
DOCUMENTATION OF FINITE-ELEMENT MESH GENERATION PROGRAMS

USING A GEOGRAPHIC INFORMATION SYSTEM

By Robert A. Lowther and Eve L. Kuniansky____________________

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 92-4155

A contribution of the Regional Aquifer-System Analysis Program

Austin, Texas

1992

U.S. DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, Jr., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

Copies of this report can be
purchased from:

District Chief
U.S. Geological Survey
8011 Cameron Rd., Bldg. 1
Austin, TX 78753

U.S. Geological Survey
Books & Open-File Reports Section
Federal Center
P.O. Box 25425
Denver, CO 80225

-11-

CONTENTS
Page

Abstract 1
Introduction 1
Finite-element mesh design considerations 2
Overview of the mesh design process with example 3

Part one, select important features 10
Part two, generalize features 10
Part three, generate a mesh 19

Implementation of mesh generation (AML) programs 23
AML programs 24

ARCPOTIN.AML-------------------- 24
Description 24
Program listing 26

BUFFNSHINE.AML ~ 27
Description 27
Program listing 29

CfflCPOX.AML - 32
Description 32
Program listing 33

CLIPIT.AML---------- -~-----~ 34
Description 34
Program listing 36

CLIPIT2.AML 39
Description 39
Program listing 39

ELEVATE.AML - 43
Description 43
Program listing 45
Fortran program FORKLIFT.F77- 48

Description 48
Program listing 50

FIXSNAP.AML---------------- 52
Description 52
Program listing 53

FREUD.AML - -»- --- 55
Description 55
Program listing 57
Fortran program SLIP.F77 62

Description 62
Program listing 64

Fortran program MOTHER.F77 67
Description 67
Program listing 69

IDENTIFY.AML 71

-111-

CONTENTS-Continued
Page

Description 71
Program listing 73

IDENTI2.AML 75
Description 75
Program listing - 75

IDENTILOTS.AML--- 78
Description 78
Program listing 80

KTTSINK.AML - - 83
Description 83
Program listing 85

MAKOUTLIN.AML-- --------- 92
Description 92
Program listing - - 94

MODEL.AML -- - - - 97
Description - 97
Program listing - 99
Fortran program BLDMOD.F77 - . - - 102

Description 102
Program listing - 103
Fortran Subroutine BLDNCD.F77 -.. - 105

Description - 105
Subroutine listing - 107

Fortran subroutine BLDECD.F77 ~^ - 110
Description - 110
Subroutine listing - 113

Fortran subroutine OPTIMIZE.F77 . 116
Description 116
Subroutine listing 120

Fortran program FE-LABEL.F77 ---* 4 124
Description 124
Program listing - 126

REALENGTH.AML - 127
Description - 127
Program listing 129
MAKEADDL.AML + 141

Description 141
Program listing 142

Info program ADD.LENGTHS 143
Description 143
Program listing 144

Fortran program HOWMANY.F77 - - * 144
Description 144

-IV-

CONTENTS-Continued
Page

Program listing 146
Fortran program ORGANIZE.F77 147

Description 147
Program listing 149

REMODELAML-- 150
Description 150
Program listing 152
Fortran program REOPT.F77- ...-... 155

Description 155
Program listing 156

SNAPPY.AML-- 157
Description 157
Program listing 160

SPLEEN.AML -. 162
Description 162
Program listing 164

TRIANGLE.AML 167
Description 167
Program listing 169
Fortran program TRIANGRID.F77 - 171

Description 171
Program listing 171

Selected References 175
Supplemental data 176

I. Mesh generation procedure quick-reference guide 177
n. AML program description and usage quick-reference guide 180

IE. Compiling and linking Fortran programs on the Prime system 184
IV. Compiling and linking Fortran programs on a Unix system 185

Programs diskette

-V-

Figures 1-15.
1.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.
16.

17.

18.
19.

20.
21.

22-51.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

ILLUSTRATIONS
Page

Maps showing:
The subregional model area, including significant line, polygon, and point
features 4
Location of major faults in the study area (FAUCL) 5
Location of surface drainage divides in the study area (BASUB) 5
The subsurface limits of geologic formations in the study area (SUBGLIM)- 6
Location of irrigation pumpage in the study area (IRRPUM) 6
Location of municipal or industrial pumpage in tjie study area (MUINPUM) 7
Location of major springs in the study area (SPRINGS) 7
Location of major streams in the study area (STR) 8
Location of subregions in the study area (TREDAQ) 8
Location of a geologic outcrop in the study area (OCRCL) 9
Location of the Devil's River trend in the study area (DEVTR) - - 9
Location of feature lines forming the basis for areas of greater detail in
the model - 11
Location of the area with greater detail in the model 12

in the model 12
..____ ___- 14

Location of the area with greatest detail
Location of the model boundary
Illustration of detrimental effects of CLIPping a cover with features that
approximate, but do not duplicate, the edge of the CLIPping cover-
Map showing sample output from TRIANGLE.AML, an equilateral
triangular grid -
Map showing the composite regularly spaced grid for the model
Diagram of example finite-element mesh, node coordinate data, and
element connection data -
Maps showing the output finite-element mesh and centroids for each element
Map showing the intersections of topographic elevation lines and the major
streams in the study area
Flowcharts for:
ARCPOTIN. AML
BUFFNSHINE.AML -
CHICPOX.AML -
CLIPIT.AML and CLIPIT2.AML--
ELEVATE.AML -
FORKLIFT.F77
FDCSNAP.AML
FREUD. AML -
SLIP.F77
MOTHER.F77
IDENTIFY.AML and IDENTI2.AML
IDENTILOTS.AML
KITSINK. AML
MAKOUTLIN. AML -

-VI-

16

18
18

20
21

22

25
28
32
35
44
49
53
56
63
68
72
79
84
93

ILLUSTRATIONS-Continued
Page

Figures 22-51. Flowcharts fon-Continued
36. MODEL.AML------------------------------------- 98
37. BLDMOD.F77 - - -- 103
38. BLDNCD.F77 106
39. BLDECD.F77 - 112
40. OPTIMIZE.F77 117
41. SETUP.F77 118
42. OPTNUM.F77 119
43. FE-LABEL.F77 - 125
44. REALENGTH.AML 129
45. MAKEADDL.AML 141
46. ADD.LENGTHS -- 143
47. HOWMANY.F77 145
48. ORGANIZE.F77 148
49. REMODEL.AML 151
50. REOPT.F77 155
51. SNAPPY.AML ------------------------- 158
52. Diagram of the recursive process in SNAPPY.AML 159

53-55. Flowcharts for:
53. SPLEEN.AML 163
54. TRIANGLE.AML 168
55. TRIANGRID.F77 172

-Vll-

CONVERSION FACTORS

Multiply By To obtain

foot (ft) 0.304 meter
mile (mi) 1.6093 kilometer

-vin-

DOCUMENTATION OF FINITE-ELEMENT MESH GENERATION PROGRAMS

USING A GEOGRAPHIC INFORMATION SYSTEM

By

Robert A. Lowther and Eve L. Kuniansky

ABSTRACT

Finite-element mesh generation for models of ground-water and surface-water systems is a tedious process
due to the irregular nature of the geologic, hydrologic, and geomorphic features. In developing a mesh for the
Edwards-Trinity aquifer-system project, a vector-based geographic information system is used to generate a variably
sized triangular element finite-element mesh from mappable features. Important digitally mapped features are
automatically linked to nodes in the finite-element model, ensuring an efficient, virtually error-free alternative to the
tedious process of mesh design and data-input preparation by other methods. The computer programs have been
developed in a macro language and may be useful for other processes. Some of the programs use commercially
developed software commands, while others use Fortran programs developed specifically for the finite-element model.
This report documents the programs developed for mesh generation and provides, as an example, the mesh developed
for the Edwards-Trinity Regional Aquifer-System Analysis project. The programs are stand-alone and provide the
necessary information on node coordinates and element connection data for three-nodal triangular elements for many
finite-element model applications.

INTRODUCTION

The irregular nature of geologic, hydrologic, and geomorphic features causes finite-element mesh generation
to be a tedious process for ground-water and surface-water models. The finite-element method was chosen for
simulation of the Edwards-Trinity regional aquifer system due to anisotropy, which varied in direction throughout the
area of the system. Programs developed for mesh generation in structural design were initially used to design the mesh
of the system. The development of the original mesh took about four months to complete. This mesh was then linked
to a geographic information system (GIS) in order to facilitate data preparation.

As the Edwards-Trinity Regional Aquifer-System Analysis (RASA) project evolved, the decision was made
to develop a more detailed model of the most active (relative to ground-water flow) part of the aquifer system. This
required the design of another mesh. Rather than spend four months manually designing a mesh, the GIS software
developed by Environmental Systems Research Institute, Inc. (ESRI), ARC/INFO1 was used to design computer
programs specifically for mesh creation. The computer programs have been developed in ARC/INFO (version 5.0)
macro language (AML) and have been tested on a Prime minicomputer and on Data General Aviion workstations.
These AML programs, also referred to as macros, call Fortran programs or commercially developed ARC/INFO
commands. The AML programs allow the modeler to efficiently generate different mesh designs.

This report documents the AML programs developed for mesh generation and the development of other
model input data for simulating streams in a ground-water system. The subregional model mesh for the Edwards-
Trinity aquifer system is used as an example of the process. The process for developing a mesh has been divided into
several steps that use different macros. Some of these may be useful for processing geographic data other than mesh
generation.

!Use of firm/trade names in this report is for identification purposes only and does not constitute endorsement by the
U.S. Geological Survey.

-1-

In order to use the information presented in this document, the reader needs working knowledge of the finite-
element method and ARC/INFO. ARC/INFO commands are presented in italicized all capitals and are referenced in
the ESRI manuals (ESRI, 1987). The basic hardware and software^ requirements are: minicomputer or workstation,
plotting device, color high-resolution graphics terminal, Fortran?? compiler, and ARC/INFO software with the TIN
package.

If the features important to the model are already digitally available, a mesh can be designed in several days
using the mesh generation AML programs. These macros were designed as stand-alone modules within the CIS
software and are used to set up the basic node coordinate and element connection data necessary for many different
finite-element model programs.

The assistance of Leonard L. Orzol, USGS, Portland, Oregon in porting all of the mesh generation programs
to the Unix workstations is greatly appreciated by the authors. We also appreciate the assistance of Jonathon C. Scott,
USGS, Oklahoma City, Oklahoma for providing an example program for reading the binary files within ARC/INFO.

FINITE-ELEMENT MESH DESIGN

The finite-element method allows two-dimensional space to be subdivided (discretized)
variably sized elements. Certain generalizations can be made in de
partial differential equation or equations being solved.

into a mesh with
signing a mesh. These considerations vary with the

For ground-water flow problems, the mesh should have t le
potentiometric surface of the aquifer to be simulated is greatest. 1
head at the vertices of each element, which represents a plane whos
of head. Thus, more elements are required to approximate surfaces having a
surfaces having a relatively uniform slope. Small elements may t
complex geologic structures, such as faults, that affect ground-water movem

CONSIDERATIONS

smalles
equatic

orientatii

elements where the gradient of the
he equations are being solved for potentiometric

in in space is defined by the nodal values
variable slope than to approximate
to define irregular aquifer geometry or
nt.

For surface-water problems, such as two-dimensional flow over a fiood plain where both velocity and water-
surface elevation are unknown, smaller elements are necessary where there are sharp gradients in velocity or depth of
bed. This usually occurs in and around the stream channel.

For all finite-element problems, the size and shape of the elements affect the solution of the equations.
Theoretically, as the size of the elements approaches zero, the solution approaches the true solution of the equation.
However, as the element size decreases, the number of equations solved approaches infinity and roundoff error
increases. The size and number of elements for each model is problem dependent. One must create a mesh with
enough finite-elements for approximating the unkown variable without creating an unmanageable number of
simultaneous equations to solve (If you have access to a super-c
of over-discretization.).

omputer you could try for 30,000 nodes, regardless

The shape of elements affects the solution
also called shape functions or basis functions, that are derived from
the solution of the ground-water flow equation by the Galerkin fin
between 22.5° and 90° result in coefficient matrices with positive
(StrangandFix,1973,p. 138-139). StrangandFix(1973,p.
elements should not be greater than 180
conditioned for the equations' solution. The most numerically stable triangular-element mesh is one of regularly
spaced equilateral triangles (Strang and Fix, 1973).

When a direct solver is used for solving the set of equations developed by the finite-element approximation
of the problem, node numbering of the elements becomes important. The riesh generation programs incorporate an
algorithm developed by Collins (1973) for renumbering the node
the finite-element programs.

because the finite-element method uses interpolation functions,
the COOK inates of the nodes for each element. For

te-elemen t method, triangular elements with angles
diagonal terms and negative off-diagonal terms

78) also state that the sum of two adjacent angles between
This allows one obtuse angle without causing the final matrix to be less well

to minimize the bandwidth of the matrix solved by

-2-

If a large number of triangular elements are connected at one vertex (patch of elements), the bandwidth of the
matrix to be solved is increased. This will create a matrix that is sparse (many zeros between numbers in the rows and
columns), which leads to increased roundoff errors when using a direct solver. This patch may also have thin needle-
like elements, which are undesirable because the resulting triangles would have angles less than 22.5° or greater than
90°. Patches of more than eight or nine triangular elements should be avoided.

The authors' experience with surface-water and ground-water finite-element mesh designs has been that these
considerations are rarely met for all elements in a mesh. If an attempt is made to minimize the number of poorly shaped
elements and patches of elements, while incorporating the important geomorphic and geologic features, numerical
stability will not be a problem.

OVERVIEW OF THE MESH DESIGN PROCESS WITH EXAMPLE

The basic mesh design process consists of three major parts: determination of relevant input features,
generalization of those features, and generation of a triangular mesh based on those features. Part one consists of two
steps. Part two consists of seven steps. Part three consists of one step. After the basic mesh design has been completed
with these 10 steps, an optional eleventh step may be useful for some meshes: the assigning of altitudes to certain
feature-based points in one of the output coverages. The details of each of these 11 steps follow.

Part one is to determine which features are required for the design of the mesh. These features must exist as
ARC/INFO coverages. The mesh designer must also know the features that define the model boundary and the
features that require a finer mesh because of an anticipated change in potentiometric surface.

Part two is the generalization of the features, necessary because feature coverages will tend to have more
detail than is feasible to include in the model. This is accomplished by reducing the number of line vertices with
SPLINE and by reducing the number of points in the model with SNAP. All feature coverages should have a unique
user-ID for each point, and IDEDIT should be used to update the coverages whenever a change is made to their user-
ID's.

Part three is to generate a mesh, beginning with a point cover based on the input features. Arcs are reduced
to their vertex points. All feature-based points, both those that were originally line vertices and those that were in a
point cover, are SWAPped to reduce the total number of points in the model. For areas in which few points are
generated from these features, regularly spaced grids of points will be used. Because the elements are triangles whose
vertices are the aforementioned points, this ensures a more uniform element size across the entire model.

The remainder of the process is to generate three GIS data layers (coverages) related to the points from the
previous steps and two ascii files, FDJEECD and FILENCD. These three coverages can be used for creation of other
needed input data to the numerical model that is used. All coverages will have the same user-supplied root name, and
have the extensions .ELMS, .ELPT, and .NOD. The .ELMS cover is a polygon cover, composed of triangles that have,
as vertices, the points generated in the previous steps and whose user-ID's are the element numbers of the mesh. The
.ELPT cover is a point cover made up of the centroids of the triangles in the .ELMS cover and having user-ID's as the
element numbers of the mesh. The .NOD cover is a point cover whose points are the vertices of the triangles in the
.ELMS cover. The user-ID's of the points in the .NOD cover are the model node numbers. Attributes can then be
assigned to the .ELPT points, whose user-ID's correspond to the polygon user-ID's in the .ELMS cover of triangular
elements. FILEECD has the element connection data and FILENCD has the node-coordinate data for the finite-
element model. The three major parts in the process are contained in the 11 detailed steps that follow. For quick
reference, however, a summary of the necessary commands for each step is included in the supplementary data section
"Mesh generation procedure quick-reference guide."

To facilitate understanding of the mesh generation process, it is described for the subregional model of the
Edwards-Trinity aquifer system (fig. 1). The area containing all features, and, consequently the mesh, is called "the
study area." This particular mesh uses 10 feature coverages incorporating point, line, and polygon data.

-3-

The feature coverages are: faults, FAUCL, a line cover; Surface drainage divides, BASUB, a line cover;
subsurface limits of geologic formations, SUBGLIM, a line cover; irrigation! pumpage, IRRPUM, a point cover;
municipal and industrial pumpage, MUINPUM, a point cover; major springs, SPRINGS, a point cover; streams, STR,
a line cover; geographic subregions representing the Edwards and Trinity aquifers, TREDAQ, a polygon cover,
outcrop of high permeability rocks, OCRCL, a polygon cover; and the Devil's River trend, an ancient reef structure ,
DEVTR, a polygon cover. They are shown in figures 2-11.

Feature covers of the Edwards-Trinity aquifer system that are used for mesh generation.

Feature

Faults
surface drainage
divides
boundaries of
geologic formations
Irrigation pumpage
Municipal and
industrial pumpage
Major springs
Streams
Subregions of the
Edwards and Trinity aquifers
Outcrop area
Boundary of the Devils
River Trend (an ancient reef)

Cover Name Feat

FAUCL lines
BASUB lines

SUBGLIM

IRRPUM
MUINPUM

SPRINGS
STR
TREDAQ

OCRCL
DEVTR

 SUBREOONAL MODEL BOUNDARY
 LME AND POLYGON FEATURES

line.

poin
poin

poir
line;
polj

polj
pol)

ore Class

ts
ts

ts

gons

gons
gon

PONT FEATURES

102030 KILOMETERS

Figure 1. The subregional model area, including significant line, polygon, and point features

-4-

N

1

SYSTEM

SUBREGIONAL

MODEL AREA

LOCATION HAP

SUBREOONAL MOOa BOUNDARY
MAJOR FAULTS

N
A

0 10 20 30 MILES
I I I

o bo bo KILOMETERS

Figure 2.~Location of major faults in the study area (FAUCL).

SUBREOONAL MODEL BOUNDARY
SURFACE CRANAGE DMDES

N

t

0 10 20 30 MILES
I I I I

b "» 2o!50 K ILOMETERS

Figure 3. Location of surface drainage divides in the study area (BASUB).

-5-

SUBREGKMAL MODEL BOUNDARY
SUBSURFACE LMTS OF GEOLOGIC FORMATIONS

0 10 20 30 MILES
I »" I I

D 10 2030 KILOMETERS

Figure 4. The subsurface limits of geologic formations in the

 SUBREQONAL MODEL BOUNDARY
o ROGATION PUMPAGE PONT

N

I

study area (SUBGLIM).

N

V) 20 30 KILOMETERS

Figure 5.-Location of irrigation pumpage in the stucy area (RRPUM)

-6-

 SUBREOONAL MODEL BOUNDARY
o HUMORAL OR MDUSTMAL PUMPAGE PONT

N

0 10 20 30 M I L E S
I » I »
D » 2030 KILOMETERS

Figure 6. Location of municipal or industrial pumpage in the study area (MUINPUM).

 SUBREGKMAL MODEL BOUNDARY
o NATURAL SPRMG LOCATION

N
A

0 10 20 30 MILES

2030 KILOMETERS

Figure 7.-Location of major springs in the study area (SPRINGS).

-7-

SUBREGKMAL MODEL BOUNDARY
MAJOR STREAMS

N

I

0 10 20 30 MILES
I I I I
D TO 2030 KILOMETERS

Figure 8.--Location of major streams in the study area (STR).

SUBREQONAL MODEL BOUNDARY
SUBREGIONS

0 10 2030MILES

V 2030 KILOMETERS

Figure 9. Location of subregions in the study area (r "REDAQ)

N

I

-8-

OUTCROP
MODEL BOUMURY

N
A

0 tt 20 30 MILES
I l~ I I

D 10 2030 KILOMETERS

Figure 10.--Location of geologic outcrop in the study area (OCRCL).

SUBREGKMAL MODEL BOUCARY
DEVL^S RIVER TREND

N
A

0 V) 20 30 MILES
I l~ I I

D V 2030 KILOMETERS

Figure 11.-Location of the Devil's River Trend in the study area (DEVTR).

-9-

For model the of the Edwards-Trinity aquifer system, the boundary was made up of several different data
layers for hydrogeologic reasons. The northwestern boundary was based on surface drainage divides and was
simulated as a no-flow boundary (part of BASUB). The aquifer system is a water-table system in the northwestern
area. Potentiometric-surface maps of the system indicate that ground-water flow parallels surface drainage. The
southern part of the system is confined by a wedge of post-Cretaceous sediments composed of clays with smectite
minerals. This part of the Edwards-Trinity system dips steeply toward the coast The permeability of the Edwards-
Trinity aquifer system diminishes rapidly along the southern edge of the aquifer. The low permeability area is
coincident with a freshwater/saline-water transition zone, an interface of freshwater (less than 500 parts per million
(ppm) dissolved solids) to the northwest and moderately saline-water (1,000 to 10,000 ppm dissolved solids) to the
southeast. The southern boundary of the model is simulated as a no-flow boundary several miles within the low
permeability zone and is found in a cover called BADH2O. The northeastern boundary of the model is the Colorado
River, which is simulated as a head-dependent source/sink (part of STR).

Part One. Select Important Feature

Step 1.1 is to decide which features are important to the mesh. Any
cover should be created and built (BUILD) as the appropriate cover type (po
type should be in separate coverages.

Step 1.2 is to make basic decisions about the mesh. A moi lei boundary must be decided
is simply the outer edge of all features of interest for the model, and will
boundary may consist of parts of several coverages. Also, any festtures whose level of detail requires
spaced mesh than the rest must be identified,
crenulations.

Part Two. Generalize 7eatures

One such common co ver is the stream cover.

Step 2.1 is to define the subarea whose greater detail nece ssitates a fi ner
two. An area is specified by creating an ARC polygon cover with only one p<
This cover is referred to as a "polygon outline." The Polygon Attribute Tab
special integer item, the "identifying item." This item should be s^t to a valu
arc defining the desired area. It should be set to "0" for all other areas (spec
which has a negative AREA, and is defined to be all space outside of any o
outlines will have to be defined, or built (BUILD), as polygon coverages (tha
to be built (BUILD) as line coverages (that is, have Arc Attribute Tables,
are simultaneously possible in the ARC/INFO system.

An area of detail can either be defined as all space within a certain
geographic feature or as a polygon included in the geographic model feature
must be defined in ARC/INFO. In order to define such an area in ARC, we
in two stages:

line covet
unnecessary. We do not want to directly

First, if the cover forming the basis for the subarea is a
appropriate distance. If the coverages are point coverages, then tliis stage is
SPLINE coverages at this point, as this would alter
make temporary copies of the coverages, designated <cover namo.TEMPJ and SPLINE these coverages
SPLEEN.AML is used at this point to SPLINE the coverages.

A good rule of thumb is to SPLINE at either the smallesl desired distance between two points
is necessaryl/10th of the BUFFER distance, whichever is larger. SPUNE'm\

arising when the cover(s) are BUFFERod. Attempting to BUFF ER
will produce such anomalies and prevent proper operation of the BUFFER

:t of features that is not in an ARC/INFO
nt, polygon, or line). Features of each

upon. This boundary
the outline of the mesh. A model

a more finely
, whose arcs often have many

-spaced mesh, as decided upon in step
lygon that surrounds the area of interest,
e (PAT) of the cover should contain a
of "1" for the polygon area inside of the

fically, the polygon listed in the PAT,
her polygons in the PAT). All polygon
is, have PAT's); and some will also have

or AATs). Fortunately, these two definitions

distance from a specified point or line
If the former is the case, then that area

UFFER the given feature. This is done

then this cover must be SPLINEed at an

them and then :by distort ata that we will later need. We therefore
instead.

in the mesh, or
in order to prevent anomalies from

a convoluted line at any relatively great distance
command.

-10-

The second stage of step 2.1 is to create a polygon outline of the area requiring a finer-spaced mesh. If more
than one cover contains features forming the basis for a region, the temporary copies of the relevant coverages should
be combined into one cover. Any arcs or points in these basic feature coverages that are not part of the detailed-area
definition should be removed, in ARCEDIT, from the temporary copies before they are combined. Once all of, and
only, the relevant features are assembled into one cover, we can proceed to step 2.2.

We used three different levels of detail for the Edwards-Trinity aquifer-system model. Two polygon outlines,
BUFB and BUFL, were created to divide the three areas. We create these coverages byBUFFERing a cover
combining desired features from the stream cover copy, STR.TEMP, and the fault line cover copy, FAUCL.TEMP, at
two different BUFFER distances. The desired features have been extracted from separate coverages and combined
into DTAILAREA (fig. 12). For our model, these features require more detail because they cause sharper variations
in aquifer head.

 SUBREGKMAL MODEL BOUNDARY
 SPUNED STREAMS AND SELECTED MAJOR FAULTS

N

I

10 20 30 M I L E S
I I I

!zo!iO K ILOMETERS

Figure 12.-Location of feature lines forming the basis for areas of greater detail in the model.

We use BUFFNSHINE.AML to BUFFER DTAILAREA at 60,000 and at 20,000 ft to create the coverages
BUFB and BUFL respectively (figs. 13 and 14). BUFFNSHINE.AML also adds an identifying item to the PAT's of
the coverages it creates. For our example, the items are INBUFB and INBUFL. The BUFFER distances of 20,000
and 60,000 ft. were chosen based upon the average size of the triangles to be generated within these areas of detail.
The relative sizes of triangles are subjective decisions based on the scale and detail of the modeling effort.

If the detail area was already in the feature coverages, then COPY and ARCEDIT should be used to create a
cover whose arc outline is the desired area. Unwanted interior arcs are removed, and an identifying PAT item for the
interior area is defined with MAKOUTLESf.AML. As with BUFFNSHINE.AML, the user must supply an identifying
item name for MAKOUTLIN. AML. The output will be a polygon outline.

-11-

SUBREGKMAL MODEL BCUGARY
AREA OF MODEL WITH GREATER DETAL

N

t

0 10 20 30 MILES

20J30 KILOMETERS

Figure 13. Location of the area with greater detail in

 SUBREGKMAL MODEL BOMJARY
 AREA OF MODEL WITH GREATEST DETAL

the modi si.

N

t

0 10 20 30 MILES
III I
0 V 2030 KILOMETERS

Figure 14.~Location of the area with greatest detail in the mbdel.

-12-

For the example mesh, the commands used for step 2.1 are:

COPY STR STR.TEMP
COPY FAUCL FAUCL.TEMP
&R SPLEEN 4207 8000 0 0 STR.TEMP FAUCL.TEMP
(Use ARCEDIT to remove unwanted arcs from the FAUCL.TEMP cover)
APPEND DTAILAREA (with the following entries)

STR.TEMP
FAUCL.TEMP
END

BUILD DTAILAREA LINE
&R BUFFNSfflNE DTAILAREA LINE 60000INBUFB
&R BUFFNSfflNE DTAILAREA LINE 20000INBUFL
KILL STR.TEMP ALL
KILL FAUCL.TEMP ALL

Step 2.2 in the mesh design process is to implement the model boundary decision made in step 1.2 and define
the study area. The model boundary is simply a SPLJNEed. polygon outline of the total study area. It is used to CLIP
other coverages and thereby eliminate any features outside of the study area.

To create the model boundary, use ARCEDIT on a temporary copy of each cover whose features define the
boundary, and combine these copies into one cover of the model boundary. If several feature coverages duplicate the
same model boundary, use the most detailed feature. This most commonly occurs where a stream coverage has been
digitized with enough detail for accurate length and a political boundary duplicates the stream. The political boundary
should be deleted and the stream used as the boundary for the model. Features that approximate, but do not duplicate,
parts of the model boundary must be eliminated from that feature cover.

Stream coverages must be treated specially if the stream length is important for other aspects of the modeling
effort. A special AML for computing the actual stream length associated with a node is included in this
documentation. It will be described in detail in the section REALENGTH.AML. Keep in mind that SPLJNEed and
non-SPLJNEed copies of the stream cover must contain the same stream segments. If the non-SPUNEed cover
contains streams that run along the model boundary, so must the SPLJNEed cover. In order for the SPLJNEed cover
to contain streams along the model boundary, it must duplicate that boundary, not approximate it.

The relevant parts of the three model boundary-defining coverages from the Edwards-Trinity subregional
model example are shown in figure 15. These are parts ofSPLJNEod copies of the Colorado River, the surface
drainage divides, and the updip limit of the freshwater/saline-water transition zone. Features that lay outside of the
study area or were already in another of the temporary copy coverages werw removed. (In the Edwards-Trinity
example, a segment of the Trinity aquifer boundary that is approximately coincident with a segment of a model
boundary-defining drainage divide had to be removed.)

After deleting unwanted features, APPEND the coverages into one master cover. For the example, the three
relevant coverages (fig. 15) are combined into MODBASIS. Use MAKOUTLIN.AML to create a polygon outline,
the model boundary, with an identifying item from this master cover. The example model boundary, MODBND, has
the identifying item "INMOD." The model boundary looks exactly like the master cover, but is a polygon as opposed
to a line cover and has an identifying item in its PAT. Also BUILD the model boundary as a line cover, as it will need
to be both a line cover and a polygon cover for KITSINK.AML to run properly.

-13-

 COLORADO RIVER
- - - FRESH WATER/SALtC-WATER TRANSfflOM ZOC

SURFACE DRAINAGE OMDES

N

I

0 tt 20 30 MILES
III I

0 « 2030 KILOMETERS

Figure 15.~Location of the model boundary.

For the example mesh, the commands used are:

COPY STR STR.TEMP
COPY BASUB BASUB.TEMP
COPY BADH2O BADH2O.TEMP
(Use ARCEDIT to remove unwanted parts of all three coverages)
APPEND MODBASIS (with the following entries)

STR.TEMP
BASUB.TEMP
BADH2O.TEMP
END

BUILD MODBASIS LINE
&R MAKOUTLIN MODBASIS MODBND DSfMOD
BUILD MODBASIS LINE
KILL STR.TEMP ALL
KILL BASUB.TEMP ALL
KILL BADH2O.TEMP ALL

Step 2.3 is to SPLINE all of the line coverages to be used for the mesh. This is done to generalize the features
so that the final mesh will have a manageable number of points. Before doing this, however, an archive copy must be
made of any stream cover in the model. This is because stream-length segments will be assigned to the points
representing the stream in process step 3.1. For this to occur correctly, a non-, JPL/N£ed copy of the stream cover must
exist. Therefore, at this point in the process, create an archival copy of the stream cover. In the example, we COPYed
STR into STR.LEN. After this, SPUNE'mg all of the coverages (including the regular copy of the stream cover, STR).
This is done with SPLEEN.AML.

-14-

SPLEEN.AML will allow SPLJNEing at different distances based on the areas defined in step 2.1, up to two
specialized areas or a total of three SPLINE distances (two detailed area distances plus the general SPLINE distance).
For the example mesh, we used a SPLINE distance of 8,000 ft inside the subarea BUFL, a distance of 14,000 ft inside
the subarea BUFB, and a general distance of 22,000 ft. (The B UFFER distance of 20,000 ft for BUFL was chosen to
allow at least two 8,000-fL equilateral triangles on each side of a stream or relevant fault; the BUFFER distance of
60,000 ft for BUFB was chosen to allow two 14,000-ft. equilateral triangles between BUFL and BUFB. 60,000-
20,000 = 40,000 and 40,000/14,000 > 2)

For the example mesh, the commands required for this step are:

COPY STR STR.LEN
&R SPLEEN 4207 22000 14000 8000 MODBND FAUCL BASUB SUBGLIM STR TREDAQ
OCRC DEVTR (with the following entries)
BUFB
DSfBUFB
BUFL
DSfBUFL

Step 2.4 involves the creation of archival copies of the SPLINEed coverages for step 3.1 of the process to help
identify the origin of each point in the final mesh cover. Use the COPY command and the naming convention "(first
three letters of file name). A" to make a copy of each of the SPLJNEod input coverages (including the now-SPL/./VEed
stream cover). Be sure to follow the naming convention carefully, as KITSINK.AML will look for files based on this
convention.

For the example mesh, the commands required for this step are:

COPY FAUCLFAU.A
COPY BASUB BAS.A
COPY SUBGLIM SUB.A
COPY STR STR.A
COPY TREDAQ TRE.A
COPYOCRCLOCR.A
COPY DEVTR DEV.A

Step 2.5 is the final CL/Pping of the coverages of interest Use CLIPIT. AML on these coverages, as it will
allow you to use the model boundary to CLIP all of the coverages of one type in one operation. The output coverages
from CLIPIT. AML will have the same names as the input coverages, but with ".CL" appended to the names to indicate
that they have been CLIPpod. For the example, MODBND was used to CLIP all 10 coverages. Also, be sure to CLIP
the non-SPLJNEed stream cover. This cover must contain only the streams and stream segments used in the model to
generate feature points. If the non-SPLJNEod copy differs in extent from the regular cover, then the stream-length
algorithm will not operate correctly.

Be sure to remove any features that nearly duplicate a part of the model boundary. This would not include a
river segment which defines, and so is the same as, the boundary. Figure 16 shows an example of the complications
arising from near duplication of feature lines. Part of the model boundary is nearly duplicated by STR.LEN (fig. 16a).
If CL/Pping occurs without the removal of the duplicate line segment, then the result is a series of short, meaningless
line segments (fig. 16b). For example, trying to CLIP the non-SPLJNEed cover with CLIP may create these line
segments. If this occurs, then "CLJPping" the non-SPLJNEod cover may have to be done interactively, in ARCEDIT,
in order to ensure that any stream that follows the model boundary, and is included in the normal stream cover, is
included as a continuous line in STR.LEN.

-15-

STOLEN. A rCAR DUPLICATION OF THE MOOEL BOUNDARY ALONG THE COLO. RJVER

a. Before CL/Pping

 STOLEN, AFTER BEMG OPPED BY THE MOOEL

b. After CL/Pping
Figure 16.--fllustration of detrimental effects of CLIPping a cover with features that approximate,

but do not duplicate, the edge of the CLIP ting

-16-

For the example mesh, the commands required for this step are:

&R CLIPIT 4207 MODBNDINMOD 0 LINE FAUCL IN BASUB IN SUBGLIM IN STR IN
TREDAQ IN OCRCL IN DEVTR IN
&R CLIPIT 4207 MODBND INMOD 0 POINT IRRPUM IN MUDSfPUM IN SPRINGS IN
(Use ARCEDIT to remove line segments from STR.LEN so that it includes all of, and only the, streams in STR.CL.)

The part of STREAMS used to define part of the model boundary should be included in both STR.CL and
STR.LEN.

Step 2.6 consists of interactively editing each of the input model coverages using ARCEDIT. This editing is
similar to that done to the temporary copies of the model boundary-defining coverages in step 1.4. The CL/Pping
operation may leave small, unwanted parts of feature lines. These line segments are created when a feature line
approximates, but does not duplicate one of the CL/Pping boundaries (as noted above). Again, be sure that the normal
stream cover and the non-SPL/Msed copy represent the same set of streams and stream segments.

