TECHNIQUES FOR ESTIMATING MAGNITUDE AND FREQUENCY OF FLOODS IN RURAL

BASINS OF GEORGIA

By Timothy C. Stamey and Glen W. Hess

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 93-4016

Prepared in cooperation with

GEORGIA DEPARTMENT OF TRANSPORTATION

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 3039 Amwiler Road, Suite 130 Peachtree Business Center Atlanta, GA 30360-2824 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, CO 80225

CONTENTS

Abstract 1
Introduction 2
Purpose and scope 2
Previous studies 2
Climatological factors influencing floods 7
Method of study 7
Flood-frequency data analysis 8
Pearson Type III analysis 8
Coefficient of skewness 9
Regression model 9
Basin and climatic characteristics 10
Regional regression analysis 11
Accuracy of the regional relations 13
Limitations 15
Use of flood-frequency relations 16
Gaged sites 16
Ungaged sites 17
Sites draining more than one region 18
Example application 18
Flood frequency for large streams 20
Ocmulgee River 20
Oconee River 20
Altamaha River 23
Flint River 24
Summary 24
Selected references 26
Glossary 28
Appendix I - Alphabetical listing of streamflow sites in Georgia 30
Appendix II - Alphabetical listing of streamflow sites outside of Georgia 40

ILLUSTRATIONS

Figures 14.	Maps showing location of streamflow sites used in flood regionalization studies in:
	1. Northwest Georgia 3
	2. Northeast Georgia 4
	3. Southwest Georgia 5
	4. Southeast Georgia 6
Figure 5.	Map showing location of physiographic provinces, regional flood-frequency boundaries, and
	selected reservoir gaging stations 12
6.	Graph showing the relation of 100-year flood discharge to drainage area in flood-frequency
	regions in Georgia 14
Figures 7-10.	Graphs showing relation of flood discharge to drainage area for selected recurrence-interval
	floods in region 3 for the:
	7. Ocmulgee River 21
	8. Oconee River 22
	9. Altamaha River 23

TABLES

Table 1. Flood-frequency discharge data for rural streams in Georgia [in back of report] 43
 Regional flood-frequency relations for rural streams in Georgia 11
 Accuracy of regional flood-frequency relations for rural streams in Georgia 15

10. Flint River 25

CONVERSION FACTORS, ACRONYMS, AND VERTICAL DATUM

<u>Multiply</u>	<u>By</u>	To obtain
	<u>Length</u>	
inch (in.)	25.4	millimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
	<u>Gradient</u>	
foot per mile (ft/mi)	0.1894	meter per kilometer
	<u>Area</u>	
square mile (mi ²)	2.59	square kilometer
	Volume	
acre-foot (acre-ft)	1.233×10^3	cubic meters
	<u>Flow</u>	
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
	Velocity	
foot per second (ft/s)	0.3048	meter per second

ACRONYMS

GDOT	Georgia Department of Transportation
IACWD	Interagency Advisory Committee on Water Data
USGS	U.S. Geological Survey

VERTICAL DATUM

<u>Sea Level</u>:--In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

TECHNIQUES FOR ESTIMATING

MAGNITUDE AND FREQUENCY

OF FLOODS IN RURAL BASINS OF GEORGIA

By

Timothy C. Stamey and Glen W. Hess

ABSTRACT

Methods of estimating the magnitude of floods having recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-years are described for rural streams in Georgia that are not affected by regulation, tidal fluctuations, or urban development. Flood-frequency discharge data also are presented for the 2- to 500-year recurrence intervals for 426 streamflow sites used in the regional analysis.

Annual peak-discharge data through September 30, 1990 were analyzed for 426 streamflow sites on rural streams in Georgia, and adjacent parts of Alabama, Florida, North Carolina, South Carolina, and Tennessee, having 10 or more years of record. Flood frequencies were computed by fitting the logarithms of the annual peak-discharge data to a Pearson Type III distribution curve. Peak-discharge data were used in multiple least-squares linear-regression analyses with basin and climatic variables to develop regional flood-frequency relations. Analyses indicate that the drainage areas of the basins are the most significant variables; therefore, drainage area is the only basin characteristics included in the regional regression relations. Four regions were delineated that have distinct flood-frequency-discharge characteristics for streams draining from 0.1 to 3,000 square miles, and flood-frequency relations were developed for each of these regions. The average standard error of prediction of the regional flood-frequency relations ranged from 26 to 38 percent for the 2- to 500-year recurrence-interval floods.

Individual relations of flood magnitude and frequency to drainage area are described for sites along the mainstems of the Ocmulgee, Oconee, Altamaha, and Flint Rivers. Flood-frequency relations are based on the log-Pearson Type III analysis of long-term peak-discharge records at gaged sites on the four rivers.

INTRODUCTION

Flood-magnitude and frequency data are needed for development along and near streams and rivers. The data are important in the design of bridges, culverts, embankments, dams, and levees, and serve as a basis for flood-plain regulation and establishment of flood-insurance rates.

