A- and B-horizon soil sample

BOUNDARY OF PROPOSED
SANDSTONE RESERVOIR

41°10'—

41°07'30" —

o
25

] MILE
T
0 5 KILOMETER

Figure 6.--Location of soil-sampling sites used for the analysis of variance of selenium concentration in
soil samples collected inside boundary of the proposed Sandstone Reservoir.
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B-horizon soil sample was taken 200 feet in a random direction from the first
B-horizon sample (fig. 6). 1In eight of the 10-acre cells, soil samples of the
A- and B-horizons were collected. Five of the 40 samples collected were split
and analyzed in duplicate.

The purpose of this sampling design was to measure the geographic
variance of the concentration of selenium in the soil to be flooded by the
proposed Sandstone Reservoir. The sample variance (s2) for this soil was
partitioned according to the following variance components:

2 2 2 2 2
Stotal ~ S(between 10-acre cells) * S(200 eet) T S(depth) M s(analytical).

The analytical variance included errors because of sample inhomogeneity and
sample preparation.

The variance ratio (v) was computed to|estimate the importance of any one
variance component. The variance component| between 10-acre cells was compared
to the variance components in the 10-acre cells (200 feet + depth + analyt-
ical) by the equation

N 52
Vv _ ” (between 10-acre cells) ,
Dv i s2 + 32 | + s2
(200 feet) * 5(depth) * S(analytical)

vV =

where Ny is the estimated variance component between 10-acre cells, and Dy is
the estimated variance component in the 10-acre cells. The larger the vari-
ance ratio, the more likely that the variance associated with a regional scale
(between 10-acre cells) is significant. For example, a chemical constituent
having a large variance ratio has a large variance exhibited between 10-acre
cells. This distribution of variance would indicate that the variation in
selenium concentration in soil can be described with a small number of
samples. In contrast, a small variance ratio would indicate a large part of
the total variance is associated with small-scale variance component (in
10-acre cells), which would prohibit meaningful representation of the selenium
concentration in soil in areas farther than 200 feet apart.

In addition to using the variance ratio as an indicator of data reli-
ability, the variance ratio also can be used to estimate the minimum number of
samples that need to be collected in a specﬁfic unit area (Klusman and others,
1980, p. 46). This technique is useful |for identifying the number of soil
samples needed to accurately depict the mean selenium concentration in soil in
a specified unit cell. The variance ratio (v) can be used to determine the
number of random soil samples needed per cell (in a 10-acre cell) at the 80-

and 95-percent confidence intervals, as shown in figure 7.

An assessment of spatial variation of selenium inside the boundary of the
proposed Sandstone Reservoir indicated that one level of the sampling design
(between 10-acre cells) accounts for about 80 percent of the measured selenium
variation (fig. 8). The measured variation in the other three levels of the
sampling design (less than 200 feet, depth, and analytical) indicated a com-
bined variation of about 20 percent. The distribution of variance indicates
that trends in selenium concentration in the soil would be most evident
between 10-acre cells.
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Table 6.--Selenium and arsenic concentrations and specific conductance in surface-water samples
collected in and near the drainage area of the proposed Sandstone Reservoir

[--, no data; <, concentration less than indicated detection 1imit for that analysis; E, estimate]

Specific
conductance
Stream- (micro-
flow siemens per
Samp1ing Time (cubic Concentrations, in micrograms per liter centimeter at

