
DATA ENCAPSULATION USING FORTRAN-77 MODULES-A FIRST STEP TOWARD 
OBJECT-ORIENTED PROGRAMMING IN WATER RESOURCES

by David B. Thompson, Lewis L. DeLong, and Janice M. Fulford

U.S. GEOLOGICAL SURVEY 

Water-Resources Investigations Report 92-4123

Bay St. Louis, Mississippi 
1992





Department of the Interior 

Manuel Lujan, Jr., Secretary

U.S. GEOLOGICAL SURVEY

DALLAS L. PECK, Director

For additional information write to:
Project Chief, Deterministic Models Project
U.S. Geological Survey
Building 2101
Stennis Space Center, MS 39426

Copies of this report can be purchased from:
U.S. Geological Survey
Books and Open-File Reports Section
P.O. Box 25425
Denver, CO 80225



CONTENTS

Page 

Abstract .................................................................................. 1

Introduction .............................................................................. 1

Purpose and Scope ........................................................................ 2

Example Programs ........................................................................ 2

The Procedural Approach ................................................................. 3

Data Encapsulation and the Module Approach .............................................6

Advantages of the Module Approach ..................................................... 12

Programming Considerations ............................................................. 13

References ............................................................................... 14

Appendix A-Source Code for the Procedural Program .................................... 15

Appendix B-Source Code for the Module Program ....................................... 30

Appendix C-Source Code for the Rectangular Channel Properties Module ................ 36

Appendix D-Source Code for the Trapezoidal Channel Properties Module ................. 50

Appendix E-Control Data for Example Programs .........................................65

Appendix F-Rectangular Channel Geometry Data ........................................ 66

Appendix G-Trapezoidal Channel Geometry Data ........................................ 67

ILLUSTRATIONS 

Figure l.-Outline structure of procedural program (Norml) ................................4

Figure 2.-Flow of control and data through the procedural program (Norml) .............. 7

Figure 3.-Flow of control and data through the module program (Norm2). ................. 9

Figure 4.-Outline of the module program (Norm2). ....................................... 11

11



FACTORS FOR CONVERTING INCH-POUND UNITS TO
INTERNATIONAL SYSTEM (SI) UNITS 

Multiply inch-pound units By To obtain SI units 
foot (ft) 0.3048 meter (m) 
mile (mi) 1.609 , kilometer (km) 
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3 /s)

111





DATA ENCAPSULATION USING FORTRAN-77 MODULES-A FIRST STEP TOWARD 
OBJECT-ORIENTED PROGRAMMING IN WATER RESOURCES

by David B. Thompson, Lewis L. DeLong, and Janice M. Fulford

Abstract

Programming is a costly aspect of numerical modeling. Recognizing the need to increase 
reusability and maintainability of source codes, programs developed using FORTRAN-77 often 
conform to a method of program design called top-down structured programming, or procedural 
programming. This method emphasizes the relation between procedures necessary to solve a par­ 
ticular programming problem. An alternative approach is to consider the relation between data 
and manipulation of data fundamental to solution of a programming problem. The programming 
construct arising from this perspective is termed a module. In this report, the module programming 
construct is denned. Through figures and code examples, it is shown how FORTRAN-77 modules 
are used to encapsulate fundamental data from other parts of the program. FORTRAN-77 mod­ 
ules provide a level of program structure in addition to that available using procedural practices 
alone. Construction and use of FORTRAN-77 modules improves program clarity, reduces argument 
passing, and encapsulates fundamental data at the level where they are manipulated.

Introduction

FORTRAN-77 (American National Standards Institute, 1978) is a procedural programming 
language commonly used for numerical solution of mathematical equations describing physical 
phenomena. The increase in number and sophistication of computer programs written to simulate 
physical phenomena (numerical models) has progressed to the point where programming concerns, 
in addition to concerns related to development and solution of governing equations, are of significant 
importance.

Software development, support, and maintenance are costly aspects of numerical modeling. 
Therefore, programs developed using FORTRAN-77 often conform to a design method called top- 
down structured programming. This method (Yourdon and Constantine, 1979) is applied by re­ 
ducing each major task of a programming problem into successively smaller sub-tasks until each 
sub-task can be solved by a relatively short piece of code, usually one procedure. Because this 
approach to programming is task-oriented, the top-down structured method is often referred to 
as the procedural approach, the procedural paradigm, or simply procedural programming. The 
general rule governing program development using procedural programming may be simply stated: 
determine which procedures are required and implement the procedures as efficiently as you can 
(Stroustrup, 1989). In the FORTRAN-77 language, a procedure is a called a subprogram, which 
can be either a subroutine or a function.

Procedural programming results from a particular view of the structure of a computer program- 
that of the interaction of algorithms required to solve a given problem, usually with little regard for 
data used by the program. However, programming problems can be viewed from other perspectives



that may require a shift of paradigm. One such paradigm is based on the data used by a program 
and manipulation of data fundamental to solution of a programming problem. This paradigm will 
be referred to as the data-encapsulation paradigm, or the module paradigm. Divergent meanings 
are attributed to the term module. In this report, module refers to the composition of data and 
procedures to manipulate these data (Stroustrup, 1989).

Purpose and Scope

The purpose of this report is to present a comparison of programming paradigms through the 
use of two example programs. The first example program is developed using procedural program­ 
ming principles and the second is developed using data encapsulation in FORTRAN-77 modules. 
Guidelines for developing modules in the FORTRAN-77 language are presented. FORTRAN-77 
modules are shown to provide advantages, including an additional level of program structure, not 
obtainable using procedural practices alone.

Example Programs

Analysis of two programs which perform the same task will demonstrate differences between 
procedural and modular programs. These programs are fully operational and FORTRAN-77 source 
code for each example is presented in an appendix. Diagrams of flow of program control and flow 
of data between procedures are presented to illustrate differences between the methods.

The example problem used to analyze the two programs is to determine normal depth of flow 
at specific locations within a network of interconnected channels. Normal depth is defined to be 
the depth of flow that occurs when the water surface is parallel to both the total energy line and 
the bottom of the channel for a specific volumetric discharge (Chow 1959). The Manning equation 
is used to relate normal depth to discharge. The Manning equation is:

Q = K(H)Sll2 (1)

where:

Q = volumetric discharge , (L3/T)

H = depth of flow , (L)

S = bottom slope, (dimensionless) 

K(H) = channel conveyance, (L3/T) 

C
n ' P(H ) 2/3 

C = 1.486(for English units)

= 1.0(for metric units) 

A = cross-sectional area of flow, (L2 ) 

P = wetted perimeter, (L) 

n = Manning flow resistance coefficient^!/1' 6 )



Input data required to solve the problem include the locations and volumetric discharges for 
which normal depths are requested and a description of geometric and hydraulic properties of each 
channel in the network. For both programs, all channels are assumed to be rectangular in cross 
section, and channel width is assumed to vary linearly with channel distance. Therefore, each 
channel in the network is completely described by eight data: a channel number, flow-resistance 
coefficient, and for each end of the channel a downstream-distance coordinate, channel width, and 
elevation of the channel bottom. A number is assigned to each channel (channel number) for use 
as an index in storing channel properties data.

The Manning equation is non-linear in depth of flow. Both programs solve it using a Newton- 
Raphson iterative scheme. Given discharge, bottom slope, and cross-sectional properties of the 
channel, an iterative solution of the Manning equations is:

77+ - JJn - n (2)

where:

H+   new estimate of depth, 

H* = current estimate of depth,

K(H} = conveyance of the channel section,
Q

K(H*) = conveyance for current estimate of depth, 
dK( ff

dH
= derivative of conveyance with respect to depth for the current estimate of depth.

Iterations terminate when the absolute change in depth between iterations is less than some fixed 
tolerance or when a fixed number of iterations are completed.

The Procedural Approach

From the procedural perspective, the problem comprises five sub-tasks (associated function 
names, Appendix A, are contained in parenthesis):

1. Read locations and discharges for which normal depths are desired (ReadControlData).

2. Read data describing the geometry of the channel network (ReadHydraulicProperties).

3. Compute the bottom slope required for normal-depth computations from channel properties 
(BtmSlope).

4. Compute normal depth (Norm), by applying the iterative solution scheme developed above.

5. Report the results (Report).



Program: Norml 
+-P.Norml

-S.ReadControlData (ControlFileUnit, ControlFileName, MaxLocations, 
I NumberOfChannels, NumberOfLocations, Branch, 
I XLocation, Q) 
+-F.Open01dFlatFile (NUA, CFileA)

-S.ReadHydraulicProperties (ControlFileUnit, NumberOfChannels, 
I ControlFileName, MaxChannels, XI, Tl, 
I Btml, X2, T2, Btn2, ManningN) 
+-F.Open01dFlatFile (NUA, CFileA)

-F.BtmSlope (XI, Btml, X2, Btm2)
-F.Norm (X, H, Q, S, XI, Tl, X2, T2, ManningN) 

I-F.Conveyance (X, H, XI, Tl, X2, T2, ManningN) 
I |-F.CXArea (X, H, XI, Tl, X2, T2) 
I | +-F.ChannelWidth (X, H, XI, Tl, X2, T2) 
I -t-F.WetPerimeter (X, H, XI, Tl, X2, T2) 
I +-F.ChannelWidth (X, H, XI, Tl, X2, T2) 
+-F.DConveyance (X, H, XI, Tl, X2, T2, ManningN)

|-F.ChannelWidth (X, H, XI, Tl, X2, T2)
|-F.CXArea (X, H, XI, Tl, X2, T2)
I +-F.ChannelWidth (X, H, XI, Tl, X2, T2)
+-F.DWetPerimeter () 

+-S.Report (Branch, XLocation, Q, Slope, H)

Figure 1: Outline structure of procedural program (Norml).



The structure of the resulting program and the argument lists for each procedure is shown in outline 
form in figure 1. A complete source listing, including definitions of variables and subprograms, is 
given as Appendix A.

