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CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To obtain

acre 4,047 hectare

ton 0.9072 megagram

mile 1.609 kilometer

square mile 259.0 hectare

foot 0.3048 meter

inch 25.4 millimeter

cubic foot per second 0.02832 cubic meter per second

Water temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) by using the
following equation:

°F =9/5 (°C) + 32
Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of

1929)--A geodetic datum derived from a general adjustment of the first-order level nets of the United
States and Canada, formerly called Sea Level Datum of 1929,
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SURFACE-WATER AND SEDIMENT QUALITY IN THE
OLD LEAD BELT, SOUTHEASTERN MISSOURI--1988-89
By
B. J. Smith and John G. Schumacher
ABSTRACT

The quality of water and bed sediment in the Big River and the Flat River was evaluated as
part of a study to determine the effects of mining on surface water and sediment. This study was
conducted during 1988-89 in cooperation with the Missouri Department of Natural Resources, Land
Reclamation Commission. The results of this study indicated that for the trace elements analyzed, the
water quality of the Big River and the Flat River from March 1988 through September 1989 met the
established water-quality criteria for the protection of aquatic life and livestock and wildlife watering
as defined by the Missouri Department of Natural Resources, with the exception of one sample from
the Flat River that exceeded the water-quality criteria for lead. The concentrations of most major
constituents were not significantly different at seven sampling sites on these two rivers, with the
exception of the most downstream site on the Flat River. However, relatively high sulfate
concentrations commonly associated with mine drainage were detected in some reaches of the Big
River. Trace-element concentrations at the river sites generally were smaller than the detection limit
for the element, except for concentrations of barium, iron, manganese, strontium, and zinec.

Values of physical properties and concentrations of major constituents generally were large in
seepage from mine tailings piles in the basins. Constituent concentrations in seepage from tailings
piles generally were largest at the Elvins tailings pile, where values of specific conductance ranged
from 823 to 1,540 microsiemens per centimeter at 25 degrees Celsius. In the dissolved phase, cobalt
concentrations in seepage ranged from 310 to 610 micrograms per liter, lead concentrations ranged
from 10 to 80 micrograms per liter, and zinc concentrations ranged from 3,500 to 18,000 micrograms
per liter. The presence of zinc carbonate or the solubility of this compound seems to control the upper
limit of zinc concentrations at various seepage sites.

Seepage runs on the Big River and the Flat River during high base-flow conditions indicated
that discharge in both streams was relatively constant or increased downstream throughout the reach
that was measured. Mass-balance calculations on selected constituent loads indicated that increased
discharge in these streams was due to inflow from the abandoned mines.

The Big River downstream from Desloge transported about 41,000 tons of suspended sediment
during the 19-month period of record. One single high-flow in February 1989 transported about 40
percent of the total suspended sediment for that period. At base-flow conditions, iron and lead were
predominately transported in the suspended solid phase and barium and zinc were transported in the
dissolved phase.

Bed-sediment mineralogy at sites in areas affected by mining differed from that at sites in
areas unaffected by mining. Quartz was the predominant mineral in bed sediment at sites unaffected
by mining activities. Bed sediment at stream sites affected by mining activities, however, contained
larger quantities of carbonate minerals, including dolomite, ankerite, and calcite.

Mineralogic, chemical, and scanning electron microscope analyses of the bed sediment
indicated that most trace elements were associated with the oxide phases. However, at the Elvins
tailings pile, zinc¢ primarily was associated with the carbonate phase.



The trace-element concentrations in bed sediment generally were larger in sediment from the
Big River downstream from the Leadwood tailings pile than in sediment from other sites.
Trace-element concentrations generally decreased downstream from the Desloge tailings pile to
Richwoods, about 45 river miles downstream from the mined area, but throughout this reach the
trace-element concentrations of bed sediment exceeded concentrations in sediment upstream from the
mining area.

Largest trace-element concentrations at seepage sites were detected at the Elvins tailings pile.
Lead concentrations ranged from 2,800 to 38,000 micrograms per gram and zinc concentrations ranged
from 9,000 to more than 100,000 micrograms per gram in sediment collected at these sites.

INTRODUCTION

Lead was mined for more than 100 years in an area known as the Old Lead Belt in
southeastern Missouri (fig. 1). From 1907 to 1953 this area was the Nation’s largest producer of lead.
About 8.5 million tons of lead were produced (Wharton and others, 1975). Co-products of lead mining
included zine, copper, and silver. Zinc produced in the area during this period totaled about 34,000
tons (H.M. Wharton, Missouri Department of Natural Resources, Division of Geology and Land
Survey, written commun., 1988).

Lead was discovered in southeastern Missouri in about 1700. The initial discovery was about
70 mi (miles) west of St. Francois County (Kramer, 1976), but about 1720, lead was discovered south
of St. Francois County in Madison County. Lead mines, which at that time consisted of shallow surface
mines, soon spread northward into St. Francois County (Snyder and Gerdemann, 1968). In 1869, core
drilling indicated large deposits of lead ore underlying Bonne Terre, Flat River, Leadwood, Desloge,
and Elvins in St. Francois County, and lead mining in this area, which is now referred to as the Old
Lead Belt, began to expand rapidly. During the late 1800’s and the early 1900’s, as many as 15
companies operated mines in this area. Mines were operated at Bonne Terre from 1864 to 1961, at
Desloge from 1929 to 1958, and at Leadwood from 1915 to 1962 (U.S. Geological Survey and Missouri
Division of Geology and Land Survey, 1967). The mines were gradually shut down during the late
1950’s and early 1960’s as the ore deposits were depleted and production from the Viburnum Trend or
the New Lead Belt (about 35 mi southwest of the Old Lead Belt), with its higher-grade ore, expanded.
In October 1972, the last mining operation in the Old Lead Belt closed (Kramer, 1976).

Early mining in the Old Lead Belt consisted primarily of mining galena crystals from shallow
pits. Most of the surface deposits were depleted by the mid-1860’s. From 1800 to 1850, a few mine
shafts as much as 80 ft (feet) deep were completed in the Cambrian dolostone. However, until 1869,
shallow workings, either pit or trench, were the primary means of ore removal. After 1869 when ore
deposits were discovered about 120 ft beneath several of the present day towns in the area (Kramer,
1976), numerous shafts were excavated to remove the ore.

Processing of lead ore using either mechanical or chemical separators produced large volumes
of waste materials referred to as mine tailings. During the early years of mining in the Old Lead Belt,
coarse tailings were produced from mechanical separators that concentrated the ore. In later years,
more efficient chemical separators that produced finer-grained tailings were used (Wixson and others,
1982). However, both methods produced large volumes of tailings that contained varying quantities of
trace elements. About 250 million tons of tailings were produced in the Old Lead Belt (Kramer, 1976).
The tailings were placed directly on the land surface (fig. 2); coarse tailings were placed in piles and
the fine tailings were transported in a slurry to areas called slime ponds in dammed valleys. Some
tailings piles (such as the Desloge tailings pile, fig. 2) are adjacent to streams and cover several
hundred acres. An estimated 3,000 acres of tailings are in the Old Lead Belt (Missouri Department of
Natural Resources, Division of Geology and Land Survey, written commun., 1983).
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Structure

The main structural feature in the area is the Ozark uplift or Ozark dome, the core of which is
composed of Precambrian granite and volcanic rocks exposed in the St. Francois Mountains, about
10 mi south of the Old Lead Belt (fig. 3). The Old Lead Belt is in a triangular area bounded by the
Simms Mountain Fault System on the southwest, the Big River Fault System on the northwest, and
the Farmington anticline on the northeast. Many steeply dipping faults with displacements of 100 ft
or less have been mapped within the mineralized area (Snyder and Gerdemann, 1968).

Stratigraphy

Geologic formations of Cambrian and Precambrian age (fig. 4) are exposed in the area. A brief
description of each formation follows (Koenig, 1961; U.S. Geological Survey and Missouri Division of
Geology and Land Survey, 1967; Snyder and Gerdemann, 1968; McCracken, 1971):

1. Eminence Dolomite of Cambrian age is a medium to massively bedded, cherty, light gray,
medium- to coarse-grained dolostone. The Eminence Dolomite has an approximate thickness of 200 to
250 ft, but locally can be as much as 350 ft thick.

2. Potosi Dolomite of Cambrian age is a brown, massively bedded, siliceous dolostone
consisting largely of algal reef and recrystallized oolitic dolomite. The silica is in the form of quartz
druse. The thickness of the Potosi Dolomite averages 200 ft.

3. Doe Run and Derby Dolomites of Cambrian age is composed of two units. The upper unit
is a massive oolitic dolostone or algal reef dolostone and the lower unit is a thin-bedded, argillaceous
dolostone. Less than 10 percent of the Doe Run and Derby Dolomites is chert. Glauconite is present
in the lower part. The thickness of the Doe Run and Derby Dolomites averages about 150 ft, but can
range from 0 to 200 ft.

4. Davis Formation of Cambrian age is a thin-bedded, sandy, and calcareous shale with
dolostone, limestone conglomerate, and limestone. The conglomerate consists of two types--"flat
pebble" and "edgewise." The "flat pebble" type consists of rounded, disc-like pebbles of fine-grained
limestone that are imbedded in a matrix of medium-grained limestone. In the "edgewise"
conglomerate, the discs or lenses of fine-grained limestone are arranged with their longer axes
perpendicular to or steeply inclined to the bedding planes. The thickness of the Davis Formation in
the study area is about 170 ft.

5. Bonneterre Formation of Cambrian age is a medium- to fine-grained, medium-bedded
dolostone in the study area. It is the host rock for the ore deposits in the Old Lead Belt, where eight
principal units of the Bonneterre Formation have been recognized. Major lead production has been
from the lower one-half of the formation, where depositional controls, including carbonate ridges, algal
structures, and submarine breccia, have been responsible for ore concentration. The deposits occur on
the flanks of buried or exposed topographic highs of Precambrian age near where the Lamotte
Sandstone of Cambrian age pinches out against the Precambrian highs. The Bonneterre Formation
typically is from 375 to 400 ft thick.

6. Lamotte Sandstone of Cambrian age predominantly is a sandstone with occasional
siltstone or dolomitic beds in the upper part. It is thickest (about 500 ft) in depressions between
Precambrian knobs and pinches out against Precambrian knobs. Near the Precambrian contact, it
grades into a basal arkosic conglomerate.

7. The Precambrian is composed of granite and volcanic rocks. Some Precambrian knobs can
be exposed at land surface, whereas others are buried by overlying sedimentary rock.
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SURFACE-WATER QUALITY

Surface-water quality was determined for sites on the Big River and the Flat River and for sites
associated with seepage from the tailings piles in the area. Physical properties, major constituent
concentrations, and trace-element concentrations were determined for these sites.

The distribution of physical properties, major constituent concentrations, and trace-element
concentrations are presented in this report using boxplots (Tukey, 1977). The box in these boxplots
represents the middle 50 percent of data. The median value is plotted as a horizontal line within the
box. The top of the box represents the 75th percentile and the bottom the 25th percentile. The box
length represents the interquartile range. Vertical lines are drawn from the quartiles to two "adjacent”
values. The upper value is defined at the largest data point less than or equal to the upper quartile
plus 1.5 times the interquartile range. The lower adjacent value is the smallest data point greater than
or equal to the lower quartile minus 1.5 times the interquartile range. Values more extreme in either
direction are plotted individually. Values 1.5 to 3.0 times the interquartile range (outside values) are
represented by an asterisk. Values larger than 3.0 times the interquartile range (far-out values) are
represented by open circles.

Previous I tigati

During 1964, the Missouri Water Pollution Board published results of a water-quality survey
of the Big River. The results of that survey indicated that mining had adversely affected the water
quality of the Big River downstream from the Old Lead Belt. Although the reported trace-element
concentrations did not exceed the current (1991) criteria for protection of aquatic life, tailings were
present in the Big River about 40 river mi downstream from Leadwood (fig. 1).

During 1980 and 1981, Schmitt and Finger (1982) determined concentrations of dissolved lead
and zinc for the Big River. Upstream from the Old Lead Belt at Irondale (fig. 5), considered to be a
control site by the investigators, total and dissolved lead concentrations were 5 ug/L (micrograms per
liter) and total and dissolved zinc concentrations were 10 ug/L in all three samples collected at low,
medium, and high flows. In the Big River downstream from the Desloge tailings pile during low flow
in July 1980, the dissolved lead concentration was 20 pug/L and the dissolved zinc concentration was
310 pg/L. During high flow in May 1981, the dissolved lead concentration was 12 pug/L, and the
dissolved zinc concentration was 100 pg/L (Schmitt and Finger, 1982).