site (24- feet per Selenium Selenium Arsenic Arsenic 25 degrees

(fig. 10) Date hour) second) (total) (dissolved) (total) (dissolved) Celsius)
SW86-1 07-23-86 0850 495 < - <1 -- 495
SW86-2 07-23-86 1000 12 <1 -- 2 -- 204
SW86-3 07-23-86 1310 34 a1 -- 5 -- 390
Sw86-4 07-23-86 1500 52 a -- 3 -- 350
Sw87-1 04-02-87 1600 118 1 -- 4 -- -
Sw87-2 04-02-87 1730 -- <1 -- a -- -
SW87-3 04-03-87 1610 -- 2 «1 9 1 --
04-04-87 1630 -- 2 -- 14 -- 205
04-05-87 1630 -- a -- 10 -- 195
04-06-87 1630 -- a -- 15 -- 185
04-07-87 1630 -- 3! -- 22 -- 205
04-08-87 1630 - 9] - 13 -- 205
04-09-87 1630 -- 2 -- 5 -- 205
04-10-87 1300 -- 2 -- 8 -- 260
04-11-87 1250 -- <1 -= 5 -- 245
04-12-87 1250 -- a1 -- 4 -- 245
04-15-87 1250 -~ 3! -- 7 - 240
04-16-87 1250 - <1 - 10 - 183
04-17-87 1250 -- a -- 9 -- 200
04-22-87 1250 -- 1 -- 7 -- 322
04-22-87 1830 -~ a 3! 3 2 330
04-23-87 1830 -~ a -- 6 -- 300
04-24-87 1830 - <1 -- 4 -- 272
04-25-87 1830 -- 3! -- 5 -- 268
04-26-87 1830 -- <1 -- 6 -- 259
04-27-87 1830 -- a -- 5 -- 266
04-28-87 1830 -- <1 -~ 4 -- 267
04-29-87 1830 -- <1 -- 4 -- 259
04-30-87 1830 -- «a -- 4 -- 268
05-01-87 1830 -~ <1 -- 5 -- 268
05-02-87 1830 -- <1 -- 4 -- 269
05-03-87 1830 -~ <1 -~ 4 -- 291
05-04-87 1830 -- <1 -- 4 -- 292
SWa7-4 04-04-87 1700 - 1 - 3 -- -
04-22-87 1900 3.6 1 -~ 1 -- 460
SW87-5 04-04-87 1100 25 1 a 3 a --
04-22-87 1730 5.5 3! a 1 <1 570
SW87-6 04-02-87 1730 -- 1 -- 1 -- -
04-04-87 1200 74 3 3! 8 2 --
04-22-87 1400 16 1 1 4 3 550
05-07-87 1100 -- 1 -- 6 -- 570
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Table 6.--Selenium and arsenic concentrations and sgecific conductance in surface-water samples
collected in and near the drainage area of the proposed Sandstone Reservoir--Continued

Specific
conductance
Stream- (micro-
Tlow siemens per
Samp1ing Time (cubic Concentrations, in micrograms per liter centimeter at
site (24- feet per Selenium Selenium Arsenic Arsenic 25 degrees
(fig. 10) Date hour) second) (total) (dissdlved) (total) (dissolved) Celsius)
Sw87-7 04-04-87 1600 E80 1 <1 3 <1 --
Sw87-8 04-04-87 1505 -- 1 <1 2 1 --
04-22-87 1630 9.3 2 1 4 3 440
SW87-9 04-04-87 1500 E20 1 <1 3 < -
04-22-87 1630 1.9 <1 e 1 1 1,000
SW87-10 04-04-87 1300 31 <1 <1 4 2 -~
04-22-87 1200 42 <1 <1 3 2 278
Swa7-11 04-04-87 1310 41 <1 <1 5 1 --
04-22-87 1230 42 < <1 3 2 247
SW87-12  04-05-87 1800 -- 1 j- 6 -- 205
04-06-87 1800 -- 1 - 6 -- 205
04-07-87 1800 - 1 4- 5 -- 210
04-08-87 1800 - 1 - 5 -- 225
04-09-87 1800 -- 1 -- 5 -- 225
04-15-87 1145 -- <1 -- 9 -- 224
04-16-87 1145 - <1 - 17 - 194
04-17-87 1145 - <1 - 8 -- 175
04-22-87 1100 -- <1 <1 3 2 295
05-06-87 1715 -- <1 - 3 - 227
SW87-13 04-22-87 1500 .34 1 1 1 <1 420

Total arsenic discharges were calculated for selected sites (SW86-1
through SW86-4) on streams in and near the proposed reservoir area during July
23, 1986 (fig. 11). The analytical detection limit for selenium of 1 ug/L was
not exceeded in any of the samples; therefore, no selenium discharges could be
calculated for sites SW86-1 through SW86-4. The largest total arsenic dis-
charge calculated was 0.43 kg/d for site Swi6-3 at the inlet to the proposed
Sandstone Reservoir (fig. 11). Arsenic discharge calculated for site SW86-4
on Savery Creek downstream of the proposed dam site was nearly the same as the
arsenic discharge at the proposed inlet site (SW86-3). Calculated arsenic
discharge for sites SW86-1 and SW86-2 (Little Sandstone and Big Sandstone
Creeks) was small (fig. 11).
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SAMPLING SITE

Figure 11.--Total arsenic discharge in streams in and near the proposed Sandstone Reservoir,
July 23, 1986.

