DOCUMENTATION OF FINITE-ELEMENT MESH GENERATION PROGRAMS
USING A GEOGRAPHIC INFORMATION SYSTEM

By Robert A. Lowther and Eve L. Kuniansky
U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 92-4155

A contribution of the Regional Aquifer-System Analysis Program

Austin, Texas

1992

U.S. DEPARTMENT OF THE INTERIOR
MANUEL LUJAN, Jr., Secretary
U.S. GEOLOGICAL SURVEY
Dallas L. Peck, Director

— !
For additional information | Coi)ies of this report can be
write to: purchased from:
U.$. Geological Survey
District Chief Books & Open-File Reports Section
U.S. Geological Survey Federal Center
8011 Cameron Rd,, Bldg. 1 P.O. Box 25425

Austin, TX 78753 Denver, CO 80225

-i-

CONTENTS

Abstract
Introduction

Finite-element mesh design considerations
Overview of the mesh design process with example

Part one, select important features

Part two, generalize features

Part three, generate a mesh

Implementation of mesh generation (AML) programs ~-

AML programs
ARCPOTIN.AML

Description

Program listing
BUFFNSHINE.AML

Description

Program listing
CHICPOX.AML

Description

Program listing
CLIPIT.AML -

Description

Program listing

CLIPIT2.AML

Description

Program listing

ELEVATE.AML ----

Description

Program listing

Fortran program FORKLIFT.F77----

Description -

Program listing
FIXSNAP.AML ----

Description

Program listing --
FREUD.AML

Description

Program listing --

Fortran program SLIP.F77

Description

Program listing
Fortran program MOTHER.F77

Description -

Program listing
IDENTIFY.AML

-iii-

CONTENTS--Continued

| Page
Description 71
Program listing 73
IDENTI2.AML 75
Description 75
Program listing 75
IDENTILOTS.AML 78
Description 78
Program listing 80
KITSINK.AML --- - 83
Description 83
Program listing SRR —— 85
MAKOUTLIN.AML 92
Description : - 92
Program listing 94
MODEL.AML 97
Description S 97
Program listing - 99
Fortran program BLDMOD.F77 --------- - 102
Description - . - 102
Program listing -—--- ——- 103
Fortran Subroutine BLDNCD.F77 - 105
Description 105
Subrouting HSting ----=-=====nmmm e e et 107
Fortran subroutine BLDECD.F77 - 110
Description - — 110
Subroutine listing ---- S 113
Fortran subroutine OPTIMIZE.F77 e 116
Description - 116
Subroutine listing ---- A — 120
Fortran program FE-LABEL.F77- - . 124
Description : 124
Program listing 126
REALENGTH.AML - e 127
Description ------ S ————- 127
Program listing ------=-========m==mmm oo — - 129
MAKEADDL.AML —_— + ————- - 141
Description -- P —— 141
Program listing ; 142
Info program ADD.LENGTHS -------nmnmmnmmmm oo oo oo 143
Description -- -- L - 143
Program listing ---- . e 144
Fortran program HOWMANY .F77--- 144

Description O — 144

-iv- \

CONTENTS--Continued

Page
Program listing - --- 146
Fortran program ORGANIZE.F77 147
Description 147
Program listing --- 149
REMODEL.AML-- -- 150
Description 150
Program listing 152
Fortran program REOPT.F77 155
Description 155
Program listing--- --- 156
SNAPPY.AML 157
Description 157
Program listing 160
SPLEEN.AML 162
Description 162
Program listing 164
TRIANGLE.AML 167
Description 167
Program listing 169
Fortran program TRIANGRID.F77 171
Description 171
Program listing 171
Selected References 175
Supplemental data 176
I. Mesh generation procedure quick-reference guide 177
II. AML program description and usage quick-reference guide 180
III. Compiling and linking Fortran programs on the Prime system 184
IV. Compiling and linking Fortran programs on a Unix system 185

Programs - - diskette

-V~

Figures 1-15.
L

p—
oA AEWN

11.
12.

13.
14.
15.
16.

17.

18.
19.

20.
21,

22-51.
22.
23,
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

ILLUSTRATIONS

Page
Maps showing:
The subregional model area, including significant line, polygon, and point
features
Location of major faults in the study area (FAUCL)
Location of surface drainage divides in the study area (BASUB) --------------
The subsurface limits of geologic formations in the study area (SUBGLIM)-
Location of irrigation pumpage in the study area (IRRPUM)
Location of municipal or industrial pumpage in the study area (MUINPUM)
Location of major springs in the study area (SPRINGS)
Location of major streams in the study area (STR)
Location of subregions in the study area (TREDAQ)
Location of a geologic outcrop in the study area (OCRCL)
Location of the Devil's River trend in the study area (DEVTR) --~-------------
Location of feature lines forming the basis for areas of greater detail in

O O0OI~NTONONN W &

the model - 11
Location of the area with greater detail in the model 12
Location of the area with greatest detail in the mT)del 12
Location of the model boundary - 14
Illustration of detrimental effects of CLIPping a cover with features that
approximate, but do not duplicate, the edge of the CLIPping cover------------ 16
Map showing sample output from TRIANGLE.AML, an equilateral

triangular grid - 18
Map showing the composite regularly spaced grid for the model -------------- 18
Diagram of example finite-element mesh, node coordinate data, and

element connection data 20

Map showing the intersections of topogi'aphlc elevation lines and the major

Maps showing the output finite-element mesh art centroids for each element 21
1
streams in the study area

22

Flowcharts for:

ARCPOTIN.AML 25
BUFFNSHINE.AML 28
CHICPOX.AML 32
CLIPIT.AML and CLIPIT2.AML.- 35
ELEVATE.AML-- 44
FORKLIFT.F77 - 49
FIXSNAP.AML 53
FREUD.AML - 56
SLIP.F77 ; - 63
MOTHER.F77 - 68
IDENTIFY.AML and IDENTI2.AML b 72
IDENTILOTS.AML - 79
KITSINK.AML 84
MAKOUTLIN.AML : 93

-vi-

Figures 22-51

36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.

53-55
33

54.

55

ILLUSTRATIONS-Continued

Flowcharts for:-Continued
MODEL.AML

BLDMOD.F77

BLDNCD.F77

BLDECD.F77
OPTIMIZE.F77

SETUP.F77

OPTNUM.F77
FE-LABEL.F77

REALENGTH.AML

MAKEADDL.AML

ADD.LENGTHS
HOWMANY .F77

ORGANIZE.F77

REMODEL.AML
REOPT.F77

SNAPPY.AML

Diagram of the recursive process in SNAPPY.AML
Flowcharts for:
SPLEEN.AML

TRIANGLE.AML

TRIANGRID.F77

-vii-

Page

98
103
106
112
117
118
119
125
129
141
143
145
148
151
156
158
159

163
168
172

CONVERSION FACTORS

Multiply By To obtain

foot (ft) 0.304 meter
mile (mi) 1.6093 kilometer

-viii-

DOCUMENTATION OF FINITE-ELEMENT MESH GENERATION PROGRAMS

USING A GEOGRAPHIC INFORMATION SYSTEM

By
Robert A. Lowther and Eve L. Kuniansky

ABSTRACT

Finite-element mesh generation for models of ground-water and surface-water systems is a tedious process
due to the irregular nature of the geologic, hydrologic, and geomorphic features. In developing a mesh for the
Edwards-Trinity aquifer-system project, a vector-based geographic information system is used to generate a variably
sized triangular element finite-element mesh from mappable features. Important digitally mapped features are
automatically linked to nodes in the finite-element model, ensuring an efficient, virtually error-free alternative to the
tedious process of mesh design and data-input preparation by other methods. The computer programs have been
developed in a macro language and may be useful for other processes. Some of the programs use commercially
developed software commands, while others use Fortran programs developed specifically for the finite-element model.
This report documents the programs developed for mesh generation and provides, as an example, the mesh developed
for the Edwards-Trinity Regional Aquifer-System Analysis project. The programs are stand-alone and provide the
necessary information on node coordinates and element connection data for three-nodal triangular elements for many
finite-element model applications.

INTRODUCTION

The irregular nature of geologic, hydrologic, and geomorphic features causes finite-element mesh generation
to be a tedious process for ground-water and surface-water models. The finite-element method was chosen for
simulation of the Edwards-Trinity regional aquifer system due to anisotropy, which varied in direction throughout the
area of the system. Programs developed for mesh generation in structural design were initially used to design the mesh
of the system. The development of the original mesh took about four months to complete. This mesh was then linked
to a geographic information system (GIS) in order to facilitate data preparation.

As the Edwards-Trinity Regional Aquifer-System Analysis (RASA) project evolved, the decision was made
to develop a more detailed model of the most active (relative to ground-water flow) part of the aquifer system. This
required the design of another mesh. Rather than spend four months manually designing a mesh, the GIS software
developed by Environmental Systems Research Institute, Inc. (ESRI1), ARC/INFO! was used to design computer
programs specifically for mesh creation. The computer programs have been developed in ARC/INFO (version 5.0)
macro language (AML) and have been tested on a Prime minicomputer and on Data General Aviion workstations.
These AML programs, also referred to as macros, call Fortran programs or commercially developed ARC/INFO
commands. The AML programs allow the modeler to efficiently generate different mesh designs.

This report documents the AML programs developed for mesh generation and the development of other
model input data for simulating streams in a ground-water system. The subregional model mesh for the Edwards-
Trinity aquifer system is used as an example of the process. The process for developing a mesh has been divided into
several steps that use different macros. Some of these may be useful for processing geographic data other than mesh
generation.

1Use of firm/trade names in this report is for identification purposes only and does not constitute endorsement by the
U.S. Geological Survey.

-1-

In order to use the information presented in this document, the reader needs working knowledge of the finite-
element method and ARC/INFO. ARC/INFO commands are presented in italicized all capitals and are referenced in
the ESRI manuals (ESRI, 1987). The basic hardware and software requirements are: minicomputer or workstation,
plotting device, color high-resolution graphics terminal, Fortran77 compiler, and ARC/INFO software with the TIN

package.

If the features important to the model are already digitally available, a mesh can be designed in several days
using the mesh generation AML programs. These macros were designed as stand-alone modules within the GIS
software and are used to set up the basic node coordinate and element connection data necessary for many different
finite-element model programs.

The assistance of Leonard L. Orzol, USGS, Portland, Oregon in porting all of the mesh generation programs
to the Unix workstations is greatly appreciated by the authors. We also appreciate the assistance of Jonathon C. Scott,
USGS, Oklahoma City, Oklahoma for providing an example program for reading the binary files within ARC/INFO.

FINITE-ELEMENT MESH DESIGN{ CONSIDERATIONS

The finite-element method allows two-dimensional space to be subdivided (discretized) into a mesh with
variably sized elements. Certain generalizations can be made in designing a mesh. These considerations vary with the
partial differential equation or equations being solved.

For ground-water flow problems, the mesh should have the smallest elements where the gradient of the
potentiometric surface of the aquifer to be simulated is greatest. The equatigns are being solved for potentiometric
head at the vertices of each element, which represents a plane whose orientation in space is defined by the nodal values
of head. Thus, more elements are required to approximate surfaces having a variable slope than to approximate
surfaces having a relatively uniform slope. Small elements may be required to define irregular aquifer geometry or
complex geologic structures, such as faults, that affect ground-waler movement.

For surface-water problems, such as two-dimensional flow over a flood plain where both velocity and water-
surface elevation are unknown, smaller elements are necessary where there are sharp gradients in velocity or depth of
bed. This usually occurs in and around the stream channel.

For all finite-element problems, the size and shape of the elements affect the solution of the equations.
Theoretically, as the size of the elements approaches zero, the solution approaches the true solution of the equation.
However, as the element size decreases, the number of equations solved approaches infinity and roundoff error
increases. The size and number of elements for each model is pntblem dependent. One must create a mesh with
enough finite-elements for approximating the unkown variable wjthout creating an unmanageable number of
simultaneaous equations to solve (If you have access to a super-computer you could try for 30,000 nodes, regardless
of over-discretization.).

The shape of elements affects the solution because the finite-element method uses interpolation functions,
also called shape functions or basis functions, that are derived from the coordinates of the nodes for each element. For
the solution of the ground-water flow equation by the Galerkin finite-element method, triangular elements with angles
between 22.5° and 90° result in coefficient matrices with positive diagonal terms and negative off-diagonal terms
(Strang and Fix, 1973, p. 138-139). Strang and Fix (1973, p. 78) also state that the sum of two adjacent angles between
elements should not be greater than 180°. This allows one obtuse angle without causing the final matrix to be less well
conditioned for the equations’ solution. The most numerically stable triangular-element mesh is one of regularly
spaced equilateral triangles (Strang and Fix, 1973).

When a direct solver is used for solving the set of equations developed by the finite-element approximation
of the problem, node numbering of the elements becomes im t. The mesh generation programs incorporate an
algorithm developed by Collins (1973) for renumbering the n to minimize the bandwidth of the matrix solved by
the finite-element programs.

2.

If a large number of triangular elements are connected at one vertex (patch of elements), the bandwidth of the
matrix to be solved is increased. This will create a matrix that is sparse (many zeros between numbers in the rows and
columns), which leads to increased roundoff errors when using a direct solver. This patch may also have thin needle-
like elements, which are undesirable because the resulting triangles would have angles less than 22.5° or greater than
90°. Patches of more than eight or nine triangular elements should be avoided.

The authors' experience with surface-water and ground-water finite-element mesh designs has been that these
considerations are rarely met for all elements in a mesh. If an attempt is made to minimize the number of poorly shaped
elements and patches of elements, while incorporating the important geomorphic and geologic features, numerical
stability will not be a problem.

OVERVIEW OF THE MESH DESIGN PROCESS WITH EXAMPLE

The basic mesh design process consists of three major parts: determination of relevant input features,
generalization of those features, and generation of a triangular mesh based on those features. Part one consists of two
steps. Part two consists of seven steps. Part three consists of one step. After the basic mesh design has been completed
with these 10 steps, an optional eleventh step may be useful for some meshes: the assigning of altitudes to certain
feature-based points in one of the output coverages. The details of each of these 11 steps follow.

Part one is to determine which features are required for the design of the mesh. These features must exist as
ARC/INFO coverages. The mesh designer must also know the features that define the model boundary and the
features that require a finer mesh because of an anticipated change in potentiometric surface.

Part two is the generalization of the features, necessary because feature coverages will tend to have more
detail than is feasible to include in the model. This is accomplished by reducing the number of line vertices with
SPLINE and by reducing the number of points in the model with SNAP. All feature coverages should have a unique
user-ID for each point, and IDEDIT should be used to update the coverages whenever a change is made to their user-
ID’s.

Part three is to generate a mesh, beginning with a point cover based on the input features. Arcs are reduced
to their vertex points. All feature-based points, both those that were originally line vertices and those that were in a
point cover, are SNAPped to reduce the total number of points in the model. For areas in which few points are
generated from these features, regularly spaced grids of points will be used. Because the elements are triangles whose
vertices are the aforementioned points, this ensures a more uniform element size across the entire model.

The remainder of the process is to generate three GIS data layers (coverages) related to the points from the
previous steps and two ascii files, FILEECD and FILENCD. These three coverages can be used for creation of other
needed input data to the numerical model that is used. All coverages will have the same user-supplied root name, and
have the extensions .ELMS, .ELPT, and .NOD. The .ELMS cover is a polygon cover, composed of triangles that have,
as vertices, the points generated in the previous steps and whose user-ID's are the element numbers of the mesh. The
ELPT cover is a point cover made up of the centroids of the triangles in the .ELMS cover and having user-ID's as the
element numbers of the mesh. The .NOD cover is a point cover whose points are the vertices of the triangles in the
ELMS cover. The user-ID's of the points in the .NOD cover are the model node numbers. Attributes can then be
assigned to the .ELPT points, whose user-ID's correspond to the polygon user-ID's in the ELMS cover of triangular
elements. FILEECD has the element connection data and FILENCD has the node-coordinate data for the finite-
element model. The three major parts in the process are contained in the 11 detailed steps that follow. For quick
reference, however, a summary of the necessary commands for each step is included in the supplementary data section
"Mesh generation procedure quick-reference guide."

To facilitate understanding of the mesh generation process, it is described for the subregional model of the
Edwards-Trinity aquifer system (fig. 1). The area containing all features, and, consequently the mesh, is called "the
study area.” This particular mesh uses 10 feature coverages incorporating point, line, and polygon data.

The feature coverages are: faults, FAUCL, a line cover; surface drainage divides, BASUB, a line cover;
subsurface limits of geologic formations, SUBGLIM, a line cover; irrigation pumpage, IRRPUM, a point cover;
municipal and industrial pumpage, MUINPUM, a point cover; major springs, SPRINGS, a point cover; streams, STR,
a line cover; geographic subregions representing the Edwards and Trinity aquifers, TREDAQ, a polygon cover;
outcrop of high permeability rocks, OCRCL,, a polygon cover; and the Devil's River trend, an ancient reef structure ,
DEVTR, a polygon cover. They are shown in figures 2-11.

Feature covers of the Edwards-Trinity aquifer system that are used for mesh generation.

|
Faults FAUCL line
surface drainage BASUB line
divides
boundaries of SUBGLIM lin
geologic formations
Irrigation pumpage IRRPUM points
Municipal and MUINPUM points
industrial pumpage
Major springs SPRINGS points
Streams STR line:
Subregions of the TREDAQ polygons
Edwards and Trinity aquifers
Outcrop area OCRCL polygons
Boundary of the Devils DEVTR polygon
River Trend (an ancient reef)
s SUBREGIONAL MODEL BOUNDARY
—— LINE AND POLYGON FEATURES ‘
« PONT FEATURES !
. D)

0 20 30 MILES

tEE{,dj KILOMETERS

Figure 1.--The subregional model area, including sig|

EDWARDS-TRINITY

AQUIFER SYSTEM

SUBREGIONAL
MODEL AREA

TEXAS

LOCATION MAP

nificant line, polygon, and point features.

—— SUBREGIONAL MODEL. BOUNDARY
= MAJOR FALTS

0 10 20 X MILES

KILOMETERS

Figure 2.--Location of major faults in the study area (FAUCL).

—— SUBREGIONAL MODEL BOUNDARY
= SURFACE DRAINAGE DIVIDES

0 0 20 3 MILES

tggt KILOMETERS

Figure 3.--Location of surface drainage divides in the study area (BASUB).

SUBREGIONAL MODEL BOUNDARY
= SUBSURFACE LMTS OF GEOLOGIC FORMATIONS

0 0 20 30 MILES

tggt KILOMETERS

Figure 4.--The subsurface limits of geologic formatiﬂns in the

—— SUBREGIONAL MODEL BOUNDARY
© RRIGATION PUMPAGE PONT

0 0 20 30 MILES

tggr'l; KILOMETERS

Figure 5.--Location of irrigation pumpage in the stu

o

area (

study area (SUBGLIM).

RPUM).

—_——Z

SUBREGIONAL MODEL BOUNDARY
© MUNCIPAL OR INDUSTRIAL PUMPAGE PONT

0 0 20 30 MILES

tggt KILOMETERS

Figure 6.-- Location of municipal or industrial pumpage in the study area (MUINPUM).

~—— SUBREGIONAL MODEL. BOUNDARY
© NATURAL SPRING LOCATION

0O 0 20 3 MILES

tggr".; KILOMETERS

Figure 7.--Location of major springs in the study area (SPRINGS).

—— SUBREGIONAL MODEL BOUNDARY
= MAJOR STREAMS

0 0 2 30 MILES }

hGEd& KILOMETERS

Figure 8.--Location of major streams in the study area (STR).

—— SUBREGIONAL MODEL BOUNDARY
SUBREGIONS

0 0¥ 2 30 MILES

t;gl_]‘; KILOMETERS

Figure 9.--Location of subregions in the study area (TREDAQ).

— SUBREGIONAL MODEL BOUNDARY
= QUTCROP

0 0 20 30 MILES

kGEd; KILOMETERS

Figure 10.--Location of geologic outcrop in the study area (OCRCL).

—— SUBREGIONAL MODEL BOUNDARY
= DEVL'S RIVER TREND

0 0 20 3 MILES

tggt KILOMETERS

Figure 11.--Location of the Devil’s River Trend in the study area (DEVTR).

For model the of the Edwards-Trinity aquifer system, the boundary was made up of several different data
layers for hydrogeologic reasons. The northwestern boundary was based on surface drainage divides and was
simulated as a no-flow boundary (part of BASUB). The aquifer system is a water-table system in the northwestern
area. Potentiometric-surface maps of the system indicate that ground-water flow parallels surface drainage. The
southern part of the system is confined by a wedge of post-Cretaceous sediments composed of clays with smectite
minerals. This part of the Edwards-Trinity system dips steeply toward the coast. The permeability of the Edwards-
‘Trinity aquifer system diminishes rapidly along the southern edge of the aquifer. The low permeability area is
coincident with a freshwater/saline-water transition zone, an interface of freshwater (less than 500 parts per million
(ppm) dissolved solids) to the northwest and moderately saline-water (1,000 to 10,000 ppm dissolved solids) to the
southeast. The southern boundary of the model is simulated as a no-flow boundary several miles within the low
permeability zone and is found in a cover called BADH20. The northeastern boundary of the model is the Colorado
River, which is simulated as a head-dependent source/sink (part of STR). |

Step 1.1 is to decide which features are important to the mesh. Any set of features that is not in an ARC/INFO

Step 1.2 is to make basic decisions about the mesh. A mogel boun must be decided upon. This boundary
is simply the outer edge of all features of interest for the model, a i the outline of the mesh. A model

crenulations.

Step 2.1 is to define the subarea whose greater detail necegsitates a finer-spaced mesh, as decided upon in step
two. An area is specified by creating an ARC polygon cover with only one polygon that surrounds the area of interest.
This cover is referred to as a "polygon outline.” The Polygon Attribute Table (PAT) of the cover should contain a
special integer item, the "identifying item.” This item should be set to a value of "1" for the polygon area inside of the
arc defining the desired area. It should be set to "0" for all other areas (specifically, the polygon listed in the PAT,
which has a negative AREA, and is defined to be all space outside of any other polygons in the PAT). All polygon
outlines will have to be defined, or built (BUILD), as polygon coverages (that is, have PAT's); and some will also have
to be built (BUILD) as line coverages (that is, have Arc Attribute Tables, or ITAT'S). Fortunately, these two definitions
are simultaneously possible in the ARC/INFO system.

An area of detail can either be defined as all space withii a certain distance from a specified point or line
geographic feature or as a polygon included in the geographic madel feamrés. If the former is the case, then that area
must be defined in ARC/INFO. In order to define such an area in ARC, weLBUF FER the given feature. This is done
in two stages:

First, if the cover forming the basis for the subarea is a|line cover, then this cover must be SPLINEed at an
appropriate distance. If the coverages are point coverages, then this stage iJ unnecessary. We do not want to directly
SPLINE coverages at this point, as this would alter them and thereby distort data that we will later need. We therefore
make temporary copies of the coverages, designated <cover > TEMP, and SPLINE these coverages instead.

SPLEEN.AML is used at this point to SPLINE the coverages. ’ '

1/10th of the BUFFER distance, whichever is larger. SPLINEing is necessary in order to prevent anomalies from
arising when the cover(s) are BUFFERed. Attempting to BUFFER a convoluted line at any relatively great distance

A good rule of thumb is to SPLINE at either the smallest desired distance between two points in the mesh, or
will produce such anomalies and prevent proper operation of the BUFFER|command.

-10-

The second stage of step 2.1 is to create a polygon outline of the area requiring a finer-spaced mesh. If more
than one cover contains features forming the basis for a region, the temporary copies of the relevant coverages should
be combined into one cover. Any arcs or points in these basic feature coverages that are not part of the detailed-area
definition should be removed, in ARCEDIT, from the temporary copies before they are combined. Once all of, and
only, the relevant features are assembled into one cover, we can proceed to step 2.2.

We used three different levels of detail for the Edwards-Trinity aquifer-system model. Two polygon outlines,
BUFB and BUFL, were created to divide the three areas. We create these coverages by BUFFERing a cover
combining desired features from the stream cover copy, STR.TEMP, and the fault line cover copy, FAUCL.TEMP, at
two different BUFFER distances. The desired features have been extracted from separate coverages and combined
into DTAILAREA (fig. 12). For our model, these features require more detail because they cause sharper variations
in aquifer head.

———— SUBREGIONAL MODEL BOUNDARY
= SPUNED STREAMS AND SELECTED MAJOR FALLTS

0 10 20 30 MILES

tggl; KILOMETERS

Figure 12.--Location of feature lines forming the basis for areas of greater detail in the model.

We use BUFFNSHINE.AML 10 BUFFER DTAILAREA at 60,000 and at 20,000 ft. to create the coverages
BUFB and BUFL respectively (figs. 13 and 14). BUFFNSHINE.AML also adds an identifying item to the PAT's of
the coverages it creates. For our example, the items are INBUFB and INBUFL. The BUFFER distances of 20,000
and 60,000 ft. were chosen based upon the average size of the triangles to be generated within these areas of detail.
The relative sizes of triangles are subjective decisions based on the scale and detail of the modeling effort.

If the detail area was already in the feature coverages, then COPY and ARCEDIT should be used to create a
cover whose arc outline is the desired area. Unwanted interior arcs are removed, and an identifying PAT item for the
interior area is defined with MAKOUTLIN.AML. As with BUFFNSHINE.AML, the user must supply an identifying
item name for MAKOUTLIN.AML. The output will be a polygon outline.

-11-

—— SUBREGIONAL MODEL_BOUNDARY
e AREA OF MODEL WITH GREATER DETAL

\

0 0 20 30 MILES

t;;dj KILOMETERS

Figure 13.--Location of the area with greater detail in the model.

—— SUBREGIONAL MODEL BOUNDARY
e AREA OF MODEL WITH GREATEST DETAL

0 ©0 20 30 MILES

t'l_ogej KILOMETERS |
\

Figure 14.--Location of the area with greatest detail in the m#del.

-12-

For the example mesh, the commands used for step 2.1 are:

COPY STR STR.TEMP
COPY FAUCL FAUCL.TEMP
&R SPLEEN 4207 8000 0 0 STR.TEMP FAUCL.TEMP
(Use ARCEDIT to remove unwanted arcs from the FAUCL.TEMP cover)
APPEND DTAILAREA (with the following entries)
STR.TEMP
FAUCL.TEMP
END
BUILD DTAILAREA LINE
&R BUFFNSHINE DTAILAREA LINE 60000 INBUFB
&R BUFFNSHINE DTAILAREA LINE 20000 INBUFL
KILL STR.TEMP ALL
KILL FAUCL.TEMP ALL

Step 2.2 in the mesh design process is to implement the model boundary decision made in step 1.2 and define
the study area. The model boundary is simply a SPLINEed polygon outline of the total study area. It is used to CLIP
other coverages and thereby eliminate any features outside of the study area.

To create the model boundary, use ARCEDIT on a temporary copy of each cover whose features define the
boundary, and combine these copies into one cover of the model boundary. If several feature coverages duplicate the
same model boundary, use the most detailed feature. This most commonly occurs where a stream coverage has been
digitized with enough detail for accurate length and a political boundary duplicates the stream. The political boundary
should be deleted and the stream used as the boundary for the model. Features that approximate, but do not duplicate,
parts of the model boundary must be eliminated from that feature cover.

Stream coverages must be treated specially if the stream length is important for other aspects of the modeling
effort. A special AML for computing the actual stream length associated with a node is included in this
documentation. It will be described in detail in the section REALENGTH.AML. Keep in mind that SPLINEed and
non-SPLINEed copies of the stream cover must contain the same stream segments. If the non-SPLINEed cover
contains streams that run along the model boundary, so must the SPLINEed cover. In order for the SPLINEed cover
to contain streams along the model boundary, it must duplicate that boundary, not approximate it.

The relevant parts of the three model boundary-defining coverages from the Edwards-Trinity subregional
model example are shown in figure 15. These are parts of SPLINEed copies of the Colorado River, the surface
drainage divides, and the updip limit of the freshwater/saline-water transition zone. Features that lay outside of the
study area or were already in another of the temporary copy coverages werw removed. (In the Edwards-Trinity
example, a segment of the Trinity aquifer boundary that is approximately coincident with a segment of a model
boundary-defining drainage divide had to be removed.)

After deleting unwanted features, APPEND the coverages into one master cover. For the example, the three
relevant coverages (fig. 15) are combined into MODBASIS. Use MAKOUTLIN.AML to create a polygon outline,
the model boundary, with an identifying item from this master cover. The example model boundary, MODBND, has
the identifying item "INMOD." The model boundary looks exactly like the master cover, but is a polygon as opposed
to a line cover and has an identifying item in its PAT. Also BUILD the model boundary as a line cover, as it will need
to be both a line cover and a polygon cover for KITSINK.AML to run properly.

-13-

—— COLORADO
- -- FRESH WATER ~WATER TRANSITION ZONE
~—+—+ SURFACE OIVIDES

0 0 20 30 MILES

t;;t KILOMETERS

Figure 15.--Location of the model boundary.