Step 2.7 is the creation of the regularly spaced grid(s) of points that will fill the gaps left in the feature point
cover. The irregular nature of feature-generated points in the model means that, in some areas, the points are much
further apart than in others. In order to avoid creating huge triangles in these areas when the line mesh is created, we
must fill these gaps with points. For uniformity, these points should be regularly spaced. We therefore create a
regularly spaced grid of points. We create as many grids as we desire different point spacings (usually smaller spacings
in the areas of the model requiring greater detail and hence having denser feature points). These grids are separated
by the polygon outlines defined in step 2.1. Use TRIANGLE.AML as many times as necessary to create the desired
grid(s). The model boundary cover should be used as the "background cover" for these operations, and the points
created should adequately cover the entire outline (fig. 17). In the example, there are three different grid sizes
separated by BUFL and BUFB. The outer grid has a spacing of 22,000 ft. between points, with spacings of 14,000 and
8,000 ft. for the grids within the big and little buffers, respectively (fig. 18). The grid spacing used in detailed areas
can be the same as the SPLINE distances used in the same areas. This helps to ensure more uniform triangles.

If more than one triangular grid is necessary (as in our example), then the grids must be combined to create
a master grid of varying point density. Referencing the differing grid border polygon outlines created in step 2.1, use
CLIPIT.AML to remove the unwanted parts (either within or without the polygon outlines) of each grid. In figure 18,
the intermediately spaced point grid is used between BUFL and BUFB as a transition between the sparse and the dense
grids. Be sure to CLIP each grid with the model boundary, to ensure that no points fall outside of it. APPEND these
grids into a master cover to complete the grid. The example master grid is shown in figure 18.

For the example mesh, the commands required for this step are:

&R TRIANGLE 4207 MODBND GRDBIG 22000
&R TRIANGLE 4207 MODBND GRDMED 14000
&R TRIANGLE 4207 MODBND GRDSML 8000
&R CLIPIT 4207 MODBND INMOD 0 POINT GRDBIG IN GRDMED IN GRDSML IN
&R CLIPIT 4207 BUFB INBUFB 0 POINT GRDBIG.CL OUT GRDMED.CL IN
&R CLIPIT 4207 BUFL INBUFL 0 POINT GRDMED.CL.CL OUT GRDSML.CL IN
APPEND MSTGRD (with the following entries)

GRDBIG.CL.CL
GRDMED.CL.CL.CL
GRDSML.CL.CL
END

BUILD MSTGRD POINT

-17-

REGULARLY SPACED GRD POUTS

N

t

0 10 2090MILES
I I I I

2030 KILOMETERS

Figure 17.~Sample output from TRIANGLE.AML, zm equila eral triangular grid.

SUBREOONAL MODEL BOUNDARY
REGULARLY SPACED GRD FONTS

N

I

0 10 20 90 MILES
| I I 1
D V 2030 KILOMETERS

Figure 18. The composite regularly spaced grid for

-18-

Part Three. Generate a Mesh

The tenth step is to run KITSINK.AML. KITSINK.AML completes the mesh generation process from this
point. It creates the node coordinate data file, FTLENCD, and the element connection data file, FTLEECD, needed for
modeling. Samples of node coordinate data and element connection data are shown in figure 19. KITSINK.AML
creates a point cover containing all of the element label points, a point cover containing all of the element node points,
and a polygon cover containing all of the triangular elements based on the feature and grid points. For the example,
these coverages are called EXAMP.ELPT, EXAMPJSfOD, and EXAMP.ELMS. Figures 20a and 20b show
EXAMP.ELMS and EXAMP.ELPT, respectively. KITSINK.AML performs an optimization routine for node
numbering, and therefore needs a user-imposed maximum number of optimization runs. A typical maximum would
be 10 attempts.

KITSINK.AML performs a large number of operations, and requires a correspondingly long time (anywhere
from five minutes to 10 hours). For most of this time, it may be left unattended, but one particular process requires
user input After its first operation, converting each input cover to a point cover and combining these into a master
feature point cover, KITSINK. AML does several SNAP operations on this master cover. Because of difficulties
accessing internal ARC/INFO command information, however, these operations require the user to answer a question,
and hence the user must be present until the question can be answered "y" instead of "n." We hope to solve this
problem in the future, but for now, a more detailed description of the problem is included in the description of
SNAPPY.AML. Fortunately, this process is early in the KITSINK.AML procedure and therefore leaves the user free
for most of KITSINK.AML's extensive run time.

For the example mesh, the commands required for this step are:

&R KITSINK 4207 MSTFEAT 500000 8000 MSTGRD ALLPTS MODBND ESfMOD 8000
MSTPTS MSTPOL 10 (with the following entries)
FAUCL.CL
LINE
FAULT
BASUB.CL
LINE
DRAINDIV
SUBGLIM.CL
LINE
SBGEOLIM
IRRPUM.CL
POINT
ERRIG
MUINPUM.CL
POINT
MUNIJND
SPRINGS.CL
POINT
SPRING
STR.CL
LINE
STREAM
TREDAQ.CL
LINE
SUBREGN
OCRCL.CL
LINE
OUTCROP
DEVTR.CL

-19-

LINE
DVLRVR
STR.LEN

EXAMPLE MESH

0

0

a. node coordinate data I
node x y elc

number coordinate coordinate nu

153 (

2 10 13 (

3 17 3 (

4 20 21 (

5 24 12 (

6 30 3 (

7 32 18

gure 19.~Example finite-element mesh, node

>. eleme
ment
mber

l)

2)

3)

4)

5)

6)

it connection data
node connections

i j k

1 3

2 3

3 6

4 2

4 5

7 5

coordinate data, and e

2

5

5

5

7

6

lemei

-20-

EXAMRELMS - AN ARC COVER CONSSTWG OF THE TRUNGULAR MESH ELEMENTS

N

I

0 10 20 30 MILESr I i
V) 2030 KILOMETERS

a. Finite-element mesh

 SUBREOONAL MODEL BOUNDARY
 MESH ELEMENT NODE PONT

N

1

0 10 20 30 MILES
I I I I
0 TO 2030 KILOMETERS

b. Element centroids
Figure 20.~Output finite-element mesh and centroids of each element.

-21-

After KITSINK.AML, an optional eleventh step may be run on the mesh. This AML program assigns
altitudes to certain feature-based points in the ".NOD" output cover. The altitudes are based upon the intersections of
the selected feature with topographic contour lines. For example, altitudes can be assigned to all points in the ".NOD"
file that represent stream vertices based upon the intersections of the streams with topographic contour lines.

This AML program is ELEVATE.AML. ELEVATE.AML requires as input a point cover that contains points
coincident with the lines of a particular line cover. The points represent the intersections of the lines in the line cover
with the equal-altitude lines of a topographic map. Some item in the PAT of this point cover should equal the
topographic altitudes at the points of intersection. An example cover, TOPO.ELEV, is shown in figure 21. These
points and elevations were digitized from a 1:24,000 topographic map. ELEVATE.AML also requires a point cover,
some of whose points need this altitude information. The points needing altitude values (usually stream points) must
have an identifying item set equal to one. ELEVATE.AML will interpolate between the given altitudes to produce
altitudes for each point for which the identifying item is equal to one. The points with items equal to one should
approximate the lines that were originally used to create the topographic intersections cover to ensure functioning of
the AML program.

 SUBKQONAL MODEL BOUNDARY
 NTERSECTION OF A TOPOGRAPHC LME WITH A STREAM ARC

THE NUMBERS ARE SAMPLE PAT ITEMS (REPRESENTIMG THE
PONT ELEVATIONS]

N

I

0 10 20 30 MILES
['I I
0 10 2030 KILOMETERS

Figure 21.-Intersections of topographic elevation lines and the major streams in the study area.

For the example mesh, the command for this process is:

&R ELEVATE 4207 MSTPOL.NOD STREAM ELEV TOPO.ELEV ALT

-22-

IMPLEMENTATION OF MESH GENERATION (AML) PROGRAMS

The mesh generation programs are a series of ARC commands and ARC Macro Language routines, or
macros, some of which call Fortran?? programs, organized into a procedural format The AML programs are designed
to be useful for other processes in addition to finite-element mesh generation. For example, ARCPOTIN.AML
simplifies the use of any TIN command. The mesh generation process requires the user to run many macros separately,
making decisions at each of the 10 steps. For these reasons, the macros are each described separately, as stand-alone
modules. Some of the macros are used repeatedly; others are used only once. They are presented alphabetically in the
section entitled "AML Programs" for ease of reference.

The macros used in the mesh generation procedure described in the section entitled "Overview of the mesh
design process with example" are explained within that section. Because each module is composed of, or at least called
by, an AML program, the macros are presented as main subsections in the section entitled "AML Programs." Any
Fortran?? programs called by a macro are listed in the order in which they are called, as subsections of these main
subsections. The exception to this format is MAKEADDL.AML. This macro is presented as a subsection of the
REALENGTH.AML subsection because it is a rudimentary macro designed to create the INFO program
ADD.LENGTHS. As such, it has no use outside of REALENGTH.AML.

The Fortran programs on the enclosed diskette have not been compiled. They must be compiled for use on
whatever kind of computer is to be used. All programs were originally written and tested on a PRIME minicomputer.
All code was written in American National Standards Institute, 1978, FORTRAN 77 where possible. Despite these
efforts, however, individual differences in compilers may make some of these programs non-compilable. If this
happens, the necessary changes should be minor.

When linking the programs, three libraries should be included. They are the standard FORTRAN library,
VAPPLB if on a Prime minicomputer (or the appropriate system-specific library), and ARCLIB (for ARC interface
commands). More information about compiling is included in the Supplemental Data section. One example of use of
the ARCLIB library is the set of calls to AENTER, LUNINI, MINIT, and MESINI found at the beginning of some of
the FORTRAN programs. These routines are necessary to interface with ARC/INFO and are found in ARCLIB. After
making any necessary minor changes to system-specific commands and linking with the aforementioned libraries, the
programs should run on any system.

AML programs must be run from within the ARC/INFO system, specifically at the "Arc" prompt and with
the "&run" command. In order to reduce screen clutter, each AML program begins with the command "&echo &off."
This command prevents the AML program commands from being printed to the screen. The computer system's
responses to these commands will, however, be displayed. They are allowed to display so that the user can monitor
the progress of the macro, which is particularly useful during macros that require extensive operating time.

These responses may be suppressed, on the Prime, by the insertion of the following command immediately
after "&echo &off' in each AML program: "&sys corno -ntty." One word of caution about the use of this command,
however Each macro has a rudimentary input error-checking routine. These routines display an error message
explaining the correct usage of each macro. Other run-time error messages will cause a macro to abnormally abort.
The macro will display a standard error message, but the source of the error will be displayed in the system error
message that precedes the macro message. Use of the above command may cause suppression of this system error
message, making errors more difficult to locate and correct.

One final note: If an AML program is run without any arguments, then it will respond with a "USAGE"
statement, which tells the user which arguments need to be included. Arguments that are specified as "created" will
be created by the macro. Arguments specified as "existing" should already exist before the macro is called.

-23-

AML PROGRAMS

ARCPOTIN.AML

Description

At least two of the ARC commands used by the mesh generation program, specifically ARCPOINT and
ARCTIN, are more precisely TIN commands. TIN commands require that the input cover attribute table include the
item "SPOT." The addition, and subsequent removal, of this item constitutes the primary purpose of the macro
ARCPOTIN.AML (fig. 22). This macro adds the item "SPOT" to the input cbver's attribute table, executes the
specified command, and then removes "SPOT" from the input (anc|, if the command is "ARCPOINT,11 the output)
coverages' attribute tables in order to maintain their ease of comprehension.

In addition, ARCPOTIN.AML can perform an optional secondary
'ARCTIW and a polygon name is specified, ARCPOTIN.AML will take the
created by ARCTIN and create a polygon cover based upon it.
line cover as a polygon cover. This feature simplifies the process of creating
on a point cover. If the secondary function is not desired, it may bx; bypassed by
do all of the macros, ARCPOTIN.
inputs are present.

It creates this cover as a line cover,

.AML performs a rudimentary check of the input data

function. If the input command is
tr angular irregular network (TIN) that is

, then BUILDs the
a triangular mesh polygon cover based

not specifying a polygon name. As
to ensure that all required

At the beginning of the AML program, any file with the name specun
polygon cover name will be ATLLed. Common errors include misspecifying
cover type that is inappropriate for the TIN command chosen. j

specified as the output cover name or the output
i he input cover type or using an input

-24-

C START J

NO

YES

DO INPUT
COMMAND

ABBREVIATIONS ON
FLOWCHARTS

W/ with
number
& and

PTS points
STRM stream

ADD ITEM "SPOT'

i
DROP ITEM "SPOT'

INPUT
COMMAND "ARCTIN"

IS
NG

OF POLY
NAMEo

0?

NO

NO

YES

CREATE
POLYGON COVER

FROM TIN
COVER

C STOP

PRINT
ERROR

MESSAGE

Figure 22.--Flowchart for ARCPOTIN.AML

-25-

Program Listing

/* MACRO: Use the TIN commands, ARCPOINT or ARCTIN, automatically
/* adding and deleting the item'spot'as necessary. Optionally,
/* if a TIN is created, BUILD it as a poly cover.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* COMM: The command to be executed
/* INCOV: The input cover name
/* OUTCOV: The output cover name
/* TIP: The input file type
/*POLYNAM: The name of the polygon cover to be created from the tin
/* COMMAN: The capitalized command name
/* TYP: The capitalized file type
/* INTAB: The input file attribute table
/* OUTAB: The output file attribute table

&echo &off
&args comm incov outcov tip polynam

/* -Prepare the error-indication file-C
&setvar i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 1]
&setvar i [close %filun%]

/* -Test to see if all arguments are present as expected-O
&if [type %comm%] ne 1 &then &goto badentry
&if [type %incov%] ne 1 &then &goto badentry
&if [type %outcov%] ne 1 &then &goto badentry
&if [type %tip%] ne 1 &then &goto badentry
&if [length %tip%] eq 0 &then &goto badentry
&if [type %polynam%] ne 1 &then &goto badentry

/* -Eliminate old occurances of the output files-M
&severity &error &ignore
kill %outcov% all
&if [length %polynam%] ne 0 &then kill %polynam% all
&severity &error &fail

/* -Capitalize inputs as necessary-E
&setvar comman [translate %comm%]
&setvar typ [translate %tip%]

/* -Add the item 'spot' as necessary-D
&if %typ% eq 'LINE' &then &setvar intab %incov%.AAT
&if %typ% ne 'LINE' &then &setvar intab %incov%.PAT
&severity &error &ignore
additem %intab% %intab% spot 4 4 i
&severity &error &fail

/* -Execute the command-Y

-26-

%comman% %incov% %outcov% %typ%

/* -Drop the item 'spot' as necesary-
dropitem %intab% %intab% spot
&if %comman% eq 'ARCTIN' &then &goto atinonly
&setvar outab %outcov%.pat
dropitem %outab% %outab% spot
&goto endit
&label atinonly
&if [length %polynam%] eq 0 &then &goto endit
tinarc %outcov% %polynam% line
build %polynam% poly
createlabels %polynam%
&goto endit

/* -Print the error message-
&label badentry
&type Usage: ARCPOTIN <TIN command> <in_cover (existing)> <out_cover or
&type out_tin (created)> <type of input cover (point,line)>
&type (output polygon cover name if ARCTIN is used and a poly
&type cover is to be created from the out_tin (created)}
&goto errend

&label endit
/* -Prepare the error-indication file-
&setvar i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label errend
&type End of ARCPOTIN

BUFFNSHINE.AML

Description

BUFFNSHINE.AML is essentially an extension of the BUFFER command in ARC/INFO. It performs two
distinct functions, either of which may be performed separately if desired (fig. 23).

The primary function of BUFFNSHINE.AML is to createBUFFERs of specified size around the input cover's
features. In addition, a user-named identifying item is added to the PAT of tiieBUFFERed output file. The output file
name is simply the input file name with the extension ".BUF" added.

The secondary function of BUFFNSHINE.AML is to eliminate features from a second cover that fall within
the BVFFERoA areas created by BUFFNSHINE's primary function. The output for this operation is written to a cover
whose name is the input second cover name with the extension ".CL." Though technically a function unrelated to
BUFFERing, deletion of this sort is often the rationale behind BUFFERing and so this function is included in
BUFFNSHINE.AML.

-27-

PRINT
ERROR

MESSAGE

OE
BUFFERED
UTALREAD

EXIST?

SET ITEM
TO IDENTIFY

BUFFER INTERIOR

NO IS
THERE A

SECONDARY
COVER?

INTERSECT BUF^R &~
COVER & REMOVE SEC­
ONDARY COVER MA­
TURES WITHIN BUFFER

STOP)
Figure 23.--Flowchart for BUFFNSHISE.AML.

If no feature removal is desired, then BUFFERing can be performed alone by not giving
BUFFNSHINE.AML any deletion cover name, deletion cover type, or display type. Similarly, deletion may be
performed alone, based on a BUFFERed cover that has been created by the macro on a previous run. This is
accomplished by entering a cover name for which a ".BUF" file already exists. This combination of available
operations is designed to make BUFFNSHINE.AML as flexible as possible.

-28-

If a second cover is specified, one whose features are to be removed, then any file under the name specified
as the second cover and with the extension ".CL" will be KILLoA. Common errors include not SPUNEing at a great
enough distance for the buffer size chosen, and not having the second cover built (BUILD) as the type specified.

Program Listing

/* MACRO: Create buffer regions around features in a cover and
/* assign an item with a value of 1 to indicate areas inside buffers.
/* Also, optionally, delete another cover's features which fall
/* within these buffers, or buffers created by an earlier run of
/* this program.

/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky
/* VARIABLE LIST

/* CV: The input cover
/* TIP: The feature type of the input cover
/* BUFDIS: The buffering distance
/* IT: The item denoting the input cover
/* OFFENSIVE: The cover whose features which lie within the buffers
/* are to be removed
/* OTIP: The feature type of the above cover
/* DTYPE: The display type
/* COV: The capitalized version of CV
/* TYP: The capitalized version of TIP
/* ITEM: The capitalized version of IT
/* OTYP: The capitalized version of OTIP
/*YULBRYNNER: The buffered version of COV
/* BUFTPAT: The attribute table for YULBRYNNER
/* OFFCLIP: The clipped version of OFFENSIVE
/* OFFTAB: The attribute table for OFFCLIP
/* DUMMY 1: One of the variables used to remove items from attribute tables
/* DUMMY2: The other of the variables mentioned above

&echo &off
&args cv tip bufdis it offensive otip dtype

/* -Prepare the error-indication file-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 2]
&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s .slash /
&s computerjlag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computerjype prime

&end

-29-

&else
&do

&s .computer_type unix
&end

/* -Test to see if all arguments are present as expected-M
&if [type %cv%] ne 1 &then &goto badentry
&if [type %tip%] ne 1 &then &goto badentry
&if [type %bufdis%] >= 0 &then &goto badentry
&if [type %it%] ne 1 &then &goto badentry
&if [len %it%] eq 0 &then &goto badentry
&if [type %offensive%] ne 1 &then &goto badentry

/* -Translate variable names to capitals for use in ARC/DSfFO-E
&setvar cov [translate %cv%]
&setvar typ [translate %tip%]
&setvar item [translate %it%]
&setvar otyp [translate %otip%]

/* -Buffer the features in the coverages-D
&setvar yulbrynner %cov%.BUF
&if [exists %yulbrynner% -coverage] &then &goto nextsec
&if %typ% eq 'POLY1 &then &goto nextsec
buffer %cov% %yulbrynner% # # %bufdis% 40 %typ%

/* -Use ARC/INFO to set the item indicating areas inside buffers-Y
&label nextsec
&severity &error &ignore
&setvar buftpat %yulbrynner%.PAT
additem %buftpat% %buftpat% %item% 4 4 i
&severity &error Mail
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SEL %BUFTPAT%
RESEL FOR INSIDE = 100
CALC %ITEM% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SEL %BUFTPAT%
RESEL FOR INSIDE = 100
CALC %ITEM% = 1
QSTOP
QUIT
&end
&end

/* -Check to see if removal is desired-

-30-

&if [len %offensive%] eq 0 &then &goto endit

/* -If so, IDENTITY the coverages-H
&setvar offclip %offensive%.CL
&if [exists %offclip% -coverage] &then kill %offclip% all
identity %offensive% %yulbrynner% %offclip% %otyp% 40

/* -Use ARCEDIT to remove the desired areas-O
ae
mape %offclip%
disp %dtype%
editc %offclip%
&if %otyp% = 'POINT &then

&do
editf label
drawe label
&end

&else
&do
editf arc
drawe arc
&end

draw
&severity &error &ignore
select screen
resel for %item% = 1
delete
&severity &error &fail
save

/* -Clean up the files-U
&if %otyp% = 'LINE1 &then &setvar offtab %offclip%.AAT
&if %otyp% ne "LINE1 &then &setvar offtab %offclip%.PAT
dropitem %offtab% %offtab% %item%
&setvar dummy 1 %offensive%#
&setvar dummy2 %offensive%-ID
dropitem %offtab% %offtab% %dummyl%
dropitem %offtab% %offtab% %dummy2%
dropitem %offtab% %offtab% INSIDE
&goto endit

/* -Print the error message-R
&Label badentry
&type Usage: BUFFNSHINE <name of cover to be buffered (existmg)> <type of
&type cover (line,point,poly)> <buffer distanco <name of
&type item to be added to output poly cover to indicate
&type areas inside the polygon (created)> {cover whose
&type features lying within the output polygon are to be
&type removed (existing)} {cover type (line,point,poly)}
&type {display type}
&goto errend

&label endit

-31-

/* -Prepare the error-indication file-
&s i[delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label errend
&typfc Ehd of BUFFNSHINE

CHICPOX.AML

Description

This macro creates a point cover based on an input line co
of the line cover and the points of the point cover. CHICPOX. AN
ARCPOINT to create the point cover (fig. 24). It then SNAPs the
to ensure a perfect match. This matching function is included bee mse
CHICPOX.AML creates the points representing the model boundaiy
CLIPping cover in order for CL/Pping to occur properly.

C START

YE

RUN
ARCPOTIN.AI
CREATE A POINT

COVER

I
SNAP ARCS TO

POINTS IN POINT
COVER TO INSUREl
PROPER OVE1U.AY

c STOP

er and ens
first call

fcsin
in

ires a perfect match between the vertices
ARCPOTIN.AML to run the command

the line cover to the points in the point cover
the mesh generation process,

These] oints need to duplicate exactly the model

NO

rtL TO

PRINT
ERROR

MESSAGE

Figure 24.--Flowchart for CHICPdX.AML.

-32-

CHICPOX.AML KILLs any file with the name specified as the output point cover name. The most common
error, especially when CHICPOX.AML is called by KTTSINK.AML, is that the input line cover is not built (BUILD)
both as a polygon and a line cover.

Program Listing

/* MACRO: Take an input line (arc) cover and return an output
/* point cover based upon the input Additionally, snap the input
/* arc cover vertices so that they match the point cover nodes
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST
/* DTYPE: The display type
/* COVIN: The input polygon cover
/* DIST: The maximum distance across which arc vertices will be snapped
/* to match the point cover nodes
/* COVOUT: The output point cover

&echo &off
&args dtype covin dist covout
/* -Prepare the error-indication flle-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 3]
&setvar i [close %filun%]

/* -Test to see if all arguments are present as expected-O
&if [type %covin%] ne 1 &then &goto badentry
&if [type %dist%] ne -1 &then &goto badentry
&if [type %covout%] ne 1 &then &goto badentry
&if [length %covout%] eq 0 &then &goto badentry

/* -Eliminate old occurances of necessary files-M
&severity &error &ignore
kill %covout% all
&severity &error &fail

/* -Create the point cover-E
&run arcpotin arcpoint %covin% %covout% line
ae
mape %covin%
disp %dtype%
editc %covin%
drawearc
snapc %covout%
backc %covout%
backe label
draw
editf arc
snapf arc label
snapping closest %dist%
select screen

-33-

snap
save
q
clean %covin%
&goto endit

/* -Print the error message-D
&label badentry
&type Usage: CHICPOX <display typo <input line cover(existing)> <maximum
&type distance output points might deviate from input arcs>
&type <output point cover (created)>
&goto enderr
&label endit

/* -Prepare the error-indication file-Y
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label enderr
&type End of CHICPOX

CLIPIT.AML

Description

This macro functions as an extended CUP function (fig. 25). It will "CUP" up to 10 coverages
in a single run, based on one polygon "CL/Pping" cover. The output files haj/e the same name as the input files, but
with a ".CL" extension. Users must specify whether they want the parts of th|e input coverages inside or outside to
remain. In addition, CLIPIT.AML can create a BUFFER region around the CL/Pping cover and remove any features
from the input coverages that lie within this region. Although this secondary function has limited applications for line
and polygon input coverages, it can be quite useful for point coverages. If this function is not needed, it can be
bypassed by entering a value of zero for the BUFFERing distance. If a buffer for the CL/Pping cover with the name
"CL/Pping cover name.BUF" already exists, then that cover will be used for the point removal operation. Such a cover
must already have an identifying item. If not, a cover will be created using the same naming convention.

CLIPIT.AML KILLs any files with a name designated as an input cover name with either a ".CL" extension
, not having an

types in the same run of CLIPIT.AML,
to remain.

Common errors include not having built (BI//LP) the CL/Pping cover as a polygonor a "d" extension.
identifying item for the CL/Pping cover, trying to CUP coverages of differen
or misspecifying whether the part of an input cover inside or outside of the CL/Pping cover is

-34-

NO
IS

A BUFFER
DISTANCE

GIVEN?

IS
INPUT

OK?

IS
ABUFFE
DISTANCE

GIVEN?

DOES
A BUFFER
ALREADY

XIST2

SELECT FIRST
COVER

PRINT
ERROR

MESSAGE

BUFFER
CLIPPING
OUTLINE

SET ITEM =1
INSIDE BUFFERED

AREA

REMOVE POINTS
WITHIN/WITHOUT
THE CLIP COVER

SELECT NEXT
COVER

REMOVE FEATURES
WITHIN BUFFER

DISTANCE OF THE
CLIP COVER

A
COVER

BEEN
IPPED

Figure 25.--Flowchart for CLIPIT.AML and CLIPIT2.AML.

-35-

Program Listing

/* MACRO: Clip up to ten coverages with a clipping cover and remove
/* any features which are too close to the clip boundaries
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky
/* VARIABLE LIST:/* DTYPE: The graphic display type being used
/* CLIPPER: The cover being used as a cutting template for clipping
/* ITEM: The item indicating the area within the cutting template
/* CLIPDIS: The size of the buffer zone to be created around
/* the clipping cover
/* TYP: The cover type of the coverages to be clipped
/*COV1-COV10: The names of the coverages to be clipped
/* W1-W10: The corresponding inside or outside clip for the above
/* WANKEL: The item added to the buffered clip cover to indicate
/* areas which are within the buffer distance
/* COV: The name of the cover currently being considered
/* WNOW: The inside/outside clip variable currently being considered
/* COVD: The name of the output cover for the clipped veitsion of coy
/* CLBUFF: The buffered version of the clipping outline

&echo &off
&args dtype clipper item clipdis tip covl wl cov2 w2 cov3 w3 cov4 w4 ~
cov5 w5 cov6 w6 cov? w7 cov8 w8 cov9 w9 covlO wlO

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-O
&if [type %clipper%] ne 1 &then &goto badentry
&if [type %item%] ne 1 &then &goto badentry
&if [type %clipdis%] >= 0 &then &goto badentry
&if [type %tip%] ne 1 &then &goto badentry
&if [type %covl%] ne 1 &then &goto badentry
&if [type %wl%] ne 1 &then &goto badentry
&if [length %wl%] = 0 &then &goto badentry

&setvar typ [translate %tip%]
&if typ eq POLY1 &then &goto badentry

/* -Create a buffer zone around the clipping cover-M
&if %clipdis% eq 0 &then &goto looop
&type "Enter the identifying item name for the buffer area (Note:

-36-

ifthe1

&setvar itmb [response 'buffer cover already exists, so must this item)']
&setvar itemb [translate %itmb%]
&setvar clapper [translate %clipper%]
&setvar clbuff %clapper%.BUF
&if [exists %clbuff% -COVERAGE] &then &goto buffered
buffer %clipper% %clbuff% # # %clipdis% 40 line
&label buffered
build %clbuff% poly
&setvar clbuffpat %clbuff%PAT
&severity &error &ignore
additem %clbuffpat% %clbufrpat% %itemb% 4 4 i
&severity &error &fail
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SELECT %clbuffjpat%
RESEL FOR INSIDE = 100
CALC %itemb% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %clbuffjpat%
RESEL FOR INSIDE = 100
CALC %itemb% = 1
QSTOP
QUIT
&end
&end

&label looop
&do cov &list %covl% %cov2% %cov3% %cov4% %cov5% %cov6%

%cov7% %cov8% %cov9% %covlO%
&if [length %cov%] eq 0 &then &goto endloop
&if %cov% eq %covl% &then &setvar wnow %wl%
&if %cov% eq %cov2% &then &setvar wnow %w2%
&if %cov% eq %cov3% &then &setvar wnow %w3%
&if %cov% eq %cov4% &then &setvar wnow %w4%
&if %cov% eq %cov5% &then &setvar wnow %w5%
&if %cov% eq %cov6% &then &setvar wnow %w6%
&if %cov% eq %cov7% &then &setvar wnow %w7%
&if %cov% eq %cov8% &then &setvar wnow %w8%
&if %cov% eq %cov9% &then &setvar wnow %w9%
&if %cov% eq %covlO% &then &setvar wnow %wlO%
&setvar covd %cov%d
&setvar sav %cov%.CL
&severity &error &ignore
kill %covd% all
kill %sav% all
&severity &error &fail

-37-

/* -Clip the coverages-E

&severity &error &ignore
identity %cov% %clipper% %covd% %typ% 40
&severity &error &fail
ae
disp %dtype%
mape %covd%
editc %covd%
&if %typ% eq 'LINE1 &then drawe arc
&if %typ% eq 'LINE1 &then editf arc
&if %typ% eq 'POINT &then drawe label
&if %typ% eq 'POINT &then editf label
draw
select screen
resel for %item% eq 1
&if [length %wnow%] eq 2 &then nsel
&severity &error &ignore
delete
&severity &error &fail
save

&severity &error &ignore
&if %clipdis% ne 0 &then identity %covd% %clbuff% %sav% %typ% 40
&severity &error &fail
&if %clipdis% eq 0 &then copy %covd% %sav%
kill %covd% all

/* -Remove any cover features which are too close to the clipping; cover-D
&if %clipdis% eq 0 &then &goto lateloop
ae
disp %dtype%
mape %sav%
editc %sav%
&if %typ% eq 'LINE' &then drawe arc
&if %typ% eq 'LINE' &then editf arc
&if %typ% eq 'POINT' &then drawe label
&if %typ% eq 'POINT &then editf label
draw
select screen
resel for %itemb% = 1
delete
save
q
&label lateloop
build %sav% %typ%
&if %typ% eq 'LINE' &then &setvar savtab %sav%.AAT
&if %typ% ne 'LINE1 &then &setvar savtab %sav%.PAT
&if %typ% eq 'LINE1 &then dropitem %savtab% %savtab% AREA
&if %typ% eq 'LINE1 &then dropitem %savtab% %savtab% PEBIMETER
&severity &error &ignore
dropitem %savtab% %savtab% %item%

-38-

&setvar dummy 1 %cov%#
&setvar dummy2 %cov%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&setvar dummy 1 %clipper%#
&setvar dummy2 %clipper%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&if %clipdis% eq 0 &then &goto endloop
dropitem %savtab% %savtab% INSIDE
dropitem %savtab% %savtab% %itemb%
&setvar dummy 1 %covd%#
&setvar dummy2 %covd%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&setvar dummy 1 %clbuff%#
&setvar dummy2 %clbuff%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&label endloop
&severity &error &fail
&end
&goto endit

/* -Print error message-Y
&label badeniry
&type Usage: CLIPIT <display typo <clipping cover (existing)> <item denoting
&type area inside the clipping cover(existing)> <distance from
&type the edge within which features should be removed(or 0 if
&type no removal desired) <type of coverages to be clipped (line,
&type point)> <cover #lxin/out #!>....{cover #10} {in/out #10}

&label endit
&type End of CLIPIT

CLIPIT2.AML

Description

This macro is simply a slightly modified version of CLIPIT. AML designed to run from within
KITSINK.AML. In this version, no screen prompt is displayed for the item designating areas too close to the CL/Pping
border. Here the name is entered as an argument. CLIPIT2.AML follows the same flowchart as CLIPIT.AML,
presented in figure 25.