The U.S. Geological Survey (USGS), in cooperation with the Georgia Department of Transportation (GDOT) and other State and local agencies, has conducted studies to develop and improve the estimates of the magnitude and frequency of floods on rural Georgia streams.

The principal cooperating agencies that help fund the collection of annual peak discharge and stage data, and other streamflow data in Georgia are

Georgia Department of Transportation
Highway Division
Georgia Department of Natural Resources
Environmental Protection Division
Georgia Geologic Survey
Tennessee Valley Authority
U.S. Army Corps of Engineers
Mobile District
Savannah District
U.S. Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service

The authors also acknowledge the assistance in the data-collection program by the Georgia Power Company.

This report is based on peak-discharge data through September 1990 collected by the USGS at 426 streamflow sites. The streamflow sites include 357 sites in Georgia (figs. 1-4), with the remaining 69 sites located near the Georgia border in adjacent parts of Alabama, Florida, North Carolina, South Carolina, and Tennessee (Appendix I and II).

Purpose and Scope

This report presents and illustrates methods of estimating the magnitude and frequency of floods having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years on rural Georgia streams. This report is based on flood-frequency analyses of annual peak-discharge data at streamflow monitoring sites through September 1990. This report includes (1) regional relations for estimating the magnitude and frequency of flood discharges on rural, ungaged, non-regulated streams; (2) method for estimating flood-frequency data at or near gaged sites on rural streams; and (3) flood-frequency data on mainstem streams with drainage basins located in more than one region.

Previous Studies

There are six previously published flood-frequency reports for Georgia streams. Bunch and Price (1962) used the index flood method that was described by Carter (1951) and Dalrymple (1960). Spear and Gamble (1964a, 1964b) and Barnes and Golden (1966) developed flood-frequency regression methods for several states, and used data abstracted from Bunch and Price (1962) for the Georgia portion of the their reports. Golden and Price (1976) described flood-frequency methods for streams having drainage areas of less than 20 mi², and used multiple regression methods to relate peak discharges for floods of selected recurrence intervals to drainage areas. Subsequently, Price (1978) prepared a flood-frequency report based on peak-discharge data for 262 sites in Georgia and 46 sites in adjacent states, and developed flood-frequency relations using multiple regression methods for streams having drainage from 0.1 to 1,000 mi². Inman (1983 and 1988) described methods for determining flood-frequency relations for urban streams in Metropolitan Atlanta and other Georgia cities.

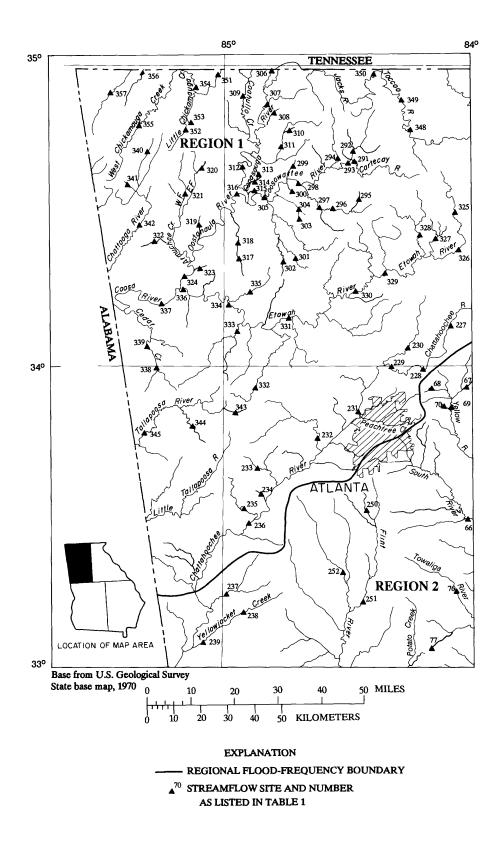


Figure 1.--Location of streamflow sites used in flood regionalization studies in northwestern Georgia.

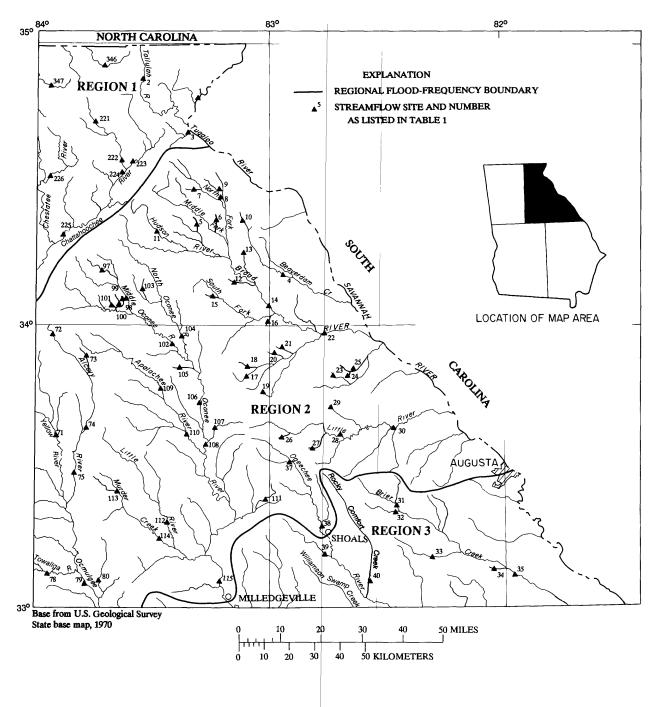


Figure 2.--Location of streamflow sites used in flood regionalization studies in northeastern Georgia.