The sub-tasks of the solution algorithm are executed by the main program through calls to the 
subprograms listed above. The problem is solved by executing a call to BtmSlope and a call to 
Norm for each branch number,

DO 100 1=1, NumberOfLocations

Brn = Branch(I)
Slope - ABS(BtmSlope(XI(Brn),Btml(Brn),X2(Brn),Btm2(Brn)))
H = Norm (

XLocation(I), H, Q(I), Slope, 
XI(Brn), Tl(Brn), 
X2(Brn), T2(Brn), 
ManningN(Brn) 

) 
100 CONTINUE

XLocation(I) is the downstream distance for the current branch number, H is the depth to be 
computed, Q(I) is the discharge at the current location, the pairs Xl(Brn), Tl(Brn) and X2(Brn), 
T2(Brn) are the respective downstream distances and bottom widths associated with upstream 
and downstream channel ends, and ManningN is the flow-resistance coefficient. These data are not 
used in the main program, but are passed to subprograms.

The Newton-Raphson solution algorithm is implemented in subprogram Norm. The sub-tasks 
executed by procedure Norm are:

1. Compute actual conveyance of the channel as discharge divided by the square root of the 
bottom slope.

2. Make an initial estimate of the depth at the current location.

3. Compute conveyance from channel properties and depth (Conveyance).

4. Compute the partial derivative of conveyance with respect to depth (dConveyance).

5. Compute a new estimate of depth of flow.

6. Check for closure and iterate again if not closed, subject to a maximum of ten iterations.

Procedures Conveyance and dConveyance require functions to compute cross-sectional area of 
flow (CxArea), channel width (ChannelWidth), wetted perimeter (WetPerimeter), and the partial



derivative of wetted perimeter with respect to depth (dWetPerimeter). In each of these procedures, 
fundamental data are passed down from the level above. The structure of the program, as outlined 
on figure 1, is such that data are passed through each call to lower levels of the program, regardless 
of which routine actually uses those data. This is in accord with good procedural programming 
practice.

Connections between the set of procedures form a tree structure, as shown on figure 2. Flow 
of program control is indicated by dashed lines with arrows pointing to called functions. Flow of 
channel data is indicated by solid bold lines and parallels the flow of program control.

The parallel flow of control and channel data occurs because channel data are defined at the high­ 
est levels of the program. Channel data are passed from the input procedure (ReadHydraulicProp- 
erties) up the call tree to the main program, then down the call tree to procedures where channel 
data are actually used to compute specific hydraulic properties. Therefore, channel data are viewed 
as having global scope, even though they are used only in a few procedures.

A FORTRAN-77 COMMON statement could eliminate much argument passing. This com­ 
monly applied solution only exacerbates the problem by hiding the fact that channel data are 
global in scope. COMMON blocks tend to contain unrelated data and their use often results in 
code which is program specific and not easily used in other programs or by other programmers. 
Furthermore, COMMON blocks frequently conceal the flow of data between procedures. There­ 
fore, top-down structured programming methods fundamentally encourage passing data through 
procedure calls. As a result, use of COMMON blocks is discouraged in procedural programming.

Data Encapsulation and the Module Approach

There are two ways to access a datum. One is to retrieve or modify its value directly through 
an assignment statement. Another method is to surround the datum with a function or subroutine 
to prevent direct access to the datum and protect it from inadvertent modification. The restriction 
of access to a datum is called encapsulation. Modifications to such data are accomplished through 
function calls designed explicitly to modify encapsulated data. Retrieval is also accomplished 
through invocation of a function designed to deliver encapsulated data to a requesting program. 
FORTRAN-77 modules are based on the concept of data encapsulation.

An alternative to procedural programming, referred to as FORTRAN-77 modules, comprises 
specific data and procedures necessary to manipulate those data contained in one program unit. 
It is an extension to procedural programming. In the FORTRAN-77 module approach, it is rec­ 
ognized that fundamental data are actually manipulated only by specific procedures, and that the 
composition of data and code form a complete entity. Data are separated into groups based on 
common characteristics and use. Module design is based on encapsulating fundamental data with 
code to interact with the rest of the program, and hiding fundamental data by restricting their 
scope to a few procedures and excluding direct access to such data by external procedures. This 
philosophy results in storage and manipulation of data at the lowest level. Results are passed up 
program branches to procedures which actually use the results. The general rule governing pro­ 
gram development using the module paradigm may be simply stated: determine which modules 
are required and partition the program so that all data reside in modules (Stroustrup, 1989).



Geometric and 
Hydraulic Data

ReadControlData

ReadHydraulicPropertu

Explanation

Procedure

Geometric- and Hydraulic-Data Flow 

Program Control

Figure 2: Flow of control and data through the procedural program (Norml).



The module paradigm is applied by examining the fundamental data to be manipulated. Data 
related either by association with a physical process or computational need are segregated into 
groups. Procedures that directly manipulate data in the group are identified and combined with 
related data in respective modules. Subprograms are assigned names reflecting the data they 
return or the service they provide. For convenience, each FORTRAN-77 module is stored in a 
separate file, a parallel to use of modules in the programming language C. In C, data can be given 
module scope by defining them at the top of the file (or in a header). No such provision exists 
in FORTRAN-77. However, this feature can be emulated by constructing one or more COMMON 
blocks. Module data are associated in these COMMON blocks and only shared among module 
procedures. These COMMON blocks are restricted to module procedures and require use of a 
SAVE statement (under the FORTRAN-77 standard) to preserve variable contents between calls. 
The FORTRAN-77 compiler does not enforce this restriction; it is based only on programmer 
discipline.

In the example problem only one data group is used, that comprised of data physically describ­ 
ing the channels. These channel data provide the basis for a channel-properties module in this 
report. The module concept applies to other types of data, including those describing time-varying 
boundary conditions, initial conditions, channel network schematics, and simulation results. Mod­ 
ules may then be developed, tested, and stored in libraries independent of calling programs, and 
linked with calling programs as required.

The structure resulting from the module paradigm applied to the example problem is shown on 
figure 3. (See Appendix B for main program source code and Appendix C for module source code.) 
In the example, procedures in the channel properties module manipulate fundamental channel 
data. Output from these procedures provide channel data and derived quantities to extramod- 
ule procedures (as do BtmSlope, Conveyance, and dConveyance), or to intramodule subprograms 
(as do CxArea, ChannelWidth, WetPerimeter, and dWetPerimeter). Prior to invocation of mod­ 
ule subprograms, module data must be initialized. This is completed by invoking a procedure 
(InitHydraulicProperties) which opens a table of channel properties and calls another procedure 
(ReadHydraulicPropertries) to read fundamental channel data from a file.

Module procedures appear in either a public or private partition, as shown on figure 3. Public 
procedures are so designated because they must be available for both intramodule and extramodule 
calls. In fact, public procedures provide both a precise functional definition of the module and a 
calling interface through which all access to module data is restricted. Therefore, every complete 
replacement module must supply the same functionality, that is, the same list of public functions 
and sub-procedures coupled with arguments passed to these procedures.

In contrast, private procedures are so designated because they are used only within the context 
of the module in which they are defined. In the example, only the procedure for reading channel 
data (ReadHydraulicProperties) is found in this partition. A more complete implementation of 
a channel-properties module would include additional private procedures for interpolation, error 
checking, input and output, and other utilities specific to the module. Restricting use of private 
procedures to intramodule calls prevents dependence of calling programs on module-specific imple­ 
mentations.



Geometric and 
Hydraulic Data

f ReadControlData J

/

f Main j. ..........................................

''    \
\ ( Norm )"""""

^
( Report J

Explar

( )

^r.... .................

.          pr
1 V>

Private 1 
Procedures

)RTRAN 77 Module r

f ReadHydraulicProperties

A

1

y*
...   -^f InitHydraulicProperties J

.........>/ BtmSlope

If Conveyance

..

N

;
1 ^^-

>   /"^ ^  -^ "'""2*1 TvArpa X^^

A «. V V^AMIwd I^^P 
^-,  ,.,..,.  ,, ., -^f.......

'  '^ ^^: l( WetPerimeter m

' ** '
I f _, HAJ-_I U T^f*"

^^ ^H
V

^ dConveyance j ^^ ^         '^^^^^^^

Public 
Procedures

lation 

Procedure

Geometric- and 

Proaram Contrc

'^r   ^\^dWetPenmeter^

Hydraulic-Data Flow 

)l

*  

lii^i

lllpl 
Iliil
Illlliii'lmmm® 
 mmm

mmm

Figure 3: Flow of control and data through the module program (Norm2).



The calling program is constructed in a procedural fashion, with the exception that the scope 
of program variables is now strictly addressed. The example problem is broken into tasks; ini­ 
tializing the channel-properties module, reading program-control data, computing normal depth, 
and reporting results. The program obtains channel information by invoking public module proce­ 
dures, passing to those procedures only data specifically required to identify the location for which 
information is requested, and then continues to compute the solution of the problem.

Returning to the example problem, an outline of the module version of the program is shown in 
figure 4. This version of the program reads control data through a call to ReadControlData, then 
initializes the channel-properties module through a call to the procedure InitHydraulicProperties. 
If the initialization of the channel-properties module is successful, then a loop similar to that of 
the procedural program is entered,

DO 100 1=1, NumberOfLocations
H = Norm (Branch(I), XLocation(I), H, Q(I), Slope) 

100 CONTINUE

This is distinctly different from the procedural version, which passed additional data into subpro­ 
gram Norm so that lower-level procedures could compute channel properties necessary to solve the 
problem.

It is apparent that only those data within the scope of the calling program are passed as 
arguments. This is in strict contrast to the procedural approach (compare fig. 4 with fig. 1) which 
requires that calling programs supply all necessary channel data. The procedural approach only 
separates computational procedures and ignores the scope of data manipulated by the program. In 
contrast, the module paradigm isolates fundamental data in the procedures in which they are used. 
This eliminates:

1. passing channel data through many subprogram levels (shortens data paths),

2. simplifies the invocation of lower-level procedures by reducing the number of arguments 
passed,

3. moves procedures dependent on channel data into modules with independent data structures, 
and

4. provides a well-defined interface for communication of channel data to the program.