For the example mesh, the commands used are:

COPY STR STR.TEMP
COPY BASUB BASUB.TEMP
COPY BADH20 BADH20.TEMP
(Use ARCEDIT to remove unwanted parts of all three coverages)
APPEND MODBASIS (with the following entries)
STR.TEMP
BASUB.TEMP
BADH20.TEMP
END
BUILD MODBASIS LINE
&R MAKOUTLIN MODBASIS MODBND INMOD
BUILD MODBASIS LINE
KILL STR.TEMP ALL
KILL BASUB.TEMP ALL
KILL BADH20.TEMP ALL

Step 2.3 is to SPLINE all of the line coverages to be used ﬂ'or the mesh. This is done to generalize the features
so that the final mesh will have a manageable number of points. Before doing this, however, an archive copy must be
made of any stream cover in the model. This is because stream-length segments will be assigned to the points
representing the stream in process step 3.1. For this to occur correctly, a non-§PLINEed copy of the stream cover must
exist. Therefore, at this point in the process, create an archival copy of the stteam cover. In the example, we COPYed
STR into STR.LEN. Afterthis, SPLINEing all of the coverages (including the regular copy of the stream cover, STR).
This is done with SPLEEN.AML.

-14-

SPLEEN.AML will allow SPLINEing at different distances based on the areas defined in step 2.1, up to two
specialized areas or a total of three SPLINE distances (two detailed area distances plus the general SPLINE distance).
For the example mesh, we used a SPLINE distance of 8,000 ft. inside the subarea BUFL, a distance of 14,000 ft. inside
the subarea BUFB, and a general distance of 22,000 ft. (The BUFFER distance of 20,000 ft. for BUFL was chosen to
allow at least two 8,000-ft. equilateral triangles on each side of a stream or relevant fault; the BUFFER distance of
60,000 ft. for BUFB was chosen to allow two 14,000-ft. equilateral triangles between BUFL and BUFB. 60,000-
20,000 = 40,000 and 40,000/14,000 > 2)

For the example mesh, the commands required for this step are:

COPY STR STR.LEN
&R SPLEEN 4207 22000 14000 8000 MODBND FAUCL BASUB SUBGLIM STR TREDAQ
OCRC DEVTR (with the following entries)

BUFB

INBUFB

BUFL

INBUFL

Step 2.4 involves the creation of archival copies of the SPLINEed coverages for step 3.1 of the process to help
identify the origin of each point in the final mesh cover. Use the COPY command and the naming convention "(first
three letters of file name).A" to make a copy of each of the SPLINEed input coverages (including the now-SPLINEed
stream cover). Be sure to follow the naming convention carefully, as KITSINK.AML will look for files based on this
convention.

For the example mesh, the commands required for this step are:

COPY FAUCL FAU.A
COPY BASUB BAS.A
COPY SUBGLIM SUB.A
COPY STR STR.A
COPY TREDAQ TRE.A
COPY OCRCL OCR.A
COPY DEVTR DEV.A

Step 2.5 is the final CLIPping of the coverages of interest. Use CLIPIT.AML on these coverages, as it will
allow you to use the model boundary to CLIP all of the coverages of one type in one operation. The output coverages
from CLIPIT.AML will have the same names as the input coverages, but with ".CL" appended to the names to indicate
that they have been CLIPped. For the example, MODBND was used to CLIP all 10 coverages. Also, be sure to CLIP
the non-SPLINEed stream cover. This cover must contain only the streams and stream segments used in the model to
generate feature points. If the non-SPLINEed copy differs in extent from the regular cover, then the stream-length
algorithm will not operate correctly.

Be sure to remove any features that nearly duplicate a part of the model boundary. This would not include a
river segment which defines, and so is the same as, the boundary. Figure 16 shows an example of the complications
arising from near duplication of feature lines. Part of the model boundary is nearly duplicated by STR.LEN (fig. 16a).
If CLIPping occurs without the removal of the duplicate line segment, then the result is a series of short, meaningless
line segments (fig. 16b). For example, trying to CLIP the non-SPLINEed cover with CLIP may create these line
segments. If this occurs, then "CLIPping" the non-SPLINEed cover may have to be done interactively, in ARCEDIT,
in order to ensure that any stream that follows the model boundary, and is included in the normal stream cover, is
included as a continuous line in STR.LEN.

-15-

-

MODEL BOUNDARY
— STRLEN, A NEAR DUPLICATION OF THE MODEL BOLNDARY ALONG THE COLO. RIVER

W\/\

a. Before CLIPping

—mmmwmumn&m

S / -
-

L
\/"v\/\ _

b. After CLIPping
Figure 16.--Illustration of detrimental effects of CLIPping a cover with features that approximate,
but do not duplicate, the edge of the CLIPping cover.

-16-

For the example mesh, the commands required for this step are:

&R CLIPIT 4207 MODBND INMOD 0 LINE FAUCL IN BASUB IN SUBGLIM IN STR IN

TREDAQ IN OCRCL IN DEVTR IN

&R CLIPIT 4207 MODBND INMOD 0 POINT IRRPUM IN MUINPUM IN SPRINGS IN

(Use ARCEDIT to remove line segments from STR.LEN so that it includes all of, and only the, streams in STR.CL.)

The part of STREAMS used to define part of the model boundary should be included in both STR.CL and
STR.LEN.

Step 2.6 consists of interactively editing each of the input model coverages using ARCEDIT. This editing is
similar to that done to the temporary copies of the model boundary-defining coverages in step 1.4. The CLIPping
operation may leave small, unwanted parts of feature lines. These line segments are created when a feature line
approximates, but does not duplicate one of the CLIPping boundaries (as noted above). Again, be sure that the normal
stream cover and the non-SPLINEed copy represent the same set of streams and stream segments.

Step 2.7 is the creation of the regularly spaced grid(s) of points that will fill the gaps left in the feature point
cover. The irregular nature of feature-generated points in the model means that, in some areas, the points are much
further apart than in others. In order to avoid creating huge triangles in these areas when the line mesh is created, we
must fill these gaps with points. For uniformity, these points should be regularly spaced. We therefore create a
regularly spaced grid of points. We create as many grids as we desire different point spacings (usually smaller spacings
in the areas of the model requiring greater detail and hence having denser feature points). These grids are separated
by the polygon outlines defined in step 2.1. Use TRIANGLE.AML as many times as necessary to create the desired
grid(s). The model boundary cover should be used as the "background cover" for these operations, and the points
created should adequately cover the entire outline (fig. 17). In the example, there are three different grid sizes
separated by BUFL and BUFB. The outer grid has a spacing of 22,000 ft. between points, with spacings of 14,000 and
8,000 ft. for the grids within the big and little buffers, respectively (fig. 18). The grid spacing used in detailed areas
can be the same as the SPLINE distances used in the same areas. This helps to ensure more uniform triangles.

If more than one triangular grid is necessary (as in our example), then the grids must be combined to create
a master grid of varying point density. Referencing the differing grid border polygon outlines created in step 2.1, use
CLIPIT.AML to remove the unwanted parts (either within or without the polygon outlines) of each grid. In figure 18,
the intermediately spaced point grid is used between BUFL and BUFB as a transition between the sparse and the dense
grids. Be sure to CLIP each grid with the model boundary, to ensure that no points fall outside of it. APPEND these
grids into a master cover to complete the grid. The example master grid is shown in figure 18.

For the example mesh, the commands required for this step are:

&R TRIANGLE 4207 MODBND GRDBIG 22000
&R TRIANGLE 4207 MODBND GRDMED 14000
&R TRIANGLE 4207 MODBND GRDSML 8000
&R CLIPIT 4207 MODBND INMOD 0 POINT GRDBIG IN GRDMED IN GRDSML IN
&R CLIPIT 4207 BUFB INBUFB 0 POINT GRDBIG.CL OUT GRDMED.CL IN
&R CLIPIT 4207 BUFL INBUFL 0 POINT GRDMED.CL.CL OUT GRDSML.CL IN
APPEND MSTGRD (with the following entries)
GRDBIG.CL.CL
GRDMED.CL.CL.CL
GRDSML..CL.CL
END
BUILD MSTGRD POINT

-17-

~—— SUBREGIONAL MODEL BOUNDARY
= REGULARLY SPACED GRID PONTS

@ 6 6 & 6 6 6 6 P G S GG CE T E EE R G S 008 S 88 TS RS s SO BN S eSS et e e e e ese

LI L R R I A R I R I I N R A I N N N R N S S P S Y
. * LR S

LI R A A I R I I R R e A N R R !
L I I R R A L I I Y B A N N IR ® 6 s a0 assac e
e a® 8" 8 a0 e a0 aac o0 0n s « e o e soa

® 2 8 e 808 ot 8 88 asetareseon ® @ 5 e 55 8 8 5t b e B S E L e NS es s eSS -
@ 6 s a6 e " e 0 e 8 v s es e e ® e 28 8 60 st a8 2P e 0. e s aNse0es a0 .
®« 6 e o0 s @ &6 6 28 ¢ 08 80 e a e e e A" BesE e8NS « e
e s 1 88 -
® e o8 ® 8 5 4 8 8 06 s 08 a0 80 00 e e sassaceoesfoooeoa
a o o e o ofs e a0 ne e .« e s e
® a o a s « s o s
e s o s ufe s am s e s e a0 P NS L e ANS e eEn G0 ® e s 0 00 ofacn e

L I I I A L B B)
@ 6 e s 008 e 00 s v a0 e . e
* a8 0 8 ® ¢ e ® 88 e b e e a0 e e e e s 0000 aneossof/aeseneeose
6 6 s ® » ® s e85 4% e s e e 8 EEEeEs o . L A A B I)
® ® 2 5 0 5 6l5 5 5 5 0 6 2 e B e e G e BB e e e e s s 00 e eee a0 a0 L I I R R
S e o a e ® 6 am e s asos

© 5 5 5 5 5 5 5 8 L0 At NN 0S ANt at s 0E a0
s sis o ®

® 6 ® e 8 6 % F e s e S E N ARSI L e P SO e B O 0T L0 TR SN CEECEDRTSE
« o o n e L LR R S I S Y

0 0 20 3 MILES

KILOMETERS

Figure 17.--Sample output from TRIANGLE.AML, #n equilateral triangular grid.

'

SUBREGIONAL MODEL BOUNDARY
* REGULARLY SPACED GRID PONTS

0 10 20 30 MILES ‘

KILOMETERS

Figure 18.--The composite regularly spaced grid for the model.

-18-

Pant Three, Generate a Mesh

The tenth step is to run KITSINK.AML. KITSINK.AML completes the mesh generation process from this
point. It creates the node coordinate data file, FILENCD, and the element connection data file, FILEECD, needed for
modeling. Samples of node coordinate data and element connection data are shown in figure 19. KITSINK.AML
creates a point cover containing all of the element label points, a point cover containing all of the element node points,
and a polygon cover containing all of the triangular elements based on the feature and grid points. For the example,
these coverages are called EXAMP.ELPT, EXAMP.NOD, and EXAMP.ELMS. Figures 20a and 20b show
EXAMP ELMS and EXAMP ELPT, respectively. KITSINK.AML performs an optimization routine for node
numbering, and therefore needs a user-imposed maximum number of optimization runs. A typical maximum would
be 10 attempts.

KITSINK.AML performs a large number of operations, and requires a correspondingly long time (anywhere
from five minutes to 10 hours). For most of this time, it may be left unattended, but one particular process requires
user input. After its first operation, converting each input cover to a point cover and combining these into a master
feature point cover, KITSINK.AML does several SNAP operations on this master cover. Because of difficulties
accessing internal ARC/INFO command information, however, these operations require the user to answer a question,
and hence the user must be present until the question can be answered "y" instead of "n.” We hope to solve this
problem in the future, but for now, a more detailed description of the problem is included in the description of
SNAPPY.AML. Fortunately, this process is early in the KITSINK.AML procedure and therefore leaves the user free
for most of KITSINK.AML's extensive run time.

For the example mesh, the commands required for this step are:

&R KITSINK 4207 MSTFEAT 500000 8000 MSTGRD ALLPTS MODBND INMOD 8000

MSTPTS MSTPOL 10 (with the following entries)
FAUCL.CL
LINE
FAULT
BASUB.CL
LINE
DRAINDIV
SUBGLIM.CL
LINE
SBGEOLIM
IRRPUM.CL
POINT
IRRIG
MUINPUM.CL
POINT
MUNI_IND
SPRINGS.CL
POINT
SPRING
STR.CL
LINE
STREAM
TREDAQ.CL
LINE
SUBREGN
OCRCL.CL
LINE
OUTCROP
DEVTR.CL

-19-

LINE

DVLRVR
STR.LEN
Y A EXAMPLE MESH
20 L
10 L
0
0
a. node coordinate data . element connection data
node X y element | node connections
number coordinate coordinate number 1 j k
1 5 3 O) 1 3 2
2 10 13 ® 2 3 5
3 17 3 ® 3 6 5
4 20 21 @ 4 2 5
5 24 12 ® 4 5 1
6 30 3 ® 7 5 6
7 32 18
Figure 19.--Example finite-element mesh, node coordin%tc data, and element connection

data (from Kuniansky,1990, fig.1).

After KITSINK.AML, an optional eleventh step may be run on the mesh. This AML program assigns
altitudes to certain feature-based points in the ".NOD" output cover. The altitudes are based upon the intersections of
the selected feature with topographic contour lines. For example, altitudes can be assigned to all points in the ".NOD"
file that represent stream vertices based upon the intersections of the streams with topographic contour lines.

This AML program is ELEVATE.AML. ELEVATE.AML requires as input a point cover that contains points
coincident with the lines of a particular line cover. The points represent the intersections of the lines in the line cover
with the equal-altitude lines of a topographic map. Some item in the PAT of this point cover should equal the
topographic altitudes at the points of intersection. An example cover, TOPO.ELEV, is shown in figure 21. These
points and elevations were digitized from a 1:24,000 topographic map. ELEVATE.AML also requires a point cover,
some of whose points need this altitude information. The points needing altitade values (usually stream points) must
have an identifying item set equal to one. ELEVATE.AML will interpolate between the given altitudes to produce
altitudes for each point for which the identifying item is equal to one. The poﬁmts with items equal to one should
approximate the lines that were originally used to create the topographic intersections cover to ensure functioning of
the AML program.

—— SUBREGIONAL MODEL BOUNDARY

» INTERSECTION OF A TOPOGRAPHIC LINE A ARC
THE NUMBERS SAWPLE PAT ITEMS
PONT ELEVATIONS,

0 0 20 30 MILES

KILOMETERS
Figure 21.--Intersections of topographic elevation lines and the major streams in the study area.

For the example mesh, the command for this process is:

&R ELEVATE 4207 MSTPOL.NOD STREAM ELEV TOPO.ELEV ALT
|

22-

IMPLEMENTATION OF MESH GENERATION (AML) PROGRAMS

The mesh generation programs are a series of ARC commands and ARC Macro Language routines, or
macros, some of which call Fortran77 programs, organized into a procedural format. The AML programs are designed
to be useful for other processes in addition to finite-element mesh generation. For example, ARCPOTIN.AML
simplifies the use of any TIN command. The mesh generation process requires the user to run many macros separately,
making decisions at each of the 10 steps. For these reasons, the macros are each described separately, as stand-alone
modules. Some of the macros are used repeatedly; others are used only once. They are presented alphabetically in the
section entitled "AML Programs" for ease of reference.

The macros used in the mesh generation procedure described in the section entitled "Overview of the mesh
design process with example" are explained within that section. Because each module is composed of, or at least called
by, an AML program, the macros are presented as main subsections in the section entitled "AML Programs." Any
Fortran77 programs called by a macro are listed in the order in which they are called, as subsections of these main
subsections. The exception to this format is MAKEADDL.AML. This macro is presented as a subsection of the
REALENGTH.AML subsection because it is a rudimentary macro designed to create the INFO program
ADD.LENGTHS. As such, it has no use outside of REALENGTH.AML..

The Fortran programs on the enclosed diskette have not been compiled. They must be compiled for use on
whatever kind of computer is to be used. All programs were originally written and tested on a PRIME minicomputer.
All code was written in American National Standards Institute, 1978, FORTRAN 77 where possible. Despite these
efforts, however, individual differences in compilers may make some of these programs non-compilable. If this
happens, the necessary changes should be minor.

When linking the programs, three libraries should be included. They are the standard FORTRAN library,
VAPPLB if on a Prime minicomputer (or the appropriate system-specific library), and ARCLIB (for ARC interface
commands). More information about compiling is included in the Supplemental Data section. One example of use of
the ARCLIB library is the set of calls to AENTER, LUNINI, MINIT, and MESINI found at the beginning of some of
the FORTRAN programs. These routines are necessary to interface with ARC/INFO and are found in ARCLIB. After
making any necessary minor changes to system-specific commands and linking with the aforementioned libraries, the
programs should run on any system.

AML programs must be run from within the ARC/INFO system, specifically at the "Arc" prompt and with
the "&run" command. In order to reduce screen clutter, each AML program begins with the command "&echo &off."
This command prevents the AML program commands from being printed to the screen. The computer system's
responses to these commands will, however, be displayed. They are allowed to display so that the user can monitor
the progress of the macro, which is particularly useful during macros that require extensive operating time.

These responses may be suppressed, on the Prime, by the insertion of the following command immediately
after "&echo &off" in each AML program: “&sys como -nity.” One word of caution about the use of this command,
however: Each macro has a rudimentary input error-checking routine. These routines display an error message
explaining the correct usage of each macro. Other run-time error messages will cause a macro to abnormally abort.
The macro will display a standard error message, but the source of the error will be displayed in the system error
message that precedes the macro message. Use of the above command may cause suppression of this sysiem error
message, making errors more difficult to locate and correct.

One final note: If an AML program is run without any arguments, then it will respond with a "USAGE"

statement, which tells the user which arguments need to be included. Arguments that are specified as "created" will
be created by the macro. Arguments specified as "existing" should already exist before the macro is called.

-23-

AML PROGRAMS
ARCPOTIN.AML
Description

At least two of the ARC commands used by the mesh generation program, specifically ARCPOINT and
ARCTIN, are more precisely TIN commands. TIN commands require that the input cover attribute table include the
item "SPOT." The addition, and subsequent removal, of this item ¢onstitutes the primary purpose of the macro
ARCPOTIN.AML (fig. 22). This macro adds the item "SPOT" to the input cover's attribute table, executes the
specified command, and then removes "SPOT" from the input (and, if the command is "ARCPOINT," the output)
coverages' attribute tables in order to maintain their ease of comprehension. |

In addition, ARCPOTIN.AML can perform an optional secondary function. If the input command is
'ARCTIN' and a polygon name is specified, ARCPOTIN.AML will take the triangular irregular network (TIN) that is
created by ARCTIN and create a polygon cover based upon it. It creates this ¢over as a line cover, then BUILDs the
line cover as a polygon cover. This feature simplifies the process of creating ia triangular mesh polygon cover based
on a point cover. If the secondary function is not desired, it may be¢ bypassed by not specifying a polygon name. As
do all of the macros, ARCPOTIN.AML. performs a rudimentary check of the input data to ensure that all required
inputs are present.

At the beginning of the AML program, any file with the name specifiad as the output cover name or the output

polygon cover name will be KILLed. Common errors include mi ifying the input cover type or using an input
cover type that is inappropriate for the 7/N command chosen.

24-

START

NO

YES
DOINPUT ||\ e sspor
l
DROP ITEM
6‘SPOT”

ABBREVIATIONS ON
FLOW CHARTS
W/ with
number
& and
PTS points
STRM stream

CREATE
POLYGON COVER
FROM TIN
COVER

PRINT
ERROR
MESSAGE

Figure 22.--Flowchart for ARCPOTIN.AML

-25-

Program Listing

/* MACRO: Use the TIN commands, ARCPOINT or ARCTIN, automatically
¥ adding and deleting the item 'spot' as necessary. Optionally,

r* if a TIN is created, BUILD it as a poly cover.

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

/* COMM: The command to be executed

/* INCOV: The input cover name

/* OUTCOV: The output cover name

/* TIP: The input file type

/*POLYNAM: The name of the polygon cover to be created from the tin
/* COMMAN: The capitalized command name

/* TYP: The capitalized file type

/* INTAB: The input file attribute table

/* OUTAB: The output file attribute table

&echo &off
&args comm incov outcov tip polynam

/* -Prepare the error-indication file-C
&setvar i [delete coderr]

&setvar filun {open coderr openstatus -w]
&setvar i [write %filun% 1]

&setvar i [close %filun%]

/* -Test to see if all arguments are present as expected-O
&if [type %ecomm%] ne 1 &then &goto badentry

&if [type %oincov%] ne 1 &then &goto badentry

&if [type %outcov%] ne 1 &then &goto badentry

&if [type %tip%] ne 1 &then &goto badentry

&if [length %tip%] eq O &then &goto badentry

&if [type %polynam%] ne 1 &then &goto badentry

/* -Eliminate old occurances of the output files-M
&severity &error &ignore

kill %outcov% all

&if [length %polynam%] ne O &then kill %polynam% all
&severity &error &fail

/* -Capitalize inputs as necessary-E
&setvar comman [translate %comm %]
&setvar typ [translate %tip%]

/* -Add the item 'spot’ as necessary-D

&if %typ% eq 'LINE' &then &setvar intab %incov%.AAT
&if %typ% ne 'LINE' &then &setvar intab %incov% PAT
&severity &error &ignore

additem %intab% %intab% spot 4 4 i

&severity &error &fail

/* -Execute the command-Y

-26-

%comman% %incov% %eoutcov% Jotyp%

/* -Drop the item 'spot’ as necesary-

dropitem %intab% %intab% spot

&if %ecomman% eq 'ARCTIN' &then &goto atinonly
&setvar outab %outcov%.pat

dropitem %outab% %outab% spot

&goto endit

&label atinonly

&if [length %polynam%] eq 0 &then &goto endit
tinarc %outcov% %polynam% line

build %polynam% poly

createlabels %polynam%

&goto endit

/* -Print the error message-

&label badentry

&type Usage: ARCPOTIN <TIN command> <in_cover (existing)> <out_cover or
&type out_tin (created)> <type of input cover (point,line)>

&type {output polygon cover name if ARCTIN is used and a poly
&type cover is to be created from the out_tin (created))

&goto errend

&label endit

/* -Prepare the error-indication file-
&setvar i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]

&setvar i [close %filun%]

&label errend
&type End of ARCPOTIN

BUEENSHINE.AML

Description

BUFFNSHINE.AML is essentially an extension of the BUFFER command in ARC/INFO. It performs two

distinct functions, either of which may be performed separately if desired (fig. 23).

The primary function of BUFFNSHINE.AML. is to create BUFFERSs of specified size around the input cover's
features. In addition, a user-named identifying item is added to the PAT of the BUFFERed output file. The output file

name is simply the input file name with the extension ".BUF" added.

The secondary function of BUFFNSHINE.AML is to eliminate features from a second cover that fall within
the BUFFERed areas created by BUFFNSHINE's primary function. The output for this operation is written to a cover
whose name is the input second cover name with the extension ".CL.” Though technically a function unrelated to
BUFFERing, deletion of this sort is often the rationale behind BUFFERing and so this function is included in

BUFFNSHINE.AML.

27-

IS
THERE A
SECONDARY
COVER?

INTERSECT BUFEER &

ONDARY COVER FEA-
TURES WITHIN BUFFER

COVER & REMOVE SEC-|

PRINT
ERROR
MESSAGE
BUFFER INPUT
SET ITEM
TO IDENTIFY |qg— |
BUFFER INTERIOR|

STOP

Figure 23.--Flowchart for BUFFNSHINE.AML.

28-

If no feature removal is desired, then BUFFERing can be performed alone by not giving
BUFFNSHINE.AML any deletion cover name, deletion cover type, or display type. Similarly, deletion may be
performed alone, based on a BUFFERed cover that has been created by the macro on a previous run. This is
accomplished by entering a cover name for which a ".BUF" file already exists. This combination of available
operations is designed to make BUFFNSHINE.AML as flexible as possible.

If a second cover is specified, one whose features are to be removed, then any file under the name specified
as the second cover and with the extension ".CL" will be KILLed. Common errors include not SPLINEing at a great
enough distance for the buffer size chosen, and not having the second cover built (BUILD) as the type specified.

Program Listing
/* MACRO: Create buffer regions around features in a cover and
f* assign an item with a value of 1 to indicate areas inside buffers.
/* Also, optionally, delete another cover's features which fall
f* within these buffers, or buffers created by an earlier run of
r* this program.

/¥ CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky
/* VARIABLE LIST

/* CV: The input cover

/¥ TIP: The feature type of the input cover
/* BUFDIS: The buffering distance

/* IT: The item denoting the input cover
/* OFFENSIVE: The cover whose features which lie within the buffers
r* are to be removed

/* OTIP: The feature type of the above cover
/* DTYPE: The display type

/* COV: The capitalized version of CV

/* TYP: The capitalized version of TIP

r* ITEM: The capitalized version of IT

r* OTYP: The capitalized version of OTIP

/*YULBRYNNER: The buffered version of COV

™ BUFTPAT: The attribute table for YULBRYNNER

1* OFFCLIP: The clipped version of OFFENSIVE

r* OFFTAB: The attribute table for OFFCLIP

/¥ DUMMY1: One of the variables used to remove items from attribute tables
r* DUMMY?2: The other of the variables mentioned above

&echo &off
&args cv tip bufdis it offensive otip dtype

f* -Prepare the error-indication file-C

&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 2]

&setvar i [close %filun%]

/¥ -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace)
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end

29-

&else
&do
&s .computer_type unix
&end

/* -Test to see if all arguments are present as expected-M
&if [type %cv%] ne 1 &then &goto badentry

&if [type %tip%] ne 1 &then &goto badentry

&if [type %bufdis%] >= 0 &then &goto badentry

&if [type %it%] ne 1 &then &goto badentry

&if [len %it%] eq 0 &then &goto badentry

&if [type %offensive%] ne 1 &then &goto badentry

/* -Translate variable names to capitals for use in ARC/INFO-E
&setvar cov [translate %cv%]

&setvar typ [translate %tip%]

&setvar item [translate %it%]

&setvar otyp [translate %otip%]

/* -Buffer the features in the coverages-D

&setvar yulbrynner %cov%.BUF

&if [exists %yulbrynner% -coverage] &then &goto nexisec
&if %typ% eq POLY' &then &goto nextsec

buffer %cov% %yulbrynner% # # %bufdis% 40 %typ%

/* -Use ARC/INFO to set the item indicating areas inside buffers-Y
&label nextsec

&severity &error &ignore

&setvar buftpat %yuibrynner% PAT
additem %buftpat% %buftpat% %item% 4 4 i
&severity &error &fail

&if %.computer_type% = 'prime' &then
&do

&data ARC INFO

SEL %BUFTPAT%

RESEL FOR INSIDE = 100

CALC %ITEM% =1

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SEL %BUFTPAT%

RESEL FOR INSIDE = 100

CALC %ITEM% = 1

QSTOP

QUIT

&end

&end

/* -Check to see if removal is desired-

-30-

&if [len %offensive%] eq 0 &then &goto endit

/* -If so, IDENTITY the coverages-H

&setvar offclip %offensive%.CL

&if [exists %offclip% -coverage] &then kill %offclip% all
identity %offensive% %yulbrynner% %offclip% %otyp% 40

/* -Use ARCEDIT to remove the desired areas-O
ae
mape %offclip%
disp %dtype%
editc %offclip%
&if %otyp% = 'POINT" &then
&do
editf label
drawe label
&end
&else
&do
editf arc
drawe arc
&end
draw
&severity &error &ignore
select screen
resel for %item% = 1
delete
&severity &error &fail
save
q

f* -Clean up the files-U

&if %eotyp% = 'LINE' &then &setvar offtab %offclip%.AAT
&if %otyp% ne LINE' &then &setvar offtab %offclip%.PAT
dropitem %offtab% %offtab% %item%

&setvar dummy1 %offensive %#

&setvar dummy?2 %offensive%-1D

dropitem %offtab% %offtab% %edummy1%

dropitem %offtab% %offtab% %dummy2%

dropitem %offtab% %offtab% INSIDE

&goto endit

/* -Print the error message-R

&Label badentry

&type Usage: BUFFNSHINE <name of cover to be buffered (existing)> <type of
&type cover (line,point,poly)> <buffer distance> <name of
&type item to be added to output poly cover to indicate
&type areas inside the polygon (created)> {cover whose
&type features lying within the output polygon are to be
&type removed (existing) } {cover type (line,point,poly)}
&type {display type}

&goto errend

&label endit

31-

/* -Prepare the error-indication file-

&s i[delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr}

&setvar i [close %filun%]

&label errend
&type Biid of BUFFNSHINE

CHICPOX.AML

Description

This macro creates a point cover based on an input line cover and ensures a perfect match between the vertices
of the line cover and the points of the point cover. CHICPOX. first call§ ARCPOTIN.AML to run the command
ARCPOINT to create the point cover (fig. 24). It then SNAPs the arcs in the line cover to the points in the point cover
to ensure a perfect match. This matching function is included use in the mesh generation process,
CHICPOX.AML. creates the points representing the model boundary. These points need to duplicate exactly the model
CLIPping cover in order for CLIPping to occur properly.

PRINT
ERROR
MESSAGE

RUN

ARCPOTIN.AML TO
CREATE A POINT
COVER

Y

SNAP ARCS TO
POINTS IN POINT
COVER TO INSURE
PROPER OVERLAY

=3

Figure 24.--Flowchart for kHICPOX.AML.