Discharges of total selenium and arsenic also were calculated for 11
sites in the drainage area of the proposed Sandstone Reservoir during April
1987. The purpose of this sampling was to determine possible source areas of
trace-element discharge to the proposed Sandstone Reservoir during runoff from
lowland snowmelt. DeLong (1986, p. 8) determined that runoff in ephemeral and
intermittent streams is enriched by the "flushing" of salts from normally dry
channels and other basin surfaces. Selenium and arsenic associated with salt
crusts and fine materials in ephemeral and intermittent channels could be
mobilized during runoff associated with snowmelt. The largest estimated total
selenium and arsenic discharge in tributaries to Savery Creek was calculated
for site SW87-6 on Little Savery Creek (figs. 12 and 13), just upstream of the
confluence of Little Savery and Savery Creeks (fig. 10). The estimated total
selenium discharge calculated for this site was 0.54 kg/d (fig. 12), and the
estimated total arsenic discharge was 1.45 kg/d (fig. 13). Part of Little
Savery Creek and some of its tributaries drain the Ketchum Buttes uranium
deposits, an area in which large concentrations of selenium and arsenic have
been detected in rock samples.
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Figure 12.--Estimated total selenium discharge at sampling sites along streams in the drainage
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Figure 13.--Estimated total arsenic discharge at sampling sites along streams in the drainage area
of the proposed Sandstone Reservoir, April 1987.
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Automatic samplers were installed at sites SW87-3 (upstream of the
proposed inlet to Sandstone Reservoir) and SW87-12 (at the proposed dam site)
(fig. 10) to collect daily water samples during runoff from lowland snowmelt
in April and May 1987. Each water sample collected by the automatic samplers
was analyzed for total selenium and arsenic concentrations and specific
conductance (table 6).

Total selenium concentrations did not exbeed 2 pug/L in water collected by
the automatic samplers at sites SW87-3 and SW87-12; however, total arsenic
concentrations in the drainage area of the proposed Sandstone Reservoir were
variable during this sampling period. Peaks in total arsenic concentration at
site SW87-3 preceded the daily streamflow peaks at the Savery Creek steamflow-
gaging station (fig. 14), about 10 river miles downstream from the sampling
site (fig. 10). The positive correlation between discharge and total arsenic
concentration may indicate runoff from lowland snowmelt is an important
mechanism in supplying concentrations of total arsenic to streams in the
central part of the drainage area of the proposed Sandstone Reservoir. ,

Total arsenic concentrations were usually smaller at site SW87-12,
adjacent to the proposed dam site, compared to total arsenic concentrations
measured at site SW87-3, in the central part of the drainage area (fig. 14).
The larger concentrations of total arsenic measured at site SW87-3 probably
were because of dissolved- and suspended-arsenic concentrations from the
Ketchum Buttes uranium deposits (fig. 10) One exception to this trend
occurred on April 15 and 16, 1987 (fig. 14). During this period, the daily
total arsenic concentrations at site SW87-12 (proposed dam site) exceeded the
total arsenic concentrations at site SW87-3. This exception probably was due
to a resuspension of fine-grained sediments mobilized during previous runoff
from lowland snowmelt on April 3-13, 1987 (fig. 14).

A general increase in specific conductan¢e from about 200 to 225 pS/cm to
more than 275 uS/cm occurred after the second runoff from lowland snowmelt
(fig. 14). The increase in specific conduectance probably was because of
ground-water recharge from the alluvium. |The specific conductance of a
ground-water sample from a spring issuing from the alluvium at site GW-1
(pl. 1) was U470 uS/cm.

A water sample from a pond (SW-5) and water samples of irrigation return
flow at three sites (IR-1 through IR-3) were analyzed for concentrations of
total selenium and total arsenic (fig. 10). Selenium concentrations in these
samples did not exceed 1 pg/L, and arsenic concentrations did not exceed
4 pg/L (table 7).