Kramer (1976) documented increased concentrations of dissolved trace elements in water in
the Flat River during a low-flow period in June and July 1975 as a result of seepage from the Elvins
tailings pile. Upstream from the tailings pile, lead concentrations in water in the river were less than
50 png/L, zinc concentrations were 80 pg/L or less, and cadmium concentrations were 10 pg/L or less.
Seepage from the Elvins tailings pile had lead concentrations that ranged from 100 to 150 pg/L, zinc
concentrations that ranged from 7,800 to 9,200 pg/L, and cadmium concentrations that ranged from 30
to 40 ug/L. After seepage from the tailings pile entered the Flat River, lead concentrations downstream
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ranged from less than 50 to 150 pg/L, zinc concentrations ranged from 3,200 to 4,800 pg/L, and
cadmium concentrations ranged from 10 to 40 ug/L. Inlate July and August 1975, tailings pile seepage
flowing through a series of impoundments before reaching the Flat River had lead concentrations that
ranged from 10 to 230 ug/L, zinc concentrations that ranged from 4,000 to 18,000 pg/L, and cadmium
concentrations that ranged from 20 to 40 ug/L. All trace-element concentrations were dissolved.

ion and Description of Sampling Si

Water-quality samples were collected quarterly at 12 sites in the study area (fig. 5 and table 1)
from January 1988 to September 1989. Sample-collection methods, dates of collection, and results of
chemical analyses are given in the report by Smith and Schumacher (1991). Discharge data at the time
of sample collection and discharge hydrographs for gaged sites in the study area also are given in the
report by Smith and Schumacher (1991).

Throughout this report, the sampling sites are referred to either as river sites or seepage sites,
indicating the source of the water. River sites on the Big River are sites 1, 3, 6, and 12. River sites on
the Flat River are sites 7 and 11. The seepage sites are those directly associated with the tailings
piles--sites 2, 5, 8, 9, and 10. Site 4 is a flowing exploration borehole and is considered to be
representative of water from the abandoned mines.

Site 1 is on the Big River at Irondale at U.S. Geological Survey gaging station 07017200 that
has been in operation since 1965. This location is considered to be indicative of background conditions.
Even though some mining has been done in the area (Harold Myers, Doe Run Company, oral commun.,
1989), no active mining has occurred since 1921 (Schmitt and Finger, 1982). Numerous diggings that
yielded "considerable quantities” of lead and zinc were reported to have existed in the vicinity of
Irondale in the 1800’s, but by 1894 there had been little or no mining in this area for a number of years
(Winslow, 1894). The drainage basin of the Big River at this site is about 175 mi?. Average flow for
the period of record (1965 to 1989) was 184 ft%/s (cubic feet per second; Waite and others, 1990) and
median instantaneous discharge measured during the collection of quarterly samples was 85 ft3/s. The
river has a gravel bottom at this site.

Site 2 is on Eaton Creek, which is a small, steep gradient tributary to the Big River. Most of
the drainage basin for Eaton Creek is covered with tailings from the Leadwood tailings pile, which
covers about 560 acres (Missouri Division of Geology and Land Survey, written commun., 1983). The
sampling site is directly upstream from a road culvert about 100 yards upstream from State Highway
8. Median instantaneous discharge measured during the collection of quarterly samples was about 0.3
ft%s. The bottom of the stream at this site consists of consolidated rock of the Bonneterre Dolomite.

Site 3 is on the Big River at what is locally known as the "Bonehole.” This site is upstream
from the Desloge tailings pile, which covers about 400 acres (Missouri Division of Geology and Land
Survey, written commun., 1983). Water samples were collected at or below an abandoned low-water
crossing that has a fall of about 3 ft. The median instantaneous discharge measured during the
collection of quarterly samples was 134 ft%/s. The stream bed consists of gravel and tailings.

Site 4 is at a flowing abandoned exploration borehole. Discharge from the borehole represents
water from the filled, abandoned mines. This site is on the right bank of the Big River near site 3.
Median instantaneous discharge was less than 0.25 ft*/s during the collection of quarterly samples.

Site 5 is in a seepage channel about 500 ft downstream from the northwest opening of a tunnel
underneath the southwestern part of the Desloge tailings pile. The St. Francois County landfill is on
the central part of the tailings pile. Flow from the tunnel consists of seepage from the tailings pile
through the tunnel walls and runoff from the tailings pile and surrounding area. Median
instantaneous discharge at site 5 measured during the collection of quarterly samples was less than
0.1 ft3/s. The bottom of the seepage channel consists of tailings and boulder-sized rocks.
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Site 6 is at gaging station 07017260 that was installed in January 1988 on the Big River
downstream from the Desloge tailings pile. This site also is downstream from a quarry that produces
crushed rock and dolomitic quicklime. The drainage basin for this site is 260 mi%2. Median
instantaneous discharge measured at site 6 during the collection of quarterly samples was 131 ft¥/s.
The stream bottom was unstable because of the presence of large quantities of tailings and shifting of

the river channel was noted even after moderate increases in flow.

Site 7 is on the Flat River at Derby. This site was considered to represent background
conditions in the Flat River. Median instantaneous discharge measured at this site during the
collection of quarterly samples was less than 4 ft3/s. The bottom of the river channel is in the Davis
Formation and consists of shale and dolostone.

Sites 8 and 9 are at the Elvins tailings pile, which covers about 150 acres (Missouri Division of
Geology and Land Survey, written commun., 1983). The Elvins pile may be central to the part of the
Old Lead Belt where zinc mineralization was locally abundant (Snyder and Gerdemann, 1968). Site 8
was at the base of the pile, and site 9 was immediately downstream from a box culvert on a seepage
channel about 500 ft downstream from the pile. Runoff or seepage from the tailings pile is diverted
through a series of settling ponds before the water enters the seepage channel above site 9. Seepage
in the channel flows into the Flat River. Median instantaneous discharge measured just downstream
from the culvert at site 9 during the collection of quarterly samples was about 0.5 ft%/s. The bottom of
the channel consists of mine tailings.

Site 10 is in a seepage channel in the slime pond area of the National tailings pile, which covers
about 175 acres (Missouri Division of Geology and Land Survey, written commun., 1983). The site is
near an abandoned railroad through the slime pond area. In addition to runoff and seepage from the
tailings pile, flow in the seepage channel included effluent from a glass factory that is adjacent to the
tailings pile. The effluent consisted of ground water from abandoned mines that had been used for
cooling purposes in the factory. The median instantaneous discharge measured during the collection
of quarterly samples in the seepage channel was 1.2 ft%/s.

Site 11 is at gaging station 07017350 installed in January 1988 on the Flat River downstream
from the National tailings pile. The median instantaneous discharge measured during the collection
of quarterly samples at this site was 7.4 ft3/s. Material in the stream bed consists primarily of tailings
and some large cobbles. Immediately downstream from the gaging station, the stream bed was
composed entirely of tailings. The channel was unstable at this location because the presence of large
quantities of tailings and shifting of the channel was noted even after moderate increases in flow.

Site 12, which is the most downstream site on the Big River, is at U.S. Geological Survey
gaging station 07018100 that was established in 1942. The drainage basin for the Big River at this
site is 735 mi%2. Average flow for the period 1942 through 1989 was 690 ft3/s (Waite and others, 1990).
The median instantaneous discharge measured during the collection of quarterly samples was 354
ft%s. The streambed was gravel covered. Site 12 is about 45 river mi downstream from the Desloge
tailings pile and less than 10 river mi downstream from Mineral Fork (fig. 5), which drains the
Washington County barite district. Barite has been mined in this area since about 1850. The barite is
mined from residual deposits and is separated from the residual clays in washer plants. Wastes from
the washer plants are diverted to tailings ponds along tributaries to Mineral Fork.

Physical P ’

Specific conductance values generally were smallest at the river sites, with median values
generally less than 500 pS/cm [microsiemens per centimeter at 25 °C (degrees Celsius)l. Median
specific conductance values in the Big River increased from 300 uS/cm at site 1 to 420 uS/cm at site 3
and 504 uS/cm at site 6, then decreased to 444 uS/cm at site 12. The median specific conductance value
at site 12 was similar to that at site 3 but larger than that at site 1. The specific conductance values
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at site 12 may reflect dilution by additional sources of surface and ground water in the Big River rather
than a decrease of mining-related constituents. Significant differences in specific conductance of river
water were detected between sites 1 and 3 and sites 1 and 6 on the Big River, but no significant
difference was detected between sites 3 and 6.

Significant increases in specific conductance of water in the Flat River also were detected
between the upstream site (site 7) and the downstream site (site 11). The median specific conductance
increased from 347 uS/ecm at the upstream site to 732 uS/cm at the downstream site (fig. 6). Much of
this increase can be attributed to inflow from the Elvins and National tailings piles and ground water
discharging from the abandoned mines between the upstream and downstream sites. At base-flow
conditions, these sources can account for a substantial part of the flow at the downstream site. For
example, in May 1988, the flow increased from 3.4 ft%/s at site 7 to 6.3 ft%/s at site 11. Inflow from the
Elvins and National tailings piles was 0.2 and 1.3 ft?/s. Thus, inflow of seepage from these two piles
accounted for about 24 percent of the flow at the downstream site--and more than 50 percent of the
increase in flow. An additional 22 percent of the flow at site 11 that could not be accounted for by
surface-water inflow probably represented ground-water discharge from abandoned mines.

The largest specific conductance values measured during this study were at seepage sites. At
sites 8 and 9 at the Elvins tailings pile, specific conductance values ranged from 823 to 1,540 pS/cm.
At site 10, the median specific conductance was 955 1S/cm, which is similar to the median value of 948
uS/em in water from the abandoned drill hole (site 4). Most of the flow at both of these sites is ground
water from the abandoned mines.

Because of the abundance of carbonate minerals in the tailings and bedrock in the study area,
pH values at all sites were near neutral to slightly alkaline (fig. 6). The pH values at all river sites
were similar; however, among the sites on the Big River there was a tendency for pH values to increase
downstream (median pH at site 1 was 7.8 and median pH at site 12 was 8.2). With the exception of the
drill hole (site 4, median pH of 7.2) and the seep at the base of the Elvins tailings pile (site 8, median
pH of 6.7), the pH values for seepage sites were similar to the values for the river sites. The small pH
values at site 8 were probably related to the oxidation of ferrous iron to ferric iron because orange-red
iron oxide staining was observed at this seep. Significant increases in pH values were detected at site
9 a short distance downstream from site 8 and also at site 10 downstream from site 9, probably from
the dissolution of carbonate minerals. The pH values of the quarterly samples collected in September
1989 were consistently lower than previous measurements at each site, indicating possible equipment
malfunction. A statistical summary of water-quality data collected from all sampling sites is presented
in table 2 (at the back of this report).

Maior Constituent

The major-constituent composition of water samples from the river and seepage sites are
plotted on the trilinear diagrams in figure 7. The water type for the river sites is generally a calcium
magnesium bicarbonate. The water type for the seepage sites is a calcium magnesium sulfate
bicarbonate to calcium magnesium bicarbonate.

Generally, the distributions of calcium, magnesium, potassium, and sulfate concentrations
were similar to the distribution of specific conductance values (fig. 8). Seepage sites generally had
larger concentrations of major constituents than the river sites. Although concentrations of most
major constituents at river sites tended to be larger downstream from tailings piles, significant
increases were detected in the concentrations of calcium (between sites 1 and 12 on the Big River and
sites 7 and 11 on the Flat River), chloride (between sites 1 and 12 on the Big River), and sulfate
(between sites 1 and 3 and sites 1 and 12 on the Big River and sites 7 and 11 on the Flat River). The
increases in chloride concentrations probably are related to anthropogenic sources other than mining
activities, as will be discussed.
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Figure 7.--Composition of water at water-quality sampling sites.
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Figure 7.--Composition of water at water-quality sampling sites--Continued.
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Median calcium concentrations at the river sites were less than 50 mg/L (milligrams per liter)
and median magnesium concentrations were less than 30 mg/L, except for site 11 on the Flat River
where the median calcium and magnesium concentrations exceeded 80 and 40 mg/L (fig. 8). The
median potassium concentration for the river sites was between 1 and 3 mg/L, as compared to median
potassium concentrations between about 4 and 10 mg/L for the seepage sites.

Concentrations of sodium and chloride at the Flat River sites were significantly larger than
those at the Big River sites (fig. 8). In addition, median concentrations of sodium and chloride at the
upstream site on the Flat River (site 7) were larger than those at several seepage sites along the Flat
River. Because concentrations of sodium and chloride did not increase between the upstream (site 7)
and downstream (site 11) sites on the Flat River as did values of specific conductance and
concentrations of calcium and magnesium, substantial quantities of sodium and chloride probably
were derived from non-mining sources upstream from the mining areas. A natural source of sodium
in the Flat River basin could be feldspar minerals within granitic and volcanic rocks of the St. Francois
Mountains that crop out upstream from site 7. More probable sources of increased sodium and chloride
concentrations in the Flat River are road salt usage along State Highway 32, which parallels the Flat
River for about one-half the distance between the Elvins and National tailings piles, septic systems
associated with houses along the Flat River both upstream and downstream from site 7, and discharge
from the Flat River sewage treatment facility upstream from the National tailings pile.

