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PREFACE

Interblock transmissivity functions to be used in block-centered finite-difference models of 
ground-water flow are derived in this report. Computer program subroutines to evaluate 
these functions and to be used with the flow model of McDonald and Harbaugh (1988) are 
documented. The methodology contained in these computer programs is based on specific 
assumptions and has limitations that must be thoroughly understood to obtain meaningful 
results. The user is requested to notify the originating office of any errors found in this 
report or in the computer programs.

Copies of the computer program for the model of McDonald and Harbaugh are available at 
cost of processing from:

U.S. Geological Survey 
WATSTORE Program Office 
437 National Center 
Reston, VA 22092

in
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Finite-Difference Interblock Transmissivity for Unconfined Aquifers 

and for Aquifers having Smoothly Varying Transmissivity

by Daniel J. Goode and Charles A. Appel

ABSTRACT

More accurate alternatives to the widely used harmonic mean interblock 

transmissivity are proposed for block-centered finite-difference models of ground-water 

flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The 

harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow 

with no recharge if the transmissivity is assumed to be spatially uniform over each finite- 

difference block, changing abruptly at the block interface. However, the harmonic mean 

may be inferior to other means if transmissivity varies in a continuous or smooth manner 

between nodes. Alternative interblock transmissivity functions are analytically derived for 

the case of steady-state one-dimensional flow with no recharge. The second author has 

previously derived the exact interblock transmissivity, the logarithmic mean, for one- 

dimensional flow when transmissivity is a linear function of distance in the direction of 

flow. We show that the logarithmic mean transmissivity is also exact for uniform flow 

parallel to the direction of changing transmissivity in a two- or three-dimensional model, 

regardless of grid orientation relative to the flow vector. For the case of horizontal flow in 

a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally 

distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean 

of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for 

unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined 

aquifer with no recharge where hydraulic conductivity is a linear function of distance in the 

direction of flow the exact interblock transmissivity is the product of the arithmetic mean 

saturated thickness and the logarithmic mean hydraulic conductivity. For several 

hypothetical two- and three-dimensional cases with smoothly varying transmissivity or 

hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to 

the flow equation of the alternatives considered. Application of the alternative interblock 

transmissivities to a regional aquifer system model indicates that the changes in computed 

heads and fluxes are typically small, relative to model calibration error. For this example, 

the use of alternative interblock transmissivities resulted in an increase in computational



effort of less than 3 percent. Numerical algorithms to compute alternative interblock 

transmissivity functions in a modular three-dimensional flow model are presented and 

documented.



INTRODUCTION

Appel (1976) examined the computation of interblock transmissivity for block- 

centered finite-difference models of ground-water flow and derived the exact one- 

dimensional interblock transmissivity for the case of transmissivity varying linearly 

between nodes with no recharge, and steady-state flow. He pointed out that significant 

errors in the solution of the ground-water flow equation can result from the use of the 

harmonic or arithmetic mean for some variations of block size and transmissivity. 

Although the harmonic mean is based on the somewhat unnatural assumption that 

transmissivity is spatially uniform over each finite-difference block, and changes 

discontinuously at the block boundaries, it remains the default function for interblock 

transmissivity in general ground-water flow models (for example, Konikow and 

Bredehoeft, 1978; McDonald and Harbaugh, 1988).

In addition to Appel (1976), a few other authors have noted the sensitivity of model 

results to the choice of interblock transmissivity. Anderson and others (1984) found that 

the computed flux into a drain in an unconfined aquifer significantly descreased when the 

harmonic mean was used. Goode (1990) showed that the interblock transmissivity of 

Appel (1976) yielded more accurate potentiometric heads than the harmonic mean in a 

simulation of two-dimensional flow in a confined aquifer with a linear change in 

transmissivity in both directions. Haverkamp and others (1977) and Schnabel and Richie 

(1984) evaluated several methods for computing interblock hydraulic conductivity in one- 

dimensional unsaturated flow models, in which the hydraulic conductivity is a nonlinear 

function of head. Schnabel and Richie (1984) noted that the harmonic mean gave 

unrealistic results for infiltration of a sharp wetting front and recommended integration of 

the unsaturated conductivity function to determine interblock conductance.

Visual inspection of practically any sediment outcrop reveals lithologic 

heterogeneity even at a small scale. As found in a variety of studies, such lithologic 

heterogeneity results in heterogeneity of the hydraulic conductivity. Following are some 

references that describe hydraulic conductivity data for closely spaced samples and thus 

reflect small scale variability. Gelhar (1986) shows a plot (his figure 2) of the logarithm of 

permeability (from laboratory analyses of cores) as compared with location of cores taken 

at about 0.3 meter intervals along a 60 meter section in a vertical borehole in the Mt. Simon 

Sandstone aquifer in central Illinois. Smith (1981) reported on the variation of hydraulic 

conductivity measurements made on two 100 point line samples collected at 0.3 meter



intervals. One line of samples was parallel to the bedding, and the other line was 
perpendicular to the bedding, of the Quadra Sand--a stratified unconsolidated sand deposit 
exposed in a series of cliffs near Vancouver, Canada. Measured hydraulic conductivity 
ranged from roughly 0.01 to 0.1 m/s and was not strongly correlated over spatial 
separations greater than 1 m. Goggin and others (1992) reported on thousands of 
permeability measurements made on outcrops and cores of eolian (wind blown) 
sandstones to estimate small-scale variations using a mechanical field permeameter. More 
than 2,800 measurements were made at an average vertical spacing of about 0.013 meter 
over a continuous core made up mostly of the Page Sandstone. Measurements also were 
made 25 meters away on the surface of the Page Sandstone outcrop. About 450 
measurements were taken at an average vertical spacing of 0.025 meters and about 100 
measurements were taken at an average horizontal spacing of 0.25 meters at the outcrop. 
Vertical transects were sampled from segments of the Nugget Sandstone and the Tensleep 
Sandstone at an average spacing of about 0.3 meters. These data show large ranges of 
permeability but relatively small coefficients of variation within a single stratification type. 
Weber (1986) describes two orders of magnitude range in permeability measurements 
made on several cores where the sample points are a few centimeters apart.

There is a growing body of literature (see review by Gomez-Hernandez and 
Gorelick, 1989) on approaches to determine "effective" or "best" ground-water model 
parameter values taking into consideration the apparent spatial variability of the parameters 
at different scales. That effort is still in the developmental stage. Although it is not our 
intent to summarize, or add to, that body of work, we do need to refer to it briefly to make 
clear the distinction between certain terms which could be confused. On the basis of 

numerical experiments, Warren and Price (1961) concluded that (p. 165) "The most 
probable behavior of a heterogeneous system with single-phase flow approaches that of a 
homogeneous system having a permeability equal to the geometric mean of the individual 
permeabilities." Those experiments did not recognize any spatial trends or structure to the 
hydraulic conductivity. It is as if the hydraulic conductivity of a block is independent of the 
conductivity of its neighbors. From his review of his own work and that of others, Gelhar 
(1986) observed (p. 138S) "... the stochastic results for the two-dimensional isotropic 
case suggest a simple rule of thumb for evaluating effective large-scale properties; that is, 
the [logarithm of the] large-scale transmissivity of an aquifer is obtained by averaging the 
logarithms of the local transmissivities that are measured." Note that this is equivalent to 
stating that the effective large-scale transmissivity is the geometric mean of the measured 
transmissivities. From their numerical experimentation, Gomez-Hernandez and Gorelick



(1989) concluded that the use of the geometric mean as an effective hydraulic conductivity 

seemed to be appropriate away from a pumping well but "the geometric mean failed to 

reproduce the expected value of simulated heads near the well locations."

Considering the degree of spatial variation observed at points centimeters or meters 

apart one might ask if it is overkill to represent the spatial variation between numerical 

block centers, separated commonly by distances of 100's or 1,000's of meters, by a 

function any more complex than the stairstep variation associated with the weighted 

harmonic mean interblock transmissivity. All of the above-mentioned references indicate 

that hydraulic conductivity can vary at the smallest scales for which it is even practical to 

measure this property. Does the conceptual model of a linear variation in hydraulic 

conductivity run the risk of seeming to represent the aquifer more accurately than the field 

data justify? In this context, is the use of the harmonic mean justified over even simpler 

means, such as the arithmetic mean? For the present work, we leave the overall 

conceptualization of spatial heterogeneity to the modeler, but suggest improved numerical 

approximations for a few specific deterministic cases. At worst, these methods may offer 

no significant improvement in real-world accuracy. However, the theoretical 

considerations may be sufficient to encourage consideration of alternative interblock 

transmissivities that have essentially the same computational cost as the harmonic mean.

In this report, one-dimensional solutions of the steady-state horizontal ground- 

water flow equation are interpreted to yield exact effective transmissivity between two 

points for different cases of deterministic spatial heterogeneity. The block-centered finite- 

difference solution of the steady-state two-dimensional flow equation is reviewed, 

highlighting computation of interblock transmissivity. Numerical solutions of the ground- 

water flow equation using alternative interblock transmissivities are compared for several 

simple hypothetical cases. Finally, model simulations of a large scale aquifer system are 

repeated with alternative interblock transmissivity functions to illustrate the practical effects 

of their use. The appendix includes subroutines for the modular three-dimensional ground- 

water flow model (MODFLOW) of McDonald and Harbaugh (1988) to compute 

alternative horizontal interblock transmissivity functions.

5
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THEORY 

Governing Equation

The governing equation for steady-state horizontal ground-water flow may be 

written (Bear, 1979):

VTVh +W = 0 (1)

where h [L] is potentiometric head, T [L2T-!] is the transmissivity tensor, and W [UT1] is 

the volumetric source rate per unit area (recharge). Boundary conditions for (1) included 

specified head, specified flux, and mixed or leaky conditions. If the x and y coordinates are 

aligned with the principal axes of the transmissivity tensor then

T =
0 TU l

yy (2)

In a layered three-dimensional model (for example, McDonald and Harbaugh, 1988) an 

equation analogous to (1) is applicable for each model layer and W is the net vertical inflow 

from below and above. In this case W depends on h, hence the equations for each layer are 

coupled through W.

Under unconfined conditions, transmissivity is often assumed to be a linear 

function of head:

T = K (h-b) ( (3)

where K [LT'1 ] is the hydraulic conductivity tensor, and b [L] is the elevation of the 

bottom of the aquifer or layer. In this case, the potentiometric head coincides with the 

water table or the top of the saturated zone, and it is free to move in time in response to 

hydraulic stresses. Because the head must vary spatially in order for flow to occur, 

transmissivity is almost everywhere spatially nonuniform for unconfined conditions.

Under confined conditions, where the top of the saturated zone is defined by the 

interface between the aquifer and an overlying confining unit, transmissivity is mostly 

assumed to be constant in time. However, transmissivity may be spatially nonuniform due



to the hydrogeologic characteristics of the aquifer. In fact, the ubiquitous heterogeneity of 

aquifers is the focus of much current research. For both confined and unconfined 

conditions, the governing equation (1) allows for nonuniform as well as anisotropic 

(Txx * Tyy) transmissivity.

Effective Transmissivitv for One-Dimensional Steady-State Confined Flow

For one-dimensional steady confined flow, with no leakage or recharge, the 

governing equation can be written:

ds ds , (4)

where s is the coordinate aligned with the flow direction, and transmissivity T is a function 

of s. This equation is a statement of uniform flux, and is integrated once to yield the flux:

, (5)

where q [L2T-1 ] is the volumetric flux per unit width of aquifer, and is spatially uniform. 

This equation can be integrated, giving:

(6)

where hi and h2 [L] are potentiometric heads at si and 52, respectively. Equation (6) 

shows that the head difference between two points and the discharge are related by 
(Collins, 1961, p. 78):

As , (7) 

when T is defined from (Collins, 1961; compare to Bear, 1979, p. 177):



(8)

where As = 82 - si. The inverse of equation (8), T, can be considered the effective 

transmissivity and it is evaluated for abrupt and smooth variability of T(s) in the sequel.

Transmissivity changes abruptly

If the transmissivity changes abruptly between points 1 and 2, then (8) can be 

written:

_ i rsb - si , s2 - sb
Th AsL TI T2 J , (9)

where T! and T2 are the values of transmissivity at points 1 and 2, respectively, and Sb is 

the location of the discontinuous change in T. In this case, Th is the spatially weighted 

harmonic mean of TI and T2. If Sb is halfway between points 1 and 2, then (9) can be 

written:

Ti+T2 . (10)

The harmonic mean in this form is valid as long as at least one of the transmissivities is 

nonzero and automatically yields zero effective transmissivity if one transmissivity is zero. 

When one of the transmissivities is large, relative to the other, the effective transmissivity 

is essentially twice the smaller value, and is insensitive to changes in the larger value.



Transmissivity linear function of distance in flow direction

If transmissivity is a linear function of s, then (8) can be integrated to yield (Butler, 

1957, p. 78;Appel, 1976):

T, = K ln(T2/Ti) , (11)

where T\ is the logarithmic mean transmissivity. [Our use of the name "logarithmic mean" 

is due to Bird and others (1960, p. 467) who present the same expression except that the 

transmissivity in our case is replaced by a temperature difference between two parallel fluid 

streams in their case.] If the transmissivity is uniform, equation (11) cannot be used, but 

then from (8), TX = TI = T2. In addition, equation (11) cannot be used if either 

transmissivity is zero, but in this case, the effective transmissivity is also zero.