Program Listing

/* MACRO: Clip up to ten coverages with a clipping cover and remove
/* any features which are too close to the clip boundaries
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The graphic display type being used

-39-

/* CLIPPER: The cover being used as a cutting template for clipping
/* ITEM: The item indicating the area within the cutting template
/* CLIPDIS: The size of the buffer zone to be created around
/* the clipping cover
/* TYP: The cover type of the coverages to be clipped
/*COV1-COV10: The names of the coverages to be clipped
/* W1-W10: The corresponding inside or outside clip for the above
/* WANKEL: The item added to the buffered clip cover to indicate
/* areas which are within the buffer distance
/* COV: The name of the cover currently being considered
/* WNOW: The inside/outside clip variable currently being considered
/* COVD: The name of the output cover for the clipped version of co>[
/* CLBUFF: The buffered version of the clipping outline

&echo &off
&args itmb dtype clipper item clipdis tip covl wl cov2 w2 cov3 w3 cov4 w4 ~

cov5 w5 cov6 w6 cov7 w7 cov8 w8 cov9 w9 covlO wlO

/* -Prepare the error-indication file-C
&setvar i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 4]
&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-M
&if [type %clipper%] ne 1 &then &goto badentry
&if [type %item%] ne 1 &then &goto badentry
&if [type %clipdis%] >= 0 &then &goto badentry
&if [type %tip%] ne 1 &then &goto badentry
&if [type %covl%] ne 1 &then &goto badentry
&if [type %wl%] ne 1 &then &goto badentry
&if [length %wl%] = 0 &then &goto badentry

&setvar typ [translate %tip%]
&if typ eq "POLY1 &then &goto badentry

/* -Create a buffer zone around the clipping cover-E
&if %clipdis% eq 0 &then &goto looop
&setvar itemb [translate %itmb%]
&setvar clapper [translate %clipper%]

40-

&setvar clbuff %clapper%.BUF
&if [exists %clbuff% -COVERAGE] &then &goto buffered
buffer %clipper% %clbuff% # # %clipdis% 40 line
&label buffered
build %clbuff% poly
&setvar clbuffpat %clbuff%PAT
&severity &error &ignore
additem %clbuffpat% %clbuffpat% %itemb% 4 4 i
&severity &error &fail
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT %clbuffpat%
RESEL FOR INSIDE = 100
CALC %itemb% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %clbuffpat%
RESEL FOR INSIDE = 100
CALC %itemb% = 1
QSTOP
QUIT
&end
&end

&label looop
&do cov &list %covl% %cov2% %cov3% %cov4% %cov5% %cov6%

%cov7% %cov8% %cov9% %covlO%
&if [length %cov%] eq 0 &then &goto endloop
&if %cov% eq %covl% &then &setvar wnow %wl%
&if %cov% eq %cov2% &then &setvar wnow %w2%
&if %cov% eq %cov3% &then &setvar wnow %w3%
&if %cov% eq %cov4% &then &setvar wnow %w4%
&if %cov% eq %cov5% &then &setvar wnow %w5%
&if %cov% eq %cov6% &then &setvar wnow %w6%
&if %cov% eq %cov7% &then &setvar wnow %w7%
&if %cov% eq %cov8% &then &setvar wnow %w8%
&if %cov% eq %cov9% &then &setvar wnow %w9%
&if %cov% eq %covlO% &then &setvar wnow %wlO%
&setvar covd %cov%d
&setvar sav %cov%.CL
&severity &error &ignore
kill %covd% all
kill %sav% all
&severity &error &fail

I* -Clip the coverages-D

-41-

&severity &error &ignore
identity %cov% %clipper% %covd% %typ% 40
&severity &error &fail
ae
disp %dtype%
mape %covd%
editc %covd%
&if %typ% eq LINE' &then drawe arc
&if %typ% eq 'LINE' &then editf arc
&if %typ% eq 'POINT &then drawe label
&if %typ% eq 'POINT &then editf label
draw
select screen
resel for %item% eq 1
&if [length %wnow%] eq 2 &then nsel
&severity &error &ignore
delete
&severity &error &fail
save

&severity &error &ignore
&if %clipdis% ne 0 &then identity %covd% %clbuff% %sav% %typ% 40
&severity &error &fail
&if %clipdis% eq 0 &then copy %covd% %sav%
kill %covd% all

/* -Remove any cover features which are too close to the clipping cover-Y
&if %clipdis% eq 0 &then &goto lateloop
ae
disp %dtype%
mape %sav%
editc %sav%
&if %typ% eq 'LINE' &then drawe arc
&if %typ% eq "LINE1 &then editf arc
&if %typ% eq 'POINT &then drawe label
&if %typ% eq 'POINT &then editf label
draw
select screen
resel for %itemb% = 1
delete
save
q
&label lateloop
build %sav% %typ%
&if %typ% eq 'LINE' &then &setvar savtab %sav%.AAT
&if %typ% ne "LINE1 &then &setvar savtab %sav%.PAT
&if %typ% eq 'LINE1 &then dropitem %savtab% %savtab% ARK A
&if %typ% eq 'LINE' &then dropitem %savtab% %savtab% PER IMETER
&severity &enor &ignore
dropitem %savtab% %savtab% %item%
&setvar dummy 1 %cov%#
&setvar dummy2 %cov%-ID
dropitem %savtab% %savtab% %dummyl%

-42-

dropitem %savtab% %savtab% %dummy2%
&setvar dummy 1 %clipper%#
&setvar dummy2 %clipper%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&if %clipdis% eq 0 &then &goto endloop
dropitem %savtab% %savtab% INSIDE
dropitem %savtab% %savtab% %itemb%
&setvar dummy 1 %covd%#
&setvar dummy2 %covd%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&setvar dummy 1 %clbuff%#
&setvar dummy2 %clbuff%-ID
dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&severity &error &fail
&label endloop
&end
&goto endit

/* -Print error message-
&label badentry
&type Usage: CLIPIT2 <item denoting area within buffer> <display typo
&type <clipping cover> <item denoting area>
&type <buffering distance> <type of cover (line,point)>
&type <cover #1> <in/out #!>.... {cover #10} {in/out#10}
&goto enderr

&label endit
/* -Prepare the error-indication file-
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%}
&label enderr
&typeEndofCLIPIT2

ELEVATE.AML

Description

ELEVATE.AML assigns elevations to points within a point cover, presumably but not necessarily the stream
points within a point cover composed of many different feature points. As input and output, ELEVATE.AML requires
very specialized coverages. It requires as input a point cover whose points are defined to be the intersections of the
stream (or other feature) arcs representing the points to be elevated with the topographic contour lines of the region in
question. As output, it requires a point cover with an item in its PAT that is set equal to "1" for each point that is to
have an elevation assigned. The flowchart for ELEVATE.AML is shown in figure 26. The lines that are used to
determine the topographic line intersection points should be the same lines that are used to generate the points in the
output point cover. The elevation of each of the topographic intersection points should be recorded as an item value
for each of those points. The elevations for the output points that do not fall on topographic lines are interpolated from
the two nearest topographic intersection points.

-43-

PRINT
ERROR

MESSAGE

CREATE STRONLY
-A COVER WI

ONLY STREAM
POINTS IN IT

» J
SEND STRONLY AND T

TOPO MAP TO FORKLIFI
TO CREATE AN ASCH I
STREAM POINT ELEVA'

1

HEINPl
F77(FI(
JSTOF
FIONS

JT
527)

CREATE AN INFO
FILE FROM THE
OUTPUT ASCII

LIST

i
RELATE THE ELEVATIONS IN THE

INFO FILE TO THE STREAM
POINTS IN THE INPUT COVER

C STOP

Figure 26.--Flowchart tor ELEVAT

The files, "STRPTS," "ELEVPTS," "STRELEVS," and the cover 'JSTRONLY" are deleted orKILL&d by
ELEVATE. AML at the beginning of its run. Common errors inch] de not having an identifying item in the output cover
to indicate which points are to be elevated, not using a point cowr as the output cover, not having an item in the
topographic intersection cover (TI cover) representing the elevation, or not using the same arc cover to generate, in the
TI cover, the intersection points with the topographic contour lines and to generate the points indicated by the
identifying item in the output cover.

L.AML.

-44-

Program Listing

/* MACRO: Add river elevations to a point cover (with an item identifying
/* the river points) based on a point cover of intersections of
/* topographic map contour lines with the rivers
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

I* VARIABLE LIST

/* DTYPE: The screen graphic display device type
/* COVER: The point cover containing points to be elevated
/* STRWORD: The item which is equal to one for each point to be elevated
/* OUTELEV: The output cover item to contain the elevation info
/* TOPO: The cover with points at the intersections of topographiccontour
/* lines and the lines along which points to be elevated lie
/* INELEV: The input cover item to contain the elevation info
/* COVERPAT: COVER, capitalized, with the extension, ".PAT"
/* COVERID: COVER, capitalized, with the extension, "-ID"
/* WHEREOUT: The name of the output cover, complete with its entire path

&echo &off
&args dtype cover strword outelev topo inelev

/* -Check the computer type (by Leonard 1. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-O
&if [type %dtype%] ne -1 &then &goto badentry
&if [type %cover%] ne 1 &then &goto badentry
&if [type %strword%] ne 1 &then &goto badentry
&if [type %outelev%] ne 1 &then &goto badentry
&if [type %topo%] ne 1 &then &goto badentry
&if [type %inelev%] ne 1 &then &goto badentry

&if [length %inelev%] eq 0 &then &goto badentry

/* -Define some variables-M
&setvar coverpat [translate %cover%].PAT
&setvar coverid [translate %cover%]-ID
&setvar topopat [translate %topo%].PAT
&setvar topoid [translate %topo%]-ID
&setvar whereout [pathname STRELEVS]

-45-

&setvar outel [translate %outelev%]
&setvar inel [translate %inelev%]

/* -Delete any old occurances of files-E
&s i [delete strpts]
&s i [delete elevpts]
&s i [delete strelevs]
&severity &error &ignore
kill stronly all
&severity &error &fail

/* -Prepare the input coverages to dump data onto the FORKLIFT-D
additem %topopat% %topopat% temp 4 5 b
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SEL %topopat%
CALC TEMP = %topoid%
CALC %topoid% = %inel%
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SEL %topopat%
CALC TEMP = %topoid%
CALC %topoid% = %inel%
QSTOP
QUIT
&end
&end
idedit %topo% point
copy %cover% stronly
ae
disp %dtype%
mape stronly
editc stronly
editf label
drawe label
draw
select screen
resel for %strword% = 1
nsel
&SEVERTTY &ERROR &IGNORE
delete
&SEVERITY &ERROR &FAIL
save

q
&severity &error &ignore
additem %coverpat% %coverpat% %outel% 7 7 i
additem %coverpat% %coverpat% dumrelat 7 7 i

-46-

&severity &error Mail
ungenerate point stronly strpts
ungenerate point %topo% elevpts

/* -Use FORKLIFT to interpolate between TOPO points and add the appropriate
/* elevation to each point in STRONLY-Y
&if .computer_type = 'prime1 &then &sys r forklift
&else &sys forkltft.out

/* -Create WADE, an info file to hold the stream point elevation data-H
&if %.computer_type% = 'prime1 &then
&do
&Data ARC INFO
SELECT WADE
PURGE
Y
ERASE WADE
Y
DEFINE WADE
DUMRELAT,7,7,I
%outel%,7,7J

GET %whereout% COPY
SELECT %coverpat%
CALC DUMREL AT = %coverid%
SELECT WADE
RELATE %coverpat% BY DUMRELAT
CALC $l%outel% as %outel%
QSTOP
&end
&end
&else
&do
&DataARC
INFO
ARC
SELECT WADE
PURGE
Y
ERASE WADE
Y
DEFINE WADE
DUMRELAT,7,7J
%outel%,7,7,I

GET %whereout% COPY ASCII
SELECT %coverpat%
CALC DUMRELAT = %coverid%
SELECT WADE
RELATE %coverpat% BY DUMRELAT
CALC $l%outel% = %outel%
QSTOP
QUIT
&end

-47-

&end

/* -Restore the input cover-O
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SEL %topopat%
CALC %topoid% = TEMP
QSTOP
&end
&end
&else
&do
& data ARC
INFO
ARC
SEL %topopat%
CALC %topoid% = TEMP
QSTOP
QUIT
&end
&end
dropitem %topopat% %topopat% temp

/* -Eliminate unecessary coverages-U
dropitem %coverpat% %coverpat% DUMRELAT
&s i [delete strpts]
&s i [delete elevpts]
&s i [delete strelevs]
kill stronly all
&goto endit

/* -Print the error message-R
&label badentry
&type Usage: ELEVATE <display typo <output cover to be elevated (exkting)>
&type
&type
&type
&type
&label endit
&type End of ELEVATE

Description

<output item indicating points to be elevated(existing)>
<output cover item to contain elevation (created)xinput
cover w/elevation points near the points to be elevated
(existing)><input item containing elevation (existing)>

Fortran Program FORKUFT.F77

FORKLIFT.F77 performs the actual interpolation of elevations for ELEVATE
relevant point in the input cover in turn (fig. 27). First, it selects the two
for each output point After selection, it examines their positions
relative distances between the three points. If the output point liesi between the two closest points
calculated as a linear interpolation between the two topographic line intersection po
lies to one side of the two nearest points, then its elevation is defined

-48-

.AML. It examines each
nearest topographic line intersection points

and the position of the output point to determine
, then its elevation is

ints. If, however, the output point
to be equal to the elevation of the nearest point.

START

READ STREAM NODES
AND COORDS AND TOPOtt

ELEVATIONS INTO THE
INPUT ARRAY

SELECT NEXT
STREAM POINT

AND RESET SAVEEJ
DISTANCES

SELECT NEXT
TOPOGRAPHIC

ELEVATION
POINT

RECORD THE OLD
CLOSEST POINT
AS THE NEW

SECOND CLOSEST

*
RECORD THE
TOPO POINT AS
THE NEW

CLOSEST POINT

LAST TOPO
POINT?

STREAM\YES
POINT BETWEEN
TWO CLOSEST

INTS2

RECORD THE
TOPO POINT AS

THE NEW
SECOND CLOSEST

IS
S POINT

THE CLOSEST
YET?

IS
THIS POINT

SECOND
CLOSEST?

N

INTERPOLATE
BETWEEN TWO

CLOSEST ELEVS
FOR STREAM ELEV

 ̂
SET STREAM

ELEVATION EQUAL
TO THE CLOSEST
TOPO ELEVATION

JS.
RECORD THE

STREAM ELEVA­
TION IN THE

OUTPUT ARRAY

COPY THE
OUTPUT ARRAY

INTO THE
OUTPUT FILE

/A!
YES/*THAT

.LAST STREAM.
POINT?

NO

C STOP

Figure 27.--Flowchart for FORKLIFT.F77.

-49-

Proram listin

C PROGRAM: Interpolate elevations to stream points
C CODED BY: Robert Lowther
C SUPER VISED BY: Eve L. Kuniansky

PROGRAM FORKLIFT

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

VARIABLE LIST

ARCS: THE DUMMY INPUT AND OUPUT ARGUMENT
IJ: COUNTER VARIABLES

CNTSTR: THE NUMBER OF STREAM POINTS
STRNODE: THE NODE NUMBER OF THE INPUT STREAM POINTS
STRDATA: THE COORDINATES OF THE INPUT STREAM POINTS
CNTELEV: THE NUMBER OF STREAM/TOPO LINE INTERSECTIONS
ELEVATE: THE ELEVATION OF THE INPUT STREAMjTOPO LINE

INTERSECTION POINTS
ELEVDATA: THE COORDINATES OF THE NODES ABOVE

CLOSE1: THE CLOSEST DISTANCE BETWEEN A G VEN STB£AM POINT
AND ANY STREAM/TOPO LINE INTERSECTION

CLOSE2: THE SAME AS ABOVE, BUT THE SECOND CLOSEST
CL1J: THE INPUT ARRAY POSN OF THE PT AT DISTANCE, CLOSE1
CL2J: THE INPUT ARRAY POSN OF THE PT AT DISTANCE, CLOSE2
DIST: THE DISTANCE BETWEEN A GIVEN STREAM POINT AND A

STREAM/TOPO LINE INTERSECTION, USED TO COMPARE
AGAINST AND POSSIBLY REPLACE CL1J

DISTP1: THE DISTANCE FROM A GIVEN STREAM POINT TO CL1J
DISTP2: THE DISTANCE FROM A GIVEN STREAM
DIST12: THE DISTANCE FROM CL1J TO CL2J
PELEV: THE STREAM POINT ELEVATION, INTERt'OLATEE* FROM THE

CL1J AND CL2J ELEVATIONS
OUTAR: THE OUTPUT ARRAY WHICH CONTAINS

NUMBER AND THE ELEVATION

COMMON /C1/ELEVATE(25000),STRDATA(25000,2)
COMMON/C2/ELEVDATA(25000,2),OUTAR(25000,2),STiEySfODE(25000)

INTEGER IJ,CNTSTR,CNTELEV,STRNODE,ELEVATE
INTEGER CLU,CL2J,PELEV,OUTAR
REAL*8 STRDATA,ELEVDATA,CLOSE1
REAL*8 CLOSE2,DIST,DISTP1 ,DISTP2,DIST12
CHARACTER*32 ARCS

100 FORMAT (I10.2F13.6)
110 FORMAT (217)

C
O
C
M
C
C
H
C
R
C
C
s
C
O
C
F
C
T
C

W
C
A
C
R

THE STREAM NODE C
E

**************************£

ORCL2J

POINT TO CL2J

===Open the input and output files== =

OPEN (10,FILE= 'strelevs')
OPEN(ll,FILE= Istrptst)

-50-

OPEN (12,FILE= 'elevpts')

C i =Load the input data into the input arrays====C

1=1
CNTSTR = 0

10 READ(ll,100£RR=20)STRNODEa),STRDATA(I,l),
C STRDATA(I,2)

1 = 1+1
CNTSTR = CNTSTR + 1

GO TO 10
20 1=1

CNTELEV = 0
25 READ (12,100JERR= 30) ELEVATE(I),ELEVDATA(I,1),ELEVDATA(I,2)

1=1+1
CNTELEV = CNTELEV + 1

GO TO 25

==EXAMINE EACH STREAM POINT IN TURN=

30 DO 401=1,CNTSTR
CLOSE1 = 999999999
CLOSE2 = 999999999
CL1J = 0
CL2J = 0

C FIND THE TWO ELEVATION POINTS CLOSEST TO THE GIVEN STREAM POINT -C
DO50J=1,CNTELEV
DIST = SQRT((ELEVDATA(J,1) - STRDATA(I,1))**2 +

C (ELEVDATA(J,2) - STRDATA(U))**2)
IF (DIST .GE. CLOSE1) GO TO 33
CLOSE2 = CLOSE1
CLOSE1 = DIST
CL2J = CL1J
CL1J = J
GO TO 50

33 IF (DIST .GE. CLOSE2) GO TO 50
CLOSE2 = DIST
CL2J = J

50 CONTINUE

C-CALCULATE THE DISTANCES BETWEEN THE STREAM AND THE 2 CHOSEN PTS--C
DISTP1 = SQRT((ELEVDATA(CL1J,1) - STRDATA(I,1))**2 +

C (ELEVDATA(CL1J,2) - STRDATA(I,2))**2)
DISTP2 = SQRT((ELEVDATA(CL2J,1) - STRDATA(I,1))**2 +

C (ELEVDATA(CL2J,2) - STRDATA(I,2))**2)
DIST12 = SQRT((ELEVDATA(CL1J,1) - ELEVDATA(CL2J,1))**2 +

C (ELEVDATA(CL1J,2) - ELEVDATA(CL2J,2))**2)

C INTERPOLATE, BASED ON RELATIVE POSITIONS, TO FIND THE ELEVATION OF
C THE STREAM POINT- C

IF (DIST12 .LE. DISTP1) GO TO 53
IF (ELEVATE(CL1 J) .LT. ELEVATE(CL2J)) GO TO 55
PELEV = INT(ELEVATE(CL2J) + (ELEVATE(CL1J) -

-51-

C ELEVATE(CL2J)) * DISTP2/DIST12)
GOTO60

55 PELEV = INT(ELEVATE(CL1J) + (ELEVATE(CL2J) -
C ELEVATE(CL1J)) * DISTP1/DIST12)

GO TO 60
53 PELEV = ELEVATE(CL1J)

C WRITE THE STREAM POINT ELEVATION TO THE OUTPUT ARRAY C
60 OUTAR(I,1) = STRNODEO)

OUTAR(I,2) = PELEV
40 CONTINUE

C===WRITE THE OUTPUT ARRAY TO THE OUTPUT FIL&

DO70I=1,CNTSTR
WRITE (10,110) OUTAR(U), OUTAR(I,2)

70 CONTINUE

==CLOSE ALL FILES AND EXIT=

CLOSE (10)
CLOSE (11)
CLOSE (12)

END

==C

FIXSNAP.AML

Description

This AML program attempts to correct for a peculiar operational characteristic of the SNAP command. In a
sufficiently large cover, if two points lie extremely close together, then they will not be affected by the SNAP
command. It, in effect, does not interpret them as separate points. In order to correct for this, FIXSNAP.AML first
BUFFERS all points in the input cover with, relatively, very "small" BUFFERs (fig. 28). It then creates a point cover
from the label points of these BUFFERS. Because label points occur at the center of their polygons, then for normal,
single points the output point will be in the exact same position as I he input point. For the "double" points, however,
the individual BUFFERs around the points will be merged into ono larger BUFFER and, correspondingly, only one
output point will be created. That output point will lie between the original input points. The main difference between
FIXSNAP.AML and SNAPPY.AML is that SNAPPY.AML SNAPs points with a user-supplied, relatively "large"
SNAP distance. FIXSNAP.AML only uses a "small" SNAP distance and hence should not be used in place of the SNAP
command, but only if the extremely close point problem described above occurs.

An output mesh with very acute triangles may result if the probl
Our example did not show this, but other experimenting with mest
FIXSNAP.AML can be included in KITSDSfK.
point cover and before the master polygon cover is created using /HCPOTIN.AML andARCTIN. FIXSNAP.AML
is also useful as a stand-alone module.

[em 01: extremely close points is not resolved,
generation has. If this does occur, then

AML just after all point coverages have been combined into the master

-52-

START)

STOP j

/ IS \ NO
<f INPUT >_-*.
^V OK? /S^

TYES
MAKE "SMALL"

BUFFERS AROUND
POINTS IN THE
INPUT COVER

*
CREATE A POINT

COVER FROM THE
LABEL POINTS OF
THE POLYGONS

t
REPLACE INPUT
POINT COVER

WITH THE NEW
POINT COVER

r

PRINT
ERROR

MESSAGE

Figure 28.»Flowchart for F1XSNAR AML.

Program Listing

/* MACRO: Take an input cover and eliminate any points which lie too close
/* for SNAP to detect as distinct points
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The graphic display terminal type code
/* COV: The cover to be snapped
/* TOLERANCE: The maximum distance across which snapping may occur
/* WEEBUF: The cover containing very small buffered areas surrounding
I* each of the point locations from cov

-53-

&echo &off
&args dtype cov tolerance

/* -Prepare the error-indication file-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 7]
&setvar i [close %filun%]

/* -Test the input to see if all arguments are present as expected-O
&if [type %dtype%] ne 1 &then &goto proceed
&if [len %dtype%] eq 0 &then &goto badentry
&label proceed
&if [type %cov%] ne 1 &then &goto badentry
&if [length %cov%] eq 0 &then &goto badentry
&if [type %tolerance%] ne -1 &then goto badentry

/* -Eliminate unecessary coverages-M
&severity &error &ignore
kill weebuf all
&severity &error &fail

/* -Establish a relatively "small" distance based on the snap distance-E
&setvar bufdis %tolerance% * 0.4

/* -Use buffers in order to remove multiple points with VERY close
/* location, a condition which prevents the SNAP command from
/* working properly-D
remepf -prg -na -nq -nvfy
build %cov% point
&SEVERITY &ERROR &IGNORE
buffer %cov% weebuf # # %bufdis% 40 point
&SEVERITY &ERROR &FAIL
build weebuf point
kill %cov% all
copy weebuf %cov%
kill weebuf all
&goto endit

/* -Print the error message-Y
&label badentry
&type Usage:
&goto enderr

FIXSNAP<display typexpoint cover(existing)xsnapping tcleranco

&label endit
/* -Prepare the error-indication file-
As i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label enderr
&typeEndofFIXSNAP

-54-

FREUD.AML

Description

FREUD.AML simplifies the relation between an arc cover and its associated point cover. It modifies the arc
attribute table of the arc cover so that the from- and to- node numbers for each arc correspond to the node numbers in
the point attribute table of the node cover (fig. 29). This direct correspondence allows selection of desired arcs by
intersecting a polygon outline with the associated nodes in the node cover. FREUD.AML changes the node numbers
in the AAT file only. It does not change the node-ID's in the binary ARC file. Any AML program, such as
MODEL. AML, that reads the node-ID's from the binary ARC file and assumes them to be equal to the node numbers
in the AAT file should not be used on a cover once FREUD.AML has been run. FREUD.AML should not be used on
a cover that has had linear discontinuities added to it. For example, such discontinuities could be added to represent
geologic fault lines. A discontinuity consists of two separate points that are defined at the same location in order to
allow an abrupt change in mesh properties.

Common errors in using FREUD.AML include attempting to use it on a cover with linear discontinuities, and
using an arc cover whose nodes do not map directly onto the point cover nodes.

-55-

ADDX,Y
COORDINATES

TO INPUT
POINT COVER

GENERATE A POINT
COVER, LOOKUPOLD,
BASED ON ONLOOK

I
ADDX,Y

COORDINATES
TO LOOKUPOLD

PRINT
ERROR

MESSAGE

RUN SLIRF77 T(
CREATE ONLOO1
ANASCHLISTOI
NODES IN CO1
(FIG 30)

SORTLOOKUPOtd
BYXCOORD,Y
COORD & CREATE

ONLOOK

SORT POINT
COVER BY
X COORD,
YCOORD

RINT NUMBER
|F POINTS, POINT

I ID'S TO ASCII
NNLOOK

CREATE AN ASCII
COPY, ARLOOK,
OF THE INPUT

ARC COVER

CREATE AN INFO LIST
OFFROM&TONODE$
WITH NEW #'S BASED

ON MOTHER.F77 OUTPUT

RELATE THE INFO
LIST TO THE ARC
COVER AND RE

PLACE THE NODES

STOP

Figure 29.-Flowchart for FREUD. A ML.

-56-

RUN MOTHER.F77
TO REPLACE NODE
'S IN ARLOOK WITH
POINT COVER #'S
(FIG 31)

Program Listing

/* MACRO: Change the node numbers in an arc cover to match the node
/* numbers in a related point cover.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* PNTCOV: The input point cover with correct node numbers
/* ARCCOV: The input arc cover with incorrect node numbers
/* ARCAAT: The name of ARCCOV's PAT file
/* GOODPAT: The name of PNTCOV's PAT file
/* X-COORD: Thex-coordinateofanodeaslistedinthePATfile
/* Y-COORD: The y-coordinate" "" " " " " " "
/* NEWID: The node number from the point cover
/* NNLOOK: The ASCII file containing arc cover-based node numbers
/* ordered by their x and y-coordintes
/* ONLOOK: The ASCII file containing node cover-based node numbers,
/* both before and after sorting by x and y-coordinates
/* LOOKUP.OLD: The point cover based on the unsorted ONLOOK
/* ARLOOK: The ASCII file containing the from and to nodes as ordered
/* in the arc cover
/* NEWARC: The ASCII file created containing the from and to nodes from
/* the point cover as ordered in the arc cover
/* DANTE: The INFO file based on NEWARC

&echo &off
&args pntcov arccov

/* -Check the computer type (by Leonard 1. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do

&s .slash >
&s ,computer_type prime

&end
&else
&do

&s .computer_type unix
&end

/* -Test to see if all arguments are present as expected-O
&if [type %pntcov%] ne 1 &then &goto badentry
&if [type %arccov%] ne 1 &then &goto badentry
&if [length %arccov%] eq 0 &then &goto badentry

/* -Prepare the error-indication file-M
&s i [delete coderr]
&setvar filunit [open coderr openstatus -w]
&setvar i [write % filunit % 8]
&setvar i [close %filunit%]

-57-

/* -Construct the new node number lookup table-E
&setvar goodpat [translate %pntcov%].PAT
addxy %pntcov%

/* -Sort the point cover-D
/* -Generate the necesary ASCII file-Y
&setvar newid [translate %pntcov%]-ID
&setvar newint [translate %pntcov%]#
&setvar nnlook [translate [pathname NNLOOK]]
&s i [delete %nnlook%]
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
CALC $COMMA-S WITCH = -1
SELECT %goodpat%
SORT ON X-COORD.Y-COORD
OUTPUT %nnlook% INTT
PRINT [TRIM $NOREC]
PRINT %newid%
SORT ON %newint%

QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
CALC $COMMA-SWrrCH = -1
SELECT %goodpat%
SORT ON X-COORD.Y-COORD
OUTPUT %nnlook% INIT
PRINT [TRIM $NOREC]
PRINT %newid%
SORT ON %newint%
QSTOP
QUIT
&end
&end

/* -Construct the old node number lookup table-
&s i [delete onlook]
&setvar arcnam %arccov%
remepf -prg -na -nq -nvfy

/* -Create an ASCII file based on the node numbers from the ARC file-H
&s i [delete slipinfo]
&s filunit [open slipinfo openstatus -w]
&s i [write %filunit% %arcnam%]
&s i [close %filunit%]
&if .computer_type = 'prime* &then &sys r slip
&else &sys slip.out

-58-

/* -Create a point cover based on the ASCII file-O
&severity &error &ignore
kill lookup.old all
&severity &enor &fail
&if %.computer_type% = 'prime' &then
&do
generate lookup.old
input onlook
points
quit
&end
&else
&do
&data arc generate lookup.old
input onlook
points
quit
&end
&end
build lookup.old point
addxy lookup.old

/* -Create the necessary ASCII file based on the point cover-U
&s i [delete onlook]
&setvar onlook [pathname ONLOOK]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT LOOKUP.OLDPAT
CALC $COMMA-SWTTCH = -1
SORT ON X-COORD.Y-COORD
OUTPUT %onlook% INIT
PRINT LOOKUP.OLD-ID
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT LOOKUP.OLD.PAT
CALC $COMMA-SWITCH = -1
SORT ON X-COORD,Y-COORD
OUTPUT %onlook% INIT
PRINT LOOKUP.OLD-ID
QSTOP
QUIT
&end
&end

/* -Create a facsimile of the mesh AAT which F77 can read-R
&setvar arlook [pathname ARLOOK]
&s i [delete %arlook%]

-59-

&setvar arcaat [translate %arccov%].AAT
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
CALC $COMMA-SWTTCH = -1
SELECT %arcaat%
OUTPUT %arlook% INTT
PRINT [TRIM $NOREC]
PRINT FNODE#,TNODE#
QSTOP
&end
&end
&else

&dataARC
INFO
ARC
CALC SCOMMA-SWITCH = -1
SELECT %arcaat%
OUTPUT %arlook% INIT
PRINT [TRIM $NOREC]
PRINT FNODE#,TNODE#
QSTOP
QUIT
&end
&end

/* -Pace through the AAT facsimile and create a new facsimile using the
/* node numbers from the node cover instead of those from the ale cover-
&setvar dumarg DummY
&severity &error &ignore
&s i [delete newarc]
&severity &error &fail
&if .computer_type = 'prime1 &then &sys r mother
&else &sys mother .out

/* -Create an INFO file based on the new facsimile-S
&setvar newarc [pathname NEWARC]
&severity &error &ignore
&severity &error &fail
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT DANTE
PURGE
Y
ERASE DANTE
Y
DEFINE DANTE
FNODE.6,6,1
TNODE.6,6,1

GET %newarc% COPY
QSTOP

-60-

&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT DANTE
PURGE
Y
ERASE DANTE
Y
DEFINE DANTE
FNODE.6,6,1
TNODE.6,6,1

GET %newarc% COPY ASCII
QSTOP
QUIT
&end
&end

/* -Prepare the original arc file and the facsimile-based INFO file
/* forrelate-O
additem %arcaat% %arcaat% rein 5 5 i
additem dante dante rein 5 5 i

/* -Replace the from and to node numbers in the original arc file with the
/* new node numbers obtained from the INFO file based on the orig node cover-F
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT %arcaat%
C ALC RELN = $RECNO
SELECT DANTE
CALCRELN = $RECNO
RELATE %arcaat% BY RELN
CALC $1FNODE# = FNODE
CALC $1TNODE# = TNODE
PURGE
Y
ERASE DANTE
Y
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %arcaat%
CALC RELN = $RECNO
SELECT DANTE

-61-

CALC RELN = $RECNO
RELATE %arcaat% BY RELN
CALC $1FNODE# = FNODE
CALC $1TNODE# = TNODE
PURGE
Y
ERASE DANTE
Y
QSTOP
QUIT
&end
&end

/* -Eh'minate all temporary files-T
dropitem %arcaat% %arcaat% rein
dropitem %goodpat% %goodpat% x-coord
dropitem %goodpat% %goodpat% y-coord
&s i [delete slipinfo]
&s i [delete onlook]
&s i [delete nnlook]
&s i [delete arlook]
&s i [delete newarc]
kill lookup.old all

/* -Prepare the error-indication file-W
&s i [delete coderr]
&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% noerr]
&setvar i [close %filunit%]

&goto endit

/* -Print the error message-A
&label badenlry
&type Usage: FREUD <point cover with correct node numbers (existmg)>
&type cover whose from and tonodes are to be changed(existing)>

/* -End of program message-R
&label endit
&type End of FREUD
/* -End of program-E

Fortran Program SIJP.F77

Description

This program extracts needed information from the arc cover's
can be read by FREUD.AML (fig. 30). The binary file contains the from-
X- and Y-coordinates. SLIP.F77 compiles an ASCII list of all noc es in the current cover,
for each node instead of one for each occurrence of a node as is done in the binary fil
the repetition of node numbers, which occurs when information is stored by

-62-

binary file and writes it to an ASCII file that
arid to- nodes for each arc, as well as their

It writes one output record
He. SLIP.F77 therefore eliminates

ARC/INFO.

C START

READ NODES
FROM BINARY
ARC FILE INTO

AN ARRAY (FIG 29

RESET ARRAY
POINTER

ADD NODE TO
OUTPUT ARRAY

RE AD NEXT NODE
FROM ARRAY

IS
ODE

LAST IN THE
ARRAY?

NODE
ALREADY IN

OUTPUT
RRAY?

WRITE OUTPUT
ARRAY TO

ONLOOK, THE
OUTPUT FILE(FIG 29)

Figure 30.~Flowchart for SL1P.F77.