Several seepage sites (sites 2, 4, 5, and 10) contained increased concentrations of sodium and
chloride (fig. 8). The source for these increased concentrations is most likely from sources other than
mine tailings. Increased sodium and chloride concentrations at site 2 probably are related to effluent
from septic systems and a sewage treatment facility upstream from the site. Increased concentrations
at site 5 probably are related to sewage effluent from a trailer park upstream from the site. The sodium
and chloride concentrations at site 4 were similar to those at site 10, a seep that contains ground water
from the abandoned mines.

The distribution of sulfate concentrations at the river and seepage sites was similar to the
distribution of specific conductance values and calcium and magnesium concentrations. Median
concentrations of sulfate for the river sites were less than about 80 mg/L, except for site 11 where the
median concentration exceeded 150 mg/L (fig. 8). Significant increases in sulfate concentrations were
detected between the upstream site (site 1) on the Big River and the downstream sites (sites 3, 6, and 12),
indicating mining-related sources. A significant increase in the sulfate concentration also was detected
between the upstream site (site 7) and the downstream site (site 11) on the Flat River. Most of this
increase can be attributed to the seepage from the Elvins tailings pile. The seepage sites at the Elvins
tailings pile had the largest sulfate concentrations of the seepage sites.

Bicarbonate concentrations generally were similar at both the river and seepage sites and
ranged from 86 to 490 mg/L (fig. 8), although the concentrations tended to increase between the
upstream (sites 1 and 7) and the downstream (sites 12 and 11) sites on the Big and Flat Rivers. The
largest median bicarbonate concentrations were measured at sites 4 and 10. Of the six seepage sites,
bicarbonate concentrations were smallest at those sites associated with the Elvins tailings pile (sites
8 and 9).

Trace Elements

The Missouri Department of Natural Resources (1987) has established criteria for the
protection of water quality in the Big River and the Flat River for designated uses. The designated
uses of the Big River include protection of aquatic life (general warm-water fishery); livestock and
wildlife watering; whole-body-contact recreation; boating and canoeing; and industrial use.
Designated uses of the Flat River include protection of aquatic life (limited warm-water fishery) and
livestock and wildlife watering. Water-quality criteria for trace elements for these designated uses are
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listed in table 3. Water-quality criteria were exceeded in the Big River and the Flat River during the
study period in only one sample from site 11 on the Flat River. In this sample, the lead concentration
of 50 ng/L exceeded the water-quality criteria.

Trace elements considered in this study were aluminum, barium, beryllium, cadmium,
chromium, cobalt, copper, iron, lead, lithium, manganese, molybdenum, nickel, silver, strontium,
vanadium, and zinc. Only dissolved concentrations were determined. Results of all analyses have
been reported by Smith and Schumacher (1991).

Several trace elements were not detected in any samples and others were detected in
concentrations near the detection limits. The elements not detected and their detection limits are
beryllium (0.5 pg/L), chromium (5 pg/L), and vanadium (6 pug/L). Aluminum was detected in one
sample (20 pug/L, detection limit of 10 ug/L), and copper was detected in one sample (10 ug/L, detection
limit of 10 pug/L). Silver was detected in several samples at concentrations of 2.0 ug/L or less (detection
limit of 1.0 pg/L). Silver is contained in the galena and sphalerite minerals mined in the area, but is
more abundant in the sphalerite (Snyder and Gerdemann, 1968).

The largest barium concentrations (180 to 380 ug/L) were detected at site 12 (fig. 9), which is
less than 10 river mi downstream from the mouth of Mineral Fork (fig. 5). Barium concentrations were
less than 125 pg/L at the remainder of the river sites and generally were larger at the river sites than
at the seepage sites. Similar barium concentrations were detected in the Big River upstream from
Mineral Fork (sites 1, 3, and 6) and in the Flat River (sites 7 and 11), which indicates no detectable
effect on barium concentration in these streams from the lead-zinc tailings of the Old Lead Belt.

Cadmium, a common constituent of sphalerite, was detected (detection limit of 1 ug/L) only at
seepage sites 2, 8, and 9, but most notably at sites 8 and 9 (fig. 9). At those two sites, cadmium
concentrations ranged from 14 to 28 ug/L.

The distribution of cobalt was similar to that of cadmium (fig. 9). Cobalt was detected only at
one river site (site 11), and the concentrations were 10 pug/L or less. Large cobalt concentrations were
detected, however, at seepage sites 8 and 9 where concentrations ranged from 310 to 610 ug/L. Cobalt
concentrations at the other seepage sites were less than 100 ug/L.

Iron concentrations at all sites were less than 15 pug/L. Concentrations of iron in water from
river and seepage sites were similar.

Lead concentrations at all sites, except 8, 9, and 11, were 30 ug/L or less (fig. 9). At sites 8 and
9, lead concentrations ranged from 10 to 80 ug/L. At site 11, a lead concentration of 50 pug/L was
detected 7 days after intense rainfall. This concentration exceeded the Missouri water-quality criteria
for lead for the protection of aquatic life.

Lithium concentrations at all sites were less than 25 pg/L. Concentrations of lithium larger
than 10 ug/L were detected only at seepage sites.

The largest manganese concentrations were detected at sites 2 and 5. Concentrations at these
sites had a considerable range--from less than 50 ug/L to greater than 500 pg/L. Manganese
concentrations at the rest of the seepage sites were similar (less than 75 pg/L).

Molybdenum concentrations were 20 ug/L or less at sites 6 and 11 and 10 ug/L or less at all
other sites. Molybdenum was detected at six sites.
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Table 3.--Missouri water-quality criteria for the protection of aquatic life and livestock
and wildlife watering for the Big River and the Flat River

[Data from the Missouri Department of Natural Resources (1987) and Missouri Department of Natural Resources
(written commun., 1989); mg/L, milligrams per liter; <, less than; >, greater than; concentrations of trace elements
are in micrograms per liter; chronic toxicity, conditions producing adverse effects over a long period,
but having no effect over a short period; acute toxicity, conditions producing adverse effects
or lethality in a short period; --, not applicable]

Criteria for protection of aquatic life (ug/L)? Criteria for
In water with indicated hardness (m& livestock and
Trace element <125 125-200 >200 wildlife watering (ng/L)P
ig Riv neral warm-w. e

Beryllium 5 - - -- -
Cadmium

Chronic toxicity maximum -- 10 13 17 -

Acute toxicity maximum - 33 52 72 -
Chromium

Chronic toxicity maximum - 42 - - -

Acute toxicity maximum -- 62 - - =
Cobalt -- -- - -- 1,000
Copper - - - - 500

Chronic toxicity maximum 20 29 37 -

Acute toxicity maximum -- 30 45 58 -
Iron 1,000 - -- - -
Lead

Chronic toxicity maximum -- 12 20 29 -

Acute toxicity maximum -- 50 130 190 -
Nickel - - - - 200

Chronic toxicity maximum - 360 500 650 -

Acute toxicity maximum -- 3,200 4,600 5,800 -
Silver

Chronic toxicity maximum - A2 - - -

Acute toxicity maximum -- 4.1 8.2 13 -
Zinc

Chronic toxicity maximum - 245 345 440 -

Acute toxicity maximum -- 270 380 490 -
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Table 3.--Missouri water-quality criteria for the protection of aquatic life and livestock
and wildlife watering for the Big River and the Flat River--Continued

Criteria for protection of aquatic life (ug/L)? Criteria for
In water with indicated hardness (mg/L) livestock and
Trace element <125 125-200 >200 wildlife watering (ug/L)P
lat River (limited warm-w: fishe

Beryllium 5 - -- - -
Cadmium

Chronic toxicity maximum -- 13 18 22 --

Acute toxicity maximum -- 46 72 100 -
Chromium

Chronic toxicity maximum -- 190 - - -

Acute toxicity maximum - 280 - -- -
Cobalt -- - - - 1,000
Copper -- - - - 500

Chronic toxicity maximum -- 30 43 55 --

Acute toxicity maximum -- 46 67 88 --
Iron 1,000 - - - -
Lead

Chronic toxicity maximum -- 12 20 29 -

Acute toxicity maximum - 50 130 190 -
Nickel - -- - - 200

Chronic toxicity maximum -- 425 600 770 -

Acute toxicity maximum -- 3,800 5,400 6,900 -
Silver

Chronic toxicity maximum - 12 - - -

Acute toxicity maximum -- 4.1 8.2 13 -
Zinc

Chronic toxicity maximum -- 1,065 1,505 1,920 --

Acute toxicity maximum -- 1,180 1,660 2,120 --

Approved analytical methods are either dissolved or total recoverable, except the method for iron and copper,
which is dissolved.

b Approved analytical method is total.
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Nickel concentrations ranged from 10 to 50 ug/L at site 11 and were 10 ug/L or less for all other
river sites (fig. 9). Nickel concentrations generally were largest at seepage sites; the largest
concentrations were at sites 8 and 9. Nickel concentrations at these two sites ranged from 270 to
640 pg/L. Site 4 (70 to 80 ug/L) and site 10 (60 to 80 pug/L) had similar nickel concentrations.

Strontium concentrations were similar to calcium concentrations at all sites except sites 4, 8,
and 9. At these sites, strontium concentrations were significantly less than the calcium
concentrations. Strontium concentrations equal to or larger than 100 pg/L were detected at all seepage
sites and exceeded 200 pg/L at site 2 (fig. 9).

Zinc concentrations for all river sites, except site 11, were less than or equal to 160 pg/L. Zinc
concentrations at site 11 ranged from 110 to 400 ug/L. The larger zinc concentrations at site 11 can be
attributed primarily to inflow from the Elvins tailings pile. Seepage sites at the Elvins pile (sites 8 and
9) had the largest zinc concentrations of all sites. Zinc concentrations ranged from 11,000 to 18,000
ug/L at site 8 and ranged from 3,500 to 14,000 ug/L at site 9. Zinc concentrations at site 10 were less
than 165 pg/L. Zinc concentrations ranged from 550 to 3,100 ug/L at site 2 and from 120 to 740 pg/L
at site 5.

lati n nsti

Regression analysis indicated a positive correlation between zinc and cadmium concentrations
(r? = 0.92) in water samples collected at seepage sites (fig. 10). No cadmium minerals have been
detected in the Old Lead Belt, but this relation is to be expected because sphalerite commonly contains
about 1 percent cadmium in solid solution (Snyder and Gerdemann, 1968). The six points that are
below the trend of the regression in figure 10 are for samples from sites 2 and 9. According to Davis
(1960), the largest cadmium values occur near the main central fault system of the Federal fault (fig.
3) and decrease gradually outward from the fault. This could explain in part the increased cadmium
values in relation to zinc at site 9.

A positive correlation was detected between zinc and sulfate (12 = 0.74; fig. 11). Zinc and sulfate
were not normally distributed and, therefore, logarithms of constituent concentration were used in the
regression analysis. The points in the shaded area of figure 11 represent sites 4, 5, and 10. These sites
contained larger than expected concentrations of sulfate in relation to zinc. This could be related to
oxidation of sulfide minerals other than sphalerite, such as pyrite, marcasite, and galena, or
preferential removal of zinc by precipitation or sorption reactions.

Two relations were noted using data collected at sites 1 and 12 on the Big River (fig. 12). The
first relation is the tendency of zinc to increase with increasing discharge. Increases in constituent
concentration with discharge are unusual because concentrations generally decrease from the effects
of dilution. Zinc concentrations were largest at site 6 downstream from much of the mined area and
decreased downstream in the Big River at site 12. The second relation is between zinc and sulfate, two
of the more soluble mining-related constituents (fig. 12). The plot of these constituents at sites 1 and
12 reflect the similar source of both constituents because they are related to oxidation of sulfide
minerals, such as sphalerite, in the mining area.

li i ri fHigh F

Water samples were collected at gaging stations on the Big River and the Flat River (sites 6
and 11) within the mined area during several high-flow events. Only during one event (September
1988) were samples collected at both sites. Analytical results of these samples have been documented
by Smith and Schumacher (1991). Physical properties and selected constituent concentrations for
quarterly and high-flow samples are listed in table 4.
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Table 4.--Physical properties and selected constituent concentrations for quarterly and high-flow samples

[ft3/s, cubic feet per second; pS/em, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per
liter; °C, degrees Celsius; pg/L, micrograms per liter; <, less than; trace-element concentrations are dissolved]

Median of High-flow samples
Property or constituent quarterly samples 9-18-88 9-19-88 2-14-89 2-14-89 6-19-89
and unit of measurement (Feb. 1988-Sept. 1989) at 1945 at 0830 at 1230 at 1430 at 1145
Site 6
Discharge, ft%s 131 540 720 3,190 2,670 944
Specific conductance, uS/cm 504 390 185 142 152 261
pH, standard units 7.9 7.8 7.6 8.2 8.0 7.7
Hardness as CaCOg, mg/L 230 170 88 72 63 130
Hardness, noncarbonate, mg/L 51 52 18 4 0 25
Calcium, mg/L 48 35 19 15 13 28
Magnesium, mg/L 27 21 9.8 8.3 7.3 15
Sodium, mg/L 3.9 3.4 19 1.7 1.5 2.3
Potassium, mg/L 1.9 2.6 3.9 1.7 1.2 1.9
Bicarbonate, mg/L 235 150 85 83 87 130
Alkalinity, mg/L as CaCO4 197 122 70 68 72 107
Sulfate, mg/L 57 65 17 16 17 15
Chloride, mg/L 5.6 49 3.6 2.3 2.4 2.9
Silica, mg/L 5.7 5.2 5.7 6.6 7.3 7.8
Dissolved solids, 254 209 109 98 95 153
residue at 180 °C, mg/L