If transmissivity is piece- wise linear across a one-dimensional flow domain, the 

effective transmissivity for the entire domain can be computed from equation (8) as:

As 1=1
-Si)

Ti+ i - (12)

where N is the number of points where T is known (and assumed to vary linearly between) 
and As is the length of the domain. This is analogous to the effective hydraulic

conductivity for flow across N layers of differing K.

The direction of the head gradient is parallel to the direction of flow, s, and for si=0 

head is given by (after Appel, 1976):

TI ' . (13)

where a = 3T/3s [LT 1 ] is the uniform rate of change of transmissivity in the direction of 

flow. As with (11), equation (13) is only valid for nonzero a and TI as well as positive TI 

+ (XS2 = T2.

10



Effective Transmissivitv for One-Dimensional Steady-State
Unconfined Flow

For the case of one-dimensional unconfined flow with recharge and a horizontal 

aquifer bottom at elevation zero, the governing equation (1) can be written:

ds ds , (14)

where the hydraulic conductivity is a function of s and the recharge rate W is spatially 

uniform. Integration once yields an expression for flux:

where qi is here the volumetric flux per unit width at si. This expression will be evaluated 

in the sequel for the case of uniform K(s) = K with no recharge (W=0), the case of uniform 

K with uniform recharge W, and for the case of linearly varying K(s) with no recharge.

Homogeneous unconfined aquifer with no recharge

For the case of spatially uniform hydraulic conductivity K and no recharge (W=0), 

equation (15) can be integrated:

fS2 f\J---U
Jsi ./hi

ds = - ^ I h dh

(16)

where the subscript 1 on q has been dropped because q is uniform. Thus, the relation 

between the flux and the head at two points is (compare to Bear, 1979, p. 180):

2As . (17) 

Using the substitutions (from (3)) TI = Khi, T2= Kh2, equation (17) becomes

11



(Ti + T2 ) (hi - h2 )

2 As , (18)

which shows that the effective transmissivity between points 1 and 2 (see equation (7)) is 

the arithmetic mean of the transmissivity at points 1 and 2:

T _ Ti+T2
2 . (19)

No spatial weighting occurs because the hydraulic conductivity and aquifer bottom 

elevation are spatially uniform between points 1 and 2. If either TI or T2 is zero, then (19) 

cannot be used and the effective transmissivity is zero.

The head also changes only in the direction of flow, s, and for si=0 is given by:

" hl "ir . (20)

Homogeneous unconfined aquifer with recharge

For the case of spatially uniform hydraulic conductivity K and uniform recharge 

W, equation (15) can be integrated to give the relation between the flux, as a function now 

of s, and the head at two points (compare to Bear, 1979, p. 180):

q(s) = qi
2As ^ ' . (21) 

At a point half-way between si and 82, that is s = As/2, the last term in (21) drops out:

q(s=As/2) = -J£-(hi-h2 )
2As , (22)

which is identical to equation (17) above, except that the flux is the value midway between 

si and 82, instead of the uniform flux for the previous case of no recharge. Following the 

reasoning in the previous section, the negative of the finite-difference head gradient 

multiplied by the arithmetic mean transmissivity yields the flux midway between the two 

points for the case of uniform recharge.

12



The head also changes only in the direction of flow, s, and for si=0 is given by: 

(h<V>£ -h2 2qiS Ws2p*or - hi-ir'ir . (23)

Unconfined aquifer with hydraulic conductivity a linear function of distance in flow
direction

For the case of no recharge (W=0), but spatially variable hydraulic conductivity, 

equation (15) can be integrated:

/ h 2 /-S2

h dh - - ^
h dh ~ K(s)

/hi Ai v J

 ho
I q ds h <"> - -1 KM

(24)

where the subscript 1 on q has been dropped because q is uniform. For the case of K(s) a 

linear function of s, equation (24) yields:

h22 -hi 2 A ln(K2/Ki)z . L = - qAs _1 z   ll
2 M K2 -K! f (25)

where KI * K(SI) and K2 * K(s2). Thus, the exact effective transmissivity is given by the 

product of the arithmetic mean head (that is, saturated thickness) and the logarithmic mean 

hydraulic conductivity:

rp _ hi + Ii2 K2 - KI 
aX " ~^~ ln(K2 /K!) . (26)

If KI = K2, then equation (19) is used instead of (26). If either KI or K2 is zero, Ta>, is 

also zero.

The head also changes only in the direction of flow, s, and, for si=0 is given by:

ak I. (27) 

13



where <%   dK/ds fT1 ] is the uniform rate of change of hydraulic conductivity in the 

direction of flow.

Comparison of Effective Transmissivitv Functions

The effective transmissivity functions are summarized in table 1. The logarithmic 

mean (Appel, 1976) is compared to the harmonic, geometric [(T^)1/2], and arithmetric 

means in figures 1 and 2 in a nondimensional form (effective T over TI as a function of T2 

/ TI). The harmonic mean underestimates the effective T for the unconfined case with 

uniform hydraulic conductivity (arithmetic mean) and for confined systems with linear 

variability in T (logarithmic mean) because it more heavily weights the low T value. The 

geometric mean exhibits less error for both cases and is similar to the logarithmic mean, 

but still weights the lower T value excessively. For positive TI * T2, the logarithmic mean 

is always larger than the geometric mean (Appendix A). As noted previously, the 

harmonic mean asymptotically approaches 2Ti (T / TI = 2) as T2 approaches infinity, 

while the three other means continue to increase indefinitely with increasing T2-

For the case of a water-table system with hydraulic conductivity varying linearly in 

space, the exact effective T depends on the relative variability in head. The effective Tax for 

an unconfined aquifer with linearly varying hydraulic conductivity is shown for several 

ratios of h2 / hi and compared to the arithmetic mean and the logarithmic mean 

transmissivity in figures 3 and 4. Here, the aquifer bottom elevation is assumed to be zero, 

so the head ratios correspond to the ratios in saturated thickness. When the ratio h2/hi is 

greater than 1, flow is in the negative s direction (that is, from point 2 to point 1). If h2 / hi 

= T2/ TI, then K(s) = K is uniform and the logarithmic mean transmissivity reduces to the 

arithmetic mean, Tax = Ta. If the transmissivities at points 1 and 2 are equal, T2 / TI = 1, 

then K must be variable because the heads are not equal if flow is occuring. The effective 

Tax for the case of T2 / TI = 1 is greater than either TI or T2 because the nonlinear 

variability in saturated thickness and the linear variability in K yield transmissivities 

between point 1 and 2 that are larger than the values at 1 and 2. This relation is clarified by 

figure 5, which shows the ratio of Tax / TI as a function of KI / K2, for several values of 

h2 /hi.

14
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T /T
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Figure 1. Graph showing ratio of arithmetic, logarithmic, and harmonic effective 

transmissivities to transmissivity at point 1 (T/Ti) as a function of the ratio of 

transmissivity at point 2 to that at point 1 (T2/Ti). Geometric mean transmissivity shown 

for comparison.

The importance of selecting the appropriate effective transmissivity depends on the 

magnitude of changes in transmissivity between points 1 and 2 where the head is 

evaluated, and on the magnitude of head changes for the unconfined case. When these 

changes are small then any of the functions will yield essentially the same results. Errors 

due to using an incorrect effective transmissivity increase with the magnitude of the 

changes in transmissivity, or with the magnitude of the changes in saturated thickness and 

hydraulic conductivity for the unconfined case.
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Figure 2. Graph showing enlarged portion of Figure 1 for small values of the ratio of 

transmissivity at point 2 to that at point 1.
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Figure 3. Graph showing ratio of effective transmissivity as arithmetic mean saturated 

thickness times logarithmic mean hydraulic conductivity to the transmissivity at point 1 

(T/Ti) as a function of the ratio of transmissivity at point 2 to that at point 1 

Arithmetic and logarithmic effective transmissivities shown for comparison.
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Figure 4.~Graph showing enlarged portion of Figure 3 for small values of the ratio of 

transmissivity at point 2 to that at point 1.
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10 h /h =10.02' 1

0 8 10

K/K

Figure 5. Graph showing the ratio of effective transmissivity as arithmetic mean saturated 

thickness times logarithmic mean hydraulic conductivity to the transmissivity at point 1 

(T/TI) as a function of the ratio of hydraulic conductivity at point 2 to that at point 1 

(K2/Ki) for several values of the ratio of head at point 2 to that at point 1 (h2/hi).
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NUMERICAL METHODS 

Finite-Difference Representation of Flow Equation

The steady-state two-dimensional ground-water flow equation can be solved using 

a block-centered finite-difference representation. The aquifer is discretized into rectangular 

blocks with a node at the center of each block (fig. 6). A discrete approximation of the 

governing equation is obtained by solving for the heads at the nodes [after Finder and 

Bredehoeft, 1968; Trescott et al., 1976; Konikow and Bredehoeft, 1978]:

AXJ AXj+i/2 AXj.i/2

(hj.j+i -hj.

Avj+l/2 Ayj-i/2

+ W,j = 0 (28)

where subscript i is the index for the discretization in the x direction and subscript j is the 

index for the discretization in the y direction. The term Axj is the x dimension of all blocks 

at the x location corresponding to i. The term Axj+i/2 is the distance between node i,j and 

node i+l,j, for all i: Axj+i/2 = (Axi + Axj+i) / 2. The Ay terms in (28) are analogous.

The block-centered finite-difference saturated flow model of McDonald and 

Harbaugh (1988) (MODFLOW) solves a three-dimensional equation analogous to (28), 

where W includes vertical flow between layers and depends on the difference between hjj 

and the corresponding heads in adjacent layers. The algorithms developed in the following 

sections have been coded in new MODFLOW subroutines for computing horizontal 

conductance (see Appendix B).
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Figure 6.~Schematic of two-dimensional finite-difference discretization scheme showing 

flux in the x direction at (i+l/2,j) and a flux vector q oriented at angle 6 to the x axis.
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Interblock Transmissivitv

The transmissivity terms in (28) are interblock or block interface values and are 

usually computed as some average of the values of T in the adjacent blocks. Two 

commonly used functions are the weighted arithmetic mean (Finder and Bredehoeft, 1968)

_ Axi+iTxx(ij) + AxjT      -     -
Axi+Axi+i 9 Txx(i5J) ,Txx(i+l5J) *0 ^ (29)

and the weighted harmonic mean (Finder, 1970; Routt and Crawford, 1973):

The y components are computed analogously. As shown in the Theory section, the 

harmonic mean yields exact fluxes and nodal heads for one-dimensional steady-state flow 

with no recharge when transmissivity is uniform within each finite-difference block.

The expression for the weighted arithmetic mean (29) is the value of transmissivity 

at the location of the block interface obtained by linear interpolation between the nodal 

values. This interpolation is implied by the Taylor series expansion of Finder and 

Bredehoeft (1968). In the papers of Appel (1976) and Anderson and others (1984), 

equation (29) is presented but with the indices on the Ax terms in the numerator switched. 

Their expression, which is not due to Finder and Bredehoeft (1968), is equivalent to 

determining the average value of transmissivity along the line between the two nodes when 

the transmissivity is uniform on each block. The expression presented by Appel (1976, eq. 

2) and Anderson and others (1984) has, to our knowledge, no rigorous derivation for the 

ground-water flow equation. Fortunately, the incorrect expression yields the same value of 

transmissivity when the blocks are uniform, i.e. when no spatial weighting occurs.

Other methods for determining the interblock transmissivity include using the 

geometric mean and using the "upstream" value only. The geometric mean, although an ad 

hoc method for ground-water flow, has been shown to perform satisfactorily in one- 

dimensional unsaturated flow simulations where hydraulic conductivity is nonlinearly 

dependent on head (Haverkamp et al., 1978). As shown above, the geometric mean is
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similar to the logarithmic mean. Using the "upstream" value, or the value from the block 

with the higher head, is common in the petroleum simulation literature for the analogous 

finite-difference simulation of transient immiscible displacment (Crichlow, 1977), but this 

method has no rigorous derivation for application to steady-state ground-water flow.

The desired interblock transmissivity is that which computes the correct flux when 

the heads at the nodes are known, or, conversely, which yields the correct heads at the 

nodes when the flux is specified. Thus, the exact effective interblock transmissivity is the 

ratio of the exact flux divided by the finite-difference representation of the head gradient 

using the exact heads (for example, in the x direction):

xx(i+i/2J) =
i+ij-ij , (31)

where the terms on the right hand side are known. This relation can be used, in steady- 

state and with no recharge, to derive the exact interblock transmissivity for cases in which 

the flux and heads are known analytically. The similarity between equation (31) and 

equation (7) above indicates that the effective transmissivity functions derived in the 

Theory section are suitable for interblock transmissivities in block-centered finite-difference 

flow models. In this use, points 1 and 2 correspond to nodes in the finite-difference grid.