The module paradigm results in calling programs not directly dependent on the form of fundamental 
data, and allows access to fundamental data only through subprogram invocation. This practice is 
referred to as data encapsulation. Modifications required to effect a new implementation, such as 
allowing channel sections of general geometry, would be restricted to the channel-properties module 
and would not affect the interface between the module and calling programs. This effectively

10



Program Norm2 
+-P.Norm2

-S.ReadControlData (ControlFileUnit, ControlFileName, MaxLocations, 
I NumberOfChannels, NumberOfLocations, Branch, 
I XLocation, Q) 
+-F.Open01dFlatFile (FUnit, FileName)

-F.InitHydraulicProperties (NumberOfChannels) 
I C/PrpDat/ 
I C/PropUnit/
|-F.Open01dFlatFile (FUnit, FileName) 
+-F.ReadHydraulicProperties (ChannelNumber) 

I C/PrpDat/ 
+ C/PropUnit/

-F.BtmSlope (Branch, X) 
+ C/PrpDat/

-F.Norm (Branch, X, H, Q, S) 
I-F.Conveyance (Branch, X, H) 
I |-F.CXArea (Branch, X, H) 
I I +-F.ChannelWidth (Branch, X, H) 
I I + C/PrpDat/ 
I |-F.WetPerimeter (Branch, X, H) 
I I +-F.ChannelWidth (Branch, X, H) 
I I + C/PrpDat/ 
I +-F.ManningN (Branch, X, H) 
I + C/PrpDat/ 
+-F.dConveyance (Branch, X, H)

I-F.ChannelWidth (Branch, X, H)
I + C/PrpDat/
|-F.CXArea (Branch, X, H)
I +-F.ChannelWidth (Branch, X, H)
I + C/PrpDat/
I-F.dWetPerimeter (Branch, X, H)
+-F.dManningN (Branch, X, H) 

+-S.Report (Branch, XLocation, Q, Slope, H)

Figure 4: Outline of the module program (Norm2).

11



decouples the fundamental solution algorithm in the calling program from the form of underlying 
channel data.

In fact, a second channel-properties module was developed for this report. The source code for 
channel-properties for channels with a trapezoidal cross section is given in Appendix D. This code 
can be linked to the client program (Norm2) without'changes to any source code. The data file for 
the module differs slightly from that for the rectangular section module (a side slope is required 
for a trapezoidal section), but all public procedures are invoked with the same names and with the 
same data passed through the invocation.

Advantages of the Module Approach

The procedural approach is a significant improvement over earlier methods used to develop 
FORTRAN programs. The impact of procedural programming on the development of quality 
programs is unquestioned. FORTRAN-77 modules are a replacement for top-down structured 
approach (procedural programming), but not for structured programming.

Computer models concerned with simulation of physical phenomena share many distinct types 
of data related to the fundamental physics of the prototype. Modules can be constructed according 
to the form of fundamental data and can be linked without modification to many different calling 
programs. This capability results in reduced programming effort and maintenance. Alternate 
modules can be constructed and linked with a calling program to solve problems with different 
forms of fundamental data. For example, data describing geometric and hydraulic properties of 
channels used in the example programs are used in programs concerned with computation of steady- 
state water-surface profiles, computation of unsteady flow fields, and transport of suspended and 
dissolved substances. All of these models could use the same channel-properties module (or one 
from a suite of channel-properties modules), resulting in less model-specific code to be maintained 
by the model developer. With development of modules for other groups of data, including those 
describing time-varying boundary conditions, initial conditions, network schematics, and results of 
simulations, modules could be shared by many programs.

Fundamental data rarely are used directly by models. Models most frequently use quantities 
derived from manipulation of fundamental data. In the example, three quantities were required 
by the calling program, bottom slope, conveyance, and the partial derivative of conveyance with 
respect to depth of flow. More complex models require additional quantities, such as channel- 
bottom elevation, and at specific depths of flow, cross-sectional area, top width, or distance from 
the centroid of the wetted cross section to the water surface. A module similar to the example 
channel-properties module could supply information to any program requiring such quantities.

As demonstrated by example, programs based on FORTRAN-77 modules are less dependent on 
fundamental data than corresponding procedural programs. Such programs are less likely to require 
modification as a result of changes in the form of fundamental data. Programs developed using 
FORTRAN-77 modules are more likely to perform with a larger variety of fundamental data than 
their procedural counterparts, limited only by availability of appropriate modules. Use of modules 
results in sharing of source code resources and encourages development of codes independent of the 
form of fundamental data.

12



In the procedural example, passing channel data through the program results in long data paths. 
That is, channel data are passed from the highest-level procedures (where the data are not used) 
to the lowest-level procedures (where actual computations are executed). Therefore, all procedures 
in any branch of the call tree which pass channel data are dependent on the form of the data 
and require modification each time the form of the channel data changes, regardless of any other 
need for modification. Consequently, all procedures passing or using any part of the channel data 
would require modification. This creates unnecessary work and is a source of error during software 
development and maintenance. Furthermore, because changes to codes programmed this way are 
inherently difficult, procedural programming can result in programmer resistance to enhancement. 
Use of FORTRAN-77 modules circumvents these problems.

In the module example, a COMMON block is used to share data in the module. Its use is 
restricted to module routines and the data it contains are not accessed by any procedures outside 
the module. This use of COMMON blocks may evoke dismay in procedural method programmers. 
However, the restriction of COMMON usage to module procedures and using data strictly related 
by module function differs substantially from the unstructured aggregation of unrelated data in 
COMMON prevalent in old FORTRAN programs.

The additional structure provided through use of FORTRAN-77 modules is seen by compar­ 
ison of figure 2 and figure 3. The channel-properties module forms a larger entity than a single 
subprogram. The calling code can be viewed as a separate box, served by a channel-properties 
module and a utility library (which contains the procedure OpenOldFlatFile). Advantages of this 
additional structure are more apparent when used in applications comprised of tens or hundreds of 
procedures. The additional structure allows programs to be viewed at a simpler level in terms of 
a few modules, instead of a labyrinth of interconnected individual procedures. Separation of code 
and data into modules based on the data manipulated provides a natural isolation of errors and 
division of programming tasks, including designing, coding, and testing. The cost for implementing 
this strategy is not great. The procedural code has 13 procedures, whereas the modular code has 
16 procedures. The benefit of increased structure, isolation of errors, and ability to reuse code 
resources offsets this small increase in number of procedures present in a program.

Programming Considerations

The rules for creating and using modules in FORTRAN-77 as presented in this report are 
entirely voluntary. Neither direct support nor enforcement of these rules for modules are provided 
by FORTRAN-77. For example, programmers may call private functions or access private module 
data directly without warning from the compiler. Therefore, successful application of FORTRAN- 
77 modules is based entirely on programmer discipline.

However, the FORTRAN-90 standard (Metcalf and Reid, 1990) contains direct support and 
enforcement of FORTRAN modules through direct implementation of a MODULE construct and 
addition of PRIVATE and PUBLIC attributes for both data and procedures. Unfortunately, no 
vendor has yet supplied a FORTRAN-90 compliant compiler, and no complete implementation is 
expected for about two years. Use of FORTRAN-77 modules represents a transition from strict

13



(or not-so-strict) procedural programming to modular programming (modular in the sense of this 
report) with language and compiler support for modules.

Other computer languages, such as C++ (Stroustrup, 1987), have the capability to support 
programming paradigms similar to that presented, as well as other potentially powerful concepts 
neither allowed nor supported by the FORTRAN-77 language. In particular, C++ is a language 
for object-oriented programming, a paradigm which may prove as useful in solution of water re­ 
sources problems as in programs concerned with computer graphics. Because data encapsulation is 
elemental to object-oriented programming, it is a first step toward object-oriented programming.

References

American National Standards Institute, 1978, American National Standard Programming Language 
FORTRAN. American National Standards Institute, New York, NY.

DeLong, L.L., Thompson, D.B., and Fiilford, J.M., 1992, "Data Encapsulation Using Fortran 77 
Modules," Fortran Forum Volume 11, Number 3, ACM, New York.

Metcalf, M. and Reid, J., 1990. FORTRAN 90 Explained. Oxford Science Publications, New York. 

Stroustrup, B., 1987. The C++ Programming Language. Addison-Wesley, Reading MA.

Stroustrup, B., 1989. Chapter 4: Object-Oriented Programming, in UNIX System V AT&T C++ 
Language System Release 2.0, Selected Readings, AT&T.

14



Appendix A Source Code for the Procedural Program

*===========================================================================:====:

PROGRAM Norml
*                                                           

* Purpose: Compute normal depth at locations within a network
* of open channels   procedural approach.

IMPLICIT NONE

* Local variables:
INTEGER NumberOfLocations,MaxLocations,NumberOfChannels,I
PARAMETER ( MaxLocations » 20 )
INTEGER ControlFileUnit,PropertiesFileUnit
INTEGER Branch(MaxLocations)
REAL XLocation(MaxLocations),Q(MaxLocations),Slope,H
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
INTEGER Brn
REAL XI(MaxChannels),T1(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),T2(MaxChannels),Btm2(MaxChannels)
REAL ManningN(MaxChannels)
CHARACTER*12 ControlFileName.PropertiesFileName

* Definitions:
* MaxChannels - maximum number of channels.
* NumberOfLocations - number of locations for normal depth computations
* MaxLocations - maximum allowable number of locations.
* NumberOfChannels - number of channels in network.
* ControlFileUnit - FORTRAN unit number for file containing locations.
* PropertiesFileUnit - FORTRAN unit number for file containing properties.
* XI downstream reference distance for upstream extent of branch.
* Tl channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 downstream reference distance for downstream extent of branch.
* T2 channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.
* ManningN - effective Manning's n for the branch.