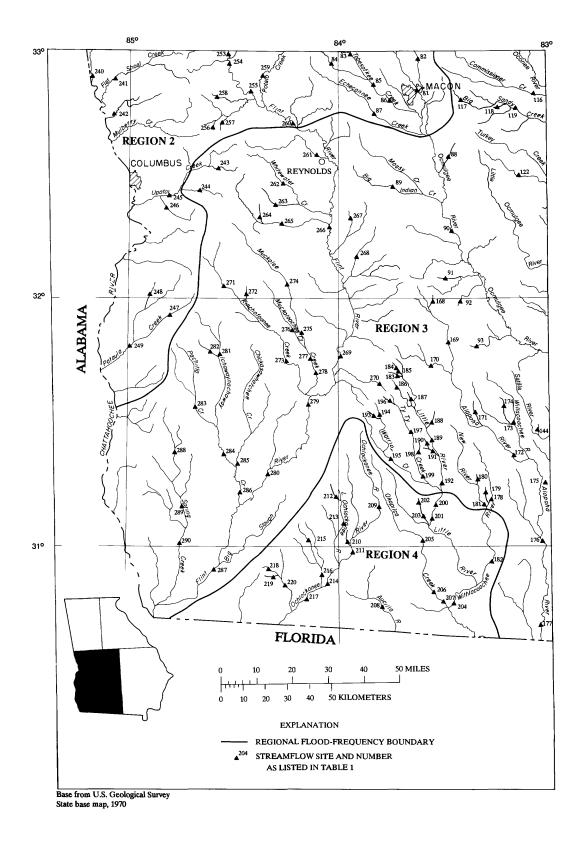


Figure 3.--Location of streamflow sites used in flood regionalization studies in southwestern Georgia.

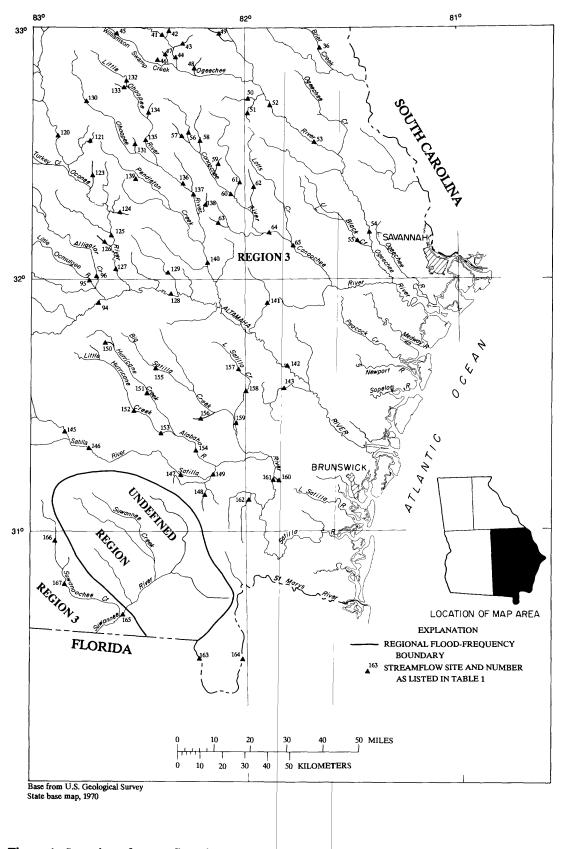


Figure 4.--Location of streamflow sites used in flood regionalization studies in southeastern Georgia.

CLIMATOLOGICAL FACTORS INFLUENCING FLOODS

The climatological factors that influence flooding in Georgia vary areally, seasonally, and annually. In winter, continental high-pressure systems periodically move frontal systems through the State, producing rain over large areas. These winter frontal storms usually last only a few days, but can cover several hundreds of square miles and produce large amounts of rainfall. In the summer, off-shore high-pressure systems frequently direct humid maritime air inland, aiding in the development of intense thunderstorms across the State. Although thunderstorms are most commonly associated with the spring and summer seasons, they may occur at anytime during the year and are frequently intense and affect only small areas. From late spring through fall, the State occasionally is affected by tropical storms and hurricanes. Rainfall associated with tropical storms and hurricanes are most frequent from June to November; rainfall may last for days and can cover several thousand square miles (Golden and Hess, 1991).

