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MEASUREMENT OF BRIDGE SCOUR AT SELECTED SITES
IN NEW YORK, EXCLUDING LONG ISLAND

By Gerard K. Butch

Abstract

In 1988, the U.S. Geological Survey (USGS), in cooperation with the New York State
Department of Transportation, collected bridge-scour data at 77 sites throughout New York,
excluding Long Island. This report describes the results of the first 2 years of the study to evalu-
ate data-collection methods and predictive equations for local scour at bridges. Methods are
similar to the “limited approach” developed by the USGS in cooperative studies with the Federal
Highway Administration and are compatible with equipment and procedures used in the USGS
streamflow-gaging program.

Local scour holes 1 to 2 feet deep were found at many piers, but not abutments, at the
start of the study. At a few sites, the scour has exposed spread footings that were buried during
construction. Fifteen measurements during high flows, including two flows with a recurrence
interval exceeding 5 years, detected no new scour beyond the previously documented holes.
Flows with recurrence intervals greater than 5 years may be necessary to trigger scour in streams
with coarse bed material. The scour holes and coarse bed material also indicate that clear-water
scour is more common than live-bed scour in the streams studied.

Sonar and other geophysical techniques were evaluated for their effectiveness in bridge-
scour investigations. A transducer inside a 100-pound sounding weight suspended from a crane
provided an alternative method of measuring water depth, although moving the unit across the
bridge was cumbersome. Another method used a transducer, installed on a bridge pier, and a
data logger that recorded the distance between the transducer and the streambed automatically
at selected time intervals. Geophysical techniques applied to gravel and cobble streambeds did
not detect any backfilled scour holes, possibly because (1) holes did not exist, (2) resolution of the
equipment (1 to 2 feet) was insufficient to detect a shallow infilled layer, or (3) infilled material
was the same as the streambed.

INTRODUCTION

About 500,000 bridges in the United States are built over water and are subject to scour, the most
common cause of bridge failure. Accurate estimates of potential scour are needed for the design, con-
struction, and maintenance of bridges. The added cost of making a bridge resistant to scour is generally
small in relation to the cost of bridge failure (Federal Highway Administration, 1988).

Scour around bridge piers has been the subject of many investigations (Highway Research Record,
1973; Brice and others, 1978a, b; Wilson, 1979; Davis, 1984). Many equations have been developed to
estimate local scour depth at bridges (National Cooperative Highway Research Program, 1970; Anderson,
1974; Norman, 1975; Hopkins and others, 1980; Jones, 1984; Jarrett and Boyle, 1986; Copp and others,
1988; Froehlich, 1988; Richardson and others, 1988). Most of the equations are based on scale-model
laboratory measurements because three-dimensional flow patterns near piers during floods make field
measurements difficult. Many equations overestimate scour depth along New York streams, partly
because they were developed for sand-bed channels, whereas most stream channels in New York are
armored with several feet of gravel, cobbles, and(or) boulders over fine-grained sediments or compact till
(Raudkivi and Ettema, 1983; Copp and others, 1988; Federal Highway Administration, 1988; and
Richardson and others, 1988). Armoring occurs wherever flowing water is sufficient to remove the fine
particles but leaves behind the coarse materials, which serve as a protective zone that prevents the
movement of subsurface materials (Parker and Klingeman, 1982) during streamflows that do
not exceed the shear strength of the armor layer. Yet, despite an armor layer’s ability to decrease the



rate and depth of scour, stepwise erosion of an armor layer may produce greater scour depth than
erosion of a uniform bed (Raudkivi and Ettema, 1985). Failure of equations to account for this armor

layer produces results that rarely agree with field measurements, and the widely varying results of these -
equations for a given set of conditions reduces confidence in their applicability. Uncertainty as to which
scour equation to use for a particular set of conditions has increased interest in developing data bases that
represent full-scale, prototype field conditions. Field collection of scour data and increased knowledge of
scour processes may lead to improved bridge designs (National Cooperative Highway Research Pro-
gram, 1970; Hopkins and others, 1980, Jones, 1984).