-63-

Proffram Listing

C PROGRAM: Read the binary ARC fde and create an ASCII file w/ the info
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

PROGRAM SLIP

COMMON /C1/OUTIN(25()00),USERID(25000),FRNODE(23000),TO1S(ODE(25()00)
COMMON /C2/LPOLY(25000) ,RPOLY(25000) ,NPT(25000)
COMMON /C3/COORDS(25000,6),OUTARY(25000,2)

C VARIABLE LIST:
C
C IABUFF: The standard ARC record, as read from the ARC file
C USERDUM: The integer equivalent to the first IABUFF record
C FRDUM: The IABUFF record corresponding to FRNODfc
C TODUM: Corresponds to TONODE C
C LPDUM: The record representing the left polygon
C RPDUM: The" " " right polygon
C NPTDUM: The" " " number of points on an arc
C ACCESS: The access mode for opening the ARC file
C TEMPRY: Code number to indicate a normal ARC file
C OUTDSf: The output integerarray used to create the ASCII ouput file
C OUTFND: A flag indicating that the tested item is already in OUTIN
C OUTFND: A flag indicating the tested item is already in the outarray
C FRNODE: The from node array
C TONODE: The to node array
C KANARC: The ARCFILE channel number
C LJ,K: Counting variables
C IERROR: Rag indicating trouble while opening a file
C CORDDUM: Corresponds to COORDS
C COORDS: The coordinate array read from the input ARC file
C OUTARY: The output real number array
C ARCCOV: The name of the ARC cover
C FDJENM: The output file name for the old node lookup file
C DUMRET: The dummy argument returned to the macro

O
C

M

C
H
C
R
C
C
C
S

C
O
C

F
C

T
C

W
C

A
C

INTEGER IABUFF(2006),USERDlM^DlMJODUMa.P3UM,RPDlMJSfPTDUM
INTEGER ACCESS ,TEMPRY,OUTIN,OUTFND,FRNODE,1 X)NODE,JCANARC,U,K

IERROR,badarc,KAN2,USERIDJ.POLY ,RPOLY,NPT
DOUBLE PRECISION CORDDUM(1000),COORDS,OUTARY
CHARACTER* 128 ARCCOV,FILENM,DUMRET,FILE2

EQUIVALENCE (IABUFF(1),USERDUM)
EQUIVALENCE (IABUFF(2),FRDUM)
EQUIVALENCE (IABUFF(3),TODUM)
EQUIVALENCE (IABUFF(4),LPDUM)
EQUIVALENCE (IABUFF(5),RPDUM)
EQUIVALENCE (IABUFF(6)JSIPTDUM)

-64-

EQUIVALENCE (IABUFF(7),CORDDUM(1))

EXTERNAL LUNINI,MINrr>ARCOPN,ARCRD,AOPEN>lESINI,
&AO-OSEARCCLSAMLFNA,ACREAT,AENTER,VINrr

CALLAENTER
CALLLUNINI
CALLNflNTT
CALL VDSflT
CALL MESDSfl

100 FORMAT (I6,Y,F15.3,V,F15.3)
200 FORMAT (A3)

FILENM = 'onlook'
ACCESS = 2
TEMPRY = 1

C Determine the ARC cover name C
OPEN (7,FILE= 'slipinfo1)
READ (7 ,*) ARCCOV
CLOSE (7)

C Open the input and output files - C
CALL ARCOPN (KANARC ARCCOV .ACCESS,TEMPRY.ffiRROR)
CALL ACREAT (LOUT JTLENM.IER)

C -Read the ARC binary file-

NOIN=1
irec= 1
badarc = 0

10 CALL ARCRDr (KANARC,IREC,IABUFFJERROR)
if (nptdum .gL 2) print *,nptdum
USERID(NOIN) = USERDUM
FRNODE(NOIN) = FRDUM
TONODE(NOIN) = TODUM
LPOLY(NOIN) = LPDUM
RPOLY(NOIN) = RPDUM
NPT(NOIN) = NPTDUM
DO9I=1JMPTDUM*2
COORDS(NOIN,I) = CORDDUM(I)

9 CONTINUE
NOIN = NOIN + 1
IF (ffiRROR .EQ. -1) GO TO 13
IF (ffiRROR .EQ. -2) GO TO 15

irec = irec + 1
GO TO 10

13 NOIN = NOIN-1
C Check the output file to see if tested record is already there C

NOOUT = 0
DO 17 I=1,NOIN
OUTFND = 0
D018J=1,NOOUT

-65-

IF (OUTIN(J) .NE. FRNODE(I)) GO TO 18
OUTFND=1

18 CONTINUE

C Write to the output file if OK C

IF (OUTFND .EQ. 1) GO TO 19
NOOUT = NOOUT+1
OUTIN(NOOUT) = FRNODE(I)
OUTARY(NOOUT,1) = COORDS(U)
OUTARY(NOOUT,2) = COORDS(I,2)

C Check and write the to node --

19 OUTFND = 0
DO21J=1,NOOUT
IF (OUTIN(J) .NE. TONODE(I)) GO TO 21
OUTFND =1

21 CONTINUE
IF (OUTFND .EQ. 1) GO TO 22
NOOUT = NOOUT+1
OUTIN(NOOUT) = TONODE(I)
OUTARY(NOOUT,1) = COORDSa,3)
OUTARY(NOOUT,2) = COORDS(I,4)

22 OUTFND = 0
17 CONTINUE

C Write the output array to the output file C

DO 23 I=1,NOOUT
WRITE (LOUT.100) OUnN(I),(OUTARY(U)J=l,2)

23 CONTINUE
WRITE (LOUT,'(A3)') 'END'

GO TO 20

15 WRITE (*,'(A)') "Error occurred during ARCRD'

20 ENDFILE(LOUT)
CALL ACLOSE (LOUT)
CALL ARCCLS (KANARC)
END

-66-

Fortran?? Program MOTHER!7??

Description

This program translates the node numbers in an ASCII file based on an arc AAT file into the node numbers
from the node cover PAT file (fig. 31). MOTHER!7?? uses three input files. The first of these files is an ASCII file
of node numbers written in the format that ARC/INFO uses: it is based upon the arcs and, therefore, repeats node
numbers wherever two or more arcs meet at the same node. The second and third input files are lists of the nodes in
the arc cover in question, with each node listed only once. The second file contains arc-cover-based numbers, the node
numbers used in the original arc cover, those used in the first input file. The third contains node-cover-based numbers,
the node numbers used in the original node file. These two input files are written, side by side, into a "lookup table."
This table becomes, in effect, a "dictionary" that translates from arc-cover-based numbers to node-cover-based
numbers. The node numbers in the first ASCII file, those from the arc-cover-formatted file, can be "translated" as
follows.

A node number is read from the input arc-cover-formatted file and located in the first column of the lookup
table. The corresponding node in the table's second column is then written in place of the original node number in the
arc-cover-formatted file. In this manner, all of the node numbers in the arc-cover-formatted file can be replaced with
the corresponding node-cover-based numbers. The arc-cover-formatted file is then used to change the node numbers
in the line cover so that they match those in the corresponding point cover.

-67-

C START

ARLOOKINTOAN

SELECT NEXT
RECORD FROM

ARLOOK BASED
ARRAY

I
READ SORTED L
COVER AND
BASED NODE

ALOOKUP

STSOFARC
COVER

INTO
ARRAY

NUMBERS

AS
THAT THE

LAST
CO

SELECT NEXT
RECORD FROM
OLD NODE #

LOOKUP ARRAY

RESET LOOKUP
FILE POINTER

IS
LDNOD

= FROM NOD

REPLACE FROM
NODE IN ARLOOK

HAS FROM NODE
NOT BEEN
CHANGED

9

REPLACE TO
NODE IN ARLOOK

ARRAY
HAS TO NODE NOT

EENCHANG

WRITE NEW NODE
NUMBERED ARC

FORMAT ARRAY TO
OUTPUT FILE (FIG 29)

STOP

Figure 31.-Flowchart for JOTHEI^.F77.

-68-

Proram Listin

C PROGRAM: Create an ASCII file based on arc file with node file node #s C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

PROGRAM MOTHER

COMMON /Cl/ ARCARY(25000,2) ,NODREL(25000,2)

C VARIABLE LIST: H
C S
C NUMARC: The number of arcs in the AAT file C
C NUMNOD: The number of nodes in the PAT file C
C FNODE: The from node as read from the AAT file C
C TNODE: The to node as read from the AAT file C
C NNODE: The node number in the ASCII file as read from the PAT file C
C ONODE: The" " " " " " " " " " AAT" H
C ARCARY: The array of node numbers, as read from the AAT file S
C NODREL: The array of node numbers, both old and new C
C FND: A flag indicating that translations for both nodes in an arc C
C have been found C
C FNDF: A flag indicating that the from node has been found C
C FNDT: A" " " " to " " " " C
C I,J: Counting variables H

INTEGER NUMARCJWMNODJ7NODE,TNODEJWODE,ONODE,ARCARY
INTEGER NODREL ,FND,FNDF,FNDT,I,J

OPEN (UNIT= 9JFILE= 'arlook')
OPEN (UNIT= 10JFILE= 'onlook')
OPEN (UNIT= 7 JFILE= 'nnlook')
OPEN (UNTT= 8JFILE= 'newarc')

100 FORMAT (16)
200 FORMAT (216)

C Read in the size of the arc and the node input files C

RE AD (9,*) NUMARC
RE AD (7,*) NUMNOD

C Read the input arc-based node numbers into an array-

DC 11=1 .NUMARC
READ (9,200) FNODE, TNODE
ARCARY(U) = FNODE
ARCARY(I,2) = TNODE

1 CONTINUE

-69-

C Read the arc-based and node-based lookup files into a lookup array-C

DO 2 I=1,NUMNOD
READ (10,100) ONODE
READ (7,100) NNODE
NODREL(U) = ONODE
NODREL(I,2) = NNODE

2 CONTINUE

C===Build a file containing the new node numbers in the same order as the AAT

DO 3 I=1,NUMARC
J = l
FND = 0
FNDF = 0
FNDT = 0

C Check the selected lookup item against both items in the current line
C of the AAT-based node file-- - - -- - C

IF (NODREL(J,1) .NE. ARCARY(I,1)) GO TO 5
IF (FNDF .NE. 0) GOTO 5
ARCARY(U) = NODREL(J,2)
FNDF=1
IF (NODREL(J,1) .NE. ARCARY(I,2)) GO TO 6
IF (FNDT .NE. 0) GO TO 6
ARCARY(I,2) = NODREL(J,2)
FNDT=1

C Increment the test line and check to see if both changes are made C

6 J=J+1
FND = FNDF + FNDT
IF(FND.LT.2)GOTO4

3 CONTINUE

C --Write the output file ~ ~ - - C

DO7I=1,NUMARC
WRITE (8,200) ARCARY(I,1),ARCARY(I,2)
CONTINUE

CLOSE (9)
CLOSE (10)
CLOSE (7)
CLOSE (8)

END

-70-

IDENTIFY.AML

Description

Identification of features is essential when dealing with several input coverages. It is for this reason that
IDENTIFY.AML is useful (fig. 32). It can add one user-specified item each to up to 10 coverages and assign those
items a value of" 1" so that when all of the input features are combined into one output cover, the output features can
be identified and grouped according to input cover origin. It has one further, optional feature. If a target cover is
specified and if the (up to) 10 coverages are polygon coverages, then IDENTIFY.AML will perform an intersection of
its newly identified polygon cover with the target cover. This effectively uses the given identifying item to identify
parts of the target cover by the polygon that overlays them.

At the beginning of its run, IDENTIFY.AML KILLs a cover called "CAESER." One common error in using
IDENTIFY.AML is to try to identify coverages of more than one type. All 10 (or as many as used) coverages must
be of the same type.

-71-

PRINT
ERROR

MESSAGE

DETERMINE TYPE
AND IDENTIFYING

ITEM
 ^- SELECTNEXT

INPUT COVER

l
ADD ITEM TO

INPUT COVER AW
CALC IT EQUAL

TO ONE

IS
RE A TARGET

OVER THAT INPUT COVERS
WILL IDENTIFY

ARTS OF?

IDENTITY TARGET
COVER WITH
INPUT COVER

HAVE
ALL INPUT
HAD ITEMS

Figure 32.--Flowchart tor IDENTIFYIAML and 1DENT12.AML.

-72-

Program Listing

/* MACRO: Add an item to up to ten coverages of the same type and
/* "calc" that item equal to one to identify the elements.
/* Optionally, it will identity a specified cover with each
/* input cover, given that the input coverages are polygonal.
/* Note: This macro will not buffer point or line coverages in order
/* to be able to identify the specified cover's items. In order
/* to do that, use IDENTILOTS

/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* TIP: The feature type, as input by the user
/* C1-C10: The cover names, as input by the user
/* 11-110: The item names, as input by the user
/* TYP: The capitalized version of "tip"
/* COV: The name of the cover currently being considered
/* COVER: The capitalized version of "cov"
/* ITEM: The name of the item currently being considered
/* COVTAB: The name of the attribute table to which the item is added
/* DIFFER: The name of the cover to be identified with each input cover
/* CAESER: A temporary cover used to identity the specified cover
/* SHINY: Are the poly coverages buffers of other coverages?

&echo &off
&args tip cl il c2 i2 c3 i3 c4 i4 c5 i5 c6 i6 c7 i7 c818 ~
c9 i9 clO ilO

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s ,computer_type prime

&end
&else

&do
&s .computerjype unix

&end

/* -Test the input to see if all arguments are present as expected-O
&if [type %tip%] ne 1 &then &goto badenlry
&if [type %cl%] ne 1 &then &goto badenlry
&if [type %il%] ne 1 &then &goto badentry
&if [length %il%J eq 0 &then &goto badentry

&setvar typ [translate %tip%]
&if %typ% ne 'POLY' &then &goto postq
&setvar shiny [response 'Are these coverages buffers of other coverages? (y/n)']
&if %shiny% eq 'y' &then &setvar typ POLD'

-73-

&if %shiny% eq 'Y' &then &setvar typ POLD'
&label postq
&setvar differ [response 'Enter the cover which is to be differentiated (or ~
null)1]
&if [length %differ%] ne 0 &then
&do
&setvar dtip [response "Enter the cover type']
&setvar dtyp [translate %dtip%]
&end

/* -Eliminate any unecessary coverages-M
&severity &error &ignore
kill Caeser all
&severity &error &fail

/* -Loop through all of the coverages-E
&do cov &list %cl% %c2% %c3% %c4% %c5% %c6% %c7% %c8% %c9% %clO%
&if [length %cov%] eq 0 &then &goto endloop

&setvar cover [translate %cov%]

/* -Identify and translate the item to be added-D
&if %cov% eq %cl% &then &setvar item [translate %il%]
&if %cov% eq %c2% &then &setvar item [translate %i2%]
&if %cov% eq %c3% &then &setvar item [translate %i3%]
&if %cov% eq %c4% &then &setvar item [translate %i4%]
&if %cov% eq %c5% &then &setvar item [translate %i5%]
&if %cov% eq %c6% &then &setvar item [translate %i6%]
&if %cov% eq %c7% &then &setvar item [translate %i7%]
&if %cov% eq %c8% &then &setvar item [translate %i8%]
&if %cov% eq %c9% &then &setvar item [translate %i9%]
&if %cov% eq %clO% &then &setvar item [translate %ilO%]
&if %typ% eq 'LINE' &then &setvar covtab %cover%.AAT
&if %typ% eq 'POINT &then &setvar covtab %cover%.PAT
&if %typ% eq 'POLY' &then &setvar covtab %cover%PAT
&if %typ% eq 'POLD' &then &setvar covtab %cover%PAT

&severity &error &ignore
additem %covtab% %covtab% %item% 4 4 i
&severity &error &fail

I* -Set the item equal to one-Y
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT %covtab%
&if %typ% eq 'POLY' &then RESEL FOR AREA > 0
&if %typ% eq 'POLD1 &then RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
&end
&end
&else
&do

-74-

&dataARC
INFO
ARC
SELECT %covtab%
&if %typ% eq POLY' &then RESEL FOR AREA > 0
&if %typ% eq 'FOLD' &then RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
QUIT
&end
&end

&if [length %differ%] eq 0 &then &goto endloop
copy %differ% Caeser
kill %differ% all
identity Caeser %cover% %differ% %dtyp% 40
kill Caeser all
&label endloop
&end
&goto endit

/* -Print the error message-
&label badentry
&type Usage: IDENTIFY <type (pointjine.poly) of coverages to have identifying
&type items added> <cover to have item added #1 (existing)>
&type identifying item #1 (created)>... {cover to have
&type item added #10 (existing)} {item #10 (created)}
&label endit
&type End of IDENTIFY

IDENTI2.AML

Description

This is a modified version of IDENTIFY.AML, designed to be called by KITSINK.AML. It shares a flowchart
with IDENTIFY .AML, shown in figure 32. Like CLIPIT2.AML, IDENTI2.AML replaces a screen-prompted input
with an argument. This is to enable KFTSINK.AML to run uninterrupted.

	Program Listing

/* MACRO: Add an item to up to ten coverages of the same type and
/* "calc" that item equal to one to identify the elements.
/* Optionally, it will identity a specified cover with each
/* input cover, given that the input coverages are polygonal.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* TIP: The feature type, as input by the user
/* C1-C10: The cover names, as input by the user
/* 11-110: The item names, as input by the user
/* TYP: The capitalized version of "tip"

-75-

/* COV: The name of the cover currently being considered
/* COVER: The capitalized version of "cov"
/* ITEM: The name of the item currently being considered
/* COVTAB: The name of the attribute table to which the item is added
/* DIFFER: The name of the cover to be identitied with each input cover
/* CAESER: A temporary cover used to identity the specified cover

&echo Scoff
&args tip differ dtip cl il c2 i2 c3 i3 c4 i4 c5 i5 c6 i6 c7 i7 c8 i8 ~
c9 i9 clO ilO

/* -Prepare the error-indication file-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 5]
&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test the input to see if all arguments are present as expected-M
&if [type %tip%] ne 1 &then &goto badentry
&if [type %cl%] ne 1 &then &goto badentry
&if [type %il%] ne 1 &then &goto badentry
&if [length %i 1 %] eq 0 &then &goto badentry

/* -Eliminate any unecessary files-E
&severity &error &ignore
kill Caeser all
&severity &error &fail

&setvar typ [translate %tip%]
&setvar dtyp [translate %dtip%]

/* -Loop through all of the coverages-D
&do cov &list %cl% %c2% %c3% %c4% %c5% %c6% %c7% <3
&if [length %cov%] eq 0 &then &goto endloop

&setvar cover [translate %cov%]

/* -Identify and translate the item to be added-Y
&if %cov% eq %cl% &then &setvar item [translate %il%]
&if %cov% eq %c2% &then &setvar item [translate %i2%]

-76-

c8% %c9% %clO%

&if %cov% eq %c3% &then &setvar item [translate %i3%]
&if %cov% eq %c4% &then &setvar item [translate %i4%]
&if %cov% eq %cS% &then &setvar item [translate %i5%]
&if %cov% eq %c6% &then &setvar item [translate %i6%]
&if %cov% eq %c7% &then &setvar item [translate %i7%]
&if %cov% eq %c8% &then &setvar item [translate %i8%]
&if %cov% eq %c9% &then &setvar item [translate %i9%]
&if %cov% eq %clO% &then &setvar item [translate %ilO%]
&if %typ% eq 'LINE' &then &setvar covtab %cover%.AAT
&if %typ% eq "POINT &then &setvar covtab %cover%.PAT
&if %typ% eq 'POLY' &then &setvar covtab %cover%PAT

&severity &error &ignore
additem %covtab% %covtab% %item% 4 4 i
&severity &enor &fail

/* -Set the item equal to one-
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SELECT %covtab%
&if %typ% eq 'POLY1 &then RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %covtab%
&if %typ% eq 'POLY' &then RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
QUIT
&end
&end
&if [length %differ%] eq 0 &then &goto endloop
copy %differ% Caeser
kill %differ% all
identity Caeser %cover% %differ% %dtyp% 40
kill Caeser all
&label endloop
&end
&goto endit

/* -Print the error message-
&label badentry
&type Usage: IDENTI2 <type (point,line,poly)> <cover to be differentiated>
&type <type of said cover> <cover # 1 >
&type identifying item #1> ... <cover #10> <item #10>
&goto enderr

-77-

&label endit
I* -Prepare the error-indication file-
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label enderr
&typeEndofIDENTI2

IDENTILOTSAML

Description

This AML program is, in effect, a companion program to IDENTIFY. AML. IDENTIFY .AML adds
identifying items to up to 10 coverages. As an option, it will IDENTITY a specified cover with these 10 coverages if,
and only if, the 10 coverages are polygon coverages. IDENTELOTS.AML identifies one cover by up to 10 identifying
coverages (fig. 33), just as IDENTIFY.AML optionally does, but it does not ;require the identifying coverages to be
polygon coverages. In contrast to IDENTIFY.AML, which is desij jned primarily to add identifying items to up to 10
coverages, IDENTILOTS is designed to identify the points in one specified cover based on the location of features in
up to 10 other coverages. The identifying coverages for IDENTILOTS.AM1, are input as simple point or line
coverages. IDENTILOTS.AML performs a BUFFERing operation to create polygon coverages from the identifying
coverages, using the input item names. This AML program was oiiginally taken from the KITSINK.AML program,
and hence is nearly duplicated in that macro. IDENTILOTS.AML is useful if only this function of KITSINK.AML is
desired.

One common error that occurs when using IDENTILOTS.AML is to use identifying coverages with too much
detail. These coverages will not BUFFER properly, and hence cause problems. If this occurs, then the identifying
coverages must be SPUNEd before the AML program will run. Also, because IDENTILOTS.AML calls
BUFFNSHINE.AML, if there already exists a cover with the input cover name root and the ".BUF" extension, no
BUFFERing will be performed and the existing .BUF cover will be used. If this is not desired, then the .BUF cover
must be KILL&L

-78-

IS
INPUT

OK?

PRINT
ERROR

MESSAGE

INPUT NEXT
IDENTIFYING
COVER, ITEM,

AND TYPE

IS
COVER

NON-NULL?
NCOVE

BEEN
NTERED

BUFFER
NEXT COVER

RUN IDENTI2. AML(FIG 32)
TO IDENTIFY POINTS IN

POINT COVER WITH
BUFFERED ATTRIBUTES

WAS
THATTHE\ NO
ST COVER?

Figure 33.»Flowchart for IDENTILOTS.AML.

-79-

Program Listing

/* MACRO: Identify points in one point cover by noting their
/* proximity to features in many other feature coverages
/* via an item in the point cover's PAT
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* MSTPOL: The input point cover
I* MINDIS: The minimum expected distance between points
/* MAXITR: The maximum number of optimizing iterations
/* C1-C10: The input line and point coverages
I* 11-110: The item to be associated with each cover to identify it
/* T1-T10: The feature type of each cover
/* NODECRD: The Node Coordinate Data-based point cover
/* COV: The cover currently being considered in a loop
/* COVER: The capitalized version of COV
/* TEMP: The temporary file associated with the current cover
/* TIP: The feature type of the current cover
/* TYP: The capitalized version of TIP
/* ITEM: The item associated with the current cover
/* TOL2: A distance based on MINDIS
/* ARCHIVE: The archive files containing the nearly-original versions of
/* the input coverages
/* ARCBUF: The buffered version of ARCHIVE

&echo &off
&args mstpol mindis

I* -Test to see if all arguments are present as expected-C
&if [type %mstpol%] ne 1 &then &goto badentry
&if [type %mindis%] ne -1 &then &goto badentry
&if [length %mstpol%] eq 0 &then &goto badentry

I* Initialize the cover name variables-O
&setvarcl"
&setvar c2"
&setvar c3"
&setvar c4"
&setvar c5"
&setvar c6"
&setvar c7"
&setvar c8"
&setvar c9"
&setvarclO"

&setvar cl [response 'Enter identifying cover name1]
&if [length %cl%] eq 0 &then &goto nocovs
&setvar tl [response 'Enter cover type (lme,point,poly)']
&setvar il [response 'Enter item representing cover (to be added)'
&setvar c2 [response 'Enter identifying cover name1]
&if [length %c2%] eq 0 &then &goto endentry
&setvar t2 [response 'Enter cover type (line,point,poly)']

-80-

&setvar 12 [response 'Enter item representing cover (to be added)']
&setvar c3 [response 'Enter identifying cover name*]
&if [length %c3%] eq 0 &then &goto endentry
&setvar t3 [response 'Enter cover type (line,point,poly)']
&setvar 13 [response 'Enter item representing cover (to be added)']
&setvar c4 [response 'Enter identifying cover name1]
&if [length %c4%] eq 0 &then &goto endentry
&setvar t4 [response 'Enter cover type (line,point,poly)']
&setvar 14 [response 'Enter item representing cover (to be added)']
&setvar c5 [response 'Enter identifying cover name1]
&if [length %c5%] eq 0 &then &goto endentry
&setvar t5 [response 'Enter cover type (line,point,poly)']
&setvar 15 [response 'Enter item representing cover (to be added)1]
&setvar c6 [response 'Enter identifying cover name']
&if [length %c6%] eq 0 &then &goto endentry
&setvar t6 [response 'Enter cover type (Une,point,poly)']
&setvar 16 [response 'Enter item representing cover (to be added)1]
&setvar c7 [response 'Enter identifying cover name']
&if [length %c7%] eq 0 &then &goto endentry
&setvar t7 [response 'Enter cover type (line,point,poly)']
&setvar 17 [response 'Enter item representing cover (to be added)1]
&setvar c8 [response 'Enter identifying cover name']
&if [length %c8%] eq 0 &then &goto endentry
&setvar t8 [response 'Enter cover type (line,point,poly)']
&setvar 18 [response 'Enter item representing cover (to be added)']
&setvar c9 [response 'Enter identifying cover name1]
&if [length %c9%] eq 0 &then &goto endentry
&setvar t9 [response 'Enter cover type (line,point,poly)']
&setvar 19 [response 'Enter item representing cover (to be added)']
&setvar clO [response "Enter identifying cover name1]
&if [length %clO%] eq 0 &then &goto endentry
&setvar tlO [response 'Enter cover type (line,point,poly)']
&setvar ilO [response 'Enter item representing cover (to be added)']
&goto endentry
&label nocovs
&type 'At least one cover must be entered'
&goto endit
&label endentry

&setvar nodecrd %mstpol%

/* -Create buffers around each of the archived coverages-M
&setvar to!2 %mindis% * 0.6
&do cov &list %cl% %c2% %c3% %c4% %c5% %c6% %c7% %c8% %c9% %clO%
&if [length %cov%] eq 0 &then &goto endloop2

&setvar cover [translate %cov%]
&setvar arc %cover%

/* -Identify the temporary cover and the cover type to be used-E
&if %cov% eq %cl% &then &setvar item %il%
&if %cov% eq %cl% &then &setvar tip %tl%
&if %cov% eq %c2% &then &setvar item %i2%
&if %cov% eq %c2% &then &setvar tip %t2%

-81-

&if %cov% eq %c3% &then Asetvar item %i3%
&if %cov% eq %c3% &then Asetvar tip %t3%
&if %cov% eq %c4% &then Asetvar item %i4%
&if %cov% eq %c4% &then Asetvar tip %t4%
&if %cov% eq %c5% &then Asetvar item %i5%
&if %cov% eq %c5% &then Asetvar tip %t5%
&if %cov% eq %c6% &then Asetvar item %i6%
&if %cov% eq %c6% &then Asetvar tip %t6%
&if %cov% eq %c7% &then Asetvar item %i7%
&if %cov% eq %c7% &then &setvar tip %t7%
&if %cov% eq %c8% &then &setvar item %i8%
&if %cov% eq %c8% &then Asetvar tip %t8%
&if %cov% eq %c9% &then &setvar item %i9%
&if %cov% eq %c9% &then Asetvar tip %t9%
&if %cov% eq %clO% &then &setvar item %ilO%
&if %cov% eq %clO% &then &setvar tip %tlO%

&setvar typ [translate %tip%]
&setvar cover [translate %cov%]
&setvar archive [substr %cover% 1 3].A
&if [exists %archive%] &then &goto usearch
&setvar archive %cover%

&label usearch
/* -Create buffers, identify them, and apply them to the NCD-bas^d cover-D
&run buffnshine %archive% %typ% %to!2% %item%
&setvar filunit [open CODERR openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy
&setvar arcbuf %archive%.BUF
&run identi2 poly %nodecrd% point %arcbuf% %item%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy

&severity &error &ignore
Asetvar nodtab %nodecrd%.PAT
dropitem %nodtab% %nodtab% CAESER#
dropitem %nodtab% %nodtab% CAESER-ID
&setvar dummy 1 %arcbuf%#
&setvar dummy2 %arcbuf%-ID
dropitem %nodtab% %nodtab% %dummyl%
dropitem %nodtab% %nodtab% %dummy2%

/* If you want the buffer automatically removed, make the next line active-Y
/* kill %arcbuf% all

&severity &error &fail
&label endloop2
Aend

-82-

dropitem %nodtab% %nodtab% inside
&goto endit

&label badentry
&type Usage: IDENTILOTS <point cover to be identified by multiple others
&type (existing)xminimum expected dist between points>
&goto endit

&label bombout
&type 'An error has occurred'
&setvar i [close %filunit%]

&label endit
remepf -prg -na -nq -nvfy
&type End of IDENTILOTS

KITSINK.AML

Description

This macro is a shell used to run several other AML programs (fig. 34). It performs approximately the last
half of the process of final mesh creation, including optimization of the finite-element node numbering and model file
building. Given a final model boundary, a final regularly spaced grid, SPLJNEd input coverages, and several pieces
of "housekeeping" information, KITSINK.AML can complete the process, freeing a large block of time for the user.
Because KITSINK.AML uses SNAPPY.AML, however, the user must be present during this part of the AML program
(See SNAPPY.AML). Fortunately, this macro is run relatively early in KITSINK.AML, thereby leaving the user free
for the bulk of the run time.

KITSINK.AML creates and uses a file called "CODERR" to indicate errors that occur during its sub-AML's.
This file is for internal use and need not concern the user. KITSINK.AML's output consists of three files, each with
the same user-specified root name and its own extension. The extensions are .ELMS for the finite-element mesh
polygons, .ELPT for the polygon label cover that has element numbers, and .NOD for the point cover of the nodes of
the mesh.

The model boundary used in KITSINK should be built (BUILD} both as a line cover and as a polygon cover.
KITSINK will, at different times, look for both a PAT and an AAT for the model boundary cover.

At the beginning of its run, KITSINK.AML KILLs any copies from previous runs of files that it creates.
These include: the master feature cover, the "allpoints" cover, the master point cover, and the master polygon cover.
If together, the input feature coverages create approximately 10,000 points or more, then KTTSINK.AML may crash
during SNAPPY.AML. This is because SNAPPY.AML uses the BUFFER command and attempting to create that
many circular buffer
areas is beyond the capability of ARC. If this occurs, the remainder of KITSINK.AML may have to be executed
separately.

-83-

PRINT
ERROR

MESSAGE

SELECT NEXT
COVER fr-

CEX ASSOCIATED
COVER TYPE

(IE - LINE, POINT
POLY)

APPEND THE TEMP
POINT COVER AND THE
MASTER COPY INTO

THE MASTER

-*
CREATE A COPY
OF THE MASTER
POINT COVER

AS
TTHE

LAST INPUT
COVER?

I
CREATE A TEMPORARY
POINT COVER BASED
ON THE INPUT COVER

NO

SNAP THE MASTER
FEATURE POINT COVER
WITH SNAPPY. AMI^ TO

KILL DUPLICATE POINTS
(FIG 51)

RUN BUFFNSHINE. AML
TO BUFFER THE MASTER

FEATURE POINTS TO
KILL NEARBY GRID PTS
(FIG 23)

RUN CLIPIT2. AML TO
CLIP THE ALLPTS COVEfl
AND ELIMINATE POINTS
NEAR BORDER (FIG 25)

J
APPEND THE ALLPTS
COVER&THEEDGE
POINTS COVER INTO

A MASTER PTS COVER

RUN CHICPOX. AM^ TO
CREATEAAPOINT

COVER BASED ON THE
CLIPPING COVER

(FIG 24)

RUN ARCPOTIN. AML TO
CREATE BIGPOL, A

POLYGON COVER BASE!}
ONTHEMSTRPTSTIN
(FIG 22)

SELECT NEXT
COVER

i

RUN REALENGTH. AML
TO ASSIGN RIVER

LENGTHS TO RIVER
NODES IN THE PT COVER
(FIG 44)

BUFFER THE
ARCHIVED COVER

RUN IDENTI2. AML TO
IDENTIFY THE CUILRENT
COVER BASED POINTS
IN THE POINT CO^/ER
(FIG 32)

Figure 34.--Flowchart for KtTSINK. AML.