Thirteen surface-water sites were sampled for radiochemical constituents
during April and part of May 1987. Dissolved gross-alpha particle activity
was used to determine areas of possible radiochemical contamination in the
drainage area of the proposed Sandstone Reservoir, If the dissolved gross-
alpha particle activity of a water sample was less than 5 pCi/L, no additional
radiochemical analysis (for example, radium-226) was needed to compare to
drinking-water maximum contaminant levels (Lappenbusch and Cothern, 1985).
Nine of the 54 samples analyzed for dissolved gross-alpha activity in the
drainage area exceeded 5 pCi/L (table 8). Seven of the nine samples exceeding
the 5-pCi/L 1limit were collected at sites on tributaries to Savery Creek
(sites SW87-4, SwW87-6, Sw87-8, SW87-9, SW87-10, SW87-11, and SW87-13), which
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Figure 14.--Total arsenic concentration, streamflow, and specific conductance, as a function of time at two
sampling sites on Savery Creek, April and part of May 1987.
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Table 7.--Concentrations of total selenium and total arsenic in water
samples from a pond and of irrigation return flow in and near
the proposed Sandstone Reservoir

[<, concentration less than indicated detection limit for that analysis]

~ Concentrations, in
Sampling micrggrams per liter
site Selenium Arsenic
(fig. 10) Date (tqtal) (total)
Pond
SW-5 07-24-86 < <1

Irrigation return flow

IR-1 07-25-86 1 1
IR-2 07-25-86 1 1
IR-3 07-25-86 1 y

drain the area in and adjacent to the Ketchum Buttes uranium deposits
(fig. 10). The remaining two samples exceeding the 5-pCi/L limit were both
collected at site SWB7-12, at the proposed dam site for the reservoir
(fig. 10). Although only nine samples exceeded the 5-pCi/L limit, future
water-quality monitoring after construction of the reservoir that includes
determination of gross-alpha activities in water samples from the reservoir
would help to monitor radiochemical contamination.

Gross-alpha particle activity of suspended sediments was measured to
determine possible sources of radiochemical contamination to aquatic organisms
in the drainage area of the proposed Sandstone Reservoir (table 8). Radioiso-
topes attached to suspended sediments or fixed to streambed sediments are
significant exposure pathways of radionuclides to aquatic organisms (National
Academy of Science, 1977, p. 272). Gross-alpha activity for 53 suspended-
sediment samples ranged from 0 to 160 pCi/L (table B). The largest gross-
alpha activity of suspended sediment (160 pCi/L) was determined for the sample
collected at site SW87-3 on Savery Creek downstream of the junction with
Little Savery Creek, which drains the Ketchum Buttes uranium deposits
(fig. 10). | .

Total uranium concentrations were measured in 49 water samples from sites
in the drainage area of the proposed Sandstone Reservoir during April and part
of May 1987. Total uranium concentrations ranged from 1.1 to 14.5 ug/L
(table 8). None of the samples exceeded the "guidance level" of 14.7 pg/L
proposed for uranium in drinking water (Yang and Edwards, 1984).
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Table 8.--Gross-alpha activity and uranium concentrations in surface-water
samples collected in the drainage area of the proposed Sandstone Reservoir

during April and part of May 1987

[--, no data; <, concentration less than indicated detection ™~
limit for that analysis]