Severe floods in western New York during June 1972 damaged 182 bridges along New York State
roads and many bridges on county roads. Scour and debris were the primary causes of damage (High-
way Research Record, 1973). Damages from floods throughout southeastern New York in April 1987
ranged from abutment washouts of short, single-span bridges over small streams to the catastrophic
collapse of the five-span, multilane New York State Thruway bridge over Schoharie Creek that claimed 10
lives (Zembrzuski and Evans, 1989). Floods in June 1989, in western New York, damaged several
bridges.

In 1988, the U.S. Geological Survey (USGS), in cooperation with the New York State Department of
Transportation (NYSDOT), began a 6-year study of bridge scour in New York through methods similar to
those used in its national bridge-scour program in other States (Jarrett and Boyle, 1986). The objectives
were to (1) compile a statewide data base, (2) evaluate data-collection methods and predictive equations
for local scour, and (3) identify the types of channels and bridges that are vulnerable to scour.

Purpose and Scope

This report describes the techniques used to collect bridge-scour data at the 77 sites and presents the
criteria for site selection, methods of data collection, and types of equipment used. It describes, in general
terms, the extent of scour measured during the first 2 years of data collection and discusses the limita-
tions of certain procedures and equipment. It also compares results obtained through conventional
methods of data collection with those obtained by sonar and other geophysical techniques.
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TYPES OF BRIDGE SCOUR

Scour is the erosive action of flowing water that removes material from the streambed (Federal
Highway Administration, 1988), and scour depth is the depth to which material is removed below a stated
datum. Scour is a natural phenomenon and can occur in any stream that contains erodible bed material.



Three types of scour can occur at a bridge: general scour, constriction or contraction scour, and local
scour. General scour is the progressive degradation or lowering of the streambed through natural or man-
induced processes. Degradation progressing downstream generally results from increased discharge,
decreased bedload, or decreased bed-material size. Upstream degradation is generally caused by an
increased water-surface slope (Galay, 1983). Lateral erosion caused by a shift in the flow or meander
pattern is included with general scour. Constriction scour is streambed erosion caused by increased flow
velocity near a bridge that results from the decrease in flow area formed by the bridge, approach embank-
ments, or piers. Local scour is erosion caused by local disturbances in the flow, such as vortices and eddies
in the vicinity of piers. A general practice in bridge design is to estimate the depth of each type of scour
separately, then sum the estimated depths to obtain the total scour depth.

The depth and extent of scour is influenced by the following factors, described by Richardson and
others (1988); Raudkivi and Ettema (1983, 1985); Klingeman (1973); and Blodgett (1984):

1. Velocity, depth, and angle of approach flow 6. Channel geometry

2. Size and gradation of bed material 7. Total number of high flows
3. Bridge geometry 8. Channel morphology

4. Presence of debris or ice 9. Bedload supply

5. Duration of high flow

Local scour may produce greater scour depths than the other types of scour (Richardson and others,
1988) and is the primary focus of this study. An example of the flow pattern and vortex system induced
by a pier is illustrated in figure 1. These vortices result from the obstruction of flow at the upstream face
of the pier and subsequent acceleration of the flow around the nose of the pier. The location of a spread
footing also has been found to affect scour. Footings that project above the streambed can become the
principal cause of local scour. Footings located at or below the streambed tend to reduce pier scour, but
the reduction may be negligible unless the footing extends a significant distance away from the pier
(Jones, 1989).

VIEW FROM ABOVE

Wake vortex

Not to scale

Figure 1.—Flow pattern and vortex system induced by a pier. (Modified
from Richardson and others, 1988, fig. 5.5.6)

Two types of local scour are “clear-water” scour and “live-bed” scour. Clear-water scour occurs when
bed material upstream from the scour hole is motionless and cannot replace material removed from the
hole. Live-bed scour occurs when bed material upstream of the scour hole is moving, and scour depth
increases only if the removal rate of material from the hole exceeds the transport rate of material into the hole.