-84-

APPEND THE MASTER
FEATURE POINTS & THE
EDITED MASTER GRID
POINTS INTO ALLPTS

RUN MODEL. AML TO
CREATE FILENCD &

FILEECD & THE THREE
COVERS FOR A MODEL
(FIG 36)

RUN FREUD.AML TO
GIVE THE NODES IN THE

ARC COVER THE SAME
#S AS IN THE PNT COVEfl
(FIG 291

WAS
THAT THE

LAST
COVE

Program Listing

/* MACRO: Create the output modelling files and ARC coverages .based upon
/* the clipped input line and point coverages, and given the desired
/* triangular grid.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The display type
/* MSTFEAT: The master feature point cover
/* SKALE: The map scale, in feet, of the input coverages
/* BUFDIS: The minimum distance between feature and grid points. Also,
/* the snap distance.
/* MSTGRID: The master triangular grid
/* ALLPTS: The cover containing all feature and all grid points
/* MSTCUT: The final clipping cover, the model boundary
/* EDGDIS: The minimum distance between interior and border points
/* MSTPTS: The master point cover
/* MSTPOL: The master polygonal, TINned cover
/* MAXITR: The maximum number of optimizing iterations
/* C1-C10: The input line and point coverages
/* 11-110: The item to be associated with each cover to identify it
/* T1-T10: The feature type of each cover
/* ALLPTSCL: The clipped version of ALLPTS
/* MCUTPTS: The point cover based upon the master clipping cover
/* MSTTIN: The TIN based upon the master point cover
/* MESH: The output element cover
/* MESHLAB: The output element-based point cover
/* NODECRD: The Node Coordinate Data-based point cover
/* COV: The cover currently being considered in a loop
/* COVER: The capitalized version of COV
/* TEMP: The temporary file associated with the current cover
/* TIP: The feature type of the current cover
/* TYP: The capitalized version of TIP
/* ITEM: The item associated with the current cover
/* TOL2: A distance based on TOLERANCE
/* ARCHIVE: The archive files containing the nearly-original versions of
/* the input coverages
/* ARCBUF: The buffered version of ARCHIVE

&echo &off
&args dtype mstfeat skale bufdis mstgrd allpts mstcut itcut ~
edgdis mstpts mstpol maxitr

/* -Test to see if all arguments are present as expected-C
&if [type %mstfeat%] ne 1 &then &goto badentry
&if [type %skale%] ne -1 &then &goto badentry
&if [type %bufdis%] ne -1 &then &goto badentry
&if [type %mstgrd%] ne 1 &then &goto badentry
&if [type %allpts%] ne 1 &then &goto badentry
&if [type %edgdis%] ne -1 &then &goto badentry
&if [type %mstpts%] ne 1 &then &goto badentry
&if [type %mstpol%] ne 1 &then &goto badentry

-85-

&if [type %maxitr%] ne -1 &then &goto badentry
&if [length %maxitr%] eq 0 &then &goto badentry

/* -Input the rest of the necessary information-O
&scl"
&s c2"
&s c3"
&s c4"
&s c5"
&s c6"
&s c7"
&s c8 "
&s c9"
&sclO"

&setvar cl [response 'Enter cover name']
&if [length %cl%] eq 0 &then &goto nocovs
&setvar tl [response 'Enter cover type (line,point,poly)']
&setvar il [response 'Enter item representing cover']
&setvar c2 [response 'Enter cover name']
&if [length %c2%] eq 0 &then &goto endentry
&setvar t2 [response 'Enter cover type (line,point,poly)']
&setvar i2 [response 'Enter item representing cover']
&setvar c3 [response 'Enter cover name']
&if [length %c3%] eq 0 &then &goto endentry
&setvar t3 [response 'Enter cover type (line,point,poly)']
&setvar i3 [response 'Enter item representing cover1]
&setvar c4 [response 'Enter cover name1]
&if [length %c4%] eq 0 &then &goto endentry
&setvar t4 [response 'Enter cover type (line,point,poly)']
&setvar i4 [response 'Enter item representing cover*]
&setvar c5 [response 'Enter cover name1]
&if [length %c5%] eq 0 &then &goto endentry
&setvar t5 [response 'Enter cover type (Hne,point,poly)']
&setvar i5 [response 'Enter item representing cover*]
&setvar c6 [response 'Enter cover name1]
&if [length %c6%] eq 0 &then &goto endentry
&setvar t6 [response 'Enter cover type (line,point,poly)']
&setvar i6 [response 'Enter item representing cover']
&setvar c7 [response 'Enter cover name*]
&if [length %c7%] eq 0 &then &goto endentry
&setvar t7 [response 'Enter cover type (line point.poly)']
&setvar i7 [response 'Enter item representing cover']
&setvar c8 [response 'Enter cover name']
&if [length %c8%] eq 0 &then &goto endentry
&setvar t8 [response 'Enter cover type (Hne point.poly)1]
&setvar i8 [response 'Enter item representing cover']
&setvar c9 [response 'Enter cover name']
&if [length %c9%] eq 0 &then &goto endentry
&setvar t9 [response 'Enter cover type (Hne.point.poly)']
&setvar i9 [response 'Enter item representing cover']
&setvar clO [response "Enter cover name']
&if [length %clO%] eq 0 &then &goto endentry
&setvar tlO [response 'Enter cover type (line,point,poly)']

-86-

&setvar ilO [response 'Enter item representing cover1]
&goto endentry
&label nocovs
&type 'At least one cover must be entered'
&goto endit
&label endentry

&setvar strm [response "Enter the name of the stream cover (or null)']
&if [length %strm%] eq 0 &then &goto zero
&goto sethem
&label zero
&setvar strm"

/* -Initialize variables-M
&label sethem
&setvar allptscl %allpts%.CL
&setvar mcutpts %mstcut%.pts
&setvar msttin %mstpts%.TIN
&setvar mesh %mstpol%.ELMS
&setvar meshlab %mstpol%.ELPT
&setvar nodecrd %mstpol%.NOD
&setvar grdcut %mstgrd%.CL
&setvar chicdist %skale% / 500

/* -Eliminate old occurances of output files-E
&severity &error &ignore
kill %mstfeat% all
kill %allpts% all
kill %mcutpts% all
kill %mstpts% all
kill %mstpol% all
&severity &error &fail

/* -Generate a master feature point cover from each of the input coverages-D
&do cov &list %cl% %c2% %c3% %c4% %c5% %c6% %c7
&if [length %cov%] eq 0 &then &goto endloopl

&setvar cover [translate %cov%]

/* -Identify the temporary cover and the cover type to be used-Y
&if %cov% eq %cl% &then &setvar temp tempi
&if %cov% eq %cl% &then &setvar tip %tl%
&if %cov% eq %c2% &then &setvar temp temp2
&if %cov% eq %c2% &then &setvar tip %t2%
&if %cov% eq %c3% &then &setvar temp temp3
&if %cov% eq %c3% &then &setvar tip %t3%
&if %cov% eq %c4% &then &setvar temp temp4
&if %cov% eq %c4% &then &setvar tip %t4%
&if %cov% eq %c5% &then &setvar temp tempS
&if %cov% eq %c5% &then &setvar tip %t5%
&if %cov% eq %c6% &then &setvar temp temp6
&if %cov% eq %c6% &then &setvar tip %t6%
&if %cov% eq %c7% &then &setvar temp temp?
&if %cov% eq %c7% &then &setvar tip %t7%

-87-

&if %cov% eq %c8% &then &setvar temp tempS
&if %cov% eq %c8% &then &setvar tip %t8%
&if %cov% eq %c9% &then &setvar temp temp9
&if %cov% eq %c9% &then &setvar tip %t9%
&if %cov% eq %clO% &then &setvar temp templO
&if %cov% eq %clO% &then &setvar tip %tlO%

&setvar typ [translate %tip%]

/* -Create point coverages and append them-
&severity &error &ignore
kill %temp% all
&severity &error Mail
&if %typ% eq 'POINT &then &goto pointit
&if %typ% eq 'POLY1 &then build %cover% line
&run arcpotin arcpoint %cover% %temp% %typ%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy
&goto appendit
&label pointit
copy %cover% %temp%
&label appendit
&if %cov% ne %cl% &then &goto nthrun
copy %temp% %mstfeat%
kill %temp% all
&goto endloopl
&label nthrun
append dummy
%mstfeat%
%temp%
end
kill %mstfeat% all
copy dummy %mstfeat%
kill dummy all
kill %temp% aU
&label endloopl
&end
build %mstfeat% point
remepf -prg -na -nq -nvfy

/* -Snap the master point cover to eliminate points which are too plose-H
&run snappy %dtype% %mstfeat% %skale% %bufdis%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy
&if [length %strm%] eq 0 &then &goto elimgrd
snapcover point %mstfeat% arc %strm% # %bufdis%

/* -Create buffers around each of the master feature points to elinjlinate

-88-

/* grid points which lie too close-O
&label elimgrd
&run buffnshine %mstfeat% point %bufdis% proximity %mstgrd% point %dtype%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&setvar i [read %filunit% %cod%]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy

/* -Append the master feature points and the master grid points-U
append %allpts%
%mstfeat%
%grdcut%
end
build %allpts% point
remepf -prg -na -nq -nvfy

/* -Create edge points based on the final cutting template-R
&run chicpox %dtype% %mstcut% %chicdist% %mcutpts%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy

/* -Clip the all points file, eliminating points too close to the edge-
&run clipit2 itemb %dtype% %mstcut% %itcut% %edgdis% point %allpts% in
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy

/* -Append the all points file and the edge points into the master points-S
&r fixsnap %dtype% %allptscl% %bufdis%
append %mstpts%
%allptscl%
%mcutpts%
end
build %mstpts% point
remepf -prg -na -nq -nvfy

I* -Create a TIN-based polygon from the master point file-O
&severity &error &ignore
kill bigpol all
kill bigpol.bak all
kill mstpoLbak all
&severity &error &fail
&run arcpotin arctin %mstpts% %msttin% point bigpol
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

-89-

remepf -prg -na -nq -nvfy
copy bigpol bigpol.bak
remepf -prg -na -nq -nvfy
ch'p bigpol %mstcut% %mstpol%
remepf -prg -na -nq -nvfy
copy %mstpol% mstpol.bak
remepf -prg -na -nq -nvfy
kill bigpol all
remepf -prg -na -nq -nvfy
build %mstpol% poly
remepf -prg -na -nq -nvfy

/* -Create the files needed for modelling-F
&run model %mstpol% %maxitr% modata.prt ~
%mesh% %meshlab% %nodecrd%

&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&setvar i [close %filunit%]
&if [length %cod%] eq 1 &then &goto bombout
remepf -prg -na -nq -nvfy

/* -Give the nodes in the arc file the same numbers as in the node file-T
&run freud %nodecrd% %mesh%
remepf -prg -na -nq -nvfy
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&setvar i [close %filunit%]
&if [length %cod%] eq 1 &then &goto bombout

/* -Assign lengths of stream to the points defining streams-W
&if [length %strm%] eq 0 &then &goto nostream
&run realength %dtype% %strm% %bufdis% %nodecrd%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy
&label nostream

/* -Identify the output node cover by each of the input feature coverages-A
/* * * * * * *

/* -Create buffers around each of the archived coverages-R
&setvar to!2 %bufdis% * 0.6
&do cov &list %cl% %c2% %c3% %c4% %c5% %c6% %c7% %c8% %c9% %clO%
&if [length %cov%] eq 0 &then &goto endloop2

&setvar cover [translate %cov%]
&setvar arc %cover%.A

/* -Identify the temporary cover and the cover type to be used-E
&if %cov% eq %cl% &then &setvar item %il%
&if %cov% eq %cl% &then &setvar tip %tl%
&if %cov% eq %c2% &then &setvar item %i2%

-90-

&if %cov% eq %c2% &then &setvar tip %t2%
&if %cov% eq %c3% &then &setvar item %i3%
&if %cov% eq %c3% &then &setvar tip %t3%
&if %cov% eq %c4% &then &setvar item %i4%
&if %cov% eq %c4% &then &setvar tip %t4%
&if %cov% eq %c5% &then &setvar item %i5%
&if %cov% eq %c5% &then &setvar tip %t5%
&if %cov% eq %c6% &then &setvar item %i6%
&if %cov% eq %c6% &then &setvar tip %t6%
&if %cov% eq %c7% &then &setvar item %i7%
&if %cov% eq %c7% &then &setvar tip %t7%
&if %cov% eq %c8% &then &setvar item %i8%
&if %cov% eq %c8% &then &setvar tip %t8%
&if %cov% eq %c9% &then &setvar item %i9%
&if %cov% eq %c9% &then &setvar tip %t9%
&if %cov% eq %clO% &then &setvar item %ilO%
&if %cov% eq %clO% &then &setvar tip %tlO%

&setvar typ [translate %tip%]
&setvar cover [translate %cov%]
&setvar archive [substr %cover% 1 3] .A

/* -Create buffers, identify them, and apply them to the NCD-based cover-
&run buffnshine %archive% %typ% %to!2% %item%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy
&setvar arcbuf %archive%.BUF
&run identi2 poly %nodecrd% point %arcbuf% %item%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst]
&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]
remepf -prg -na -nq -nvfy

&severity &error &ignore
&setvar nodtab %nodecrd%PAT
dropitem %nodtab% %nodtab% CAESERtf
dropitem %nodtab% %nodtab% CAESER-ID
&setvar dummy 1 %arcbuf%#
&setvar dummy2 %arcbuf%-ID
dropitem %nodtab% %nodtab% %dummyl%
dropitem %nodtab% %nodtab% %dummy2%
kill %arcbuf% all
&severity &error &fail
&label endloop2
&end
dropitem %nodtab% %nodtab% inside
&goto endit

&label badentry
&type Usage: KITSINK <display type> <master feature pnt cover (created)>

-91-

&type <mapscale as if to plot on a 24" plotter (ft)>
&type <min distance between grid & feature pts> <master grid
&type (existing)> <cover w/ all points (created)>
&type <study area model boundary poly cover name (existing)>
&type <item name denoting area inside modi boundary(existing)>
&type <min dist between interior and edge points>
&type <master point cover (created)> <root name for output
&type mesh and node coverages (created)> <max # of
&type optimizing iterations
&goto endit

&label bombout
&if %cod% eq 1 &then &type
&if %cod% eq 2 &then &type
&if %cod% eq 3 &then &type
&if %cod% eq 4 &then &type
&if %cod% eq 5 &then &type
&if %cod% eq 6 &then &type
&if %cod% eq 7 &then &type
&if %cod% eq 8 &then &type
&if %cod% eq 9 &then &type
&setvar i [close %filunit%]

&label endit
&s i [delete coderr]
remepf -prg -na -nq -nvfy
AtypeEndofKITSINK

'An error has occurred during ARCI'OTIN'
'An error has occurred during BUFFNSHINE'
'An error has occurred during CHIC POX'
'An error has occurred during CLMT2'
'An error has occurred during IDENTI2'
'An error has occurred during MODEL'
'An error has occurred during FIXSNAP or SNAPPY'
'An error has occurred during FREUD'
'An error has occurred during REALENGTH'

MAKOUTLIN.AML

Description

MAKOUTLIN. AML creates polygon "CL/Pping" coverages or polygon outlines of the type described in the
subsection concerning CLIPIT.AML (fig. 35). The input cover for this macro is a polygon cover composed of one or
several polygons. The output cover is a single polygon whose perimeter is thai of the conglomerate of input polygons.
MAKOUTLIN.AML creates an output file with an identifying item with a value of "1" for its interior area. It also, if
desired, removes all of the interior lines from the input cover. If no interior line removal is desired, give the "#"
character in place of the output polygon outline name. This option

One common error in using MAKOUTLIN.AML is to usts an input cover that has not been built (BUILD) as
a polygon cover. An input cover must have a PAT.

-92-

will add t le identifying item to the input cover.

ADD ITEM TO
COVER WHICH
WILL INDICATE
INTERIOR AREA

PRINT
ERROR

MESSAGE

IS
OUTPUT \ YES

NAME EQUAL, TO '#'?

NO

IN INPUT COVER,
CALC ITEM = 1

FOR POLYGONS W/|
INTERIOR = 100

IN OUTPUT OUTLINE
COVER, CALC ITEM =1
FOR POLYGONS WITH

AREA>0

DISSOLVE
INTERIOR BOUN­

DARIES & CREATE
OUTPUT COVER

STOP

Figure 35.--Flowchart for MAKEOUTLIN.AML.

-93-

Program Listing

/* MACRO: Take a polygon cover and remove all of the internal lines,
/* leaving a polygon outline which is written as an output cover
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* COV: The name of the polygon cover from which the outline
/* will be made
/* FINE: The name of the outline to be created
/* FT: The originally input name for the item indicating the
/* area inside of the outline
/* COVER: The capitalized version of COV
/* FINEMESH: The capitalized version of FINE
/* ITEM: The capitalized version of IT
/* COVERPAT: The PAT name for cover
/* FDMEPAT: The PAT name for finemesh
/* SHINY: Is the cover a buffer of another?

&echo &off
&args cov fine shiny it

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-O
&if [length %cov%] eq 0 &then &goto badentry
&if [length %fine%] eq 0 &then &goto badentry
&if [length %it%] eq 0 &then &goto badentry

/* -Capitalize input filenames for use in ARC/INFO-M
&setvar cover [translate %cov%]
&setvar finemesh [translate %fine%]
&setvar item [translate %it%]

/* -Reset output file-E
&if [exists %fme% -COVERAGE] &then kill %fmemesh% all

/* -Prepare the input file for dissolution-D
&setvar coverpat %cover%.PAT
&severity &error &ignore
additem %coverpat% %coverpat% %item% 4 4 i

-94-

&severity &error &fail
&if %shiny% ='y' &then &goto incheck
&if %shiny% = 'Y1 &then &goto incheck
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SEL %coverpat%
RESEL FOR AREA >0
CALC %item% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SEL %coverpat%
RESEL FOR AREA >0
CALC %item% = 1
QSTOP
QUIT
&end
&end
&goto checkdis

&label incheck
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SEL %coverpat%
RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SEL %coverpat%
RESEL FOR INSIDE = 100
CALC %item% = 1
QSTOP
QUIT
&end
&end

&label checkdis
&if %finemesh% = '#' &then &goto endit

/* -Dissolve boundaries and build output as a polygon cover-Y
&label dodis

-95-

dissolve %cover% %finemesh% %item%
build %finemesh% poly

/* -Mark output polygon cover to indicate area within outline-
Asetvar fmepat %finemesh%PAT
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SEL %fmepat%
RESEL FOR AREA >0
CALC %item% = 1
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SEL %finepat%
RESEL FOR AREA > 0
CALC %item% = 1
QSTOP
QUIT
&end
&end
dropitem %coverpat% %coverpat% %item%
createlabels %cover%
&goto endit

/* -Macro entry error handling-
&label badentry
&type Usage: MAKOUTLIN <input polygon cover(existing)xoutput polygon outline
&type name (or '#' if not removing internal lines> <Is the
&type in_cover a buffer of another cover? (y/n)> <name to
&type designate the interior of the output cover (created)>

&label endit
&type End of MAKOUTLIN

-96-

MODEL AML

Description

This macro takes an input polygon cover and creates the files that are necessary for modeling, the node
coordinate data file, FILENCD, and the element connection data file, FILEECD. It also creates new coverages based
on the element and node numbering optimization that it performs (fig. 36). It creates a mesh polygon cover having
labels equal to the element numbers and having the suffix ".ELMS," a point cover having points at the center of each
element labeled with the element numbers and having the suffix ".ELPT" and a point cover having points at nodes
labeled with the node numbers and having the suffix ".NOD."

Once a polygon cover has been input to this macro, the output coverages should be used rather than the
original cover. This is recommended because the output coverages now reflect the node and element numbering
changes that MODEL.AML performs, and therefore correspond to the modeling files that are created.

MODEL.AML deletes files called "VERTICES," "FILENCD," and "FILEECD" at the beginning of its run.
These are superceded copies of its working and output files.

-97-

c START

PRINT
ERROR

MESSAGE

WRITE INPUT COV,
MAX # OF ITERA­
TIONS & OUTPUT
FILE TO NESCDATA

WRITE THE#OF
NODES, # OF ELE­
MENTS, & NAMES

TOEVEINFO

 *

 *-

RUNBLDMOD.F77
(FIG 37)

*
READ THE # OF

NODES & THE # OF
ELEMENTS FROM

NUMBRS

I
RUNFE-LABELJ77

(FIG 43)

GENERATE THE
LABEL PTS COVER
W/ POINTS FROM

MLABEL

^-
GENERATE THE IvteSH

COVER WITH LINES
FROMMESHARC&

POINTS FROM MLABEL

GENERATE THE
NODECOVERW/

INFO FROM
FILENCD

c STOP

Figure 36.--Flowchart for MODEL. AML.

-98-

Program Listing

/* MACRO: Build the Node Coordinate Data file and the Element Connection
/* Data file needed for modelling, based upon the input cover.
/* Also, build a printable file detailing the optimization of the
/* nodes performed, and build ARC files based on the re-labeled arc
/* file, re-labeled label file, and the re-labeled node coordinate
/* data file.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST
/* COVER: The input cover name
: The maximum number of optimizing iterations
/* FPRINT: The name of the printable file to be created
/* NNODE: The number of nodes in the input cover
/* NELEM: The number of elements in the input cover
/* MESH: The name of the mesh polygon cover with labels equal
/* to the element number
/* MESHLAB: The name of the point cover with point ID at the
/* center of each element labeled with the element number
/* NODECRD: The name of the point cover whose ID equals the
/* node number
/* FILUNIT: The unit number of the data file, EVEINFO
/* EVEINFO: The data file used to pass data to FE-LABEL.F77
/* MESHARC: The output element arc file from FE-LABEL.F77
/* MLABEL: The output element node file from FE-LABELP77
/* FE-LABEL: The Fortran?? program which creates the basis for the outputs

&echo &off
&args cover maxitr fprint mesh meshlab nodecrd

/* -Prepare the error-indication file-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 6]
&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-M
&if [type %cover%] ne 1 &then &goto badentry

-99-

&if [type %maxitr%] ne -1 &then &goto badentry
&if [type %fprint%] ne 1 &then &goto badentry
&if [type %mesh%] ne 1 &then &goto badentry
&if [type %meshlab%] ne 1 &then &goto badentry
&if [type %nodecrd%] ne 1 &then &goto badentry
&if [length %nodecrd%] eq 0 &then &goto badentry

/* -Delete any old occurances of the bldmod output files-E
&label beginit
&s i [delete filencd]
&s i [delete fileecd]
&s i [delete vertices]
&s i [delete badans]
&s i [delete nescdata]

/* -Build the file which bldmod needs-D
&setvar filunit [open nescdata openstatus -write]
&setvar i [write %filunit% %cover%]
&setvar i [write %filunit% %maxitr%]
&setvar i [write %filunit% %fprint%]
&if [close %filunit%] = 0 &then &type File written successfully.

&if %.computer_type% = 'prime1 &then &sys r bldmod
&else &sys bldmod.out
&setvar filunit [open badans openstatus -read]
&setvar ans [read %filunit% readstatus]
&setvar i [close %filunit%]

&label go_on
/* -Read the file created by Optimize which is necessary to create^ the
/* output coverages-Y
&setvar filunit [open numbrs openstatus -r]
&setvar nnode [read %filunit% readstatus]
&setvar nelem [read %filunit% readstatus]
&setvar i [close %filunit%]

/* -Create the data file which FE-LABEL can read as input-
&setvar filunit [open eveinfo openstatus -w]
&setvar i [write %filunit% %nnode%]
&setvar i [write %filunit% %nelem%]
&setvar i [write %filunit% mesharc]
&setvar i [write %filunit% mlabel]
&if [close %filunit%] eq 0 &then &type File created successfully

I* -Create the ASCII output files-H
&if %.computer_type% = 'prime' &then &sys r fe-label
&else &sys fe-label.out

/* -Delete the FE-LABEL input data file-O
&s i [delete eveinfo]

/* -Delete any old occurances of the output coverages-U
&severity &error &ignore
kill %mesh% all

-100-

kill %meshlab% all
kill %nodecrd% all
&severity &error &fail

/* -Create the mesh polygon output cover-R
&if %.computer_type% = 'prime1 &then
&do
generate %mesh%
input mesharc
line
input mlabel
point
q
&end
&else
&do
&data arc generate %mesh%
input mesharc
line
input mlabel
point
q
&end
&end
clean %mesh%
build %mesh% poly
build %mesh% line

I* -Create the label point output cover-
&if %.computer_type% = 'prime' &then
&do
generate %meshlab%
input mlabel
point
q
&end
&else
&do
&data arc generate %meshlab%
input mlabel
point
q
&end
&end
build %meshlab% point

/* -Delete the ASCII ouput files-
&s i [delete mesharc]
&s i [delete mlabel]

/* -Create the node point output file-
&if %.computer_type% = 'prime1 &then
&do
generate %nodecrd%

-101-

input filencd
&severity &error &ignore
point
&severity &error &fail
«1
&end
&else
&do
&data arc generate %nodecrd%
input filencd
&severity &error &ignore
point
&severity &error &fail
q
&end
&end
build %nodecrd% point

&s i [delete nescdata]
&s i [delete numbrs]
&goto endit

&label badentry
&type Usage: MODEL <name of point cover on which to base mcdel(existing)><max
&type
&type
&type
&type
&goto enderr

of optimizing iterations <name of printed output file
(created)> <output mesh polygon cover (created)> <output
label point cover (created)> <output node point cover
(created)>

&label endit
/* -Prepare the error-indication file-
&s i [delete coderr]
&setvar filun [open coderr opcnstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]
&goto bigend

&label enderr
&type There was an error!

&label bigend
&type End of MODEL

Description

Fortran Program BLDNM3D.F77

the data structure of ARC/INFO does not store tie information about polygBecause
finite-element model needs information about each element and th
renumbers the elements and nodes and creates the data
shell for the three subroutines that compose it It also calls
for the programs, variables.

ons in the way that a
nodes that make up the elements, this program

structure necessary for modeling (fig. 37). It is, in actuality, a
the file that contains all of the global variable assignments

-102-

Program listing

C START

READ
INFORMATION

FROM NESCDATA

CALLBLDNCD.F77
(FIG 38)

i
CALLBLDECD.F77

(FIG 39)

I
CALL

OPTIMIZE.F77
(FIG 40)

STOP

Figure 37.--Flowchart for BLDMOD.F77.

C PROGRAM: Build the output files needed for mesh modeling
C CODED BY: Robert Lowther
C SUPERVISED BY: EveKuniansky

H

PROGRAM BLDMOD

C VARIABLES contains the common statements and corresponding
C variable definitions which are used by the subroutines.

INCLUDE Variables1

CALLAENTER
CALLLUNINI
CALLMINIT
CALL MESINI

-103-

OPEN (7,file =1nescdata',status ='OLD',recl = 60)
100 FORMAT (A10)

READ (7,100) COVER
READ(7,*)MAXTTR
READ (7,100) FPRINT
CLOSE (7)

C BLDNCD obtains the keyboard input and reads the input file
C into an input array. Manipulations are performed on the input
C array and written into an output array. The output array
C is then written to an output file, FILENCD.

CALL BLDNCD
IF (B ADARC JvfE. 0) GO TO 1
PRINT *,'Building Element Connection Data file...1

C BLDECD uses the input array from BLDNCD via the commons
C VARIABLES. Manipulations are performed on the input array
C and written to an output array. The output array is then
C written to an output file, FILEECD.

CALL BLDECD
PRINT ""/Optimizing the node numbering scheme...1

C OPTIMIZE uses the previous two routines' output files as its
C input. They are read into input arrays, where calculations
C are performed on them. The output array is then written to
C a user-specified output file.

CALL OPTIMIZE

1 OPEN (8,file ='badans',status ='NEW' .reel = 60)
IF (BADARC .NE. 0) THEN
PRINT *,The TIN cover has vertices!'
WRITE (8,100) 'BAD'
ELSE
WRITE (8,100) 'GOOD

END IF
CLOSE (8)
END

C VARIABLES

from

C VARIABLE LIST:
C
C COVER: The name of the input ARC cover
C NUMNOD: Number of nodes in the cover (also the number cf
C lines in the FILENCD file)
C NUMEL: Number of elements in the cover (lines in FILEECD)
C FPRINT: The name of the file that BLDMOD's output is to
C be written.
C MAXITR: The maximum number of iterations that the optirai
C zation program will run.

-104-

C
o
C
M
C
E
C
D
C
Y

C USERID: The USERIDs of the input arcs. (See ARC/INFO C
C FRNODE: The From Node for the input arc C
C TONODE: The To Node for the input arc H
C LPOLY: The polygon to the left of the input arc C
C RPOLY: The polygon to the right of the input arc O
C NPTS: The number of nodes associated with each input arc C
C NODE: The node number array for the output file, FDLENCD U
C COORDS: The coordinate array read from the input ARC file C
C OUTCORD: The coordinate array for the output file, FDLENCD R
C KANARC: The ARCFILE channel number C
C ACCESS: Code number to indicate a Read/Write ARC file C
C TEMPRY: Code number to indicate a Normal ARC file C
C ERROR: Error code return from ARCRD command (-1 = error) C
C IABUFF: The standard ARC record, as read from the ARC file C
C NOIN: The number of input arcs (Length of input array) C
C ELEMENT: The element or polygon number in the output array C
C OUT1: The first node of each element in the output array C
C OUT2: (And OUT3) are defined similarly to OUT1 C
C FILENM: The output file name for BLDNCD and BLDECD C

COMMON /MESH/COVER JslUMNOD^UMEL J^RINT^IAXITR,BADARC
COMMON /C1/USERID(25000),FRNODE(25000)
COMMON /C2/rONODE(25000),LPOLY(25000)
COMMON /C3/RPOLY(25000),NPTS(25000)
COMMON /C4/NODE(25000),NPT(25000)
COMMON /C5/COORDS(25000,6)
COMMON /C6/OUTCORD(25000,2)
COMMON /CT/FILENMJCANARC ACCESS.TEMPRYOERROR
COMMON /C8/IABUFF(2006),NOIN
COMMON /C9/ELEMENT(25000),OUT1(25000)
COMMON /C10/OUT2(25000),OUT3(25000)

INTEGER IABUFF,NOIN
INTEGER KANARC,ACCESS,TEMPRY,IERROR
INTEGER NUMNOD JSmMEL,MAXITR,USERID J7RNODE
INTEGER TONODE,LPOLY,RPOLY,NPTS .NODE
INTEGER ELEMENT,OUT1,OUT2,OUT3,BADARC
DOUBLE PRECISION COORDS, OUTCORD
CHARACTER* 128 COVER JTLENM.ARGS
CHARACTER*60 FPRINT.BAD

Fortran subroutine BLDNCD.F77

Description.-This program builds the node coordinate data file necessary for mathematical modeling (fig.
38). As input, it uses the ARC file that is the final output of the mesh generation procedure. The node coordinate data
file, FILENCD, consists of a list of the node numbers and coordinates of each node in the mesh.

To increase run speed, BLDNCDJF77 does all of its operations in memory. The input file is loaded into an
input array and the output file is created as an output array. Once the program has completed building the output array,
it is written to the output file. The tests we have performed have shown this process to be 9000% faster (decreasing
run time from more than a day to approximately two minutes) than the more statically efficient method of manipulating
the input and output files directly.

-105-

WRITE THE IN­
FORMATION FROM
THE BINARY FILE
TO THE ARRAYS

READ
BINARY A

RECORD OI
INPUT CO

A
T

LAST ARC
CORD?

RESET IN
ARRAY POINTER

AND OUTPUT
COUNTED

READ NEXT ARC
RECORD FROM

THE INPUT
ARRAY

OE
INPUT TO

NODE EQUAL
OUTPUT?

OE
UTFR

NODE EQUAL
UTPUT2

READ NEXT
OUTPUT RECORD

TOFOUND = 1 FRFOUND

WA
THAT THE

LASTOUTP
CORD?

WRITE INPUT FROM
NODE TO THE OUT­
PUT FILE AND IN­

CREASE OUT COUN1

DOES
FRFOUND

EQUAI
ONE?

WRITE INPUT TO
NODE TO THE OUT­
PUT FILE AND IN­

CREASE OUT COUNT

DOES
TOFOUND

EQUAI, /
/ "VXTCO S

A
THAT THEV YES

LAST INPUT
CORD?

WRITE TH
OUTPUT ARRAY

TOFnJENCD

Figure 38.~Flowchart for BLDNCD.F77.

Subroutine listin.

C SUBROUTINE: Build Node Coordinate Data File C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

SUBROUTINE BLDNCD

INCLUDE Variables'

C VARIABLE LIST H
C S
C IREC: The record number just read with the ARCRD command C
C IER: Error code for the AOPEN command C
C FRFOUND: Code showing FRNODE is already in the output array C
C TOFOUND: Code showing TONODE is already in the output array C
C IJ: Counters C
C OUTPCNT: Number of records in the output array C
C LOUT: The device number of the output file, FILENCD H
C USERDUM: Integer equivalent to the first IABUFF component, S
C it corresponds to the array USERID C
C FRDUM: Corresponds to FRNODE C
C TODUM: Corresponds to TONODE C
C LPDUM: Corresponds to LPOLY C
C RPDUM: Corresponds to RPOLY C
C NPTDUM: Corresponds to NPTS C
C CORDDUM: Corresponds to COORDS H

INTEGER IREC,IER,L2
INTEGER FRFOUND,TOFOUND,U,OUTPCNT,LOUT
INTEGER USERDUM J7RDUM,TODUM4J>DUMJIPDUM,NPTDUM
DOUBLE PRECISION CORDDUM(IOOO)

C===Use Equivalence statements to equate elements of the====C
C integer array, IABUFF, with integer and real variables C

EQUIVALENCE (IABUFF(1),USERDUM)
EQUIVALENCE (IABUFF(2),FRDUM)
EQUIVALENCE (IABUFF(3),TODUM)
EQUIVALENCE (IABUFF(4),LPDUM)
EQUIVALENCE (IABUFF(5),RPDUM)
EQUIVALENCE (IABUFF(6),NPTDUM)
EQUIVALENCE (IABUFF(7),CORDDUM(1))

EXTERNAL LUNINI,MINIT,VINITARCOPN,ARCRD,AOPEN,MESINI,
&PRMSTR,ACLOSE,ARCCLSAEXIT

100 FORMAT (6I6.4F15.2)
200 FORMAT (I6.2F15.2)
988 FORMAT (2F15.2)

-107-

986 FORMAT (16)
NUMNOD=0

C===Initialize the modules to be used with this program.;

CALLLUNINI
CALLMINIT
CALLVINTT
CALLMESINI

C===Open the input and output files for the NCD subroutine^

FILENM='filencd'
ACCESS = 2
TEMPRY = 1
PRINT *,'Building the Node Coordinate Data file... 1
CALL ARCOPN (KANARC.COVERACCESS.TEMPRYJERROR)
OPEN (7,FILE= Vertices')
CALL AOPEN (LOUT,FILENM,IER)
IF(ffiR.NE.-l)GOTO99
CALL ACREAT (LOUT,FILENM,IER)
IF(ffiR.NE.-l)GOTO99
GO TO 16

C===Read the input file into input arrays, using the variables!
C from the equivalence statements C

C Initialize the input array size variable
99 NOIN=1
10 CALL ARCRD (KANARC JREC JABUFFJERROR)

if (nptdum .gL 2) print *,nptdum
USERID(NOIN) = USERDUM
FRNODE(NOIN) = FRDUM
TONODE(NOIN) = TODUM
LPOLY(NOIN) = LPDUM
RPOLY(NOIN) = RPDUM
NPT(NOIN) = NPTDUM
DO9I=1,NPTDUM*2
COORDS(NOIN,I) = CORDDUM(I)

9 CONTINUE
C Increment the input array size

NOIN = NOIN+1
C If EOF reached, stop reading

IF (ffiRROR .EQ. -1) GO TO 13
C If error occurs, report it

IF (ffiRROR .EQ. -2) GO TO 15
GO TO 10

C Adjust input array size variable correctly
13 NOIN = NOIN-1

IREC = NOIN

1=1
BADARC = 0

989 IF(NPT(I).EQ.2)GOTO1001

-108-

PRINT *,'The arc from:',FRNODE(I)
print *,'to :',TONODE(I)
PRINT *,'has a vertex at'
DO98J=l,NPT(I)-2
PRINT *,COORDS(IJ*2+1)
PRINT *,COORDS(IJ*2+2)

98 CONTINUE
DO987J=1,NPT(I)-1
WRITE (7,986) 2*BADARC + J
WRITE (7,988) COORDS(I,(J-1)*2+1), COORDS(I,(M)*2+2)
WRITE (7,988) COORDS(IJ*2+1), COORDS(IJ*2+2)

987 CONTINUE
BADARC = BADARC + 1

1001 1=1+1
IF (I .LE. NOIN) GO TO 989

IF (BADARC JNE. 0) PRINT *,'Vertices were found! Bailing out
cofBLDNCD. Please wait 1
IF (BADARC .ME. 0) GO TO 20

C===Read the input array line by line, each time checking to see =C
C if the from and to nodes are already in the output array and, C
C if not, write them and their coordinates to the output array C

C Initialize the output array size variable
OUTPCNT = 0
DO14I=1,NOIN

C Init the "found in output array" flags
FRFOUND = 0
TOFOUND = 0
DO11J=1,OUTPCNT

C If found, set flags
IF (FRNODE(I) .EQ. NODE(J)) FRFOUND = 1
IF (TONODE(I) .EQ. NODE(J)) TOFOUND = 1

11 CONTINUE

C===If "found in output array" flag not set, write the nodes== C
C in question C

C Check/write from node
IF (FRFOUND .EQ. 1) GO TO 12

C Increment output array size variable
OUTPCNT = OUTPCNT + 1

C Write information
NODE(OUTPCNT) = FRNODE(I)
OUTCORD(OUTPCNT,1) = COORDS(U)
OUTCORD(OUTPCNT,2) = COORDS(I,2)

C Increment number of nodes counter
NUMNOD = NUMNOD + 1

C Check/write to node
12 IF (TOFOUND .EQ. 1) GO TO 14

OUTPCNT = OUTPCNT + 1
NODE(OUTPCNT) = TONODE(I)
OUTCORD(OUTPCNT,1) = COORDS(I,3)
OUTCORD(OUTPCNT,2) = COORDS(I,4)

-109-

14
NUMNOD = NUMNOD + 1
CONTINUE

C==:=Write the output array to the output file=

DO 17 I=1,OUTPCNT
WRITE (LOUT,200) NODE(I),(OUTCORD(U),J=1,2)

17 CONTINUE
GO TO 20

C===Error messages and program exit point=

20

15 WRITE (*,'(A)') 'Error occurred during ARCRD1
GO TO 20

16 WRITE (*,'(A)') 'Error occurred during AOPEN1
ENDFILE (LOUT)

CALL ACLOSE (LOUT)
CALL ARCCLS (KANARC)
CLOSE (7)
RETURN
END

Fortran subroutine BLDECD.F77

Description.-This Fortran77 program builds the element connection data file, the other file necessary for
mathematical modeling (fig. 39). It uses the same input as BLDNCD.F77. Its output file, FILEECD, consists of a list
of the elements, or triangular polygon-ID's, and the node numbers of the three nodes associated with each element.

For the model to interpret this table correctly, the nodes listed for each element must be listed in
counterclockwise order. To put the nodes in order, BLDECD.F77 creates two lines sharing a common point, that point
being chosen arbitrarily and assigned as the first point in the list The program then calculates the cross product of the
two lines. Because the lines are in the same plane, their cross product will lie along a line perpendicular to that plane,
either in the positive or negative direction. The sign of the cross product, therefore, determines which line, and
accordingly, which endpoint, is counterclockwise from the other, referenced to the lines' common endpoint.

As in BLDNCD.F77, this program processes the data in arrays and'
calculations are finished. Again, this is done to increase dynamic efficiency.

vrites the output file only after all

-110-

SELECT NEXT
INPUT ARC

RECORD

LPOLY^
1?-IS IT THE

OUTSIDE
RE

EFT POL
READY BEE
CHOSEN?

CHOOSE LPOLY

S
RPOLY^

1?-IS IT THE
OUTSIDE

HAS
GHTPOL^VNO

READY BEEN
CHOSEN?