* Functions:
REAL Norm,BtmSlop e 
EXTERNAL Norm,BtmSlope

15



Subroutines:

EXTERNAL ReadControlData, ReadHydraulicProperties, Report

Intrinsics: 
REAL ABS

DATA ControlFileUnit / 12 /
DATA ControlFileName / 'cntrl.dat ' /
DATA PropertiesFileUnit / 11 /
DATA PropertiesFileName / 'cx_tbl.dat ' /

*   Read locations and flows for which normal depths are required.
CALL ReadControlData

I (ControlFileUnit,ControlFileName,NaxLocations, 
0 NumberOfChannels,NumberOfLocat ions,Branch,XLocation,Q)

*   Read cross-sectional properties data.
CALL ReadHydraulicProperties

I (PropertiesFileUnit,NumberOfChannels, 
I PropertiesFileName,MaxChannels, 
0 Xl,Tl,Btml,X2,T2,Btm2,ManningN)

*   Begin normal-depth computations. 
WRITEC*,*) ' ' 
WRITEC*,*)

# 'Branch Location Discharge Slope Normal depth'

DO 100 1*1,NumberOfLocations

H * 1.0
Brn » Branch(I)
Slope * ABS( BtmSlopeC Xl(Brn),Btml(Brn),X2(Brn),Btm2(Brn) ) )
H « Norm( XLocation(I),H,Q(I),Slope,

# Xl(Brn),Tl(Brn),
f X2(Brn),T2(Brn),ManningN(Brn) )

CALL Report(Branch(I), XLocation(I), Q(I), Slope, H) 

100 CONTINUE 

STOP

16



END

SUBROUTINE Report 
I (Branch, XLocation, Q, Slope, H)

* Purpose: Output results of computation 

IMPLICIT NONE

* Arguments:
INTEGER Branch
REAL XLocation, Q, Slope, H

* Definitions:
* Branch - branch number.
* XLocation - downstream distance.
* H - depth of flow.
* Q - volumetric discharge.
* Slope - slope.

* 

WRITE(*,'(I4,2X,2F10.2,F8.4,F10.2)') 
# Branch, XLocation, Q, Slope, H

RETURN 
END

REAL FUNCTION Norm (X,H,Q,S, 
# Xl,Tl,X2,T2,ManningN) 

*                                     

* Purpose: Estimate normal depth in the Branch branch,
* at X downstream distance, for discharge Q,
* and slope S.

IMPLICIT NONE

* Arguments:

17



REAL X,H,Q,S 
REAL XI,Tl 
REAL X2,T2 
REAL ManningN

* Definitions:
* X downstream distance.
* H depth of flow.
* Q volumetric discharge.
* S slope.
* XI downstream reference distance for upstream extent of branch.
* Tl channel width corresponding to xl.
* X2 downstream reference distance for downstream extent of branch
* T2 channel width corresponding to x2.
* ManningN - effective Manning's n for the branch.

* Local variables: 
INTEGER I 
REAL NewK,NewH,dH

* Functions:
REAL Conveyance,dConveyance 
EXTERNAL Conveyance,dConveyance

* Intrinsics:
REAL ABS.SQRT 
INTRINSIC ABS,SQRT

NewK = Q/SQRT(ABS(S)) 
NewH = H

DO 100 1=1,10

dH = (NewK-Conveyance(X,NewH,XI,T1,X2,T2,ManningN)) 
* / dConveyance(X,NewH,XI,T1,X2,T2,ManningN)

NewH = NewH+dH

IF(ABS(dH/NewH).LT.0.001) GO TO 102 

100 CONTINUE

18



WRITE(*,*) > ***Warning(Norm) did not close in 10 iterations...'
WRITEC*,*) ' X = ',X,' H = ',H
WRITEC*,*) 'Q = ',Q,' Slope = ',S

102 CONTINUE

Norm = NewH

RETURN 
END

*s==s=============================s========s=====================:================

SUBROUTINE ReadControlData
I (ControlFileUnit.ControlFileName,MaxLocations, 
0 NumberOfChannels.NumberOfLocations, 
0 Branch,XLocation,Q)

* Purpose: Read locations and discharges. 

IMPLICIT NONE

* Arguments:
INTEGER ControlFileUnit,MaxLocations.NumberOfChannels 
INTEGER NumberOfLocations.Branch(MaxLocations) 
REAL XLocation(MaxLocations),Q(MaxLocations) 
CHARACTER*12 ControlFileName

* Definitions:
* ControlFileUnit - FORTRAN unit number for input file.
* ControlFileName - corresponding file name.
* MaxLocations - maximum number of locations.
* NumberOfChannels - number of channels.
* NumberOfLocations - current number of locations.
* Branch - array of channel numbers.
* XLocation - corresponding array of downstream locations
* Q corresponding array of discharges.

* Local variables: 
INTEGER I

* Functions:

19



LOGICAL OpenOldFlatFile 
EXTERNAL OpenOldFlatFile

     Open file.

IF(OpenOldFlatFile(ControlFileUnit,ControlFileName)) THEN 
ELSE

WRITE(*,*) 'Attempt to open file failed...'
WRITE(*,'(A12)') ControlFileName

STOP 

END IF

     Get number of channels in network.
READ(ControlFileUnit,*) NumberOfChannels

     Get locations and discharges. 
DO 100 1=1,MaxLocations

READ(ControlFileUnit,*,END=102) Branch(I),XLocation(I),Q(I) 
NumberOfLocations s I
IF(NumberOfLocations.GE.MaxLocations) GO TO 102 

100 CONTINUE 
102 CONTINUE 

RETURN 
END

LOGICAL FUNCTION OpenOldFlatFile(NUA,CFILEA)
*                                          .

* Purpose: Open an existing flat file for input. 

IMPLICIT NONE

* Arguments:
INTEGER NUA 
CHARACTER*(*) CFILEA

* Definitions:
* NUA - FORTRAN unit number of file to be opened,
* CFILEA - Character name of file to be opened.

20



Local variables: 
INTEGER IDS

*   Open the existing file.
OPEN (UNIT=NUA, FILE=CFILEA, STATUS='OLD', IOSTAT=IOS) 
IF (IDS .NE. 0) THEN

OpenOldFlatFile = .FALSE. 
ELSE

OpenOldFlatFile = .TRUE. 
ENDIF 
RETURN 
END

REAL FUNCTION BtmSlope(Xl,Btml,X2,Btm2)

* Purpose: Compute bottom slope. 

IMPLICIT NONE

* Arguments:
REAL XI,Btml 
REAL X2,Btm2

* Definitions:
* XI downstream reference distance for upstream extent of branch.
* Btml - channel-bottom elevation corresponding to xl.
* X2 - downstream reference distance for downstream extent of branch.
* Btm2 - channel-bottom elevation corresponding to x2.

BtmSlope = ( Btm2 - Btml ) / (X2-X1)

RETURN 
END

REAL FUNCTION Conveyance(X,H,Xl,Tl,X2,T2,ManningN)

21



* Purpose: Compute conveyance. 

IMPLICIT NONE

* Arguments: 
REAL X,H 
REAL XI,Tl 
REAL X2,T2,ManningN

* Definitions:
* X downstream distance.
* H depth of flow.
* XI downstream reference distance for upstream extent of branch.
* Tl channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 downstream reference distance for downstream extent of branch
* T2 channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.
* ManningN - effective flow resistance.

* Local variables: 
REAL R53.R23 
PARAMETER (R53 = 5.0/3.0, R23 = 2.0/3.0)

* Functions:
REAL CxArea,WetPerimeter 
EXTERNAL CxArea,WetPerimeter

Conveyance - 1.486*(
# CxArea(X,H,Xl,Tl,X2,T2)**R53
# )
# / (
# WetPerimeter(X,H,Xl,Tl,X2,T2)**R23
# ) /ManningN

RETURN 
END

REAL FUNCTION dConveyance(X,H,XI,T1,X2,T2,ManningN)

22



* Purpose: Compute d(Conveyance)/dH. 

IMPLICIT NONE

* Arguments: 
REAL X,H 
REAL XI,Tl 
REAL X2.T2 
REAL ManningN

* Definitions:
* X downstream distance.
* H depth of flow.
* XI downstream reference distance for upstream extent of branch.
* Tl channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 - downstream reference distance for downstream extent of branch.
* T2 - channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.
* ManningN - effective flow resistance.

* Local variables: 
REAL R53,R23 
PARAMETER (R53 = 5.0/3.0, R23 = 2.0/3.0)

* Functions:
REAL Channelwidth,CxArea,WetPerimeter,dWetPerimet er 
REAL Conveyance
EXTERNAL ChannelWidth,CxArea,WetPerimeter,dWetPerimeter 
EXTERNAL Conveyance

dConveyance = Conveyance(
# X,H,Xl,Tl > X2 > T2 > ManningN
# ) * (
* R53*ChannelWidth(X,H,Xl,Tl,X2,T2)
* /CxArea(X,H,Xl,Tl,X2,T2)
* -R23*dWetPerimeterO/WetPerimeter(X,H,Xl > Tl,X2,T2)
# )

RETURN 
END

23



REAL FUNCTION ChannelWidth(X,H,Xl,Tl,X2,T2)

Purpose: Compute width of channel. 

IMPLICIT NONE

Arguments: 
REAL X,H 
REAL X1,T1 
REAL X2,T2

Definitions:
X - downstream distance.
H - depth of flow.
XI - downstream reference distance for upstream extent of branch.
Tl - channel width corresponding to xl.
Btml - channel-bottom elevation corresponding to xl.
X2 - downstream reference distance for downstream extent of branch,
T2 - channel width corresponding to x2.
Btm2 - channel-bottom elevation corresponding to x2.

ChannelWidth = ( (X2-X)*T1 + (X-X1)*T2 ) / (X2-X1)

RETURN 
END

REAL FUNCTION CxArea(X,H,Xl,Tl,X2,T2)

Purpose: Compute cross-sectional area. 