Since 1900, major floods have occurred in parts of Georgia in 1907, 1908, 1916, 1919, 1925, 1929, 1936, 1940, 1947, 1948, 1961, and 1990, but statewide flooding by a single storm system is rare. For example, flooding in the February 1990 flood was limited primarily to the northwestern part of the State, and flooding in March 1990 was limited to the west-central part of Georgia. The 1925 flood was an exception, when flooding was widespread throughout Georgia (U.S. Weather Bureau, 1925).

Record floods on small streams usually result from local intense rains and may have little affect on the large streams. The same storm may produce record flooding in one basin, and only moderate flooding in an adjacent basin. The differences in flooding in adjacent basins from the same storm may be the result of the variability of rainfall during and between storms, varying antecedent soil-moisture conditions, differences in soil characteristics of the basins, and other factors. For these reasons, dates of occurrence of maximum floods are variable across the State, and even within the same river basin.

METHOD OF STUDY

Peak-discharge data were analyzed at 426 rural streamflow sites in Georgia, and adjacent parts of Alabama, Florida, North Carolina, South Carolina, and Tennessee. Peak-discharge data were used in multiple least-squares linear regression analyses to develop regional flood-frequency relations. Regional flood-frequency relations were developed for four distinct regions for rural streams with drainage areas ranging from a minimum of 0.1 to a maximum of 3,000 square miles (mi²). Of these 426 streamflow sites, 116 are in region 1, 108 are in region 2, 172 are in region 3, and 30 are in region 4 (figs. 1-4; Appendix I, II). The regional flood-frequency relations are based on annual peak-discharge data at 357 streamflow sites in Georgia, and 69 streamflow sites in surrounding states that have at least 10 years of annual maximum peak discharges. The methods developed for estimating the magnitude and frequency of floods do not apply to urban streams, tidally affected streams, or streams that are affected by regulation by manmade controls; except where regulation on larger rivers do not significantly affect annual peak discharges. Individual analyses are computed for the gaged sites on the mainstems of the Ocmulgee, Oconee, Altamaha, and Flint Rivers.

Streamflow sites used in this study have reliable stage-discharge relations that have been developed and verified over a period of several years. Additional data, including location description, type of gage(s), description of the stage-discharge relation, historical data, annual peak discharge and stage, and other remarks are described in a report by Hess and Stamey (1992). This report supercedes previous reports by personnel of the USGS documenting rural flood-frequency computation methods for Georgia.

FLOOD-FREQUENCY DATA ANALYSIS

The relation of flood-peak magnitude to probability of exceedence (or recurrence interval) is referred to as the flood-frequency relation. Probability of exceedence is the probability that a flood will exceed a specific magnitude in any one year. Recurrence interval is the reciprocal of the probability of exceedence times 100, and is the average interval, in years, in which a given flood will be exceeded. For example, a flood having a probability of exceedence of .04 has a recurrence interval of 25 years. A flood having a recurrence interval of 25 years does not mean that for each 25-year period the flood will be exceeded, but that a flood will be exceeded on the average of every 25 years over a long period of time, such as a few hundred years. In fact, the flood may be exceeded in successive years or even twice in the same year, or may not be exceeded in some 25-year periods.

"Guidelines for Determining Flood-Flow Frequency, Bulletin 17B" (Interagency Advisory Committee on Water Data, 1982), contains procedures to promote a consistent approach to flood-frequency analysis. The procedures form the basis for the streamflow data-analysis methods incorporated in this report. The flood-frequency analysis presented in this report involved three steps as outlined below:

- 1. Pearson Type III distributions were fitted to logarithms of observed annual maximum peak discharges for each site;
- 2. the generalized skew and station skew coefficients were weighted on the basis of relative accuracy to form an estimate of skew for each basin; and
- 3. frequency distributions were adjusted for outliers and historic peaks.

Pearson Type III Analysis

A flood-frequency relation or frequency curve for a site where peak-discharge data are available can be defined by fitting the array of annual peak discharges to a theoretical distribution. Flood-frequency distributions were determined by using the Pearson Type III distribution as recommended by the Interagency Advisory Committee on Water Data (1982).

The USGS computer program J407, described by Kirby (1979), was used to fit the Pearson Type III distribution to the logarithms of the annual maximum discharges for each site. The J407 program includes features described by the Interagency Advisory Committee on Water Data (1982), but requires some judgement on the part of the user when providing data on historic peaks, specifying screening levels for outliers, using truncated or incomplete records, and interpreting the frequency curve. Flood discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are presented for 357 streamflow sites in Georgia in table 1, at the back of this report. Also listed are the drainage area, number of years of record, generalized skew, and standard deviation used in the Pearson Type III analyses.