Transmissivity uniform over each block

The weighted harmonic mean, equation (30), yields the exact solution for one- 

dimensional flow with no recharge if the transmissivity is assumed to be uniform over 

each finite-difference block. In addition, this mean automatically accounts for cases of 

uniform transmissivity and zero transmissivity, except if both transmissivities are zero. Of 

the alternative interblock transmissivity functions considered here (see table 1), the 

harmonic mean most heavily weights the lower transmissivity value. The appropriate 

spatial weighting depends on the grid method, the result here (equation 30) being 

appropriate for block-centered grids.
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Transmissivity varies linearly between nodes

Appel (1976) presented a function (herein called the logarithmic mean) for 

computing the interblock T that is exact for steady-state one-dimensional flow with no 

recharge where T is a linear function of distance:

T TXX(j+l j) -TXX (j j) rp rp Q
Txx(i+i/2,j) =   ^r2   T^ ixx(i,j)» i xx(i+l,j) il£U

In
. Txx(i,j) . Txx(i>j) *Txx(i+1>j) m (32)

Here, we prove that this interblock transmissivity also yields exact finite-difference 

solutions when the direction of flow is not aligned with the grid. That is, using the 

logarithmic mean for the interblock T in a two-dimensional model (or interblock K in a 

three-dimensional model) results in an exact solution to the flow problem if flow is 

uniform and aligned in the direction of changing T, regardless of the grid orientation.

Consider that the direction of flow s is at an angle 9 to the finite-difference grid (fig. 

6). The transformation from x and y to the s coordinate is given by:

s = x cos 9 + y sin 9 (33)

where it is assumed that s = 0atx = y = 0.

The transmissivity is assumed to change in only the s direction, and to be uniform 

orthogonal to s. Defining the rate of change of T as a function of distance in the s direction 

as a » dT/ds, the transmissivity at any point is given by:

T(s) = TI + a s ; T(XJ) = Tx + a (x cos 9 + y sin 9J ? (34) 

where TI is the transmissivity at s=0. For this case, transmissivity is isotropic.

Assume the reference node (i,j) is located at x=y=0. The adjacent node in the x 

direction (i+lj), is located at x=Axi+i/2, y=0. Using (34), the transmissivity at this node is

Txx(i+i,j) = TI + a Axi+i/2 cos 9 >
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The logarithmic mean TXX at (i+l/2,j) is, substituting (35) for T2 into (32):

a Axj+i/2 cos 9

Infl i aAxi+i/2Cos9 
I TI (36)

The model flux in the x direction is the negative of this interblock T multiplied by 

the head gradient between the nodes. The exact head at node (i+lj) is evaluated by 

substituting (33) for this node into (13), yielding:

i aAxi +1/2 +
Tl

The finite difference expression for the discharge per unit width at (i+l/2,j) is then

(37)

Axj+i/2

- a Axj+i/2 cos 9

In 1 a Axj+i/2 cos 9 1
TI /.

- q ln[l + aAxi ^/2COs9
a \ TI

Axj+i/2

= q cos 9 (38)

which is the expected result. The results in the y direction are analogous. In addition, this 

proof can easily be extended to three dimensions, where T is replaced by K, the hydraulic 

conductivity, and q, volumetric flux per unit width, is replaced by a volumetric flux per unit 

area or specific discharge.

Thus, using the analytically calculated heads at the nodes and the logarithmic mean 

T, the flux is computed exactly. Conversely, if the flux is specified, through boundary 

conditions, then the heads at the nodes will be exact if logarithmic mean is used for the 

interblock transmissivity. This proof is also applicable to the "grid point distributed" 

variation (Settari and Aziz, 1972) of the finite-difference formulation for the case of 

uniform parallel flow because the transmissivity is assumed to vary linearly between 

nodes, regardless of the location of the block boundary.
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Unconfined aquifer with uniform hydraulic conductivity

The analysis of the Theory Section indicates that for uniform flow under 

unconfined conditions, with a horizontal aquifer bottom and flow oriented in a grid 

direction, and with a constant hydraulic conductivity, the exact interblock transmissivity is 

computed as the (unweighted) artihmetic mean:

; T^o,.) , T«, +1J) * 0

It is recognized that the Dupuit approximation assumes that the change in head 

relative to the aquifer thickness is small. When the change in saturated thickness is small 

between nodes, then the differences between alternative interblock T functions is also 

small. However, examination of documented model applications indicate that the 

numerical model is likely to be applied to unconfined situations where the change in 

saturated thickness may be significant.

Following the proof of the previous section, we can show that use of the arithmetic 

mean transmissivity yields an exact solution for unidirectional unconfined flow in any 

direction in a two-dimensional grid, if the aquifer bottom is flat and the hydraulic 

conductivity is uniform. As above, head changes only in the direction of flow, s, and is 

given by equation (20). Thus, for flow at an angle 9 to the grid, the head at node (i+l,j) is:

, [,2 2qAxi+i/2 cos 9 f 2hi+i,j - (hi-      -      j ^ (4Q)

where the head at node (i,j) is hy = hi. The transmissivity at node (i,j) is Khi, the 

transmissivity at node (i+lj) is given by (40) times K, and the arithmetic mean 

transmissivity Txx(i+i/2,j) is

TXX(i+i/2,j) = 0-5 K 7 2qAxi+i/2 cosehf-
K

1/2

(41)

assuming that the aquifer bottom has elevation zero. Substituting (40) and (41) into the 

finite-difference expression for the flux at the block interface (equation (31)) yields:
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AXi+i/2

-K

2Axi+i/2

= qcosG f

2qAxj +i/2 cos 9 
K

1/2
2 2qAxi+1 /2 cos 9 ]1/2 ni -     ^     I ' ni

K

(42)

which is the desired result. Thus, under the special conditions of unconfined flow, flat 

aquifer bottom, no recharge, and unidirectional uniform flow, use of the arithmetic mean 

interblock transmissivity yields the exact flow equation solution regardless of the 

orientation of the finite-difference grid. Furthermore, if uniform recharge is occurring, this 

approach will also yield the exact flux at the location halfway between the nodes. That is, if 

the finite-difference blocks are uniform, the method is also exact for unidirectional flow 

with recharge.

Unconfined aquifer with hydraulic conductivity varying 
linearly between nodes

The Theory Section shows that for uniform unconfined flow in a grid direction, 

with a horizontal aquifer bottom at elevation zero and no recharge, the exact effective 

transmissivity is the arithmetic mean potentiometric head times the logarithmic mean 

hydraulic conductivity. For a general model with variable aquifer bottom elevation, but 

ignoring the slope of the aquifer bottom, the finite-difference interblock transmissivity is:

(hi i - b; i ) + = Lid    ̂

where

K, Kxx(i+l,j) ~   

In

and where b [L] is the elevation of the aquifer bottom. This form is more general than 

equation (39) above and reduces to equation (39) when the hydraulic conductivity is
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uniform. In addition, this form reduces to equation (32) for a confined system with 

uniform saturated thickness when the potentiometric head in (43) is replaced by the aquifer 

top elevation. For these reasons, equation (43) may be preferred for situations where one 

of the nodes is unconfined but the other is confined, although further investigation of this 

case may be warranted.

The computational effort for this interblock transmissivity is more than the 

previously considered methods. In effect, the effort for this case is comparable to the sum 

of the efforts for the arithmetic and logarithmic means, because both means are computed 

here. However, for most cases this increase is probably insignificant compared to the 

computational effort associated with solving the system of finite-difference equations. The 

additional computational effort associated with this interblock transmissivity could be 

minimized for transient problems by storing the logarithmic mean interblock hydraulic 

conductivity.

Following the proof of the previous section, we can show that use of the arithmetic 

mean transmissiviry yields an exact solution for unidirectional unconfined flow in any 

direction in a two-dimensional grid, if the aquifer bottom is horizontal and has elevation 

zero, and the hydraulic conductivity varies linearly in the direction of flow. As above, the 

direction of the head gradient is parallel to the direction of flow, s, and head is given by 

equation (27). Thus, for flow at an angle 9 to the grid, the head at node (i+l,j) is:

2 . ^. akAxi+i/2 cos 9
1/2

(45) 

and the hydraulic conductivity at node (i,j+l) is:

Kxx(i+i,j) = KI + ak Axj+i/2 cos 9 < (45)

The logarithmic mean hydraulic conductivity at (i+l/2,j) is, substituting (46) and KI = 

Kxx(ij) into (44):

Axj+i/2 cos 9

In 1 I ak Axi+1/2 cos9 
\ Ki /KI } . (47)
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The interblock transmissivity is the arithmetic mean saturated thickness times the 

logarithmic mean hydraulic conductivity,

(48)

where the arithmetic mean saturated thickness is

= 0.5 h2 - 2q lnfli akAxi+i/2 cos 9 
. 1 «k \ KI

1/2

, (49)

Substituting (45), (48) and (49) into the finite-difference expression for the flux at the block 

interface (equation (31)) yields,

AXi+i/2

-0.5 hl + h2 . ^i inf 1+ «kAxn.i/2 cos9J 1/2 ln L + ak Axi+i/2 cos 9J 
«k v KI /. I KI /

Axj+i/2 cos 9

h2 . q «kAxi+i /2 cos9 _
-1

= q cos 9
1 (50)

which is the desired result. Thus, under the special conditions of unidirectional uniform 

unconfined flow, where flow is parallel to the direction of changing K, and horizontal 

aquifer bottom, use of the arithmetic mean saturated thickness times the logarithmic mean 

hydraulic conductivity for interblock transmissivity yields the exact solution regardless of 

the orientation of the finite-difference grid.
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EVALUATION OF APPROACH

In this section, the relative accuracies of the alternative interblock transmissivity 

functions are illustrated for two- and three-dimensional simulations. Results are first 

shown for several two-dimensional simulations of unidirectional flow with and without 

recharge. Because the exact solution for these problems is one-dimensional flow, simple 

analytical solutions can be used to assess model accuracy. Next, results are compared for a 

three-dimensional system for which the analytical solution is unavailable. In this case, 

coarse grid solutions are compared with solutions using a very fine grid. For all of these 

cases, errors are illustrated by tables of potentiometric head at certain nodes, and by tables 

of a simple error statistic for all computed heads and fluxes. This average error statistic is 

the sum of the absolute values of the difference between the model result and the exact 

result, divided by the sum of the absolute values of the exact result. For example, the 

average head error statistic is:

(51)

" nexact
=-       
zJ hexact '

For the cases for which the analytical solution is not available, the fine grid result is used as 

an estimate of the exact value. Similar statistics are computed for the applicable flux 

components. Finally, a previously completed three-dimensional large-scale simulation is 

repeated using the alternative interblock transmissivity functions. This example illustrates 

the practical effects of using different interblock transmissivity functions. The example 

simulations are summarized in table 2.

Two-Pimensional Examples with Analytical Solutions

Several simple two-dimensional examples are presented where flow is 

unidirectional and a one-dimensional analytical solution is available. However, the flow is 

oriented at an angle to the grid to activate two-dimensional aspects of the numerical 

solution. The numerical grid (fig. 7) is 5 rows (y) by 5 columns (x). Specified flux
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Figure 7.~Schematic of grid for two-dimensional simulations showing boundary 

conditions and orientation of the parallel flow vector q at angle 0 to the x axis. For the 

simulations presented here, 0 = 30 degrees.

boundary conditions are used at all boundary nodes except the node at row=5 and column 

5, where the head is specified as h(5,5)=10 m. The grid spacing is Ax = Ay = 1000 m. 

For these cases, the exact solution is unidirectional flow at an angle of 30 degrees from the 

x axis, in the direction of increasing row and column indices.

33



Transmissivity a linear function of distance in flow direction, 
no recharge (case 2D-C1)

This case has no recharge and corresponds to the proof above showing that the 

linear effective mean transmissivity is exact as long as flow is unidirectional. The uniform 

flow rate is q = 10~3 m2/day, but the flux boundary conditions are nonuniform because 

flow is oriented at 30° to the grid (table 3). The transmissivity at node (1,1) is T(l,l) = 10- 

2 m2/day and transmissivity increases in the direction of flow (s) at a rate of 

a = 3 x lO'5 m2/day/m (table 4).

In the Numerical Methods section, we showed that the logarithmic mean 

transmissivity would yield an exact solution to this problem, where transmissivity is 

changing in the direction of flow only, and no recharge occurs. Tables 5 and 6 show that 

this is indeed the case, and indicate the relative errors caused by using other interblock 

transmissivity functions. The errors caused by using the harmonic mean is about twice the 

errors caused by using the arithmetic mean. The harmonic mean generally yields heads 

that are too high, while the arithmetic mean generally yields heads that are too low.

Table 3.- foecified volumetric flux (rn^/dav'] into boundary cells for cases 2D-C1.

2D-U1 and 2D-U3. flow direction 30° to erid. no recharge

row

1

2

3

4

5

1

1.366

0.866

0.866

0.866

0.366

column

2345

0.500 0.500 0.500 -0.366

-0.866

-0.866

-0.866

-0.500 -0.500 -0.500
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transmis

A i auouiiooi v it *.L/ V^J. dill* £*J~/ \~s£* +

ssivitv a linear function of distance in flow direction 30° to erid

row

1

2

3

4

5

1

0.010

0.025

0.040

0.055

0.070

Table 5.    Head Cm") in row

distance in flow direction, no

Interblock T mean

2

0.036

0.051

0.066

0.081

0.096

1 for case

recharee

1

column

3

0.062 0.