IMPLICIT NONE

Arguments: 
REAL X,H

24



REAL XI,Tl 
REAL X2,T2

* Definitions:
* X downstream distance.
* H depth of flow.
* XI downstream reference distance for upstream extent of branch.
* Tl channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 downstream reference distance for downstream extent of branch.
* T2 channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.

* Functions:
REAL ChannelWidth 
EXTERNAL ChannelWidth

CxArea = H*ChannelWidth(X,H,Xl,Tl,X2,T2)

RETURN 
END

REAL FUNCTION WetPerimeter(X,H,Xl,Tl,X2,T2)

* Purpose: Compute vetted perimeter. 

IMPLICIT NONE

* Arguments: 
REAL X,H 
REAL XI,Tl 
REAL X2,T2

* Definitions:
* MaxChannels - maximum number of channels.
* Branch - branch number.
* X downstream distance.
* H depth of flow.
* XI downstream reference distance for upstream extent of branch.

25



* Tl channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 downstream reference distance for downstream extent of branch
* T2 channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.

* Functions:
REAL ChannelWidth 
EXTERNAL ChannelWidth

*                                                        -

WetPerimeter = 2.0*H+ChannelWidth(X,H,Xl,Tl,X2,T2)

RETURN 
END

REAL FUNCTION dWetPerimeterO 
*                          .

Purpose: Compute d(wp)/dH. 

IMPLICIT NONE
* 

dWetPerimeter =2.0

RETURN 
END

SUBROUTINE ReadHydraulicProperties 
I (ControlFileUnit.NumberOfChannels, 
I ControlFileName,MaxChannels, 
0 Xl,Tl,Btml,X2,T2,Btm2,ManningN)

*                                       

* Purpose: Read geometric and hydraulic properties.

* Two data lines are input for each channel

26



* All input is free-field.

* Line 0:
* PrintOption (integer)

* line 1:
* Channel number (integer)

* line 2:
* XI , Tl, Btml, X2, T2, Btm2, ManningN (all real),

* where,

* XI - downstream reference distance for upstream extent of branch.
* Tl - channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 - downstream reference distance for downstream extent of branch.
* T2 - channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.
* ManningN - effective Manning's n for the branch.

IMPLICIT NONE

* Arguments:
INTEGER ControlFileUnit,NumberOfChannels
INTEGER MaxChannels
REAL XI(MaxChannels),T1(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),T2(MaxChannels),Btm2(MaxChannels)
REAL ManningN(MaxChannels)
CHARACTER*(*) ControlFileName

* Definitions:
* ControlFileUnit - FORTRAN unit number
* NumberOfChannels - number of channels
* ControlFileName - file name
* MaxChannels - maximum number of channels
* XI - downstream reference distance for upstream extent of branch.
* Tl - channel width corresponding to xl.
* Btml - channel-bottom elevation corresponding to xl.
* X2 - downstream reference distance for downstream extent of branch,
* T2 - channel width corresponding to x2.
* Btm2 - channel-bottom elevation corresponding to x2.
* ManningN - effective Manning's n for the branch.

27



* Local variables:
INTEGER I,Brn,PrintOption

* Functions:
LOGICAL OpenOldFlatFile 
EXTERNAL OpenOldFlatFile

* Output formats:
2001 FORMATC//' Cross-sectional properties...*//)
2002 FORMATC Distance Width Btm.elev'/

#' Branch ' ,I3/
#>Upstream.....',3f10.2/
#'Downstream...',3f10.2/
#'Effective n..',F

IF(OpenOldFlatFile(ControlFileUnit,ControlFileName)) THEN 

READCControlFileUnit,*) PrintOption

IF(PrintOption.GT.O) THEN
WRITEC*,*) 'Reading \ControlFileName
WRITEC*,*) NumberOfChannels,' channel(s) specified...'
WRITEC*,2001) 

END IF

DO 100 1=1,NumberOfChannels
READ(ControlFileUnit,*,END=200) Brn

IF(I .NE. Bra ) THEN
WRITEC*,*) 'Channel sequence error...'
WRITEC*,*) 'Read number', Bra
WRITEC*,*) 'Changed to ',1 

END IF

Brn * I
READ CControlFileUnit,*,END*200)

# XlCBrn),TlCBrn),BtmlCBra),
# X2 CBrn),T2 CBrn),Btm2 CBrn),ManningN CBra) 

IF CPrintOpt ion.GT.0) THEN 
WRITEC*,2002) Bra,

# XlCBrn),TlCBra),BtmlCBra),
# X2 CBra),T2 CBrn),Btm2 CBra),ManningN CBrn)

28



END IF 
100 CONTINUE

ELSE

WRITE(*,*) 'Could not open Control file... 1 
WRITE(*,'(A12)') ControlFileName

STOP 

END IF 

RETURN 

200 CONTINUE

WRITE(*,*) 'End of file...reading branch*,Brn 
WRITE(*,*) NumberOfChannels,' channels specified... 1

RETURN 
END

29



Appendix B-Source Code for Module Program

PROGRAM Norm2

* Purpose: Compute normal depth at locations within a network
* of open channels   an approach using FORTRAN modules.

IMPLICIT NONE

* Local variables:
INTEGER NumberOfLocations,MaxLocations,NumberOfChannels,I
PARAMETER ( MaxLocations * 20 )
INTEGER ControlFileUnit
INTEGER Branch(MaxLocations)
REAL XLocation(MaxLocations),Q(MaxLocations),Slope,H
CHARACTER*12 ControlFileName

* Definitions:
* NumberOfLocations - number of locations for normal depth computations.
* MaxLocations - maximum allowable number of locations.
* NumberOfChannels - number of channels in network.
* ControlFileUnit - FORTRAN unit number for file containing locations.
* PropertiesFileUnit - FORTRAN unit number for file containing properties

* Functions:
LOGICAL InitHydraulicProperties
REAL Norm,BtmSlope
EXTERNAL InitHydraulicProperties,Norm,BtmSlope

* Subroutines:
EXTERNAL ReadControlData, Report

* Intrinsics: 
REAL ABS 
INTRINSIC ABS

DATA ControlFileUnit / 11 /
DATA ControlFileName / 'cntrl.dat ' /

*   Read locations and flows for which normal depths are required.

30



CALL ReadControlData
I (ControlFileUnit,ControlFileName,MaxLocations, 
0 NumberOfChannels,NumberOfLocat ions,Branch,XLocat ion,Q)

*   Initialize properties module.
IF(InitHydraulicProperties( NumberOfChannels ) ) THEN

ELSE

WRITEC*,*) 'Initialization of properties module failed...' 
STOP

END IF

*   Begin normal-depth computations.

WRITEC*,*) ' ' 
WRITEC*,*) 

# 'Branch Location Discharge Slope Normal depth'

DO 100 1=1,NumberOfLocations

H = 1.0
Slope = ABS( BtmSlopeC Branch(I),XLocation(I) ) ) 
H « NormC Branch(I),XLocationCD,H,QCD,Slope ) 
CALL ReportCBranchCl), XLocation(I), Q(I), Slope, H)

100 CONTINUE

STOP 
END

ilCSSSSSSSSiSSSSSSSSSSSSSSSBSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS:

SUBROUTINE Report 
I (Branch, XLocation, Q, Slope, H)

*                                         -

* Purpose: Output results of computation. 

IMPLICIT NONE

* Arguments:

31



INTEGER Branch
REAL XLocation, Q, Slope, H

* Definitions:
* Branch - branch number.
* XLocation - downstream distance.
* H - depth of flow.
* Q - volumetric discharge
* Slope - slope.

WRITE(*,'(I4,2X,2F10.2,F8.4,F10.2)») 
# Branch, XLocation, Q, Slope, H

RETURN 
END

jfSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSStSSSSSSSiSSSSSSSSSSSiSSSiSStSSSSSasSStZSSSSSiSSSSSiSiSSSSSiSStSSSSSSSSSSSSSSSSSSSSSSSSSS

REAL FUNCTION Norm(Branch,X,H,Q,S)

* Purpose: Estimate normal depth in the Branch branch,
* at X downstream distance, for discharge Q,
* and slope S.

IMPLICIT NONE

* Arguments :
INTEGER Branch 
REAL X,H,Q,S

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.
* Q volumetric discharge.
* S slope.

* Local variables: 
INTEGER I 
REAL NewK,NewH,dH

32



* Arguments:
INTEGER ControlFileUnit,MaxLocations,NumberOfChannels 
INTEGER NumberOfLocations,Branch(MaxLocations) 
REAL XLocation(MaxLocations),Q(MaxLocations) 
CHARACTER*12 ControlFileName

* Definitions:
* ControlFileUnit - FORTRAN unit number for input file.
* ControlFileName - corresponding file name.
* MaxLocations - maximum number of locations.
* NumberOfChannels - number of channels.
* NumberOfLocations - current number of locations.
* Branch - array of channel numbers.
* XLocation - corresponding array of downstream locations
* Q corresponding array of discharges.

* Local variables: 
INTEGER I

* Functions:
LOGICAL OpenOldFlatFile 
EXTERNAL OpenOldFlatFile

Open file.
IF(OpenOldFlatFile(ControlFileUnit,ControlFileName)) THEN
ELSE

WRITE(*,*) 'Attempt to open file failed...'
WRITE(*,'(A12)') ControlFileName

STOP 

END IF

Get number of channels in network.
READ(ControlFileUnit,*) NumberOfChannels

Get locations and discharges. 
DO 100 1=1,MaxLocations

READ(ControlFileUnit,*,END=102) Branch(I),XLocation(I),Q(I)
NumberOfLocations = I
IF(NumberOfLocations.GE.MaxLocations) GO TO 102

34



100 CONTINUE 
102 CONTINUE

RETURN
END

LOGICAL FUNCTION Open01dFlatFile(fUnit,FileName)

* Purpose: Open an existing flat file for input. 