MEASUREMENT OF BRIDGE SCOUR

The dynamic processes of a stream can cause the streambed to degrade and then aggrade during a
flood. Scour holes may develop during floods and fill before the stream returns to normal levels. The
interface between the backfilled material and the scour hole can be measured by geophysical techniques if
the two layers have differing electrical or seismic-reflection properties (Gorin and Haeni, 1989). If the
streambed is composed of fine material, a rod can be used to probe the scour hole and estimate the size or
gradation of the armor layer and subsurface material.

Sounding weights are commonly used to measure water depth; however, high velocities and turbu-
lence during floods in New York have been sufficient to cause 150-1b weights to drift downstream,
making accurate depth measurement impossible. Although corrections can be applied to compensate for
most of this type of error, the exact location of the weight is always uncertain (Rantz and others, 1982;
Coon and Futrell, 1986; Beverage, 1987). The use of mobile and fixed sonar instruments to measure scour
depth is being studied. The mobile technique used in New York is similar to the method used by the
USGS in Arkansas (Southard, 1989), where a graphic recorder plots a cross section of the streambed while
a transducer, submerged 1 to 3 ft, is moved across the stream. A fixed sonar installation can be used to
automatically record the distance between the transducer and the streambed at the base of a bridge pier.

Site Selection

Selection of potential study sites was based on data from USGS stations. Changes in the stage-to-
discharge relation at a streamflow-gaging station may indicate bed-material movement or channel
instability near a bridge. Data from crest-stage partial-record stations also were reviewed, and stations in
extensive areas of erodible bed material (sand and gravel) were identified (fig.2). Stations on streams
with drainage areas greater than 100 mi2 and a potential for scour also were identified. Factors to be
considered in the evaluation of scour potential included erodible bed material, high stream velocity, and
any documented scour nearby. Bridges with a medium or high scour-susceptibility rating! in NYSDOT’s
bridge-inventory file were reviewed, and bridges scheduled for immediate scour countermeasures (such
as riprap or concrete-filled bags) were excluded.

Sites identified from the preliminary review were inspected for evidence of scour. Priority was given
to sites near USGS stations along streams that contain erodible bed material or that appeared unstable
from review of USGS rating curves and NYSDOT files. A checklist developed by the USGS to standard-
ize the selection process is shown in figure 3. If a bridge did not meet the selection criteria, the next two
bridges upstream and downstream from the site were inspected. The site-selection criteria were as
follows:

a. Siteis at or near a USGS station to facilitate data collection and assess channel stability.

b. Drainage basin exceeds 100 mi%2. Bridges in smaller basins generally have single spans (no piers), and
the short duration of high flows limits the scour mechanism and the ability to collect flood data.

c. Streambed contains an ample supply of bed material prone to scour. Piers on bedrock or protected
by riprap are excluded.

d. Pier nose is square, round, or sharp.

1 Preliminary results of a NYSDOT scour-susceptibility investigation of 3,778 State bridges over water: high
susceptibility = 9 percent, medium susceptibility = 38 percent, and low susceptibility = 53 percent. Percentages
are based on review of 420 bridges (Georgopoulos, S. G., New York State Department of Transportation, oral
commun., 1991).
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Network represents a wide range of basin characteristics.

Pier(s) is in the main channel.

Channel is relatively uniform upstream and downstream from bridge.
Flow-angle approaching pier is 10 degrees or less.

Scour is evident (although having a few sites with no scour is acceptable).
Bridge does not constrict main channel.

Pier(s) does not reduce cross-sectional flow area by more than 10 percent.

Nearest reservoir is at least 10 mi upstream from the site.

. Quantity of debris or ice is minimal.

Water depth at a few piers always exceeds 5 ft.
Boat access is available on large streams (to facilitate data collection).

Information on site construction, inspection, and maintenance is available.
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Figure 2.—Locations of study sites, physiographic provinces, and soil associations.
(Modified from Cline, 1961, pl. 1.)