-32-

CHICPOX.AML KILLs any file with the name specified as the output point cover name. The most common
error, especially when CHICPOX.AML is called by KITSINK.AML, is that the input line cover is not built (BUILD)
both as a polygon and a line cover.

Program Listing
/* MACRO: Take an input line (arc) cover and return an output
1* point cover based upon the input. Additionally, snap the input
I* arc cover vertices so that they match the point cover nodes

/¥ CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST

/* DTYPE: The display type

f* COVIN: The input polygon cover

f* DIST: The maximum distance across which arc vertices will be snapped
f* to match the point cover nodes

/* COVOUT: The output point cover

&echo &off

&args dtype covin dist covout

f* -Prepare the error-indication file-C

&s 1 [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 3]

&setvar i [close %filun%]

/* -Test to see if all arguments are present as expected-O
&if [type %covin%] ne 1 &then &goto badentry

&if [type %dist%] ne -1 &then &goto badentry

&if [type %covout%] ne 1 &then &goto badentry

&if [length %covout%] eq 0 &then &goto badentry

/* -Eliminate old occurances of necessary files-M
&severity &error &ignore

kill %covout% all

&severity &error &fail

/* -Create the point cover-E
&run arcpotin arcpoint %covin% %covout% line
ae

mape %covin%

disp %dtype%

editc %covin%

drawe arc

snapc %covout%

backc %covout%

backe label

draw

editf arc

snapf arc label

snapping closest %dist%
select screen

-33-

snap
save

q

clean %covin%
&goto endit

/* -Print the error message-D

&label badentry

&type Usage: CHICPOX <display type> <input line cover(existing)> <maximum
&type distance output points might deviate from input arcs>

&type <output point cover (created)>

&goto enderr

&label endit

/* -Prepare the error-indication file-Y
&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr}
&setvar i [close %filun%])

&label enderr
&type End of CHICPOX ‘

CLIPIT AML
Description

This macro functions as an extended CLIP function (fig. 25). It will "CLIP" up to 10 coverages
in a single run, based on one polygon "CLIPping" cover. The output files have the same name as the input files, but
with a ".CL" extension. Users must specify whether they want the parts of the input coverages inside or outside to
remain. In addition, CLIPIT.AML can create a BUFFER region around the CLIPping cover and remove any features
from the input coverages that lie within this region. Although this secondary function has limited applications for line
and polygon input coverages, it can be quite useful for point coverages. If this function is not needed, it can be
bypassed by entering a value of zero for the BUFFERing distance. If a buffer for the CLIPping cover with the name
"CLIPping cover name.BUF" already exists, then that cover will be:used for the point removal operation. Such a cover
must already have an identifying item. If not, a cover will be created using the same naming convention.

CLIPIT.AML KILLs any files with a name designated as an input cover name with either a ".CL" extension
ora"d" extension. Common errors include not having built (BUILD) the C. ing cover as a polygon, not having an
identifying item for the CLIPping cover, trying to CLIP coverages of different types in the same run of CLIPIT.AML,
or misspecifying whether the part of an input cover inside or outside of the ﬁLIPping cover is to remain.

-34-

PRINT
ERROR
MESSAGE
DISTANCE
GIVEN?
BUFFER
CLIPPING
OUTLINE
SELECT FIRST INSIDE BUFFERED
COVER AREA
REMOVE POINTS
WITHINWITHOUT | SELECTNEXT
THE CLIP COVER

MOVE FEATURES
WITHIN BUFFER
DISTANCE OF THE
CLIP COVER

Figure 25.--Flowchart for CLIPIT.AML and CLIPIT2. AML.

-35-

Program Listing

/* MACRO: Clip up to ten coverages with a clipping cover and remove

* any features which are too close to the clip boundaries

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:/* DTYPE: The graphic display type being used
/* CLIPPER: The cover being used as a cutting template for clipping

/* ITEM: The item indicating the arca within the cutting template
/¥ CLIPDIS: The size of the buffer zone to be created around

/* the clipping cover

/* TYP: The cover type of the coverages to be clipped

|
/*COV1-COV10: The names of the coverages to be clipped i j
/* W1-W10: The corresponding inside or outside clip for the above |
/¥ WANKEL: The item added to the buffered clip cover to indicate

/* areas which are within the buffer distance

/* COV: The name of the cover currently being considered

/* WNOW: The inside/outside clip variable currently being considered
/* COVD: The name of the output cover for the clipped vetsion of coy

/* CLBUFF: The buffered version of the clipping outline |
\
&echo &off ‘
&args dtype clipper item clipdis tip covl wl cov2 w2 cov3 w3 cov4 w4 ~
covS w5 covb w6 cov7 w7 cov8 w8 covd w9 coviO w10

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&S .computer_type unix
&end

/* -Test input to see if all arguments are present as expected-O
&if [type %clipper%] ne 1 &then &goto badentry

&if [type %item%] ne 1 &then &goto badentry

&if [type %clipdis%] >= 0 &then &goto badentry

&if [type %tip%] ne 1 &then &goto badentry

&if [type %cov1%] ne 1 &then &goto badentry

&if [type %w1%] ne 1 &then &goto badentry

&if [length %w1%] = 0 &then &goto badentry

&setvar typ [translate %tip%]
&if typ eq POLY' &then &goto badentry

/* -Create a buffer zone around the clipping cover-M
&if %clipdis% eq 0 &then &goto looop
&type Enter the identifying item name for the buffer area (Note: | if the'

-36-

&setvar itmb [response 'buffer cover already exists, so must this item)']
&setvar itemb [translate %itmb%)] '
&setvar clapper [translate %clipper%]

&setvar clbuff %clapper%.BUF

&if [exists %clbuff% -COVERAGE] &then &goto buffered
buffer %clipper% %clbuff% # # %clipdis% 40 line
&label buffered

build %clbuff% poly

&setvar clbuffpat %clbuff%.PAT

&severity &error &ignore

additem %clbuffpat% %clbuffpat% %itemb% 4 4 i
&severity &error &fail

&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

SELECT %clbuffpat%

RESEL FOR INSIDE = 100

CALC %itemb% = 1

QSTOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT %clbuffpat%

RESEL FOR INSIDE = 100

CALC %itemb% = 1

QSTOP

QUIT

&end

&end

&label looop

&do cov &list %ocov1% %cov2% %cov3% Fecov4% Jecov5% %ecov6o ~
%covT% Jocov8% Yecovd% %cov10%

&if [length %cov%] eq 0 &then &goto endloop

&if %cov% eq %ocovl% &then &setvar wnow %w1%

&if Y%cov% eq %cov2% &then &setvar wnow %w2%

&if Jocov% eq %cov3% &then &setvar wnow %w3%

&if %cov% eq %cov4% &then &setvar wnow %w4%

&if %cov% eq %covS5% &then &setvar wnow %wS5%

&if %cov% eq %cov6% &then &setvar wnow %w6%

&if %cov% eq %ocovl% &then &setvar wnow %w7%

&if %cov% eq %cov8% &then &setvar wnow %w8%

&if %cov eq %cov9% &then &setvar wnow %w9%

&if %cov%h eq %cov10% &then &setvar wnow %w10%

&setvar covd %covd

&setvar sav %cov%.CL

&severity &error &ignore

kill %covd% all

kill %sav% all

&severity &error &fail

-37-

/* -Clip the coverages-E

&severity &error &ignore

identity %cov% %clipper% %covd% %typ% 40
&severity &error &fail

ae

disp %dtype%

mape %covd%

editc %covd%

&if %typ% eq 'LINE' &then drawe arc
&if %typ% eq 'LINE' &then editf arc

&if %typ% eq 'POINT &then drawe label
&if %typ% eq 'POINT &then editf label
draw

select screen

resel for %item% eq 1

&if [length %wnow%] eq 2 &then nsel
&severity &error &ignore

delete

&severity &error &fail

save

q

&severity &error &ignore
&if %clipdis% ne 0 &then identity %covd% %clbuff% %sav% %typ% 40
&severity &error &fail

&if %clipdis% eq 0 &then copy %covd% %sav%
kill %covd% all

/* -Remove any cover features which are too close to the clippiné cover-D
&if %clipdis% eq 0 &then &goto lateloop
ae

disp %dtype%

mape %sav%

editc %sav%

&if %typ% eq 'LINE' &then drawe arc
&if %typ% eq 'LINE' &then editf arc

&if %typ% eq 'POINT' &then drawe label
&if %typ% eq 'POINT &then editf label
draw

select screen

resel for %itemb% = 1

delete

save

q

&label lateloop

build %sav% %typ%

&if %typ% eq 'LINE' &then &setvar savtab %sav%.AAT

&if %typ% ne 'LINE' &then &setvar savtab %sav%.PAT ‘

&if %typ% eq 'LINE' &then dropitem %savtab% %saviab% ﬁfx
P

&if %typ% eq 'LINE' &then dropitem %savtab% %savtab% IMETER
&severity &error &ignore
dropitem %savtab% %saviab% %item%

.38-

&setvar dummyl %cov%#

&setvar dummy2 %cov%-ID

dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&setvar dummy1 %clipper%#

&setvar dummy?2 %clipper%-1D

dropitem %savtab% %saviab% %dummy1%
dropitem %savtab% %savtab% %dummy2%
&if %clipdis% eq O &then &goto endloop
dropitem %savtab% %savtab% INSIDE
dropitem %savtab% %savtab% %itemb%
&setvar dummyl %covd %#

&setvar dummy2 %covd%-1D

dropitem %savtab% %savtab% %edummyl%
dropitem %savtab% %savtab% %edummy2%
&setvar dummy1 %clbuff%#

&setvar dummy?2 %clbuff%-ID

dropitem %savtab% %savtab% %dummy!%
dropitem %savtab% %savtab% %dummy2%

&label endloop
&severity &error &fail
&end
&goto endit
/* -Print error message-Y
&label badentry
&type Usage: CLIPIT <display type> <clipping cover (existing)> <item denoting
&type area inside the clipping cover(existing)> <distance from
&type the edge within which features should be removed(or 0 if
&type no removal desired) <type of coverages to be clipped (line,
&type point)> <cover #1><infout #1>....{cover #10} {in/out #10}
&label endit
&type End of CLIPIT

CLIPIT2. AML

Description

This macro is simply a slightly modified version of CLIPIT.AML designed to run from within
KITSINK.AML. In this version, no screen prompt is displayed for the item designating areas too close to the CL/Pping
border. Here the name is entered as an argument. CLIPIT2.AML follows the same flowchart as CLIPIT.AML,
presented in figure 25.

Program Listing
/* MACRO: Clip up to ten coverages with a clipping cover and remove
r* any features which are too close to the clip boundaries
/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:
/* DTYPE: The graphic display type being used

-39-

CLIPPER: The cover being used as a cutting template for clipping
ITEM: The item indicating the area within the cutting template
CLIPDIS: The size of the buffer zone to be created around
the clipping cover
TYP: The cover type of the coverages to be clipped
COV1-COV10: The names of the coverages to be clipped
W1-W10: The corresponding inside or outside clip for the above
WANKEL: The item added to the buffered clip cover to indicate
areas which are within the buffer distance
COV: The name of the cover currently being oonsideni
WNOW: The inside/outside clip variable currently being considered
COVD: The name of the output cover for the clipped version of cov
CLBUFF: The buffered version of the clipping outline ‘

FTEFTEIFRIIFRTIEEIE:

&echo &off
&args itmb dtype clipper item clipdis tip covl wl cov2 w2 cov3 w3 covd w4 ~
cov5 w5 covb wb cov7 w7 cov8 w8 covd w9 covli0 wil \

/* -Prepare the error-indication file-C
&setvar i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 4]

&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s slash/
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&s .computer_type unix
&end

f* -Test input to see if all arguments are present as expected-M
&if [type %clipper%] ne 1 &then &goto badentry

&if [type %item%] ne 1 &then &goto badentry

&if [type %clipdis%] >= 0 &then &goto badentry

&if [type %tip%] ne 1 &then &goto badentry

&if [type %cov1%] ne 1 &then &goto badentry

&if [type %w1%] ne 1 &then &goto badentry

&if [length %w1%) = 0 &then &goto badentry

&setvar typ [translate %tip%]
&if typ eq POLY' &then &goto badentry

f* -Create a buffer zone around the clipping cover-E
&if %clipdis% eq 0 &then &goto looop

&setvar itemb [translate %itmb%]

&setvar clapper [translate %clipper%]

-40-

&setvar clbuff %clapper%.BUF

&if [exists %clbuff% -COVERAGE] &then &goto buffered
buffer %clipper% %clbuff% # # %clipdis% 40 line
&label buffered

build %clbuff% poly

&setvar clbuffpat %clbuff% PAT

&severity &error &ignore

additem %clbuffpat% %clbuffpat% %itemb% 4 4 i
&severity &error &fail

&if %.computer_type% = 'prime' &then

&do

&data ARC INFO

SELECT %clbuffpat%

RESEL FOR INSIDE = 100

CALC %itemb% = 1

QSTOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT %clbuffpat%

RESEL FOR INSIDE = 100

CALC %itemb% = 1

Q STOP

QUIT

&end

&end

&label looop

&do cov &list %cov1% %cov2% %ecov3%e Ycova% %cov5% %cov6% ~
%covl% Y%ecov8% %ecovd% %cov10%

&if [length %cov%] eq 0 &then &goto endloop

&if %cov% eq %cov1% &then &setvar wnow %w1%

&if %cov% eq %cov2% &then &setvar wnow %w2%

&if %cov% eq %cov3% &then &setvar wnow %w3%

&if %ocov% eq %covd% &then &setvar wnow %w4 %

&if %cov% eq %covS% &then &setvar wnow %w5%

&if %cov% eq %cov6% &then &setvar wnow %w6%

&if %cov% eq %covi% &then &setvar wnow %w7%

&if %cov% eq %cov8% &then &setvar wnow %w8%

&if %cov% eq %cov9% &then &setvar wnow %w9%

&if %cov% eq %cov10% &then &setvar wnow %w10%

&setvar covd %cov%d

&setvar sav %cov%.CL

&severity &error &ignore

kill %covd% all

kill %sav% all

&severity &error &fail

/* -Clip the coverages-D

41-

&severity &error &ignore

identity %cov% %clipper% %covd% %typ% 40
&severity &error &fail

ae

disp %dtype%

mape %covd%

editc %covd%

&if %typ% eq LINE' &then drawe arc
&if %typ% eq 'LINE' &then editf arc

&if %typ% eq POINT' &then drawe label
&if %typ% eq 'POINT' &then editf label
draw

select screen

resel for %item% eq 1

&if [length %ownow%] eq 2 &then nsel
&severity &error &ignore

delete

&severity &error &fail

save

q

&severity &error &ignore
&if %clipdis% ne 0 &then identity %covd% %clbuft% %sav% %
&severity &error &fail

&if %clipdis% eq 0 &then copy %covd% %sav%
kill %covd% all

typ% 40

/* -Remove any cover features which are too close to the clipping cover-Y

&if %clipdis% eq 0 &then &goto lateloop
ae

disp %dtype%

mape %sav%

editc %sav%

&if %typ% eq 'LINE' &then drawe arc

&if %typ% eq 'LINE' &then editf arc

&if %typ% eq POINT' &then drawe label

&if %typ% eq POINT &then editf label

draw

select screen

resel for %itemb% = 1

delete

save

q

&label lateloop

build %sav% %typ%

&if %typ% eq 'LINE' &then &setvar saviab %sav%.AAT
&if %typ% ne 'LINE' &then &setvar savtab %sav% .PAT
&if %typ% eq 'LINE' &then dropitem %savtab% %savtab%

A

&if %typ% eq 'LINE' &then dropitem %savtab% %savtab% PERIMETER

&severity &error &ignore

dropitem %savtab% %savtab% %item%
&setvar dummy1 %cov#

&setvar dummy?2 %cov%-1D

dropitem %savtab% %savtab% %dummy1%

42-

dropitem %savtab% %savtab% %dummy2%
&setvar dummy1 %clipper%#

&setvar dummy?2 %clipper%-ID

dropitem %savtab% %savtab% %dummy1%
dropitem %savtab% %savtab% %dummy2%
&if %clipdis% eq 0 &then &goto endloop
dropitem %savtab% %savtab% INSIDE
dropitem %savtab% %savtab% %itemb%
&setvar dummy1 %covd%it

&setvar dummy?2 %covd%-1D

dropitem %savtab% %savtab% %dummyl%
dropitem %savtab% %savtab% %dummy2%
&setvar dummy1 %clbuff%#

&setvar dummy?2 %clbuff%-1D

dropitem %savtab% %saviab% %dummy1%
dropitem %savtab% %savtab% %dummy2%
&severity &error &fail

&label endloop

&end

&goto endit

/* -Print error message-

&label badentry

&type Usage: CLIPIT2 <item denoting area within buffer> <display type>
&type <clipping cover> <item denoting area>

&type <buffering distance> <type of cover (line,point)>

&type <cover #1> <in/out #1>....{cover #10} {infout #10)
&goto enderr

&label endit

/* -Prepare the error-indication file-

&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]

&setvar i [close %filun%]

&label enderr

&type End of CLIPIT2

ELEVATE AML

Description

ELEVATE.AML assigns elevations to points within a point cover, presumably but not necessarily the stream
points within a point cover composed of many different feature points. As input and output, ELEVATE.AML requires
very specialized coverages. It requires as input a point cover whose points are defined to be the intersections of the
stream (or other feature) arcs representing the points to be elevated with the topographic contour lines of the region in
question. As output, it requires a point cover with an item in its PAT that is set equal to "1" for each point that is to
have an elevation assigned. The flowchart for ELEVATE.AML is shown in figure 26. The lines that are used to
determine the topographic line intersection points should be the same lines that are used to generate the points in the
output point cover. The elevation of each of the topographic intersection points should be recorded as an item value
for each of those points. The elevations for the output points that do not fall on topographic lines are interpolated from

the two nearest topographic intersection points.

43

START

CREATE STRONLY]
- A COVER WI |
ONLY STREAM |
POINTSINIT
SEND STRONLY AND INPUT

TOPO MAP TO FORKLIFT.F77(FIG 27)
TO CREATE AN ASCII LIST OF/

STREAM POINT ELEVATIONS

Y
CREATE AN IN%O
FILE FROM THE

OUTPUT ASCII
LIST (

Y

RELATE THE ELEVATIONS IN
INFO FILE TO THE STREAM
POINTS IN THE INPUT COVER

STOP |

Figure 26.--Flowchart for E.LEVATF.AML.

The files, "STRPTS,” "ELEVPTS,” "STRELEVS," and the cover "STRONLY" are deleted or KILLed by
ELEVATE.AML at the beginning of its run. Common errors include not having an identifying item in the output cover
to indicate which points are to be elevated, not using a point cov%r as the output cover, not having an item in the

topographic intersection cover (TI cover) representing the elevation, or not using the same arc cover to generate, in the
TI cover, the intersection points with the topographic contour lines and to generate the points indicated by the
identifying item in the output cover.)

Program Listing

/* MACRO: Add river elevations to a point cover (with an item identifying
/* the river points) based on a point cover of intersections of

/* topographic map contour lines with the rivers

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST

/* DTYPE: The screen graphic display device type

/* COVER: The point cover containing points to be elevated

/* STRWORD: The item which is equal to one for each point to be elevated

/¥ QUTELEV: The output cover item to contain the elevation info

/* TOPO: The cover with points at the intersections of topographiccontour
/* lines and the lines along which points to be elevated lie

/¥ INELEV: The input cover item to contain the elevation info

/* COVERPAT: COVER, capitalized, with the extension, ".PAT"

/¥ COVERID: COVER, capitalized, with the extension, "-ID"

/¥ WHEREOUT: The name of the output cover, complete with its entire path

&echo &off
&args dtype cover strword outelev topo inelev

/* -Check the computer type (by Leonard 1. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&s .computer_type unix
&end

/* -Test input to see if all arguments are present as expected-O
&if [type %dtype%] ne -1 &then &goto badentry

&if [type %cover%] ne 1 &then &goto badentry

&if {type %strword%] ne 1 &then &goto badentry

&if [type %outelev%] ne 1 &then &goto badentry

&if [type %topo%] ne 1 &then &goto badentry

&if [type %inelev%] ne 1 &then &goto badentry

&if [length %inclev%] eq 0 &then &goto badentry

/* -Define some variables-M

&setvar coverpat [translate %cover%].PAT
&setvar coverid [translate %cover%]-ID
&setvar topopat [translate %topo%].PAT
&setvar topoid {translate %topo%]-1D
&setvar whereout [pathname STRELEVS]

45-

&setvar outel [translate %outelev%]
&setvar inel [translate %inelev%]

/* -Delete any old occurances of files-E
&s i [delete strpts]

&s i [delete elevpts]

&s i [delete strelevs]

&severity &error &ignore

kill stronly all

&severity &error &fail

/* -Prepare the input coverages to dump data onto the FORKLIFT}D
additem %topopat% %topopat% temp4 5b
&if %.computer_type% = 'prime' &then
&do

&data ARC INFO

SEL %topopat%

CALC TEMP = %topoid%

CALC %topoid% = %inel%

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SEL Y%topopat% {
CALC TEMP = %topoid% |
CALC %topoid% = %inel%
QSTOP

QUIT \
&end i
&end |
idedit %topo% point \
copy %cover% stronly
ae

disp %dtype%

mape stronly

editc stronly

editf label

drawe label

draw

select screen

resel for %strword% = 1

nsel

&SEVERITY &ERROR &IGNORE

delete

&SEVERITY &ERROR &FAIL

save

q

&severity &error &ignore

additem %coverpat% %coverpat% %outel% 7 7 i
additem %coverpat% %coverpat% dumrelat 7 7 i

46-

&severity &error &fail
ungenerate point stronly strpts
ungenerate point %topo% elevpts

/* -Use FORKLIFT 1o interpolate between TOPO points and add the appropriate
/* elevation to each point in STRONLY-Y

&if .computer_type = 'prime' &then &sys r forklift

&else &sys forklift.out

/* -Create WADE, an info file to hold the stream point elevation data-H
&if %.computer_type% = 'prime' &then
&do

&Data ARC INFO

SELECT WADE

PURGE

Y

ERASE WADE

Y

DEFINE WADE

DUMRELAT,7,7,1

%outel%,7,7.1

GET %whereout% COPY
SELECT %coverpat%

CALC DUMRELAT = %coverid%
SELECT WADE

RELATE %coverpat% BY DUMRELAT
CALC $1%outel% = %outel%
Q STOP

&end

&end

&else

&do

&Data ARC

INFO

ARC

SELECT WADE

PURGE

Y

ERASE WADE

Y

DEFINE WADE
DUMRELAT,7,71
Yeoutel%,7,7,1

GET %whereout% COPY ASCII
SELECT %coverpat%

CALC DUMRELAT = %coverid%
SELECT WADE

RELATE %coverpat% BY DUMRELAT
CALC $1%outel% = %outel%

QSTOP

QUIT

&end

47-

&end

/* -Restore the input cover-O
&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SEL %topopat%

CALC %topoid% = TEMP
Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SEL %topopat%

CALC %topoid% = TEMP
QSTOP

QUIT

&end

&end

dropitem %topopat% %topopat% temp

/* -Eliminate unecessary coverages-U

dropitem %coverpat% %coverpat% DUMRELAT
&s i [delete strpts]

&s i [delete elevpts]

&s i [delete strelevs]

kill stronly all

&goto endit

/* -Print the error message-R \
&label badentry ‘
&type Usage: ELEVATE <display type> <output cover to be elevated (ex:#nng)>
&type <output item indicating points to be elevated(existing)>
&type <output cover item to contain elevation (created)><input
&type cover w/elevation points near the points to be elevated
&type (existing)><input item containing elevation (existing)>
&label endit

&type End of ELEVATE

Fortran Program FORKLIFT.F77
Deseriti

FORKLIFT.F77 performs the actual interpolation of elevations for ELEVATE.AML. It examines each
relevant point in the input cover in turn (fig. 27). First, it selects the two nearest topographic line intersection points
for each output point. After selection, it examines their positions and the position of the output point to determine
relative distances between the three points. If the output point lies between the two closest points, then its elevation is
calculated as a linear interpolation between the two topographic line intersection points. If, however, the output point
lies to one side of the two nearest points, then its elevation is defined to be equal to the elevation of the nearest point.

48-

START

READ STREAM NODES SELECT NEXT SELECT NEXT
AND COORDS AND TOPO STREAM POINT TOPOGRAPHIC
ELEVATIONS INTO THE AND RESET SAVED ELEVATION
INPUT ARRAY DISTANCES POINT
RECORD THE OLD RECORD THE
CLOSEST POINT |(g—| TOPO POINT AS
AS THE NEW THE NEW
SECOND CLOSEST CLOSEST POINT
RECORD THE
LAST TOPO ' TOPO POINT AS
POINT? THE NEW
SECOND CLOSEST
YES
STRE/ BETWEEN WO
POTNT BETWEEN CLOSEST ELEVS
FOR STREAM ELEV
SET STREAM RECORD THE
ELEVATION EQUAL STREAM ELEVA-
TO THE CLOSEST TION IN THE
TOPO ELEVATION OUTPUT ARRAY
COPY THE
OUTPUT ARRAY
INTO THE
OUTPUT FILE

Figure 27.--Flowchart for FORKLIFT.F77.

49-

C**C

C PROGRAM: Interpolate elevations to stream points C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

C**C

PROGRAM FORKLIFT

C***C

C VARIABLELIST ‘ J

ARGS: THE DUMMY INPUT AND OUPUT ARGUMENT
IJ: COUNTER VARIABLES
CNTSTR: THE NUMBER OF STREAM POINTS
STRNODE: THE NODE NUMBER OF THE INPUT STREAM POINTS C
STRDATA: THE COORDINATES OF THE INPUT STREAM POINTS H
CNTELEV: THE NUMBER OF STREAM/TOPO LINE RSECTIONS C
ELEVATE: THE ELEVATION OF THE INPUT STRE PO R
INTERSECTION POINTS C
ELEVDATA: THE COORDINATES OF THE NODES ABOVE C
CLOSEl: THE CLOSEST DISTANCE BETWEEN A GIVEN STREAM POINT S
AND ANY STREAM/TOPO LINE INTERSECTION . C
CLOSE2: THE SAME AS ABOVE, BUT THE SECOND CLOSEST o)
CL1J: THE INPUT ARRAY POSN OF THE PT AT DISTANCE, CLOSE1 C
CL2J: THE INPUT ARRAY POSN OF THE PT AT DISTANCE, CLOSE2 F
DIST: THE DISTANCE BETWEEN A GIVEN STREAM POINT AND A C
STREAM/TOPO LINE INTERSECTION, USED TO COMPARE T
AGAINST AND POSSIBLY REPLACE CL1J OR CL2J | C
DISTP1: THE DISTANCE FROM A GIVEN STREAM POINT TO CL1J w
DISTP2: THE DISTANCE FROM A GIVEN STREAM POINT TO CL2J C
DIST12: THE DISTANCE FROM CL1J TO CL2J A
PELEV: THE STREAM POINT ELEVATION, INTERPOLATED FROM THE C
CL1J AND CL2J ELEVATIONS : R
OUTAR: THE OUTPUT ARRAY WHICH CONTAINS THE STREAM NODE C
NUMBER AND THE ELEVATION E

**C

QOO0 000000000000A0

COMMON /C1/ELEVATE(25000),STRDATA(25000,2)
COMMON /C2/ELEVDATA(25000,2),0UTAR(25000,2),STRNODE(25000)

INTEGER 1J,CNTSTR,CNTELEV,STRNODE ELEVATE
INTEGER CL1J,CL2J,PELEV,OUTAR

REAL*8 STRDATA ELEVDATA,CLOSE1

REAL*8 CLOSE2,DIST,DISTP1,DISTP2,DIST12 |
CHARACTER¥*32 ARGS }

100 FORMAT (110,2F13.6)
110 FORMAT (2I7)

C=====Open the input and output files:

@]

OPEN (10,FILE= 'strelevs))
OPEN (11,FILE= 'strpts’)

|
-50- |

OPEN (12,FILE= ‘elevpts’)
C=====Load the input data into the input arrays========C

I=1
CNTSTR =0
10 READ (11,100,ERR= 20) STRNODE(I),STRDATA(,1),
C STRDATA(,2)
I=I+1
CNTSTR =CNTSTR + 1
GOTO10
20 I=1
CNTELEV =0
25 READ (12,100.ERR= 30) ELEVATE(I),ELEVDATA(I,1),ELEVDATA(,2)
I=l+1
CNTELEV =CNTELEV + 1
GOTO25

C=====EXAMINE EACH STREAM POINT IN TURN===C

30 DO401=1,CNTSTR
CLOSE1 = 999999999
CLOSE2 = 999999999
CLU=0
CL2l=0

C---FIND THE TWO ELEVATION POINTS CLOSEST TO THE GIVEN STREAM POINT----C
DO 50 J=1,CNTELEV
DIST = SQRT((ELEVDATA(J,1) - STRDATA(L1))**2 +
C (ELEVDATA(J,2) - STRDATA(1,2))**2)
IF (DIST .GE. CLOSE1) GO TO 33
CLOSE2 = CLOSE1
CLOSEL1 = DIST
CL2J=CL1
CLU=]
GOTO50
33 IF (DIST.GE. CLOSE2) GO TO 50
CLOSE2 =DIST
CL2J=]
50 CONTINUE

C-CALCULATE THE DISTANCES BETWEEN THE STREAM AND THE 2 CHOSEN PTS--C
DISTP1 = SQRT((ELEVDATA(CL1J,1) - STRDATA(L, 1))**2 +
C (ELEVDATA(CL1J,2) - STRDATA(,2))**2)
DISTP2 = SQRT((ELEVDATA(CL2J,1) - STRDATA(L, 1))**2 +
C (ELEVDATA(CL2J,2) - STRDATA(I,2))**2)
DISTI2 = SQRT((ELEVDATA(CL1J,1) - ELEVDATA(CL2J,1))**2 +
C (ELEVDATA(CL1J,2) - ELEVDATA(CL2J 2))**2)

C--ee- INTERPOLATE, BASED ON RELATIVE POSITIONS, TO FIND THE ELEVATION OF
C----- THE STREAM POINT C
IF (DIST12 .LE. DISTP1) GO TO 53
IF (ELEVATE(CL1J) .LT. ELEVATE(CL2J)) GO TO 55
PELEV = INT(ELEVATE(CL2)) + (ELEVATE(CL1J) -

-51-

C ELEVATE(CL2J)) * DISTP2/DIST12)
GOTO60 .
55 PELEV = INT(ELEVATE(CL1J) + (ELEVATE(CL2J) -
C ELEVATE(CLJ)) * DISTP1/DIST12)
GO TO 60
53 PELEV = ELEVATE(CL1J)

60 OUTAR(,1) = STRNODE()
OUTAR(],2) = PELEV
40 CONTINUE

@]

C=====WRITE THE OUTPUT ARRAY TO THE OUTPUT FILE =
DO 70 I=1,CNTSTR
WRITE (10,110) OUTAR(,1), OUTAR(1,2)

70 CONTINUE

C====CLOSE ALL FILES AND EXIT:

@]

CLOSE (10) {

CLOSE (11)
CLOSE (12)
END
EIXSNAP.AML
Description }

This AML program attempts to correct for a peculiar operational ¢ teristic of the SNAP command. Ina
sufficiently large cover, if two points lie extremely close together, then they will not be affected by the SNAP
command. It, in effect, does not interpret them as separate points. In order to correct for this, FIXSNAP.AML first
BUFFERs all points in the input cover with, relatively, very "small" BUFFERs (fig. 28). It then creates a point cover
from the label points of these BUFFERs. Because label points occur at the center of their polygons, then for normal,
single points the output point will be in the exact same position as the input point. For the "double" points, however,
the individual BUFFERs around the points will be merged into one larger BUF FER and, correspondingly, only one
output point will be created. That output point will lie between the original input points. The main difference between
FIXSNAP.AML and SNAPPY.AML is that SNAPPY.AML SNAPs points with a user-supplied, relatively "large”
SNAP distance. FIXSNAP.AML only uses a "small" SNAP distance and hence should not be used in place of the SNAP
command, but only if the extremely close point problem described|above oc

An output mesh with very acute triangles may result if the problem of extremely close points is not resolved.
Our example did not show this, but other experimenting with mesh generation has. If this does occur, then
FIXSNAP.AML can be included in KITSINK.AML just after all point coverages have been combined into the master
point cover and before the master polygon cover is created using CPOTI]T.AML and ARCTIN. FIXSNAP.AML
is also useful as a stand-alone module. |

-52-

NO PRINT
ERROR
MESSAGE

YES

MAKE “SMALL”
BUFFERS AROUND
POINTS IN THE
INPUT COVER

Y

CREATE A POINT
COVER FROM THE
LABEL POINTS OF

THE POLYGONS

Y

REPLACE INPUT
POINT COVER
WITH THE NEW
POINT COVER

Figure 28.--Flowchart for FIXSNAP.AML.