Dissolved solids, calculated 259 211 103 93 93 138
Aluminum, pg/L <10 <10 <10 110 40 20
Barium, pg/L 81 56 59 31 31 83
Iron, pg/L <10 18 27 120 67 40
Lead, pg/L <10 <10 <10 <10 <10 <10
Manganese, pg/L 33 15 3 38 16 12
Strontium, pg/L 47 36 21 22 19 33
Zinc, pg/L 140 29 26 74 56 26
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Table 4.--Physical properties and constituent concentrations for quarterly and high-flow samples--Continued

Median of High-flow samples
Property or constituent quarterly samples 9-18-88 3-20-89 3-20-89
and unit of measurement  (Feb. 1988-Sept. 1989) at 1715 at 1230 at 1445
Site 11
Discharge, ft%/s 74 420 159 276
Specific conductance, uS/cm 732 140 350 275
pH, standard units 7.6 7.8 7.9 7.6
Hardness as CaCO,, mg/L 380 60 170 130
Hardness, noncarbonate, mg/L 170 22 33 22
Calcium, mg/L 80 13 35 26
Magnesium, mg/L 44 6.6 19 15
Sodium, mg/L 9.4 3.0 6.0 4.0
Potassium, mg/L 2.6 4.3 1.8 1.6
Bicarbonate, mg/L 280 46 160 130
Alkalinity, mg/L as CaCOj4 229 38 133 105
Sulfate, mg/L 170 20 59 39
Chloride, mg/L 9.1 4.2 7.3 5.5
Silica, mg/L 6.4 4.9 4.8 5.9
Dissolved solids, 488 86 200 161
residue at 180 °C, mg/L

Dissolved solids, calculated 447 79 213 160
Aluminum, pg/L <10 10 <10 20
Barium, pg/L 47 36 38 32
Iron, ug/L <10 65 17 36
Lead, pg/L <10 10 20 30
Manganese, pug/L 26 12 37 28
Strontium, pg/L 75 16 38 30
Zinc, ug/L 330 20 91 63
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At site 6, values of pH and specific conductance and concentrations of most constituents in
high-flow samples generally were less than median values for samples collected quarterly (table 4).
However, the pH values for the two largest discharges (February 14, 1989, at 1230 and 1430 hours)
were larger than the median values for the quarterly samples. Major constituent concentrations in
most high-flow samples were less than the median concentrations for the quarterly samples, except for
potassium concentrations. Also, the sulfate concentration was larger in the high-flow sample of
September 18, 1988, the smallest of the sampled high-flow events, than the median concentration of
the quarterly samples. Sulfate concentrations in the rest of the high-flow samples collected at site 6
were less than (only about one-fourth) the median value of the quarterly samples. Trace-element
concentrations in the high-flow samples were less than the median concentrations for the quarterly
samples, except for aluminum, iron, barium, and manganese. The barium concentration in the
high-flow sample of June 19, 1989, and the manganese concentration in the high-flow sample of
February 14, 1989, at 1230 hours (the largest measured discharge), were larger than the median
concentrations for quarterly samples. Aluminum and iron concentrations in all high-flow samples
were larger than the median concentrations in quarterly samples. Lead concentrations were less than
10 ug/L, and zinc concentrations were less than 75 ug/L in the high-flow samples at site 6.

At site 11 on the Flat River, specific conductance values and major constituent concentrations
in high-flow samples (except one potassium concentration in the high-flow sample of September 18,
1988, at 1715 hours) were less than the median for the quarterly samples. Trace-element
concentrations in the high-flow samples were less than the median for the quarterly samples, except
for concentrations of aluminum, iron, and manganese. Concentrations of these three elements
generally were larger in the high-flow samples than in the quarterly samples.

Comparison of Instantaneous Constituent Loads

The effects of seepage from tailings piles on the quality of water in the Big River or the Flat
River is largely a function of the loads of constituents contributed to the river by seepage. To assess
the effects of seepage from tailings piles, the instantaneous loads of sulfate, dissolved solids, and zine
at each sampling site were compared. The following equations were used to compute instantaneous
loads in grams per second for selected constituents: the first equation was used for sulfate and dissolved-
solids concentrations in milligrams per liter; the second was used for zinc concentrations in micrograms
per liter.

LDC; = CymgLx —8  x(Q ft¥s x 28.317 liter/ft?) )
1, 000mg
1g .
LDC; = s L — B . 13 . 3
i = Ciuglx oo x (@ % x 28317 liter/f), )

where LDC; is the instantaneous constituent load in grams per second, C; is the reported constituent
concentration, and Q; is the instantaneous discharge in cubic feet per second.

The instantaneous sulfate load increased significantly downstream in the Big River. Sulfate
loads increased from site 1 to site 3, remained unchanged from site 3 to site 6, and increased from site
6 to site 12 (fig. 13). At site 12, the load was about twice as large as the load at site 6. The larger loads
at site 12 indicated additional sources of sulfate, probably from the Flat River and Mineral Fork.

The instantaneous load for dissolved solids also increased downstream, as did sulfate (fig. 13);
however, increases in dissolved-solids loads between sites 1 and 3 were not significant. The loads at
sites 3 and 6 were approximately equal, but a significant increase in the dissolved-solids load occurred
between site 6 and site 12. The large outlier at site 12 (fig. 13) for both sulfate and dissolved solids
reflects the unusually large discharge for this sample (948 ft%/s) as compared with discharge from other
samples (less than 510 ft%/s).
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Instantaneous loads for zinc significantly increased downstream within and just downstream
from the mining area. In the Big River, zinc loads significantly increased from site 1 to sites 3 and 6.
The apparent slight decrease at site 12 may be related to removal of zinc from solution by geochemical
reactions, such as precipitation or sorption.

Instantaneous loads of sulfate, dissolved solids, and zinc significantly increased between site 7
and site 11 on the Flat River (fig. 13). The increase in sulfate and dissolved-solids loads was relatively
small, but the increase in the zinc load was larger and similar to loads at sites 8 and 9, indicating that
the zinc load at site 11 largely reflects the load contributed by seepage inflow from the Elvins tailings
pile. The zinc loads at seepage sites 2, 5, and 10 were small when compared with the other sites in the
study area.

SURFACE- AND GROUND-WATER RELATIONS

About 100,000 drill holes were drilled in the area of the Old Lead Belt (Snyder and Gerdemann,
1968), and, at the time of this study, many of these holes remained unplugged, which enabled ground
water to reach land surface where the land surface is lower than the regional potentiometric surface.
Most of the drill holes at an altitude of less than about 730 ft are flowing at land surface. This indicates
a regional potentiometric surface in the area of about 730 ft or greater. This is supported by a
predevelopment potentiometric-surface map prepared by Imes (1990), which shows the potentiometric
surface ranges from 700 to 800 ft in the mined area. During the study, water was observed flowing
from some of the drill holes in the area. To understand the effects of these mining related discharges
on the surface-water regime, seepage runs were conducted in the study area. In this section, results
of the seepage runs are discussed in relation to the sources and quality of inflow into the Big River and
the Flat River.

he Big River he Flat Ri

Seepage runs, which consisted of numerous discharge measurements in a stream reach to
monitor seepage into or out of the reach, were conducted in segments on the Big River and the Flat
River in September and November 1989. Seepage runs on the Big River from about 1 river mi
upstream from Highway 8 (site A; fig. 14) to the Leadwood Public Access (site H) and on the Flat River
from Derby (site 7; fig. 15) to the gaging station downstream from the National tailings pile (site 11)
were made September 13-14, 1989 (fig. 15). The seepage run on the Big River from the Leadwood
Public Access (site H) to the gaging station downstream from the Desloge tailings pile (site 6) was
completed November 6-8, 1989 (fig. 16). Sites identified with letters in figures 14 through 16 are sites
for which water-quality data were collected only during the seepage runs (Smith and Schumacher,
1991); sites identified with numbers are quarterly sampling sites, and sites with no letter or number
are sites for which discharge and specific conductance measurements were made only during the
seepage runs. Seepage runs were made during high base-flow conditions, about one and one-half to
three times greater than the 7-day 2-year low flow (Skelton, 1976). No rain had fallen during the 2 to
3 weeks before each seepage run. The results of the seepage runs have been reported by Smith and
Schumacher (1991). Most discharge measurements made during the seepage runs were rated as good
and were considered accurate to within 5 percent. Estimated discharge values for some sites probably
are accurate to within 15 percent.

The Big River throughout its entire length is classified as a gaining stream (Missouri
Department of Natural Resources, 1986). During the first part of the seepage run on the Big River,
discharge from site A to site E (fig. 14), which is upstream from the mouth of Eaton Creek, remained
relatively constant, ranging from 21 to 22 ft%/s. Several intermittent tributaries are located in this
reach of the Big River, but most had no flow. Discharge from those tributaries with flow was generally
less than 0.05 ft3/s. Specific conductance values throughout this reach of the Big River increased only
slightly from 400 to 460 pS/cm.
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Figure 14.--Results of seepage run on the Big River, September 13, 1989.
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Figure 15.--Results of seepage run on the Flat River, September 13, 1989.
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Figure 16.--Results of seepage run on the Big River, November 6-8, 1989.
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From site E to the Leadwood Public Access (site H), flow and specific conductance increased.
Flow increased about 20 percent from 22 to 26 ft%/s. The inflow from ground-water sources, mostly
abandoned drill holes, and tributaries measured less than 0.5 ft*/s, indicating a net gain of 3.5 ft¥s in
the Big River from ground-water infiltration through the streambed. Specific conductance values
increased from 460 uS/cm at site E to 535 uS/cm at site H. Specific conductance values of measured
ground-water sources, such as water flowing from abandoned drill holes, were about two and one-half
times the specific conductances of water in the Big River. Eaton Creek (site G), which contributes flow
to the Big River, contained seepage from the Leadwood tailings pile and had a specific conductance
value of 1,140 uS/cm.

The Flat River is considered to be a gaining stream in some reaches (Missouri Department of
Natural Resources, 1986) and an intermittent stream in other reaches (Kramer, 1976). Discharge in
the river remained fairly constant from site 7 to the site at Highway 32, which is about 1 river mi
downstream from the Elvins tailings pile. Discharge downstream from the Highway 32 site to site 11
increased about 2.3 ft¥/s--from 0.67 to 3.0 ft%/s. Discharge from the seep from the National tailings pile
(which was not measured during the seepage run) ranged from about 0.5 to 1.5 ft¥/s during the study
period and cannot account for all of the additional 2.3 ft¥/s of discharge. No other tributaries were
measured during the seepage run. However, discharge from the Flat River sewage treatment facility
upstream from the National tailings pile could be entering the Flat River.

Specific conductance in the Flat River increased from 500 uS/cm at site 7 to 925 pS/cm at the
site at Highway 32. Much of this increase can be attributed to inflow from the Elvins tailings pile,
which had a specific conductance of 1,440 uS/cm. The specific conductance increased only slightly from
925 uS/cm at the site at Highway 32 to 950 uS/em at site 11. Seepage from the National tailings pile,
which had a specific conductance of 900 to 962 uS/cm throughout the study period, flowed into this
reach of the river.

The seepage run on the Big River downstream from the Leadwood Public Access (site H) to site
6 was completed November 6-8, 1989 (fig. 16). To maintain consistency with the previous seepage run,
the discharge was remeasured at site A and site H. Base flow was larger at site A (31 ft3/s) as compared
with the previous value (22 ft/s), probably because of rainfall in October and decreased
evapotranspiration caused by frost in October and November. Specific conductance values in the Big
River increased from 499 uS/cm at site H to 642 uS/cm at site 6, an increase of almost 30 percent.
Specific conductance values from seeps and tributaries along this reach of the river were larger than
values measured in the river and ranged from 879 to 2,440 uS/cm. The specific conductance from a
tributary just downstream from site H was 1,350 uS/cm. Flow in the tributary mainly consisted of
effluent from the Leadwood Sewage Treatment Plant. Discharge in the Big River increased about 10
percent from 36 ft%/s at site H to 39 ft%/s at site 3. Nearly all of the increase in discharge (2.5 ft%/s) was
contributed by tributaries and seeps measured along this reach of the river. Discharge at site 4 had a
specific conductance value of 929 uS/cm. Owl Creek, which drains the area south and southwest of the
Desloge tailings pile, had a specific conductance of 1,150 uS/cm. In the bend of the Big River just
downstream from site 3 that encompasses the Desloge tailings pile, discharge increased about 10
percent from 39 to 44 ft%/s. No flow was detected in any tributaries along this reach of the river.
However, several flowing drill holes were observed within the stream channel 0.25 river mi
downstream from site 3. Specific conductance values increased slightly near the Desloge tailings pile
from 622 uS/ecm at site 3 to 640 LS/em at site J. No substantial differences in flow were detected from
the east side of the Desloge tailings pile (site J) to site 6. A seep at a quarry upstream from site 6 had
the largest specific conductance (2,440 uS/cm) measured during the seepage run on the Big River.