Rating Item +] 0] -
Is bridge accessible at high flow? Yes (+); No (-)

Is streambed composed of bedrock or clay? No (+); Yes (-)

Distance from bridge deck to streambed (in feet)? Less than 40 (+); 40 to 80 (0); more
than 80 (-)

Is sustained high flow likely during a flood? Yes (+); No (-)

Can scour be measured safely at this bridge? Yes (+); No(-)

Are there any other factors that would prevent scour from being measured at this
site? No (+); Yes (-)

Is scour likely to occur at one or more piers? Yes (+); No (0) 11111
Is scour likely to occur at more than one pier? Yes (+); No (0) 77777
Is scour likely to occur at one or more bridge abutments? Yes (+); No (0) 1117
Can pier be reached by a sounding weight lowered from the bridge? Yes (+); No (0) 11111
Does the bridge constrict high flows significantly? Yes (+); No (0) 11111
Shape of pier nose: square or round (+); sharp (0) 77777
Angle at which flow approaches piers (in degrees): 0 to 5 (+); more than 5 (0) 11117
Are pier footings exposed? No (+); Yes or don't know (0) 11111
Has riprap been placed around one or more piers? No (+); Yes or don't know (0) 11111
Is debris lodged on one or more piers? No (+); Yes (0) 11117
Is a gaging station located nearby (within view of the bridge)? Yes (+); No (0) /1117
Is boat access available nearby? Yes (+); No (0) 17777
Does the bridge have trusses? No (+); Yes (0) 77777
Will a traffic lane need to be closed to make measurements? No (+); Yes (0) 11117

Totals (+,0, and -)

Figure 3.—Checklist for bridge-site selection. (From U.S. Geological Survey, written commun., 1989).

The locations of bridge sites being studied are shown in figures 2 and 4, and listed in table 1 (at end of
report). The network represents six physiographic provinces (fig. 2) in upstate New York! and includes a
wide range of basin characteristics and bridge designs. Drainage areas range from 30 mi? to more than
8,000 mi2. Some sites with drainage areas less than 100 mi2 were selected because (1) scour was evident,
(2) a USGS station was nearby, or (3) it improved the spatial distribution of the network. Despite these
additional considerations, only a few sites met the selection criteria in the Central Lowland, St. Lawrence
Valley, and New England physiographic provinces (fig. 2). All bridges were constructed between 1902
and 1989.

Study sites were divided into two categories: flood-data sites and annual-data sites (fig. 4 and table
1). Flood-data sites are locations where data are collected during high flows; data from these sites can be
used to identify which types of channels and bridges are vulnerable to scour and to evaluate local scour
equations. Annual-data sites provide an inexpensive method of expanding the data base; at these sites
the streambed elevation along the upstream side of the bridge is measured annually. A total of 77
bridges were selected—31 for flood-data collection and 46 for annual-data collection.

Additional criteria for selecting flood-data sites were:

Streambed adjacent to pier is accessible from upstream side of bridge.
b. Distance from bridge deck to streambed is less than 80 ft, preferably less than 40 ft.

c. Bridge is wide enough to provide safe working space for a two-person crew and measuring equip-
ment and does not interfere with operation of equipment.

d. Telemetry is available or an observer is nearby to provide flood-alert information.

Long Island was excluded from the study area because the drainage basins are small (generally less than 30 mi2)
and channel slopes low, with slow stream velocity.
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Data Collection

Data collection at the 77 bridges began in May 1989 (fig. 4). Flood data are being collected at 31
bridges, and annual cross-section data at the remaining 46. Methods are similar to the “limited ap-
proach” developed by the USGS in cooperative studies with the Federal Highway Administration,
whereby discharge, velocity, streambed elevation, and bed-material data are collected through equip-
ment and procedures compatible with the Survey’s stream-gaging program (Jarrett and Boyle, 1986). This
approach is being used in the USGS national bridge-scour program and in similar studies in other States;
scour data collected in these studies may supplement data collected in New York. Sonar and other
geophysical techniques are being used at a few sites to evaluate their usefulness.