0.077 0.

0.092 0.

0.107 0.

0.122 0.

4

088

103

118

133

148

5

0.114

0.129

0.144

0.159

0.174

2D-C1. transmissivitv a linear function of

[least accurate mean

column

2 3

indicated

4

by italics]

5

head (m) in row 1

harmonic

exact and logarithmic

arithmetic

775.5

105.2

100.8

62.80 44.33

62.52 44.40

62.35 44.43

32.67

32.73

32.79

23.95

24.10

24.18
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Table 6.  Error for case 2D-C1, transmissivity a linear function of distance in flow 

direction, no recharge [least accurate mean indicated by italics]

Model output component

Interblock T mean________head______cjx_______<fa___

average error statistic (dimensionless)

harmonic

logarithmic

arithmetic

0.0207

0

0.0092

0.0106

0

0.0049

0.0196

0

0.0089

Transmissivity a linear function of distance in flow direction, 
with recharge (case 2D-C2)

This problem is identical to the previous case except that a uniform recharge rate of 

W = 2 x 10-7 in/day is applied over the entire simulated area. The flux at the outside corner 

of the cell centered at (1,1) is q = 10'3 m2/day. Again, flow is at 30 degrees from the x 

axis. However, for this case the flux increases linearly with distance in the flow direction 

due to the uniform recharge. The nonuniform specified flux boundary conditions are given 

in table 7. The transmissivity at node (1,1) is T(l,l) = 10'2 m2/day and transmissivity 

increases linearly with distance in the flow direction at a rate of a = 3 x 10~5 m2/day/m, as 

in the previous case (table 4).

For this case of uniform recharge, none of the interblock transmissivity functions 

yields the exact solution, but the logarithmic mean is the most accurate, followed by the 

arithmetic mean (tables 8 and 9). As with the previous case, the harmonic mean yields the 

least accurate solution in terms of both computed heads and fluxes.
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2D-U2, flow direction 30° to erid, with recharge

row

1

2

3

4

5

1

1.4526

0.9959

1.0825

1.1691

0.4624

column

234

0.6299 0.7165 0.8031

-0.8799 -0.9665 -1.0531

5

-0.7696

-1.7459

-1.8325

-1.9191

Table 8.  Head (m) in row 1 for case 2D-C2. transmissivity a linear function of 

distance in flow direction, with recharge [least accurate mean indicated by italics]

column

Interblock T mean

exact

harmonic

logarithmic

arithmetic

1

148.3

161.8

149.1

143.6

2

96.85

97.58

96.99

96.66

3

head (m) in

71.69

71.76

71.74

71.71

4

row 1

53.43

53.33

53.44

53.49

5

38.42

38.22

38.41

38.50
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Table 9.  Error for case 2D-C2. transmissivity a linear function of distance in flow 

direction, with recharge [least accurate mean indicated by italics]

Interblock T mean

Model output component 

head______qx_______qv

average error statistic (dimensionless)

harmonic 0.0198 0.0086 0.0157

logarithmic 0.0034 0.0005 0.0010

arithmetic 0.0064 0.0030 0.0057

Homogeneous imconfined aquifer, no recharge (case 2D-U1)

For this unconfined case, transmissivity is modeled as a linear function of head, 

and the hydraulic conductivity is assumed to be spatially uniform and equal to K = 10"3 

m/day. The uniform flow rate is q = 10~3 m2/day, and the aquifer bottom elevation is zero. 

The nonuniform flux boundary conditions are the same as case 2D-C1 (table 3).

Table 10.  Head (m) in row 1 for case 2D-U1. homogeneous unconfined aquifer, no 

recharge [least accurate mean indicated by italics]

Interblock T mean

column

2 3

head (m) in row 1

exact

harmonic

logarithmic

and arithmetic

110.5

106

105

.2

.0

102.4

97

96

.69

.42

93.45

88

86

.36

.97

55.57

77.

76.

90

37

72.33

65

64

.80

.03
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The arithmetic mean transmissivity yields the exact solution, as expected (tables 10 

and 11). The harmonic mean, because it heavily weights the low transmissivity, yields the 

least accurate solution and generally results in heads that are too high.

Table 11.  Error for case 2D-U1. homogeneous unconfined aquifer, no recharge [least

accurate mean indicated by italics]

Model output component 

Interblock T mean_______head______c[x_______c[y___

average error statistic (dimensionless) 

harmonic 0.1057 0.0161 0.0286 

logarithmic 0.0234 0.0044 0.0080 

arithmetic 000

Homogeneous unconfined aquifer, with recharge (case 2D-U2)

This case is identical to the previous unconfined case except that uniform recharge 

occurs throughout the modeled domain. The hydraulic conductivity is spatially uniform 

and equal to K = 10"3 m/day and the aquifer bottom elevation is zero. The flux at the 

outside corner of the cell centered at (1,1) is q = 10-3 m2/day, and the uniform recharge rate 

is W = 2 x 10"7 m/day. The nonuniform flux boundary conditions are the same as case 

2D-C2 (table 7).

As shown in the Numerical Methods section, the use of the arithmetic mean for 

interblock transmissivity yields the exact solution for this problem because the grid blocks 

are uniform (tables 12 and 13). As with the previous example, use of the harmonic mean 

yields the least accurate solution and generally yields heads that are too high.

39



Table 12.  Head (m) in row 1 for case 2D-U2. homogeneous unconfined aquifer, with 

recharge [least accurate mean indicated by italics]

Interblock T mean

column 

3

head (m) in row 1

harmonic

logarithmic

exact and arithmetic

154.7 147.6 139.1 128.8 116.4

139.0 131.1 121.5 109.7 94.86

136.0 128.0 118.1 106.0 90.65

Table 13.  Error for case 2D-U2. homogeneous uncofmed aquifer, with recharge [least

accurate mean indicated by italics]

Interblock T mean

Model output component 

head______qx_______qv

average error statistic (dimensionless) 

harmonic 0.2424 0.0275 0.0481 

logarithmic 0.0406 0.0077 0.0138 

arithmetic 000
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Unconfined aquifer with hydraulic conductivity a linear function of distance in flow
direction, no recharge (case 2D-U3)

This example is similar to case 2D-U1, an unconfined aquifer with no recharge, 

except that here the hydraulic conductivity is assumed to be a linear function of the flow 

direction coordinate. The uniform flux is q = 10~3 m2/day and the aquifer bottom elevation 

is taken as zero. The hydraulic conductivity at node (1,1) is K(l,l) = 10~4 m/day and the 

hydraulic conductivity increases in the direction of flow at a rate <% = 3 x 10~6 m/day/m 

(table 14).

Table 14.  Hydraulic conductivity (m/day} at nodes for case 2D-U3, hydraulic 

conductivity a linear function of distance in flow direction 30° to grid

row

1

2

3

4

5

1

0.0001

0.0016

0.0031

0.0046

0.0061

2

0.0027

0.0042

0.0057

0.0072

0.0087

column 

3

0.0053

0.0068

0.0083

0.0098

0.0113

4

0.0079

0.0094

0.0109

0.0124

0.0139

5

0.0105

0.0120

0.0135

0.0150

0.0165

As shown in the Numerical Methods section, use of the arithmetic mean saturated 

thickness times the logarithmic mean hydraulic conductivity for the interblock 

transmissivity yields the exact solution (tables 15 and 16). The harmonic mean yields the 

least accurate results and generally yields heads that are too high. The logarithmic mean 

interblock transmissivity yields a more accurate solution than the arithmetic mean, 

indicating that, for this particular problem, incorporating the spatial variability of hydraulic 

conductivity is more important than accounting for the dependence of transmissivity on 

head.
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Table 15.  Head (m) in row 1 for case 2D-U3. unconfined aquifer with hydraulic

conductivity a linear function of distance in flow direction, no recharge

[least accurate mean indicated by italics]

Interblock T

column 

3

harmonic mean T 83.96 

logarithmic mean T 61.72

arithmetic mean T 53.75 

exact and arithmetic mean h 59.19 

times logarithmic mean K_____

head (m) in row 1

35.57 29.10 24.19 19.91

36.19 29.31 24.34 20.04

36.36 29.42 24.41 20.10

36.15 29.28 24.31 20.04

Table 16.  Error for case 2D-U3. unconfined aquifer with hydraulic conductivity a

linear function of distance in flow direction, no recharge

[least accurate mean indicated by italics]

Interblock T

Model output component 

head______QX_______qv

harmonic mean T 

logarithmic mean T 

arithmetic mean T 

arithmetic mean h times 

logarithmic mean K

average error statistic (dimensionless) 

0.0479 0.0266 0.0473 

0.0073 0.0046 0.0083 

0.0114 0.0069 0.0119 

000
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Heterogeneous Three-Dimensional Confined Aquifer (case 3D)

This case also uses a 5 row (Ay = 1000 m) by 5 column (Ax = 1000 m) grid, but 

additionally has 4 layers (Az = 10 m) to illustrate performance of the alternative interblock 

transmissivity functions in three-dimensional flow. The steady-state boundary conditions 

include specified uniform flux inward (specific discharge = 10~4 m/day) in column 1 over 

all layers and rows, specified uniform head (10 m) in column 5 of layer 1, and no flow 

across all other model boundaries (fig. 8). These boundary conditions result in flow 

generally from the left (column 1) to the right with increasing upward flow towards the 

right. The bottom two layers have a uniform hydraulic conductivity of KI = 10~3 m/day. 

In the top two layers (fig. 8), the first three rows, and the first two columns of rows 4 and 

5, have K = KI. The remaining nodes   columns 3, 4, and 5 of rows 4 and 5 ~ have K = 

10 x KI = 10-2 m/day. The ratio of vertical hydraulic conductivity to horizontal hydraulic 

conductivity (anisotropy ratio) is 10~3 . Conceptually, the hydraulic conductivity is assumed 

to vary linearly between the nodes. The interblock vertical hydraulic conductivity, which is 

input explicitly, is computed with the same mean as the horizontal transmissivity.

Because an analytical solution is not available for this problem, the exact solution is 

estimated by a very fine grid. In this fine grid, which is designated 9x, each of the blocks 

of the coarse grid is replaced by 9 rows by 9 columns by 9 layers. Thus, the entire 

simulation area of the 9x grid is 45 rows by 45 columns by 36 layers. At this fine scale, 

the assumed linear variation of hydraulic conductivity between the coarse grid nodes is 

input explicitly.

The heads computed at selected nodes with the coarse grids are compared with the 

9x results at the appropriate nodes in tables 17 and 18. Because the change in hydraulic 

conductivity between nodes is small for the 9x grid, the alternative interblock functions 

yield very similar results. The exact results for these comparisons is estimated by the 

average results from the three 9x simulations with the alternative interblock functions. For 

comparison of fluxes, the fine grid results are integrated over the area of the coarse grid 

block faces. At the scale of the coarse grid the alternative interblock transmissivities yields 

significantly different results. The average errors (table 19) are larger for this case than the 

two-dimensional simulations. The harmonic mean yields the least accurate solution.
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COLUMN(x) (meters)

/ s

all other boundaries are no fbw

Figure 8.~Schematic of grid for three-dimensional simulation showing boundary 

conditions and shaded cells where node value of hydraulic conductivity is 10 times the 

value at other nodes.

This case shows that both the choice of interblock hydraulic conductivity and the 

level of spatial discretization (grid spacing) control model accuracy. When a fine grid is 

used, the change in hydraulic conductivity from block to block is small, hence the 

interblock hydraulic conductivities calculated using any method are essentially the same. 

Furthermore, and perhaps more importantly, solving for the potentiometric head at many 

additional nodes give a more accurate approximation to the curving head contours and 

streamlines where hydraulic conductivity is spatially variable. It is clearly desirable to have 

sufficiently fine spatial discretization such that the choice of interblock hydraulic 

conductivity is immaterial. However, when moderate or even coarse discretization are 

used, some improved accuracy can be obtained by choosing appropriate functions for 

interblock hydraulic conductivity, such as the ones presented in this report.
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Interblock T mean

no

1

recharge

2

column

3

head (m) in row 3

harmonic 302

logarithmic 279

arithmetic 272

harmonic 9x 275

logarithmic 9x 274

arithmetic 9x 274

Table 18.    Head (m) in column 3,

Interblock T mean

harmonic 158

logarithmic 146

arithmetic 143

harmonic 9x 148

logarithmic 9x 148

arithmetic 9x 148

.2

.6

.2

.3

.9

.7

205.0

183.5

176.4

175.3

175.0

174.8

layer 3 for case

no

1

.3

.9

.3

.3

.1

.0

recharge

2

head (m)

147.2

134.8

130.9

135.2

135.0

134.9

118.0

102.5

97.64

101.6

101.3

101.1

4

, layer 2

64.42

56.67

54.37

58.69

58.52

58.44

3D. heterogeneous

row

3

in column

121.5

107.9

103.7

106.1

106.0

105.9

4

3, layer

82.38

79.99

80.02

83.44

83.42

83.42

5

20.56

18.73

18.08

22.77

22.70

22.66

confined aquifer.