Mass Balance of Selected Constituents
To verify that the source for additional flow not accounted for by the measured inflows and the

quality of this inflow into the Big River is from mine water, a mass balance of selected constituents was
performed using data collected during the seepage runs on the Big River. By using two known
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discharges from an upstream and a downstream site and the known constituent concentrations from
the upstream site, constituent concentrations can be estimated for the downstream site based on the
increases in discharge and average constituent concentrations in inflow from abandoned mines. The
constituent concentrations at the downstream site can be estimated using the equation below. The
estimated concentrations can then be compared with the measured concentrations detected at the
downstream site to determine if the assumption was correct.

| Q;(Cp +(Q,-Qy) (Cm)

C : (3)
2 Q2
where C, is the estimated constituent value or concentration, in microsiemens per
centimeter, milligrams per liter, or micrograms per liter, at the downstream
site;

Q; is the discharge at the upstream site, in cubic feet per second;

C; is the constituent value or concentration, in microsiemens per centimeter,
milligrams per liter, or micrograms per liter, at the upstream site;

Qg is the discharge at the downstream site, in cubic feet per second; and

Cm is the assumed constituent concentration of mine water, in milligrams per liter
or micrograms per liter, using median concentrations from quarterly
samples from site 4.

The results of mass-balance calculations at selected sites on the Big River are given in table 5.
Data from the September 1989 seepage run were used for calculations from site E to site H, and data
from the November 1989 seepage run were used for all other calculations. All available specific
conductance data from the seepage runs were used for conductance calculations for site E to site H, for
site H to site 3, and for site J to site 6 (figs. 14 and 16). Water-quality data were available for
calculations involving constituent concentrations only at sites E, H, 3, J, and 6. As previously stated,
discharge measurements were considered to be accurate within plus or minus 5 percent. When these
discharges are used in computations with analytical results, which also have associated measurement
errors, the computed values probably are accurate within no more than plus or minus 10 percent.

Estimated specific conductance values were within 5 percent of the measured values for all
stream reaches. Specific conductance values of additional inflow from seeps and tributaries into the
Big River account for the increase in specific conductance values detected throughout the measured
reach of the Big River.

The concentrations of major constituents estimated using equation 3 generally were in good
agreement with measured concentrations. The estimated calcium and magnesium concentrations
were within 10 percent of the measured concentrations for all stream reaches except for the reach from
site H to site 3. Estimated sodium concentrations were within 15 percent and estimated sulfate
concentrations were within 20 percent of the measured concentrations for all stream reaches except for
the reach from site H to site 3. Other sources of inflow to the Big River may exist that were not detected
or measured, such as effluent from a sewage treatment plant. Differences in calcium, magnesium,
sodium, and sulfate concentrations also may exist between the mine sources. Estimated values for
calcium, magnesium, and sulfate for the reach from site H to site 3 had the largest variation from the
measured values for all the reaches and were always less than the measured values.
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Table 5.--Mass-balance analysis of selected properties and constituents in the Big River

[uS/em, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; pg/L, micrograms
per liter; first number is property or constituent value or concentration measured during seepage
run (September 13, 1989, or November 6-8, 1989); second number is value or concentration of
property or constituent estimated using a mass-balance equation; number in parentheses is
percentage difference between the estimated and the measured value or concentration]

Site letter Specific
or number conductance Calcium Magnesium Sodium Sulfate Zinc
(figs. 14 and 16) (uS/em) (mg/L) (mg/L) (mg/L) (mg/L) (ug/L)
EtoH 535, 558 (4) 58, 57 (-2) 36, 36 (0) 5.0,5.1(2) 71,83 (17) 31, 77 (148)
Hto3 622, 594 (-5) 64,54 (-16) 40,34 (-15) 5.9,4.7(-20) 93,67(-27) 100,103(3)
3tod 640, 656 (2) 65, 69 (6) 40,36 (-10)  5.5,6.3(15) 100,110(10) 150,111 (-26)
Jto6 642, 652 (0.02) 170, 66 (-6) 40, 40 (0) 6.2,5.6 (-10) 100,103 (3) 91, 151 (66)

The only zinc concentration that was estimated within 10 percent was in the reach from site H
to site 3. For this reach, there was a 3 percent difference between the estimated and the measured
concentrations. In the rest of the stream reaches, the estimated concentrations of zinc were
substantially different from the measured concentrations. From site E to site H, the estimated
concentration was 148 percent larger than the measured concentration. Similarly, the zinc
concentration for the reach from site J to site 6 was estimated 66 percent larger than the measured
concentration. The estimated zinc concentration from site 3 to site J was about 25 percent less than
the measured concentration.

SEDIMENT QUALITY

Suspended-sediment and bed-sediment samples were collected at sampling sites throughout
the Old Lead Belt (fig. 5). Results of analyses of these sediment samples are given in a report by Smith
and Schumacher (1991).

Suspended Sediment
Suspended-sediment concentrations were determined at sites 1, 2, 3, 6, 7, 9, 10, 11, and 12.
Concentrations at all sites, excluding site 10, were less than 35 mg/L (fig. 17). Site 10 has a large
variation in suspended-sediment concentration because of difficulty in collecting a representative
sample due to the small size and steep gradient of the channel and turbulent flow. The largest
suspended-sediment concentration of 95 mg/L at site 10 was in a sample collected shortly after 1.5 in.
of rainfall (Bryant Aubuchon, St. Francois County Landfill, written commun., 1990). Median

suspended-sediment concentrations during periods of base flow did not increase substantially within
the mining area in either the Big River or the Flat River.
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Particle-Size Distribution and Chemical Composition of
Suspended Sediment During Periods of High Flow

Suspended-sediment samples collected at sites 6 and 11 were analyzed for particle-size
distribution. Results of analyses of these samples indicated that silt-size particles accounted for about
50 to 75 percent of suspended sediment during high flow. Clay-size particles generally accounted for
about 25 to 33 percent of the suspended sediment, and sand-size particles generally accounted for less
than 20 percent.

Concentrations of selected constituents in suspended-sediment samples collected during
periods of high flow are given in table 6. At site 6, suspended sediment contained 2.7 to 8.7 percent
calcium and had concentrations of barium ranging from 390 to 630 ug/g (micrograms per gram), lead
ranging from 1,100 to 3,200 pg/g, and zinc ranging from 1,100 to 2,200 pug/g. Larger chromium and
nickel concentrations were detected in suspended-sediment samples collected at smaller discharges
than at larger discharges, whereas smaller lead concentrations were detected in samples from the
smaller discharges. At site 11, calcium constituted from 11 to 14 percent of the suspended sediment
and the sediment had concentrations of barium ranging from 190 to 330 ug/g, lead ranging from 2,800
to 5,200 pg/g, and zinc ranging from 410 to 680 ug/g. At site 11, two samples were collected a few hours
apart on March 20, 1989. Of these two sediment samples, the sample representing the greatest
discharge had the greatest concentrations of most constituents, except for copper, lead, nickel, and
zine.
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Loads of Selected Trace Elements

Schmitt and Finger (1982) used multiple regression analyses to investigate the relations
between cadmium, copper, iron, lead, manganese, and zinc concentrations and particle size in
suspended sediment in the Big River at Brown’s Ford, which is less than 10 river mi downstream from
site 12. Their models regressed total trace-element concentration in the suspended sediment with the
percentage of sand-, silt-, and clay-size materials. These relations yielded large values of r2 (between
0.97 and 0.99), indicating element concentrations were highly correlated with particle-size
distribution. However, a large degree of auto-correlation might exist between regression coefficients,
because one size class is a function of the remaining two classes. Data collected in this investigation
indicate that, with the exception of zinc, concentrations of most trace elements were largest in the silt
to clay size fraction.

The concentration of trace elements in the dissolved phase was much smaller than in the
suspended phase; however, at low to intermediate flows, the small concentrations in the dissolved
phase may be significant in a mass balance of dissolved and suspended phase transport because of the
small quantities of suspended matter transported. To examine the relative importance of the dissolved
and suspended phase transport in the Big River, estimates of the daily loads for barium, iron, lead, and
zinc¢ in both the dissolved and suspended phases were made at site 6. Instantaneous discharge
measurements made at this site, in conjunction with the collection of quarterly water-quality and
suspended-sediment samples, ranged from 36 to 257 ft¥/s. The instantaneous discharge measurements
closely approximate the daily mean discharge values for the date of sample collection. A plot of the
daily mean discharge (fig. 18) indicates that the instantaneous discharge measurements (and
associated water-quality and suspended-sediment measurements) made at the time of sample
collection represents a range of discharges that encompasses about 80 percent of the daily mean
discharges for the period of record. Regression analyses indicate that concentrations of several
constituents, such as sulfate and barium, were highly correlated with instantaneous discharge
(r? = 0.87 and r? = 0.94). Because the instantaneous discharge values closely approximate the daily
mean discharge for the date of sample collection, regression equations were used to estimate a daily
mean constituent concentration from the daily mean discharge. These values were then multiplied by
the daily mean discharge to estimate a daily mean constituent load, in tons per day. Estimates of daily
mean loads for constituents not having a significant correlation with discharge were made by
multiplying the median constituent concentration of the quarterly samples by the daily mean
discharge for each day.

Relations between suspended-sediment concentrations and daily mean discharge also were
examined by regression analyses. Instantaneous discharges at the time of collection of suspended-
sediment samples were compared to the daily mean discharge hydrograph. Except for the 3 days on
which high-flow samples were collected, the instantaneous discharge measured during sample
collection approximated the daily mean discharge. Assuming the shape of the sediment hydrograph
parallels the shape of the discharge hydrograph, although shifted slightly in time, daily mean
concentrations of suspended sediment can be estimated from the discharge. A linear fit through a
log-log plot of suspended-sediment concentration and daily mean discharge (fig. 19) was used to
estimate daily mean suspended-sediment concentrations for each day of the period of record (554 days).
The regression equation used was

log ss = 1.16 log Q - 1.403, 4)

where ss is the daily mean suspended-sediment concentration, in milligrams per liter, and Q is the
daily mean discharge, in cubic feet per second. This equation was used for values of discharge greater
than 65 ft%s. For discharges less than 65 ft¥s, instantaneous measurements indicated near uniform
concentrations of suspended sediment and a concentration of 2 mg/L was assumed. Concentrations of
suspended sediment were then used to calculate the load of suspended sediment, in tons per day.
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In addition to estimates of daily mean suspended-sediment loads, estimates of daily loads of
barium, iron, lead, and zinc were calculated. The median concentration of these constituents in the
four high-flow samples was used as an approximation for the concentration in the suspended sediment.
These values were multiplied by the estimated daily mean suspended-sediment concentration to
compute daily mean loads of each trace element.

Dissolved and suspended loads of barium, iron, lead, and zinc at low flows in the Big River are
listed in table 7. The data in this table indicate that, even though suspended-sediment concentrations
are small at low flows, more than 90 percent of the iron and lead probably is transported in the
suspended phase at discharges less than 258 ft%/s. Dissolved transport seems to be more important for
barium and zinc because 93 percent of the barium and 89 percent of the zinc are transported in the
dissolved phase in this range of discharge. Calculations of total sediment loads for the period of record
indicate individual high-flow events transport substantial quantities of sediment. Estimated total
loads of suspended barium, iron, lead, zinc¢, and suspended sediment transported by the Big River
during the period of record are listed in table 8. The estimate for total suspended sediment transported
during the 19 months of record (about 41,000 tons) is comparable to suspended sediment transported
(about 66,000 tons) at a station on the St. Francis River, about 40 river mi south of the Old Lead Belt,
operated by the U.S. Geological Survey during a 10-month period from December 1988 to September
1989 (Waite and others, 1990). The drainage area of the St. Francis River at Saco (664 mi?) is more
than twice as large as that of the Big River below Desloge (260 mi?). A single high-flow event at site 6
on the Big River (February 13-15, 1989) transported about 17,000 tons or about 40 percent of the total
suspended sediment for the period of record. This event also transported substantial quantities of
trace elements in the solid phase; about 20 tons of barium, 1,200 tons of iron, 90 tons of lead, and 50
tons of zinc.

Although these calculations are at best approximations and errors of as much as 50 percent are
not unlikely, the effects of lead mining activities in the Big River upstream from Desloge are most
readily observed in the quantities of dissolved barium and zinc and suspended lead and iron
transported by the river. These calculations also indicate that an individual high-flow event can
transport substantial quantities of sediment and associated trace elements. More accurate
determinations of dissolved and suspended transport of trace elements would require additional data
collection targeted specifically at high-flow events.