Flood Data

Data from high flows are necessary to identify changes in streambed elevation, velocity distribution
around piers, and bed-material characteristics. Results are used to determine which types of channels
and bridges are vulnerable to scour and to evaluate local scour equations.

Reference points surveyed to a common datum were established at four cross sections at each site—
the upstream and downstream bridge railings, the approach section (one bridge-width upstream), and
the exit section (one bridge-width downstream). The water-surface and streambed-elevations at each
cross section were also calculated.

Copies of bridge plans, boring logs, maintenance and inspection sheets, and fathometer surveys were
obtained from NYSDOT. Dimensions of the piers and footings were recorded from bridge plans or site
inspections. Channel-roughness coefficients at each cross section were estimated (Barnes, 1977).

Discharges of the 2-year and 5-year floods! were estimated from guidelines outlined by the
Interagency Advisory Committee on Water Data (1982) or multiple regression analyses (Zembrzuski and
Dunn, 1979). Flood data are collected whenever streamflow exceeds the mean-annual flood, and
postflood data are collected when the flow exceeds a 5-year recurrence interval. The selected recurrence
intervals were based on studies of sand, gravel, and cobble streambeds in which thresholds for particle
motion were exceeded during flows of these magnitudes (Culbertson and others, 1967; Norman, 1975;
Andrews, 1979, 1984; and Sidle, 1988).

A bed-material sample was collected in a shallow area of the channel or at water’s edge near each
bridge. A variation of the grid-sampling technique (International Organization for Standardization, 1989)
was used because the streambeds are armored. The physical size of a particle, especially gravel or larger,
can be expressed in terms of the three diameters (axes) of the particle that are mutally perpendicular
(longest, intermediate, and shortest). In this study, the intermediate axis of each particle or rock was
measured with calipers every 0.5 ft along a 50-ft tape. The frequency of each size interval is the percent-
age, by number, of the 100 rocks or particles in the original sample that fall in the interval. A USGS
bedload sampler is to be used at streams that may have live-bed scour at high flow to determine the size
of the bed material in motion (Helley and Smith, 1971).

The size distribution of the subsurface material is estimated from a 5- to 10-Ib bulk sample collected
after removal of the armor layer. The bulk sample was collected in the same area as the grid sample. The
frequency of each size interval is expressed as the percentage, by mass, of the total sample that falls
within the interval. The relations among different methods of sampling that have been established for
densely packed cubes in random arrangement indicate that the grid sample (by number) frequency is
equivalent to the bulk sample (by mass) frequency (Kellerhals and Bray, 1971). Core samples from
borings are to be collected at selected sites for particle-size analysis.

Baseline cross sections were measured from each reference point at the beginning of the study to
determine the extent of scour. Streambed elevations at the sections are compared with (1) those shown

1 The 2-year flood (approximate mean annual) has a 50-percent chance of occurring in any 1-year period, and the

5-year flood has a 20-percent chance of occurring in any 1-year period.









Observed Scour at Selected Sites

Local scour holes 1 to 2 ft deep were found at many piers, but not abutments, at the start of the study.
At a few sites, the scour has exposed spread footings that bridge plans show to have been buried during
construction. Many of these holes may have been created by clear-water scour during a previous flood or
floods. Fifteen high-flow measurements, including two flows with a recurrence interval between 5 and
10 years, show no additional scour since the initial observation. These results agree with those from Sidle
(1988) that show scouring of coarse material to be triggered only by flows with recurrence intervals
greater than 5 years.