5

3

75.33

73.63

73.67

76.73

76.72

76.72
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Table 19.  Error for case 3D. heterogeneous confined aquifer, no recharge 

[least accurate mean indicated by italics]

Model output component 

Interblock T mean______head______QX_______Qv_______qz

harmonic

logarithmic

arithmetic

average error statistic

0.1062 0.1159

0.0237 0.0964

0.0351 0.1040

(dimensionless)

0. 1868 0.3053

0.1287 0.1490

0.1384 0.1449

Simulation from Study of Avra Valley Aquifer. Arizona (case Avra)

Alternative interblock transmissivities are used to resimulate predevelopment 

steady-state flow in the Avra Valley aquifer to illustrate the practical significance of these 

methods. Hanson and others (1990) describe the hydrogeologic setting and details of the 

numerical simulations which are only briefly summarized here. Hanson and others (1990, 

p. 4) report:

the alluvium is subdivided into lower and upper units on the basis of 

hydrogeologic characteristics. The lower alluvium is thousands of feet 

thick, consists of gravel and conglomerate along the basin margins and in 

the southern part of the basin, and grades into gypsiferous and anhydritic 

clayey silt and mudstone in the north-central part of the basin. The upper 

alluvium consists mainly of gravel, sand, and clayey silt, and ranges from 

less than [30 to about 300 m] in thickness. ... Fan and playa 

environments are generally characterized by clay and silt concentrations of 

less than 20 percent and more than 60 percent, respectively. The 

interfingered-zone subregion generally contains from 20 to 60 percent clay 

and silt. This subregion was subdivided into two adjacent zones with 20 to 

40 and 40 to 60 percent clay and silt...
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The system was modeled using the program of McDonald and Harbaugh (1988). Two 

model layers were used, layer 1 representing the unconfined upper hydrogeologic layer, 

and layer 2 representing the confined lower hydrogeologic layer. The finite-difference grid 

blocks are large, 1 mile on each side. Hanson and others (1990) calibrated the steady-state 

model by adjusting the transmissivity of layer 2 and the hydraulic conductivity of layer 1 

until a reasonable agreement with observed predevelopment (around 1940) heads was 

achieved. Direct recharge, streamflow infiltration, and pumping were all negligible under 

predevelopment conditions. All modeled inflow to the system occurs at constant head 

nodes and represents inflow from adjacent aquifers. Calibration yielded a (Hanson and 

others, 1990, p. 18)

root-mean-square difference between measured and simulated water levels 

in 100 wells [of] 16 ft (5 m). ... Most errors were negative, indicating that 

simulated water levels were slightly higher than measured. The largest 

negative errors occurred mainly in the southwestern part of the model area . 

.. where estimates of heads and aquifer components are less certain than 

elsewhere. Differences between hand-drawn contours of measured water 

levels and simulated head for layer 1 generally ranged from 5 to 10 ft (1.5 

to 3 m) [in the] north .. .to 20 ft (6 m) [in the] south ... with the largest 

difference of about 40 ft (12 m) in the south half of the valley.

For resimulation, the only modification to the predevelopment steady-state 

simulation of Hanson and others (1990) is the method to compute horizontal interblock 

transmissivity. The original model of McDonald and Harbaugh (1988) uses the harmonic 

mean interblock transmissivity. Here, we choose the interblock mean separately for each 

layer, on the basis of the character of spatial variability for that layer. Layer 1 is unconfined 

and has hydraulic conductivity that varies spatially due to variability in gravel content 

associated with stream channels (fig. 9). The hydraulic conductivity of layer 1 ranges from 

less than 0.2 m/day to over 30 m/day. The transmissivity of layer 1 varies spatially due to 

the spatially variable hydraulic conductivity and the dependence of transmissivity on 

saturated thickness, and hence on head. On this basis, we choose to compute the interblock 

transmissivity as the arithmetic mean saturated thickness times the logarithmic mean 

hydraulic conductivity (LAYAVG=30, input LAYCON=31). Layer 2 is confined and has 

spatially varying transmissivity due to the gradation of composition and interfingering of 

basin-margin alluvium with the lower permeability of the clay, silt and mudstone of the 

center of the basin (fig. 10). The transmissivity of layer 2 ranges from less than 9 m2/day 

to over 400 m2/day. Because the change in transmissivity between nodes is conceptualized
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Figure 9. Contour and gray-scale map of hydraulic conductivity (in meters per day) of 

layer one of Avra Valley aquifer model. Model parameters from Hanson and 
others (1990).

48



Figure 10. Contour and gray-scale map of transmissivity (in hundreds of meters

squared per day) of layer two of Avra Valley aquifer model. Model parameters 

from Hanson and others (1990).
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V

nodes is conceptualized as being somewhat smooth, and not abrupt, we use the logarithmic 

mean interblock transmissivity (LAYAVG=20, input LAYCON=20) for layer 2.

The effects of alternative interblock transmissivity functions on computed heads are 

relatively minor. Our resimulated heads (fig. 11) are generally higher (fig. 12), with the 

difference between our results and the results of Hanson and others (1990) ranging from 

about -1 m to about +4 m, averaging +1.2 m. Compared with the root-mean-squared 

calibration error of 5 m reported by Hanson and others (1990), these changes in head are 

small.

Because this simulation is controlled largely by specified heads at the inflow as well 

as outflow boundaries, simulated heads are relatively insensitive to transmissivity. 

However, fluxes show somewhat more significant changes because of the use of 

alternative interblock tranmissivity. The change in computed inflow and outflow at 

constant head nodes is shown in table 20. The differences in fluxes at individual nodes can 

be quite significant, up to 93 percent for a relatively low-flow node. However, the 

uncertainty inherent in computed fluxes is qualitatively greater than uncertainty in heads, 

because of the lack of direct measurements of aquifer discharge. Hence, these changes 

may still be within the bounds of uncertainty of the calibrated model. The net flow through 

the aquifer changes from 6.46 x 104 m3/day to 6.74 x 104 m3/day, an increase of about 4 

percent. This result is consistent with the harmonic mean yielding lower interblock 

transmissivities than those used here. Overall, the interpretation of the model results are 

unlikely to change due to the use of the alternative interblock transmissivities.

The computational effort is slightly increased for the resimulation with alternative 

interblock transmissivity due to the additional operations required, particularly for the top 

layer with LAYAVG=30. However, this increase is relatively insignificant compared with 

the overall computational burden, representing an increase in total computer time of less 

than 3 percent for this case.
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Figure 11. Contour map of new simulated head (in meters) of layer one of Avra Valley 

aquifer model using alternative interblock transmissivities. Contour interval 

is 20 meters.
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Figure 12. Contour and gray-scale map of simulated new head in layer one minus results 
of Hanson and others (1990) (in meters) for Avra Valley aquifer model
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Table 20.  Computed fluxes at constant head boundary nodes for Avra Valley aquifer 

example simulation [original data from Hanson et al., 1990]

XT A   A Node index , i, computed flux (m3/hr)
Difference in 

computed fluxes

layer

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2

row

1
2
3
4
5
6
12
13
14
15
38
39
40
41
42

1
2
3
12
13
38
39
40
41
42

col

3
3
2
2
1
1

18
17
17
17
5
6
7
8
9
3
3
2
17
17
5
6
7
8
9

original

-57
-480
-388
-813
-642
-249
152
424
424
288
201
404
253
37
41
-12
-16
-9

-27
4

23
119
111
117
93

new

-95
-480
-386
-862
-635
-256
200
433
410
308
203
413
285
40
37
-20
-27
-18
-32

3
24
122
111
119
103

m3/hr

-38
0
1

-49
6
-6
48
9

-14
20
2

10
33
3
-4
-8

-10
-9
-5
0
1
3
0
2
9

percent

67
0
0
6
-1
3

31
2
-3
7
1
2
13
7

-10
65
65
93
17
-6
3
2
0
2
10
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SUMMARY AND CONCLUSIONS

Some widely used finite-difference ground-water simulation computer programs 

use block-centered grids and the weighted harmonic mean of the block transmissivities for 

the interblock transmissivity. We have shown that the logarithmic mean transmissivity is 

the appropriate interblock transmissivity for one-dimensional flow in a confined aquifer 

having a transmissivity that varies linearly; whereas it has been known that the harmonic 

mean is the appropriate formulation where the transmissivity is spatially uniform in each 

finite-difference block but changes abruptly at the block interface. For the case of one- 

dimensional flow in an unconfined aquifer where the hydraulic conductivity is uniform, the 

appropriate interblock transmissivity is the unweighted arithmetic mean of transmissivities 

at the block centers; and where hydraulic conductivity varies as a linear function of distance 

in the direction of flow the appropriate interblock transmissivity is the arithmetic mean 

saturated thickness times the logarithmic mean hydraulic conductivity.

We tested the relative accuracies of different interblock transmissivities for selected 

hypothetical two-dimensional problems, involving confined and unconfined flow 

conditions, for which analytical solutions are available for comparison. We also 

considered a three-dimensional heterogeneous confined aquifer problem for which the 

results using a very fine grid (the test problem involved 100 blocks whereas the very fine 

grid involved 72,900 blocks) are taken to "represent" the exact unknown solution. For the 

two-dimensional hypothetical problems the grid block sizes used are uniform and for the 

hypothetical three-dimensional problem the grid block sizes in the plan view are uniform 

and the thickness of the blocks on the z-direction (or depth) is 1 percent of the horizontal 

block dimensions. We did not experiment with variable block size configurations. For the 

test problems selected, with uniform and linearly varying transmissivity or hydraulic 

conductivity, and the interblock transmissivities considered, the weighted harmonic mean 

formulation resulted in the least accurate computed heads. The "accuracy" criterion used 

for the comparisons was the sum of the absolute values for all blocks of the differences 

between the computed heads and "exact" heads, divided by the sum of the absolute values 

for all blocks of the "exact" heads. Flux component error statistics yielded the same 

results.

Alternative interblock transmissivities were used to resimulate predevelopment 

steady-state flow in the Avra Valley aquifer to illustrate the practical significance of these 

methods. A numerical model had been made previously for the predevelopment flow
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using the harmonic mean interblock transmissivity formulation. For our resimulation the 

only change to the previous simulation is the method used to compute interblock 

transmissivity. For the unconfined (top) layer we computed the interblock transmissivity 

as the arithmetic mean saturated thickness times the logarithmic mean hydraulic 

conductivity. For the confined layer we used the logarithmic mean transmissivity 

formulation. The effects of the alternative interblock transmissivity functions on computed 

heads gave differences from the previous simulation results of from about -1 to +4 meters, 

averaging +1.2 meters, and an increase of net flow through the aquifer of about 4 percent. 

These differences in computed heads, compared to the root-mean-squared calibration error 

of 5 meters reported from the previous model calibration work, are small. At individual 

blocks the differences in the fluxes computed at constant head boundaries for the 

simulations varied by as much as 93 percent for a block where the flux was relatively low. 

We judged that the overall interpretation of the model results would likely not have 

changed as a result of the use of the alternative interblock transmissivities. The increased 

computational effort associated with the use of the alternative interblock transmissivity 

functions for the Avra Valley aquifer resimulation was less then 3 percent of the total 

computer time.

It is not an objective of this report to attempt to recommend a particular interblock 

transmissivity formulation for all field situations. There is little evidence to support any 

such universal approach. However, the results of the several hypothetical test problems 

that we considered suggest that for field situations where the spatial variation of the 

transmissivity of hydraulic conductivity is "nearly" linear and the block size dimensions 

areally are to be uniform, the alternative interblock transmissivity functions may give more 

accurate results than the weighted harmonic mean. The additional computational effort 

needed for the alternative transmissivity functions is nominal. One obvious limitation of 

the selected test problems and our comparative analysis was that the block sizes selected 

were uniform in the horizontal plane. Appel's (1976) results suggest that relative errors 

would be similar for variable spacing grids.

The block-by-block transmissivity values input to most ground-water models are 

estimates made by superimposing the selected model block grid and a map that 

characterizes the analyst's perception of the dominant large scale spatial structure of the 

transmissivity. It is accepted that small scale variations occur around this large scale 

structure. It is beyond the scope of this report to attempt to provide guidelines on how to 

develop such a large scale representation or to judge when such a representation is justified.
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However, if such a map has been prepared and it represents the large scale variation as a 

continuous and smoothly varying function, the results of the test problems given here 

suggest that consideration of the interblock transmissivity functions other than the weighted 

harmonic mean may be justified.