IMPLICIT NONE

* Arguments:
INTEGER fUnit 
CHARACTER*(*) FileName

* Definitions:
* fUnit - FORTRAN unit number of file to be opened.
* FileName - Character name of file to be opened.

* Local variables: 
INTEGER IDS

*   Open the existing file.
OPEN (UNIT=fUnit, FILE=FileName, STATUS='OLD', IOSTAT=IOS)

IF (IDS .NE. 0) THEN
OpenoldFlatFile = .FALSE. 

ELSE
OpenOldFlatFile = .TRUE. 

ENDIF

RETURN 
END

35



Appendix C-Source Code for Rectangular Channel Properties Module

* This file is a FORTRAN module for the computation of the geometric
* and hydraulic properties of multiple, rectangular, non-prismatic
* channels. Manning's "n" is assumed constant with depth and downstream
* distance within a branch. A branch is represented by two
* rectangular cross sections at its extremities. Width,
* depth, and wetted perimeter are interpolated linearly. Area and
* conveyance are subsequently computed from these interpolated
* values. Two data lines are input for each branch. All input
* is free-field.
*
* line 0:
* Print Opt ion (integer)
*
* line 1:
* ChannelNumber (integer)
*
* line 2:
* XI , Widthl, Btml, X2, Width2, Btm2, Eta (all real),
*
* (Repeat above lines 1 and 2 for additional branches.)
*
* where ,
*
* PrintOption - index for writing to standard output device.
* [0] input data will not be written to standard output.
* [1] input data will be echoed to standard output.
* ChannelNumber - sequence number of channel, monotonically increasing,
* beginning with 1.
* XI - downstream reference distance for upstream extent of branch
* Widthl - channel width corresponding to XI
* Btml - channel-bottom elevation corresponding to XI
* X2 downstream reference distance for downstream extent of branch
* Width2 - channel width corresponding to X2
* Btm2 - channel-bottom elevation corresponding to X2
* Eta - effective Manning's n for the branch

Module note: Only functions or subroutines marked "public" should be 
used outside of this module as those marked "private"

36



* may not be supported by future revisions of this module
* or replacement modules. Likewise, no data or common
* blocks contained within this module should be accessed
* by routines outside of this module accept through the
* use of "public" functions or subroutines contained
* within this module.
*
* Non-standard usage: Symbolic names in this module may be represented by
* as many as 31 characters in order to provide better
* definition directly in the code. Standard FORTRAN
* allows only 6 characters, but this restriction is
* generally extended to 32 characters by most compilers
*
*
* Public functions:
*
* LOGICAL FUNCTION InitHydraulicProperties(NumberOfChannels)
* - begin initialization of module.
*
* REAL FUNCTION BtmSlope(Branch,X)
* - returns channel-bottom slope.
*
* REAL FUNCTION ChannelWidth(Branch,X,H)
* - returns channel width.
*
* REAL FUNCTION CxArea(Branch,X,H)
* - returns cross-sectional area.
*
* REAL FUNCTION Conveyance(Branch,X,H)
* - returns sinuosity-weighted conveyance.
*
* REAL FUNCTION dConveyance(Branch,X,H)
* - returns d(Conveyance)/dH.
*
* REAL FUNCTION ManningN(Branch,X,H)
* - returns Mannings n.
*
* REAL FUNCTION dManningN(Branch,X,H)
* - returns d(Mannings n)/dH.
*
* REAL FUNCTION WetPerimeter(Branch,X,H)
* - returns wetted perimeter.
*
* REAL FUNCTION dWetPerimeter(Branch,X,H)

37



Functions:
REAL Conveyance,dConveyance 
EXTERNAL Conveyance,dConveyance

Intrinsics:
REAL ABS,SQRT 
INTRINSIC ABS,SQRT

NewK = Q/SQRT(ABS(S)) 
NewH = H

DO 100 1=1,10

dH = (NewK-Conveyance(Branch,X,NewH))/dConveyance(Branch,X,NewH) 
NewH = NewH+dH 
IF(ABS(dH/NewH).LT.0.001) GO TO 102

100 CONTINUE

WRITE(*,*) '***Warning(Norm) did not close in 10 iterations...'
WRITEC*,*) 'Branch =* ',Branch,' X = ',X,' H = ' ,H
WRITE(*,*) 'Q = ',Q,' Slope = ',S

102 CONTINUE

Norm - NewH

RETURN 
END

SUBROUTINE ReadControlData
I (ControlFileUnit,ControlFileName,MaxLocations, 
0 NumberOfChannels,NumberOfLocations, 
0 Branch,XLocation,Q)

Purpose: Read locations and discharges 

IMPLICIT NONE

33



* - returns d(WetPerimeter)/dH.
*
* Arguments:
* fUnit - FORTRAN unit number for proerties input data file
* FileName - properties input data file name
* NumberOfChannels - number of branches in the current network
* Branch - current branch number
* X current downstream distance
* H current depth of flow
*
*
* Module data:
* XI(i) - downstream reference distance,
* at upstream extent of channel "i".
* Widthl(i) - channel width at X(i).
* Btml(i) - channel-bottom elevation at X(i).
* X21(i) - downstream reference distance,
* at downstream extent of channel "i".
* Width2(i) - channel width at X(i).
* Btm2(i) - channel-bottom elevation at X(i).
* Eta(i) - effective Manning*s n for channel "i".
* i - channel sequence number.
*
* FileName - name of a file containing hydraulic properties
* appropriate to his module.
* fUnit - FORTRAN unit number for the FileName.
*

* Public:
LOGICAL FUNCTION InitHydraulicProperties(NumberOfChannels)

* Purpose: Begin initialization of hydraulic properties module. 

IMPLICIT NONE

* Arguments:
INTEGER NumberOfChannels 
CHARACTER*12 FileName

* Definitions:

38



* fUnit - FORTRAN unit number for properties data.
* NumberOfChannels - current number of channels in network,
* FileName - file namae corresponding to fUnit.

* Nodule data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels),Widthl(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels)
REAL Eta(MaxChannels)
COMMON /PRPDAT/ XI,Widthl,Btml,X2,Width2,Btm2,Eta
SAVE /PRPDAT/
INTEGER fUnit, PrintOption
COMMON / PROPUNIT / fUnit, PrintOption
SAVE / PROPUNIT /

* Local variables:
INTEGER Channelslnitialized, ChannelNumber, I

* Functions:
LOGICAL ReadHydraulicProperties, OpenOldFlatFile 
EXTERNAL ReadHydraulicProperties, OpenOldFlatFile

InitHydraulicProperties » .FALSE.

*   Set properties file name and unit number. 
FileName « 'cx_tbl.dat » 
fUnit * 12

IF(NumberOfChannels.LE.MaxChannels) THEN

IF(Open01dFlatFile(fUnit,FileName)) THEN
READ(fUnit,*) PrintOption 

ELSE
WRITE(*,*) 'Could not open »,FileName
RETURN 

END IF

Channelslnitialized = 0

DO 100 I = 1,NumberOfChannels

39



ChannelNumber = I

IF( ReadHydraulicProperties(ChannelNumber) ) THEN
Channelslnitialized = Channelslnitialized + 1 

END IF 
100 CONTINUE

ELSE

WRITE(*,*) 'Error(InitHydraulicProperties)...' 
WRITE(*,*) NumberOfChannels,

# ' specified is greater than ',MaxChannels 
RETURN

END IF

IF(Channelslnitialized .EQ. NumberOfChannels) THEN
InitHydraulicProperties = .TRUE. 

ELSE
WRITE(*,*) 'Failed to initialize',

# NumberOfChannels - Channelslnitialized,' channels...' 
END IF

CLOSE(fUnit)

RETURN 
END

* Public :
REAL FUNCTION BtmSlope (Branch, X)

Purpose: Compute bottom slope 

IMPLICIT NONE

Arguments:
INTEGER Branch 
REAL X

40



* Definitions:
* Branch - channel number.
* X downstream distance within channel.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels).Widthl(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels)
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl > Widthl,Btml,X2,Width2,Btm2,Eta
SAVE /PRPDAT/

BtmSlope = ( Btm2(Branch) - Btml(Branch) )/ 
# (X2(Branch)-XI(Branch))

RETURN 
END

Public :
REAL FUNCTION Conveyance (Branch.X.H)

* Purpose: Compute conveyance. 

IMPLICIT NONE

* Arguments :
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Local variables: 
REAL R53.R23 
PARAMETER (R53 = 5.0/3.0, R23 « 2.0/3.0)

41



Functions:
REAL CxArea,WetPerimeter,ManningN 
EXTERNAL CxArea,WetPerimeter,ManningN

Conveyance - 1.486*(CxArea(Branch,X,H)**R53)
# /(WetPerimeter(Branch,X,H)**R23)
# /ManningN(Branch,X,H)

RETURN 
END

* Public:
REAL FUNCTION dConveyance(Branch,X,H)

* Purpose: Compute d(Conveyance)/dH. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Local variables: 
REAL R53,R23 
PARAMETER (R53 = 5.0/3.0, R23 = 2.0/3.0)

* Functions:
REAL ChannelWidth,CxArea,WetPerimeter,dWetPerimeter 
REAL ManningN,dManningN,Conveyance 
EXTERNAL ChannelWidth,CxArea,WetPerimeter,dWetPerimeter 
EXTERNAL ManningN,dManningN,Conveyance

42



dConveyance = Conveyance(Branch,X,H) * (
# R53*ChannelWidth(Branch,X,H)/CxArea(Branch,X,H)
# -R23*dWetPerimeter(Branch,X,H)/WetPerimeter(Branch,X,H)
# - dManningN(Branch,X,H)/ManningN(Branch,X,H)
# )

RETURN 
END

* Public:
REAL FUNCTION ChannelWidth(Branch,X,H)

* Purpose: Compute width of channel. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels » 25)
REAL XI(MaxChannels),Widthl(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels)
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,X2,Width2,Btm2,Eta
SAVE /PRPDAT/

ChannelWidth = ( 
# (X2(Branch)-X)*Widthl(Branch)+(X-XI(Branch))*Width2(Branch)

43



) / (X2(Branch)-XI(Branch))

RETURN 
END

* Public:
REAL FUNCTION CxArea(Branch.X.H)

* Purpose: Compute cross-sectional area. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X.H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H - depth of flow.