CHOOSE RPOLY

WAS
NO /THAT THE

LAST INPUT
ARC?

HOSE
POLY IN THE
OUTPUT AR­

RAY?

CHECK CHOSEN
POLY AGAINST
OUTPUT ARRAY

FOUND = 1

DOES YES
FOUND = 1?^ *

a. logic which loops through all arcs and their associated polygons
Figure 39.~Flowchart for BLDECD.F77.

-Ill-

DEFINE DIFX1 =
PTX2-PTX1,

DIFX2 = PTX3 -
PTX2, DIFY1 =...

1
SET A SECONDARY
POINTER TO THE

NEXT INPUT
ARC RECORD

^
STORE THE ARCS
NODES AS TWO OF
THE THREE FOR
THE CHOSEN POLY

STORE THE FROM
NODE AS THE

THIRD POLYGON
NODE

OE
FRNODE

1ST STORED
NODE?

OES
FRNODE =
ND STORED

ODE?

RPOLY MATCH
THECHO-

EN?

DOES
TONODE

2NDSTO
NODE?

DOES
TONODE

1ST STORED
NODE?

ARBITRARILY
CHOOSE ONE

NODE AS 1ST IN
THE OUTPUT LIST

STORE THE TO
NODE AS THE

THIRD POLYGON
NODE

IS
DIFX1 * \ YES

>IFY2>DIFX2£
DIFY1?

NO

STORE PT2 AS
THIRD ON THE

LIST AND PT3 AS
SECOND

STORE PT2 AS
SECOND ON THE
LIST AND PT3A$

THIRD

WRITE THE LIST
TO THE OUTPUT

ARRAY

b. logic which orders the nodes associated with eacn element
Figure 39.--Flowchart for BLDECD.F77- -continued.

-112-

Subroutine

C PROGRAM: BuUd Element Connection Data File C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L.Kuniansky C

SUBROUTINE BLDECD

INCLUDE Variables'

C VARIABLE LIST C
C O
C IER: Error code return from the AOPEN or ACREAT commands C
C IJ: Counters M
C FOUND: Flag indicating that the element in question has C
C been found in the output array C
C CHECK 1 : The first node of an element to be put into order H
C CHECK2 & 3: The other two nodes to be ordered counter-clockwise C
C CHECKPO: The polygon checked against output array and for R
C which nodes are found C
C DEF1: Definitely the first node in order in the output C
C DEF2 & 3: Definitely the second and third, counter-clockwise S
C OUTPCNT: The output array size variable C
C CHECKX1: The x coordinate of the first checked node (CHECK 1) O
C CHECKX2 & 3: The x coordinate of the second and third nodes C
C CHECKY1: Similarly, the first y coordinate F
CCHECKY2&3: The second and third y coordinates C
C DELX1: The difference between x2 and xl T
C DELX2: x3-xl C
C DELY1: y2 - yl W
C DELY2: y3-yl C

INTEGER ffiR,IJ
INTEGER FOUND,CHECK1,CHECK2,CHECK3, CHECKPO
INTEGER DEF1,DEF2,DEF3,OUTPCNT
DOUBLE PRECISION CHECKX1,CHECKX2,CHECKY1, CHECK Y2
DOUBLE PRECISION CHECKX3, CHECK Y3
DOUBLE PRECISION DELX1,DELX2,DELY1,DELY2

1000 FORMAT (6I6,4F15.1)
2000 FORMAT (416)

NUMEL = 0

C===Open the output file for the ECD subroutine=========C

FILENM = Tileecd'
CALL AOPEN (LOUT,FILENM,IER)
IF(IER.NE. -1) GO TO 99
CALL ACREAT (LOUT,FHJENM,IER)
IF(ffiR.NE.-l)GOTO99

-113-

GO TO 500

C===Select two points, partially defining a polygon,======:=
C from the input array. Insure that the polygon C
C defined is not already listed in the output array. C

C Initialize the output array size variable
99 OUTPCNT = 0
C For each input record:...

DO14I=1,NOIN

C Choose LPoly,RPoly, or next record

C Indicate neither L nor RPOLY has been checked
CHECKPO = 0

C Don't check figure exterior
IF (LPOLY(I) .EQ. 1) CHECKPO = LPOLY(I)

C If both have been checked, go on
15 IF (CHECKPO EQ. RPOLY(I)) GO TO 14
C If LPOLY has, check R

IF (CHECKPO .EQ. LPOLY(I)) CHECKPO = RPOLY(I)
IF ((RPOLY(I) .EQ. 1) .AND. (CHECKPO EQ. RPOLY(I))) (JO TO 14

C If neither, check LPOLY
IF (CHECKPO .EQ. 0) CHECKPO = LPOLY(I)

C Initialize the "found in output array" flag
FOUND = 0

C===Check to see if polygon is already in output array

DO30J=1,OUTPCNT
IF (ELEMENT(J) .EQ. CHECKPO) FOUND = 1

30 CONTINUE

C===If "found" flag is not set, select two nodes and their associated pts=

IF (FOUND .EQ. 1) GO TO 15
CHECK1 = FRNODE(I)
CHECKX1 = COORDS(U)
CHECKY1 = COORDS(I,2)
CHECK2 = TONODE(I)
CHECKX2 = COORDS(I,3)
CHECKY2 = COORDS(I,4)

C===Find the third point defining the chosen polygon:

C Set a pointer to the current location in the input array
J=I

C Increment the secondary input array position indicator
50 J=J+1
C Find another reference to the chosen polygon

IF ((LPOLY(J) .EQ. CHECKPO) .OR. (RPOLY(J) .EQ.
& CHECKPO)) GO TO 60

GO TO 50
C Check node against two known
60 IF (FRNODE(J) .ME. CHECK1) GO TO 70

-114-

GO TO 80
70 IF (FRNODE(J) .NE. CHECK2) GO TO 100
80 IF (TONODE(J) .NE. CHECK1) GO TO 90

GO TO 50
90 IF (TONODE(J) .NE. CHECK2) GO TO 110

GO TO 50
C Choose from node which was not known before
100 CHECK3 = FRNODE(J)
C Get associated points

CHECKX3 = COORDS(J,1)
CHECKY3 = COORDS(J,2)
GO TO 120

C Choose to node which was not known before
110 CHECKS = TONODE(J)

CHECKX3 = COORDS(J,3)
CHECKY3 = COORDS(J,4)

=Put the points in counter-clockwise order=

C Arbitrarily choose a point to be first
120 DEF1 = CHECK1
C Define the difference variables

DELX1 = CHECKX2 - CHECKX1
DELY1 = CHECKY2 - CHECKY1
DELX2 = CHECKX3 - CHECKX1
DELY2 = CHECKY3 - CHECKY1

C Take the cross product of the two vectors created by using the first
C point as an endpoint to each and the other two points as endpoints
C to their respective vectors. If the cross product is negative, then
C the vector which was treated as the "first" vector should in fact be
C second, and vice-versa. If the cross product is positive, then the
C vector assignments are correct. The points are ordered according to
C this determination.

IF ((DELX1 * DELY2) .GT. (DELX2 * DELY1)) GO TO 130
DEF2 = CHECK3
DEF3 = CHECK2
GO TO 140

130 DEF2 = CHECK2
DEF3 = CHECKS

C===Write to the output array==== ==~==========^

C Increment the output array size variable
140 OUTPCNT = OUTPCNT + 1

ELEMENT(OUTPCNT) = CHECKPO
OUTl(OUTPCNT) = DEF1
OUT2(OUTPCNT) = DEF2
OUT3(OUTPCNT) = DEF3

C Increment the number of elements counter
NUMEL = NUMEL+1
GO TO 15

-115-

C Go to the next input array polygon
14 CONTINUE

C=
C=
C=

=Write the ouput array into the output file, reassigning the element=C
==numbers to be sequential in the file, since the original numbers are=C
==no longer necessary- ==

DO 17 I=1,OUTPCNT
WRITE (LOUT.2000) I,OUT1(I),OUT2(I),OUT3(I)

17 CONTINUE
GO TO 510

=Error messages and program exit point?

500 WRITE (*,'(A)1) 'Error occurred during AOPEN*
GO TO 510

20 WRITE (*,'(A)') -Error occurred during ARCRD'
510 READ (LOUT,2000,END=520) IAJB JCJD

GO TO 510
520 ENDFILE (LOUT)

CALL ACLOSE (LOUT)
RETURN
END

Fortran subroutine OPTIMIZE.F77

Description.-This algorithm was developed by R. J. Collins (1973),
written by M. L. Maslia (U. S. Geological Survey, written commun., 1987). <>iginally a stand-alone program, it has
been further modified to run as a subroutine of BLDMOD.F77 (fig. 40).

J*77 amIt takes the files created by BLDNCD.F77 and BLDECDJP77
reduces the maximum difference between node numbers associated
matrix bandwidth. This greatly reduces roundoff error in the model
subroutines for OPTIMIZE.F77. SETUP "sets up"
resulting matrix size of this numbering system is o
system requires a smaller matrix, then it is stored for later comparisons.

-116-

and the program that we modified was

d optimizes the node numbering scheme. It
with any given element, thereby reducing the
SETUP (fig. 41) and OPTNUM (fig. 42) are two

i and OPTNUM optimizes it. The
ompared to the matrix size of the previous systems. If the new

START

t
READ NCD DATA
INTO AN ARRAY,

COORD
 * READ ECD DATA

INTO AN ARRAY,
JT

CALL OPTNUM.F77 -*~
(FIG 42)

CALL SETUP.F77
(FIG 41)

CAN
ANDWID
EREDUC

ORE2

I
WRITE THE#

OF NODES & THE
OF ELEMENTS

TONUMBRS

NO SET NODLOC
EQUAL TO JT

,YES

oil 1 A I JUVLr
COORD

-^
REORDER CO-

ORDINATES WITH
THE VECTOR JNT,
FROMXTEMPTO

COORD

SETJJ=ANODLOC
RECORD (ONE OF
3 POINTS DEFIN­

ING AN ELEMENT)

STOP

WRITE THE
ELEMENT DATA TO

THE NCD FILE

SBEE
ONE FOR AL

NODES?

A
TTHE

ASTELEME
9

AS
TMAX

OF ITERATIONS
OR MINE

WRITE THE
ELEMENT DATA TO
THE PRINT FILE

* WRITE COORD TO
THE NCD FILE ^

WRITE THE NCD
ARRAY TO THE

PRINT FILE

Figure 40.--Flowchart for OPTIMIZE.!7??.

-117-

START

INITIALIZE THE BAND­
WIDTH VAR -IDIFF & THE
OF NODES EACH NODE
IS RELATED TO - JMEM

READ THE NEXT
NODE FROM THE
ELEMENT ARRAY,
JT,W/POINTER

I
SET THE POINTER - JSUB
THE LOCATION OF THE CU
THE ARRAY WITH THE IDE
NODES RELATED TO A GIVE

CH CONTAINS
NT NODE IN

S OF THE
ONE - MEMJT

3
CHOOSE THE NEXT RE­
LATED NODE FROljrt JT
WITH A SECONDARY

POINTER - JJT

A RELATIONSHIP
BETWEEN JNTI

ALREADY ESTAB
LISHED?

FORM A RELA­
TIONSHIP IN

MEMJT
FIND THE MATRIX

BANDWIDTH

WAS
THAT THE

LAST NODE
USING JNTH

A
TTHE

LAST NODE
SING JJT

Figure 41.--Flowchart for SETUP.! 7??

-118-

(START

SELECT A NEW
NODE TO BE

NODE NUMBER
ONE

INITIALIZE JOINT (NEW
NODE #'S WITH POS'N =
OLD #'S) & NEWJT (OLD

NODE #'S W/ POS'N = NEW)

INITIALIZE POINTERS AND
MAX DIFFERENCE BE­

TWEEN NODE1TS OF RE-^
LATED NODES (MAX) & 1=1

ASSIGN NEW #'S
TO ALL NODES

RELATED TO
NODE I

LOCATE RELATED
NODES IN THE
MEMJT ARRAY

ASSIGN NEW
NODE NUMBER

ODE BEEN
MBERE

9

WAS
THAT THE

LAST NODE?

DIFFERENCE BE­
EN NEW #'S OF RELATED

NODES > PREVIOUS
SCHEME MAX

STORE THE
MINIMUM
MAXIMUM
DISTANCE

SET MAX EQUAL
TO DIFFERENCETOP THIS NUMBERS

G SCHEME?

WAS
THATTHE\NO

LAST NODE?

Figure 42.«Flowchart for OPTNUM.F77.

-119-

Subroutine listing.
£**************************************^

C PROGRAM: Optimize the node numbering system of a mesh by minimizing C
C the difference between the node numbers of associated NUMNOD C
C PUBLISHED AS: Collins, R.J., 1973 C
C MODIFIED BY: Morris L. Maslia, The United States Geological Survey C
C SECONDARY MODIFICATION BY: Robert Lowther, same C
C SUPERVISION OF SECONDARY MODIFICATION BY: Eve L. Kuniansky, same C
£********************************^

SUBROUTINE OPTIMIZE

INCLUDE Variables'

common/bzone/jnt(25000)^temrX250002),nodloc(1,3)
common/acsolv/jmem(25000),memjt(225000)
common/gener/coord(25000,3)JT(25000,12),mauio(25000),
&shape(12) JSTMNOD.NMEL .nnode.ndime
character*60 freadJFREADl
data ncr.npr.NCR 1/50,60,707

renumber NUMDOD to obtain optimal bandwidth c

FREAD = Tilencd'
FREAD1 = Tileecd1
NMNOD = NUMNOD
NMEL = NUMEL
open (unit=ncr,file=fread)
OPEN (UNIT=NCR1,FILE=FREAD1)
open (uiu't=npr,file=rprint)
open (unit=30,file='numbrsr)

c read coordinate file and element connection file
do 10 i=lJSTMNOD
read (ncr,*) j,coord(j,l),coord(j,2)

10 continue
do30i=l,NMEL
read (NCR1,*) K,(JT(Kj), j=l,3)

30 continue

WRITE (30,*) NMNOD
WRITE (30,*) NMEL
CLOSE (30)

ncn= 3
it = 0
iend = 0
WRTTE(NPR,1070) NMNOD

1070 FORMAT (/,10X,The mesh has' J6,1 nodes.',/)
WRITE(NPR,1071) NMEL

1071 FORMAT (/.lOX.'The mesh has 'J6,1 elements. 1,/)

-120-

- c

do 9000 kkk=l,maxi to­
il =it+l
call setup(NMNOD^MEL,ncn JDIFF)
call optnum(NMNOD,IDIFF^ninmax4end)
write(npr,1072) it

1072 format(/,10x,'***** OPTIMIZATION ITERATION NO.'iS,' *****',//)
if(iend .gt 0) write(npr,1073)

1073 format(/,10x,'further bandwidth reduction not possible ! ! ! ! ! 'J)
write(npr,1074)IDIFF,minmax

1074 formatC/lOx.'original bandwidth = 4 10/
1 10x,'bandwidth after renumbering =',i!0)
if(iend .gt. 0) go to 9500

do 1005 i=l,NMNOD
xtemp(i,l)=coord(i,l)

1005 xtemp(i,2)=coord(i,2)
do2005i=l,NMNOD
jr=jnt(i)
coordGr,l)=xtemp(i,l)

2005 coord(jr,2)=xtemp(i^)
do3005i=l,NMEL
do4005j=ljicn

4005 nodloc(lj)=JT(ij)
do5005j=l,ncn
jj=nodloc(lj)
if(jj .eq. 0) go to 5005

JT(ij)=jr
5005 continue
3005 continue

if(it .eq. maxitr) go to 9500

9000 continue

9500 continue
rewind(ncr)

write(npr;(i5,2fl5.3)')i,(coord(io)o=l,2)
write(ncr,'(i6,2fl5.2)t)i,(coord(io)o=l,2)

50 continue
rewind(ncrl)
do60i=l,NMEL
write(npr;(3i5)') (JT(ij)j=l,3)
write(ncrl,'(4i6)t) i,

60 continue

CLOSE (NPR)
CLOSE (NCR)
CLOSE (NCR1)
RETURN
end

-121-

subroutine setup(NMNOD,NMEL,NCN,idiff)

C

c
c
c
c
c
c
c
c
C -

generates array memjtjmem

idiff = maximum banwidth
jt = node connection matrix
jmem = vector containig the number of NUMDOD to whicfh any one node

connected
memjt = vector containing identities of all NUMDOD

c
c
c
c
c
c
c
c
c

subroutine setop(NMNOD,NMEL,NCN,idiff)

common/bzone/jnt(25000)^temp(25000^)^odloc(1,3)
common/acsolv/jmem(25000),memjt(225000)
common /gener/coord(25000,3) jt(25000,12),matno(25000),
&shape(12),npdum,nedum,nndum,nddum

initialise idiff and jmem

idiff=0
dolOj=l,NMNOD

10jmem(j)=0

consider each element in turn

c
- c

do60j=l,NMEL
do50i=l,NCN
jnti=jt(j4)
if(jnti.eq.O) go to 60
jsub=(jnti-l)*8

do40ii=l,NCN
if(ii.eq.i) go to 40

20
30

if(jjt.eq.O) go to 50
meml=jmem(jnti)
if(meml.eq.O) go to 30
do20iii=l,meml
if(memjt(jsub+iii).eq.jjt) go to 40
continue
jmem(jnti)=jmem(jnti)+l

jmemjn=jmem(jnti)
memjt(jsub+jmemjn)=jjt

-122-

if(iabs(jnti-jjt).gt.idiff)idiff=iabs(jnti-jjt)
40 continue
50 continue
60 continue

idiff=idiff+l
return
end

C C

c subroutine optnum(NMNOD,idiff,minmax) c

C C

c obtains optimum node numbering vectors jnt c
c c
c jnt = optimum node numbering vector c
c joint = vector containg the new node numbers, the locations in c
c this vector being equal to the old joint numbers c
c newjt = vector containg the old node numbers,their locations in c
c this vector being equal to the new joint numbers c
c i,ik = variables denoting new and old node numbers respectively c
c c
C _____ _____ ____ MMM _____ MM MM MMM MM M MM MM MMM«f* --- - - - ^

subroutine optnum(NMNOD,idiff,minmax,iend)

common/bzone/jnt(25000)^temp(25000^)Aiodloc(l,3)
common/acsolv/jmem(25000)^nemjt(225000)
common/adpara/newjt(25000)ooint(25000)
common /gener/coord(25000,3) jt(25000, 12),matno(25000),
&shape(12),npdum,nedum,nndum,nddum
data nprint/60/

minmax=idiff-l
iflag = 0
do60ik=l,NMNOD

C MM MM MMM M MM M M M M M M «.. M M M M M M MM M M M « M M M. M M M MM M « . « » « M __» M « __ « M.__ « » « « « »/^^..^

c initialise joint,newjt
C MM MM MM --____ MM MMMMMMMMM MM M M M __ M MM __ M . M M MM M M M M __ M MM M . M M M - ____ M -^

 k/

do20j=l^MNOD
joint(j)=0

20 newjt(j)=0
max=0
i=l
newjt(l)=ik
joint(ik)=l
k=l

30 jnw=newjt(i)
if(jnw.ne.O) k4=jmem(jnw)
ifGnw.eq.O) k4=0
if(k4.eq.0)goto45

-123-

jsub=(newjt(i)-l)*8
do40jj=l*4
k5=memjt(jsub+jj)
if(joint(k5).gLO) go to 40
k=k+l
newjt(k)=k5
joint(k5)=k
ndiff=iabs(i-k)
if(ndiff.ge.minmax) go to 60
if(ndiff.gLmax) max=ndiff

40 continue
if(k.eq.NMNOD) go to 50

45 i=i+l
go to 30

50 minmax=max
do55j=l,NMNOD

55 jnt(j)=joint(j)
iflag = iflag + 1

60 continue
minmax=minmax+1
nnode=NMNOD
if(iflag .eq. 0) iend = 1
return
end

Fortran Program FE-LABELP77

Description

thereby using the optimally renumbered mesh.This program uses FILENCD and FILEECD as input,
these files, it creates two output files, mesharc and mlabel (fig. 43). These output files
the input files. They are designed so that they can act as ASCII input files
thereby allowing the user to create ARC coverages based upon the Optimally renumbered model mesh

From
are simple rearrangements of

to ttie GENERATE command in ARC,

-124-

START

READ THE # OF
NODES & THE #
OF ELEMENTS

FROMEVEINFO

I
READTHENCD

DATA INTO
ARRAYS, XC AND

YC

READ THE NEXT
ELEMENT FROM

THE ECD FILE
-^

XCENTER = AVER­
AGE OF X VALUES
OF NODES & Y
CENTER IS SAME

I
WRITE THE ELE-
MENTtfANDTHE
CENTER PNT TO
THE LABEL FILE

i
WRITE THE ELEMENT #& THE
NODE & VERTICE COORDS TO

THE ELEMENT-INCLUSIVE
ARC FILE

WAS
NO/" THATTHE

LAST ELEMENT
9

Figure 43.-Flowchart tor FE-LABEL.F77.

-125-

Program listing

*PROGRAM FOR WRITING ASCII ARCS FILE IN FORMAT FOR ARC/INFO GENERATE
" COMMAND AND A LABEL FILE FOR THE POLYGON COVERAGE OF YOUR FINIT*
* ELEMENT MESH E. L. KUNIANSKY 12-18-87 *
* MODIFIED BY: ROBERT LOWTHER 8-15-90 *

COMMON/C1/XC(100000)
COMMON/C2/YC(100000)
REAL*8 XC.YC
CHARACTER*30 FILEN, FILEE, FILEA, FILEL

OPEN (9,file ='eveinfo',status ='OLD',recl =60)
101 FORMAT (Fl 5.3)
102 FORMAT (A)

READ(9,*) NNODE
READ(9,*)NELEM
FILEN = 'filencd1
FILEE = 'fileecd'10 FORMAT(A30)
READ(9,102) FILEA
READ(9,102) FILEL

OPEN(10,FILE=FILEN)
OPEN(11 f ILE=FILEE)
OPEN(7JTLE=FILEA)
OPEN(8,FILE=FILEL)

DO100I=1,NNODE
READ(10,*)iJ,XC(jj),YC(jj)

100 CONTINUE
DO200J=1,NELEM
READ(11,*)JJ,N1,N2,N3
XCENTER=(XC(Nl)+XC(N2)+XC(N3))/3.
YCENTER=(YC(Nl)+YC(N2)+YC(N3))/3.
WRITE(8,40) JJ, XCENTER, YCENTER

J1 = 3*(J-1)+1
J2 = 3*(J-l)+2
J3 = 3*(J-l)+3
WRITE(7,50)J1
WRTTE(7,20) XC(N1),YC(N1)
WRITE(7^0) XC(N2),YC(N2)
WRITE(7,60) 'END1
WRITE(7,50) J2
WRITE(7,20) XC(N2),YC(N2)
WRITE(7,20) XC(N3),YC(N3)
WRITE(7,60) 'END1
WRITE(7,50)J3
WRITE(7^0) XC(N3),YC(N3)
WRITE(7,20) XC(N1),YC(N1)
WRITE(7,60) 'END1

200 CONTINUE
20 FORMAT(5X,2F15.3)
40 FORMAT(I5,2F15.3)
50 FORMAT(I5)

-126-

60 FORMAT(A3)
WRITE(8,60)'END1
WRTTE(7,60) "END1
END

REALF.NGTH AMT.

Description

Leakage from a streambed to an aquifer is proportional to the surface area of the streambed. If, for simplicity,
streams are assumed to be of uniform width, then leakage is proportional to, among other factors, the length of the
stream. The mesh generation process transforms all pertinent features in the study area into representative points.
Streams are translated into the points that form the sides of triangular elements. Therefore, in order to examine leakage
in the model, a part of the stream length must be associated with each point representing the stream. Because the
stream is SPLINEd at equal distances along its length, equal parts of the length may be assigned to each representative
point. This is the purpose of REALENGTH.AML. The lengths are written into the point cover's PAT as the item
"STRMLEIsf." The REALENGTH flowchart is shown in figure 44.

-127-

RUN
MAKEADDL.AMU
(FIG 45)

BUFFER STREAM
COVER AND
COUNT THE
STREAMS

IS
INPUT

OK?

PRINT
ERROR

MESSAGE

IS
ITAVAL

STREAM
UFFER?

SELECT NEXT
BUFFERED

YES
ADD.LENGTHS TO
SUM LENGTHS IN
WORKRLARC FOR

STREAM TOTAL
(FIG 46)

4

,
SELECT CORRE­

SPONDING STR*4 &
CREATE WORKRL­
ARC WITH ITON|LY

<

T
CREATE INDIVBUF
WITH ONLY THE

SELECTED
BUFFER AREA

SELECT CORRE­
SPONDING NODES
FROM NODE COV.
WITH INDIVBUF

FIND THE
NUMBER OF
ARCS IN THE

STREAM

MAKE AN ASCH
LIST, BIGLIST, OF
FROM & TO

IN WORKRLBIG

j i, \-/r ^^^NODES *~~

CREATE A POINT
COVER, WORKILL-

PNTFROM
WORKRLBIG

HOWMANY.F77 TQ
COUNT THE # OF

OCCURANCES OF
NODES IN BIGLISH

(FIG 47)

RELATE THE # OF
CONNECTIONS TO
PNTS IN BIGPNT

WITHTHATMAl^fY

a. logic which selects a stream and prepares it for length assignment
Figure 44.--Flowchart for REALENGTH.AML.

-128-

FIND THE STREAM
SEGMENT LENGTK

I
UNSPLITTHE.
STREAM INTO
WORKRLBIG

BUFFER BIGPNT,
THE RELATED
POINT COVER

RELATE POINTS TO BUFFERS AND ADD
ITEM TO BUFFERS TO INDICATE THE
NUMBER OF ARCS LINKED TO THE

CORRESPONDING NODE

i
ADD ITEM TO BIG-
PNT TO INDICATE

[TO WHICH BUFFER
IT CORRESPONDS

IDENTITY NODE COVER WITH
BIGPNT.BUF TO SHOW THE #
OF ARCS ASSOCIATED WITH

END OR INTERSECTION PNTS

 *
MAKE ASCII FILE, RCINFODAT,
W/ SEGMENT LENGTH, NODES
IN STRM & # OF ARCS ASSOC
W/ END OR INTERSECT. PNTS

CREATE AN INFO
FILE BASED

UPONLENSTORE

YES
WAS

THAT THE
LAST

TREAM2

ORGANIZE.F77 TO
LJPD ATE ASCH FILE
.ENSTOREW/THIS
STRM PTS' ASSOC
LENGTHS (FIG 48)

RELATE THE
INFO FILE TO THE

NODE COVER)
b. logic which assigns lengths to streams

Figure 44.~Flowchart for REALENGTH.AML-continued.

Program Listing

/* MACRO: Associate the nodes in a node cover with the length of the
/* surrounding section of stream
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

VARIABLE LIST:
DTYPE: The graphic display terminal type

RLARC: The name of the input stream cover
SNAD: The snap distance used on the stream cover

MSNOD: The name of the point cover created using all of the features
BUFD: The buffering distance used around the stream points

RLBUF: The buffered version of the stream cover
/* RLBUFPAT: The PAT for RLBUF
/* RLBUFAAT: The AAT for RLBUF

INFOFIL: The file, RCINFODAT, complete with path name
MSNODINT: The internal ID for MSNOD

MSCAPS: MSNOD, capitalized
MSPAT: The PAT for MSNOD

NUMBUFS: The number of streams in the cover

r
/*
/*
/*
/*

r/*

/*
/*
/*
/*
r

-129-

/* CURRBUF: The stream buffer currently being considered
/* CURRMKR: A marker indicating the current buffer
/* INSID: A variable indicating whether or not current buffer is valid
/* INDIVBUF: A copy of the buffered stream cover w/only the current buffer
/* WORKRLARC: A copy of the stream file with only the current stream
/* LENGTH: The overall stream length
/* WORKMSNOD: A copy of the point cover w/only points from the current stream
/* SEGLEN: The length of a section of a stream
/* WORKRLBIG: A unsplit copy of the stream cover
/* BIGPNT: The points taken from WORKRLBIG
/* BIGLIST: An ASCII file containing the # of arcs and a list of all nodes
/* THATMANY: An ASCII file containing each node & the # of times it is a
/* from or to node in the stream AAT
/* MANY: An INFO file version of THATMANY
/* PNT-ID: The ID of the point in THATMANY
/* NOLINKS: The number of arcs which a node connects
/*BIGPNT.BUF: A buffered copy of BIGPNT
/* WHICHBUF: An indicator of which buffer goes around each point
/* IDDPNT: A copy of BIGPNT with a specification of which buffer
/* is around each point
/* IDDMSNOD: A copy of WORKMSNOD with the # of links tc each nod^
/" TEMPORARY: A temporary copy of lenstore used as an input to ORGANIZE
/* LENSTORE: The ASCII file used to store the river nodes and their

associated links until each river has been considered
NODID: The user ID for msnod
RULER: LENSTORE, complete with path name

CLOVIS: The INFO file version of LENSTORE
WICHNOD: The node number in CLOVIS
STRMLEN: The stream segment length in CLOVIS

&echo &off
&args dtype rlarc snad msnod

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test to see if all arguments are present as expected-O
&if [type %rlarc%] ne 1 &then &goto badentry
&if [type %snad%] gt 0 &then &goto badentry
&if [type %msnod%] ne 1 &then &goto badentry
&if [length %msnod%] eq 0 &then &goto badentry

/* -Prepare the error-indication file-M

-130-

&s i [delete coderr]
&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% 9]
&setvar i [close %filunit%]

/* -Define variables to be used-E
&setvar bufd %snad% * 0.6
&setvar rlbuf [translate %rlarc%].BUF
&setvar rlbufpat %rlbuf%PAT
&setvar rlbufaat %rlbuf%.AAT
&setvar infofil [pathname RCINFODAT]
&setvar noninfofil rcinfodat
&setvar msnodint [translate %msnod%]#
&setvar msnodid [translate %msnod%]-ID
&setvar mscaps [translate %msnod%]
&setvar mspat [translate %msnod%].PAT
&s i [delete nolen]
&s i [delete lenstore]

/* -Create the INFO program to be run-D
&r makeaddl

/* -Buffer the original input cover and determine the number of study areas-Y
&if [exists %rlbuf% -coverage] &then &goto nobuff
&severity &error &ignore
kill arccopy all
&severity &error &fail
copy %rlarc% arccopy
&r spleen %dtype% %bufd% 0 0 arccopy
buffer arccopy %rlbuf% # # %bufd% 40 line
kill arccopy all
&label nobuff
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT %rlbufpat%
OUTPUT %infofil% INIT
PRINT SNOREC
OUTPUT XXXNSP
QSTOP
&end
&cnd
&else
&do
&dataARC
INFO
ARC
SELECT %rlbufpat%
OUTPUT %infofil% INIT
PRINT SNOREC
OUTPUT XXXNSP
QSTOP
QUIT
&end

-131-

&end
&setvar filunit [open %noninfofil% openstatus -r]
&setvar numbufs [trim [read %filunit% rdstat]]
&setvar i [close %filunit%]
&s i [delete %noninfofil%]

/* -Prepare to progress through each buffer in the buffered cover-
&setvar currbuf 1
build %rlbuf% line
&severity &error &ignore
additem %rlbufpat% %rlbufpat% currmkr 4 4 i
&severity &error &fail
&s i [delete nolen]

&label begloop
remepf -prg -na -nq -nvfy

/* -Find the next buffered area-H
&setvar currbuf %currbuf% + 1
&if %currbuf% GT %numbufs% &then &goto endloop
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT %rlbufpat%
CALC CURRMKR = 0
RESEL FOR $RECNO = %currbuf%
CALC CURRMKR = 1
OUTPUT %infofil% INIT
PRINT INSIDE
OUTPUT XXXNSP
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %rlbufpat%
CALC CURRMKR = 0
RESEL FOR $RECNO = %currbuf%
CALC CURRMKR =1
OUTPUT %infofil% INIT
PRINT INSIDE
OUTPUT XXXNSP
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy

/* -Determine the validity of the selected area-O
&setvar filunit [open %noninfofil% openstatus -r]
&setvar insid [trim [read %filunit% rdstat]]

-132-

&setvar i [close %filunit%]
&s i [delete %noninfofil%]
&if %insid% ne 100 &then &goto begloop

/* -Isolate the selected area-U
&severity &error &ignore
kill indivbuf all
&severity &error &fail
dissolve %rlbuf% indivbuf currmkr poly

I* -Isolate the appropriate stream-R
&severity &error &ignore
kill workrlarc all
&severity &error &fail
intersect %rlarc% indivbuf workrlarc line 40
remepf -prg -na -nq -nvfy

/* -Find the stream segment lengths-
&s i [delete %noninfofil%]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
CALC $COMMA-SWITCH = -1
SELECT WORKRLARC.AAT
CALCULATE $NUM1 = 1
CALCULATE $NUM2 = 0
RUNADD.LENGTHS
OUTPUT %infofil% INIT
PRINT $NUM2
OUTPUT XXXNSP
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
CALC $COMMA-SWITCH = -1
SELECT WORKRLARC.AAT
CALCULATE $NUM1 = 1
CALCULATE $NUM2 = 0
RUNADD.LENGTHS
OUTPUT %infofil% INIT
PRINT $NUM2
OUTPUT XXXNSP
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy
&setvar filunit [open %noninfofil% openstatus -r]
&setvar length [trim [read %filunit% rdstat]]
&setvar i [close %filunit%]

-133-

&s i [delete %noninfofil%]

/* -Isolate the appropriate mesh nodes-S
&severity &error &ignore
kill workmsnod all
&severity &error &fail
intersect %msnod% indivbuf workmsnod point 40

/* -Find the number of mesh arcs in the area-O
&s i [delete %noninfofil%]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT WORKMSNOD.PAT
OUTPUT %infofil% INIT
PRINT $NOREC
OUTPUT XXXNSP
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT WORKMSNOD.PAT
OUTPUT %infofil% INIT
PRINT $NOREC
OUTPUT XXXNSP
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy
&setvar filunit [open %noninfofil% openstatus -r]
&setvar numarcs [trim [read %filunit% rdstat]] -1
&setvar i [close %filunit%]
&s i [delete %noninfofil%]

/* -Find the appropriate segment length-F
&setvar seglen %length% / 2
&setvar seglen %seglen% / %numarcs%

/* -Make an unsplit copy of the stream-T
&severity &error &ignore
kill workrlbig all
kill bigpnt all
&severity &error &fail
copy workrlarc workrlbig
ae
disp %dtype%
mape workrlbig
editc workrlbig
editf arc

-134-

drawe arc node
draw
select screen
&severity &error &ignore
unsplit none
&severity &enor &fail
save
Q
remepf -prg -na -nq -nvfy
build workrlbig line

/* -Create a derivative point cover and FORTRAN file-W
nodepoint workrlbig bigpnt
build bigpnt point
&s i [delete biglist]
&setvar biglist [pathname BIGLIST]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT WORKRLBIG.AAT
OUTPUT %biglist% INIT
PRINT SNOREC
PRINT FNODE#
PRINT TNODEtf
QSTOP
&end
&end
&else
&do
AdataARC
INFO
ARC
SELECT WORKRLBIG.AAT
OUTPUT %biglist% INIT
PRINT SNOREC
PRINT FNODE#
PRINT TNODE#
QSTOP
Q
&end
&end
remepf -prg -na -nq -nvfy