Finally, the importance of spatial discretization in modeling flow in heterogeneous 

aquifers cannot be overstated. Different methods for computing interblock transmissivity 

yield significant differences only when the change in transmissivity from one node to the 

next is relatively large. In addition to making the choice of interblock transmissivity 

function immaterial, a fine spatial discretization (small blocks) yields a more accurate 

approximation to the curving head contours and streamlines where transmissivity is 

spatially variable. If model heads computed with alternative interblock transmissivities are 

significantly different, the modeler should reexamine the level of spatial discretization to 

ensure that a sufficiently accurate head solution is obtained.
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APPENDIX A

PROOF THAT THE LOGARITHMIC MEAN TRANSMISSIVITY IS 
LARGER THAN THE GEOMETRIC MEAN TRANSMISSIVITY

We want to prove that the logarithmic mean interblock transmissivity is larger than 

the geometric mean transmissivity. We will restrict the cases to positive, unequal 

transmissivities. That is,

Prove ln(T2 /Ti) forTi,T2 > 0 ; TI *T2 (Al)

It will be convenient to limit our cases to T2>Ti, but the subscripts can be interchanged so 

that this is always the case for two positive, unequal transmissivities. Consider the ratio of 

the logarithmic mean to the geometric mean, which can be rearranged to:

TI /'"TT 

T) (A2)

-x-2 _ 1 / Y 1
A J-/-t o o ^ X ~  

Defining x=(T2/Ti)1/2, this ratio can be written:

__ /Inx2 = x2 -! = A "x
x 2xlnx 21nx (A3)

where it is understood that x>l if T2>Ti. Consider the function F(x) = x - 1/x - 2 In x in 

the region l<x. Note that F(x) = (1 - 1/x)2 . For x>l, F'(x) > 0, because the derivative is 

positive for all x>l and the function F(x) is continuous in that region, then the function 

F(x) is monotonically increasing in that region. Note that at the "boundary" point for the 

region, namely x=l, that F(x=l) = 0 from which it follows that for all x>l, F(x) > 0, or 

F(x) = x - 1/x - 2 In x > 0; then x - 1/x > 2 In x, and, because x>l, the term In x > 0, so that

x _
   x_ > 1 and x2 -! > 1
21nx 2xlnx (A4)
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Recalling that x=(T2/Ti)1/2, this is equivalent to

T2 ' Tl  > (TiT2p
(A5) 

which is what we set out to prove.
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APPENDIX B

NUMERICAL IMPLEMENTATION IN THE FLOW MODEL OF 

MCDONALD AND HARBAUGH (1988)

OVERVIEW

The alternative interblock transmissivity functions described in the Numerical 

Methods section are programmed in subroutines to be used with the modular ground-water 

flow model of McDonald and Harbaugh (1988). This model uses block-centered finite 

differences and the user inputs the horizontal hydraulic conductivity or transmissivity at 

each node. However the vertical interblock leakance (vertical hydraulic conductivity 

divided by vertical distance between nodes) is input directly. Hence, the computation of 

interblock conductance within the model is only applicable to the horizontal (row and 

column) conductances. The optional interblock transmissivity functions are implemented 

as a revision to the Block-Centered-Flow (BCF2) package of the modular model 

(McDonald and Harbaugh, 1988; McDonald and others, 1991).

Modifications include:

1. Changes to the MAIN program to identify modifications and to pass scratch array 

BUFF to selected BCF subroutines for possible use when LAYAVG=30. Also, common 

block / FLWAVG / LAYAVG(80) is added.

2. Changes to subroutine BCF2AL to interpret input LAYCON values to determine 

layer hydraulic characteristics (stored LAYCON) and interblock transmissivity (LAYAVG). 

Also, common block / FLWAVG / LAYAVG(80) is added and the program stops if any 

LAYAVG=30 and IAPART is zero.

3. Changes to subroutine BCF2FM to pass scratch array BUFF through for possible 

use when LAYAVG=30. Also, common block / FLWAVG / LAYAVG(80) is added.

4. Changes to subroutines SBCF2H and SBCF2N to call different subroutines for 

computing interblock conductance, depending on LAYAVG. Also, common block / 

FLWAVG / LAYAVG(80) is added to both subroutines.

5. Three new BCF3 subroutines are added to compute horizontal interblock 

conductance.
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In relating the numerical algorithms in this appendix to the formula developed in the 

body of the report, the reader must bear in mind that the indexing used in this report is 

different from that used in the model and documentation of McDonald and Harbaugh 

(1988). In the body of this report, index i corresponds to the x coordinate and j 

corresponds to the y coordinate. The figures in this report illustrating two-dimensional 

grids have the x coordinate and i index increasing from left to right, and the y coordinate 

and j index increasing from top to bottom. This discretization convention has been used by 

numerous previous investigators (for example, Finder and Bredehoeft, 1968; Konikow and 

Bredehoeft, 1978; Kipp, 1987).

The model of McDonald and Harbaugh (1988) can be applied to a problem where it 

is assumed that the x direction corresponds to model columns which are indexed by j. The 

y direction can be assumed to correspond to model rows which are indexed by i. For this 

conceptualization, the transmissivity in the x direction (Txx) corresponds to the 

transmissivity in the direction of changing column index. However, in the report of 

McDonald and Harbaugh (1988), this transmissivity is called the "transmissivity along the 

rows" and is stored in the conductance term CR(j,i,k), where k is the layer (vertical) index. 

Likewise, the transmissivity in the y direction (Tyy) is called the "transmissivity along the 

columns" by McDonald and Harbaugh (1988) and stored in conductance array CC(i,j,k). 
Furthermore, the cell width in the x direction (Ax) (distance from the left side of a cell to 

the right side) is called the "cell width along rows" and stored in array DELR(j). Likewise, 
the grid spacing in the y direction (Ay) is called the "cell width along columns" and is

stored in array DELC(i). These alternative discretization conventions should be kept in 

mind when relating the equations presented in the body of this report with the numerical 

algorithms presented here for the model of McDonald and Harbaugh (1988).
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CHANGES TO MAIN PROGRAM 

Program header changed from:

c
C MAIN CODE FOR MODULAR MODEL   9/1/87
C BY MICHAEL G. MCDONALD AND ARLEN W. HARBAUGH
C    VERSION 1638 24JUL1987 MAIN1
C    VERSION 1323 21FEB1992   added BCF2, PCG2, STR1, IBS1, CHD1, and
C    GFD1 as documented in USGS reports
C     INBAS set to unit 5
C

to:

c
C MAIN CODE FOR MODULAR MODEL   9/1/87
C BY MICHAEL G. MCDONALD AND ARLEN W. HARBAUGH
C    VERSION 1638 24JUL1987 MAIN1
C    VERSION 1323 21FEB1992   added BCF2, PCG2, STR1, IBS1, CHD1, and
C    GFD1 as documented in USGS reports
C    BCF3 SUBSTITUTED FOR BCF2   9JULY1992
C     INBAS set to unit 5
C

Add common block to store interblock transmissivity flag for each layer, changed from:

C SPECIFICATIONS:
£  ___________________________________________________________________________________________

COMMON X(350000)
COMMON /FLWCOM/LAYCON(80)
CHARACTER*4 HEADNG,VBNM

to:

C SPECIFICATIONS: 
C                        

COMMON X (350000) 
COMMON /FLWCOM/LAYCON(80) 
COMMON /FLWAVG/LAYAVG(80) 
CHARACTER*4 HEADNG,VBNM

Call to allocate space for BCF part of solution changed from:

IF(IUNIT (1) .GT.0) CALL BCF2AL(ISUM,LENX,LCSC1,LCHY,
1 LCBOT,LCTOP,LCSC2,LCTRPY,IUNIT(1),ISS,
2 NCOL,NROW,NLAY,IOUT,IBCFCB,LCWETD,IWDFLG,LCCVWD,
3 WETFCT,IWETIT,IHDWET,HDRY)
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to:

IF(IUNIT(1).GT.O) CALL BCF3AL(ISUM,LENX,LCSC1,LCHY,
1 LCBOT,LCTOP,LCSC2,LCTRPY,IUNIT(1),ISS,
2 NCOL,NROW,NLAY,TOUT,IBCFCB,LCWETD,IWDFLG,LCCVWD,
3 WETFCT,IWETIT,IHDWET,HDRY,LCRHS,LCBUFF)

Call to read BCF input changed from:

IF(IUNIT(1).GT.O) CALL BCF2RP(X(LCIBOU),X(LCHNEW),X(LCSC1),

to:

IF(IUNIT(1).GT.O) CALL BCF3RP(X(LCIBOU),X(LCHNEW),X(LCSC1),

Call to formulate BCF part of finite-difference equations changed from:

IF(IUNIT(1).GT.O) CALL BCF2FM(X(LCHCOF),X(LCRHS),X(LCHOLD),
1 X(LCSC1) , X(LCHNEW),X(LCIBOU),X(LCCR),X(LCCC),X(LCCV),
2 X(LCHY),X(LCTRPY),X(LCBOT),X(LCTOP),X(LCSC2),
3 X(LCDELR),X(LCDELC),DELT,ISS,KKITER,KKSTP,KKPER,NCOL,
4 NROW,NLAY,IOUT,X(LCWETD),IWDFLG,X(LCCVWD),WETFCT,
5 IWETIT,IHDWET,HDRY)

to:

IF(IUNIT(1).GT.0) CALL BCF3FM(X(LCHCOF),X(LCRHS) , X(LCHOLD) ,
1 X(LCSC1) , X(LCHNEW),X(LCIBOU),X(LCCR),X(LCCC),X(LCCV),
2 X(LCHY),X(LCTRPY),X(LCBOT),X(LCTOP),X(LCSC2),
3 X(LCDELR),X(LCDELC),DELT,ISS,KKITER,KKSTP,KKPER,NCOL,
4 NROW,NLAY,IOUT,X(LCWETD),IWDFLG,X(LCCVWD),WETFCT,
5 IWETIT,IHDWET,HDRY,X(LCBUFF))
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CHANGES TO BCF SUBROUTINES

Subroutine BCF2AL changed to set LAYAVG values from input LAYCON values. 

Subroutine header changed from:

SUBROUTINE BCF2AL(ISUM,LENX,LCSC1,LCHY,LCBOT,LCTOP,LCSC2,LCTRPY,
1 IN,ISS,NCOL,NROW,NLAY,IOUT,IBCFCB,LCWETD,IWDFLG,LCCVWD,
2 WETFCT,IWETIT,IHDWET,HDRY) 

C 
C    VERSION 1435 14MAY1991 BCF2AL

C ALLOCATE ARRAY STORAGE FOR BLOCK-CENTERED FLOW PACKAGE, VERSION 2

C
C SPECIFICATIONS:
C __________________________________________________________________

COMMON /FLWCOM/LAYCON(80)
C __________________________________________________________________

C
Cl     IDENTIFY PACKAGE

WRITE(IOUT,1)IN
1 FORMAT(1HO,'BCF2   BLOCK-CENTERED FLOW PACKAGE, VERSION 2', 
I 1 , 7/1/91',' INPUT READ FROM UNIT',13)

to:

SUBROUTINE BCF3AL(ISUM,LENX,LCSC1,LCHY,LCBOT,LCTOP,LCSC2,LCTRPY,
1 IN,ISS,NCOL,NROW,NLAY,IOUT,IBCFCB,LCWETD,IWDFLG,LCCVWD,
2 WETFCT,IWETIT,IHDWET,HDRY,LCRHS,LCBUFF) 

C
C    VERSION 1436 9JULY1992 BCF3AL 
Q it****************************************************************-

C ALLOCATE ARRAY STORAGE FOR BLOCK-CENTERED FLOW PACKAGE, VERSION 3 
(2 ******************************************************************

C
C SPECIFICATIONS:
C                                                           . 

CHARACTER*12 AVGNAM(4) 
COMMON /FLWCOM/LAYCON(80) 
COMMON /FLWAVG/LAYAVG(80)
DATA AVGNAM/'HARMONIC ','ARITHMETIC ', 

* 'LOGARITHMIC ','*UNCONFINED*'/
C                                                               . 

C 
Cl     IDENTIFY PACKAGE

WRITE(IOUT,1)IN
1 FORMAT(1HO,'BCF3   BLOCK-CENTERED FLOW PACKAGE, VERSION 3', 
I 1 , 7/9/92',' INPUT READ FROM UNIT',13)
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Reading and setting of layer codes (LAYCON) changed from:

C3     STOP THE SIMULATION IF THERE ARE MORE THAN 80 LAYERS 
IF(NLAY.LE.SO) GO TO 50 
WRITE(IOUT,11) 

11 FORMAT(1HO,'YOU HAVE SPECIFIED MORE THAN 80 MODEL LAYERS'/1X,
1 'SPACE IS RESERVED FOR A MAXIMUM OF 80 LAYERS IN ARRAY LAYCON')
STOP 

C 
C4     READ LAYCON & PRINT TITLE FOR LAYCON TABLE

50 READ(IN,51) (LAYCON(I),I=1,NLAY)
51 FORMAT(40I2) 

WRITE(IOUT,52)
52 FORMAT(IX,5X,'LAYER AQUIFER TYPE',/1X,5X,19('-')) 

C
C5     LOOP THROUGH LAYERS PRINTING THE LAYER-TYPE CODE AND COUNTING 
C5     LAYERS THAT NEED TOP & EOT ARRAYS

NBOT=0
NTOP=0
DO 100 I=1,NLAY
L=LAYCON(I)
WRITE(IOUT,7) I,L 

7 FORMAT(1X,I9,I10)

to:

C3     STOP THE SIMULATION IF THERE ARE MORE THAN 80 LAYERS 
IF(NLAY.LE.SO) GO TO 50 
WRITE(IOUT,11) 

11 FORMAT(1HO,'YOU HAVE SPECIFIED MORE THAN 80 MODEL LAYERS'/1X,
1 'SPACE IS RESERVED FOR A MAXIMUM OF 80 LAYERS IN ARRAY LAYCON',
2 ' AND ARRAY LAYAVG')
STOP 

C 
C4     READ LAYCON & PRINT TITLE FOR LAYCON TABLE

50 READ(IN,51) (LAYCON(I),I=1,NLAY)
51 FORMAT(40I2) 

WRITE(IOUT,52)
52 FORMAT(6X,'LAYER AQUIFER TYPE INTERBLOCK T',/6X,37('-')) 

C
C5     LOOP THROUGH LAYERS PRINTING THE LAYER-TYPE CODE AND COUNTING 
C5     LAYERS THAT NEED TOP & EOT ARRAYS

NBOT=0
NTOP=0
IAPART=LCRHS-LCBUFF
DO 100 I=1,NLAY 

C
C5_l   CONVERT INPUT LAYCON TO LAYAVG CODES AND ORIGINAL LAYCON 
C5_l   DO NOT ALLOW LAYCON=30 OR 32

IF(LAYCON(I).EQ.30.0R.LAYCON(I).EQ.32) LAYCON(I)=LAYCON(I)-10
LAYAVG(I)=LAYCON(I)/10
LAYAVG(I)=LAYAVG(I)*10 

C5_2   RESET LAYCON CODE TO ORIGINAL VALUES
LAYCON(I)=LAYCON(I)-LAYAVG(I) 

C5_3   BOUND LAYAVG
IF(LAYAVG(I).LT.O.OR.LAYAVG(I).GT.30) LAYAVG(I)=0
L=LAYCON(I)
LA=LAYAVG(I)
INAM=1+LA/10
WRITE(IOUT,7) I,L,LA,AVGNAM(INAM) 

7 FORMAT(1X,I9,2I10,'-',A12)
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C5_4   CHECK IAPART=1 IF LAYAVG=30 FOR ANY LAYER 
IF(IAPART.EQ.O.AND.LAYAVG(I).EQ.30) THEN

WRITE(1001,75)
75 FORMAT(' ERROR   IAPART MUST BE NONZERO IF LAYAVG', 

* '=30, STOPPING')
STOP 

END IF

Subroutine BCF2RP changed to call SBCF3N.