Program Listing

/¥ MACRO: Take an input cover and eliminate any points which lie too close
/* for SNAP to detect as distinct points

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

/* DTYPE: The graphic display terminal type code

/* COV: The cover to be snapped

/* TOLERANCE: The maximum distance across which snapping may occur
f* WEEBUF: The cover containing very small buffered areas surrounding
r* each of the point locations from cov

-53-

&echo &off
&args dtype cov tolerance

/* -Prepare the error-indication file-C
&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i {write %filun% 7]

&setvar i [close %filun%)]

/* -Test the input to see if all arguments are present as expected-O
&if [type %dtype%]) ne 1 &then &goto proceed

&if [len %dtype%] eq 0 &then &goto badentry

&label proceed

&if [type %cov%] ne 1 &then &goto badentry

&if [length %cov%] eq 0 &then &goto badentry

&if [type %tolerance%] ne -1 &then goto badentry

/* -Eliminate unecessary coverages-M
&severity &error &ignore

kill weebuf all

&severity &error &fail

{* -Establish a relatively "small" distance based on the snap distance-E
&setvar bufdis %tolerance% * 0.4

/* -Use buffers in order to remove multiple points with VERY close
/* location, a condition which prevents the SNAP command from
/* working properly-D

remepf -prg -na -nq -nvfy

build %cov% point

&SEVERITY &ERROR &IGNORE

buffer %cov% weebuf # # %bufdis% 40 point

&SEVERITY &ERROR &FAIL

build weebuf point |
kill %cov% all

copy weebuf %cov%
kill weebuf alt
&goto endit

/* -Print the error message-Y
&label badentry

&type Usage: FIXSNAP<«display type><point cover(exisﬁng)><Tnapping talerance>
&goto enderr

&label endit

/* -Prepare the error-indication file-
&s i[delete coderr]

&setvar filun [open coderr openstatus -w] \
&setvar i [write %filun% noerr]
&setvar i [close %filun%] w

&label enderr
&type End of FIXSNAP ‘

-54-

FREUD.AML
Description

FREUD.AML simplifies the relation between an arc cover and its associated point cover. It modifies the arc
attribute table of the arc cover so that the from- and to- node numbers for each arc correspond to the node numbers in
the point attribute table of the node cover (fig. 29). This direct correspondence allows selection of desired arcs by
intersecting a polygon outline with the associated nodes in the node cover. FREUD.AML changes the node numbers
in the AAT file only. It does not change the node-ID's in the binary ARC file. Any AML program, such as
MODEL.AML, that reads the node-ID's from the binary ARC file and assumes them to be equal to the node numbers
in the AAT file should not be used on a cover once FREUD.AML has been run. FREUD.AML should not be used on
a cover that has had linear discontinuities added to it. For example, such discontinuities could be added to represent
geologic fault lines. A discontinuity consists of two separate points that are defined at the same location in order to
allow an abrupt change in mesh properties.

Common errors in using FREUD.AML include attempting to use it on a cover with linear discontinuities, and
using an arc cover whose nodes do not map directly onto the point cover nodes.

-55-

PRINT
ERROR
MESSAGE
ADDX)Y SORT POINT
COORDINATES |_,| | COVER BY
TO INPUT X COORD,
POINT COVER Y COORD
RUN SLIPF77 TO PRINT NUMBER
Sg%ﬁﬁfg&é’&%{u CREATE ONLOOK, | | OF POINTS, POINT
BASED ON ONLOOK | | AN ASCII LIST O ID’S TO ASCII
NODES IN COVE FILE, NNLOOK
! (FIG 30) ,
ADD XY SORT LOOKUP.OLD CREATE AN ASCII
COORDINATES |] BYXCOORD,Y | _| COPY, ARLOOK,
TO LOOKUP.OLD COORD & CREATE OF THE INPUT
ONLOOK ARC COVER
CREATE AN INFO LIST RUN MOTHER F77
OF FROM & TONODES | | TO REPLACE NODE
WITH NEW #'S BASED #S IN ARLOOK WITH
ON MOTHER.F77 OUTPUT| | POINT COVER #S
I ‘ (FIG 31)
RELATE THE INFO
LIST TO THE ARC
COVER AND RE-
LACE THE NODES

Figure 29.--Flowchart for FELEUDAFLL

FEEEFFOFEEER

Program Listing

MACRO: Change the node numbers in an arc cover to match the node
numbers in a related point cover.

CODED BY:

Robert Lowther

SUPERVISED BY: Eve L. Kuniansky

VARIABLE LIST:

PNTCOV:
ARCCOV:

ARCAAT:

GOODPAT:
X-COORD:
Y-COORD:

NEWID:

NNLOOK:

ONLOOK:

The input point cover with correct node numbers

The input arc cover with incorrect node numbers

The name of ARCCOV's PAT file

The name of PNTCOV's PAT file

The x-coordinate of a node as listed in the PAT file

The y-coordinate ” "" " " " " " "

The node number from the point cover

The ASCII file containing arc cover-based node numbers
ordered by their x and y-coordintes

The ASCII file containing node cover-based node numbers,
both before and after sorting by x and y-coordinates

/* LOOKUP.OLD: The point cover based on the unsorted ONLOOK

/*
/ﬁll

ARLOOK:

The ASCII file containing the from and to nodes as ordered
in the arc cover

/¥ NEWARC: The ASCII file created containing the from and to nodes from

™
/*

the point cover as ordered in the arc cover

DANTE: The INFO file based on NEWARC

&echo &off
&args pntcov arccov

/* -Check the computer type (by Leonard 1. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <=0 &then

&do

&s .slash>
&s .computer_type prime

&end
&else
&do

&end

&s .computer_type unix

f* -Test to see if all arguments are present as expected-O
&if [type %pntcov%] ne 1 &then &goto badentry

&if [type %arccov%] ne 1 &then &goto badentry

&if [length %arccov%] eq 0 &then &goto badentry

/* -Prepare the error-indication file-M

&s i [delete coderr]

&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% 8]

&setvar i [close %filunit%]

-57-

/* -Construct the new node number lookup table-E
&setvar goodpat [translate %pntcov%].PAT
addxy %pntcov%

/* -Sort the point cover-D

/* -Generate the necesary ASCII file-Y

&setvar newid [translate %pntcov%]-ID

&setvar newint [translate %pntcov%]#

&setvar nnlook [translate [pathname NNLOOK]]
&s i [delete %nnlook%]

&if %.computer_type% = 'prime’ &then

&do

&daia ARC INFO

CALC $COMMA-SWITCH = -1

SELECT %goodpat%

SORT ON X-COORD,Y-COORD

OUTPUT %nnlook% INIT

PRINT [TRIM $NOREC]

PRINT %newid%

SORT ON %newint%
Q STOP

&end

&end

&else

&do

&data ARC

INFO
ARC
CALC $COMMA-SWITCH = -1 !
SELECT %goodpat% »
SORT ON X-COORD,Y-COORD
OUTPUT %nnlook% INIT
PRINT [TRIM $NOREC]
PRINT %newid%

SORT ON %newint%
QSTOP
QUIT

&end

&end

/* -Construct the old node number lookup table-

&s i [delete onlook]

&setvar arcnam %arccov% !

remepf -prg -na -nq -nvfy !
\

/* -Create an ASCII file based on the node numbers from the ARC file-H

&s i [delete slipinfo]

&s filunit [open slipinfo openstatus -w]

&s i [write %filunit% %arcnam%]

&s i [close %filunit%]

&if .computer_type = 'prime’ &then &sys r slip

&else &sys slip.out

-58-

/* -Create a point cover based on the ASCII file-O
&severity &error &ignore
kill lookup.old all

&severity &error &fail

&if %.computer_type% = 'prime' &then
&do

generate lookup.old

input onlook

points

quit

&end

&else

&do

&data arc generate lookup.old
input onlook

points

quit

&end

&end

build lookup.old point

addxy lookup.old

/* -Create the necessary ASCII file based on the point cover-U
&s i [delete onlook]
&setvar onlook [pathname ONLOOK]
&if %.computer_type% = 'prime' &then
&do
&data ARC INFO
SELECT LOOKUP.OLD.PAT
CALC $COMMA-SWITCH = -1
SORT ON X-COORD,Y-COORD
OUTPUT %onlook% INIT
PRINT LOOKUP.OLD-ID
Q STOP
&end
&end
&else
&do
&data ARC
INFO
ARC
SELECT LOOKUP.OLD.PAT
CALC $COMMA-SWITCH = -1
SORT ON X-COORD,Y-COORD
OUTPUT %onlook% INIT
PRINT LOOKUP.OLD-ID
Q STOP
QUIT
&end
&end

/* -Create a facsimile of the mesh AAT which F77 can read-R

&setvar arlook [pathname ARLOOK]
&s i [delete %arlook%]

-59-

&setvar arcaat [translate %arccov%].AAT
&if %.computer_type% = ‘prime’ &then
&do

&data ARC INFO

CALC $COMMA-SWITCH = -1
SELECT %arcaat%

OUTPUT %arlook% INIT
PRINT [TRIM $NOREC]
PRINT FNODE#,TNODE#

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

CALC $COMMA-SWITCH = -1
SELECT %arcaat%

OUTPUT %arlook% INIT
PRINT [TRIM $NOREC]
PRINT FNODE#,TNODE#

Q STOP

QuIT

&end

&end

/* -Pace through the AAT facsimile and create a new facsimile using the
/* node numbers from the node cover instead of those from the arc cover-

&setvar dumarg DummY

&severity &error &ignore

&s i [delete newarc]

&severity &error &fail

&if .computer_type = 'prime’ &then &sys r mother
&else &sys mother.out

/* -Create an INFO file based on the new facsimile-S
&setvar newarc [pathname NEWARC]
&severity &error &ignore
&severity &error &fail
&if %.computer_type% = 'prime’ &then
&do
&data ARC INFO

SELECT DANTE

PURGE

Y

ERASE DANTE

Y

DEFINE DANTE

FNODE,6,6,1

TNODE,6,6,1

GET %newarc% COPY
Q STOP

&end

&end

&else

&do

&data ARC
INFO

ARC

SELECT DANTE
PURGE

Y

ERASE DANTE
Y

DEFINE DANTE
FNODE,6,6,1
TNODE,6,6,1

GET %newarc% COPY ASCII
Q STOP

QUIT

&end

&end

/* -Prepare the original arc file and the facsimile-based INFO file
/* for relate-O

additem %arcaat% %arcaatf reln 5 5 i

additem dante dante reln 5 5 i

/* -Replace the from and to node numbers in the original arc file with the
/* new node numbers obtained from the INFO file based on the orig node cover-F
&if %.computer_type% = 'prime’ &then
&do
&data ARC INFO
SELECT %arcaat%
CALC RELN = $RECNO
SELECT DANTE
CALC RELN = $RECNO
RELATE %arcaat% BY RELN
CALC $1FNODE# = FNODE
CALC $1TNODE# = TNODE
PURGE
Y
ERASE DANTE
Y
Q STOP
&end
&end
&else
&do
&data ARC
INFO
ARC
SELECT %arcaat%
CALC RELN = $RECNO
SELECT DANTE

61-

CALC RELN = $SRECNO
RELATE %arcaat% BY RELN
CALC $1FNODE# = FNODE
CALC $1TNODE# = TNODE
PURGE

Y

ERASE DANTE

Y

QSTOP

QUIT

&end

&end

/* -Eliminate all temporary files-T
dropitem %arcaat% %arcaat% reln
dropitem %goodpat% %goodpat% x-coord
dropitem %goodpat% %goodpat% y-coord
&s i [delete slipinfo]

&s i [delete onlook]

&s i [delete nnlook]

&s i [delete arlook]

&s i [delete newarc]

kill lookup.old all

/* -Prepare the error-indication file-W

é&s i [delete coderr]

&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% noerr]
&setvar i [close %filunit%]

&goto endit

/* -Print the error message-A J
&label badentry ‘
&type Usage: FREUD <point cover with correct node numbers (existing)> <arc
&type cover whose from and tonodes are to be changed(existing)> J

/* -End of program message-R
&label endit

&type End of FREUD
/* -End of program-E

Fortran Program SLIP.F77

Descrioti

This program extracts needed information from the arc cover's binary file and writes it to an ASCII file that
can be read by FREUD.AML (fig. 30). The binary file contains the from- and to- nodes for each arc, as well as their
X- and Y-coordinates. SLIP.F77 compiles an ASCII list of all nodes in the current cover. It writes one output record
for each node instead of one for each occurrence of a node as is done in the binary file. SLIP.F77 therefore eliminates
the repetition of node numbers, which occurs when information i stored by ARC/INFO.

-62-

START

READ NODES
FROM BINARY
ARCFILE INTO

AN ARRAY (FIG 29)

Y

RESET ARRAY
POINTER

Y

READ NEXT NODE ADD NODE TO
OUTPUT ARRAY e

LAST IN THE
ARRAY?

WRITE OUTPUT
ARRAY TO
ONLOOK, THE
OUTPUT FILE(FIG 29)

STOP

Figure 30.--Flowchart for SLIP.F77.

-63-

P Listi

C*******TT’ 3ok ok g e 3k 3k 3 e 3k 46 6 o e b o e e e o i ke 3 ke ke ok (O

A\
C PROGRAM: Read the binary ARC file and create an ASCII file w/ the info C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C
C***#**#********* %%k *ok kK *********************************C
PROGRAM SLIP

COMMON /C1/OUTIN(25000),USERID(25000), FRNODE(25000), TONODE(25000)
COMMON /C2/LPOLY (25000),RPOL Y (25000),NPT(25000)
COMMON /C3/COORDS(25000,6),OUTARY(25000,2)

C##***************************#*******#****************************C

VARIABLE LIST: C
C
IABUFF: The standard ARC record, as read from the ARC file \ (0]
USERDUM: The integer equivalent to the first IABUFF record ! C
FRDUM: The IABUFF record corresponding to FRNODE i M
TODUM: Corresponds to TONODE C
LPDUM: The record representing the left polygon C
RPDUM: The" " " right polygon H
NPTDUM: The" " " number of points on an arc C
ACCESS: The access mode for opening the ARC file R
TEMPRY: Code number to indicate a normal ARC file C
OUTIN: The output integerarray used to create the ASCII ouput file C
OUTFND: A flag indicating that the tested item is already in OUTIN' C
OUTFND: A flag indicating the tested item is already in the outarray S
FRNODE: The from node array C
TONODE: The to node array B o
KANARC: The ARCFILE channel number C
IJ.K: Counting variables F
IERROR: Flag indicating trouble while opening a file C

ololokoloNoloXe e koo Ko koo o ke koo ioko ke Xe Koo Ke!

CORDDUM: Corresponds to COORDS T
COORDS: The coordinate array read from the input ARC file C
OUTARY: The output real number array ‘ W
ARCCOV: The name of the ARC cover C
FILENM: The output file name for the old node lookup ﬂle/ A
DUMRET: The dummy argument returned to the macro i L C
C**##*#*v * 4 3k e 3 e e %%k 5 e 3k 3 e e 3k e 3 e e e 3k ok ’“TR

\
INTEGER IABUFF(2006),USERDUM,FRDUM,TODUM,LPDUM,RPDUM ,NPTDUM
INTEGER ACCESS, TEMPRY ,OUTIN,OUTEND,FRNODE,TONODE, ARC,1J K
INTEGER IERROR ,badarc, KAN2,USERID,LPOLY ,RPOLY ‘
DOUBLE PRECISION CORDDUM(1000),COORDS,OUTARY
CHARACTER*128 ARCCOV FILENM,DUMRET FILE2

EQUIVALENCE (IABUFF(1),USERDUM)
EQUIVALENCE (IABUFF(2),FRDUM) | |
EQUIVALENCE (IABUFF(3),TODUM)
EQUIVALENCE (IABUFF(4),LPDUM)
EQUIVALENCE (IABUFF(5),RPDUM)
EQUIVALENCE (IABUFF(6),NPTDUM)

EQUIVALENCE (IABUFF(7), CORDDUM(1))

EXTERNAL LUNINI,MINIT,ARCOPN,ARCRD,AOPEN,MESINI,
&ACLOSE,ARCCLS,AMLFNA,ACREAT,AENTER,VINIT

CALL AENTER
CALL LUNINI
CALL MINIT
CALL VINIT
CALL MESINI

100 FORMAT (16, F15.3,, F15.3)
200 FORMAT (A3)

FILENM = 'onlook’

ACCESS =2

TEMPRY =1

(@]

C-----Determine the ARC cover name
OPEN (7,FILE= 'slipinfo’)
READ (7,¥) ARCCOV
CLOSE (7)

C-----Open the input and output files C
CALL ARCOPN (KANARC,ARCCOV,ACCESS, TEMPRY,IERROR)
CALL ACREAT (LOUT FILENM,IER)

Q

C-----Read the ARC binary file

NOIN=1
irec=1
badarc =0
10 CALL ARCRDr (KANARC,IREC,JABUFF,JERROR)
if (nptdum .gt. 2) print *,nptdum
USERID(NOIN) = USERDUM
FRNODE(NOIN) = FRDUM
TONODE(NOIN) = TODUM
LPOLY(NOIN) = LPDUM
RPOLY(NOIN) = RPDUM
NPT(NOIN) = NPTDUM
DO 9 1= 1,NPTDUM*2
COORDS(NOIN,I) = CORDDUM(I)
9 CONTINUE
NOIN=NOIN + 1
IF (IERROR .EQ. -1) GO TO 13
IF (IERROR .EQ. -2) GO TO 15
irec =irec + 1
GOTO10
13 NOIN=NOIN-1

NOOUT =0

DO 17 I=1,NOIN
OUTFEND =0

DO 18 J=1 NOOUT

-65-

IF (OUTIN(J) .NE. FRNODE(I)) GO TO 18
OUTFND = 1
18 CONTINUE

C--——-Write to the output file if OK

(@]

IF (OUTFND .EQ. 1) GO TO 19
NOOUT = NOOUT + 1
OUTIN(NOOUT) = FRNODE(])
OUTARY(NOOUT,1) = COORDS(I,1)
OUTARY(NOOUT2) = COORDS(I,2)

Ceemeeo Check and write the to node

19 OUTFND =0
DO 21 J=1,NOOUT
IF (OUTIN(J) .NE. TONODE(T)) GO TO 21

OUTFND = 1

21 CONTINUE
IF (OUTEND .EQ. 1) GO TO 22
NOOUT = NOOUT + 1
OUTIN(NOOUT) = TONODE(])
OUTARY(NOOUT,1) = COORDS(I,3)
OUTARY(NOOUT2) = COORDS(14)

22 OUTFND=0

17 CONTINUE

C---—--Write the output array to the output file

A

DO 23 I=1, NOOUT

WRITE (LOUT,100) OUTIN(I),(OUTARY(1,J),J=1,2)
23 CONTINUE

WRITE (LOUT,'(A3)") 'END'

GOTO20
15 WRITE (*,'(A)") Error occurred during ARCRD'
20 ENDFILE(LOUT)

CALL ACLOSE (LOUT)

CALL ARCCLS (KANARC)
END

Fortran77 Program MOTHER.F77
Descripti

This program translates the node numbers in an ASCII file based on an arc AAT file into the node numbers
from the node cover PAT file (fig. 31). MOTHER.F77 uses three input files. The first of these files is an ASCII file
of node numbers written in the format that ARC/INFO uses: it is based upon the arcs and, therefore, repeats node
numbers wherever two or more arcs meet at the same node. The second and third input files are lists of the nodes in
the arc cover in question, with each node listed only once. The second file contains arc-cover-based numbers, the node
numbers used in the original arc cover, those used in the first input file. The third contains node-cover-based numbers,
the node numbers used in the original node file. These two input files are written, side by side, into a "lookup table."
This table becomes, in effect, a "dictionary” that translates from arc-cover-based numbers to node-cover-based
numbers. The node numbers in the first ASCII file, those from the arc-cover-formatted file, can be "translated” as
follows.

A node number is read from the input arc-cover-formatted file and located in the first column of the lookup
table. The corresponding node in the table's second column is then written in place of the original node number in the
arc-cover-formatted file. In this manner, all of the node numbers in the arc-cover-formatted file can be replaced with
the corresponding node-cover-based numbers. The arc-cover-formatted file is then used to change the node numbers
in the line cover so that they match those in the corresponding point cover.

-67-

START

READ FROM & TO
NODES FROM
ARLOOK INTO AN
ARRAY (FIG 29)

Y

SELECT NEXT READ SORTED LISTS OF ARC
RECORD FROM COVER AND NODE COVER

ARLOOK BASED ‘T‘ BASED NODE NUMBERS INTO

ARRAY A LOOKUP ARRAY

SELECT NEXT
RESET LOOKUP RECORD FROM

> &
FILE POINTER [—™ OLD NODE #

LOOKUP ARRAY

REPLACE FROM
NODE IN ARLOOK

REPLACE TO
NODE IN ARLOOK]
ARRAY

'

WRITE NEW NODE
NUMBERED ARC

FORMAT ARRAY TO
OUTPUT FILE (FIG 29)
|

Figure 31.--Flowchart for MOTHER.F77.

-68- \

P Listi

Clklk****'k*##***l‘t****#*lk'k**#*Uk&*****l‘tl‘t*'k*##**&Uk*****’k******t*****&c

C PROGRAM: Create an ASCII file based on arc file with node file node #s C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

C***“&‘*************‘&*****‘##**t*&&&&************‘******‘*******C

PROGRAM MOTHER

COMMON /C1/ ARCARY(25000,2), NODREL(25000,2)

C****#*******###********* deak ok ok ke ke % % o afe o o 3l o ajc e o ajc b ““i“‘c

C VARIABLELIST: H

C S

C NUMARC: The number of arcs in the AAT file C
C NUMNOD: The number of nodes in the PAT file C
C FNODE: The from node as read from the AAT file C
C TNODE: The to node as read from the AAT file C
C NNODE: The node number in the ASCII file as read from the PAT file C
C ONODE: The" " "™ ™ " ™m " " AAT" H

C ARCARY: The array of node numbers, as read from the AAT file S
C NODREL: The array of node numbers, both old and new C
C FND: A flag indicating that translations for both nodes in an arc C
C have been found C

C FNDF: A flag indicating that the from node has been found C
C FNDT: A" " S ' T C

C LJ: Counting variables H

C vvvvvvvv e afe ke 2 e ke e Ao L2 L L e a2k ‘-v-rv;s

INTEGER NUMARC NUMNOD,FNODE,TNODE NNODE ,ONODE,ARCARY
INTEGER NODREL ,FND,FNDFFNDT,L,J

OPEN (UNIT= 9,FILE= ‘arlook")
OPEN (UNIT= 10,FILE= ‘onlook")
OPEN (UNIT= 7,FILE= 'nnlook’)
OPEN (UNIT= 8 FILE= 'newarc')

100 FORMAT (I6)
200 FORMAT (2I6)

C-----Read in the size of the arc and the node input files-------------- C

READ (9,*) NUMARC
READ (7,*) NUMNOD

C-----Read the input arc-based node numbers into an array---------------C

DO 1 I=1,NUMARC
READ (9,200) FNODE, TNODE
ARCARY(1,1) = FNODE
ARCARY(1,2) = TNODE

1 CONTINUE

-69-

C-----Read the arc-based and node-based lookup files into a lookup array-C

DO 2 1=1,NUMNOD
READ (10,100) ONODE
READ (7,100) NNODE
NODREL(],1) = ONODE
NODREL(],2) = NNODE

2 CONTINUE

C=====Build a file containing the new node numbers in the same order as the AAT

DO 3 I=1 NUMARC

J=1

FND =0

FNDF =0

FNDT =0
C------Check the selected lookup item against both items in the current line
C of the AAT-based node file C

4 IF(NODREL(,1) NE. ARCARY(,1)) GOTO §
IF (FNDF .NE.0) GO TO 5 (
ARCARY(I,1) = NODREL(J,2)
FNDF = 1]
5 IF (NODREL(,1) NE. ARCARY(1,2)) GO TO 6
IF (FNDT .NE. 0) GO TO 6
ARCARY(I,2) = NODREL(J,2)

FNDT =1
Co-emme Increment the test line and check to see if both changes are' made---C

6 J=J+1
FND = FNDF + FNDT
IF (FND .LT.2) GO TO4
3 CONTINUE

@]

C-----Write the output file

DO 7 I=1,NUMARC

WRITE (8,200) ARCARY(I,1),ARCARY(I,2)
7 CONTINUE

CLOSE (9)

CLOSE (10)

CLOSE (7)

CLOSE (8)

END

-70-

IDENTIFY.AML
Description

Identification of features is essential when dealing with several input coverages. It is for this reason that
IDENTIFY.AML is useful (fig. 32). It can add one user-specified item each to up to 10 coverages and assign those
items a value of "1" so that when all of the input features are combined into one output cover, the output features can
be identified and grouped according to input cover origin. It has one further, optional feature. If a target cover is
specified and if the (up to) 10 coverages are polygon coverages, then IDENTIFY.AML will perform an intersection of
its newly identified polygon cover with the target cover. This effectively uses the given identifying item to identify
parts of the target cover by the polygon that overlays them.

At the beginning of its run, IDENTIFY .AML KILLs a cover called "CAESER." One common error in using
IDENTIFY.AML is to try to identify coverages of more than one type. All 10 (or as many as used) coverages must
be of the same type.

-

START

PRINT
ERROR
MESSAGE

DETERMINE TYPE
SELECT NEXT
AND IDENTIFYING=— INPUT COVER

v

ADD ITEM TO !
INPUT COVER AND
CALCIT EQUAL
TO ONE

IDENTITY TARGET
COVER WITH
INPUT COVER

NO

ALL INPUT COVERS
HAD ITEMS ADDED?