Gross-alpha

Gross-alpha

activity, activity, Uranium, Uranium,
Sampling dissolved suspended dissolved total
site (picocuries (picocuries (micrograms (micrograms
(fig. 10) Date per liter) per liter) per liter) per liter)
SW87-1 04-02-87 3.3 4.6 1.3 3.6
SW87-2 04-02-87 0.0 2.6 1.1 2.0
SW87-3 04-03-87 1.7 33 2.0 7.8
04-04-87 .2 110 - 8.5
04-05-87 .3 100 -- 6.7
04-06-87 0.0 120 -- 9.3
04-07-87 1.7 160 -- 9.8
04-08-87 .9 42 -- 5.9
04-09-87 1.7 36 -- 4.6
04-11-87 2.5 28 -- 2.9
04-12-87 4.3 26 -- 2.9
04-15-87 2.6 b2 -- 3.7
04-16-87 3.4 38 -- 5.0
0b4-17-87 1.9 39 -- 5.3
04-22-87 3.7 31 -- 7.4
04-22-87 3.4 1 -- by
04-23-87 .3 7 -- 3.4
04-24-87 .5 15 -- 4.1
04-25-87 T 14 - 2.9
0U4-26-87 1.0 2 -- 2.8
04-27-87 1.1 7 -- 2.4
04-28-87 1.1 6 -- 3.0
04-29-87 0 9 -- 2.6
04-30-87 1.6 17 -- 3.6
05-01-87 1.8 12 -- 2.3
05-02-87 0 0 -- 2.8
05-03-87 1.2 37 -- 2.5
05-04-87 .5 1 -- 3.5
SW87-4 04-22-87 5.7 23 - h.7
SW87-5 04-04-87 2.2 -- - --
04-22-87 by it - 6.3
SW87-6 04-04-87 3.0 7 1.1 4.3
04-22-87 5.6 1.5 - 7.3
05-07-87 2.0 10 -- 7.2
SW87-7 Ol -04-87 0 10 <.3 -
Sw87-8 04-04-87 1.4 15 .5 3.1
04-22-87 5.7 1" -~ 7.7
SW87-9 04-04-87 0 19 <.3 --
04-22-87 8.7 it -- 2.4
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Table 8.--Gross-alpha activity and uranium concentrations in surface-water
samples collected in the drainage area of the proposed Sandstone Reservoir
during April and part of May 1987--Continued

Gross-alpha  Gross-alpha
activity, activijy, Uranium, Uranium,
Sampling dissolved suspended dissolved total
site (picocuries (picocuries (micrograms (micrograms
(fig. 10) Date per liter) per liter) per liter)  per liter)
SW87-10  04-04-87 2.4 0 1.2 3.4
04-22-87 5.3 36 - 4.6
SW87-11  04-04-87 0 17 1.5 1.8
04-22-87 8.0 1" - 1.1
SW87-12  04-05-87 .3 45 2.2 3.9
04-06-87 0 51 ¢ - -
04-07-87 .3 32 | -- 4.3
04-08-87 1.2 26 .3 -
04-09-87 0 30 -- 3.4
04-15-87 6.3 13 -- 5.8
04-16-87 3.4 88 -- 14.5
04-17-87 6.4 23 - 5.6
04-22-87 3.9 8 -- 3.5
05-06-87 1.0 10 | - 2.5
SW87-13  04-22-87 9.2 1 -= 8.1

|

Gross-alpha activity of suspended sedimgnts and total uranium concentra-
tions were monitored at sites SW87-3 and SH87F12 (fig. 10) during April and
part of May 1987 to evaluate the effect of runoff from lowland snowmelt on
radiochemical activity and concentrations. Similar to the total arsenic
concentrations at sites SW87-3 and SW87-12 (fig. 14), both suspended gross-
alpha activity and uranium cogggntrations indicated a positive correlation to
discharge at the Savery Creek streamflow-gaging station (fig. 15).

Ground Water

Nine ground-water samples were collected from springs and seeps in and
near the proposed reservoir (pl. 1) and analyzed for dissolved selenium,
arsenic, and molybdenum (table §). None of the ground-water samples contained
dissolved selenium or dissolved arsenic concentrations that exceeded the maxi-
mum contaminant level for selenium (10 ug/L) and arsenic (50 ug/L) in public-
water supplies as established by the U.S. Environmental Protection Agency
(1989). Except for sites GW-3 and GW-5 (in the Haystack Mountains Formation),
dissolved selenium concentrations were at or less than the detection limit of
1 ug/L. The largest dissolved arsenic concentration was 3 ug/L (site GW-1),
and the largest dissolved molybdenum concentration was 2 ug/L (site GW-8).
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Figure 15.--Gross-alpha activity of suspended sediments, total uranium concentration, and streamflow
as a function of time at two sampling sites on Savery Creek, April and part of May 1987.
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Table 9.--Concentrations of dissolved selenium, arsenic, and molybdenum and specific conductance

in ground-water samples collected in and near the proposed Sandstone Reservoir

[<, concentration less than indicated detection 1limit for that analysis; --, no data]
A
Specific
conductance
Congentrations, in micrograms (microsiemens
Sampling per liter per centimeter
site Geologic Seleniym Arsenic Molybdenum at 25 degrees
(p1. 1) Date unit (dissolved) (dissolved) (dissolved) Celsius)