Header changed from:

SUBROUTINE BCF2RP(IBOUND,KNEW,SC1,HY,CR,CC,CV,DELR,DELC,EOT,TOP, 
1 SC2,TRPY,IN,ISS,NCOL,NROW,NLAY,NODES,IOUT,WETDRY,IWDFLG,CVWD) 

C
C    VERSION 1275 6JUNE1991 BCF2RP 
C ****************************************************************

C READ AND INITIALIZE DATA FOR BLOCK-CENTERED FLOW PACKAGE, 
C VERSION 2

to:

SUBROUTINE BCF3RP(IBOUND,KNEW,SCI,HY,CR,CC,CV,DELR,DELC,EOT,TOP, 
1 SC2,TRPY,IN,ISS,NCOL,NROW,NLAY,NODES,IOUT,WETDRY,IWDFLG,CVWD) 

C
C    VERSION 1276 9JULY1992 BCF3RP 
<2 ****************************************************************

C READ AND INITIALIZE DATA FOR BLOCK-CENTERED FLOW PACKAGE, 
C VERSION 3

Call to SBCF2N changed from:

CALL SBCF2N(KNEW,IBOUND,SCI,SC2,CR,CC,CV,HY,TRPY,DELR,DELC,ISS,

to:

CALL SBCF3N(KNEW,IBOUND,SCI,SC2,CR,CC,CV,HY,TRPY,DELR,DELC,ISS,

69



Subroutine BCF2FM changed to use optional interblock transmissivity subroutines and 

pass BUFF for possible use.

BUFF added to dimension statement, Header changed from:

SUBROUTINE BCF2FM(HCOF,RHS,HOLD,SCI,KNEW,IBOUND,CR,CC,CV,HY,TRPY,
1 EOT,TOP,SC2,DELR,DELC,DELT,ISS,KITER,KSTP,KPER,
2 NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,CVWD,
3 WETFCT,IWETIT,IHDWET,HDRY) 

C    VERSION 1104 5MAY1991 BCF2FM

C ADD LEAKAGE CORRECTION AND STORAGE TO HCOF AND RHS, AND CALCULATE 
C CONDUCTANCE AS REQUIRED, VERSION 2

C
C SPECIFICATIONS:
C __________________________________________________________________

DOUBLE PRECISION KNEW 
C

DIMENSION HCOF(NCOL,NROW,NLAY),RHS(NCOL,NROW,NLAY),
1 HOLD(NCOL,NROW,NLAY),SC1(NCOL,NROW,NLAY),KNEW(NCOL,NROW,NLAY),
2 IBOUND(NCOL,NROW,NLAY),CR(NCOL,NROW,NLAY),
3 CC(NCOL,NROW,NLAY),CV(NCOL,NROW,NLAY),HY(NCOL,NROW,NLAY),
4 TRPY(NLAY),EOT(NCOL,NROW,NLAY),TOP(NCOL,NROW,NLAY),DELR(NCOL),
5 DELC(NROW),SC2(NCOL,NROW,NLAY),WETDRY(NCOL,NROW,NLAY),
6 CVWD(NCOL,NROW,NLAY)

to:

SUBROUTINE BCF3FM(HCOF,RHS,HOLD,SCI,KNEW,IBOUND,CR,CC,CV,HY,TRPY,
1 EOT,TOP,SC2,DELR,DELC,DELT,ISS,KITER,KSTP,KPER,
2 NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,CVWD,
3 WETFCT,IWETIT,IHDWET,HDRY,BUFF) 

C    VERSION 1105 9JULY1992 BCF3FM

C ADD LEAKAGE CORRECTION AND STORAGE TO HCOF AND RHS, AND CALCULATE 
C CONDUCTANCE AS REQUIRED, VERSION 3

C
C SPECIFICATIONS:
C          ____________________________________________________

DOUBLE PRECISION KNEW 
C

DIMENSION HCOF(NCOL,NROW,NLAY),RHS(NCOL,NROW,NLAY),
1 HOLD(NCOL,NROW,NLAY),SC1(NCOL,NROW,NLAY),KNEW(NCOL,NROW,NLAY),
2 IBOUND(NCOL,NROW,NLAY),CR(NCOL,NROW,NLAY),
3 CC(NCOL,NROW,NLAY),CV(NCOL,NROW,NLAY),HY(NCOL,NROW,NLAY),
4 TRPY(NLAY),EOT(NCOL,NROW,NLAY),TOP(NCOL,NROW,NLAY),DELR(NCOL),
5 DELC(NROW),SC2(NCOL,NROW,NLAY),WETDRY(NCOL,NROW,NLAY),
6 CVWD(NCOL,NROW,NLAY),BUFF(NCOL,NROW,NLAY)
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Call to subroutine SBCF2H changed from:

GIB    FOR LAYER TYPES 1 & 3 CALL SBCF2H TO CALCULATE 
GIB    HORIZONTAL CONDUCTANCES.

CALL SBCF2H(KNEW,IBOUND,CR,CC,CV,HY,TRPY,DELR,DELC,EOT,TOP,
1 KK,KB,KT,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,
2 CVWD,WETFCT,IWETIT,IHDWET,HDRY)

to:

GIB    FOR LAYER TYPES 1 & 3 CALL SBCF3H TO CALCULATE 
GIB    HORIZONTAL CONDUCTANCES.

CALL SBCF3H(KNEW,IBOUND,CR,CC,CV,HY,TRPY,DELR,DELC,EOT,TOP,
1 KK,KB,KT,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,
2 CVWD,WETFCT,IWETIT,IHDWET,HDRY,BUFF)

Subroutine SBCF2H changed to call optional interblock transmissivity subroutines. 

Header changed from:

SUBROUTINE SBCF2H(KNEW,IBOUND,CR,CC,CV,HY,TRPY,DELR,DELC
1.EOT,TOP,K,KB,KT,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT
2.WETDRY,IWDFLG,CVWD,WETFCT,IWETIT,IHDWET,HDRY) 

C    VERSION 1345 23MAY1991 SBCF2H 
C

C COMPUTE CONDUCTANCE FOR ONE LAYER FROM SATURATED THICKNESS AND 
C HYDRAULIC CONDUCTIVITY, VERSION 2 
C 
C
C SPECIFICATIONS: 
C                   - 

DOUBLE PRECISION KNEW

DIMENSION KNEW(NCOL,NROW,NLAY),IBOUND(NCOL,NROW,NLAY)
1.CR(NCOL,NROW,NLAY), CC(NCOL,NROW,NLAY), CV(NCOL,NROW,NLAY)
2.HY(NCOL,NROW,NLAY), TRPY(NLAY), DELR(NCOL), DELC(NROW)
3.EOT(NCOL,NROW,NLAY),TOP(NCOL,NROW,NLAY),WETDRY(NCOL,NROW,NLAY)
4.CVWD(NCOL,NROW,NLAY) 
CHARACTER*4 ACNVRT 
DIMENSION ICNVRT(8),JCNVRT(8),ACNVRT(8)

COMMON /FLWCOM/LAYCON(80)
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to:

SUBROUTINE SBCF3H(KNEW,IBOUND,CR,CC,CV,HY,TRPY,DELR,DELC
1.BOT,TOP,K,KB,KT,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT
2.WETDRY,IWDFLG,CVWD,WETFCT,IWETIT,IHDWET,HDRY,BUFF) 

C    VERSION 1346 9JULY1992 SBCF3H 
C 
C ***************************************************************

C COMPUTE CONDUCTANCE FOR ONE LAYER FROM SATURATED THICKNESS AND
C HYDRAULIC CONDUCTIVITY, VERSION 3
C ***************************************

C
C SPECIFICATIONS:
C                   -. _ _ _______________________________________

DOUBLE PRECISION KNEW 
C

DIMENSION KNEW(NCOL,NROW,NLAY),IBOUND(NCOL,NROW,NLAY)
1.CR(NCOL,NROW,NLAY), CC(NCOL,NROW,NLAY), CV(NCOL,NROW,NLAY)
2.HY(NCOL,NROW,NLAY), TRPY(NLAY), DELR(NCOL), DELC(NROW)
3.BOT(NCOL,NROW,NLAY),TOP(NCOL,NROW,NLAY),WETDRY(NCOL,NROW,NLAY)
4.CVWD(NCOL,NROW,NLAY),BUFF(NCOL,NROW,NLAY) 
CHARACTER*4 ACNVRT
DIMENSION ICNVRT(8),JCNVRT(8),ACNVRT(8) 

C
COMMON /FLWCOM/LAYCON(80) 
COMMON /FLWAVG/LAYAVG(80)

Action for inactive nodes changed from:

C3C    CELL IS DRY AND STAYS DRY. SET TRANSMISSIVITY TO 0 AND SKIP 
C3C    TO THE NEXT CELL. 

6 CC(J,I,K)=0. 
GO TO 200

to:

C3C    CELL IS DRY AND STAYS DRY. SET TRANSMISSIVITY TO 0 AND SKIP 
C3C    TO THE NEXT CELL.

6 CC(J,I,K)=0.
C3D    ZERO BUFF (SATURATED THICKNESS) FOR LAYAVG=30 

IF(LAYAVG(K).EQ.30) BUFF(J,I,K)=0. 
GO TO 200

Temporary storage of transmissivity changed from:

C6A    IF SATURATED THICKNESS>0 THEN TRANSMISSIVITY IS HYDRAULIC 
C6A    CONDUCTIVITY TIMES SATURATED THICKNESS.

CC(J,I,K)=THCK*HY(J,I,KB)
GO TO 200

to:
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C6A    IF SATURATED THICKNESS>0 THEN TRANSMISSIVITY IS HYDRAULIC 
C6A    CONDUCTIVITY TIMES SATURATED THICKNESS.
C6A1   IF LAYAVG=30, STORE K IN CC AND SAT THICKNESS IN BUFF 

IF(LAYAVG(K).EQ.30) THEN 
CC(J,I,K)=HY(J,I,KB) 
BUFF(J,I,K)=THCK 

ELSE
CC(J,I,K)=THCK*HY(J,I,KB) 

END IF 
GO TO 200

Call to subroutine to compute interblock transmissivity changed from:

C9     COMPUTE HORIZONTAL BRANCH CONDUCTANCES FROM TRANSMISSIVITY. 
210 CALL SBCF1C(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY)

to:

C9     COMPUTE HORIZONTAL BRANCH CONDUCTANCES FROM TRANSMISSIVITY. 
C9A    SELECT INTERBLOCK TRANSMISSIVITY SUBROUTINE FROM LAYAVG 

210 IF(LAYAVG(K).EQ.O) THEN
CALL SBCF1C(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY) 

ELSE IF(LAYAVG(K).EQ.10) THEN
CALL SBCF3A(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY) 

ELSE IF(LAYAVG(K).EQ.20) THEN
CALL SBCF3L(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY) 

ELSE
CALL SBCF3U(CR,CC,TRPY,DELR,DELC,BUFF,K,NCOL,NROW,NLAY) 

END IF

Change SBCF2N to call optional interblock transmissivity subroutines when initializing for 

simulations with constant transmissivity.