Figure 32.--Flowchart for IDENTIFY.AML and IDENTI2.AML.

-72-

Program Listing

/* MACRO: Add an item to up to ten coverages of the same type and
"calc” that item equal to one to identify the elements.
Optionally, it will identity a specified cover with each
input cover, given that the input coverages are polygonal.
Note: This macro will not buffer point or line coverages in order
to be able to identify the specified cover’s items. In order
to do that, use IDENTILOTS

FEFITTFEFRER

/* CODED BY: Robert Lowther
/¥ SUPERVISED BY: Eve L. Kuniansky

/¥ VARIABLE LIST:

1* TIP: The feature type, as input by the user

f* C1-C10: The cover names, as input by the user

1* 11-110: The item names, as input by the user

f* TYP: The capitalized version of "tip"

/* COV: The name of the cover currently being considered

f* COVER: The capitalized version of "cov"

/* ITEM: The name of the item currently being considered

/* COVTAB: The name of the attribute table to which the item is added
/* DIFFER: The name of the cover to be identitied with each input cover
/¥ CAESER: A temporary cover used to identity the specified cover

f* SHINY: Are the poly coverages buffers of other coverages?

&echo &off
&argstipclilc2i2c3i3c4i4 c5i5c6i6¢717 c8i8 ~
¢9i9¢c10i10

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <=0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&s .computer_type unix
&end

/* -Test the input to see if all arguments are present as expected-O
&if [type %tip%] ne 1 &then &goto badentry

&if ftype %c1%] ne 1 &then &goto badentry

&if [type %i1%] ne 1 &then &goto badentry

&if [length %il %] eq O &then &goto badentry

&setvar typ [translate %tip%]

&if %typ% ne 'POLY" &then &goto postq

&setvar shiny [response 'Are these coverages buffers of other coverages? (y/n)']
&if %oshiny% eq 'y’ &then &setvar typ POLD’

13-

&if %shiny% eq 'Y" &then &setvar typ 'POLD'
&label postq

&setvar differ [response "Enter the cover which is to be differentiated (or ~
null)]
&if [length %differ%] ne 0 &then

&do

&setvar dtip [response Enter the cover type']

&setvar dtyp [translate %dtip%]

&end

/* -Eliminate any unecessary coverages-M
&severity &error &ignore

kill Caeser all

&severity &error &fail

/* -Loop through all of the coverages-E
&do cov &list %c1% %c2% %c3% %ocd% %oc5% %c6% %ocT% %c8% %c9% %c10%
&if [length %ocov%] eq 0 &then &goto endloop

&setvar cover [translate %cov%]

/* -Identify and translate the item to be added-D

&if %ocov% eq %cl% &then &setvar item [translate %il %]
&if %cov eq %oc2% &then &setvar item [translate %i2%]
&if 9ocov% eq %c3% &then &setvar item [translate %i3%]
&if %cov% eq %cd% &then &setvar item [translate %id %] ‘
&if %cov%h eq %c5% &then &setvar item [translate %iS%]
&if %cov% eq %c6% &then &setvar item [translate %i6%]
&if %cov eq %c7% &then &setvar item [translate %i7%]
&if %cov% eq %c8% &then &setvar item [translate %i8%]
&if %cov% eq %c9% &then &setvar item [translate %i9%]
&if %bcov eq %oc10% &then &setvar item [translate %il0%])
&if %typ% eq 'LINE' &then &setvar covtab %ocoverd%o.AAT
&if %typ% eq POINT' &then &setvar covtab %ocover% PAT
&if %typ% eq POLY' &then &setvar covtab %cover%.PAT
&if %typ% eq 'POLD' &then &setvar covtab %cover% PAT

&severity &error &ignore
additem %covtab% %covtab% %item% 4 4 i
&severity &error &fail

/* -Set the item equal to one-Y

&if %.computer_type% = prime’ &then

&do

&data ARC INFO

SELECT %covtab%

&if %typ% eq 'POLY" &then RESEL FOR AREA >0
&if %typ% eq 'POLD' &then RESEL FOR INSIDE = 100
CALC %item% = 1

Q STOP

&end

&end

&else

&do

74-

&data ARC

INFO

ARC

SELECT %covtab%

&if %typ% eq POLY' &then RESEL FOR AREA > 0
&if %typ% eq 'POLD' &then RESEL FOR INSIDE = 100
CALC %item% = 1

Q STOP
QUIT
&end
&end
&if [length %differ%] eq 0 &then &goto endloop
copy %differ% Caeser
kill %differ% all
identity Caeser %cover% %differ% %dtyp% 40
kill Caeser all
&label endloop
&end
&goto endit
/* -Print the error message-
&label badentry
&type Usage: IDENTIFY <type (point,line,poly) of coverages to have identifying
&type items added> <cover to have item added #1 (existing)>
&type <identifying item #1 (created)> ... {cover to have
&type item added #10 (existing)} {item #10 (created))
&label endit
&type End of IDENTIFY
IDENTI2. AML
Description

This is a modified version of IDENTIFY.AML, designed to be called by KITSINK.AML. It shares a flowchart
with IDENTIFY.AML, shown in figure 32. Like CLIPIT2.AML, IDENTI2.AML replaces a screen-prompted input
with an argument. This is to enable KITSINK.AML to run uninterrupted.

Program Listing
¥ MACRO: Add an item 10 up to ten coverages of the same type and
f* "calc" that item equal to one to identify the elements.
r* Optionally, it will identity a specified cover with each
/* input cover, given that the input coverages are polygonal.

/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

/* TIP: The feature type, as input by the user
/* C1-C10: The cover names, as input by the user
/* I1-110: The item names, as input by the user
* TYP: The capitalized version of "tip"

-75-

/* COV: The name of the cover currently being considered

f* COVER: The capitalized version of "cov"

/* ITEM: The name of the item currently being considered

/* COVTAB: The name of the attribute table to which the item is:added
/* DIFFER: The name of the cover to be identitied with each input cover
f* CAESER: A temporary cover used to identity the specified cover

&echo &off
&args tip differ dtipcl il c2i2¢3i3 c4i4c5i5c6i6¢c7i7¢c8i8 ~
c9i9 c10i10

/¥ -Prepare the error-indication file-C

&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 5]

&setvar i [close %filun%])

&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&s .computer_type unix w
&end

/* -Check the computer type (by Leonard L. Orzol)-O ‘ [
|
|

/* -Test the input to see if all arguments are present as expected-M
&if [type %tip%] ne 1 &then &goto badentry
&if [type %c1%] ne 1 &then &goto badentry
&if [type %il%] ne 1 &then &goto badentry
&if [length %i1%] eq 0 &then &goto badentry

f* -Eliminate any unecessary files-E
&severity &error &ignore

kill Caeser all

&severity &error &fail

&setvar typ [translate %tip%]
&setvar dtyp [translate %dtip%]

/* -Loop through all of the coverages-D

&do cov &list %c1% %c2% %c3% %ocd% %oc5% Foc6% FocT% ‘ch8% %c9% Poc10%
&if [length %cov%] eq 0 &then &goto endloop ;

&setvar cover [translate %cov%]

/* -Identify and translate the item to be added-Y

\
&if %cov% eq %cl% &then &setvar item [translate %il %] |
&if %ocov% eq %c2% &then &setvar item [translate %i2%) |

-76-

&if %cov% eq %c3% &then &setvar item [translate %i3%]
&if %ocov% eq %cd% &then &setvar item (translate %i4%]
&if %ocov% eq %c5% &then &setvar item [translate %i5%]
&if %ocov% eq %c6% &then &setvar item [translate %i6%)
&if %cov% eq %c7% &then &setvar item [translate %i7%]
&if %cov% eq %c8% &then &setvar item [translate %i8%]
&if %cov% eq %c9% &then &setvar item [translate %i9%]
&if %cov% eq %c10% &then &setvar item [translate %i10%)]
&if %typ% eq 'LINE' &then &setvar covtab %cover%. AAT
&if %typ% eq POINT &then &setvar covtab %cover% PAT
&if %typ% eq POLY' &then &setvar covtab %cover% PAT

&severity &error &ignore
additem %covtab% %covtab% %item% 4 4 i
&severity &error &fail

/* -Set the item equal to one-

&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

SELECT %covtab%

&if %typ% eq 'POLY' &then RESEL FOR INSIDE = 100
CALC %item% = 1

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT %covtab%

&if %typ% eq 'POLY’ &then RESEL FOR INSIDE = 100
CALC %item% = 1

QSTOP

QUIT

&end

&end

&if [length %differ%] eq 0 &then &goto endloop
copy %differ% Caeser

kill %differ% all

identity Caeser %cover% %differ% %dtyp% 40
kill Caeser all

&label endloop

&end

&goto endit

/* -Print the error message-

&label badentry

&type Usage: IDENTI2 <type (point,line,poly)> <cover to be differentiated>
&type <type of said cover> <cover #1>

&type <identifying item #1> ... <cover #10> <item #10>

&goto enderr

-77-

&label endit

/* -Prepare the error-indication file-

&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]
&setvar i [close %filun%]

&label enderr
&type End of IDENTI2

IDENTILOTS AML
Description

This AML program is, in effect, a companion program to IDENTIFY.AML. IDENTIFY.AML adds
identifying items to up to 10 coverages. As an option, it will IDENTITY a specified cover with these 10 coverages if,
and only if, the 10 coverages are polygon coverages. IDENTILOTS.AML identifies one cover by up'to 10 identifying
coverages (fig. 33), just as IDENTIFY.AML optionally does, but it does not require the identifying coverages to be
polygon coverages. In contrast to IDENTIFY.AML, which is designed primarily to add identifying items to up to 10
coverages, IDENTILOTS is designed to identify the points in one specified cover based on the location of features in
up to 10 other coverages. The identifying coverages for ID TS. are input as simple point or line
coverages. IDENTILOTS.AML performs a BUFFERing operation to create polygon coverages from the identifying
coverages, using the input item names. This AML program was originally taken from the KITSINK.AML program,
and hence is nearly duplicated in that macro. IDENTILOTS.AML is useful if only this function of KITSINK.AML is
desired. ‘

t

One common error that occurs when using IDENTILOTS. is touse identifying coverages with too much
detail. These coverages will not BUFFER properly, and hence cayse problems. If this occurs, then the identifying
coverages must be SPLINEd before the AML program will run. , bec IDENTILOTS.AML calls
BUFFNSHINE.AML, if there already exists a cover with the input cover name root and the ".BUF" extension, no
BUFFERing will be performed and the existing .BUF cover will be used. If this is not desired, then the .BUF cover
must be KILLed.

-78-

START

NO

PRINT
ERROR
MESSAGE

YES

INPUT NEXT
IDENTIFYING
COVER, ITEM,

AND TYPE

BUFFER
NEXT COVER

v

RUN IDENTI2.AML(FIG 32)
TO IDENTIFY POINTS IN
POINT COVER WITH
BUFFERED ATTRIBUTES

Figure 33.--Flowchart for IDENTILOTS.AML.

-79-

Program Listing

/* MACRO: Identify points in one point cover by noting their

/* proximity to features in many other feature coverages
/* via an item in the point cover's PAT

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

/* MSTPOL: The input point cover

f* MINDIS: The minimum expected distance between points

/* MAXITR: The maximum number of optimizing iterations

/¥ C1-C10: The input line and point coverages |

* 11-110: The item to be associated with each cover to identify it

/* T1-T10: The feature type of each cover

/* NODECRD: The Node Coordinate Data-based point cover

1* COV: The cover currently being considered in a loop

[* COVER: The capitalized version of COV

/* TEMP: The temporary file associated with the current cover
\

/* TIP: The feature type of the current cover
/* TYP: The capitalized version of TIP
/* ITEM: The item associated with the current cover

1* TOL2: A distance based on MINDIS
/* ARCHIVE: The archive files containing the nearly~ong1na1 versions of
/* the input coverages

/* ARCBUF: The buffered version of ARCHIVE

&echo &off
&args mstpol mindis

/* -Test to see if all arguments are present as expected-C
&if [type %mstpol%] ne 1 &then &goto badentry

&if [type %mindis%] ne -1 &then &goto badentry

&if [length %mstpol%] eq O &then &goto badentry

/* Initialize the cover name variables-O
&setvarcl "
&setvarc2 "
&setvarc3 "
&setvar ¢4 "
&setvarc5 "
&setvar ¢6 "
&setvar ¢7 "
&setvar c8 "
&setvarc9 "
&setvarc10"

&setvar ¢ [response 'Enter identifying cover name']

&if [length %c1%] eq 0 &then &goto nocovs

&setvar t1 [response ‘Enter cover type (line,point,poly)']

&setvar il [response 'Enter item representing cover (to be added)']
&setvar ¢2 [response 'Enter identifying cover name']

&if [length %c2%] eq O &then &goto endentry

&setvar 2 [response 'Enter cover type (line,point,poly)']

-80-

&setvar i2 [response 'Enter item representing cover (to be added)’]
&setvar c3 [response ‘Enter identifying cover name']

&if [length %c3%] eq 0 &then &goto endentry

&setvar t3 [response "Enter cover type (line,point,poly)’]

&setvar i3 {response 'Enter item representing cover (to be added)']
&setvar c4 [response 'Enter identifying cover name’]

&if [length %c4%] eq 0 &then &goto endentry

&setvar t4 [response 'Enter cover type (line,point,poly)’]

&setvar i4 [response 'Enter item representing cover (to be added)’]
&setvar c5 [response "Enter identifying cover name']

&if [length %c5%] eq 0 &then &goto endentry

&setvar t5 [response 'Enter cover type (line,point,poly)’]

&setvar i5 [response 'Enter item representing cover (to be added)']
&setvar c6 [response 'Enter identifying cover name’]

&if [length %c6%] eq 0 &then &goto endentry

&setvar 16 [response 'Enter cover type (line,point,poly)']

&setvar i6 [response 'Enter item representing cover (to be added)’]
&setvar c7 [response 'Enter identifying cover name']

&if [length %c7%) eq 0 &then &goto endentry

&setvar t7 (response 'Enter cover type (line,point,poly)’]

&setvar i7 [response 'Enter item representing cover (to be added)’]
&setvar c8 [response 'Enter identifying cover name']

&if [length %c8%] eq 0 &then &goto endentry

&setvar 8 [response 'Enter cover type (line,point,poly)']

&setvar i8 [response 'Enter item representing cover (to be added)']
&setvar ¢9 [response 'Enter identifying cover name']

&if [length %c9%] eq 0 &then &goto endentry

&setvar t9 {response 'Enter cover type (line,point,poly)’]

&setvar i9 [response ‘Enter item representing cover (to be added)']
&setvar c10 [response Enter identifying cover name']

&if [length %c10%] eq 0 &then &goto endentry

&setvar 110 [response 'Enter cover type (line,point,poly)’]

&setvar 110 [response 'Enter item representing cover (to be added)’]
&goto endentry

&label nocovs

&type 'At least one cover must be entered’

&goto endit

&label endentry

&setvar nodecrd %mstpol%

/* -Create buffers around each of the archived coverages-M

&setvar tol2 %mindis% * 0.6

&do cov &list %c1% %c2% %c3% %ocd% YocS% Yoc6% %ocT% %c8% Y%oc9% Foc10%
&if [length %cov%] eq 0 &then &goto endloop2

&setvar cover [translate %cov%]
&setvar arc %cover%

/* -Identify the temporary cover and the cover type to be used-E
&if %ocov% eq %cl% &then &setvar item %il%

&if %cov% eq %cl% &then &setvar tip %t1%

&if %ocov% eq %c2% &then &setvar item %i2%

&if %cov% eq %c2% &then &setvar tip %t2%

-81-

&if %cov% eq %c3% &then &setvar item %i3%
&if %cov% eq %c3% &then &setvar tip %t3%
&if %cov% eq %c4% &then &setvar item %id%
&if %cov% eq %c4% &then &setvar tip %t4%
&if Bcov eq %cS% &then &setvar item %i5%
&if %cov% eq %c5% &then &setvar tip %t5%
&if %cov% eq %c6% &then &setvar item %i6%
&if %cov% eq %c6% &then &setvar tip %t6%
&if %cov% eq %c7% &then &setvar item %i7%
&if %ocov% eq %c7% &then &setvar tip %t7%
&if %cov eq %c8% &then &setvar item %i8%
&if %cov% eq %c8% &then &setvar tip %t8%
&if %cov% eq %c9% &then &setvar item %i9%
&if %cov% eq %c9% &then &setvar tip %19%
&if %cov% eq %cl0% &then &setvar item %i10%
&if %cov% eq %cl10% &then &setvar tip %110%

&setvar typ [translate %tip%]

&setvar cover [translate %cov%]

&setvar archive [substr %cover% 1 31.A

&if [exists %archive%] &then &goto usearch
&setvar archive %cover%

&label usearch

/* -Create buffers, identify them, and apply them to the NCD- bas¢d cover-D

&run buffnshine %archive% %typ% %t0l2% %item%
&setvar filunit [open CODERR openstatus -]

&setvar cod [read %filunit% rdst]

&if [length %cod%)] eq 1 &then &goto bombout
&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

&setvar arcbuf %archive%.BUF

&run identi2 poly %nodecrd% point %arcbuf% %item%
&setvar filunit [open coderr openstatus -]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%])

remepf -prg -na -nq -nvfy

&severity &error &ignore

&setvar nodtab %nodecrd%.PAT

dropitem %nodtab% %nodtab% CAESER#
dropitem %nodtab% %nodtab% CAESER-ID
&setvar dummyl %arcbuf %#

&setvar dummy2 %arcbuf%-ID

dropitem %nodtab% %nodtab% %dummyl%
dropitem %nodtab% %nodtab% %dummy2%

/* If you want the buffer automatically removed, make the next
/* kill %arcbuf% all

&severity &error &fail

&label endloop2
&end

-82-

ljne active-Y

dropitem %nodtab% %nodtab% inside
&goto endit

&label badentry

&type Usage: IDENTILOTS <point cover to be identified by multiple others
&type (existing)><minimum expected dist between points>
&goto endit

&label bombout
&type 'An error has occurred'
&setvar i [close %filunit%]

&label endit
remepf -prg -na -nq -nvfy
&type End of IDENTILOTS

KITSINK.AML
Description

This macro is a shell used to run several other AML programs (fig. 34). It performs approximately the last
half of the process of final mesh creation, including optimization of the finite-element node numbering and model file
building. Given a final model boundary, a final regularly spaced grid, SPLINEd input coverages, and several pieces
of "housekeeping” information, KITSINK.AML can complete the process, freeing a large block of time for the user.
Because KITSINK.AML uses SNAPPY.AML, however, the user must be present during this part of the AML program
(See SNAPPY.AML). Fortunately, this macro is run relatively early in KITSINK.AML, thereby leaving the user free
for the bulk of the run time.

KITSINK.AML creates and uses a file called "CODERR" to indicate errors that occur during its sub-AML's.
This file is for internal use and need not concern the user. KITSINK.AML's output consists of three files, each with
the same user-specified root name and its own extension. The extensions are .ELMS for the finite-element mesh
polygons, .ELPT for the polygon label cover that has element numbers, and NOD for the point cover of the nodes of
the mesh.

The model boundary used in KITSINK should be built (BUILD) both as a line cover and as a polygon cover.
KITSINK will, at different times, look for both a PAT and an AAT for the model boundary cover.

At the beginning of its run, KITSINK.AML KILLs any copies from previous runs of files that it creates.
These include: the master feature cover, the "allpoints” cover, the master point cover, and the master polygon cover.
If together, the input feature coverages create approximately 10,000 points or more, then KITSINK.AML may crash
during SNAPPY.AML. This is because SNAPPY.AML uses the BUFFER command and attempting to create that
many circular buffer
areas is beyond the capability of ARC. If this occurs, the remainder of KITSINK.AML may have to be executed
separately.

-83-

NO PRINT
START ERROR
MESSAGE
YES
GET ASSOCIATED
SELECT NEXT COVER TYPE
COVER —1 (IE - LINE, POINT
POLY)
P(‘;‘II;{}E&)VEIHER g‘ﬁg‘l’m CREATE A COPY CREATE A TEMPORARY
THE MASTER POINT COVER ON THE INPUT COVER
SNAP THE MASTER RUN BUFFNSHINE.AML
FEATURE POINT COVER TO BUFFER THE MASTER|
WITH SNAPPY.AML TO | _ FEATURE POINTS TO
KILL DUPLICATE POINTS KILL NEARBY GRID PTS
(FIG 51) (FIG 23)
RUN CHICPOX.AML TO | +
RUN CLIPIT2.AML TO CREATEA A POINT [APPEND THE MASTER
CLIP THE ALLPTS COVER < COVER BASED ON THE J_ FEATURE POINTS & THE
AND ELIMINATE POINTS CLIPPING COVER | EDITED MASTER GRID
NEAR BORDER (FIG 25) (FIG 24) POINTS INTO ALLPTS
' RUN ARCPOTIN.AML TO RUN MODEL.AML TO
APPEND THE ALLPTS CREATE BIGPOL, A CREATE FILENCD &
COVER & THEEDGE | _IPOLYGON COVER BASED| | FILEECD & THE THREE
POINTS COVER INTO ON THE MSTR PTS TIN COVERS FOR A MODEL
A MASTER PTS COVER (FIG 22) (FIG 36)
RUN REALENGTH.AML |
TO ASSIGN RIVER [RUN FREUD.AML TO
SELECT NEXT LENGTHS TO RIVER GIVE THE NODES IN THE
COVER ODES IN THE PT COVER[*] ARC COVER THE SAME
(FIG 44) #S AS IN THE PNT COVER
RUN IDENTR.AMLTO |
BUFFER THE || IDENTIFY THE CURRENT]
ARCHIVED COVER COVER BASED POINTS
IN THE POINT COVER
(FIG 32)
Figure 34.--Flowchart for KITSINK.AML.

Program Listing

/* MACRO: Create the output modelling files and ARC coverages based upon
1* the clipped input line and point coverages, and given the desired
™ triangular grid.

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

* DTYPE: The display type

/* MSTFEAT: The master feature point cover

1* SKALE: The map scale, in feet, of the input coverages

/¥ BUFDIS: The minimum distance between feature and grid points. Also,
/™ the snap distance.

/¥ MSTGRID: The master triangular grid

/* ALLPTS: The cover containing all feature and all grid points

/* MSTCUT: The final clipping cover, the mode! boundary

/* EDGDIS: The minimum distance between interior and border points
/* MSTPTS: The master point cover

f* MSTPOL: The master polygonal, TINned cover

/* MAXITR: The maximum number of optimizing iterations

/* C1-C10: The input line and point coverages

™ I1-110: The item to be associated with each cover to identify it
/* T1-T10: The feature type of each cover

/* ALLPTSCL: The clipped version of ALLPTS

/* MCUTPTS: The point cover based upon the master clipping cover
f* MSTTIN: The TIN based upon the master point cover

/* MESH: The output element cover

/* MESHLAB: The output element-based point cover

/* NODECRD: The Node Coordinate Data-based point cover

/* COV: The cover currently being considered in a loop

/* COVER: The capitalized version of COV

f* TEMP: The temporary file associated with the current cover

/* TIP: The feature type of the current cover

* TYP: The capitalized version of TIP

* ITEM: The item associated with the current cover

/* TOL2: A distance based on TOLERANCE

/* ARCHIVE: The archive files containing the nearly-original versions of
/* the input coverages

/* ARCBUF: The buffered version of ARCHIVE

&echo &off
&args dtype mstfeat skale bufdis mstgrd allpts mstcut itcut ~
edgdis mstpts mstpol maxitr

/* -Test to see if all arguments are present as expected-C
&if [type %mstfeat%] ne 1 &then &goto badentry

&if [type %skale%] ne -1 &then &goto badentry

&if [type %bufdis%] ne -1 &then &goto badentry

&if [type %msigrd%] ne 1 &then &goto badentry

&if [type %allpts%] ne 1 &then &goto badentry

&if [type %oedgdis%] ne -1 &then &goto badentry

&if [type %mstpts%] ne 1 &then &goto badentry

&if [type %mstpol%] ne 1 &then &goto badentry

-85-

&if [type %maxitr%] ne -1 &then &goto badentry
&if [length %maxitr%] eq 0 &then &goto badentry

/* -Input the rest of the necessary information-O
&scl”
&sc2”
&sc3”
&sc4"
&scs"
&sc6"
&sc7"
&sc8"
&sco"
&sclO™

&setvar cl [response ‘Enter cover name']

&if [length %c1%] eq 0 &then &goto nocovs

&setvar t1 [response 'Enter cover type (line,point,poly)']
&setvar il [response 'Enter item representing cover']
&setvar c2 [response 'Enter cover name']

&if [iength %c2%] eq 0 &then &goto endentry

&setvar t2 [response 'Enter cover type (line,point,poly)’]
&setvar i2 [response ‘Enter item representing cover']
&setvar c3 [response 'Enter cover name']

&if [length %c3%] eq 0 &then &goto endentry

&setvar t3 [response 'Enter cover type (line,point,poly)’]
&setvar i3 [response ‘Enter item representing cover’]
&setvar c4 [response 'Enter cover name']

&if [length %c4%] eq 0 &then &goto endentry

&setvar t4 [response 'Enter cover type (line,point,poly)']
&setvar i4 [response 'Enter item representing cover']
&setvar c$ [response 'Enter cover name’]

&if [length %c5%] eq 0 &then &goto endentry

&setvar t5 [response 'Enter cover type (line,point,poly)']
&setvar i5 [response 'Enter item representing cover']
&setvar c6 [response 'Enter cover name’]

&if [length %c6%] eq 0 &then &goto endentry

&setvar t6 [response 'Enter cover type (line,point,poly)']
&setvar i6 [response 'Enter item representing cover'l
&setvar c7 [response 'Enter cover name']

&if [length %c7%] eq 0 &then &goto endentry

&setvar t7 [response 'Enter cover type (line point,poly)’]
&setvar i7 [response 'Enter item representing cover']
&setvar c8 [response 'Enter cover name']

&if [length %c8%] eq 0 &then &goto endentry

&setvar t8 [response 'Enter cover type (line point,poly)']
&setvar i8 [response 'Enter item representing cover']
&setvar c9 [response 'Enter cover name']

&if [length %c9%] eq 0 &then &goto endentry

&setvar t9 [response 'Enter cover type (line,point,poly)']
&setvar i9 [response 'Enter item representing cover']
&setvar c10 [response Enter cover name']

&if [length %c10%] eq O &then &goto endentry
&setvar t10 [response 'Enter cover type (line,point,poly)’]

-86-

&setvar i10 [response 'Enter item representing cover']
&goto endentry

&label nocovs

&type 'At least one cover must be entered'

&goto endit

&label endentry

&setvar sirm [response ‘Enter the name of the stream cover (or null)]
&if [length %strm%)] eq O &then &goto zero

&goto sethem

&label zero

&setvar strm "

/* -Initialize variables-M

&label sethem

&setvar allptscl %allpts%.CL
&setvar meutpts %mstcut%.pts
&setvar msttin %mstpts%.TIN
&setvar mesh %mstpol%.ELMS
&setvar meshiab %mstpol% . ELPT
&setvar nodecrd %mstpol%.NOD
&setvar grdcut %mstgrd%.CL
&setvar chicdist %skale% / 500

/* -Eliminate old occurances of output files-E
&severity &error &ignore

kill %mstfeat% all

kill %allpts% all

kill %mcutpts% all

kill %mstpts% all

kill %mstpol% all

&severity &error &fail

/* -Generate a master feature point cover from each of the input coverages-D
&do cov &list Bc1% Bc2% %c3% %cd% %cS% Yoc6% %cT% %c8% %c9% %cl0%
&if [length %cov%] eq 0 &then &goto endloopl

&setvar cover [translate %cov%]

f* -Identify the temporary cover and the cover type to be used-Y
&if %cov% eq %cl% &then &setvar temp templ
&if %cov% eq %cl% &then &setvar tip %t1%
&if %cov% eq %c2% &then &setvar temp temp2
&if %cov% eq %c2% &then &setvar tip %t2%
&if %cov% eq %c3% &then &setvar temp temp3
&if %cov% eq %c3% &then &setvar tip %t3%
&if %cov% eq %c4% &then &setvar temp tempd
&if %cov% eq %c4d% &then &setvar tip %t4%
&if %cov% eq %c5% &then &setvar temp tempS
&if %cov% eq %c5% &then &setvar tip %tS5%
&if %cov% eq %c6% &then &setvar temp tempb
&if %ocov% eq %c6% &then &setvar tip %t6%
&if %cov% eq %oc7% &then &setvar temp temp7
&if %cov% eq %cT% &then &setvar tip %t7%

-87-

&if %cov% eq %c8% &then &setvar temp temp8
&if %cov% eq %c8% &then &setvar tip %18%

&if %cov% eq %c9% &then &setvar temp temp9
&if %cov% eq %c9% &then &setvar tip %t9%

&if %cov% eq %c10% &then &setvar temp temp10
&if %ocov% eq %c10% &then &setvar tip %t10%

&setvar typ [translate %tip%]

/* -Create point coverages and append them-
&severity &error &ignore

kill %temp% all

&severity &error &fail

&if %typ% eq POINT' &then &goto pointit
&if %typ% eq POLY' &then build %cover% line
&run arcpotin arcpoint %cover% %temp% %typ%
&setvar filunit [open coderr openstatus -r]
&setvar cod [read %filunit% rdst}