Table 7.--Dissolved and suspended loads for selected trace elements in the Big River at site 6 at low flow

[All values are in tons per day; flows are less than 258 cubic feet per second]

Load Percent Percent
Constituent Dissolved Suspended Total dissolved suspended
Barium 9.4 0.73 10.1 93 7
Iron .67 42 42.7 2 98
Lead 22 3.0 3.2 7 93
Zinc 13 1.6 14.6 89 11

45



Table 8.--Total loads of barium, iron, lead, zinc, and suspended sediment transported by the Big River
at site 6 for February 13-15, 1989, and for the period of record, March 1988 through September 1989

[All values are in tons; period of record is 554 days]

Total load
Constituent February 13-15, 1989 Period of record
Barium 9 22
Iron 500 1,200
Lead 40 90
Zinc 20 49
Suspended sediment 17,000 41,000

Bed Sediment
A discussion of bed-sediment data is presented in the following sections. This discussion

includes results of previous investigations, the particle-size distribution, mineralogy, and chemical
composition of samples collected during this investigation.

Previous Investigations

In the Big River upstream from the Old Lead Belt, Zachritz (1978) reported background lead
concentrations in bed sediment that ranged from 50 to 100 pug/g, zinc concentrations that ranged from
55 to 340 ng/g, cadmium concentrations that ranged from 1 to 5 ug/g, and copper concentrations that
ranged from 12 to 15 ug/g. Within the Old Lead Belt, lead concentrations in bed sediment ranged from
673 to 8,150 ng/g, zinc concentrations ranged from 1,025 to 8,558 ng/g, cadmium concentrations ranged
from 11 to 180 pg/g, and copper concentrations ranged from 35 to 360 ug/g. Increased trace-element
concentrations in bed sediment were detected for about 60 river mi downstream from the Old Lead Belt
(Zachritz, 1978).

Kramer (1976) reported that lead concentrations in bed sediment of the Flat River downstream
from the Elvins tailings pile and the Federal tailings pile ranged from 2,050 to 3,140 ug/g, zinc
concentrations ranged from 322 to 7,450 ng/g, cadmium concentrations ranged from 7 to 24 pg/g, and
copper concentrations ranged from 54 to 181 pg/g. Bed sediment from the seepage channel at the
Elvins tailings pile had a lead concentration of 3,900 pug/g, a zinc concentration of 36,200 pug/g, a
cadmium concentration of 35 pg/g, and a copper concentration of 96 ng/g. Bed sediment from two
seepage channels at the Federal tailings pile had lead concentrations of 3,360 and 3,420 pg/g, zinc
concentrations of 441 and 1,960 pg/g, cadmium concentrations of 10 and 13 pg/g, and copper
concentrations of 154 and 161 pg/g (Kramer, 1976).

Bed-sediment samples collected from the Flat River upstream from the National tailings pile
(Elliot, 1982) had a maximum lead concentration of 10,123 pg/g and a maximum zinc concentration of
3,146 ng/g. Runoff from the Elvins and the Federal tailings piles probably was the cause of the large
quantities of trace elements detected. Bed sediment in the Flat River and the Big River downstream
from the National tailings pile had lead concentrations that ranged from 1,013 to 7,221 pg/g. Zinc
concentrations ranged from 115 to 4,875 ng/g, cadmium concentrations ranged from 5 to 889 ug/g, and
copper concentrations ranged from 56 to 332 pg/g. As the quantity of tailings in the streambed
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decreased downstream from the tailings pile, the concentration of trace elements increased in the bed
sediment. The concentration of trace elements also increased with a decrease in particle size (Elliott,
1982).

The lead concentration in tailings from the Desloge tailings pile as reported by Novak and
Hasselwander (1980) ranged from 850 to 2,400 pug/g, the zinc concentration ranged from 680 to 1,000
ug/g, the cadmium concentration ranged from 14 to 25 pg/g, and the copper concentration ranged from
11 to 41 pg/g. The lead concentration in tailings from the Elvins tailings pile (Kramer, 1976) ranged
from 2,360 to 26,200 ng/g. The zinc concentration ranged from 288 to 20,900 pg/g, the cadmium
concentration ranged from 8 to 158 ug/g, and the copper concentration ranged from 12 to 610 pug/g. The
largest concentration of trace elements was detected in the smallest size fraction (Kramer, 1976). The
lead concentration in tailings from the National tailings pile (Elliot, 1982) ranged from 1,177 to
9,283 ng/g. The zinc concentration ranged from 34 to 5,055 pg/g with most concentrations less than
1,000 pug/g. The cadmium concentration ranged from 2 to 87 ug/g, and the copper concentration ranged
from 32 to 628 pg/g (Elliott, 1982). No data are available for the trace-element concentration of the
Bonne Terre, Leadwood, and Federal tailings piles.

Particle-Size Distribution

Many of the tailings piles in the study area contain two kinds of tailings material: coarser
tailings hauled to the site and finer tailings (slimes) pumped to the site as a slurry. Tailings samples
collected from the slimes area of the Desloge tailings pile have been shown to containl.2 percent clay-
size particles [less than 0.002 mm (millimeter)], 85.7 percent silt-size particles (less than 0.062 to 0.002
mm), and 13.1 percent sand-size particles (less than 2 to 0.062 mm). Samples of the coarser tailings
contained 2.2 percent clay-size particles, 15.9 percent silt-size particles, and 81.9 percent sand-size
particles (S.J. Sutley, U.S. Geological Survey, written commun., 1990).

Sand was the predominant size fraction in streambed sediment at most sites in the study area
(fig. 20). The percentage of sand-size particles varied from site to site, but generally was largest at
seepage sites that were closely associated with a tailings pile (sites 5, 8, 9, and 10). At these sites,
sand-size particles constituted from 60 to more than 90 percent of the bed material. Even though site
2 was near a tailings pile, the percentage of sand-size particles at this site was not as large as at the
other sites. At this site, the bottom of the seepage channel was not in tailings but in bedrock, where
samples were difficult to obtain and the size distribution probably was not representative of bed
sediment. Site 3 had the largest percentage of sand of the Big River sites.

Gravel-size particles (2 mm or larger) were predominant at site 1 (65 to 85 percent) and made
up almost 50 percent of the bed sediment at site 7 on the Flat River. At sites on the Big River within
the Old Lead Belt, gravel-size particles made up a much smaller percentage of the bed sediment. The
percentage of gravel-size particles was largest at sites either upstream or downstream from the mining
area in both the Big River and Flat River. At sites 1 and 12, the largest percentage of gravel-size
particles was detected in the samples collected in September 1989. Because these two sampling sites
were at bends in the river near riffle areas, this percentage could be a result of increased flow that had
removed the smaller particles.

Silt- and clay-size particles constituted less than 15 percent of bed sediment at all sites. Sites
5 and 10 had the largest percentage of silt-size particles (fig. 20). Runoff and flow at these sites were
through the slimes areas. Percentages of clay-size particles in bed sediment generally were less than
1 percent and were greatest at sites 2, 5, 6, and 10.
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Figure 20.--Particle-size distribution of bed sediment.

The particle-size distribution of the bed sediment for the four Big River sites is shown in figure
21. At site 1, the histogram is skewed to the left, indicating an abundance of larger particles,
characteristic of Ozark streams. At site 3, downstream from a low-water crossing, the particle-size
distribution reflects the effect of mine tailings that have a moderate to large abundance of sand-size
particles and a lack of particles less than 0.5 mm. The particle-size distribution at site 6 also reflects
the abundance of mine tailings. Visual inspection of the streambed at this site indicated the streambed
was completely composed of tailings, which would tend to make the distribution more uniform. The
particle-size distribution at site 12 was somewhat bi-modal, and it is probable that the large peak at
the 0.5-mm grain size represents silt-size particles from barite mining, in addition to those from lead
and zinc mining,

Mineralogy

Mineralogical analyses of bed-sediment samples collected during this investigation were made
on the bulk sample, which was less than 180 um (micrometers), using X-ray diffraction techniques. For
a detailed presentation of the analytical results, the reader is referred to Smith and Schumacher
(1991). Mineralogy of bed sediment at river sites 1 and 12 was predominately quartz (at least 85
percent; fig. 22) and potassium feldspar. The bed sediment of site 1 was composed of quartz (90 to 95
percent) and minor quantities of dolomite. At site 12, the distribution of quartz and dolomite was not
significantly different from that at site 1 because of the small effect of lead and zinc tailings or the large
influx of quartz-rich sediment from Mineral Fork. At the upstream site on the Flat River (site 7),
quartz constituted from 65 to 70 percent of the bed sediment, and potassium feldspar constituted a
larger percentage of the bed sediment than at sites 1 and 12. The large quantity of potassium feldspar
in bed sediment at this site probably is related to outcrops of Precambrian granite rocks of the St.
Francois Mountains and Cambrian Lamotte Sandstone, which has a basal arkosic conglomerate.

Mineralogy of the bed sediment at the remaining sites (river sites 3, 6, and 11, and seepage
sites 2, 5, 8, 9, and 10) was predominately carbonate, specifically dolomite and ankerite (iron-rich
dolomite; fig. 22). The tailings predominately are dolomite because lead was mined from the
Bonneterre Dolomite. At these sites where the mineralogy was predominately carbonate, dolomite and
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ankerite constituted at least 75 percent of the sample. At sites 3 and 6 on the Big River, the bed
sediment was more than 90 percent dolomite and less than 5 percent quartz. Sites 2 and 5 had smaller
ratios of quartz to dolomite, which is indicative of tailings, such as observed at seepage sites 8, 9, and
10. However, at site 2, quartz comprised from about 5 to 20 percent of the sample--a much larger
percentage of the sample than at the other sites. If calcite was present at any site, it was less than 5
percent of the sample. A regression of dolomite, ankerite, and calcite percentages with quartz
percentages was significant (r? = 0.97) at all sites. Within the mining area, several sites (2, 3, 6, 8, 9,
and 10) had small quantities (less than 3 percent) of sulfide minerals (galena and sphalerite). Gypsum
was detected only at site 10, where it was about 2 percent of the sample. Gypsum is not an ore mineral
but is a secondary product of the oxidation of minerals and the subsequent dissolution of calcite or
dolomite.

To further determine the effects of tailings in the Old Lead Belt and to characterize the
differences in the mineralogic composition of the bed sediment in the mined areas as compared with
bed sediment from areas unaffected by mining, sulfide and other ore minerals were examined in the
bulk sample. The bulk sample was floated through bromoform (specific gravity 2.85) where the light
minerals were removed and the heavy minerals were concentrated. The heavy minerals were
subsequently passed through an isodynamic magnetic separator to produce three heavy mineral
fractions: C-1, C-2, and C-3, based on their magnetic properties. Results of the analyses for each
fraction have been reported by Smith and Schumacher (1991) and are discussed only briefly in this
section. The C-1 fraction contains highly magnetic minerals. Magnetite was the only mineral detected
in this fraction. At all sites, the percentage by weight of the C-1 fraction was 6 percent or less, when
compared with the remaining two fractions.

The C-2 fraction contains the para-magnetic, mostly non-ore minerals, many of which occur in
non-mineralized areas. For all sites, the percentage by weight of this fraction ranged from 13 to 100
percent. The C-2 fraction was the largest fraction for all sites. Major constituents of the C-2 fraction
were mostly iron-rich carbonate and highly oxidized minerals. At all river sites, except site 11,
carbonate minerals and oxidized minerals were the major constituents of this fraction. At site 11,
carbonate minerals were the predominant constituent. Iron-rich carbonate minerals were the major
constituent (as much as 90 percent) of the C-2 fraction from the rest of the sites. Galena and pyrite
were the sulfides most often detected in the C-2 fraction samples from all sites. Galena is not normally
associated with the C-2 fraction, but, when concentrations of this mineral are large, it can be carried
over into the para-magnetic fraction. Pyrite was present in quantities of as much as 10 percent of the
C-2 fraction sample. Two samples contained hematite--one sample each from site 3 and site 7. The
sample from site 7 contained about 20 percent hematite in the C-2 fraction.

The C-3 fraction contains the non-magnetic ore and non-ore minerals. Only at site 3 did the
percentages by weight of the C-3 fraction exceed 50 percent (62 and 83 percent for two samples).
Carbonate and sulfide minerals were the major constituents of the C-3 fraction (table 9 and Smith and
Schumacher, 1991). Carbonate minerals ranged from 10 to 90 percent of the C-3 fraction in all
samples. Dolomite, ankerite, and calcite were the carbonate minerals detected. Dolomite and ankerite
were detected in one-half of the samples from all sites and calcite in one-third of the samples. Zinc
substitution in dolomite was detected in two-thirds of all samples and the presence of a zinc-rich
carbonate was detected in one-third of all samples.