* Functions:
REAL ChannelWidth 
EXTERNAL ChannelWidth

CxArea = H*ChannelWidth(Branch,X,H)

RETURN 
END

* Public:
REAL FUNCTION WetPerimeter(Branch,X,H)

* Purpose: Compute wetted perimeter. 

IMPLICIT NONE

44



* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance,
* H depth of flow.

* Functions:
REAL ChannelWidth 
EXTERNAL ChannelWidth

* 

WetPerimeter = 2.0*H+ChannelWidth(Branch,X,H)

RETURN 
END

* Public:
REAL FUNCTION dWetPerimeter(Branch,X,H)

* Purpose: Compute d(wp)/dH. 
IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* 

dWetPerimeter =2.0

RETURN 
END

* Public:

45



REAL FUNCTION ManningN(Branch,X,H)

* Purpose: Compute effective flow-resistance coefficient. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels - 25)
REAL XI (MaxChannels) , Width 1 (MaxChannels) ,Bt ml (MaxChannels)
REAL X2 (MaxChannels) ,Width2 (Max Channels) ,Btm2 (MaxChannels)
REAL Eta (MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,X2,Width2,Btm2,Eta
SAVE /PRPDAT/

ManningN - Eta(Branch)

RETURN 
END

* Public:
REAL FUNCTION dManningN(Branch,X,H)

* Purpose: Compute d(ManningN)/dH. 

IMPLICIT NONE

* Arguments:

46



INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance
* H depth of flow.

dNanningN =0.0

RETURN 
END

* Private:
LOGICAL FUNCTION ReadHydraulicProperties(ChannelNumber)

* Purpose: Read geometric and hydraulic properties. 

IMPLICIT NONE

* Arguments:
INTEGER ChannelNumber

* Definitions:
* NumberOfChannels - number of channels

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels),Widthl(MaxChannels),Btml(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels)
REAL Eta(MaxChannels)
COMMON /PRPDAT/ X1,Width1,Btml,X2,Width2,Btm2,Eta
SAVE /PRPDAT/
INTEGER fUnit, PrintOption
COMMON / PROPUNIT / fUnit, PrintOption
SAVE / PROPUNIT /

47



* Local variables: 
INTEGER Brn, I

* Functions:
LOGICAL OpenOldFlatFile 
EXTERNAL OpenOldFlatFile

* Output formats:
2001 FORMATC//' Cross-sectional properties...'//)
2002 FORMAT(' Distance Width Btm.elev'/

#'Branch',13/
#'Upstream.....',3F10.2/
#'Downstream...',3F10.2/
#'Effective n..',F

ReadHydraulicProperties = .FALSE.

IF(PrintOption.GT.O) THEN
WRITEC*,*) ' '
WRITE(*,*) 'Channel ',ChannelNumber,'...'
WRITEC*,2001) 

END IF

Brn - ChannelNumber 
READCfUnit,*,END=200) I

IF(I .HE. Brn ) THEH
WRITEC*,*) 'Channel sequence error...'
WRITEC*,*) 'Read number', I
WRITEC*,*) 'Changed to ',Brn 

END IF

READCfUnit,*,END=200)
# XI(Brn),Widthl(Brn),Btml(Brn),
# X2(Brn),Width2(Brn),Btm2CBrn),EtaCBrn)

IF(PrintOption.GT.O) THEN 
WRITEC*,2002) Brn,

# Xl(Brn),WidthlCBrn),BtmlCBrn),
# X2CBrn),Width2CBrn),Btm2CBrn),EtaCBrn) 
END IF

48



ReadHydraulicProperties - .TRUE. 

RETURN 

200 CONTINUE

WRITEC*,*) 'End of file...reading Channel',Brn

RETURN 
END

49



Appendix D-Source Code for Trapezoidal Channel Properties Module

EOF TRAPGEOM *****************************************************
*
* This file is a FORTRAN module for the computation of the geometric
* and hydraulic properties of multiple, trapezoidal, non-prismatic
* channels. Manning's "n" is assumed constant with depth and
* downstream distance within a branch. A branch is represented by
* two rectangular cross sections at its extremities. Width, depth,
* and wetted perimeter are interpolated linearly. Area and
* conveyance are subsequently computed from these interpolated
* values. Two data lines are input for each branch. All input is
* free-field.
*
* line 0:
* Print Opt ion (integer)
*
* line 1:
* ChannelNumber (integer)
*
* line 2:
* XI , Widthl, Btml, Zl, X2, Width2, Btm2, Z2, Eta (all real),
*
* (Repeat above lines 1 and 2 for additional branches.)
*
* where ,
*
* PrintOption - index for writing to standard output device.
* [0] input data will not be written to standard output.
* [1] input data will be echoed to standard output.
*
* ChannelNumber - sequence number of channel, monotonically
* increasing, beginning with 1.
*
* XI downstream reference distance for upstream extent of
* branch
* Widthl - channel width corresponding to XI
* Btml - channel-bottom elevation corresponding to XI
* X2 - downstream reference distance for downstream extent of
* branch
* Width2 - channel width corresponding to X2
* Btm2 - channel-bottom elevation corresponding to X2
* Eta - effective Manning's n for the branch
*

50



* Module note: Only functions or subroutines marked "public" should
* be used outside of this module as those marked
* "private" may not be supported by future revisions of
* this module or replacement modules. Likewise, no data
* or common blocks contained within this module should
* be accessed by routines outside of this module accept
* through the use of "public" functions or subroutines
* contained within this module.
*
* Non-standard usage: Symbolic names in this module may be
* represented by as many as 31 characters in
* order to provide better definition directly in
* the code. Standard FORTRAN allows only 6
* characters, but this restriction is generally
* extended to 32 characters by most compilers.

* Public functions:
*
* LOGICAL FUNCTION InitHydraulicProperties(NumberOf Channels)
* - begin initialization of module.
*
* REAL FUNCTION BtmSlope(Branch,X)
* - returns channel-bottom slope.
*
* REAL FUNCTION ChannelWidth (Branch, X,H)
* - returns channel width.
*
* REAL FUNCTION dChannelWidth (Branch, X,H)
* - returns channel side slope.
*
* REAL FUNCTION CxArea(Branch,X,H)
* - returns cross-sectional area.
*
* REAL FUNCTION Conveyance (Branch, X,H)
* - returns sinuosity-weighted conveyance.
*
* REAL FUNCTION dConveyance(Branch,X,H)
* - returns d (Conveyance) /dH.
*
* REAL FUNCTION WetPerimeter(Branch,X,H)
* - returns wetted perimeter.

51



*
* REAL FUNCTION dWetPerimeter(Branch,X,H)
* - returns d(WetPerimeter)/dH.
*
* Arguments:
* fUnit - FORTRAN unit number for proerties input data file
* FileName - properties input data file name
* NumberOfChannels - number of branches in the current network
* Branch - current branch number
* X current downstream distance
* H current depth of flow
*
*
* Module data:
* XI(i) - downstream reference distance,
* at upstream extent of channel "i".
* Widthl(i) - channel width at X(i).
* Btml(i) - channel-bottom elevation at Xl(i).
* Zl(i) - channel side slope at Xl(i).
* X2(i) - downstream reference distance,
* at downstream extent of channel "i".
* Width2(i) - channel width at X(i).
* Btm2(i) - channel-bottom elevation at X2(i).
* Z2(i) - channel side slope at X2(i).
* Eta(i) - effective Manning's n for channel "i".
* i - channel sequence number.
*
* FileName - name of a file containing hydraulic properties
* appropriate to his module.
* fUnit - FORTRAN unit number for the FileName.
*
* Private functions:
*
* REAL FUNCTION ManningN(Branch,X,H)
* - returns Mannings n.
*
* REAL FUNCTION dManningN(Branch,X,H)
* - returns d(Mannings n)/dH.
*
* LOGICAL FUNCTION ReadHydraulicProperties(ChannelNumber)
* - reads hydraulic properties from flat file.
*

52



* Public:
LOGICAL FUNCTION InitHydraulicProperties(NumberOfChannels)

* Purpose: Begin initialization of hydraulic properties module. 

IMPLICIT NONE

* Arguments:
INTEGER NumberOfChannels 
CHARACTER*12 FileName

* Definitions:
* fUnit - FORTRAN unit number for properties data.
* NumberOfChannels - current number of channels in network.
* FileName - file namae corresponding to fUnit.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels),Widthl(MaxChannels),Btml(MaxChannels),

* Zl(MaxChannels)
REAL X2(MaxChannels),Hidth2(MaxChannels),Btm2(MaxChannels),

* Z2(MaxChannels) 
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Hidthl,Btml,Zl,X2,Width2,Btm2,Z2,Eta 
SAVE /PRPDAT/
INTEGER fUnit, PrintOption 
COMMON / PROPUNIT / fUnit, PrintOption 
SAVE / PROPUNIT /

* Local variables:
INTEGER ChannelsInitialized, ChannelNumber, I

* Functions:
LOGICAL ReadHydraulicProperties, OpenOldFlatFile 
EXTERNAL ReadHydraulicProperties, OpenOldFlatFile

InitHydraulicProperties = .FALSE.