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

&goto appendit

&label pointit

copy %cover% Yotemp%

&label appendit

&if %cov% ne %cl% &then &goto nthrun
copy %temp% %omstfeat%

kill %temp% all

&goto endloopl

&label nthrun

append dummy

%mstfeat%

%otemp%

end

kill %mstfeat% all

copy dummy %mstfeat%

kill dummy all

kill %temp% all

&label endloopl

&end

build %mstfeat% point

remepf -prg -na -nq -nvfy

/* -Snap the master point cover to eliminate points which are too close-H
&run snappy %dtype% %emstfeat% %skale% %bufdis%
&setvar filunit [open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

&if [length %strm%] eq 0 &then &goto elimgrd
snapcover point %mstfeat% arc %strm% # %bufdis%

/* -Create buffers around each of the master feature points to eliminate

-88-

/* grid points which lie too close-O

&label elimgrd

&run buffnshine %mstfeat% point %bufdis% proximity %mstgrd% point %dtype%
&setvar filunit {open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&setvar i [read %filunit% %cod%]

&if [length %cod%] eq 1 &then &goto bombout

&setvar i [close %filunit%)]

remepf -prg -na -nq -nvfy

/* -Append the master feature points and the master grid points-U
append %allpts%

%mstfeat%

%grdcut%

end

build %allpts% point

remepf -prg -na -nq -nvfy

/* -Create edge points based on the final cutting template-R
&run chicpox %dtype% %mstcut% %chicdist% %mcutpts%
&setvar filunit [open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout

&setvar i [close %filunit%)]

remepf -prg -na -nq -nvfy

/* -Clip the all points file, eliminating points too close to the edge-

&run clipit2 itemb %dtype% %mstcut% %itcut% %edgdis% point %allpts% in
&setvar filunit [open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout

&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

/* -Append the all points file and the edge points into the master points-S
&r fixsnap %dtype% %allptscl% %bufdis%

append %mstpis%

%allptscl%

%mcutpts %

end

build %mstpts% point

remepf -prg -na -nq -nvfy

f* -Create a TIN-based polygon from the master point file-O
&severity &error &ignore

kill bigpol all

kill bigpol.bak all

kill mstpol.bak all

&severity &error &fail

&run arcpotin arctin %mstpts% %msttin% point bigpol
&setvar filunit [open coderr openstatus -r]

&setvar cod {read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

-89.

remepf -prg -na -nq -nvfy
copy bigpol bigpol.bak
remepf -prg -na -nq -nvfy
clip bigpol %msicut% %mstpol%
remepf -prg -na -nq -nvfy
copy %mstpol% mstpol.bak
remepf -prg -na -nq -nvfy
kill bigpotl al

remepf -prg -na -nq -nvfy
build %mstpol% poly
remepf -prg -na -nq -nvfy

f* -Create the files needed for modelling-F
&run model %mstpol% %maxitr% modata.prt ~
%mesh% %meshlab% %nodecrd%

&setvar filunit {open coderr openstatus -r]
&setvar cod [read %filunit% rdst)

&setvar i [close %filunit%]

&if [length %cod%] eq 1 &then &goto bombout
remepf -prg -na -nq -nvfy

/* -Give the nodes in the arc file the same numbers as in the node
&run freud %nodecrd% %mesh%

remepf -prg -na -nq -nvfy

&setvar filunit [open coderr openstatus -r}
&setvar cod [read %filunit% rdst]

&setvar i [close %filunit%]

&if [length %cod%] eq 1 &then &goto bombout

/* -Assign lengths of stream to the points defining streams-W
&if [length %strm%]) eq O &then &goto nostream

&run realength %dtype% %strm% %bufdis% %nodecrd%
&setvar filunit {open coderr openstatus -1]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout

&setvar i [close %filunit%])

remepf -prg -na -nq -nvfy

&label nostream

/* -Identify the output node cover by each of the input feature coJerages-A

J* * * * * * *

/* -Create buffers around each of the archived coverages-R
&setvar tol2 %bufdis% * 0.6

&do cov &list %c1% %c2% %c3% %c4% Y%c5% Yoc6% %ocT%
&if [length %cov%] eq O &then &goto endloop2

&setvar cover [translate %cov%])
&setvar arc %cover%.A

/* -Identify the temporary cover and the cover type to be used-E
&if %cov% eq %cl% &then &setvar item %il %

&if %cov% eq %cl1% &then &setvar tip %t1%

&if %ocov% eq %c2% &then &setvar item %i2%

file-T

c8% %c9% %c10%

&if %cov% eq %c2% &then &setvar tip %t2%
&if %cov% eq %c3% &then &setvar item %i3%
&if %cov% eq %c3% &then &setvar tip %t3%
&if %cov% eq Jocd% &then &setvar item %id%
&if %cov% eq %cA% &then &setvar tip %t4%
&if %cov% eq %c5% &then &setvar item %i5%
&if %cov% eq %c5% &then &setvar tip %t5%
&if %cov% eq %c6% &then &setvar item %i6%
&if %cov% eq %c6% &then &setvar tip %16%
&if %cov% eq %cT% &then &setvar item %i7%
&if %cov% eq %cT% &then &setvar tip %t7%
&if %cov% eq %c8% &then &setvar item %i8%
&if %cov% eq %c8% &then &setvar tip %t8%
&if %cov% eq %c9% &then &setvar item %i9%
&if %cov% eq %c9% &then &setvar tip %t9%
&if %cov% eq %c10% &then &setvar item %il0%
&if %cov% eq %cl0% &then &setvar tip %t10%

&setvar typ [translate %tip%]
&setvar cover [translate %cov%]
&setvar archive [substr %cover% 1 3].A

/* -Create buffers, identify them, and apply them to the NCD-based cover-
&run buffnshine %archive% %typ% %tol2% %item%
&setvar filunit [open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

&setvar arcbuf %archive%.BUF

&run identi2 poly %nodecrd% point %arcbuf% %item%
&setvar filunit [open coderr openstatus -r]

&setvar cod [read %filunit% rdst]

&if [length %cod%] eq 1 &then &goto bombout
&setvar i [close %filunit%]

remepf -prg -na -nq -nvfy

&severity &error &ignore

&setvar nodtab %nodecrd% .PAT

dropitem %nodtab% %nodtab% CAESER#
dropitem %nodtab% %nodtab% CAESER-ID
&setvar dummy1 %arcbuf%#

&setvar dummy2 %arcbuf%-ID

dropitem %nodtab% %nodtab% %dummy1%
dropitem %nodtab% %nodtab% %dummy2%
kill %arcbuf% all

&severity &error &fail

&label endloop2

&end

dropitem %nodtab% %nodtab% inside
&goto endit

&label badentry
&type Usage: KITSINK <display type> <master feature pnt cover (created)>

91-

&type <mapscale as if to plot on a 24" plotter (ft)>

&type <min distance between grid & feature pts> <master grid
&type (existing)> <cover w/ all points (created)>

&type <study area model boundary poly cover name (existing)>
&type <item name denoting area inside modl boundary(existing)>
&type <min dist between interior and edge points>

&type <master point cover (created)> <root name for output

&type mesh and node coverages (created)> <max # of

&type optimizing iterations>

&goto endit |

&label bombout

&if %cod% eq 2 &then &type 'An error has occurred during B
&if %cod% eq 3 &then &type 'An error has occurred during CHI

&setvar i [close %filunit%]

&label endit

&s i [delete coderr] |
remepf -prg -na -nq -nvfy |
&type End of KITSINK ;

MAKOUTLIN.AML
Description

MAKOUTLIN.AML creates polygon "CLIPping" coverages or polygon outlines of the type described in the
subsection concerning CLIPIT.AML (fig. 35). The input cover for|this macro is a polygon cover composed of one or
several polygons. The output cover is a single polygon whose perimeter is that of the conglomerate of input polygons.
MAKOUTLIN.AML creates an output file with an identifying item with a value of "1” for its interior area. It also, if
desired, removes all of the interior lines from the input cover. If no interior line removal is desired, give the "#"
character in place of the output polygon outline name. This option will add the identifying item to the input cover.

One common error in using MAKOUTLIN.AML is to usg an input cover that has not been built (BUILD) as
a polygon cover. An input cover must have a PAT.

-92.

START

NO PRINT
ERROR
MESSAGE
YES
ADD ITEM TO
COVER WHICH
WILL INDICATE
INTERIOR AREA
IS
OUTPUT "\ YES I%ATJ%U;FT%&V;E ?’
NA%E EQ,UAL OR POLYGONS W/
! INTERIOR = 100
IN OUTPUT QUTLINE
COVER, CALCITEM = 1
FOR POLYGONS WITH
AREA >0
DISSOLVE
INTERIOR BOUN-
DARIES & CREATE
OUTPUT COVER Y

Figure 35.--Flowchart for MAKEOUTLIN.AML.

Program Listing

/* MACRO: Take a polygon cover and remove all of the internal lines,

r*

leaving a polygon outline which is written as an output cover

/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST:

R

I 2 A A A A

&echo &off
&args cov fine shiny it

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]

&s .slash /

&s computer_flag [index %.path% %.slash%]

&if %computer_flag% <= 0 &then

&do

FINEMESH: The capitalized version of FINE

COVERPAT: The PAT name for cover
FINEPAT: The PAT name for finemesh

COV: The name of the polygon cover from which the outline
will be made
FINE: The name of the outline to be created
IT: The originally input name for the item indicating the
area inside of the outline
COVER: The capitalized version of COV

ITEM: The capitalized version of IT

SHINY: Is the cover a buffer of another?

&s .slash >
&s .computer_type prime

&end
&else
&do

&S .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-O
&if [length %cov%] eq 0 &then &goto badentry

&if [length %fine%] eq O &then &goto badentry

&if [length %it%] eq 0 &then &goto badentry

/* -Capitalize input filenames for use in ARC/INFO-M
&setvar cover [translate %cov%]

&setvar finemesh [translate %fine%]

&setvar item [translate %it%]

/* -Reset output file-E
&if [exists %fine% -COVERAGE] &then kill %finemesh% all

/* -Prepare the input file for dissolution-D
&setvar coverpat %cover%.PAT

&severity &error &ignore

additem %coverpat% %coverpat% %item% 4 4 i

&severity &error &fail

&if %shiny% ="y' &then &goto incheck
&if %shiny% ="'Y' &then &goto incheck
&if %.computer_type% = 'prime' &then
&do

&data ARC INFO

SEL %coverpat%

RESEL FOR AREA > 0

CALC %item% = 1

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SEL %coverpat%

RESEL FOR AREA >0

CALC %item% = 1

Q STOP

QUIT

&end

&end

&goto checkdis

&label incheck

&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SEL %coverpat%

RESEL FOR INSIDE = 100
CALC %item% = 1

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SEL %coverpat%

RESEL FOR INSIDE = 100
CALC %item% = 1

Q STOP

QUIT

&end

&end

&label checkdis
&if %finemesh% = '#' &then &goto endit

/* -Dissolve boundaries and build output as a polygon cover-Y
&label dodis

-95.

dissolve %cover% %finemesh% %item%
build %finemesh% poly

/* -Mark output polygon cover to indicate area within outline-
&setvar finepat %finemesh% PAT

&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

SEL %finepat%

RESEL FOR AREA >0

CALC %item% = 1 |
QSsTOP
&end

&end

&else

&do

&data ARC

INFO

ARC

SEL %finepat%

RESEL FOR AREA > 0

CALC %item% = 1

QSTOP

QUIT

&end

&end

dropitem %coverpat% %coverpat% %item%
createlabels %cover%

&goto endit

/* -Macro entry error handling-

&label badentry

&type Usage: MAKOUTLIN <input polygon cover(existing)><output polyj
&type name (or '# if not removing internal lines> <Is the

&type in_cover a buffer of another cover? (y/n)> <name to
&type designate the interior of the output cover (created)>

&label endit

&type End of MAKOUTLIN

-96-

gon outline

MODEL.AML
Description

This macro takes an input polygon cover and creates the files that are necessary for modeling, the node
coordinate data file, FILENCD, and the element connection data file, FILEECD. It also creates new coverages based
on the element and node numbering optimization that it performs (fig. 36). It creates a mesh polygon cover having
labels equal to the element numbers and having the suffix ".ELMS," a point cover having points at the center of each
element labeled with the element numbers and having the suffix ".ELPT" and a point cover having points at nodes
labeled with the node numbers and having the suffix ".NOD."

Once a polygon cover has been input to this macro, the output coverages should be used rather than the
original cover. This is recommended because the output coverages now reflect the node and element numbering
changes that MODEL.AML performs, and therefore correspond to the modeling files that are created.

MODEL.AML deletes files called "VERTICES," "FILENCD," and "FILEECD" at the beginning of its run.
These are superceded copies of its working and output files.

97-

START

NO PRINT
ERROR
MESSAGE
YES
WRITE INPUT COV,
MAX # OF ITERA- | | ..
TIONS & OUTPUT | ”| %’é ’;%D MODET7
FILE TO NESCDAT.

WRITE THE # OF | [READ THE # OF
NODES, # OF ELE- | |INODES & THE # OF
MENTS, & NAMES [| ELEMENTS FROM

TO EVEINFO NUMBRS

Y

(FIG 43)

RUN FE-LABEL.F77|

!

GENERATE THE
LABEL PTS COVER
W/ POINTS FROM

MLABEL

GENERATE THE MESH
COVER WITH LINES
FROM MESHARC &

POINTS FROM MLABEL |

I

Figure 36.--Flowchart for IT'IODEL.

Y

GENERATE THE
NODE COVER W/
INFO FROM
FILENCD

STOP

S

98-

Program Listing

* MACRO: Build the Node Coordinate Data file and the Element Connection
* Data file needed for modelling, based upon the input cover.

1* Also, build a printable file detailing the optimization of the

r* nodes performed, and build ARC files based on the re-labeled arc
/¥ file, re-labeled label file, and the re-labeled node coordinate

/* data file.

/* CODED BY: Robert Lowther

/* SUPERVISED BY: Eve L. Kuniansky

/* VARIABLE LIST

/# COVER: The input cover name

: The maximum number of optimizing iterations

/* FPRINT: The name of the printable file to be created

/¥ NNODE: The number of nodes in the input cover

/¥ NELEM: The number of elements in the input cover

/* MESH: The name of the mesh polygon cover with labels equal

f* to the element number

/¥ MESHLAB: The name of the point cover with point ID at the

r* center of each element labeled with the element number

/* NODECRD: The name of the point cover whose ID equals the

* node number

/* FILUNIT: The unit number of the data file, EVEINFO

/* EVEINFO: The data file used to pass data to FE-LABEL.F77

/* MESHARC: The output element arc file from FE-LABEL.F77

/¥ MLABEL: The output element node file from FE-LABEL.F77

/* FE-LABEL: The Fortran77 program which creates the basis for the outputs
&echo &off

&args cover maxitr fprint mesh meshlab nodecrd

/¥ -Prepare the error-indication file-C
&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% 6]

&setvar i [close %filun%]

/* -Check the computer type (by Leonard L. Orzol)-O
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do

&s slash >
&s .computer_type prime

&end
&else
&do

&s .computer_type unix

&end

/* -Test input to see if all arguments are present as expected-M
&if [type %cover%] ne 1 &then &goto badentry

-99-

&if [type %maxitr%] ne -1 &then &goto badentry
&if [type %fprint%] ne 1 &then &goto badentry
&if [type %mesh%] ne 1 &then &goto badentry

&if [type %meshlab%] ne 1 &then &goto badentry
&if [type %nodecrd%] ne 1 &then &goto badentry
&if [length %nodecrd%] eq 0 &then &goto badentry

/* -Delete any old occurances of the bldmod output files-E
&label beginit

&s i [delete filencd]

&s i [delete fileecd]

&s i [delete vertices]

&s i [delete badans]

&s i [delete nescdata]

/* -Build the file which bldmod needs-D

&setvar filunit [open nescdata openstatus -write]

&setvar i [write %filunit% %cover%]

&setvar i [write %filunit% %maxitr%)

&setvar i [write %filunit% %fprint%]

&if [close %filunit%] = 0 &then &type File written successfully.

&if %.computer_type% = 'prime' &then &sys r bldmod
&else &sys bldmod.out

&setvar filunit {[open badans openstatus -read]

&setvar ans [read %filunit% readstatus]

&setvar i [close %filunit%]

&label go_on

/* -Read the file created by Optimize which is necessary to create the

f* output coverages-Y

&setvar filunit [open numbrs openstatus -1]
&setvar nnode [read %filunit% readstatus]
&setvar nelem [read %filunit% readstatus]
&setvar i [close %filunit%]

f* -Create the data file which FE-LABEL can read as input-
&setvar filunit [open eveinfo openstatus -w]

&setvar i [write %filunit% %nnode%]

&setvar i [write %filunit% %nelem%]

&setvar i [write %filunit% mesharc])

&setvar i [write %filunit% mlabel]

&if [close %filunit%]) eq O &then &type File created successfully

/* -Create the ASCII output files-H
&if %.computer_type% = 'prime’ &then &sys r fe-label
&else &sys fe-label.out

f* -Delete the FE-LABEL input data file-O
&s'i [delete eveinfo)

/* -Delete any old occurances of the output coverages-U

&severity &error &ignore
kill %mesh% all

-100-

kill %meshlab% all
kill %nodecrd% all
&severity &error &fail

/* -Create the mesh polygon output cover-R
&if %.computer_type% = 'prime’ &then
&do

generate %mesh%

input mesharc

line

input mlabel

point

q

&end

&else

&do

&data arc generate %mesh%

input mesharc

line

input mlabel

point

q

&end

&end

clean %mesh%
build %mesh% poly
build %mesh% line

/* -Create the label point output cover-
&if %.computer_type% = 'prime’ &then
&do

generate %omeshlab%

input mlabel

point

q

&end

&else

&do

&data arc generate %meshlab%

input mlabel

point

q

&end

&end

build %meshlab% point

f* -Delete the ASCII ouput files-
&s i [delete mesharc]
&s i [delete mlabel]

f* -Create the node point output file-
&if %.computer_type% = 'prime’ &then
&do

generate %nodecrd%

-101-

input filencd

&severity &error &ignore

point

&severity &error &fail

g

&end

&else

&do

&data arc gencrate %nodecrd%

input filencd

&severity &error &ignore

point

&severity &error &fail

q

&end

&end

build %nodecrd% point

&s i [delete nescdata) |
&s i [delete numbrs] ‘
&goto endit ‘ |
&label badentry

&type Usage: MODEL <name of point cover on which to base quel(existing)xmax
&type # of optimizing iterations> <name of printed output file
&type (created)> <output mesh polygon cover (created)> <output
&type label point cover (created)> <output node point cover

&type (created)>

&goto enderr

&label endit

/* -Prepare the error-indication file-

&s i [delete coderr]

&setvar filun [open coderr openstatus -w]
&setvar i [write %filun% noerr]

&setvar i [close %filun%])

&goto bigend

&label enderr
&type There was an error!

&label bigend
&type End of MODEL

Fortran Program BLDMOD.F77
Descripti
\
Because the data structure of ARC/INFO does not store the information about polygons in the way that a
finite-element model needs information about each element and the nodes that make up the elements, this program
renumbers the elements and nodes and creates the data structure necessary for modeling (fig. 37). Itis, in actuality, a

shell for the three subroutines that compose it. It also calls the file that contains all of the global variable assignments
for the programs, variables.

-102-

START

READ
INFORMATION
FROM NESCDATA

'

CALL BLDNCD.F77
(FIG 38)

Y

CALL BLDECD.F77
(FIG 39)

Y

CALL
OPTIMIZE.F77

(FIG 40)

STOP
Figure 37.--Flowchart for BLDMOD.F77.

Program listing
C***C
C PROGRAM: Build the output files needed for mesh modeling C

C CODED BY: Robert Lowther H

C SUPERVISED BY: Eve Kuniansky S

c***C

PROGRAM BLDMOD

C VARIABLES contains the common statements and corresponding
C variable definitions which are used by the subroutines.

INCLUDE 'variables'
CALL AENTER
CALL LUNINI

CALL MINIT
CALL MESINI

-103-

OPEN (7 file ='nescdata’,status ='OLD',recl = 60)

100 FORMAT (A10)

oXoNoXe] oNoNoKe!

oNoNoNe]

C

C***va a0 3k ke 3

C

oXololoEoRoNoKeoXe!

READ (7,100) COVER
READ (7,*) MAXITR
READ (7,100) FPRINT
CLOSE (7)

BLDNCD obtains the keyboard input and reads the input file
into an input array. Manipulations are performed on the input
array and written into an output array. The output array

is then written to an output file, FILENCD.

CALL BLDNCD
IF (BADARC .NE.0) GOTO 1
PRINT *,Building Element Connection Data file...'

BLDECD uses the input array from BLDNCD via the commons from

VARIABLES. Manipulations are performed on the input array
and written to an output array. The output array is then
written to an output file, FILEECD.

CALL BLDECD
PRINT *,'Optimizing the node numbering scheme...'

OPTIMIZE uses the previous two routines' output files as its
input. They are read into input arrays, where calculations
are performed on them. The output array is then written to
a user-specified output file.

CALL OPTIMIZE

OPEN (8 file ="badans',status =NEW'recl = 60)
IF (BADARC NE. 0) THEN
PRINT *,"The TIN cover has vertices!'
WRITE (8,100) 'BAD' .
ELSE
WRITE (8,100) 'GOOD'
END IF
CLOSE (8)
END

VARIABLES

VARIABLE LIST:

COVER: The name of the input ARC cover
NUMNOD: Number of nodes in the cover (also the number of
lines in the FILENCD file)
NUMEL: Number of elements in the cover (lines in FILE
FPRINT: The name of the file that BLDMOD's output is t
be written.

MAXITR: The maximum number of iterations that the optimi-

zation program will run.

-104-

A A A

wwlwululn!*C

<AYAmAZOO0N

USERID: The USERID:s of the input arcs. (See ARC/INFO
FRNODE: The From Node for the input arc
TONODE: The To Node for the input arc
LPOLY: The polygon to the left of the input arc
RPOLY: The polygon to the right of the input arc
NPTS: The number of nodes associated with each input arc
NODE: The node number array for the output file, FILENCD
COORDS: The coordinate array read from the input ARC file
OUTCORD: The coordinate array for the output file, FILENCD
KANARC: The ARCFILE channel number
ACCESS: Code number to indicate a Read/Write ARC file
TEMPRY: Code number to indicate a Normal ARC file
IERROR: Error code return from ARCRD command (-1 = error)
IABUFF: The standard ARC record, as read from the ARC file
NOIN: The number of input arcs (Length of input array)
ELEMENT: The element or polygon number in the output array
OUT1: The first node of each element in the output array
OUT2: (And OUT3) are defined similarly to OUT1
FILENM: The output file name for BLDNCD and BLDECD

MWNRR MEAEMMNERERNE RS RN RN R

XeXsNekeKeReXeeXeXeXeXeXeXoXeReRoRe e
N0OANO0AN0ARAcA0ATAN

9
%

COMMON /MESH/COVER, NUMNOD ,NUMEL FPRINT,MAXITR,BADARC
COMMON /C1/USERID(25000), FRNODE(25000)

COMMON /C2/TONODE(25000),LPOLY (25000)

COMMON /C3/RPOLY (25000),NPTS(25000)

COMMON /C4/NODE(25000),NPT(25000)

COMMON /C5/COORDS(25000,6)

COMMON /C6/OUTCORD(25000,2)

COMMON /C7/FILENM,KANARC, ACCESS, TEMPRY ,JERROR
COMMON /C8/IABUFF(2006),NOIN

COMMON /C9/ELEMENT(25000),0UT1(25000)

COMMON /C10/0UT2(25000),0UT3(25000)

INTEGER IABUFF,NOIN

INTEGER KANARC,ACCESS,TEMPRY,IERROR
INTEGER NUMNOD ,NUMEL,MAXITR,USERID ,FRNODE
INTEGER TONODE,LPOLY RPOLY NPTS,NODE
INTEGER ELEMENT,OUT1,0UT2,0UT3,BADARC
DOUBLE PRECISION COORDS ,OUTCORD
CHARACTER*128 COVER FILENM,ARGS
CHARACTER*60 FPRINT,BAD

Eortran subroutine BLDNCD F77

Description.--This program builds the node coordinate data file necessary for mathematical modeling (fig.
38). Asinput, it uses the ARC file that is the final output of the mesh generation procedure. The node coordinate data
file, FILENCD, consists of a list of the node numbers and coordinates of each node in the mesh.

To increase run speed, BLDNCD.F77 does all of its operations in memory. The input file is loaded into an
input array and the output file is created as an output array. Once the program has completed building the output array,
it is written to the output file. The tests we have performed have shown this process to be 9000% faster (decreasing
run time from more than a day to approximately two minutes) than the more statically efficient method of manipulating
the input and output files directly.

-105-

WRITE THE IN- READ NEXT

FORMATION FROM BINARY ARC
THE BINARY FILE [RECORD OF THE [START
TO THE ARRAYS INPUT COVER |
RESET IN
ARRAY POINTER READ NEXT ARC
: RECORD FROM
AND OUTPUT THE INPUT
READ NEXT
OUTPUT RECORD
\
WRITE INPUT FROM
NODE TO THE OUT-
PUT FILE AND IN-
CREASE OUT COUNT
WRITE INPUT TO
NODE TO THE OUT-
PUT FILE AND IN- !
CREASE OUT COUNT |

TR |
TO FILENCD ,

Figure 38.--Flowchart for BLDNCD,F77.

-106-

C***C

C SUBROUTINE: Build Node Coordinate Data File C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

okl s aor ok s ok o el sk ok ool ok ook ool ook o s e kol ok ok s ok ok e s ook e sl e e o ke

SUBROUTINE BLDNCD

INCLUDE 'variables'

C***C

VARIABLE LIST

IREC: The record number just read with the ARCRD command
IER: Error code for the AOPEN command
FRFOUND: Code showing FRNODE is already in the output array
TOFOUND: Code showing TONODE is already in the output array
1J: Counters
OUTPCNT: Number of records in the output array
LOUT: The device number of the output file, FILENCD
USERDUM: Integer equivalent to the first IABUFF component,
it corresponds to the array USERID
FRDUM: Corresponds to FRNODE
TODUM: Corresponds to TONODE
LPDUM: Corresponds to LPOLY
RPDUM: Corresponds to RPOLY
NPTDUM: Corresponds to NPTS
CORDDUM: Corresponds to COORDS

ajc e ok afc S ok ahc 3 9k af e e ek afc Sk ok 3k 3k o 3k Sk ok ok ke 3k ok af e ke Sk e e e 3K ek dkeok ajc b 3 ¢ 2k ok ¢ S e ok ok o ok ok o ok

- HoNoNoNoNoNo R H-HoNoNoNo Ko RO R7N- -

sloXekekokeXoNoXoXokeXo koo Koo X Ke!

w

INTEGER IREC,IER,L2

INTEGER FRFOUND,TOFOUND,LJ, OUTPCNT,LOUT

INTEGER USERDUM,FRDUM,TODUM,LLPDUM,RPDUM,NPTDUM
DOUBLE PRECISION CORDDUM(1000)

C=====Use Equivalence statements to equate elements of the======
C integer array, IABUFF, with integer and real variables C

EQUIVALENCE (IABUFF(1),USERDUM)

EQUIVALENCE (IABUFF(2),FRDUM)

EQUIVALENCE (IABUFF(3), TODUM)

EQUIVALENCE (IABUFF(4),LPDUM)

EQUIVALENCE (IABUFF(5),RPDUM)

EQUIVALENCE (IABUFF(6),NPTDUM)

EQUIVALENCE (IABUFF(7),CORDDUM(1))

EXTERNAL LUNINILMINIT, VINIT,ARCOPN,ARCRD,AOPEN,MESINI,
&PRMSTR,ACLOSE,ARCCLS,AEXIT

100 FORMAT (616,4F15.2)
200 FORMAT (I6,2F15.2)
988 FORMAT (2F15.2)

-107-

986 FORMAT (16)
NUMNOD =0

C=====Initialize the modules to be used with this program.=======C

CALL LUNINI
CALL MINIT
CALL VINIT
CALL MESINI

C=====0pen the input and output files for the NCD subroutine===—====C

FILENM = ‘filencd'
ACCESS =2
TEMPRY =1
PRINT *,'Building the Node Coordinate Data file...'
CALL ARCOPN (KANARC,COVER,ACCESS,TEMPRY IERROR)
OPEN (7,FILE= 'vertices')
CALL AOPEN (LOUT FILENM,IER)
IF (IER .NE. -1) GO TO 99
CALL ACREAT (LOUT,FILENM,IER)
IF (IER .NE. -1) GO TO 99

GOTO 16
C======Read the input file into input arrays, using the variables====C
C from the equivalence statements C

C Initialize the input array size variable
99 NOIN=1
10 CALL ARCRD (KANARC,IREC,JABUFF,JERROR)
if (nptdum .gt. 2) print *,nptdum
USERID(NOIN) = USERDUM
FRNODE(NOIN) = FRDUM
TONODE(NOIN) = TODUM
LPOLY(NOIN) = LPDUM
RPOLY(NOIN) = RPDUM
NPT(NOIN) = NPTDUM
DO 9 1= 1NPTDUM*2 f
COORDS(NOIN,I) = CORDDUM(I)
9 CONTINUE
C Increment the input array size
NOIN = NOIN + 1
C If EOF reached, stop reading
IF (IERROR .EQ. -1) GO TO 13
C If error occurs, report it
IF (IERROR .EQ. -2) GO TO 15
GOTO10
C Adjust input array size variable correctly
13 NOIN=NOIN-1
IREC = NOIN

I=1

BADARC =0
989 IF (NPT(I) .EQ. 2) GO TO 1001

-108-

PRINT *,'The arc from:',FRNODE(])
print *.'to ', TONODE()
PRINT *'has a vertex at:'
DO 98 J=1 NPT(D)-2
PRINT *,COORDS(I,J*2+1)
PRINT *,COORDS(I*2+2)
98 CONTINUE
DO 987 J=1 NPT(I)-1
WRITE (7.986) 2*BADARC +J
WRITE (7,988) COORDS(1,(J-1)*2+1), COORDS(1,(J-1)*2+2)
WRITE (7,988) COORDS(1,J*2+1), COORDS(1,J%¥2+2)
987 CONTINUE
BADARC = BADARC + 1
1001 I=I+1
IF (I .LE. NOIN) GO TO 989

IF (BADARC .NE. 0) PRINT *,'Vertices were found! Bailing out
¢ of BLDNCD. Please wait.'
IF (BADARC .NE. 0) GO TO 20
C======Read the input array line by line, each time checking to see===C
C if the from and to nodes are already in the output array and, C
C if not, write them and their coordinates to the output array C

C Initialize the output array size variable
OUTPCNT =0
DO 14 1= 1NOIN
C Init the "found in output array" flags
FRFOUND =0
TOFOUND =0
DO 11J = 1,OUTPCNT
C If found, set flags
IF (FRNODE(I) .EQ. NODE(J)) FRFOUND = 1
IF (TONODE(I) .EQ. NODE(J)) TOFOUND = 1
11 CONTINUE

C=====If "found in output array" flag not set, write the nodes=======
C in question C
C Check/write from node

IF (FRFOUND .EQ. 1) GO TO 12

C Increment output array size variable
OUTPCNT = OUTPCNT + 1

C Write information
NODE(OUTPCNT) = FRNODE(I)
OUTCORD(OUTPCNT,1) = COORDS(1,1)
OUTCORD(OUTPCNT,2) = COORDS(1,2)

C Increment number of nodes counter
NUMNOD = NUMNOD + 1

C Check/write to node

12 IF(TOFOUND .EQ. 1) GO TO 14
OUTPCNT = OUTPCNT + 1
NODE(OUTPCNT) = TONODE(I)
OUTCORD(OUTPCNT,1) = COORDS(,3)
OUTCORD(OUTPCNT,2) = COORDS(1,4)

-109-

NUMNOD = NUMNOD + 1
14 CONTINUE

@]

C=====Write the output array to the output file:

DO 17 I=1,0UTPCNT

WRITE (LOUT,200) NODE() (OUTCORD(1,J),J=1,2)
17 CONTINUE

GOTO20

(@]

=====FError messages and program exit point

15 WRITE (*,(A)) Error occurred during ARCRD'
GO TO20

16 WRITE (*,(A)") Error occurred during AOPEN

20 ENDFILE (LOUT)
CALL ACLOSE (LOUT)
CALL ARCCLS (KANARC)
CLOSE (7) i
RETURN |
END |

Fortran subroutine BLDECD.F77

Description.--This Fortran77 program builds the element connection data file, the other file necessary for
mathematical modeling (fig. 39). It uses the same input as BLDNCD.F77. Its output file, FILEECD, consists of a list
of the elements, or triangular polygon-ID's, and the node numbers of the thref, nodes associated with each element.