GW-1 7-10-86  Alluyium <1 3 <1 470

GW-2 7-10-86 Lower nonmarine part of the <1 <1 <1 340
Allen Ridge Formation

GW-3 7-10-86 Lower nonmarine part of the 7 1 <1 <1 1,330
Allen Ridge Formation ‘

GW-4 7-10-86  Lower nonmarine part of the 1 <1 <1 520
Allen Ridge Formation

GW-5 7-24-86 Middle part of the Haystack 2 <1 1 720
Mountains Formation ‘

GW-6 7-24-86  Upper part of the Haystack <1 <1 <1 520
Mountains Formation

GW-7 7-24-86 Lower part of the Haystack 1 <1 1 610
Mountains Formation

GW-8 7-24-86  Alluvium <1 <1 2 530

GW-9 7-25-86  Alluvium <1 <1 -~ 415

In addition to the ground-water data collected by the U.S. Geological
Survey, dissolved molybdenum concentrations in ground water sampled as part of
the National Uranium Resource Evaluation (NURE) program (Dribus and Nanna,
1982) were compiled for sites in and near to the drainage area of the proposed
Sandstone Reservoir (fig. 16). Dissolved molybdenum concentration in one of
the samples from the NURE data in the drainage area exceeded 4 ug/L. The
location of this sample was in the northern part of the drainage basin, north-
east of Ketchum Buttes.

Streambed Sediment

Streambed-sediment samples were collected at six sites, one on Little
Savery Creek and five on Savery Creek, in the drainage area of the proposed
Sandstone Reservoir (fig. 17). Each sample was analyzed for concentrations of
total selenium and total arsenic in six different size fractions (figs. 18 and
19) to confirm possible source areas of selenium and arsenic to the proposed
reservoir. The concentration of selenium in streambed-sediment samples ranged
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SUMMARY AND CONCLUSIONS

The mean concentration of selenium (0.38 mg/kg) in soil samples from
inside the proposed Sandstone Reservoir boundary was slightly larger than the
range in mean concentration (0.1 to 0.3 mg/kg) of selenium in soils from
selected areas of Montana and Wyoming. The largest concentration (0.9 mg/kg)
of selenium was detected in samples of soil developed from alluvial materials,
suggesting transport of selenium into the proposed reservoir site from the
northern and eastern parts of the drainage basin. Results of the sequential
extraction of six soil samples with the largest concentration of selenium
indicate that most of the selenium is associated with the more resistant
geochemical phases. These resistant phases will not be readily soluble during
initial saturation of the soils by water from the reservoir.

Analysis of the selenium data from rock samples collected near the
proposed Sandstone Reservoir damsite indicates the smallest concentration of
selenium was present in sandstone lithofacies of the Mesaverde Group. A
somewhat larger selenium concentration was measured in relatively fine-grained
lithofacies that include olive-gray shale, grayish-brown silty shale, and
siltstone. The largest selenium concentration was in samples of carbonaceous
shale and coal. Unmineralized samples collected from the Browns Park Forma-
tion had concentrations of selenium generally less than 1 mg/kg, whereas
substantial selenium enrichment resulting in concentrations as large as
141 mg/kg was determined for uranium-bearing tuffaceous rocks collected in the
Ketchum Buttes uranium deposits. The concentration of selenium in most of the
clastiec rocks collected from the Savery Creek drainage basin generally was
within the normal range of values reported for similar lithofacies in Upper
Cretaceous and Tertiary rocks of the Western United States (0.1 to 1.0 mg/kg).