/* Use FORTRAN to create a list of nodes and number of occurances-A
&s i [delete thatmany]
&setvar dumarg DummY
&if .computer_type = 'prime' &then &sys r howmany
&else &sys howmany .out

/* Relate the FORTRAN output file to the point cover-R
&setvar thatmany [pathname THATMANY]
&severity &error &ignore
additem bigpntpat bigpntpat PNT-ID 5 5 i
additem bigpntpat bigpntpat NOLINKS 5 5 i

-135-

&severity &emor &fail
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT MANY
PURGE
Y
ERASE MANY
Y
DEFINE MANY
PNT-ID,5,5J
NOLINKS.5,5,1

GET %thatmany% COPY
SELECT BIGPNTPAT
CALC PNT-ID = BIGPNT-ID
SELECT MANY
RELATE BIGPNT.PAT by PNT-ID
CALC $1NOLINKS = NOLINKS
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT MANY
PURGE
Y
ERASE MANY
Y
DEFINE MANY
PNT-ID,5,5,I
NOLINKS.5,5,1

GET %thatmany% COPY ASCII
SELECT BIGPNTPAT
CALC PNT-ID = BIGPNT-ID
SELECT MANY
RELATE BIGPNT.PAT by PNT-ID
CALC $1NOLINKS = NOLINKS
QSTOP
QUIT
&end
&end

remepf -prg -na -nq -nvfy
dropitem bigpntpat bigpnt.pat PNT-ID

/* -Buffer the node file with only the endpoints & intersections as nodes-R
&severity &error &ignore
kill bigpnLbuf all
&severity &error &fail

-136-

buffer bigpnt bigpnt.buf # # %bufd% 40 point
build bigpntbuf poly

/* -Identify each buffer in the buffered cover-E
additem bigpntbuf .pat bigpntbuf.pat WICHBUF 5 5 i
additem bigpntbuf.pat bigpntbuf.pat NOLINKS 5 5 i
tables
SELECT BIGPNT.BUF.PAT
CALC WICHBUF = $RECNO -1
QSTOP
remepf -prg -na -nq -nvfy

/* -Identify each point by which buffer is around it-
&severity &error &ignore
kill iddpnt all
&severity &error &fail
identity bigpnt bigpntbuf iddpnt point 40
dropitem iddpntpat iddpnt.pat BIGPNT-ID
dropitem iddpntpat iddpnt.pat BIGPNTtf
dropitem iddpntpat iddpntpat BIGPNT.BUF-ID
dropitem iddpntpat iddpntpat BIGPNT.BUFtf
dropitem iddpntpat iddpnt.pat INSIDE

/* -Associate the number of links with the buffers-
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT IDDPNTPAT
RELATE BIGPNT.BUF.PAT by WICHBUF
CALC SlNOLDSfKS = NOLINKS
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT IDDPNTPAT
RELATE BIGPNT.BUFPAT by WICHBUF
CALC SlNOLDSfKS = NOLINKS
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy

/* -Identity the link-numbered buffer cover with the all stream point cover-
&severity &error &ignore
kill iddmsnod all
&severity &error &fail
identity workmsnod bigpntbuf iddmsnod point 40
dropitem iddmsnod.pat iddmsnodpat BIGPNT.BUF-ID
dropitem iddmsnod.pat iddmsnodpat BIGPNT.BUF^

-137-

dropitem iddmsnod.pat iddmsnod.pat WORKMSNOD-ID
dfbpitem iddmsnod.pat iddmsnodpat WORKMSNODtf
dfbpitem iddmsnod.pat iddmsnodpat %msnodint%
dropitem iddmsnod.pat iddmsnodpat INDIVBUF-ID
dropitem iddmsnod.pat iddmsnodpat INDIVBUF#
dropitem iddmsnod.pat iddmsnodpat INSIDE
dropitem iddmsnod.pat iddmsnodpat CURRMKR
dropitem iddmsnod.pat iddmsnodpat WICHBUF

/* -Make the node-river length-storage file that FORTRAN can read
&s i [delete %noninfofil%]
&severity &error &ignore
additem iddmsnod.pat iddmsnod.pat SEGLEN 4 4 i
Severity &error &fail
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
CALC SCOMMA-SWITCH = -1
SELECT IDDMSNODPAT
RESEL FOR $RECNO = 1
CALC SEGLEN = %seglen%
OUTPUT %infofil% INIT
PRINT SEGLEN
SELECT IDDMSNODPAT
PRINT $NOREC
PRINT %msnodid%,NOLINKS
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
CALC $COMMA-SWITCH = -1
SELECT IDDMSNODPAT
RESEL FOR $RECNO = 1
CALC SEGLEN = %seglen%
OUTPUT %infofil% INIT
PRINT SEGLEN
SELECT IDDMSNODPAT
PRINT $NOREC
PRINT %msnodid%,NOLINKS
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy
dropitem iddmsnod.pat iddmsnod.pat SEGLEN

/* -Assign lengths to the nodes-
&s i [delete temporary]
&severity &error &ignore
&if %.computer_type% = 'prime' &then &sys copy lenstore tempoiary

-138-

&else &sys cp lenstore temporary
&severity &error &fail
&s i [delete lenstore]
&if .computer_type = 'prime' &then &sys r organize %dumarg%]
&else &sys organize.out
&s i [delete temporary]
remepf -prg -na -nq -nvfy
&goto begloop

&label endloop

/* -Alter the mesh node file to add the stream segment lengths-
remepf -prg -na -nq -nvfy
&setvar nodid [translate %msnod%]-ID
&setvar ruler [pathname LENSTORE]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT CLOVIS
PURGE
Y
ERASE CLOVIS
Y
DEFINE CLOVIS
WICHNOD.7,7,1
STRMLEN,15,15,N,3

GET %ruler% COPY
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT CLOVIS
PURGE
Y
ERASE CLOVIS
Y
DEFINE CLOVIS
WICHNOD.7,7,1
STRMLEN, 15,15,N,3

GET %ruler% COPY ASCII
QSTOP
QUIT
«feend
&end
remepf -prg -na -nq -nvfy
&severity &error &ignore
dropitem %mspat% %mspat% STRMLEN
additem %mspat% %mspat% STRMLEN 15,15,N,3

-139-

additem %mspat% %mspat% WICHNOD 7,7,1
&severity &error &fail
remepf -prg -na -nq -nvfy
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
SELECT %mspat%
CALC WICHNOD = %nodid%
SELECT CLOVIS
RELATE %mspat% BY WICHNOD
CALC S1STRMLEN = STRMLEN
QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
SELECT %mspat%
CALC WICHNOD = %nodid%
SELECT CLOVIS
RELATE %mspat% BY WICHNOD
CALC $1STRMLEN = STRMLEN
QSTOP
QUIT
&end
&end
remepf -prg -na -nq -nvfy

/* -Clean up the files-
&severity &error &ignore
dropitem %mspat% %mspat% WICHNOD
&s i [delete lenstore]
&s i [delete temporary]
&s i [delete nolen]
&s i [delete biglist]
&s i [delete rcinfodat]
&s i [delete thatmany]
kill iddmsnod all
kill bigpnt all
kill bigpntbuf all
kill iddpnt all
kill indivbuf all
kill %rlbuf% all
kill workmsnod all
kill workrlarc all
kill workrlbig all
&severity &error &fail

/* -Prepare the error-indication file-
As i [delete coderr]
&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% noerr]

-140-

&setvar i [close %filunit%]

&goto quitit
&label badentry

/* -Print the error message-
&type Usage: REALENGTH <display typexoriginal length stream cover(existing)>
&type <minimum distance between derivative stream cover
&type points> <derivative stream point cover (existing)>

&label quitit
&type End of REALENGTH

MAKEADDL.AML

Description

This macro creates the INFO program "ADD.LENGTHS." Because it is cumbersome to copy INFO
programs whenever the mesh generation programs are copied, MAKEADDL.AML rebuilds ADD.LENGTHS
whenever REALENGTH.AML is run. Its flowchart is in figure 45.

C START

ERASE ANY OLD
COPIES OF INFO

PROGRAM,
ADD.LENGTHS

1
CREATE THE NEW
COPY OF THE

PROGRAM, ADD.
LENGTHS (FIG 46)

C STOP j

Figure 45.»Flowchart for MAKEADDL. AML.

-141-

Program listing

/* MACRO: Create the INFO program, ADD1ENGTHS to total illl arc lengths
I* in a cover
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST
/* $NUM1: The counter indicating the current arc
/* $NOREC: The total number of arcs
/* $NUM2: The total of all arc lengths
/* LENGTH: The length of a particular arc

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show ^workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime

&end
&else

&do
&s ,computer_type unix

&end

/* -Delete any old copy of the program and create a new copy-H
&if %.computer_type% = 'prime1 &then
&do
&data ARC INFO
&severity &error &ignore
ERASE ADD.LENGTHS
Y
&severity &error &fail
PROGRAM ADD.LENGTHS
DO WHILE $NUM1 LE $NOREC
SELECT WORKRLARC.AAT
RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUM1 = $NUM1 + 1
DOEND

QSTOP
&end
&end
&else
&do
&dataARC
INFO
ARC
&severity &error &ignore
ERASE ADD.LENGTHS
Y

-142-

&severity &error &fail
PROGRAM ADD.LENGTHS
DO WHILE $NUM1 LE $NOREC
SELECT WORKRLARC. AAT
RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUM1 = $NUM1 + 1
DOEND

QSTOP
QUIT
&end
&end

Info Program ADD.LENGTHS

Description

This INFO program totals the lengths of all arcs that compose a given stream (fig. 46). This total, the total
length of the stream, is used as an input to REALENGTH.

(START)

£
SELECT NEXT ARC

I
ADD ARC LENGTH
TO TOTAL LENGTH

WAS
THAT THE
LAST ARC?

Figure 46.~Flowchart for ADD.LENGTHS.

-143-

Program listing

PROGRAM ADD.LENGTHS
DO WHILE $NUM1 LE $NOREC
SELECT WORKRLARC. AAT
RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUM1 = $NUM1 + 1
DOEND

Fortran Program HOWMANYP77

DescriDtion

The length assigned to a particular node of a stream is equi
and each of the midpoints between that node and the two nearest nodes
While nodes in the middle of a stream will all be assigned the same length
length), nodes at the ends of streams and nodes at stream intersections
assigned is an integer multiple of the basic segment length, dependent on the number of arc
question. Ends of streams will only represent one segment length,
branches will represent three segment lengths.

alent to the sum of stream lengths between a node
Each of these lengths is a segment length,

(tvyo times the aforementioned segment
will be assigned different lengths. The length

connections to the node in
and nodes at the intersection of three stream

HOWMANY.F77 determines the number of arcs connected to each node (fig. 47). It takes the arc cover input
and creates a list, organized by node, of the arc connections. This list is written to an ASCII file which
REALENGTH.AML can read.

-144-

C START J^

INITIALIZE THE
OUTPUT ARRAY
TO ALL ZEROES

READ THE NEXT
INPUT NODE

NODE
ALREADY IN
OUTPUT

RAY

ADD NODE TO
OUTPUT ARRAY
WITH ONE
CONNECTION

ADD ONE TO THE
NUMBER OF

CONNECTIONS TO
THE NODE

A
THAT THE

LAST NODE IN
THE INPUT

FILE?

WRITE THE
OUTPUT ARRAY
TO THE OUTPUT
FILE, THATMANY

STOP

Figure 47.--Flowchart for HOWMAN Y.F77.

-145-

Program listing

i

C PROGRAM: Determine the number of arc connections for each node in the C
C input stream C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

PROGRAM HOWMANY

C VARIABLE LIST:
C
C IJ: Counter variables
C OLIST: Array containing the output list of nodes and # ofcormections
C NUMO: The total number of nodes in the output file
C NOD: A given node number
C OFND: Indicates that the given node has been found in theoutputfile

COMMON/C1/OLIST(999,2)

INTEGER IJ,OLIST,NUMO,NOD,OFND

100 FORMAT (215)

C Open the input and output files C
OPEN (7,FILE= 'biglist')
OPEN (8,FILE= 'thatmany')

-C

READ (7,*) NUM

C Initialize the output array-
DO 10,1=1,999
OLIST(I,1) = 0
OLIST(U) = 0

10 CONTINUE

C Read a node from the input file-
NUMO = 0
DO20,I=lJSfUMI*2
OFND = 0
READ (7,*) NOD

C Check the output file: if found, add one to the node's total ccnnectionsC
DO30,J=1,NUMO
IF (OLIST(J,1) .NE. NOD) GO TO 30
OFND = 1
OLIST(J,2) = OLIST(J,2) + 1

30 CONTINUE

C If node not in output array, write it & increase the array's not e totalC

-146-

C
C
C
H
S
C
C

IF (OFND JEQ. 1) C3O TO 20
NUMO = NUMO+1
OLIST(NUMO,1) = NOD
OLIST(NUMO,2)=1

20 CONTINUE

C -Write the output array to the output ASCII file --C
DO40,I=lJSfUMO
WRITE (8,100) OLIST(I,1),OLIST(I,2)

40 CONTINUE

C -Close all files- -C
CLOSE (7)
CLOSE (8)
END

Fortran Program ORGANIZEP77

Description

This program updates the ASCII file containing the node and associated length data (fig. 48). It reads the data
generated from streams in previous iterations from the file "TEMPORARY." It writes the input data and the current
stream data to the storage file, "LENSTORE." TEMPORARY is merely a copy of LENSTORE created as a
convenience just before ORGANIZE.F77 is called.

-147-

C QTA1?T A , ^
READ NUMBER OF
NODES IN CURRENT

STREAM FROM
RCINFODAT (FIG 44)

INITIALIZE THE
NODE &ASSOCIATEH
LENGTH ARRAY

DOES"NOLEN"
EXIST?

YES

NUMLEN, THE #
OF LENGTHS AL­

READY ASSIGNED
EQUALS NOLEN

READ LENGTHS
FOR NODES PREV.
ASSIGNED FROM

TEMPORARY

READ NEXT NODE
AND ASSOCIATE!
LENGTHS FROM

RCINFODAT

ASSOCIATED
LENGTH = TWO

TIMES THE
SEGMENT LENGTH

E
OF LINKS
EQUAL

0?

WRITE THE
ASSOCIATED

LENGTH TO THE
ARRAY

WAS
THAT THE
LAST NODE?

YES

c STOP
WRITE THE

ARRAY TO THE
ASCII FILE,
"LENSTORE"

Figure 48.~Flowchart for ORGANIZH.F77

-148-

NO SET INDEX
(NUMLEN) TO

ZERO

SSOCIATED
GTH = THE#

OF LINKS TIMES
SEGMENT LENGTH

NO

Program listin

C PROGRAM: Update the node-associated length file with currentstreaminfo C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

PROGRAM ORGANIZE

C VARIABLE LIST: H
C S
C NUMARC: The number of arcs in the current stream C
C NUMNOD: The number of nodes in the current stream C
C I: A counter variable C
C NOD: The current node number, and pointer for LENNOD C
C NOLINKS: The number of connections to a given node C
C SEGLEN: The length of a particular section of stream C
C LENNOD: The array containing the lengths associated w/ allstreamnodes C
C NODLEN: The input length, from TEMPORARY, associated with a node C
C DUMARG: A dummy argument C
C DOESIT: Indicates whether or not the file w/ the number of nodes w/ C
C associated lengths already exists H

COMMON/C1/LENNOD(25000)

INTEGER NUMARC Js[UMNOD4JvlODJvlOLINKSJWMLEN^IUM
DOUBLE PRECISION SEGLEN,LENNOD,NODLEN
CHARACTER DUMARG
LOGICAL*4 DOESIT

Ct Open the information, input and output files =====
' OPEN (SJFILE^'rcinfodat'.RECl^ 999)

OPEN (9,FILE= 'lenstore', RECL= 999)
OPEN (7 JTLE= 'temporary', RECL = 999)

101 FORMAT (F15.3)
102 FORMAT (17)
103 FORMAT (I7.F15.3)

C===Read the current stream section length & number of nodes;
READ (8,*) SEGLEN
PRINT *,'CURRENT STREAM SECTION LENGTH:',SEGLEN
RE AD (8,*) NUMNOD
PRINT *,TSfUMBER OF NODES IN THE CURRENT STREAM:'.NUMNOD

==Determine the number of nodes in the input file:
INQUIRE (FILE = 'nolen'JSXIST= DOESIT)
IF (DOESIT .EQV. .FALSE.) GO TO 12
OPEN (10,FILE= 'nolen')
READ(10,102) NUMLEN

-149-

12
GO TO 13
NUMLEN = 0

 Initialize the node/associated length array=
13 DO 10,1=1,25000

LENNOD(I) = 0
10 CONTINUE

PRINT ".MJMBER OF NODES ALREADY ASSIGNED IN THIS CO

=Read all previously assigned nodes into the array=
DO11,I=1,NUMLEN
READ (7,*) NOD.NODLEN
LENNOD(NOD) = NODLEN

11 CONTINUE

 Read the current stream and write lengths to the array====C
21 DO20,I=1,NUMNOD

READ (8,*) NOD.NOLINKS
NUMLEN = NUMLEN+1
IF (NOLINKS .NE. 0) LENNOD(NOD) = NOLINKS* SEGLIiN
IF (NOLINKS .EQ. 0) LENNOD(NOD) = 2*SEGLEN

20 CONTINUE

C===Write to the output files=

reR:',NUMLEN

PRINT *,TOTAL NUMBER OF NODES ASSIGNED:' JSIUM^EN
IF (DOESIT .EQV. .FALSE.) OPEN (10,FILE= 'nolen')
REWIND (10)
WRITE (10,102) NUMLEN
DO 30,1=1,25000
IF (LENNOD(I) .NE. 0) WRITE (9,103) IJJENNOD(I)

30 CONTINUE

C===Close all files==
CLOSE (8)
CLOSE (9)
CLOSE (7)
CLOSE (10)
END

REMODEL.AJ

Description

This macro is nearly identical to MODEL.AML (fig. 49).
be read by its Fortran program, REOPT.F77.
FUJEECD already exist It creates the same output coverages as
optimized, as MODEL.AML does, but makes this optional,
have been made to the FILENCD and FILEE
if optimization must not be performed so that the new files can in
when a one-layer model is expanded to mu
maintained.

It writes necessary data to an ASCII file that can
once FILENCD and

MODEL.AML. It does not force the input file to be
RE MODEL.AML is therefore useful if modifications

The macro is also useful
some way 1>e linked to the old files. This occurs

It re-optimizes the numbering system of a mesh

CD files and new output coverages are needed.

Itiple layers and the relations between the nodes of each element need to be

-150-

PRINT
ERROR

MESSAGE

WRITE INPUT COV,
MAX # OF ITERA­
TIONS & OUTPUT

FILETONESCDATA

RUNREOPT.F77
(FIG 50)

WRITE THE#OF
NODES, # OF ELE­
MENTS^ NAMES

TOEVEINFO

READ THE # OF
NODES & THE #Of\
ELEMENTS FROM

NUMBRS

RUNFE-LABEL.F77
(FIG 43)

GENERATE THE MESH
COVER WITH LINES
FROM MESHARC &

POINTS FROM MLABEL

GENERATE THE
LABEL PTSCOVEfl
W/POINTS FROM

MLABEL

GENERATE THE
NODE COVER W/

INFO FROM
FILENCDr

C STOP J

Figure 49.-Flowchart for REMODEL.AML.

-151-

Program Listing

/* MACRO: Optimize the Node Coordinate Data file and the Element Connection
/* Data file needed for modelling. Also, build a printable file
/* detailing the optimization of the nodes performed, and build ARC
/* files based on the re-labeled arc file, re-labeled label file,
/* and the re-labeled node coordinate data file.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky modified 11-09-92

/* VARIABLE LIST
I* MAXITR: The maximum number of optimizing iterations
/* FPRINT: The name of the printable file to be created
/* NNODE: The number of nodes in the input cover
/* NELEM: The number of elements in the input cover
/* MESH: The name of the mesh polygon cover with labels equal
/* to the element number
/* MESHLAB: The name of the point cover with point ID at the
I* center of each element labeled with the element nui Tiber
/* NODECRD: The name of the point cover whose ID equals the
I* node number
/* FILUNIT: The unit number of the data file, EVEINFO
/* EVEINFO: The data file used to pass data to FE-LABEL.F77
/* MESHARC: The output element arc file from FE-LABEL.F77
/* MLABEL: The output element node file from FE-LABEL.F77
/* FE-LABEL: The Fortran?? program which creates the basis for the outputs

&echo &off
&args maxitr nnode nelem rprint opt mesh meshlab nodecrd

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do

&s .slash >
&s .computer_type prime

&end
&else

&do
&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-O
&if [type %maxiir%] ne -1 &then &goto badentry
&if [type %rprint%] ne 1 &then &goto badentry
&if [type %opt%] ne 1 &then &goto badentry
&if [type %mesh%] ne 1 &then &goto badentry
&if [type %meshlab%] ne 1 &then &goto badentry
&if [type %nodecrd%] ne 1 &then &goto badentry
&if [length %nodecrd%] eq 0 &then &goto badentry

/* -Delete any old occurances of the reopt output files-M

-152-

&label beginit
&s i [delete vertices]

/* -Build the file which REOPT needs-E
&setvar cover = 'dummy'
&setvar filunit [open nescdata openstatus -write]
&setvar i [write %filunit% %cover%]
&setvar i [write %filunit% %maxitr%]
&setvar i [write %filunit% %fprint%]
&setvari [write %filunit% %nnode%]
&setvar i [write %filunit% %nelem%]

&if [close %filunit%] = 0 &then &type File written successfully.

&if %opt% = 'Y' &then
&do
&if %.computer_type% = 'prime1 &then &sys r reopt
&else &sys reopt.out

&end
&if %opt% = 'y1 &then

&do
&if %.computer_type% = 'prime' &then &sys r reopt
&else &sys reopt.out

&end
&if%opt% = 'YES'&then

&do
&if %.computer_type% = 'prime' &then &sys r reopt
&else &sys reopt.out

&end
&if %opt% = 'yes' &then

&do
&if %.computer_type% = 'prime' &then &sys r reopt
&else &sys reopt.out

&end

&label go_on
/* -Read the file created by Optimize which is necessary to create the
/* output coverages-D
&setvar filunit [open numbrs openstatus -r]
&if %filunit% ne 0 &then &setvar nnode [read %filunit% readstatus]
&if %filunit% eq 0 &then &s nnode [response 'How many nodes are there?1]
&if %filunit% ne 0 &then &setvar nelem [read %filunit% readstatus]
&if %filunit% eq 0 &then &s nelem [response 'How many elements are there?']
&setvar i [close %filunit%]

I* -Create the data file which FE-LABEL can read as input-Y
&setvar filunit [open eveinfo openstatus -w]
&setvar i [write %filunit% %nnode%]
&setvar i [write %filunit% %nelem%]
&setvar i [write %filunit% mesharc]
&setvar i [write %filunit% mlabel]
&if [close %filunit%] eq 0 &then &type File created successfully.

-153-

/* -Create the ASCII output files-
&if %.computer_type% = 'prime' &then &sys r fe-label
&else &sys fe-label.out

/* -Delete the FE-LABEL input data file-H
&s i [delete eveinfo]

/* -Delete any old occurances of the output coverages-O
&severity &error &ignore
kill %mesh% all
kill %meshlab% all
kill %nodecrd% all
&severity &error &fail

/* -Create the mesh polygon output cover-U
&if %.computer_type% = 'prime' &then
&do
generate %mesh%
input mesharc
line
input mlabel
point
q
&end
&else
&do
&data arc generate %mesh%
input mesharc
line
input mlabel
point
q
&end
&end
clean %mesh%
build %mesh% poly
build %mesh% line

/* -Create the label point output cover-R
&if %.computer_type% = 'prime' &then
&do
generate %meshlab%
input mlabel
point
q
&end
&else
&do
&data arc generate %meshlab%
input mlabel
point
q
&end
&end

-154-

build %meshlab% point

/* -Delete the ASCII output files-
&s i [delete mesharc]
&s i [delete mlabel]

/* -Create the node point output file-
&if %.computer_type% = 'prime' &then
&do
generate %nodecrd%
input filencd
&severity &error &ignore
point
&severity &error &fail
q
&end
&else
&do
&data arc generate %nodecrd%
input filencd
&severity &error &ignore
point
&severity &error &fail
q
&end
&end
build %nodecrd% point

&severity &error &ignore
&s i [delete nescdata]
&s i [delete numbrs]
&severity &error &fail
&goto endit

&label badentry
&type Usage: REMODEL <max # of optimizing iterations <# of nodes> <# of elements>
&type <name of output printedfiles(created)xshould the FILENCD and FILEECD files be
&type optimized? (y/n)> <output mesh polygon cover (created)>
&type <output label point cover (created)> <output node point
&type cover (created)>
&label endit

&type End of REMODEL

Fortran Program REOPT.F77

Description

This program is a shell used to call OPTIMIZE.F77 (fig. 50). It simply reads the ASCII file input from
REMODEL.AML and then calls OPTIMIZEJF77. When OPTIMIZEJF77 is finished running, REOPTJF77 returns
control to REMODEL.AML for the cover creation. It is run only from within REMODEL.AML.

-155-

START

INPUT NUMBER
OF NODES AND
ELEMENTS FROM
THE KEYBOARD

*
CALL

OPTMIZE.F77
(FIG 40)

C STOP j

Figure 50.--Flowchart for l^EOPT\F7

Prograin listing

C PROGRAM: Re-optimize the NCD and ECD files
C CODED BY: Robert Lowther
C SUPERVISED BY: Eve Kuniansky modified 11-09-92

PROGRAM REOPT

p****#***i ******** *********£
C VARIABLE LIST
C

ARGS: THE DUMMY
COVER: THE NAME OF THE COVER TO BE OPTIMIZED

MAXITR: THE MAXIMUM NUMBER OF OPTIMIZING ITERATIONS
FPRINT: THE NAME OF THE INFORMATION PRINTOUT FILE

NUMNOD: THE NUMBER OF NODES IN THE NODE CO VER
NUMEL: THE NUMBER OF ELEMENTS IN THE ARC COVER

ARGUMENT PASSED INTO AND OUT OF REOPT

C VARIABLES contains the common statements and correspond ling

-156-

C
C
C

C
C
C
H
S
C
C
C

C variable definitions which are used by the subroutines.

INCLUDE Variables'

character* 128 dum,nnstring,nestring

O===INPUT INFORMATION FROM NESCDATA=
OPEN (7,file ='nescdata1 ,status ='OLD' .reel = 60)

98 format (15)
100 FORMAT (A10)

RE AD (7,100) COVER
READ (7,*) MAXITR
READ (7,100) FPRINT
READ(7,*) numnod
READ(7,*) numel
CLOSE (7)

C===OPTIMIZE THE NODE NUMBERING SCHEME===
PRINT '"/Optimizing the node numbering scheme... 1

C OPTIMIZE uses the previous two routines1 output files as its
C input. They are read into input arrays, where calculations
C are performed on them. The output array is then written to
C a user-specified output file.

CALL OPTIMIZE

=EXIT THE PROGRAM=
BAD ='OK1

END

SNAPPY.AML

Description

This macro corrects a problem that exists in the ARC command SNAP. It deals only with point coverages,
otherwise operating in the same manner as SNAP (fig. 51).

SNAP, using the CLOSEST option, will SNAP to any point the point that lies closest, so long as that point is
within the SNAP distance. The problem with this command arises when two or more points are within the SNAP
distance of a specified point The closest point that the routine encounters will be SNAPped to the specified point first.
The point is moved to the specified point's location rather than deleted. This means that after the operation, two points
lie at the same location.

-157-

PRINT
ERROR
MESSAGE

YES

CREATE A
POINT COVER

WITH THE BUFFER
COVER LABEL PTS

I

FIND A "SMAL
DISTANCE

BASED ON TH
MAP SCALE

*
SNAP COVER

AT GIVEN
TOLERANCE

L"

-^

BUILD "SMALL"
BUFFERS AROU

THE POINTS

WE
ANY

LABELS
NAPP

9
NOW

Figure 51.-Flowchart for SNAPPY.AML

It is this overlaying of points that causes the problem. The second point lying
the specified point will not be SNAPped because the point that, due to SNAPping
point, is unquestionably the closest point. Hence, the second,
SNAP process will, therefore, leave all points except one that lie within the SNAP distance of the

within the SNAP distance of
, shares a location with the specified

led point. The
specified point.

furtto sr point wi 1 not SNAP to the specified point.

SNAPPY.AML corrects this by a recursive process. Aftei performirtg a SNAP on the input cover using a
normal, large SNAP distance, SNAPPY.AML creates very small (a relative term based on the cover's map scale)
BUFFERS around each of the points. Because the BUFFERing opt ration merges overlapping polygons, only one
BUFFER polygon is created wherever two or more points lie at the sftme location. SNAPPY.AML then creates a point
cover based on the polygon cover's polygon labels, labels that lie at the center of the BUFFER polygons and hence the
locations of the original points. SNAPPY.AML performs this entire process iteratively until no point is within the
SNAP distance of other points. This process is shown in figure 52.

-158-

a: Original cover b: Point cover with SNAP distances shown

c: Cover after one SNAP,
with multiple points and
an unSNAPped third point

formerly 1&2 from
1st generation cover)

formerly 3 from
1st generation cover)

d: The new, renumbered point cover with buffers
shown and duplicate points eliminated

(from 2nd
generation cover
shown in (d))

1 ftbrmerly 1&2 from
2nd generation cover
shown in (d))

e: The new cover after SNAPping,
with SNAP distance (buffer)
and new duplicate points shown

f: The final cover, with no duplicate
points remaining

Figure 52.~Diagram of the recursive process in SNAPPY. AML.

-159-

One further note is necessary concerning SNAPPY.AML. SNAPPY. AML, unlike the rest of the AML
programs, requires monitoring while it runs. It requires user input co; icerning tl ie effects of the SNAP command during
each iteration. The necessary information is printed by the system as a normal function of SNAP. This inconvenience
is necessary because we have not discovered how to access the output data from the SNAP command directly.

SNAPPY.AML KILLs the cover called "WEEBUF" at the beginning of its run. One common error in using
SNAPPY.AML is to use a map scale that causes ±Q BUFFERS that SNAPPY .AML creates to be too big and hence to
overlap each other. This will cause SNAPPY.AML to eliminate too many points in the cover.

s, thenIf the input cover contains approximately 10,000 or more points
Trying to create that many circles will overload the BUFFER command. One solution
SNAPPY.AML to SNAP the points, then UNGENERATE the point cover and
package to remove all duplicate points. GENERATE can be used to

SNAPPY.AML may not run correctly.
to this problem is to use

use a statistical or database software
return this file to an ARC/INFO cover.

Program Listing

/* MACRO: Take an input cover and use snapping as many times as necessaty
/* to eliminate all points which lie too close to other pcints.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The graphic display terminal type code
/* COV: The cover to be snapped
I* SKALE: The map scale, in feet, of the cover to be snapped
/* TOLERANCE: The maximum distance across which snapping may occur
/* DONE: The user response indicating whether or not further
/* snapping is necessary
/* WEEBUF: The cover containing very small buffered areas surrounding
/* each of the point locations from cov

&echo &off
&args dtype cov skale tolerance

/* -Prepare the error-indication file-C
&s i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 7]
&setvar i [close %filun%]

/* -Test the input to see if all arguments are present as expected-O
&if [type %dtype%] ne 1 &then &goto proceed
&if [len %dtype%] eq 0 &then &goto badentry
&label proceed
&if [type %cov%] ne 1 &then &goto badentry
&if [length %cov%] eq 0 &then &goto badentry
&if [type %skale%] ne -1 &then &goto badentry
&if [type %tolerance%] ne -1 &then goto badentry

/* -Eliminate unecessary coverages-M
&severity &error &ignore
kill weebuf all

-160-

&severity &enor &fail

/* -Establish a relatively "small" distance based on the map scale-E
&setvarbufdis %skale% * 0.001

/* -Snap the point cover and check to see if further snapping is necessary-D
&label ohlamour
ae
mape %cov%
disp %dtype%
editc %cov%
editf label
drawe label
draw
select screen
snapc %cov%
snapf label label
snapping closest %tolerance%
snap
&setvar done [response 'Does the above line say: 0 label(s) snapped?1]
save
q
&if %done% eq '¥' &then &goto endit
&if %done% eq 'y' &then &goto endit
&if %done% eq "YES" &then &goto endit
&if %done% eq 'yes' &then &goto endit

/* -Use buffers in order to remove multiple points with the same
/* location, a condition which prevents the SNAP command from
/* working properly-Y
remepf -prg -na -nq -nvfy
build %cov% point
&SEVERITY &ERROR &IGNORE
buffer %cov% weebuf # # %bufdis% 40 point
&SEVERITY &ERROR &FAIL
build weebuf point
kill %cov% all
copy weebuf %cov%
kill weebuf all
&goto ohlamour

/* -Print the error message-
&label badentry
&type Usage: SNAPPY <display typo <point cover to be snapped (existing)xmap
&type scale as if on a 24" plotter (ft)> <snapping toleranco
&goto enderr

&label endit
/* -Prepare the error-indication file-
As i [delete coderr]
&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

-161-

&label enderr
&type End of SNAPPY

SPLEEN.AML

Description

This macro is an extension of the ARC command SPLINE.
SPLINE. SPLEEN.AML will SPLINE up to 10 coverages in a singles run (fig. 5 3). Also, it allows up to three different
SPLINE distances. Multiple SPLINE distances require subareas of ithe cover tja be specified with polygon outlines.
These outlines should have identifying items. The general SPLINE distance applies to all areas not within either
subarea, while the two priority SPLINE distances apply to features lhat lie in the respective subareas. The highest
priority SPLINE area may lie within the higher priority SPLINE area.

The most common error in using SPLEEN.AML is to not c efme the rjolygon outlines properly, either by not
using polygon coverages or by not having an identifying item in thes cover's PAT.

In fact, its name represents a whimsical plural of

-162-

ENTER HIGHER
PRIORITY COVER
NAME AND IDEN­

TIFYING ITEM

THERE
GHESTPRIO

_ T _ _ THERE
NO^HIGHER PRIOR

IS
YES/THERE

HIGHER PRIO
ITYSP

9

PRINT
ERROR

MESSAGE

NO

ENTER HIGHEST
PRIORITY COVER
NAME AND IDEN­

TIFYING ITEM

PICK THE NEXT
COVER TO BE

SPLINED

GENERAL SPLINE
AREAS NOT IN

HIGHER OR
HIGHEST AREAS

IDENTIFY WITH
HIGHER AND

HIGHEST COVERS
IF NECESSARY

SPLINE THE HIGH­
ER ARE A WITH

THE HIGHER DEF­
INITION SPLINE

SPLINE THE HIGH­
EST AREA WITH

THE HIGHEST DEF
INITION SPLINE

YES /THAT THIiX NO
LAST INPUT

COVER?

Figure 53.»Flowchart for SPLEEN.AML.