For the model to interpret this table correctly, the nodes listed for ea&l;l element must be listed in
counterclockwise order. To put the nodes in order, BLDECD.F77 creates two lines sharing a common point, that point
being chosen arbitrarily and assigned as the first point in the list. The program then calculates the cross product of the
two lines. Because the lines are in the same plane, their cross product will lie along a line perpendicular to that plane,
either in the positive or negative direction. The sign of the cross product, therefore, determines which line, and
accordingly, which endpoint, is counterclockwise from the other, referenced P the lines' common endpoint.

As in BLDNCD.F77, this program processes the data in arrays and +vrites the output file only after all
calculations are finished. Again, this is done to increase dynamic efficiency.

-110-

SELECT NEXT
—®1 INPUT ARC
RECORD

CHOOSE LPOLY |

1?7 -ISIT THE CHOOSE RPOLY
OUTSID
CHECK CHOSEN
POLY AGAINST
OUTPUT ARRAY

v

a. logic which loops through all arcs and their associated polygons
Figure 39.--Flowchart for BLDECD.F77.

-111-

l

DET A SECONDAR STORE THE ARC’S| | STORE THE FROM

POINTER TO THE | «—|NODES AS TWO OF NODE AS THE
NEXT INPUT THE THREE FOR THIRD POLYGON
ARCRECORD THE CHOSEN POLY| NODE

DOES

RPOLY MATCH
THE CHO-

LPOLY OR \JYES

DEFINE DIFX1 = ARBITRARILY STORE THE TO
PTX2 - PTX1, CHOOSE ONE NODE AS THE
DIFX2 = PTX3- [POLYGON

PTX2, DIFY1 = ... THE OUTPUT LIST NODE

NODE AS 1ST IN ‘T'

STORE PT2 AS
sYES | SECOND ON THE
DIFY2 > DIFX2 LIST AND PT3 AS
THIRD |
STORE PT2 AS .
THIRD ON THE WRITE THE LIS1
LIST AND PT3 AS [TO THE OUTPUT

SECOND ARRAY

-112-

b. logic which orders the nodes associated with each elemen|

Figure 39.--Flowchart for BLDECD.F77--continued.

C***#*********&*ﬁt*###tC

C PROGRAM: Build Element Connection Data File C
C CODED BY: Robert Lowther C
C SUPERVISED BY: Eve L. Kuniansky C

C**#***#******************t***********#**********t************%****#*c

SUBROUTINE BLDECD

INCLUDE 'variables'

C*******##********#********************##********#****#*******#***###C

C VARIABLE LIST

IER: Error code return from thc AOPEN or ACREAT commands
IJ: Counters
FOUND: Flag indicating that the element in question has
been found in the output army
CHECKI1: The first node of an element to be put into order
CHECK2 & 3: The other two nodes to be ordered counter-clockwise
CHECKPO: The polygon checked against output array and for
which nodes are found
DEF1: Definitely the first node in order in the output
DEF2 & 3: Definitely the second and third, counter-clockwise
OUTPCNT: The output array size variable
CHECKX1: The x coordinate of the first checked node (CHECK1)
C CHECKX2 & 3: The x coordinate of the second and third nodes
C CHECKY1: Similarly, the first y coordinate
C CHECKY?2 & 3: The second and third y coordinates

NOoOOOOO0OO0O00O00O00n

C DELX]1: The difference between x2 and x1
C DELX2: x3 -x1
C DELYI: y2-yl

C DELY2: y3-yl

C***#**********************

AAENdAMNoNueNATNTNOXIn0On

INTEGER IER,1J

INTEGER FOUND,CHECK 1,CHECK?2,CHECK3,CHECKPO
INTEGER DEF1,DEF2,DEF3,OUTPCNT

DOUBLE PRECISION CHECKX1,CHECKX2,CHECKY1,CHECKY2
DOUBLE PRECISION CHECKX3,CHECKY3

DOUBLE PRECISION DELX1,DELX2,DELY1,DELY2

1000 FORMAT (616,4F15.1)
2000 FORMAT (416)
NUMEL =0

=====0pen the output file for the ECD subroutine= ==

(@}

FILENM = 'fileecd'

CALL AOPEN (LOUT FILENM,IER)
IF (IER .NE. -1) GO TO 99

CALL ACREAT (LOUT,FILENM,IER)
IF (IER NE. -1) GO TO 99

-113-

GO TO 500

C=====Select two points, partially defining a polygon,=====C
C from the input array. Insure that the polygon C
C defined is not already listed in the output array. C

C Initialize the output array size variable
99 OUTPCNT =0
C For each input record: ...

DO 14 I=1,NOIN

C-----Choose LPoly,RPoly, or next record

C Indicate neither L nor RPOLY has been checked
CHECKPO =0
C Don't check figure exterior
IF (LPOLY(I) .EQ. 1) CHECKPO = LPOLY(I)
C If both have been checked, go on
15 IF (CHECKPO .EQ.RPOLY(I)) GO TO 14
CIfLPOLY has, check R
IF (CHECKPO .EQ. LPOLY(I)) CHECKPO = RPOLY(l)
IF (RPOLY() .EQ. 1) .AND. (CHECKPO EQ. RPOLY(I))) GO TO 14
C If neither, check LPOLY
IF (CHECKPO .EQ. 0) CHECKPO = LPOLY(I)
C Initialize the "found in output array" flag
FOUND =0
C======Check 10 see if polygon is already in output array

DO 30 J=1,0UTPCNT
IF (ELEMENT(J) .EQ. CHECKPO) FOUND = 1 :
30 CONTINUE

C====If "found" flag is not set, select two nodes and their associated pts==

IF (FOUND .EQ. 1) GO TO 15 :
CHECK]1 = FRNODE(I)

CHECKX1 = COORDS(1,1)
CHECKY1 = COORDS(L,2)
CHECK2 = TONODE(I) |
CHECKX2 = COORDS(1,3) |
CHECKY2 = COORDS(1,4) |

C=====Find the third point defining the chosen polygon==

@

C Set a pointer to the current location in the input array

=]
C Increment the secondary input array position indicator
50 J=J+1
C Find another reference to the chosen polygon

IF ((LPOLY(J) .EQ. CHECKPO) .OR. (RPOLY(J) .EQ.

& CHECKPO)) GO TO 60

GO TO 50
C Check node against two known
60 IF (FRNODE(J) .NE. CHECK1) GOTO 70

-114-

GO TO 80
70 IF (FRNODE(J) .NE. CHECK?2) GO TO 100
80 IF (TONODE(J) .NE. CHECK1) GO TO 90
GO TO 50
90 IF (TONODE(J) .NE. CHECK2) GO TO 110
GO TO 50
C Choose from node which was not known before
100 CHECK3 = FRNODE(J)
C Get associated points
CHECKX3 = COORDS({J,1)
CHECKY3 = COORDS(J,2)
GO TO 120
C Choose to node which was not known before
110 CHECK3 = TONODE(J)
CHECKX3 = COORDS(J,3)
CHECKY3 = COORDS(J,4)

C======Put the points in counter-clockwise order

C Arbitrarily choose a point to be first

120 DEF1 = CHECK1

C Define the difference variables
DELX1 = CHECKX2 - CHECKX1
DELY1 = CHECKY2 - CHECKY1
DELX2 = CHECKX3 - CHECKX1
DELY2 = CHECKY3 - CHECKY1

------ Take the cross product of the two vectors created by using the first
point as an endpoint to each and the other two points as endpoints
to their respective vectors. If the cross product is negative, then
the vector which was treated as the "first" vector should in fact be
second, and vice-versa, If the cross product is positive, then the
vector assignments are correct. The points are ordered according to
this determination.

oNoNoNoNoNoKe]

IF (DELX1 * DELY2) .GT. (DELX2 * DELY1)) GO TO 130
DEF2 = CHECK3
DEF3 = CHECK2
GO TO 140
130 DEF2 = CHECK2
DEF3 = CHECK3

O

@]

======Write {0 the output array

C Increment the output array size variable

140 OUTPCNT = QUTPCNT + 1
ELEMENT(OUTPCNT) = CHECKPO
OUT1(OUTPCNT) = DEF1
OUT2(OUTPCNT) = DEF2
OUT3(OUTPCNT) = DEF3

C Increment the number of elements counter
NUMEL = NUMEL + 1
GOTO15

-115-

C Go to the next input array polygon

14 CONTINUE
C===Write the ouput array into the output file, reassigning the element=C
C=====numbers to be sequential in the file, since the original numbers are=C

=====n0 longer necessary C

DO 17 I=1,0UTPCNT
WRITE (LOUT,2000) I,OUT1{I),OUT2(I),OUT3(I)
17 CONTINUE
GO TOS510

@]

=====FError messages and program exit point:

500 WRITE (*,'(A)") 'Error occurred during AOPEN'
GO TOS510
20 WRITE (*,'(A)") Error occurred during ARCRD'
510 READ (LOUT,2000,END=520) IA,IB.IC,ID
GO TOS510
520 ENDFILE (LOUT)
CALL ACLOSE (LOUT)
RETURN
END

Fortran subroutine OPTIMIZE.F77

Description.--This algorithm was developed by R. J. Collins (1973), and the program that we modified was
written by M. L. Maslia (U. S. Geological Survey, written commun., 1987). Originally a stand-alone program, it has
been further modified to run as a subroutine of BLDMOD.F77 (fig. 40).

It takes the files created by BLDNCD.F77 and BLDECD.F77 and optimizes the node numbering scheme. It
reduces the maximum difference between node numbers associated with any given element, thereby reducing the
matrix bandwidth. This greatly reduces roundoff error in the model. SETUP (fig. 41) and OPTNUM (fig. 42) are two
subroutines for OPTIMIZE.F77. SETUP "sets up" a particular numbering system and OPTNUM optimizes it. The
resulting matrix size of this numbering system is compared to the matrix size of the previous systems. If the new
system requires a smaller matrix, then it is stored for later comparisons.

-116-

START

READ NCD DATA
INTO AN ARRAY,
COORD

» INTO AN ARRAY,

READ ECD DATA
JT

y

WRITE THE #
CALL OPTNUM EF77/*—| CALL SETUPF77 OF NODES & THE
(FIG 42) 7 (FIG 41) # OF ELEMENTS
TO NUMBRS
SET JJ= ANODLOC
SET NODLOC | RECORD (ONE OF
EQUALTOJT | &3 POINTS DEFIN-
ING AN ELEMENT)
REORDER CO-
SET XTEMP = |} ORDINATES WITH
COORD THE VECTOR JNT,
FROM XTEMP TO
COORD
WRITE THE :
ELEMENT DATA TO OFOIEEN;RI?I’%ON
THE NCD FILE ;
f YES
WRITE THE WRITE THE NCD
WRITE COORD TO
ELEMENT DATA TOe—] " m Cos | ARRAY TO THE
THE PRINT FILE FILE SRINT FILE

Figure 40.--Flowchart for OPTIMIZE.F77.

-117-

START

INITIALIZE THE BAND-
WIDTH VAR -IDIFF & THE
OF NODES EACH NODE
IS RELATED TO - JMEM

B*

READ THE NEXT

NODE FROM THE

ELEMENT ARRAY,
JT, W/ POINTER JNTI

Y

SET THE POINTER - JSUB WHICH CONTAINS
THE LOCATION OF THE CURRENT NODE IN
THE ARRAY WITH THE IDENTITIES OF THE
NODES RELATED TO A GIVEN ONE - MEMIT

T

CHOOSE THE NEXT RE-

LATED NODE FROM JT

WITH A SECONDARY
POINTER - JIT|

A RELATIONSHIP
BETWEEN JNTI AND JJT
ALREADY ESTAB-

RONSHIPIN. [P12 Tt
MEMJT |
|

WAS
NGO~ THAT THE
LAST NODE

USING JNTI}

Figure 41.--Flowchart for SETUP.F77.

-118-

START

SELECT A NEW INITIALIZE JOINT (NEW INITIALIZE POINTERS AND
NODETOBE | | NODE#S WITH POS’N = || MAX DIFFERENCE BE-
NODE NUMBER OLD #'S) & NEWIT (OLD TWEEN NODE#'S OF RE-
ONE NODE #'S W/ POS’N =NEW)| | LATED NODES (MAX) & I=1

STORE THE
MINIMUM
MAXIMUM
DISTANCE

.l

NODES IN THE
MEMIT ARRAY

LOCATE RELATED

-

ASSIGN NEW #°S
TO ALL NODES
RELATED TO
NODEI

RELATED

L YES {ODE BEEN F

ASSIGN NEW
NODE NUMBER

TWEEN NEW #’S OF RELATED
NODES > PREVIOUS

SET MAX EQUAL
TO DIFFERENCE

T

I=1+1

Figure 42.--Flowchart for OPTNUM.F77.

-119-

....... *® sk 3k 3k - *ookk ke 3k sk ke 3 3k 3 ke 2k 3 3 3k sde 3de 2 3k

3 e 3 3 afc 3 3 f * xy » ok ok

PROGRAM: Optimize the node numbering system of a mesh by minimizing

the difference between the node numbers of associated NUMNOD
PUBLISHED AS: Collins,R.J., 1973
MODIFIED BY: Morris L. Maslia, The United States Geological Survey
SECONDARY MODIFICATION BY: Robert Lowther, same
SUPERVISION OF SECONDARY MODIFICATION BY: Eve L. Kuniansky, same

o e o o o bk k3 e e e o fc a3 e ke o e ok o ae ko e s o o e o e e o a6 oo ae e o o ook ae ke ok ok o

oNoNe!

QOO0 0O0n

4
3

OO0

SUBROUTINE OPTIMIZE

J

INCLUDE 'variables’

common/bzone/jnt(25000),xtemp(25000,2),nodloc(1,3)
common/acsolv/jmem(25000),mem;jt(225000)

common /gener/coord(25000,3),JT(25000,12),matmo(25000),
&shape(12), NMNOD NMEL ,nnode,ndime

character*60 fread FREAD1 |
data ncr,npr,NCR1/50,60,70/ ‘
|
c c
c renumber NUMDOD to obtain optimal bandwidth ¢
c c
FREAD = 'filencd'

FREADI = 'fileecd’
NMNOD = NUMNOD |
NMEL = NUMEL

open (unit=ncrfile=fread)

OPEN (UNIT=NCR1,FILE=FREADI)
open (unit=npr file=fprint)

open (unit=30.file="numbrs’)

L e —— read coordinate file and element connection file -----------C
do 10 i=1, NMNOD
read (ncr,*) j,coord(j,1),coord(j,2)
10 continue
do 30 i=1, NMEL
read (NCR1,*) K,JT(K,j), =1,3)
30 continue

WRITE (30,%) NMNOD
WRITE (30,*) NMEL
CLOSE (30)

ncn=13
it=0
iend=0
WRITE(NPR,1070) NMNOD
1070 FORMAT (/,10X,'The mesh has 16, nodes."/)
WRITE(NPR,1071) NMEL
1071 FORMAT (/,10X,'The mesh has 16, elements.",/)

-120-

do 9000 kkk = 1,maxitr
it=1it+1
call setup(NMNOD,NMEL ,ncn, IDIFF)
call optnum(NMNOD,IDIFF,minmax iend)
write(npr,1072) it
1072 format(/,10x,***** OPTIMIZATION ITERATION NO.'i3,’ *****' //)
if(iend .gt. 0) write(npr,1073)

write(npr,1074)IDIFF,minmax
1074 format(/10x, original bandwidth =',i10/
1 10x,'bandwidth after renumbering =',i10)
if(iend .gt. 0) go to 9500

do 1005 i=1, NMNOD
xtemp(i,1)=coord(i,1)
1005 xtemp(i,2)=coord(i,2)
do 2005 i=1, NMNOD
jr=jnu(i)
coord(jr,1)=xtemp(i,1)
2005 coord(jr,2)=xtemp(i,2)
do 3005 i=1 NMEL
do 4005 j=1,ncn
4005 nodloc(1,j)=JT(,))
do 5005 j=1,ncn
ii=nodloc(1,j)
if(jj .eq. 0) go to 5005
jr=jnt(jj)
IT@)=jr
5005 continue
3005 continue

if(it .eq. maxitr) go to 9500
9000 continue

9500 continue
rewind(ncr)
do 50 i=1 NMNOD
write(npr,'(i5,2f15.3)") i,(coord(i j),j=1,2)
write(ncr,'(i6,2f15.2)") i,(coord(i,j),j=1,2)
50 continue
rewind(ncrl)
do 60 i=1 NMEL
write(npr,'(3i5)") JT(,j).j=1,3)
write(ncrl,'(4i6)") i,(jt(ij)j=1.3)
60 continue

CLOSE (NPR)
CLOSE (NCR)
CLOSE (NCR1)
RETURN

end

-121-

c“,v“v“‘vvvv‘ Aok Ak e e e e ok e e 3k ok dfeafe 3 o 3 e e 3 f;##¢1vvﬁ*********c

c c
C subroutine setup(NMNOD ,NMEL ,NCN.,idiff) c
c c
c c
c*****************************414“”'T ek e a3k ok 2o ok 3 34 3k 3k o % "***C
c c
¢ generates array memijt,jmem c
c c
¢ idiff = maximum banwidth c
¢ jt = node connection matrix c
¢ jmem = vector containig the number of NUMDOD to whlqh any one node c
c connected | c
¢ memjt = vector containing identities of all NUMDOD f c
c ‘ c
c c

subroutine setup(NMNOD,NMEL,NCN.idiff)

common/bzone/jnt(25000),xtemp(25000,2),nodloc(1,3)
common/acsolv/jmem(25000),memijt(225000)

common /gener/coord(25000,3),jt(25000,12),matno(25000),
&shape(12),npdum,nedum,nndum,nddum

(¢}

initialise idiff and jmem

o0 o

idiff=0
do 10 j=1,NMNOD
10 jmem(j)=0

consider each element in turn c

o

do 60 j=1 NMEL

do 50i=1 NCN
jnti=jtG.)
if(jnti.eq.0) go to 60
jsub=(jnti-1)*8

do 40 ii=1,NCN
if(ii.eq.i) go t0 40
Jt=jt(,ii)
if(jjt.eq.0) go to 50
meml=jmem(jnti)
if(mem1.eq.0) go to 30
do 20 iii=1,mem1
if(memjt(jsub+iii).eq.jjt) go to 40
20 continue
30 jmem(jnti)=jmem(jnti)+1
jmemjn=jmem(jnti)
memijt(jsub+jmemjn)=jjt

-122-

if(iabs(jnti-jjt).gt.idiff) idiff=iabs(jnti-jjt)
40 continue
50 continue
60 continue
idiff=idiff+1
return
end

C***c

c c
c subroutine optnum(NMNOD,idiff,minmax) c
2**:;
c c
¢ obtains optimum node numbering vectors,jnt. c
c c
¢ jnt = optimum node numbering vector c
¢ joint = vector containg the new node numbers, the locations in c
c this vector being equal to the old joint numbers c
¢ newjt = vector containg the old node numbers,their locations in c
c this vector being equal to the new joint numbers c
¢ iik = variables denoting new and old node numbers respectively c
v c
c c

subroutine optnum(NMNOD,idiff minmax,iend)

common/bzone/jnt(25000),xtemp(25000,2),nodloc(1,3)
commony/acsolv/jmem(25000),mem;jt(225000)
common/adpara/new;jt(25000),joint(25000)

common /gener/coord(25000,3),jt(25000,12),matno(25000),
&shape(12),npdum,nedum ,nndum,nddum

data nprint/60/

minmax=idiff-1
iflag=0
do 60 ik=1, NMNOD

initialise joint,newjt

(¢}

do 20 j=1, NMNOD
joint(j)=0

20 newjt(j)=0
max=0
i=1
newjt(1)=ik
joint(ik)=1
k=1

30 jnw=new;t(i)
if(jnw.ne.0) kd=jmem(jnw)
if(jnw.eq.0) k4=0
if(k4.eq.0) go to 45

-123-

jsub=(newjt(i)-1)*8
do 40 jj=1k4
k5=memjt(jsub+jj)
if(joint(kS).gt.0) go to 40
k=k+1
newjt(k)=k5
joint(kS)=k
ndiff=iabs(i-k)
if(ndiff.ge.minmax) go to 60
if(ndiff.gt. max) max=ndiff
40 continue
if(k.eq. NMNOD) go to 50
45 i=i+l
goto 30
50 minmax=max
do 55 j=1, NMNOD
55 jnt(f=joint(j)
iflag = iflag + 1 !
60 continue
minmax=minmax+1
nnode=NMNOD
if(iflag .eq. O) iend =1
return
end |

Fortran Program FE-LABEL.F77
Descriti

This program uses FILENCD and FILEECD as input, thereby using the optimally renumbered mesh. From
these files, it creates two output files, mesharc and mlabel (fig. 43). ' These output files are simple rearrangements of
the input files. They are designed so that they can act as ASCII input files to the GENERATE command in ARC,
thereby allowing the user to create ARC coverages based upon the optimally renumbered model mesh.

-124-

START

READ THE # OF
NODES & THE #
OF ELEMENTS
FROM EVEINFO

Y

READ THE NCD
DATA INTO
ARRAYS, XC AND
YC

a]

READ THE NEXT
ELEMENT FROM
THE ECD FILE

XCENTER = AVER
AGE OF X VALUES
OF NODES & Y

CENTER IS SAME

'

WRITE THE ELE-
MENT # AND THE
CENTER PNT TO
THE LABEL FILE

Y

WRITE THE ELEMENT # & THE
NODE & VERTICE COORDS TO
THE ELEMENT-INCLUSIVE
ARCFILE

-125-

Figure 43.--Flowchart for FE-LABEL.F77.

P lisi

vvvvvvvvvv e 3 afe 2 aje 3 2 3 o e e afe a3 ke r el ok

-
e e ek *

*PROGRAM FOR WRITING ASCII ARCS FILE IN FORMAT FOR ARC/INFO GENERATE
COMMAND AND A LABEL FILE FOR THE POLYGON COVERAGE OF YOUR FINIT

* ELEMENTMESH E.L.KUNIANSKY 12-18-87 *
* MODIFIED BY: ROBERT LOWTHER 8-15-90 *
e ol o b o b o ae b ae i ok o e o e ol e 36 e 3 e o o o e o ek e e 2 o 3¢ af o e ol o 0 o o b b s e o o e e koK
COMMON/C1/XC(100000)
COMMON/C2/YC(100000)
REAL*8 XC,YC

CHARACTER*30 FILEN, FILEE, FILEA, FILEL

OPEN (9 file ='eveinfo',status ='OLD' recl =60)
101 FORMAT (F15.3)
102 FORMAT (A) |
READ(9,*) NNODE
READ(9,*) NELEM
FILEN = 'filencd'
FILEE = 'fileecd' 10 FORMAT(A30)
READ(9,102) FILEA
READ(9,102) FILEL

OPEN(10,FILE=FILEN)
OPEN(11,FILE=FILEE)
OPEN(7,FILE=FILEA) i
OPEN(8,FILE=FILEL) ‘
DO 100 I=1,NNODE
READ(10,*) jj,XC(jj), YCGJ)
100 CONTINUE
DO 200 J=1,NELEM
READ(11,*) JJN1,N2,N3
XCENTER=(XC(N1)+XC(N2)+XC(N3))/3.
YCENTER=(YC(N1)+YC(N2)+YC(N3))/3.
WRITE(8,40) JJ, XCENTER, YCENTER
J1=3*%J-1)+1
J2 = 3%(J-1)+2
J3=3%(J-1)+3
WRITE(7,50) J1
WRITE(7,20) XC(N1),YC(N1)
WRITE(7,20) XC(N2),YC(N2)
WRITE(7,60) 'END'
WRITE(7,50) J2
WRITE(7,20) XC(N2),YC(N2)
WRITE(7,20) XC(N3),YC(N3)
WRITE(7,60) 'END'
WRITE(7,50) J3
WRITE(7,20) XC(N3),YC(N3)
WRITE(7,20) XC(N1),YC(N1)
WRITE(7,60) 'END’
200 CONTINUE
20 FORMAT(5X,2F15.3)
40 FORMAT(I5,2F15.3)
50 FORMAT(IS)

-126-

60 FORMAT(A3)
WRITE(8,60) END'
WRITE(7,60) END'

END

REALENGTH.AML
Description

Leakage from a streambed to an aquifer is proportional to the surface area of the streambed. If, for simplicity,
streams are assumed to be of uniform width, then leakage is proportional to, among other factors, the length of the
stream. The mesh generation process transforms all pertinent features in the study area into representative points.
Streams are translated into the points that form the sides of triangular elements. Therefore, in order to examine leakage
in the model, a part of the stream length must be associated with each point representing the stream. Because the
stream is SPLINEA at equal distances along its length, equal parts of the length may be assigned to each representative
point. This is the purpose of REALENGTH.AML. The lengths are written into the point cover's PAT as the item
"STRMLEN." The REALENGTH flowchart is shown in figure 44.

-127-

RUN YES NO PRINT
MAKEADDL.AML] ERROR
(FIG 45) MESSAGE
BUFFER STREAM —
COVER AND SELECT NEXT
COUNTTHE [~™] BUFFERED AREA
STREAMS
ADD.LENGTHS TO \
SUM LENGTHS IN SELECT CORRE- CREATE INDIVBUR
WORKRLARCFOR| . [SPONDING § & WITH ONLY THE
STREAM TOTAL [JCREATE WO -1%— SELECTED
(FIG 46) ARC WITH IT ONLY BUFFER AREA
SELECT CORRE- FIND THE |
SPONDING NODES) NUMBER OF | IND THE STREAM
FROM NODE COV. ARCS INTHE SEGMENT LENGTH
WITH INDIVBUF STREAM
MAKE AN ASCII CREATE A POINT
LIST, BIGLIST, OF | |COVER, WORKRL-| _ | UNSPLIT THE
OM & TO NODES™™| PNT FROM STREAM INTO
IN WORKRLBIG WORKRLBIG WORKRLBIG
HOWMANYF77 TO| [RELATE THE # OF
COUNT THE # OF | |CONNECTIONS To| | BUFFER BIGENT,
OCCURANCES OF [™] PNTS IN BIGPNT B R
NODES IN BIGLIST |WITH THATMANY |
(FIG 47) |

a. logic which selects a stream and prepares it for le
Figure 44.--Flowchart for REAL]

-128-

ngth assignment
ENGTH.