LIMITATIONS OF PROCEDURES AND EQUIPMENT

One objective of the study is to evaluate the accuracy, safety, and ease of operation of the procedures
and equipment. Stream velocity and depth are difficult to measure near piers in deep, swift streams,
especially when debris is present, and heavy weights (100 to 150 1b) are not always adequate to stabilize
the equipment. When mobile- and fixed-sonar installations are used to measure water depth, air or
sediment entrained in the flow may interfere with the signal. Also, even though the mobile equipment
can be brought to a site rather than installed permanently, moving it across the bridge and recording data
is cumbersome. Mobile equipment deployed from a truck may be an alternative if no obstructions (such
as guardrails) interfere with the operation of equipment. Fixed installations, by contrast, can record the
distance between the transducer and the streambed automatically at selected time intervals but must be
extremely durable. A sample of the output from the data logger is shown in figure 6. Signal scatter
caused by wide reflections from cobbles increases as the signal ground loses contact with water (gage
height 4.0 ft), and spikes or “lost signals” occur when the transducer is exposed to air (gage height 3.0 ft).
This equipment has been tested for over 1 year, in which the recurrence interval of the peak flow was less
than the mean-annual flood, and no scour was observed.
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Figure 6.—Sample sonar and gage-height output from data logger.

Geophysical techniques were applied to gravel and cobble streambeds but did not reveal any back-
filled scour holes. Among possible reasons are that: (1) holes were not present, (2) resolution of equip-
ment (1 to 2 ft) did not permit detection of a shallow infilled layer, or (3) the infilled material was the
same as the streambed. The usefulness of geophysical techniques depends on the characteristics of the
site. The equipment is sophisticated and requires a high degree of skill for effective operation and
interpretation. Many objects can interfere with the signal; for example, buried pipes, rocks, backfill from
construction, and side echoes. The most useful results are likely to be from streams that undergo live-bed
scour and have clear differences between backfilled and undisturbed material in the scour hole.

The number of years of data and hydrologic conditions during the sampling period may determine
the amount of information available in some basins. If scour countermeasures are installed at some sites
by NYSDOT before the project is completed, results will be affected.
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SUGGESTIONS FOR FURTHER STUDY

Long-term data collection at scour-prone sites is needed to document the sensitivity of the scour
process to high flows, and research and development of scour-sensing equipment is needed to monitor
the evolution of a scour hole. The Massachusetts Department of Public Works found side-scan sonar to
be an effective method of inspecting bridges and setting priorities for detailed inspections (Bedingfield
and Murphy, 1987). This technique also may be useful in deep water or in determining the extent of tidal
scour. Further study also is needed to (1) identify the most effective types of scour arrestors, and (2)
determine the proper weight, particle size, and placement of riprap.

SUMMARY

Scour data are being collected at 77 bridges in New York, excluding Long Island. Bridges near USGS
stations on streams with erodible bed material were selected in six physiographic provinces. High-flow
data are being collected at 31 bridges, and annual data at the remaining 46 bridges. The conventional
method of data collection with a sounding weight is being compared with sonar and other geophysical
techniques for accuracy, safety, and ease of operation. Streambed cross sections measured at the begin-
ning of the study are to be compared with bridge plans, previous measurements, and data collected
during the remaining years of the project to determine the extent of scour at the selected sites.

Local scour holes 1 to 2 ft deep were found at many piers, but not the abutments, at the start of the
study. At a few sites, the scour has exposed spread footings that bridge plans show to have been buried
during construction. Fifteen high-flow measurements, including two flows with a recurrence interval
exceeding 5 years, did not show any new scour. Present scour holes and the coarse bed material may
indicate that clear-water scour is more common than live-bed scour in these streams. At abutments,
general or constriction scour may be more significant than local scour, depending on channel geometry,
flow pattern, and channel migration.

Geophysical techniques were applied to gravel and cobble streambeds but did not reveal any back-
filled scour holes. The effectiveness of these techniques depends on local conditions, and the methods
and equipment require a high degree of skill for effective operation and interpretation. Streams with live-
bed scour that have clear differences between backfilled and undisturbed material probably provide
more useful results than those with clear-water scour.

A fathometer provided quick and accurate depth measurements. The mobile method that uses a
four-wheel base and crane was cumbersome. Deployment of the equipment from a truck may be an
alternative if no obstructions (such as guardrails) interfere with the operation of equipment. A fixed
installation designed to record the distance between the transducer and the streambed automatically at
selected time intervals required extensive protection but is expected to provide useful information during
floods. Further study is needed to determine how well these units operate amid flood turbulence, debris,
sediment, and ice.
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