Grain size and bulk mineralogic data for bed sediment indicated that sites 3, 6, and 11 were
strongly affected by tailings. However, the data for the upstream sites for both the Big River and the
Flat River (sites 1 and 7) indicated no mining-related effects, and the presence of lead-zinc
mining-related effects at site 12 tend to be overshadowed by the effects from barite mining. Sulfide
minerals in the C-3 fraction ranged from 10 to 30 percent at site 1 to 30 to 70 percent at site 3, 30 to
40 percent at site 6, and 10 percent at site 12 (table 9). At the river sites, as much as 40 percent of the
sulfide minerals in bed sediment was galena and as much as 50 percent was pyrite. In the Big River
at sites 3 and 6, from 40 to 60 percent of the sulfide minerals in bed sediment was sphalerite. The
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concentration of lead and zinc sulfides in non-magnetic minerals in the C-3 fraction increased from site
1 to sites 3 to 6, but the concentration at site 12 was similar to that at site 1. Effects of barite mining
within the Mineral Fork basin are indicated by the barite concentration of the C-3 fraction of bed
sediment increasing from about 20 percent at site 1 to about 50 to 70 percent at site 12 downstream
from Mineral Fork.

Galena and sphalerite concentrations in bed sediment at site 3 generally equaled or exceeded
that at site 6. The larger galena and sphalerite concentrations at site 3 could be caused by the
low-water crossing trapping the denser minerals, such as sulfide minerals, within the sediment.
Another less likely possibility is that the tailings derived from the Desloge pile have smaller quantities
of lead and zinc sulfides than those from the Leadwood tailings pile.

In addition to the detailed mineralogic analyses, solid-phase associations were determined in
the bed sediment using a scanning electron microscope equipped with energy dispersive and
wavelength dispersive x-rays. At the upstream river sites (sites 1 and 7) and downstream site (site 12),
most of the barium, iron, lead, manganese, titanium, and zinc were associated with the oxide phase.
More iron in the oxide and sulfide phases was detected in the coarse fraction than in the fine fraction.
At site 11, the quantity of iron in the sulfide phase decreased, but lead in the sulfide phase increased.
As a result of mining activities, secondary minerals, such as lead sulfate, have formed within the
tailings piles from the oxidation of tailings. At site 12, barium was detected in the phosphate and
sulfate phases. The quantity of titanium in the oxide phase at site 2 was twice that in bed sediment
from any other site. In bed-sediment samples collected at sites 8 and 9, zinc was detected in the
carbonate phase in large quantities as compared to samples from other sites. Most of this was zinc
carbonate coatings or rims around dolomite particles (fig. 23). Sorption and subsequent replacement
of magnesium by zinc on dolomite particles may be an important mechanism controlling aqueous
concentration of zinc. Some zinc also was present in the oxide phase. At site 10, relatively large
quantities of iron were present, mostly in the sulfide phase, but also in the sulfate phase. Lead
carbonate coatings were detected on calcite and dolomite particles (fig. 24) at this site.

Chemical Composition

Bed-sediment samples were analyzed for their chemical composition. Samples were divided
into the fine fraction, less than 63 um, and the coarse fraction, 63 to 180 um. Results of these chemical
analyses of these two size fractions are given in a report by Smith and Schumacher (1991) and are
discussed briefly in this section.

The calcium and magnesium concentrations in bed sediment were largest in bed sediment
collected within the mining area. The calcium concentrations in bed sediment in the Big River ranged
from 0.70 to 13 percent in the fine fraction and 0.36 to 15 percent in the coarse fraction. The
magnesium concentrations ranged from 0.42 to 6.6 percent in the fine fraction and 0.13 to 8.5 percent
in the coarse fraction. Generally, the calcium and magnesium concentrations in the bed sediment of
the Big River (fig. 25) increased from site 1 to site 3 and from site 3 to site 6 and decreased from site 6
to site 12. The calcium and magnesium concentrations in both size fractions of bed sediment from sites
on the Flat River were nearly equal, but the calcium and magnesium concentrations increased
substantially from site 7 to site 11. The increase in calcium and magnesium concentrations at site 11
probably was caused by mine tailings from the Elvins and National tailings piles.

Barium concentrations in bed sediment in the Big River and the Flat River decreased
downstream. Barium concentrations in bed sediment in the Big River at sites 3 and 6 were slightly
smaller than those at the upstream site (site 1) and barium concentrations in the Flat River at site 11
were substantially smaller than those at the upstream site (site 7), indicating the tailings in the Old
Lead Belt may actually contain smaller barium concentrations than the natural stream sediments.
Semi-quantitative emission spectrographic analyses of sediments from the Desloge tailings pile
indicated that barium concentrations were less than 300 pg/g (S.J. Sutley, written commun., 1990) as
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Figure 25.--Mean concentrations of calcium and magnesium in fine and coarse fractions of bed sediment.
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explained by contributions from the tailings seeps monitored upstream (sites 8, 9, and 10) in this study.
Consequently, other sources of copper, such as seepage from the Federal tailings pile (not sampled),
could be contributing substantial quantities of copper.

The distribution of nickel in bed sediment in the study area was similar to that of cobalt
because these elements were detected in large quantities only at sites 8 and 9. With the exception of
these two sites, nickel concentrations at all sites in both size fractions were less than 125 pg/g. The
nickel concentrations in both fractions of bed sediment ranged from 95 to 1,200 pg/g at site 8 and from
440 to 3,300 ng/g at site 9. The cobalt-nickel sulfide, siegenite, is present in minor quantities in the
0Old Lead Belt, and, in the eastern and southern parts of the Old Lead Belt, siegenite occurs in seams
as thick as 3 in. along bedding planes (Snyder and Gerdemann, 1968). The downstream site on the
Flat River (site 11) had bed sediment with the largest cobalt and nickel concentrations of the river
sites. The cobalt and nickel concentrations at that site likely were related to tailings from the Elvins
or Federal tailings piles.

The lead concentrations in bed sediment increased between the most upstream and most
downstream sites on the Big River and the Flat River. Lead concentrations in bed sediment increased
substantially from site 1 to site 3 (fig. 26) and decreased from site 3 to site 6 and from site 6 to site 12.
However, the concentration of lead at site 12 was substantially larger than at site 1. The large lead
concentration at site 3 (mean concentration of about 5,000 pug/g in the fine fraction and about 3,800 ng/g
in the coarse fraction) was considered anomalous because the concentration was significantly larger
than the concentrations in tailings at the Leadwood tailings pile upstream from this site (site 2; mean
concentration of about 1,800 pg/g in the fine fraction and about 1,700 ng/g in the coarse fraction). This
could be the result of trapping of denser material behind the low-water crossing at site 3. Lead
concentrations in bed sediment at site 6 ranged from 1,700 to 3,800 pug/g in the fine fraction and from
1,700 to 3,300 g/g in the coarse fraction. Similarly, the lead concentrations in the Flat River increased
substantially from site 7 (130 to 230 ng/g in the fine fraction and 88 to 180 ug/g in the coarse fraction)
to site 11 (3,100 to 5,500 pug/g in the fine fraction and 1,700 to 6,100 ug/g in the coarse fraction).

The mean lead concentration in the coarse fraction of bed material at the seepage sites was
relatively consistent, ranging from about 4,000 to about 5,000 pg/g (fig. 26). Furthermore, at site 8, the
lead concentrations in the fine fraction were almost three times the concentration in the coarse
fraction. The difference in lead concentration in the two size fractions of bed sediment can be related
to milling techniques used to remove lead (in galena) from the raw ore by density separation because
the techniques were not as efficient in concentrating lead from the extremely small particles. The
relatively uniform lead concentration in the coarse fraction at the seepage sites and the variation in
the fine fraction probably reflect the efficiency of the separation techniques.

Zinc concentrations in bed sediment in the Big River and the Flat River also increased between
the most upstream and most downstream sites. Zinc concentrations in bed sediment increased
substantially from site 1 to site 3 and decreased from site 3 to site 6 and from site 6 to site 12 (fig. 26).
Zinc concentrations in bed sediment at site 6 ranged from 1,800 to 8,100 pug/g. Zinc concentrations at
site 12 were substantially larger than at site 1. Similarly, the zinc concentrations in the Flat River
increased substantially from site 7 to site 11. Zinc concentrations in bed sediment at site 11 ranged
from 380 to 960 ng/g.

The zinc concentrations in the coarse fraction of bed material at the seepage sites varied
considerably. The zinc concentrations in the coarse fraction ranged from 1,600 to 6,900 ug/g at site 2;
from 620 to 1,900 pg/g at site 5; from 9,000 to 51,000 pg/g at site 8; from 26,000 to 63,000 ng/g at site
9; and from 280 to 470 pug/g at site 10. The zinc concentrations in the fine fraction of bed sediment at
the seepage sites generally were larger than the zinc concentrations in the coarse fraction. Both size
fractions of bed sediment at sites 8 and 9 contained zinc in concentrations 5 to 10 times those at the
other seepage sites.
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Cadmium, lead, and zinc concentrations in bed sediment in the Big River all increased from
site 1 to site 3 and decreased from site 3 to site 6. The large cadmium, lead, and zinc concentrations
at site 3 probably are because of the trapping of denser metal-rich particles behind the low-water
crossing. Positive correlations existed between cadmium and zinc concentrations in the fine fraction
(r? = 0.88) and coarse fraction (r2 = 0.93) of bed sediment in the Big River at sites 3, 6, and 12 (fig. 27).
This relation indicated similar phase associations for cadmium and zinc in both fractions. A positive
correlation of cobalt and nickel also was detected in the fine fraction (2 = 0.93) and the coarse fraction
(r? = 0.76; fig. 28) which indicates a similar source for cobalt and nickel, such as siegenite. A positive
correlation was noted between the logarithms of zinc and lead concentrations in both size fractions (r?
= 0.88 for the fine fraction and r? = 0.88 for the coarse fraction; fig. 29). For samples from site 12, the
lead to zinc ratio was larger than expected. This could be because of large concentrations of lead in
sediment from Mineral Fork or because of the relative insolubility of lead-bearing phases and
dissolution of zinc-bearing minerals in the bed sediment.

GEOCHEMICAL CONTROLS ON WATER QUALITY

To investigate thermodynamic controls on water quality, equilibrium-speciation calculations
were made using the geochemical program codes WATEQA4F (Ball and others, 1987) and PHREEQE
(Parkhurst and others, 1980) for the seepage sites. Only seepage sites were selected for these
calculations because of their relatively small variation in water quality and bed sediment, which
enabled verification of proposed solid-phase controls by analysis of associated bed sediment and
precipitates. These calculations provided the probable speciation of aqueous constituents based on
thermodynamic association constants and saturation indices (SI) of minerals phases that may be
reacting in the system (table 10). The SI of a given mineral is described by the equation

SI = log IAP/K,, (5)

where IAP is the ion activity product of the mineral-water reaction, and K, is the thermodynamic
equilibrium constant of the mineral at the temperature of the water. For example, to determine the
SI of calcite for the dissociation reaction

CaCOj = Ca?* + COg%, (6)

the mass-action equation can be written as

Kecalcite = ACa?* x ACO3%/ACaCOsg, )]

where A is the activity of a given species in solution. Activities of pure solids generally are considered
to be unity and the equation simplifies to

Kecalcite = ACa®* x ACO3% . )]

The SI is calculated by substituting the measured constituent activities into equation 5 and
dividing by the appropriate equilibrium constant. In natural systems, a steady-state equilibrium may
be achieved between the aqueous phase and solid phase, providing reaction kinetics are rapid
compared to residence times. If these conditions are disturbed, such as with the addition of a
calcium-rich waste water to a system in equilibrium with calcite, reactions will occur (in this case
precipitation of calcite) to re-establish equilibrium. An important limitation on the use of
thermodynamic equilibrium calculations is that reaction kinetics are not considered and generally are
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Figure 27 .--Relation between concentrations of zinc and cadmium in bed sediment in the Big River.
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poorly understood for many phases. A mineral with an SI greater than zero indicates a mineral phase
is thermodynamically supersaturated. This does not necessarily indicate that a given phase will
precipitate.

Equilibrium-speciation calculations using the geochemical program code WATEQ4F (Ball and
others, 1987) indicated that barite was at equilibrium at all seepage sites (table 9). These calculations
also indicated that calcite and dolomite generally were at or near equilibrium or slightly
supersaturated at the seepage sites and that gypsum generally was undersaturated at these sites.

Lead was slightly undersaturated with respect to cerussite (lead carbonate) at all seeps (a lead
concentration of 10 ng/L was assumed where the concentration was reported to be less than the
detection limit of 10 pg/L). The SI ranged from -0.6 to -1.47, but uncertainty in the thermodynamic
data for trace elements is large; therefore, cerussite could be at or near equilibrium. Plausible controls
on the aqueous concentration of lead could be the formation of lead carbonate (the scanning electron
microscope indicated the presence of lead carbonate and lead oxide in bed-sediment samples) and lead
oxides or the ability of lead to sorb readily to oxides and clay particles.