/*
/*
/*
/*
/*
/*
/*

RELATE POINTS TO BUFFERS AND ADD
ITEM TO BUFFERS TO INDICATE THE

CORRESPONDING NODE

!

v

ADD ITEM TO BIG-
PNT TO INDICATE

NUMBER OF ARCS LINKED TO THE I TO WHICH BUFFER

IT CORRESPONDS

OF ARCS ASSOCIATED WITH IN STRM &

[IDENTITY NODE COVER WITH| IMAKE ASCII FILE, RCINFODAT,
BIGPNT.BUF TO SHOW THE # | W/ SEGMENT LENGTH, NODES

OF ARCS ASSOC

END OR INTERSECTION PNTS W/ END OR INTERSECT. PNTS

v

CREATE AN INFO
FILE BASED
UPON LENSTORE

ORGANIZE.F77 TO
UPDATE ASCII FILE
. ENSTORE W/ THIS
STRM PTS’ ASSOC

LENGTHS (FIG 48)

!

RELATE THE
INFO FILE TO THE STOP
NODE COVER

b. logic which assigns lengths to streams

Figure 44.--Flowchart for REALENGTH.AML.--continued.

Program Listing

MACRO: Associate the nodes in a node cover with the length of the
surrounding section of stream

CODED BY: Robert Lowther

SUPERVISED BY: Eve L. Kuniansky

VARIABLE LIST:
DTYPE: The graphic display terminal type
RLARC: The name of the input stream cover
SNAD: The snap distance used on the stream cover
MSNOD: The name of the point cover created using all of the features
BUFD: The buffering distance used around the stream points
RLBUF: The buffered version of the stream cover

/* RLBUFPAT: The PAT for RLBUF

/*
/*
/*
/*
/*
/*

RLBUFAAT: The AAT for RLBUF
INFOFIL: The file, RCINFODAT, complete with path name
MSNODINT: The internal ID for MSNOD
MSCAPS: MSNOD, capitalized
MSPAT: The PAT for MSNOD
NUMBUFS: The number of streams in the cover

-129-

/* CURRBUF: The stream buffer currently being considered
/¥ CURRMKR: A marker indicating the current buffer

/* INSID: A variable indicating whether or not current buffer is valid

/* INDIVBUF: A copy of the buffered stream cover w/only the current buffer

/* WORKRLARC: A copy of the stream file with only the current stream

™ LENGTH: The overall stream length

/* WORKMSNOD: A copy of the point cover w/only points from the current stream
r* SEGLEN: The length of a section of a stream

/* WORKRLBIG: A unsplit copy of the stream cover

/* BIGPNT: The points taken from WORKRLBIG

r* BIGLIST: An ASCII file containing the # of arcs and a list of all nodes

/* THATMANY: An ASCII file containing each node & the # of times it is a

I* from or to node in the stream AAT

f* MANY: An INFO file version of THATMANY

1* PNT-ID: The ID of the point in THATMANY

/* NOLINKS: The number of arcs which a node connects
/*BIGPNT.BUF: A buffered copy of BIGPNT

/* WHICHBUF: An indicator of which buffer goes around each point

r* IDDPNT: A copy of BIGPNT with a specification of which buffer
/* is around each point ;
/* IDDMSNOD: A copy of WORKMSNOD with the # of links to each node
/*TEMPORARY: A temporary copy of lenstore used as an input to ORGANIZE
/* LENSTORE: The ASCII file used to store the river nodes and their

/* associated links until each river has been considered

/¥ NODID: The user ID for msnod |

/* RULER: LENSTORE, complete with path name (

* CLOVIS: The INFO file version of LENSTORE ‘
/* WICHNOD: The node number in CLOVIS

/* STRMLEN: The stream segment length in CLOVIS

&echo &off
&args dtype rlarc snad msnod

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime |
&end !
&else ‘
&do
&s .computer_type unix
&end

/* -Test to see if all arguments are present as expected-O
&if [type %rlarc%] ne 1 &then &goto badentry

&if [type %snad%] gt O &then &goto badentry

&if [type %msnod%] ne 1 &then &goto badentry

&if [length %msnod %) eq 0 &then &goto badentry }

/* -Prepare the error-indication file-M

-130-

&s i [delete coderr]

&setvar filunit [open coderr openstatus -w]
&setvar i [write %filunit% 9]

&setvar i [close %filunit%]

/* -Define variables to be used-E

&setvar bufd %snad% * 0.6

&setvar ribuf [translate %rlarc%].BUF
&setvar ribufpat %rlbuf% PAT

&setvar ribufaat %rlbuf%.AAT

&setvar infofil [pathname RCINFODAT]
&setvar noninfofil rcinfodat

&setvar msnodint [translate %emsnod%J#
&setvar msnodid [translate %msnod%]-1D
&setvar mscaps [translate %msnod%]
&setvar mspat [translate %omsnod%].PAT
&s i [delete nolen}

&s i [delete lenstore]

/* -Create the INFO program to be run-D
&r makeaddl

/* -Buffer the original input cover and determine the number of study areas-Y
&if [exists %rlbuf% -coverage] &then &goto nobuff
&severity &error &ignore
kill arccopy all
&severity &error &fail
copy %rlarc% arccopy
&r spleen %dtype% %bufd% 0 0 arccopy
buffer arccopy %rlbuf% # # %bufd% 40 line
kill arccopy all
&label nobuff
&if %.computer_type% = 'prime’ &then
&do
&data ARC INFO
SELECT %ribufpat%
OUTPUT %infofil% INIT
PRINT $NOREC
OUTPUT XXXNSP
Q STOP
&end
&end
&else
&do
&data ARC
INFO
ARC
SELECT %rlbufpat%
OUTPUT %infofil% INIT
PRINT $NOREC
OUTPUT XXXNSP
QSTOP
QUIT
&end

-131-

&end

&setvar filunit [open %noninfofil% openstatus -r]

&setvar numbufs [trim [read %filunit% rdstat]] |
&setvar i [close %filunit%)]

&s i [delete %noninfofil%]

/* -Prepare to progress through each buffer in the buffered cover-
&setvar currbuf 1

build %rlbuf% line

&severity &error &ignore

additem %rlbufpat% %rlbufpat% currmkr 4 4 i

&severity &error &fail

&s i [delete nolen]

&label begloop
remepf -prg -na -nq -nvfy

/* -Find the next buffered area-H
&setvar currbuf %currbuf% + 1

&if Jocurrbuf% GT %numbufs% &then &goto endloop
&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SELECT %rlbufpat%

CALC CURRMKR =0

RESEL FOR $RECNO = %currbuf%
CALC CURRMKR =1

OUTPUT %infofil% INIT

PRINT INSIDE

OUTPUT XXXNSP

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT %rlbufpat%

CALC CURRMKR =0

RESEL FOR $RECNO = %currbuf%
CALC CURRMKR =1

OUTPUT %infofil% INIT

PRINT INSIDE

OUTPUT XXXNSP

QSTOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

/* -Determine the validity of the selected area-O
&setvar filunit [open %noninfofil% openstatus -r]
&setvar insid [trim [read %filunit% rdstat]]

-132-

&setvar i [close %filunit%)]
&s i {delete %noninfofil%)]
&if %insid% ne 100 &then &goto begloop

/* -Isolate the selected area-U
&severity &error &ignore

kill indivbuf all

&severity &error &fail

dissolve %rlbuf% indivbuf currmkr poly

/* -Isolate the appropriate stream-R
&severity &error &ignore

kill workrlarc all

&severity &error &fail

intersect %rlarc% indivbuf workrlarc line 40
remepf -prg -na -nq -nvfy

/* -Find the stream segment lengths-
&s i [delete %noninfofil%]

&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

CALC $COMMA-SWITCH = -1
SELECT WORKRLARC.AAT
CALCULATE $NUM1 =1
CALCULATE $NUM2 =0

RUN ADD.LENGTHS

OUTPUT %infofil% INIT

PRINT $NUM2

OUTPUT XXXNSP

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

CALC $COMMA-SWITCH = -1
SELECT WORKRLARC.AAT
CALCULATE $NUM1 =1
CALCULATE $NUM2 =0

RUN ADD.LENGTHS

OUTPUT %infofil% INIT

PRINT $NUM2

OUTPUT XXXNSP

Q STOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

&setvar filunit [open %noninfofil% openstatus -r]
&setvar length [trim [read %filunit% rdstat]]
&setvar i [close %filunit%)

-133-

&s 1 [delete %noninfofil%]

/* -Isolate the appropriate mesh nodes-S
&severity &error &ignore

kill workmsnod all

&severity &error &fail

intersect %msnod% indivbuf workmsnod point 40

/* -Find the number of mesh arcs in the area-O
&s i [delete %noninfofil%]

&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

SELECT WORKMSNOD.PAT

OUTPUT %infofil% INIT

PRINT $NOREC

OUTPUT XXXNSP

QSTOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT WORKMSNOD.PAT

OUTPUT %infofil% INIT

PRINT $NOREC

OUTPUT XXXNSP

QSTOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

&setvar filunit [open %noninfofil% openstatus -1]
&setvar numarcs [trim [read %filunit% rdstat}] - 1
&setvar i [close %filunit%)]

&s 1 [delete %noninfofil%]

/* -Find the appropriate segment length-F
&setvar seglen %length% / 2
&setvar seglen %seglen% / %numarcs%

/* -Make an unsplit copy of the stream-T
&severity &error &ignore
kill workrlbig all

kill bigpnt all

&severity &error &fail
copy workrlarc workrlbig
ae

disp %dtype%

mape workrlbig

editc workrlbig

editf arc

-134-

drawe arc node

draw

select screen

&severity &error &ignore
unsplit none

&severity &error &fail
save

q
remepf -prg -na -nq -nvfy
build workrlbig line

f* -Create a derivative point cover and FORTRAN file-W
nodepoint workrlbig bigpnt
build bigpnt point

&s i [delete biglist]

&setvar biglist [pathname BIGLIST]
&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SELECT WORKRLBIG.AAT
OUTPUT %biglist% INIT
PRINT $NOREC

PRINT FNODE#

PRINT TNODE#

Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT WORKRLBIG.AAT
OUTPUT %biglist% INIT
PRINT $NOREC

PRINT FNODE#

PRINT TNODE#

QSTOP

Q

&end

&end

remepf -prg -na -nq -nvfy

f* Use FORTRAN to create a list of nodes and number of occurances-A
&s i [delete thatmany]

&setvar dumarg DummY

&if .computer_type = 'prime' &then &sys r howmany

&else &sys howmany.out

/* Relate the FORTRAN output file to the point cover-R
&setvar thatmany [pathname THATMANY]

&severity &error &ignore

additem bigpnt.pat bigpnt.pat PNT-ID 55 i

additem bigpnt.pat bigpnt.pat NOLINKS 5 5 i

-135-

&severity &error &fail
&if %.computer_type% = 'prime' &then
&do

&data ARC INFO
SELECT MANY
PURGE

Y

ERASE MANY

Y

DEFINE MANY
PNT-ID,5,5,1
NOLINKS,5,5,1

GET %thatmany% COPY
SELECT BIGPNT.PAT
CALC PNT-ID = BIGPNT-ID
SELECT MANY

RELATE BIGPNT.PAT by PNT-ID
CALC $INOLINKS = NOLINKS
Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT MANY

PURGE

Y

ERASE MANY

Y

DEFINE MANY
PNT-ID,5,5,1

NOLINKS,5,5,1

GET %thatmany% COPY ASCII
SELECT BIGPNT.PAT

CALC PNT-ID = BIGPNT-ID
SELECT MANY

RELATE BIGPNT.PAT by PNT-ID
CALC $INOLINKS = NOLINKS
Q STOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy
dropitem bigpnt.pat bigpnt.pat PNT-ID

/* -Buffer the node file with only the endpoints & intersections as
&severity &error &ignore

kill bigpat.buf all

&severity &error &fail

-136-

nodes-R

buffer bigpnt bigpnt.buf # # %bufd% 40 point
build bigpnt.buf poly

/* -Identify each buffer in the buffered cover-E
additem bigpnt.buf.pat bigpnt.buf.pat WICHBUF 55 i
additem bigpnt.buf.pat bigpnt.buf.pat NOLINKS 5 5 i
tables

SELECT BIGPNT.BUF.PAT

CALC WICHBUF = $RECNO - 1

QSTOP

remepf -prg -na -nq -nvfy

/* -Identify each point by which buffer is around it-
&severity &error &ignore

kill iddpnt all

&severity &error &fail

identity bigpnt bigpnt.buf iddpnt point 40

dropitem iddpnt.pat iddpnt.pat BIGPNT-ID
dropitem iddpnt.pat iddpnt.pat BIGPNT#

dropitem iddpnt.pat iddpnt.pat BIGPNT.BUF-ID
dropitem iddpnt.pat iddpnt.pat BIGPNT . BUF#
dropitem iddpnt.pat iddpnt.pat INSIDE

/* -Associate the number of links with the buffers-
&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

SELECT IDDPNT.PAT

RELATE BIGPNT.BUF.PAT by WICHBUF
CALC $1NOLINKS = NOLINKS

QSTOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT IDDPNT.PAT

RELATE BIGPNT.BUF.PAT by WICHBUF
CALC $1INOLINKS = NOLINKS

QSTOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

/* -Identity the link-numbered buffer cover with the all stream point cover-
&severity &error &ignore

kill iddmsnod all

&severity &error &fail

identity workmsnod bigpnt.buf iddmsnod point 40

dropitem iddmsnod.pat iddmsnod.pat BIGPNT.BUF-ID

dropitem iddmsnod.pat iddmsnod.pat BIGPNT.BUF#

-137-

dropitem iddmsnod.pat iddmsnod.pat WORKMSNOD-ID
dtopitem iddmsnod.pat iddmsnod.pat WORKMSNOD#
diopitem iddmsnod.pat iddmsnod.pat %msnodint%
dropitem iddmsnod.pat iddmsnod.pat INDIVBUF-ID
dropitem iddmsnod.pat iddmsnod.pat INDIVBUF#
dropitem iddmsnod.pat iddmsnod.pat INSIDE

dropitem iddmsnod.pat iddmsnod.pat CURRMKR
dropitem iddmsnod.pat iddmsnod.pat WICHBUF

/* -Make the node-river length-storage file that FORTRAN can read-
&s i [delete %noninfofil%]

&severity &error &ignore

additem iddmsnod.pat iddmsnod.pat SEGLEN 4 4 i
&severity &error &fail

&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

CALC $COMMA-SWITCH = -1

SELECT IDDMSNOD.PAT

RESEL FOR $RECNO =1

CALC SEGLEN = %seglen%

OUTPUT %infofil% INIT

PRINT SEGLEN

SELECT IDDMSNOD.PAT ‘
PRINT $NOREC ;
PRINT %msnodid% NOLINKS ‘
Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

CALC $COMMA-SWITCH = -1

SELECT IDDMSNOD.PAT

RESEL FOR $RECNO =1

CALC SEGLEN = %seglen%

OUTPUT %infofil% INIT

PRINT SEGLEN

SELECT IDDMSNOD.PAT

PRINT $NOREC

PRINT %msnodid% NOLINKS

Q STOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

dropitem iddmsnod.pat iddmsnod.pat SEGLEN

/* -Assign lengths to the nodes-
&s i [delete temporary]
&severity &error &ignore

&if %.computer_type% = 'prime' &then &sys copy lenstore temporary

-138-

&else &sys cp lenstore temporary

&severity &error &fail

&s i [delete lenstore]

&if .computer_type = ‘prime’ &then &sys r organize %dumarg%])
&else &sys organize.out

&s i [delete temporary]

remepf -prg -na -nq -nvfy

&goto begloop

&label endloop

/* -Alter the mesh node file to add the stream segment lengths-
remepf -prg -na -nq -nvfy

&setvar nodid [translate %msnod%]-1D
&setvar ruler [pathname LENSTORE]
&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SELECT CLOVIS

PURGE

Y

ERASE CLOVIS

Y

DEFINE CLOVIS

WICHNOD, 7,71
STRMLEN,15,15N,3

GET %ruler% COPY
Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT CLOVIS
PURGE

Y

ERASE CLOVIS

Y

DEFINE CLOVIS
WICHNOD,7,7.1
STRMLEN,15,15,N,3

GET %ruler% COPY ASCII

Q STOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

&severity &error &ignore

dropitem %mspat% %mspat% STRMLEN

additem %mspat% %mspat% STRMLEN 15,15,N,3

-139-

additem %mspat% %mspat% WICHNOD 7,7,1
&severity &error &fail

remepf -prg -na -nq -nvfy

&if %.computer_type% = 'prime’ &then
&do

&data ARC INFO

SELECT %mspat%

CALC WICHNOD = %nodid%
SELECT CLOVIS

RELATE %mspat% BY WICHNOD
CALC $1STRMLEN = STRMLEN
Q STOP

&end

&end

&else

&do

&data ARC

INFO

ARC

SELECT %mspat%

CALC WICHNOD = %nodid%
SELECT CLOVIS

RELATE %mspat% BY WICHNOD
CALC $1STRMLEN = STRMLEN
Q STOP

QUIT

&end

&end

remepf -prg -na -nq -nvfy

/* -Clean up the files-
&severity &error &ignore
dropitem %mspat% %mspat% WICHNOD
&s i [delete lenstore]

&s i [delete temporary]
&s i [delete nolen]

&s i [delete biglist]

&s i [delete rcinfodat]

&s i [delete thatmany]
kill iddmsnod all

kill bigpnt all

kill bigpnt.buf all

kill iddpnt all

kill indivbuf all

kill %ribuf% all

kill workmsnod all

kill workrlarc all

kill workrlbig all
&severity &error &fail

/* -Prepare the error-indication file-

&s i [delete coderr]

&setvar filunit [open coderr openstatus -w}
&setvar i [write %filunit% noerr}

-140-

&setvar i [close %filunit%])

&goto quitit
&label badentry

/* -Print the error message-
&type Usage: REALENGTH <display type><original length stream cover(existing)>

&type <minimum distance between derivative stream cover
&type points> <derivative stream point cover (existing)>
&label quitit
&type End of REALENGTH

MAKEADDL.AML
Descrini

This macro creates the INFO program "ADD.LENGTHS." Because it is cumbersome to copy INFO
programs whenever the mesh generation programs are copied, MAKEADDL.AML rebuilds ADD.LENGTHS
whenever REALENGTH.AML is run. Its flowchart is in figure 45.

START

ERASE ANY OLD

COPIES OF INFO
PROGRAM,

ADD.LENGTHS

Y

CREATE THE NEW
COPY OF THE

PROGRAM, ADD.

LENGTHS (FIG 46)

Figure 45.--Flowchart for MAKEADDL.AML.

-141-

i
Program listing \
/* MACRO: Create the INFO program, ADD.LENGTHS to total Lll arc lengths
[* in a cover

/* CODED BY: Robert Lowther
/* SUPERVISED BY: Eve L. Kuniansky

/¥ VARIABLE LIST

/* $NUMI: The counter indicating the current arc
/* $NOREC: The total number of arcs

/* $NUM2: The total of all arc lengths

/* LENGTH: The length of a particular arc

/* -Check the computer type (by Leonard L. Orzol)-C
&s .path [show &workspace]
&s .slash /
&s computer_flag [index %.path% %.slash%]
&if %computer_flag% <= 0 &then
&do
&s .slash >
&s .computer_type prime
&end
&else
&do
&s .computer_type unix
&end

/* -Delete any old copy of the program and create a new copy-H
&if %.computer_type% = 'prime’ &then

&do

&data ARC INFO

&severity &error &ignore

ERASE ADD.LENGTHS

Y

&severity &error &fail

PROGRAM ADD.LENGTHS

DO WHILE $NUMI1 LE $NOREC

SELECT WORKRLARC.AAT

RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUMI = $NUM1 + 1
DOEND

Q STOP
&end
&end
&else
&do
&data ARC
INFO
ARC
&severity &error &ignore
ERASE ADD.LENGTHS
Y

-142-

&severity &error &fail

PROGRAM ADD.LENGTHS

DO WHILE $NUM1 LE $NOREC

SELECT WORKRLARC.AAT

RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUM1 = $NUM1 + 1
DOEND

QSTOP
QUIT
&end
&end
Info Program ADD.LENGTHS
Description

This INFO program totals the lengths of all arcs that compose a given stream (fig. 46). This total, the total
length of the stream, is used as an input to REALENGTH.

START

SELECT NEXT ARC

Y

ADD ARC LENGTH
TO TOTAL LENGTH

THAT THE
LAST ARC?

Figure 46.--Flowchart for ADD.LENGTHS.

-143-

P list

PROGRAM ADD.LENGTHS

DO WHILE $NUM1 LE $NOREC

SELECT WORKRLARC.AAT

RESEL FOR $RECNO = $NUM1
CALCULATE $NUM2 = $NUM2 + LENGTH
CALCULATE $NUM1 = $NUM1 + 1
DOEND

Fortran Program HOWMANY F77

Descrii

The length assigned to a particular node of a stream is equivalent to the sum of stream lengths between a node
and each of the midpoints between that node and the two nearest nodes. Each of these lengths is a segment length.
While nodes in the middie of a stream will all be assigned the same length (two times the aforementioned segment
length), nodes at the ends of streams and nodes at stream intersections will be assigned different lengths. The length
assigned is an integer multiple of the basic segment length, dependent on the number of arc connections to the node in
question. Ends of streams will only represent one segment length, and nodes at the intersection of three stream
branches will represent three segment lengths.

HOWMANY F77 determines the number of arcs connected to each node (fig. 47). It takes the arc cover input
and creates a list, organized by node, of the arc connections. This list is written to an ASCII file which
REALENGTH.AML can read.

-144-

START

INITIALIZE THE
OUTPUT ARRAY
TO ALL ZEROES

’*

READ THE NEXT
INPUT NODE

ADD NODE TO
OUTPUT ARRAY
WITH ONE
CONNECTION

—

ADD ONE TO THE
NUMBER OF
CONNECTIONS TO

THE NODE

LAST NODE IN

WRITE THE
OUTPUT ARRAY
TO THE OUTPUT

FILE, THATMANY

STOP

-145-

Figure 47.--Flowchart for HOWMANY F77.

P lisi

C***h***************c
C PROGRAM: Determine the number of arc connections for each node in the

C input stream
C CODED BY: Robert Lowther
C SUPERVISED BY: Eve L. Kuniansky

C
C
C
C

C***C

PROGRAM HOWMANY

|
C*******r""i """"""" e ek ke b ke e ek *'.****************#********

VARIABLE LIST:
I,J: Counter variables

NUMO: The total number of nodes in the output file
NOD: A given node number

vXokoEoNoNeNoKe!

b 3 b 2k ke b afe e 2k e 25 2k ke e 3k 6 2k 3k 3k e ke o kb e 3 ke e ke e ke s b 2k 3k e 2 ok 2k b e ke 2

OFND: Indicates that the given node has been found in theoutputfile

OLIST: Array containing the output list of nodes and # ofconnections

b 2 3k 3 3k 3k 3K

COMMON/C1/0OLIST(999.2)

INTEGER 1,J,OLIST NUMO,NOD,OFND

100 FORMAT (2I5)

C-----Open the input and output files-------------- C
OPEN (7,FILE= 'biglist’)
OPEN (8,FILE= 'thatmany")

READ (7,¥) NUMI

DO 10, 1=1,999
OLIST(I,L1)=0
OLIST(1,2) =0

10 CONTINUE

C-----Read a node from the input file--------~------- C
NUMO=0
DO 20, I=1 NUMI*2
OFND =0
READ (7,%) NOD

C-----Check the output file: if found, add one to the node's total cd
DO 30, J=1,NUMO
IF (OLIST(J,1) .NE. NOD) GO TO 30
OFND =1
OLIST(J,2) = OLIST(J,2) + 1
30 CONTINUE

C-----If node not in output array, write it & increase the array's node totalC

-146-

k********c

C
C
C
H
S
C
C
C

IF (OFND EQ. 1) GO TO 20
NUMO = NUMO + 1
OLIST(NUMO,1) = NOD
OLIST(NUMO,2) = 1

20 CONTINUE

C-----Write the output array to the output ASCII file-----C
DO 40, I=1 NUMO

WRITE (8,100) OLIST(I,1),OLIST({,2)
40 CONTINUE

C-----Close all files------------- C
CLOSE (7)
CLOSE (8)
END

Fortran Program ORGANIZE F77
Descripti
This program updates the ASCII file containing the node and associated length data (fig. 48). It reads the data

generated from streams in previous iterations from the file "TEMPORARY." It writes the input data and the current

stream data to the storage file, "LENSTORE." TEMPORARY is merely a copy of LENSTORE created as a
convenience just before ORGANIZE.F77 is called.

-147-

READ NUMBER OF

NODES IN CURRENT
START STREAM FROM
RCINFODAT (FIG 44)
DOES No| SETINDEX
"NOLEN" s (NUMLEN)TO
EXIST? ZERO
INITIALIZE THE NUMLEN, THE #
OF LENGTHS AL ‘
NODE &ASSOCIATED = READY ASSIGNED
LENGTH ARRAY ‘f EQUALS NOLEN |
+ !
READ LENGTHS READ NEXT NODE
FOR NODES PREV, _|AND ASSOCIATED |
ASSIGNED FROM LENGTHS FROM
TEMPORARY RCINFODAT
ASSOCIATED ASSOCIATED
LENGTH = TWO NO | LENGTH = THE #
TIMES THE OF LINKS TIMES
SEGMENT LENGTH EGMENT LENG
WRITE THE WAS
ASSOCIATED THAT THE \ NO
LENGTH TO THE LAST NODE?
ARRAY
YES
WRITE THE |
| ARRAY TO THE |
STop ASCII FILE, |
"LENSTORE"
Figure 48.--Flowchart for ORGANIZE.F77.
i
-148-

P fisti
Chsbnnnn ko e ko . ok

C PROGRAM: Update the node-associated length file with currentstreaminfo
C CODED BY: Robert Lowther
C SUPERVISED BY: Eve L. Kuniansky

(C skt de e ek s kel e s s e a aoeae kel o o s 2 sk a3 ae 2 2 o 2 a2 ae e e e e ke ae 2 e o *

O(!)

3

oXoXe)

4
*
*
*
*

PROGRAM ORGANIZE

(C ek ke ke ek s ook e ke e o o 2 e e 2ok 3 o 3 e ae e 2 2 2 ks 3 o e 2 ok 2 ok Ntk ok ek ek kool Y

VARIABLE LIST:

H
S
NUMARC: The number of arcs in the current stream C
NUMNQOD: The number of nodes in the current stream C
I: A counter variable C
NOD: The current node number, and pointer for LENNOD C
NOLINKS: The number of connections to a given node C
SEGLEN: The length of a particular section of stream C
LENNOD: The array containing the lengths associated w/ allstreamnodes C
NODLEN: The input length, from TEMPORARY, associated with a node C
DUMARG: A dummy argument C
DOESIT: Indicates whether or not the file w/ the number of nodes w/ C
associated lengths already exists H

o a3 s 25 e 3 aj e e 3 2 e e e 3 e a3k b e b e e e a e ae o 2 e afe * e 3 de e ***##****s

oXoNokeRoRoNoEoReRoNoNo o Ne!

COMMON/C1/LENNOD(25000)

INTEGER NUMARC ,NUMNOD,L,NOD,NOLINKS NUMLEN,NUM
DOUBLE PRECISION SEGLEN,LENNOD,NODLEN
CHARACTER DUMARG

LOGICAL*4 DOESIT

C=====Open the information, input and output files========C
OPEN (8,FILE= 'rcinfodat’, RECL= 999)
OPEN (9,FILE= 'lenstore', RECL= 999)
OPEN (7,FILE= ‘temporary', RECL = 999)

101 FORMAT (F15.3)
102 FORMAT (I7)
103 FORMAT (17,F15.3)

C=====Read the current stream section length & number of nodes======C
READ (8,*) SEGLEN
PRINT *,'CURRENT STREAM SECTION LENGTH:',SEGLEN
READ (8,*) NUMNOD
PRINT *'NUMBER OF NODES IN THE CURRENT STREAM: ,NUMNOD

=====Determine the number of nodes in the input file C
INQUIRE (FILE = 'nolen' EXIST= DOESIT)
IF (DOESIT .EQV. .FALSE.) GO TO 12
OPEN (10,FILE= 'nolen")
READ(10,102) NUMLEN

-149-

GOTO 13 |
12 NUMLEN =0 |

C=====Initialize the node/associated length array

(@]

13 DO 10, =1,25000
LENNOD(M) =0
10 CONTINUE

PRINT *,'NUMBER OF NODES ALREADY ASSIGNED IN

C=====Read all previously assigned nodes into the array======
DO 11, =1 NUMLEN
READ (7,*) NOD,NODLEN
LENNOD(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>