Coefficient of Skewness

The accuracy of the station-skew coefficient, as an estimate of the true skew of the frequency distribution, is generally a function of the length of record. The station skew is a measure of the past history of annual floods, and may be unreliable when computed from less than 10 years of record. The skew coefficient determined from the station record is sensitive to extreme events; therefore, the longer the stream record, the more reliable the skew coefficient. The generalized skew coefficient is determined from Plate I in Bulletin 17B (Interagency Advisory Committee on Water Data (1982) and is based on all stations in a given area having at least 25 years of record. The generalized skew coefficient, when weighted with individual station-skew coefficients, will provide a better estimate of the individual station long-term population skew coefficient. An analysis of station skew coefficients was made to determine more accurate estimates of the generalized skew for sites with 25 or more years of record, but distinct geographic or topographic patterns differing from those described by the Interagency Advisory Committee on Water Data (1982, plate I) were not evident. Station-skew coefficients were weighted using generalized skew coefficients given by the Interagency Advisory Committee on Water Data (1982) for stations having drainage areas less than 3,000 mi², to improve the accuracy of the final estimated skew coefficients.

REGRESSION MODEL

Flood-frequency data computed for gaged sites can be transferred to ungaged sites using regional regression analyses. Regional flood-frequency relations were developed by using multiple linear-regression analysis to relate flood discharges for selected recurrence intervals (dependent variable) to selected climatic and basin characteristics (independent variables). The accuracy of the defined relation (the standard error of estimate) and the measure of significance of each independent variable in the relation was obtained from the regression analysis.

Numerous studies, such as those by Golden and Price (1976) and Price (1978) have indicated that peak discharge is linearly related to several basin and climatic characteristics if the data are logarithmically transformed. Therefore, all peak-discharge and basin and climatic data in this report were transformed to logarithmic values. Peak discharges were related to the basin and climatic characteristics using linear least-squares procedures by step-forward and step-backward multiple regression analysis (P-Stat, Inc., 1989). For the step-backward multiple-regression analysis, a set of relations are developed by relating the dependent variable (peak discharges) to all available or candidate independent variables (basin and climatic characteristics), and then deleting the least-significant independent variable (as dictated by the student's t-test) by steps until only statistically significant independent variables remain. Step-forward multiple regression differs in that the analysis begins with the most significant single independent variable and at each step, independent variables are added to the model, in ascending order of significance, until remaining variables are not statistically significant. The results of the two types of regression analyses indicated that drainage area is the most significant variable for estimating flood discharge for Georgia streams.

The regression model has the form of

$$Q_n = a A^b B^c C^d \dots$$
 (1)

where

Q_n is the flood discharge having a n-year recurrence interval;

A, B, C are the basin and climatological characteristics; and

a, b, c, d are the regression coefficients for the n-year recurrence intervals.

The logarithmic relation used in this study is of the form

$$\log Q_n = \log a + b (\log A) + c (\log B) + d (\log C) + \dots$$
 (2)

BASIN AND CLIMATIC CHARACTERISTICS

The basin and climatic characteristics used in this study are the same as those used in the flood-frequency analyses for streams in Georgia by Golden and Price (1976), and Price (1978). The 10-independent variables listed below were chosen, because the variables are the most likely to influence flood discharges. Only the drainage area variable was determined to be statistically significant; therefore, the remaining characteristics do not appear in the final regional flood-frequency relations.

<u>Drainage area (A)</u>, in square miles, is the total contributing drainage area upstream from the streamflow site as planimetered from USGS topographic maps, county maps, or aerial photographs.

<u>Main-channel length (L)</u>, in miles, is the length of the main channel between the streamflow site and the basin divide, as measured along the channel which drains the largest area of the basin above each junction.

<u>Main-channel slope (S)</u>, in feet per mile, is the average slope between points 10 and 85 percent of the distance from the streamflow site to the basin divide.

<u>Surface-storage area (St)</u>, is the surface area of lakes, ponds, and swamps expressed as percentage of the total drainage area.

<u>Mean-basin elevation (E)</u>, in feet, is the mean elevation of the entire basin above sea level.

Forested area (F), in percent, is the area of forest expressed as a percentage of the total drainage area.

<u>Soil-infiltration-capacity index (Si)</u>, in inches, is soil infiltration capacity estimated by the U.S. Soil Conservation Service from information on soil type, cover, and agricultural practices.

<u>Lag-time index (T)</u>, is an index of basin lag time, defined by the term $L/S^{0.5}$, where L is main-channel length and S is main-channel slope, as previously defined.

Mean annual precipitation (P), in inches, is determined for each basin based on maps published by the U.S. Weather Bureau (now National Weather Service) (1959).

<u>Precipitation intensity</u> $(P_{24,2})$, in inches, the 24-hour, 2-year rainfall, determined for each basin based on maps published by the U.S. Weather Bureau (1958).

REGIONAL REGRESSION ANALYSIS

Initial least-squares multiple-regression analysis utilized data from 426 rural streamflow sites throughout Georgia, and parts of adjacent states. The step-forward and step-backward regression analyses methods indicated that drainage area is the most significant of the 10-independent variables, using the 95-percent confidence limit. Standard errors of estimate using the independent variables ranged from 64 to 67 percent for the 100-year flood estimate when using data for the entire State. The large errors of estimates are unacceptable; therefore, the residuals from the regression analysis were plotted on a State map, and covariance analyses were performed to determine if the residuals in some parts of the State were statistically different from zero, and used to check for geographic bias.