Header changed from:

SUBROUTINE SBCF2N(KNEW,IBOUND,SCI,SC2,CR,CC,CV,HY,TRPY,DELR,DELC, 
1 ISS,NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,CVWD) 

C
C    VERSION 1107 5MAY1991 SBCF2N 
C 
C 
C INITIALIZE AND CHECK BCF DATA, VERSION 2
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to:

SUBROUTINE SBCF3N(KNEW,IBOUND,SCI,SC2,CR,CC,CV,HY,TRPY,DELR,DELC, 
1 ISS,NCOL,NROW,NLAY,IOUT,WETDRY,IWDFLG,CVWD) 

C
C    VERSION 1108 9JULY1992 SBCF3N 
C 
C 
C INITIALIZE AND CHECK BCF DATA, VERSION 3

Common block declaration changed from:

COMMON /FLWCOM/LAYCON(80)

to:

COMMON /FLWCOM/LAYCON(80) 
COMMON /FLWAVG/LAYAVG(80)

Call to subroutine to compute interblock transmissivity changed from:

C5     CALCULATE HOR. CONDUCTANCE(CR AND CC) FOR CONSTANT T LAYERS 
DO 70 K=1,NLAY 
KK=K

IF(LAYCON(K).EQ.3 .OR. LAYCON(K).EQ.1) GO TO 70 
CALL SBCF1C(CR,CC,TRPY,DELR , DELC , KK , NCOL , NROW , NLAY) 

70 CONTINUE

to:

C5     CALCULATE HOR. CONDUCTANCE(CR AND CC) FOR CONSTANT T LAYERS 
DO 70 K=1,NLAY 
KK*K

IF(LAYCON(K).EQ.3 .OR. LAYCON(K).EQ.1) GO TO 70
C5A    SELECT INTERBLOCK TRANSMISSIVITY SUBROUTINE FROM LAYAVG 

IF(LAYAVG(K).EQ.O) THEN
CALL SBCF1C(CR,CC,TRPY,DELR,DELC,KK,NCOL,NROW,NLAY) 

ELSE IF(LAYAVG(K).EQ.10) THEN
CALL SBCF3A(CR , CC , TRPY , DELR,DELC , KK , NCOL , NROW,NLAY) 

ELSE
CALL SBCF3L(CR , CC , TRPY , DELR , DELC , KK,NCOL , NROW,NLAY) 

END IF 
70 CONTINUE
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NEW BCF SUBROUTINES FOR OPTIONAL INTERBLOCK TRANSMISSIVITY

SUBROUTINE SBCF3A(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY) 
C 
C    VERSION 1 9JULY1992 SBCF3A

C      COMPUTE CONDUCTANCE USING ARITHMETIC MEAN TRANSMISSIVITY 
C      ACTIVATED BY LAYAVG=10

C
C SPECIFICATIONS:
C                                                                

C
DIMENSION CR(NCOL,NROW,NLAY), CC(NCOL,NROW,NLAY) 

2 , TRPY(NLAY), DELR(NCOL), DELC(NROW) 
C 
C                                                                

YX=TRPY(K) 
C
Cl     FOR EACH CELL CALCULATE BRANCH CONDUCTANCES FROM THAT CELL 
Cl     TO THE ONE ON THE RIGHT AND THE ONE IN FRONT.

DO 40 1=1,NROW
DO 40 J=1,NCOL
T1=CC(J,I,K) 

C 
C2     IF T=0 THEN SET CONDUCTANCE EQUAL TO 0. GO ON TO NEXT CELL.

IF(T1.NE.O.) GO TO 10
CR(J,I,K)=0.
GO TO 40 

C
C3     IF THIS IS NOT THE LAST COLUMN(RIGHTMOST) THEN CALCULATE 
C3     BRANCH CONDUCTANCE IN THE ROW DIRECTION (CR) TO THE RIGHT. 

10 IF(J.EQ.NCOL) GO TO 30
T2=CC(J+1,I,K) 

C3A    ARITHMETIC MEAN INTERBLOCK TRANSMISSIVITY
IF(T2.EQ.O.) THEN 

CR(J,I,K)=0.
ELSE

CR(J,I,K)=DELC(I)*(Tl+T2)/(DELR(J+1)+DELR(J))
END IF 

C
C4     IF THIS IS NOT THE LAST ROW(FRONTMOST) THEN CALCULATE 
C4     BRANCH CONDUCTANCE IN THE COLUMN DIRECTION (CC) TO THE FRONT. 

30 IF(I.EQ.NROW) GO TO 40
T2=CC(J,I+1,K)
IF(T2.EQ.O.) THEN 

CC(J,I,K)=0.
ELSE

CC(J,I,K)=YX*DELR(J)*(T1+T2)/(DELC(1+1)+DELC(I))
END IF 

40 CONTINUE 
C 
C5     RETURN

RETURN
END

75



SUBROUTINE SBCF3L(CR,CC,TRPY,DELR,DELC,K,NCOL,NROW,NLAY) 
C
C    VERSION 1 9JULY1992 SBCF3L 
C 
C **************************************************************
C    COMPUTE CONDUCTANCE USING LOGARITHMIC MEAN TRANSMISSIVITY
C      ACTIVATED BY LAYAVG=20
C *********************************************
C
C SPECIFICATIONS:
C
C ______________________________________________________________

DIMENSION CR(NCOL,NROW,NLAY), CC(NCOL,NROW,NLAY) 
2 , TRPY(NLAY), DELR(NCOL), DELC(NROW) 

C
C ______________________________________________________________

YX=TRPY(K)*2. 
C
Cl     FOR EACH CELL CALCULATE BRANCH CONDUCTANCES FROM THAT CELL 
Cl     TO THE ONE ON THE RIGHT AND THE ONE IN FRONT. 

DO 40 1=1,NROW 
DO 40 J=1,NCOL 
T1=CC(J,I,K) 

C
C2     IF T=0 THEN SET CONDUCTANCE EQUAL TO 0. GO ON TO NEXT CELL. 

IF(T1.NE.O.) GO TO 10 
CR(J,I,K)=0. 
GO TO 40 

C
C3     IF THIS IS NOT THE LAST COLUMN(RIGHTMOST) THEN CALCULATE 
C3     BRANCH CONDUCTANCE IN THE ROW DIRECTION (CR) TO THE RIGHT. 

10 IF(J.EQ.NCOL) GO TO 30 
T2=CC(J+1,I,K) 
IF(T2.EQ.O.) THEN

C3A    SET TO ZERO AND EXIT IF T2 IS ZERO 
CR(J,I,K)=0. 
GO TO 30 

END IF
C3B   -LOGARITHMIC MEAN INTERBLOCK TRANSMISSIVITY 

RATIO=T2/T1 
IF(RATIO.GT.1.005.OR.RATIO.LT.0.995) THEN

T=(T2-T1)/ALOG(RATIO) 
ELSE

T=0.5*(T1+T2) 
END IF
CR(J,I,K)=2.*DELC(I)*T/(DELR(J+1)+DELR(J)) 

C
C4     IF THIS IS NOT THE LAST ROW(FRONTMOST) THEN CALCULATE 
C4     BRANCH CONDUCTANCE IN THE COLUMN DIRECTION (CC) TO THE FRONT. 

30 IF(I.EQ.NROW) GO TO 40 
T2=CC(J,I+1,K) 
IF(T2.EQ.O.) THEN 

CC(J,I,K)=0. 
GO TO 40 

END IF 
RATIO=T2/T1 
IF(RATIO.GT.1.005.OR.RATIO.LT.0.995) THEN

T=(T2-T1)/ALOG(RATIO) 
ELSE

T=0.5*(T1+T2) 
END IF
CC(J,I,K)=YX*DELR(J)*T/(DELC(1+1)+DELC(I)) 

40 CONTINUE 
C
C5     RETURN 

RETURN 
END
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INPUT INSTRUCTIONS

Alternative interblock transmissivity functions are selected by layer through the 

value of LAYCON specified in the BCF package input. The meaning of the original 

LAYCON values are as follows (McDonald and Harbaugh, 1988):

LAYCON Layer characteristics

confined, T and S constant in time

unconfined, S constant in time, T depends on h

confined/unconfined, T constant in time, S depends on h

confmed/unconfined, T and S depend on h

These values are input using 12 format. To activate alternative interblock transmissivity 

functions, a two digit number is input using the 12 format. The first digit (tens) determines 

the interblock transmissivity function, and the second digit (ones) determines the layer 

characteristics as in the original model. These values are read from the BCF input file by 

subroutine BCF3AL. The factor of ten represented by the first digit is stored in a new 

common block array LAYAVG. For example, if the input LAYCON value is 10,11, or 

12, the value stored in LAYAVG is 10. The second digit (ones) is stored in LAYCON. 

The meaning of the second (ones) digit is identical to the original model of McDonald and 

Harbaugh (1988), shown above. The meaning of the first (tens) digit is:

LAYAVG Interblock transmissivity

0

10

20

30

harmonic mean

arithmetic mean 

logarithmic mean

arithmetic mean saturated thickness times 

logarithmic mean hydraulic conductivity

Thus, the tens part of the input LAYCON value is stored in array LAYAVG, and the ones 

part of the input LAYCON is stored in LAYCON. The stored values of LAYCON are 

identical to the original model (McDonald and Harbaugh, 1988), and the stored values of 

LAYAVG are used only to determine the method to compute interblock transmissivity.

78



SUBROUTINE SBCF3U(CR,CC,TRPY,DELR,DELC,BUFF,K,NCOL,NROW,NLAY) 
C
C    VERSION 1 9JULY1992 SBCF3U 
C 
C *************************************************************
C      COMPUTE CONDUCTANCE USING ARITHMETIC MEAN SATURATED THICKNESS
C      AND LOGARITHMIC MEAN TRANSMISSIVITY
C      NODE HYDRAULIC CONDUCTIVITY IS IN CC,
C      NODE SATURATED THICKNESS IS IN BUFF
C      ACTIVATED BY LAYAVG=30
(2 ***************************************************************
C
C SPECIFICATIONS:
C                                                             .
C

DIMENSION CR(NCOL,NROW,NLAY), CC(NCOL,NROW,NLAY)
2 , TRPY(NLAY), DELR(NCOL), DELC(NROW)
3 , BUFF(NCOL,NROW,NLAY) 

C 
C                                                             .

YX=TRPY(K) 
C
Cl     FOR EACH CELL CALCULATE BRANCH CONDUCTANCES FROM THAT CELL 
Cl     TO THE ONE ON THE RIGHT AND THE ONE IN FRONT.

DO 40 1=1,NROW
DO 40 J=1,NCOL
Tl=CC(J,I,K) 

C 
C2     IF T=0 THEN SET CONDUCTANCE EQUAL TO 0. GO ON TO NEXT CELL.

IF(T1.NE.O.) GO TO 10
CR(J,I,K)=0.
GO TO 40 

C
C3     IF THIS IS NOT THE LAST COLUMN(RIGHTMOST) THEN CALCULATE 
C3     BRANCH CONDUCTANCE IN THE ROW DIRECTION (CR) TO THE RIGHT. 

10 IF(J.EQ.NCOL) GO TO 30
T2-CC(J+1,I,K)
IF(T2.EQ.O.) THEN

C3A    SET TO ZERO AND EXIT IF T2 IS ZERO 
CR(J,I,K)=0. 
GO TO 30

END IF 
C3B    LOGARITHMIC MEAN HYDRAULIC CONDUCTIVITY

RATIO=T2/T1
IF(RATIO.GT.1.005.OR.RATIO.LT.0.995) THEN 

T=(T2-T1)/ALOG(RATIO)
ELSE

T=0.5*(Tl+T2)
END IF 

C3C    MULTIPLY LOGARITHMIC K BY ARITHMETIC SAT THICK
CR(J,I,K)=DELC(I)*T*(BUFF(J,I,K)+BUFF(J+1,I,K))

* /(DELR(J+1)+DELR(J)) 
C
C4     IF THIS IS NOT THE LAST ROW(FRONTMOST) THEN CALCULATE 
C4     BRANCH CONDUCTANCE IN THE COLUMN DIRECTION (CC) TO THE FRONT. 

30 IF(I.EQ.NROW) GO TO 40 
T2=CC(J,I+1,K) 
IF(T2.EQ.O.) THEN 

CC(J,I,K)=0. 
GO TO 40 

END IF 
RATIO=T2/T1 
IF(RATIO.GT.1.005.OR.RATIO.LT.0.995) THEN

T=(T2-T1)/ALOG(RATIO) 
ELSE

T=0.5*(T1+T2) 
END IF 
CC(J / I,K)=YX*DELR(J)*T*(BUFF(J,I,K)+BUFF(J,I+1,K))

* /(DELC(I+1)+DELC(I)) 
40 CONTINUE 

C
C5     RETURN 

RETURN 
END
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The following table shows the input value of LAYCON used to specify the 

particular stored values of LAYCON (layer characteristics) and LAYAVG (interblock 

transmissivity):

Input LAYCON values used to specify indicated layer characteristics (stored LAYCOK)

and

stored

LAYCON

0

1

2

3

interblock transmissivitv fLAYAVG^

LAYAVG

0

0

1

2

3

10

10

11

12

13

20

20

21

22

23

30

NA

31

NA

33

NA: The option LAYAVG=30 is not allowed unless the hydraulic conductivity is input 

(LAYCON=1 or 3). Input LAYCON of 30 or 32 is reset to 20 or 22, respectively.
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