Although the concentrations of other trace elements were small, caused in part by the near
neutral pH values and their insolubility in an alkaline bicarbonate-rich environment, large
concentrations of zinc in solution did exist, especially at the Elvins tailings pile (sites 8 and 9). The SI
values from WATEQ4F indicated a hydrated zinc carbonate phase was at equilibrium at sites 2, 5, 8,
and 9 (SI values from -1.02 to 0.57). At site 8, a milky white precipitate cemented individual grains
together in the channel bottom (fig. 23). Analysis of this precipitate and associated grains by scanning
electron microscope and x-ray diffraction indicated this phase was a hydrated zinc carbonate, possibly
smithsonite (ZnCQOj3), confirming the equilibrium-speciation calculations. The fact that this phase was
only observed on dolomite grains, and not calcite grains, may indicate the dolomite surface serves as a
nucleation site for precipitation of zinc carbonate. Because this phase was detected in bed-sediment
samples from site 8, precipitation of this phase is a likely control on the aqueous concentrations of zinc.

Because cadmium usually is present in sphalerite, there were increased concentrations of
cadmium at sites 8 and 9 and most other seepage sites (a cadmium concentration of 1 ng/L was used
in the WATEQA4F calculations when the measured concentration was reported to be less than the
detection limit of 1 ng/L). The control on cadmium at the seepage sites may be the solubility of
cadmium carbonate (otavite) because the SI indicated saturation or supersaturation (table 10).

At seepage sites in the Old Lead Belt, pH values ranged from 6.2 to 8.6. Cadmium
concentrations ranged from less than 1 to 28 pug/L; cobalt concentrations ranged from less than 3 to
610 pg/L; copper concentrations were less than or equal to 10 ng/L; iron concentrations ranged from
less than 3 to 60 pug/L; lead concentrations ranged from less than 10 to 80 ug/L; nickel concentrations
ranged from 10 to 640 ug/L; and zinc concentrations ranged from 120 to 18,000 ng/L (all concentrations
were dissolved). Nearly all the flow from seepage sites was in equilibrium with respect to calcite and
dolomite. The presence of large quantities of carbonate minerals in tailings in the Old Lead Belt tends
to limit aqueous concentrations of many trace elements by the formation of less soluble carbonate and
oxide complexes. This situation is in contrast to that in the Tri-State District of southwestern
Missouri, southeastern Kansas, and northeastern Oklahoma. Mineralization in the Tri-State District
generally is within silicified breccia that lacks appreciable quantities of carbonate rocks, and,
therefore, acid-forming reactions are not buffered by the dissolution of carbonate minerals. For the
Tri-State District, pH values in mine water (Spruill, 1987) and seepage associated with tailings piles
(Barks, 1977) were as low as 3.5 and large concentrations of dissolved trace elements have been
detected in seepage from tailings piles. Aluminum concentrations ranged from 0 to 4,200 pg/L;
cadmium concentrations ranged from 1 to 74 pg/L; cobalt concentrations ranged from 0 to 10 pg/L;
copper concentrations ranged from 0 to 350 ug/L; iron concentrations ranged from 10 to 390 pug/L; lead
concentrations ranged from 0 to 1,300 pg/L; nickel concentrations ranged from 4 to 30 pg/L; and zinc
concentrations ranged from 540 to 35,000 pg/L (Barks, 1977).
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Some of the possible geochemical reactions within the mines and adjacent to the tailings piles
in the Old Lead Belt were investigated using the geochemical program code PHREEQE (Parkhurst and
others, 1980). In these simulations, water moving through the St. Francois aquifer with a chemical
composition as determined from analyses of water from a public-drinking water supply well was
assumed to come into contact with the minerals in abandoned, flooded mines. Three separate
hypotheses were simulated based on assumptions that the mine cavities were (1) closed to atmospheric
oxygen, (2) completely open to atmospheric oxygen, and (3) partially open to atmospheric oxygen.
Results of the simulation were compared to water-quality data for samples collected from a flowing
drill hole open to the mine cavity system (site 4). Because the mined cavities are between 200 and 300
ft below land surface, they were assumed to be closed to atmospheric oxygen in the first simulation. In
this simulation, oxidation of pyrite and other sulfide minerals would consume any available oxygen
producing iron oxides and dissolved sulfate, thereby lowering the pH value. In this simulation, the
system was buffered by the dissolution of carbonate minerals present. However, simulated calcium,
magnesium, and sulfate concentrations were 66, 42, and 54 mg/L, as compared to measured
concentrations of 110, 64, and 260 mg/L at site 4 (flowing borehole from the abandoned mines). At site
4, there was not a large quantity of iron present (less than 10 pg/L), but in an abandoned mine shaft 2
mi southeast of site 4 at River Mines (fig. 1), the dissolved iron concentration ranged from 1,000 to
2,000 ug/L. Results of this simulation indicated that oxidation of sulfide minerals in a closed system
does not generate the large concentrations of calcium, magnesium, and sulfate detected in water
flowing from the abandoned mines.

The second simulation was based on the assumption that the system was open to the
atmosphere and abundant quantities of oxygen were available. Simulated concentrations of calcium,
magnesium, and sulfate of 132, 83, and 268 mg/L were similar to concentrations from site 4. However,
the bicarbonate concentration estimated by this simulation was 572 mg/L, compared to the measured
concentration (median) of 350 mg/L.

The third simulation treated the system as one that was partially open with some continuous
influx of oxygen to the mines. In this simulation, sulfate could be produced from secondary minerals
that have formed on the walls of the mines during the more than 100 years that many of the mines
were open. These minerals, such as gypsum, would have formed from the oxidation of sulfide minerals
that were exposed to oxygen during mining. Estimated concentrations of calcium, magnesium, sulfate,
and bicarbonate of 110, 70, 283, and 360 mg/L in this simulation compare favorably to the measured
concentrations of 110, 64, 260, and 350 mg/L.

To understand more clearly the possible geochemical reactions at the tailings piles, reaction
path and mass-transfer calculations were made for site 8 at the Elvins tailings pile. This was the only
tailings pile in the study area where water samples were collected directly from seepage emerging at
the base of the pile. Based on the constituent concentrations at the other piles, in particular at site 2,
it is possible that similar reactions are occurring at other piles and that the constituent concentrations
detected during this study reflect dilution and precipitation effects downstream from these piles. At
site 8, the system is open to atmospheric oxygen. From WATEQ4F calculations, calcite and dolomite
were near saturation at pH values of about 6.5 to 7.3. In a simulation of the water chemistry at the
pile, pure water (with oxygen) was assumed to percolate through the pile. Reactive phases in this
simulation were calcite, dolomite, gypsum, pyrite, and iron hydroxides. At equilibrium, calcite and
iron hydroxides were precipitated; dolomite and gypsum were dissolved; and pyrite was oxidized. The
final solution had a pH of 6.6 and simulated constituent concentrations of 247 mg/L calcium; 69 mg/L
magnesium; 758 mg/L sulfate; and 203 mg/L bicarbonate, which compared favorably with measured
concentrations of 200, 66, 615, and 150 mg/L (Smith and Schumacher, 1991).
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SUMMARY AND CONCLUSIONS

The O1d Lead Belt, which was the Nation’s largest producer of lead for almost 50 years, covers
110 mi® in southeastern Missouri. In 1988, concern about the effects of seepage and runoff from the
abandoned mines and numerous mine tailings piles, prompted the U.S. Geological Survey, in
cooperation with the Missouri Department of Natural Resources, Land Reclamation Commission, to
conduct a study of the quality of surface water and bed sediment in the area of the Old Lead Belt.

Water quality at six sites on the two main streams in the study area, the Big River and the Flat
River, met the water-quality criteria for the protection of aquatic life and livestock and wildlife
watering for the trace elements analyzed for in this study of these rivers as defined by the Missouri
Department of Natural Resources, with the exception of one sample from the Flat River that exceeded
the water-quality criteria for lead. The concentrations of most major constituents were similar at most
sites on these two rivers, with the exception of the most downstream site on the Flat River. At this
site, which is downstream from large tailings piles, concentrations of sodium, chloride, and sulfate
generally were larger than those at the other river sites. Trace-element concentrations in water at the
six river sites generally were small. However, barium concentrations ranged from 180 to 380 ug/L at
the most downstream site on the Big River. This site is located downstream from a tributary draining
an area mined for barite.

Values of physical properties and concentrations of major constituents in water at six sites
associated with seepage from the tailings piles also were determined. Concentrations of major
constituents at these sites generally were largest at sites near the Elvins tailings pile where values of
specific conductance ranged from 823 to 1,540 uS/cm, cadmium concentrations ranged from 14 to
28 ng/L, cobalt concentrations ranged from 310 to 610 pg/L, lead concentrations ranged from 10 to
80 ug/L, and zinc concentrations ranged from 3,500 to 18,000 pg/L.

Seepage runs on the Big River and the Flat River, which were made during high base-flow
conditions, indicated that discharge in both streams increased slightly downstream. As discharge
increased, specific conductance values also increased. At times, inflow from ground-water sources and
seepage from the tailings piles had specific conductance values two to three times those of the river
water upstream from the mining area. Estimated values of specific conductance at downstream sites
were within about 10 percent of measured values when additional discharge was assumed to be water
from the abandoned mines. Mass-balance calculations using changes in concentrations of selected
constituents between various sites on the Big River indicated that the downstream increase in flow
along Big River probably is caused by inflow from the abandoned mines.

During the 19-month period of record at the Big River below Desloge, about 41,000 tons of
suspended sediment were transported by the river. A single flood transported about 17,000 tons or
about 40 percent of the total suspended-sediment load for the period of record and also transported
about 20 tons of barium, 1,200 tons of iron, 90 tons of lead, and 50 tons of zinc. At discharges of less
than 258 ft3/s, iron and lead seem to be transported primarily in the suspended solid phase, and barium
and zinc seem to be transported primarily in the dissolved phase.

Bed sediment at river sites that are unaffected by mining was composed mainly of quartz. Bed
sediment at river sites affected by mining and sites receiving seepage from the tailings piles was
composed mainly of carbonate minerals, primarily dolomite and ankerite.

Phase associations in the bed sediment at all sites indicated that most of the trace elements
were associated with the carbonate, oxide, and sulfide phases. At the Elvins tailings pile, zinc
associated with the carbonate phase was detected in large quantities, primarily as zinc carbonate
coatings on dolomite particles.
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In the Big River, the largest trace-element concentrations in bed sediment generally were at
site 3, downstream from the Leadwood tailings pile. Except for barium, trace-element concentrations
in bed sediment generally were smaller at site 6 and smaller yet at site 12, the most downstream site
on the Big River, than at site 3, but remained larger than concentrations at site 1. At site 3, cadmium
concentrations ranged from 44 to 120 pg/g, lead concentrations ranged from 2,400 to 8,500 ug/g, nickel
concentrations ranged from 15 to 118 pug/g, and zinc concentrations ranged from 2,600 to 7,300 ug/g.
Large barium concentrations (1,500 to 4,300 pg/g) were detected in bed sediment at site 12, probably
as a result of barite mining within the Mineral Fork basin. In the Flat River, trace-element
concentrations in bed sediment increased from site 7 upstream from the mined area to site 11
downstream from the mined area. At site 11, copper concentrations ranged from 230 to 540 pg/g; lead
concentrations ranged from 1,700 to 6,100 ug/g; nickel concentrations ranged from 23 to 82 pg/g; and
zince concentrations ranged from 380 to 960 ug/g.

Largest concentrations of trace elements in bed sediment at seepage sites were detected at two
sites near the Elvins tailings pile. Cobalt concentrations at these sites ranged from 79 to 2,500 pg/g,
copper concentrations ranged from 69 to 450 pg/g, lead concentrations ranged from 2,800 to 38,000
ug/g, nickel concentrations ranged from 95 to 3,200 ig/g, and zinc concentrations ranged from 9,000 to
more than 100,000 pg/g.

In water samples collected at seepage sites, dolomite and calcite generally were at or near
saturation with respect to calcite and dolomite and undersaturated with respect to gypsum. Seepage
at those sites was slightly undersaturated with respect to lead carbonate. Smithsonite and a hydrated
zinc carbonate phase were at saturation in water from several of the seepage sites. Zinc carbonate
precipitates were detected as coatings on dolomite particles at the Elvins tailings pile. The solubility
of carbonate phases probably controls aqueous concentrations of cadmium, lead, and zine. In addition,
lead and zinc were associated with secondary oxide and carbonate phases in stream sediment,
indicating sorption and coprecipitation are likely controls on aqueous concentrations. A zine carbonate
precipitate was detected at one seepage site. Dolomite grains probably serve as nucleation sites for
these precipitates.

Simulation of geochemical reactions indicate that the hydrologic system that exists in
abandoned mines of the Old Lead Belt probably is at least partially open to the atmosphere. The
oxidation of sulfide minerals and production of hydrogen ions and subsequent buffering and
neutralization by dissolution of carbonate minerals that seems to be occurring indicates a source of
oxygen to the system. Sources of sulfate (concentrations larger than 250 mg/L) in seeps from the
abandoned mines could be the oxidation of secondary minerals formed during the operation of the
mines.
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