A geographic bias was detected and four regional flood-frequency boundaries were delineated (figs. 1-5) based on previous flood-frequency studies, geologic and soils maps, drainage-basin maps, and maps of plotted residuals. Region 1 includes all of the Valley and Ridge, Applachian Plateau, and Blue Ridge physiographic provinces, and part of the adjacent Piedmont physiographic province. Region 1 also includes the headwaters of the Savannah, Tennessee, Tallapoosa, and Mobile River basins; all of the Etowah River basin; and the Chattahoochee River basin upstream in the vicinity of Franklin, Ga. Region 2 includes most of the Piedmont Province, part of the Coastal Plain Province (including the upstream portion of the Flint River downstream to near Reynolds, Ga.), and the Ocmulgee River basin upstream from Macon, Ga. Region 2 also includes all of the Broad River basin, the Oconee River basin upstream of Milledgeville, Ga., and the part of the Ogeechee River basin upstream of Shoals, Ga.

Regions 3 and 4 are in the Coastal Plain physiographic province. The northern boundary of region 3 approximates the fall-line boundary between the Piedmont and Coastal Plain Provinces. Region 3 includes the basins of the Ocmulgee (downstream of Macon), Flint (downstream of Reynolds), Alapaha, Suwanee, Ogeechee (downstream of Shoals), Canoochee, Oconee (downstream of Milledgeville), Altamaha, and Satilla Rivers. Region 4 includes all of the Ocklockonee River basin and most of the Withlacoochee River basin. Flood-magnitude and -frequency relations were not determined for the basins draining the Okefenokee Swamp (undefined region on figures 4 and 5) (figs. 1-5).

Separate regression analyses were performed for each of the four regions. Standard errors were reduced by about 30 percent for the 100-year flood estimate as compared to the statewide regression relations. In each region, drainage area was found to be the most significant variable; the use of the other significant variables did not reduce the standard error by more than 2 percent for any of the four regions. The other variables were omitted from the final relations because of the added difficulty in accurately measuring the variables, and the minimal reduction in the standard error. Therefore, drainage area was the only variable retained in the final flood-frequency relation. Regional flood-frequency relations for rural streams in the four regions are summarized in table 2.

Table 2.--Regional flood-frequency relations for rural streams in Georgia

Flood dischar Q _n , for n-year	rge, Flood-freq ir A is the	Flood-frequency relations for indicated regions in the form $Qn = {}_{a}A^{b}$, where A is the drainage area, in square miles, and a and b are as presented below						
recurrence interval	1	2	3	4				
Q_2	207 A .654	182 A .622	76 A 620	142 A .591				
Q ₂ Q ₅ Q ₁₀ Q ₂₅	257 A .632	311 A ^{.616}	122 A .020	288 A .589				
Q_{10}	482 A .019	411 A.013	176 A .021	410 A 505				
Q_{25}	666 A .003	$552 \text{A}_{607}^{.610}$	237 A.02	591 A.595				
Q ₅₀ Q ₁₀₀	827 A 595	669 A .607	287 A .025	748 A				
Q_{100}	1,010 A 575	794 A .605	340 A .027	926 A 602				
Q_{200}	1,220 A 563	$931 \text{A}_{601}^{.603}$	206 A .02	$1,120\mathrm{A}_{611}^{.606}$				
Q ₅₀₀	1,530 A .563	1,130 A ^{.601}	474 A .632	1,420 A.611				

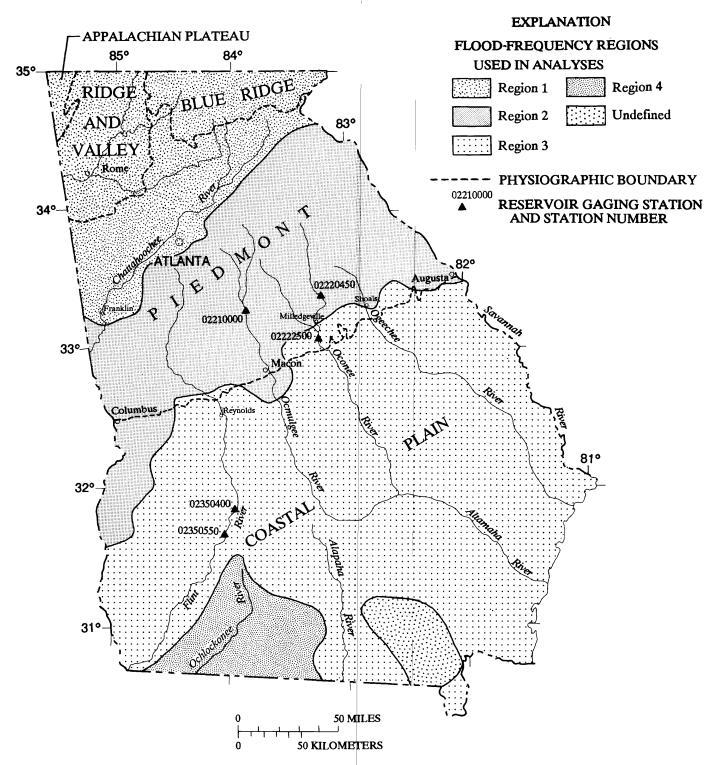


Figure 5.--Location of physiographic provinces, regional flood-frequency boundaries, and selected reservoir gaging stations.