53



*   Set properties file name and unit number. 
FileName = 'cx_tbl.dat » 
fUnit = 12

IF(NumberOfChannels.LE.MaxChannels) THEN

IFCOpenOldFlatFileCfUnit,FileName)) THEN
READ(fUnit,*) PrintOption 

ELSE
WRITEC*,*) 'Could not open ',FileName
RETURN 

END IF

ChannelsInitialized = 0

DO 100 I = 1,NumberOfChannels 
ChannelNumber = I

IF( ReadHydraulicProperties(ChannelNumber) ) THEN
Channelslnitialized - Channelslnitialized + 1 

END IF 
100 CONTINUE

ELSE

WRITE(*,*) ' Error(InitHydraulicProperties)...» 
WRITE(*,*) NumberOfChannels,

# ' specified is greater than ',MaxChannels 
RETURN

END IF

IF(Channelslnitialized .EQ. NumberOfChannels) THEN
InitHydraulicProperties = .TRUE. 

ELSE
WRITEC*,*) 'Failed to initialize*,

# NumberOfChannels - Channelslnitialized, 1 channels...' 
END IF

CLOSECfUnit) 

RETURN

54



END

*=======================================:

* Public:
REAL FUNCTION BtmSlope(Branch.X)

* Purpose: Compute bottom slope. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X

* Definitions:
* Branch - channel number.
* X downstream distance within channel.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels =25)
REAL XI(MaxChannels),Width1(MaxChannels),Btml(MaxChannels),

* Zl(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels),

* Z2(MaxChannels) 
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,Zl,X2,Width2,Btm2,Z2,Eta 
SAVE /PRPDAT/

BtmSlope = (Btm2(Branch) - Btml(Branch)) 
# / (X2(Branch) - XI(Branch))

RETURN 
END

*=========================================:

* Public:

55



REAL FUNCTION Conveyance (Branch, X,H)

* Purpose: Compute conveyance. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions :
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Local variables: 
REAL R53.R23 
PARAMETER (R53 = 5.0/3.0, R23 = 2.0/3.0)

* Functions:
REAL CxArea, WetPerimeter, ManningN 
EXTERNAL CxArea, WetPerimeter, ManningN

Conveyance = 1.486 / ManningN(Branch,X,H) 
* (CxArea(Branch,X,H)**R53) 
/ (WetPerimeter(Branch,X,H)**R23)

RETURN 
END

* Public:
REAL FUNCTION dConveyance(Branch,X,H)

Purpose: Compute d(Conveyance)/dH. 

IMPLICIT NONE

56



* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Local variables: 
REAL R53,R23 
PARAMETER (R53 = 5.0/3.0, R23 = 2.0/3.0)

* Functions:
REAL ChannelWidth,CxArea,WetPerimeter,dWetPerimeter 
REAL ManningN,dManningN,Conveyance 
EXTERNAL ChannelWidth,CxArea,WetPerimeter,dWetPerimeter 
EXTERNAL ManningN.dManningN,Conveyance

dConveyance = Conveyance(Branch,X,H)
ft * (R53*ChannelWidth(Branch,X,H) / CxArea(Branch,X,H) 
ft - R23*dWetPerimeter(Branch,X,H) 
ft / WetPerimeter(Branch,X,H) 
ft - dManningN(Branch,X,H) / ManningN(Branch,X,H) 
# )

RETURN 
END

* Public:
REAL FUNCTION ChannelWidth(Branch,X,H)

* Purpose: Compute width of channel. 

IMPLICIT NONE

* Arguments:
INTEGER Branch

57



REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels * 25)
REAL XI(MaxChannels),Width1(MaxChannels),Btml(MaxChannels),

* 21(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels),

* 22(MaxChannels) 
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,21,X2,Width2,Btm2,22,Eta 

C SAVE /PRPDAT/

ChannelWidth = ((X2(Branch)-X) * Widthl(Branch)
# + (X-X1(Branch)) * Width2(Branch))
# / (X2(Branch)-XI(Branch))

RETURN 
END

* Public:
REAL FUNCTION dChannelWidth(Branch,X,H)

* Purpose: Compute side slope of channel 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.

58



H - depth of flow.

Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels),Widthi(MaxChannels),Btml(MaxChannels),

Zl(MaxChannels) 
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels),

Z2(MaxChannels) 
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,Zl,X2,Width2,Btm2,Z2,Eta 
SAVE /PRPDAT/

dChannelWidth = ((X2(Branch)-X) * Zl(Branch)
# + (X-X1(Branch)) * Z2(Branch))
# / (X2(Branch)-XI(Branch))

RETURN 
END

* Public:
REAL FUNCTION CxArea(Branch,X,H)

* Purpose: Compute cross-sectional area. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H - depth of flow.

* Functions:
REAL ChannelWidth, dChannelWidth 
EXTERNAL ChannelWidth, dChannelWidth

59



CxArea = H * ChannelWidth(Branch,X,H) 
# + H * H * dChannelWidth(Branch,X,H)

RETURN 
END

* Public:
REAL FUNCTION WetPerimeter(Branch,X,H)

* Purpose: Compute wetted perimeter. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Functions:
REAL ChannelWidth, dChannelWidth 
EXTERNAL ChannelWidth, dChannelWidth

WetPerimeter = ChannelWidth(Branch,X,H) 
# + 2.0 * H * (1.0 + dChannelWidth(Branch,X,H)**2)**0.5

RETURN 
END

* Public:
REAL FUNCTION dWetPerimeter(Branch,X,H)

60



*=====:

Purpose: Compute d(wp)/dH,
IMPLICIT NONE 

Arguments:
INTEGER Branch
REAL X,H

Functions:
REAL dChannelWidth 
EXTERNAL dChannelWidth

dWetPerimeter * 2.0 * (1.0 + dChannelWidth(Branch,X,H)**2)**0.5

RETURN 
END

* Private:
REAL FUNCTION ManningN(Branch,X,H)

* Purpose: Compute effective flow-resistance coefficient. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

* Module data:
INTEGER MaxChannels 
PARAMETER (MaxChannels = 25)
REAL XI (MaxChannels) ,Widthl (MaxChannels) ,Btml (MaxChannels) , 

* Zl (MaxChannels)

61



REAL X2(MaxChannels) ,Width2(MaxChannels) ,Btm2(MaxChannels), 
* Z2(MaxChannels) 

REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,Zl,X2,Width2,Btm2,Z2,Eta 

C SAVE /PRPDAT/

ManningN - Eta(Branch)

RETURN 
END

* Private:
REAL FUNCTION dManningN(Branch,X,H)

* Purpose: Compute d(ManningN)/dH. 

IMPLICIT NONE

* Arguments:
INTEGER Branch 
REAL X,H

* Definitions:
* Branch - branch number.
* X downstream distance.
* H depth of flow.

dManningN =0.0

RETURN 
END

* Private:

62



LOGICAL FUNCTION ReadHydraulicProperties(ChannelNumber)

* Purpose: Read geometric and hydraulic properties. 

IMPLICIT NONE

* Arguments:
INTEGER ChannelNumber

* Definitions:
* NumberOfChannels - number of channels

* Module data:
INTEGER MaxChannels
PARAMETER (MaxChannels = 25)
REAL XI(MaxChannels),Widthl(MaxChannels),Btml(MaxChannels),

* Zl(MaxChannels)
REAL X2(MaxChannels),Width2(MaxChannels),Btm2(MaxChannels),

* Z2(MaxChannels) 
REAL Eta(MaxChannels)
COMMON /PRPDAT/ Xl,Widthl,Btml,Zl,X2,Width2,Btm2,Z2,Eta 

C SAVE /PRPDAT/
INTEGER fUnit, PrintOption
COMMON / PROPUNIT / fUnit, PrintOption
SAVE / PROPUNIT /

* Local variables: 
INTEGER Brn, I

* Functions:
LOGICAL OpenOldFlatFile 
EXTERNAL OpenOldFlatFile

* Output formats:
2001 FORMAT(//' Cross-sectional properties...'//)
2002 FORMATC Distance Width Btm_elev Z'/

#» Branch»,I3/
*> Upstream..... J ,4F10.2/
#> Downstream...*,4F10.2/
#' Effective n..»,F6.3//)

63



ReadHydraulicproperties = .TRUE.

IF(PrintOption.GT.O) THEN
WRITEO,*) ' '
WRITE(*,*) 'Channel ',ChannelNumber,'...'
WRITE(*,2001) 

END IF

Brn = ChannelNumber 
READ(fUnit,*,END=200) I

IF(I .NE. Brn ) THEN
WRITE(*,*) 'Channel sequence error...'
WRITE(*,*) 'Read number', I
ReadHydraulicproperties = .FALSE. 

END IF

READ(fUnit,*,END=200)
# XI(Brn), Widthl(Brn), Btml(Brn), Zl(Brn),
# X2(Brn), Width2(Brn), Btm2(Brn), Z2(Brn),
# Eta(Brn)

IF(PrintOption.GT.O) THEN 
WRITE(*,2002) Brn,

# XI(Brn), Widthl(Brn), Btml(Brn), Zl(Brn),
# X2(Brn), Width2(Brn), Btm2(Brn), Z2(Brn), Eta(Brn) 
END IF

RETURN 

200 CONTINUE

WRITE(*,*) 'Unexpected end of file...reading Channel',Brn 
ReadHydraulicproperties = .FALSE.

RETURN 
END

***** EOF TRAPGEOM *****************************************************

64



Appendix E Control Data for Example Programs

1, 3500.0,
1. 50000.0,
2. 55000.0,
2, 3500.0,
1, 50000.0,
1, 55000.0,
3, 3500.0,
1, 50000.0,
1, 55000.0,

250.0
2000.0
250.0
250.0
2000.0
250.0
250.0
2000.0
250.0

65



Appendix F-Rectangular Channel Geometry Data

1
1
0.0 100.0 70.0 70000.0 100.0 0.0 0.045
2
0.0 100.0 70.0 70000.0 100.0 0.0 0.045
3
0.0 100.0 70.0 70000.0 100.0 0.0 0.045

66



Appendix G Trapezoidal Channel Geometry Data

1
1
0.0 100. 70. 1.5 70000. 100. 0.0 1.5 0.045
2
0.0 100. 70. 1.5 70000. 100. 0.0 1.5 0.045
3
0.0 100. 70. 1.5 70000. 100. 0.0 1.5 0.045

67