Concentrations of selenium, arsenic, and molybdenum in surface- and
ground-water samples collected in the study area were small. The concentra-
tions of total selenium and total arsenic in 61 surface-water samples did not
exceed the maximum contaminant level established by the U.S. Environmental
Protection Agency for public drinking-water supplies. The largest discharges
of selenium (0.54 kg/d) and arsenic (1.45 kg/d) were calculated for streams
that drain the northwestern part of the drainage basin, which includes areas
with large concentrations of selenium and arsenic in rock samples. The posi-
tive correlation between discharge and total arsenic concentration during
runoff from lowland snowmelt indicates that snowmelt is an important mechanism
in supplying total arsenic concentration to the proposed reservoir site.
Dissolved selenium and arsenic concentrations in nine ground-water samples
from the study area did not exceed the maximum contaminant level established
for public drinking-water supplies by the U.S. Environmental Protection Agency
(1989).

Dissolved gross-alpha activity and total uranium concentrations in
surface-water samples generally were less than proposed guidance and recom-
mended levels for drinking water established by the U.S. Environmental
Protection Agency. Samples with the largest gross-alpha activity (greater
than 5 pCi/L) were collected from sites on tributaries to Savery Creek, in the
area in and adjacent to the Ketchum Buttes uranium deposits. Both suspended
gross-alpha activity and total uranium concentration indicated a positive
correlation to discharge during runoff from lowland snowmelt in the drainage
area of the proposed reservoir.
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Supplement 1.--Laboratory procedure for the sequential extraction of
selenium from soil samples (Steven Wilson, U.S. Geological Survey,
written commun., 1988)

I. Water soluble and mild ion exchange.

Weigh 1 gram of sample into a 65-milliliter culture tube. Add 20 milli-
liters of 0.25 moles per liter potassium chloride and shake for
30 minutes. Centrifuge, decant, and filter the solution (Whatman #41)'.
Analyze the supernatant and save the residue for the next step.

IT. Moderate ion exchange.

To the residue from step I, add 20 milliliters of potassium orthophos-
phate dihydrogen (1,000 parts per million phosphate). Shake for 2
hours, centrifuge, decant, and filter (Whatman #41). Save the solid and
analyze the solution.

ITI. Selenium associated with organic material, iron oxide, and magnesium
oxide. ‘

To the residue from Step II, add 2 milliliters of sodium pyrophosphate
(0.1 molar) solution. Heat the solution at 80 °C for 10 to 15 minutes.
Add 3 milliliters of 3:2 hydrogen peroxide/nitric acid in 0.5 milliliter
increments, heat this mixture at 100 °C until nearly dry (do not allow
dryness). Repeat this last step two more times. Add 20 milliliters of
1 molar ammonium acetate in 6 percent nitric acid and shake for
30 minutes. Centrifuge, decant, and filter the solution (Whatman #41).
Analyze the supernatant and save the residue.

IV. Selenium associated with residue material.

Perform a total digestion (for hydride analysis) on the residue using
the following procedure: Place 0.3 gram of sample in a 60-milliliter
Teflon bomb. Add 400 microliters of Trition-X (1 percent). Add 2
milliliters of concentrated potassium persulfate solution and enough
Wwater to create a slurry; swirl the contents and allow to sit for
1 hour. Add 2 milliliter hydrofluoric acid, 2 milliliters nitric acid,
1 milliliter perchloric acid (all concentrated), and put on a hotplate
at 110 °C for 1 hour or until solution is 1 centimeter from the bottom.
Add a second aliquot of 1 milliliter hydrofluoric acid, 2 milliliters
nitric acid and 1 milliliter perchloric acid, and heat at 110 °C for
1 hour. Add 2 milliliters nitric acid, 1 milliliter perchloric acid,
and 2.5 milliliters sulfuric acid and put on the hot plate for 3 hours.
Remove the Teflon bomb from the hot |plate, allow it to cool, and then
add 7 milliliters water and 3 milliliters hydrocloric acid. Put a watch

' The use of trade names in this report is for identification purposes only
and does not constitute endorsement by either the U.S. Geological Survey
or the Wyoming Water Development Commission.
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glass on top of the bomb and put back on the hotplate for 1 hour at
80 °C. Remove the watch glass and transfer the solution to a square

60-milliliter polyethylene bottle bringing the solution to a final mass
of 34 grams with water.

In this study, because the total mass of residue was analyzed, the analyst
would prolong the digestion interval if undigested residue remained in the
bomb. All reagents are reagent grade or better unless noted. The acids used
in the total digestions are all concentrated unless otherwise noted.
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