Analyses of the data for the mainstem reaches of the Ocmulgee, Oconee, Altamaha, and Flint Rivers, that, in part, lie in regions 2 and 3, indicate that the flood-frequency relations for these streams do not conform to those for the other sites within the regions. Therefore, separate analyses were made for the sites on these rivers and are described later in this report in the section "Flood Frequency for Large Streams."

Additional peak-discharge data have been collected at most sites in the State since 1974 (ending date for previous statewide flood-frequency report prepared by Price (1978)). Additional data also has been collected at 20 crest-stage gage sites, primarily in the area of the inter-margin of the Coastal Plain in Georgia, during the same time period. The analyses of these additional data resulted in regional flood-frequency boundaries somewhat different from in the regional boundaries determined by Price (1978).

The 100-year flood-frequency relations for regions 1, 2, 3, and 4 are shown in figure 6. The flood-frequency relations for regions 1 and 4 converge at drainage areas greater than about 1,000 mi². The convergence can be partially explained by the small sample size (30) analyzed in region 4. As expected, region 3 indicates a much lower runoff per square mile than the other regions, because of the higher infiltration rates of the soils. Each region shows different runoff characteristics because of influences by types of forest cover, soil types, soil-infiltration characteristics, and location of the basins within the different physiographic provinces of the State (fig. 5).

Accuracy of the Regional Relations

The accuracy of a flood-frequency relation can be expressed as the average standard error of estimate. The standard error of estimate is a measure of the standard deviation of the residuals (assumed to be normally distributed) about the regression line. Estimates based on gaged records at specific sites are expected to be within one standard error of the regionalized value 67 percent of the time, and within two standard errors 95 percent of the time.

The accuracy of each flood-frequency relation also can be expressed as the standard error of prediction or as equivalent years of record. The standard error of prediction is defined as a measure of how accurately the regression equation will estimate the dependent variables at locations other than calibration sites. Hardison (1971) describes a method of converting the standard error of prediction to equivalent years of record. When converted to equivalent years of record, the standard error of prediction is expressed as the number of actual years of annual peak-discharge record necessary to provide an estimate of equal accuracy. For example, in region 1, the 100-year flood discharge can be estimated from the regression relations with the same degree of accuracy, on average, that could be obtained from 16 years of actual record. The accuracy of the regional flood-frequency relations in percent standard error of prediction, and equivalent years of record is summarized in table 3. The average standard errors of prediction of the regional flood-frequency relations for flood discharges with 2- to 500-year recurrence intervals are 31, 32, 38, and 26 percent for regions 1, 2, 3, and 4, respectively.

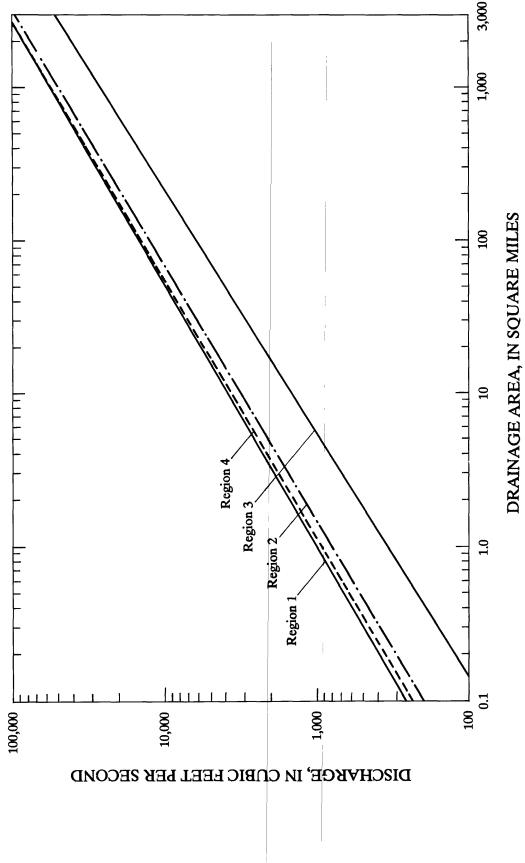


Figure 6.--Relation of 100-year flood discharge to drainage area in flood-frequency regions in Georgia.