-163-

	Program Listing

/* MACRO: SPLINE up to ten map coverages at up two three different
/* distances, in areas defined by polygonal outlines.
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The graphic terminal display type code
/* DIST1: The lowest priority (largest) splining distance
/* DIST2: The higher priority (smaller) splining distance
/* DIST3: The highest priority (smallest) splining distance
/* COV1-COV10: The names of the line coverages to be splined
/* MANY: Logical variable indicating that there is more tluin
/* one splining distance
/* THREE: Logical variable indicating that there are three
/* splining distances
/* OUTLINE: Name of the cover containing the outline of the
/* higher priority spline area
/* ITEM: Name in the outline PAT which indicates whether or
/* not an area is within the outline
/* OUTLINES: Same as outline for the highest priority area
/* ITEM3: Same as item for outline3
/* COV: The name of the cover currently being considered
/* COVD: The name of the intersection of a splining outline and cov

&echo «feoff
&args dtype distl dist2 distS covl cov2 cov3 cov4 cov5 cov6 covl

cov 10

/* -Test input to see if all arguments are present as expected-C
&if [type %dtype%] ne 1 &then &goto proceed
&if [length %dtype%] eq 0 &then &goto badentry
&label proceed
&if [type %distl%] ne -1 &then &goto badentry
&if [type %dist2%] ne -1 &then &goto badentry
&if [type %dist3%] ne -1 &then &goto badentry
&if [type %covl%] ne 1 &then &goto badentry
&if [length %covl%] eq 0 &then &goto badentry

&setvar many .FALSE.
&setvar three .FALSE.

cov8 cov9 ~

/* -If needed, obtain input concerning areas to be splined differently
&if %dist3% eq 0 &then &goto checktwo
&setvar three .TRUE.
&setvar outlines [response 'Enter name
&setvar item3 [response "Enter item name in PAT which designates this area']
&label checktwo
&if %dist2% eq 0 &then &goto spline
&setvar outline
tfesetvar item [response "Enter item name in PAT which designates

of polygon around smallest splined area']

[response "Enter name of polygon around smaller splined area1]

/* -Prepare the map coverages for splining at different lengths by

f-0

this area'

-164-

/* overlaying the necessary polygonal outlines-M
&label setcoverages
&setvar many .TRUE.
&do cov &list %covl% %cov2% %cov3% %cov4% %cov5% %cov6% ~

%cov7% %cov8% %cov9% %covlO%
&if [length %cov%] eq 0 &then &golo endll
&setvar covd %cov%d
&severity &error &ignore
ae
disp %dtype%
editc %cov%
editf arc
drawe arc node
draw
select screen
unsplit none
save
q
identity %cov% %outline% %covd% line 40
kill %cov% all
&if %three% eq .TRUE. &then identity %covd% %outline3% %cov% line 40
&severity &error &fail
&if %three% eq .FALSE. &then copy %covd% %cov%
kill %covd% all
&label endll
&end

/* -Spline the coverages-E
&label spline

&do cov &list %covl% %cov2% %cov3% %cov4% %cov5% %cov6% ~
%cov7% %cov8% %cov9% %covlO%

&if [length %cov%] eq 0 &then &golo realendloop
&setvar covd %cov%d
ae
mape %cov%
disp %dtype%
editc %cov%
editf arc
drawe arc
draw

/* -Do the general spline-D
select screen
&if %many% eq .TRUE. &then resel for %item% eq 0
&if %three% eq .TRUE. &then resel for %item3% eq 0
grain %distl%
&severity &error &ignore
spline
&severity &error &fail
&if %many% eq .FALSE. &then &goto endloop

/* -Do the higher priority spline-Y
select screen

-165-

resel for %item% eq 1
&if %three% eq .TRUE. &then resel for %item3% eq 0
grain %dist2%
&severity &error &ignore
spline
&severity &error &fail
&if %three% eq .FALSE. &then &goto endloop

/* -Do the highest priority spline-H
select screen
resel for %item3% eq 1
grain %dist3%
&severity &error &ignore
spline
&severity &error &fail
&label endloop
save
q

/* -Remove unecessary, added items from the coverages1 AAT's-O
&setvar covpat %cov%.aat
&if %many% eq .FALSE. &then &goto realendJoop
dropitem %covpat% %covpat% AREA
dropitem %covpat% %covpat% PERIMETER
&setvar dummy 1 %outline%#
&setvar dummy2 %outline%-ID
dropitem %covpat% %covpat% %dummyl%
dropitem %covpat% %covpat% %dummy2%
dropitem %covpat% %covpat% %item%
&if %three% eq .FALSE. &then &goto realendJoop
&setvar dummy 1 %outline3%#
&setvar dummy2 %outline3%-ID
dropitem %covpat% %covpat% %dummyl%
dropitem %covpat% %covpat% %dummy2%
&setvar dummy 1 %covd%#
&setvar dummy2 %covd%-ID
dropitem %covpat% %covpat% %dummyl%
dropitem %covpat% %covpat% %dummy2%
dropitem %covpat% %covpat% %item3%
&label realendloop
&end
&goto endit

/* -Error handling routine-U
&label badentry
&type Usage: SPLEEN <display terminal typo <general spline distance>
&type <smaller spline distance (or 0 if not using a smaller distance)>
&type <smallest spline dist (or 0 if not using a smallest distance)
&type <cover #1 name (existing)>{ {cover #2 name (existing) (... {covert
&type #10 name (existing)}

/* -End message-R
&label endit
&type End of SPLEEN

-166-

TRIANGLE.AML

Description

TRIANGLE. AML creates an ARC point cover based on coordinates calculated by the Fortran?? program,
TRIANGRID.F77 (fig. 54). ft allows the user to graphically enter the extent of the point cover by specifying points
in relation to any given background cover. The distance between points may be indicated graphically against the same
background or given numerically as part of the macro arguments. This information is stored in a file that can be read
byTRIANGRID.F77.

-167-

PRINT
ERROR

MESSAGE

DISPLAY
BACKGROUNP

COVER

I
GET CORNER

POINTS FOR GRID

GRAPHICALLY
INPUT SIDE
LENGTH

WRITE THE
CORNERS & THE
SIDE LENGTH

INFO TO EXTENTS

£
ORDER THE

CORNERS: LO\VEfl
LEFT FOLLOWED
BY UPPER RIGHT

RUN
TRIANGREXF77

(FIG 55)

CREATE A POINT
COVER BASED ON

GRIDPTS

c STOP

Figure 54.~Flowchart for TRLANGLE.AML

-168-

Program Listing

/* MACRO: Graphically input data for, and then run TRIANGRID, followed
/* by a conversion of TRIANGRID's output into a triangular mesh
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky
/* SECOND MODIFICATION BY: ELK 8-21-90
/* modified to run triangrid.out as &sys command not functiontaskELK031392

/* VARIABLE LIST:
/* DTYPE: The graphic display terminal type code
I* COVER: The name of the cover to be used as a background when
I* indicating the location of the grid and its point spacing
/* POIN: The name of the polygon cover into which the grid
/* SIDE: The length of a triangle side (put in decimal point).If side
/* is left blank (null), you can put it in from the screen
/* XI,Yl: The lower left rectangular boundary of the grid
/* X2,Y2: The upper right rectangular boundary of the grid
/*X3,Y3 & X4.Y4: The points defining the length of the triangle sides
/* LEN: The desired size of the triangle sides
/* FILUNIT: The file reference number of the TRIANGRID file

&echo &off
&args dtype cover side poin

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then

&do
&s .slash >
&s .computer_type prime
&s program triangrid jun

&end
&else

&do
&s .computer_type unix
&s program triangrid.out

&end

/* -Test input to see if all arguments are present as expected-O
&if [length %cover%] eq 0 &then &goto badentry
&if [length %poin%] eq 0 &then &goto badentry
&if [type %dtype%] ne 1 &then &goto proceed
&if [type %side%] gt 0 &then &goto badentry
&if [length %poin%] eq 0 &then &goto badentry

&label proceed
&severity &error &ignore
kill %poin% all
&severity &error &fail
&s i [delete extents]
&s i [delete gridpts]

-169-

&if [exists %poin% -COVER] &lhen kill %poin% all

/* -Use Arcplot to graphically input the extent and triangle
/* size length of the grid-M

arcplot
disp %dtype%
mape %cover%
arcs %cover%
&type Enter a corner coordinate for the desired grid area
&getpoint &map &cursor
&setvarxl %pnt$x%
&setvaryl %pnt$y%
&type Enter the opposite corner coordinate for the desired grid area
&getpoint &map &cursor
&setvar x2 %pnt$x%
&setvar y2 %pnt$y%
&if %side% ne 0 &then &goto skipthis
&type Enter two points defining the desired length of the triangle sides
&getpoint &map &cursor
&setvar x3 %pnt$x%
&setvar y3 %pnt$y%
&getpoint &map &cursor
Asetvar x4 %pnt$x%
&setvar y4 %pnt$y%
&label skipthis
q
&if %side% ne 0 &then &goto skipthistoo
&setvar len [invdistance %x3% %y3% %x4% %y4%]
&label skipthistoo
&if %side% ne 0 &then &setvar len %side%
&if %xl% < %x2% &then &goto cheeky
&setvar temp %xl%
&setvar xl %x2%
&setvar x2 %temp%
&label cheeky
&if %yl% < %y2% &then &goto getonwithyourlife
&setvartemp%yl%
Asetvar yl %y2%
Asetvar y2 %temp%
&label getonwithyourlife
&label enterlength

/* -Write the information to a file which can be read by TRIANGR[D-E
&setvar filunit [open extents openstatus -w]
&setvar i [write %filunit% %xl%]
&setvar i [write %filunit% %yl%]
&setvar i [write %filunit% %x2%]
&setvar i [write %filunit% %y2%]
&setvar i [write %filunit% %len%]
&if [close %filunit%] = 0 ~

&then &type File created successfully.

I* -Create the equilateral triangular grid points-D

-170-

&if %.computer_type% = 'prime' &then &sys r triangrid
&else &sys triangrid.out

&if %.computer_type% = 'prime' &then
&do
generate %poin%
input gridpts
points
quit

&end
&else

&do
&data arc generate %poin%
input gridpts
points
quit

&end
&end

build %poin% point
&goto endit

/* -Print error message- Y
&label badentry
&type Usage: TRIANGLE <display typo <background cover name(existing)><length
&type of side (0 to enter graphically)> <output point cover
&type name (created)>
&label endit
&type End of TRIANGLE

Fortran Program TRIANGRIDP77

Description

This program is an alternative to the GENERATE GRID command in ARC. Instead of generating a
rectangular grid, TRIANGRID.F77 creates points representing an equilateral triangular grid (fig. 55)? It reads the grid
extent and the triangle side length from the file created by TRIANGLE.AML. Because equilateral triangles do not
form a shape that will exactly overlay a rectangular extent, a new extent must be used. TRIANGRID.F77 calculates
the smallest extent into which equilateral triangles will fit precisely, and which contains the extent entered in
TRIANGLE.AML. It writes the output points to a file called "gridpts." This file can then be read by
TRIANGLE. AML program in order to create an ARC point cover.

Proram listin

C PROGRAM: Create equilateral triangular pattern of points C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C
C modified to run as a system call from the ami ELK 031392 C

-171-

c START READ INPUT
FROM EXTENTS

1
CALC THE NUMBER OF
ROWS & COLS OF TRI*

ANGLES BASED ON CQRJ
NERS AND SIDE LENGTH

CALC A NEW U.R. COR-
:^R THAT IS AN INTE­
GER # OF TRIANGLES

FROM THE L.L. CORNER

CALC THE NUMBER OF
COLUMNS FOR THE

PARLLELOGRAM

POINT TO THE LOWER
LEFT CORNER OF THE

PARALLELOGRAM

CALC NEW X BOUNDA­
RIES FOR PARALLELO­

GRAM CONTAINING THE\
DESIRED RECTANGLE &

HAVING THE SAME Y
BOUNDARIES

IS
PO

WITHIN THE OR
IG RECTAN,

GLE?

WRITE POINT ID
AND COORD­

INATES TO
GRIDPTS

SELECT NEXT
COLUMN, SAME

ROW

IS
THEPO

PAST END OF
COLUMN?

INCREMENT ROW
& SET COLUMN TC

ORIG X COORD
ONETRIANGL

IbrTRJANGROFigure 55.-Flowchart t<

PROGRAM TRIANGRID

C VARIABLE LIST: H
C S
C NUMX: The number of points in the parallelogram to be created C
C which lie along the X axis C
C NUMY: The number of points along the Y axis C
C IJ: counters C
C PTID: The identifying point number for each point C
C LLX: The lower left x-coordinate for the desired map area C
C LLY: The lower left y-coordinate H
C URX: The upper right x-coordinate S
C DRY: The upper right y-coordinate C
C SIDE: The desired length of each triangle side C
C CURX: The x-coordinate of the point currently being checked C
C CURY: The y-coordinate of the point currently being checked C
C OLLX: The x-coordinate just outside of the lower left C
C OLLY: The y-coordinate just outside of the lower left C
COURX&OURY: Similar to above for the upper right H

INTEGER NUMXJWMYJJ,PTID
REAL*8LLX^LY,URX,URY,SIDE,CURX,CURY,OLLX,OLLY,OURX,OURY

jn the output file:

OPEN (5 ,FILE= 'gridpts1 , STATUS^ 'NEW, ACCESS= 'SEQUENTIAL1,
C FORM= 'FORMATTED', RECL= 377JERR= 300)
open (64ile = 'extents', status='OLD',recl=: 60)

=Format statements:

104 FORMAT a7,2F15.3)
105 FORMAT ("ERROR OPENING GRIDPTS. PERHAPS IT ALREADY EXISTS.')
106 FORMAT (F15.3)
107 FORMAT CEND")

=Input the rectangular area boundaries:

PTID=1
READ (6,106) LLX
READ (6,106) LLY
READ (6,106) URX
READ (6,106) URY
READ (6,*) SIDE
NUMX = NINT((URX-LLX)/SIDE) + 1
NUMY = NINT((URY-LLY)/(SIDE*SIN(1.047197551))) + 1

C== Create a slightly larger rectangle with which to compare point coords=C

OURX = URX+1

-173-

OURY = URY + 1

C==Recalculate the upper right corner based upon the triangle side length=C

URX = LLX + (NUMX-1)*SIDE
URY = LLY + (NUMY-1)*(SIDE*SIN(1.047197551))

Calculate X boundaries for a parallelogram containing the rectangle==C

LLX = LLX - (URY-LLY)/TAN(1.047197551)
URX = URX -t- (URY-LLY)/TAN(1.047197551)

^====K.ecau;uiaic me uuniocr 01 points in me A direction-

NUMX = NUMX + NINT(((URY-LLY)/TAN(1.047197551)V

C Initialize and begin the point-creating loop=====

CURX = LLX
CURY = LLY
DO10,I=1,NUMY
DO20,J=1,NUMX

IF ((CURX .LT. OLLX) .OR. (CURX .GT. OURX)
C .OR. (CURY LT. OLLY) .OR. (CURY .GT. OURY)) GO '

C =-; Write the noint to the nutnut file r_.:j=..-i - : ̂=-5

SIDE)

PO301

r

_.. p

-==ZT= =f

WRITE (5,104) PTID,CURX,CURY
PTID = PTID+1

301 CURX = CURX + SIDE
20 CONTINUE

Increment the y-coordinate and reset the x-coordinate=

CURY = CURY + SIDE*SIN(1.047197551)
CURX = CURX - NUMX*SIDE + SIDE*COS(1.047197551

10 CONTINUE

C===Close the output file and return to the TRIANGLE AML

WRITE (5,107)
go to 11

300 print 105
11 stop

END

==C

-174-

SELECTED REFERENCES

American National Standards Institute, 1978, Programming language FORTRAN: American National Standards
Institute, X3.9-1978,18 ch.

Collins, R.J., 1973, Bandwidth reduction by automatic renumbering: International Journal for Numerical Methods in
Engineering, vol. 6, no. 3, p. 345-356.

Environmental Systems Research Institute, 1987, User guide ARC/INFO volume 1; the geographic information
system software: Environmental Systems Research Institute, Redlands, California, 438 p.

Kuniansky, EJL., 1990, A finite-element model for simulation of two-dimensional steady-state ground-water flow in
confined aquifers: U.S. Geological Survey Open-File Report 90-187,77 p.

Strong, Gilbert, and Fix, G.J., 1973, An analysis of the finite-element method: Prentice-Hall, Inc., Englewood-Cliffs,
NJ.,306p.

-175-

SUPPLEMENTAL DATA

-176-

J. Mesh Generation Procedure Quick-Reference Guide

PART ONE, SELECT IMPORTANT FEATURES

STEP 1.1: Decide what features are important to the model and create the necessary coverages.

STEP 1.2: Decide which features define areas in need of more detail and choose a model boundary.

PART TWO, GENERALIZE FEATURES

STEP 2.1: (a) Create buffers around point and/or line features or
(b) Define areas of greater detail with polygon outlines

(a) If the area is defined to be all space within some distance of certain
features (the basis):

COPY (name) (name).TEMP Make working copy of coverages defining
and all others the basis of the area

Use ARCEDIT to remove unwanted parts
of all the .TEMP coverages

APPEND DTAILAREA APPEND all parts of the area basis
together into one cover

(name).TEMP and all others coverages to be APPEND&d

BUILD DTAILAREA LINE BUILD the basis as a line

&R BUFFNSHINE BUFFER to create the
desired polygon outline
(Repeat to create as many outlines
from this basis as desired)

KILL (name).TEMP ALL & all others KILL all temporary coverages

(b) If the areas are defined by polygons already present in feature coverages:

COPY (name) (name).TEMP Make working copy of coverages defining
and all others the basis of the area

Use ARCEDIT to remove unwanted parts
of all the .TEMP coverages

APPEND DTAILAREA APPEND all parts of the area outline
together into one cover

(name).TEMP and all others coverages to be APPENDed

BUILD DTAILAREA LINE BUILD the outline as a line

-177-

&RMAKOUTLIN

KILL (name).TEMP ALL & all others

STEP 2.2: Define the study area with a model boundary

Make a polygon outline from the
appended coverages

KILL all temporary coverages

Use the same process as in step three, using MAKOUTLIN.AML rather than
BUFFNSH1NE.AML to create a polygon outline.

STEP 2.3: Generalize the line data by splining (SPLINE)

COPY (stream cover name) (stream
cover name).LEN

&R SPLEEN

STEP 2.4: Create archive copies

COPY (name) (1st three letters
of name).A and all others

covei
Make a full-deuiil copy of any stream

Use SIPLEEN.AML to SPLINE all line
coveiages. Usei the polygon outlines
defined in step Ihree

Use COPY to rrtake an archive copy of
all with the naming convention shown

STEP 2.5: CLIP all coverages with the model boundary

&R CLIPIT line coverages
&R CLIPIT point coverages

Use OLIPIT.AJilL, once for lines and
once for points,j to CLIP all with
the model boundary

STEP 2.6: Interactively edit each of the input model coverages

Use ARCEDIT to eliminate any short,
meaningless line segments created by
the CL/Pping process cif step 2.5

STEP 2.7: Create a grid of regularly spaced points

&R TRIANGLE
as many times as necessary
&R CLIPIT
as many times as necessary

APPEND and BUILD

Run 3nce for each size of grid desired

-178-

CLJF each grid with the model boundary
and CUP within or without each of the
polygon outlines created in step three

Combine the component grid coverages

PART THREE, GENERATE A MESH

STEP 3.1: Run KTTSINK.AML to finish the process

&R KITSINK Run KTTSINK.AML, which requires user
input at the beginning of its run and
a few minutes into its run

STEP 3.2: Run ELEVATE.AML to assign elevations to any features (optional)

&R ELEVATE Run ELEVATE.AML, which assigns
elevations to any points with the
specified identifying item. Requires
a cover of topographic map points

-179-

II. ^ Pmgram Description and Usage ^uick-Refiirence Guide

ARCPOTIN.AML

This macro automatically adds and then deletes the requisite items to co
ARCTIN commands. Optionally, if the ARCTIN command is used, i
output TIN.

Usage: ARCPOTIN <TTN command> <in_cover (existing)> <out_cover or
out_tin (created)> <type of input cover (point,line)>
{output polygon cover name if ARCTIN is used and a poly
cover is to be created from the out_tin (created)}

BUFFNSHINE.AML

ISHINE.AML BUFFERS coverages and adds an identifying ii em to the outputBUFFN
features from a second cover that fall within the BUFFERed areas o

iverages for use of the ARCPOINT or the
can create a line cover based on the command's

cover. It optionally will remove
the output cover.

Usage: BUFFNSHDSIE <name of cover to be BUFFERed (existing> <type o^
cover (line,point,poly)> <BUFFER distance> <name ol
item to be added to output poly cover to indicate
areas inside the polygon (created)> {cover whose
features lying within the output polygon are to be
removed (existing)} {cover type (line,point,poly)}
{display type}

CHICPOXAML

This macro creates an output point cover based upon the vertices oij an input point cover. It ensures a perfect match
between the input and output coverages by SNAPpmg the input arcs to the output points.

Usage: CHICPOX <display type> <input line cover(existing)> <maximum
distance output points might deviate from input arcs>

<output point cover (created)>

CLIPITAML

This macro will CLIP up to 10 coverages of the same type at a time,
inverse CUP (OUT). Optionally, it will BUFFER the CLIPpmg cover and
inside of the BUFFER region.

Usage: CLIPIT <display typo <CLIPping cover (existing)> <item denoting
area inside the CLIPping cover (existing)> <distance from
the edge within which features should be removed (or 0 i
no removal desired)> <type of coverages to be CLIPped (line,
point)> <cover #1> <in/out #!>....{cover #10} {in/out #10}

CLIPIT2.AML

This macro is used only within KITSINK.AML. It has no user applications.

It will perform either a normal CLIP (IN) or an
remove all input cover features that fall

-180-

ELEVATE.AML

This macro assigns elevations to points within a point cover. The points to which elevations are to be assigned should
be relatively near points taken from a topographic map that have known elevations.

Usage: ELEVATE <display type> <output cover to be elevated (existing)>
<output item indicating points to be elevated (existing)>
<output cover item to contain elevation (created)> <input
cover w/ elevation points near the points to be elevated
(existing)> <input item containing elevation (existing)>

FIXSNAPAML

This macro eliminates points that lie extremely close to other points in large point cover. These points typically lie so
close to the other points that they will not be affected by the SNAP command or by SNAPPY.AML.

Usage: FIXSNAP <display typo <point cover (existing)> <SNAPping tolerance>

FREUD AML

This macro simplifies the relation between an arc cover and the associated point cover. It causes the from- and to-
node numbers in the arc cover to correspond to the node numbers in the point cover.

Usage: FREUD <point cover with correct node numbers (existing)> <arc
cover whose from and to nodes are to be changed (existing)>

IDENTIFY AML

This macro adds user-specified identifying items to up to 10 coverages. Optionally, if the coverages are polygon
coverages, it will IDENTITY the 10 coverages with any specified cover, thereby identifying the regions of that cover.

Usage: IDENTIFY <type (point,line,poly) of coverages to have identifying
items added> <cover to have item added #1 (existing)>

<identifying item #1 (created)>... (cover to have
item added #10 (existing)} (item #10 (created)}

IDENTI2.AML

This macro is used only within KITSINK. AML. It has no user applications.

IDENTILOTS.AML

This macro BUFFERS up to 10 coverages, adds user-specified identifying items to each, and then optionally intersects
the coverages with a target cover.

Usage: IDENTILOTS <point cover to be identified by multiple others
(existing)> <minimum expected distance between points>

-181-

KITSINK.AML

This macro takes input coverages of all types, a model boundary, and a regularly spaced point grid, and creates an
output mesh with triangular elements.

Usage: KTTSINK <display typo <master feature pnt cover (created)>
<mapscale as if to plot on a 24" plotter (ft)>
<min distance between grid & feature pts> <master grid
(existing)> <cover w/ all points (created)>

<study area model boundary poly cover name (existing)>
<ilem name denoting area inside model boundary (existing
<min dist between interior and edge points>
<master point cover (created)> <root name for output
mesh and node coverages (created)> <max # of
optimizing iterations

MAKOUTLIN.AML

This macro creates a CL/Pping cover, complete with an identifying he
remove any interior arcs so that a multi-polygon input cover generates a single

Usage: MAKOUTLIN <input polygon cover (existing)> <output polygon outline
name (or '#' if not removing internal lines> <Is the
in_cover a BUFFER of another cover? (y/h)> <name to
designate the interior of the output cover (created)>

;m, from |any polygon cover. Optionally, it will
i-polygon output cover.

MODEL.AML

This macro takes an input polygon cover and creates the node coordinate data (NCD) and element connection data
(BCD) files, as well as three output coverages based on those files. MODEL./iML optimizes the node numbering of
the nodes in each element after it creates the NCD and ECD files.

Usage: MODEL <name of point cover on which to base model (existing)> <max
of optimizing iterations> <name of printed output file
(created)> <output mesh polygon cover (created)> <output
label point cover (created)> <output node point cover
(created)>

REALENGTH.AML

This macro takes the total length of a given, non-SPLJNEed stream ;md divides that length by the number of nodes in
the SPUNEed stream. Each node is given a "length"
stream.

and the sum of the nodal lengths equals the length of the original

Usage: REALENGTH <display type> <original length stream cowr (existing):
<minimum distance between derivative stream cover
points> <derivative stream point cover (existing)>

-182-

REMODEL.AML

This macro creates the output model coverages based on existing copies of the NCD and ECD files. It does not
mandate optimization, as MODEL. AML does.

Usage: REMODEL <max # of optimizing iterations <name of output printed
files (created)> <should the FILENCD and FILEECD files be
optimized? (y/n)> <output mesh polygon cover (created)>
<output label point cover (created)> <output node point
cover (created)>

SNAPPY.AML

This macro uses an iterative process to SNAP points in a point cover together. This process ensures that no points will
lie within the SNAP distance of any other points.

Usage: SNAPPY <display type> <point cover to be SNAPped (existing)> <map
scale as if on a 24" plotter (ft)> <SNAPping tolerance>

SPLEENAML

This macro SPLINEs up to 10 coverages at a time. Also, it allows the use of up to three different SPLINE distances
if there already exist polygon outlines to separate the areas of differing distances.

Usage: SPLEEN <display terminal typo <general spline distanco
<smaller SPLINE distance (or 0 if not using a smaller distance)>
<smallest SPLINE distance (or 0 if not using a smallest distance)>
<cover #1 name (existing)> {(cover #2 name (existing)}... {cover
#10 name (existing)}

TRIANGLE.AML

This macro creates a regularly spaced triangular grid of points. The extent of the grid as well as the point spacing may
be entered graphically.

Usage: TRIANGLE <display typo background cover name (existing)> <length
of side (0 to enter graphically)> <output point cover
name (created)>

-183-

Comoiline and Linking Fortran Programs on the Prime Svstem

On a PRIME minicomputer, all programs can be compiled using the "F77" command. The format for this
command is: "F77 (root name of '.F77 program)." This will generate a "(root name).BIN" output file. This binary
file can then be linked using the BIND command. For all programs except SUPJF77 and BLDMOD.F77 (and its
associated subroutines), the BIND command is very simple. The only tile which needs to be linked to the binary tile
is the standard FORTRAN library. This is done using the following format: "BIND -LO (root name) -LI."

inFor the SLIP.F77 and the BLDMOD.F77 programs, the PR ME systei
library also need to be linked. For SUPJF77, the command is: "fitt D -LO SLIP
Note that if the ARC/INFO system library is not in the same area as the program
in its name. For BLDMOD.F77, the format is very similar, but incluc es the subroutines
-LO BLDNCD -LO BLDECD -LO OPTIMIZE -LI VAPPLE -LI ARCLIB -LI

library, and the ARC/INFO system
-LI VAPPLB -LI ARCLIB -LI."

then the path to it must be included
It is: "BIND-LOBLDMOD

-184-

IV. Compiling and Linking Fortran Programs on a Unix System

On Unix systems, like the Data General, the Fortran compiler usually requires that the source code have a" .f'
suffix rather than the ".F77" suffix with which the programs are supplied. For this reason, the first step in compiling
on the DG is to rename all of the "P77" files to "(root name).f'

All programs except SLIPJ7 and BLDMOD.F and its subroutines are compiled and linked in the same step.
This is accomplished with the following command: "ghf77 (full name, including '.f suffix) -o (root name).out." For
SLIPJF and BLDMODJF, "make files" are used to compile and link. These are called "MAKESLIP" and
"MAKEBLDMOD." Each will require a slight modification before it is run. Early in the make file, there are two lines
that begin with "SOURCELOC" and "ESRILOC." These paths must be changed to reflect the current path in which
the source programs and the ARC/INFO libraries reside. Once this is done, the command to compile and link each is
"make -f make file name (either MAKESLIP or MAKEBLDMOD)."

MAKESLIP

Makefile for compiling SLIP which is a fortran program for Freud.AML that
calls subroutines from the ARC/INFO system libraries
Modified by Kuniansky 4-6-92 from a makefile by Orzol and McGrath, USGS 1991
for their modules that interface ARC/INFO with the
MacDonald and Harbaugh ground-water flow model

Define the libraries
(modify the variables SOURCELOC and ESRILOC for your machine paths)

SOURCELOC = /arc_users/rlowther/meshtools/test/
ESRILOC = /usr/arc/esri/source/arc50/
PROGRAM = slip

#
Define all object files which make up your programs
(Put any of your own object codes here for your future programs)

OBJECTS=\
$(SOURCELOC)slip.o

SOURCES=$(OBJECTS:.o=.f)

Define the ARC and system libraries

ARCLIBS = $(ESRILOC)lib/aciib.a $(ESRILOC)lib/arclib.a
SYSLIBS= -1X11 -leditread -Icurses

APBD=\
$(ESRILOC)ctxsys/aptxLo \
$(ESRILOC)clnsys/aplin.o \
$(ESRILOC)cmksys/apmrk.o \
$(ESRILOC)cshsys/apshd.o

ADBD=\
$(ESRILOC)addsys/adcmin.o \
$(ESRILOC)addsys/isint.o

-185-

ARCBD=\
$(ESRILOQarcio/*bd.o \
$(ESRILOQdgintf/dgbd.o \
$(ESRILOQdvisys/dvibd.o \
$(ESRILOQaexil/aexblk.o \
$(ESRILOC)bitsys/bitblk.o \
$(ESRDLOQttsysAtbd.o \
$(ESRILOC)p23sys/p23bd.o \
$(ESRILOC)csys/cmode.o \
$(ESRILOQisp/infxin.o \
$(ESRILOQwrksys/wrkbd.o

AMLBD=\
$(ESRILOC)aml/amlbd.o \
$(ESRILOC)aml/dirbd.o \
$(ESRILOC)aml/funbd.o \
$(ESRILOQaml/kfilbd.o \
$(ESRILOC)aml/pgtbd.o \
$(ESRILOC)aml/srcbd.o \
$(ESRILOC)aml/uflbd.o \
$(ESRILOC)smgsys/curbd.o \
$(ESRILOC)smgsys/mxlbd.o \
$(ESRILOC)smgsys/smlbd.o \
$(ESRILOQsmgsys/smlsysx.o \
$(ESRILOC)smgsys/smgbd.o

Define the Fortran compile flags

FFLAGS= -g

Define Task Function Program bldmod

all: slip

Define what slip is

slip:$(OBJECTS)\
$(APBD)\
$(ADBD)\
$(ARCBD)\
$(AMLBD)\
$(ARCLIBS)
-f77 $(FFLAGS) -o slip.out\
$(OBJECTS)\
$(APBD)\
$(ADBD)\
$(ARCBD)\
$(AMLBD)\
$(ARCLIBS) \
$(SYSLIBS)

slip object codes

slip.o: slip.f
ghf77 $(FFLAGS) -c slip.f

-186-

Define Module fortran

all install: $(OBJECTS)

object: $(OBJECTS)

end

MAKEBLDMOD

Makefile for compiling BLDMOD which is a fortran program that
calls subroutines from the ARC/INFO system libraries
Modified by Kuniansky 3-25-92 from a makefile by Orzol and McGrath, USGS
#1991, for their modules that interface ARC/INFO with the
MacDonald and Harbaugh ground-water flow model

Define the libraries
(modify the variables SOURCELOC and ESRILOC for your machine paths)

SOURCELOC = /arc_users/rlowther/meshtools/test/
ESRILOC = /usr/arc/esri/source/arc50/
PROGRAM = bldmod
#
Define all object files which make up your programs
(Put any of your own object codes here for your future programs)

OBJECTS =\
$(SOURCELOC)bldmod.o\
$(SOURCELOQbldncd.o\
$(SOURCELOC)bldecd.o\
$(SOURCELOC)optimize.o

SOURCES=$(OBJECTS:.o=.f)

Define the ARC and system libraries

ARCLIBS = $(ESRDLOC)lib/aclib.a$(ESRtt,OC)lib/arclib.a
SYSLIBS= -IXll-leditread-lcurses

APBD=\
$(ESRILOC)ctxsys/aptxt.o \
$(ESRILOC)clnsys/aplin.o \
$(ESRILOC)cmksys/apmrk.o \
$(ESRILOC)cshsys/apshd.o

ADBD=\
$(ESRa.OC)addsys/adcmin.o \
$(ESRtt,OC)addsys/isint.o

ARCBD=\
$(ESRILOC)arcio/*bd.o \
$(ESRtt,OC)dgintf/dgbd.o \
$(ESRILOC)dvisys/dvibd.o \

-187-

$(ESRILOC)aexit/aexblk.o \
$(ESRILOC)bitsy s/bitblk.o \
$(ESRILOC)ttsysAtbd.o \
$(ESRILOC)p23sys/p23bd.o\
$(ESRILOQcsys/cmode.o \
$(ESRILOC)isp/infxin.o \
$(ESRILOC)wrksys/wrkbd.o

AMLBD=\
$(ESRILOC)aml/ainlbd.o \
$(ESRILOC)amVdirbd.o \
$(ESRILOC)aimVfunbd.o \
$(ESRILOC)aml/kfilbd.o \
$(ESRILOC)aml/pgtbd.o \
$(ESRILOC)aml/srcbd.o \
$(ESRILOC)aml/uflbd.o \
$(ESRILOC)smgsy s/curbd.o \
$(ESRILOC)smgsy s/mx lbd.o \
$(ESRILOC)smgsys/smlbd.o \
$(ESRILOC)smgsys/smlsysx.o \
$(ESRILOC)smgsys/smgbd.o

Define the Fortran compile flags

FFLAGS= -g

Define Task Function Program bldmod

all: bldmod

Define what bldmod is

bldmod: $(OBJECTS)\
$(APBD)\
$(ADBD)\
$(ARCBD)\
$(AMLBD)\
$(ARCLIBS)
-f77 $(FFLAGS) -o bldmod.out\
$(OBJECTS)\
$(APBD)\
$(ADBD)\
$(ARCBD)\
$(AMLBD)\
$(ARCLIBS) \
$(SYSLIBS)

bldmod object codes
bldmod.o: bldmod.f

ghf77 $(FFLAGS) -c bldmod.f
Define Module fortran
all install: $(OBJECTS)
object: $(OBJECTS)
end

-188-