Table 3.--Accuracy of regional flood-frequency relations for rural streams in Georgia

Region	Standard error of prediction, in percent, for indicated flood discharge for n-year recurrence interval (Q _n)							
	Q ₂	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₂₀₀	Q ₅₀
1	31	29	29	29	30	31	33	36
2	33	28	27	28	30	33	36	40
3	36	35	35	37	38	38	40	43
4	25	19	19	21	24	28	32	37
	-	•		_	-	rovide ar		
1	3	4	5	12	14	16	17	18
2	4	7	10	14	16	17	19	21
3	3	6	10	15	18	19	19	20
4	8	27	37	43	40	37	35	32

Limitations

The following limitations apply to the use of the regional flood-frequency relations presented in this report:

the relations are valid only for ungaged sites where the drainage area is between the minimum and maximum drainage area for the appropriate regions listed below

Region 1 - 0.17 to 730 mi²; Region 2 - 0.10 to 3,000 mi²; Region 3 - 0.14 to 3,000 mi²; Region 4 - 0.25 to 2,000 mi²;

- the regional relations do not apply to the mainstems of the Ocmulgee, Oconee, Altamaha, and Flint Rivers lying in region 3. Station flood-frequency relations for these large rivers are presented in the section entitled "Flood Frequency for Large Streams").
- the relations are not valid for streams affected by regulation from dams or diversions, by substantial channelization;
- ° the relations are not valid for tidally affected streams;
- the relations are not valid for drainage areas in the Okefenokee Swamp where the magnitude and frequency relations are undefined;
- * the relations are not valid for streams in urban areas unless the effects of urbanization are insignificant (for sites in urban areas, use methods described by Inman (1988));
- the relations are not valid for areas in southwest Georgia where large limestone sink holes or depressions can affect the flood-frequency relation.

Use of Flood-Frequency Relations

Regional flood-frequency relations can be used to estimate flood discharges at ungaged sites and improve estimates at gaged sites. The best method for estimating the discharge of a specific recurrence-interval flood at a gaged site is to weight the regional and station discharge estimates for the specified recurrence-interval flood using the number of years of station record and the accuracy of the regional flood-frequency relations, expressed in equivalent years of record (Interagency Advisory Committee on Water Data, 1982). The accuracy of the regional flood-frequency relations is the same as would be determined by gaging a stream for the number of equivalent years of record listed in table 3. Accuracy for the weighted estimate is the sum of the accuracy of each estimate in equivalent years of record, assuming the estimates are independent.

For ungaged sites, the regional peak-discharge estimate for a specific recurrence interval can be improved if the site is located near a gaged site on the same stream having at least 10 years of peak-discharge record. Discharges for ungaged sites are weighted according to the relative proximity of the ungaged site to the gaged site. Sites having less than 10 years of peak-discharge record are treated as ungaged sites.

Gaged sites

Flood-frequency estimates can be obtained at gaged sites by the use of the appropriate regional flood-frequency relations and the Pearson Type III frequency data. The recommended procedure is to compute the discharge for the desired recurrence interval as a weighted average of the value at the gaged site and the value obtained from the regional regression relation. The discharge is weighted determined on the basis of the length of record at the gaged site and the equivalent years of record for the estimated based on the regional flood-frequency relation (table 3). This procedure for estimating flood discharge for a given recurrence interval at gaged sites can be expressed in the following equation (Interagency Advisory Committee on Water Data, 1982):

$$\log (Q_g)_{(w)} = \frac{N (\log Q_g) + EY (\log Q_n)}{N + EY}$$
(3)

where

 $Q_{g(w)}$ is the weighted discharge for the selected recurrence interval, in cubic feet per second (ft³/s);

N is the number of years of station record used to compute Q_g from table 1;

Qg is the discharge for the selected recurrence interval, in ft³/s, at the gaged site;

EY is the equivalent years of record for Q_n from table 3; and

Q_n is the regional flood-frequency regression discharge for the selected recurrence interval from table 2, in ft³/s.

The accuracy of the weighted discharge estimate, $Q_{g(w)}$, in equivalent years of record, is equal to N + EY. Regional and station discharge estimates tend to be more independent when the area of the region has a radius of greater than 100 miles (mi), and the periods of record of the data used to develop the regional relations are longer than that of the station for which the weighted estimate will be determined (Interagency Advisory Committee on Water Data, 1982). The radii of all four flood-frequency regions in Georgia are greater than 100 mi², and the periods of record used to develop the regional relations are longer than the period of record for most stations. The weighting techniques assume that the regional and station flood-frequency estimates are independent.

The Pearson Type III flood-frequency data and weighted discharges for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval floods for the Georgia streamflow sites used in this report are presented in table 1. The flood-frequency data were computed using all available records through the 1990 water year, and supercedes the values presented by Price (1978). Other information about these streamflow sites, including a brief description of the location, type of gage, gage datum (if known), drainage area, peak-stages and discharges, and explanatory remarks is presented in a report by Hess and Stamey (1993).

Ungaged sites

Flood discharges for a specific recurrence interval at an ungaged site on a stream can be estimated by locating the drainage area for the site in one of the hydrologic regions (figs. 1-4), and using the appropriate regional flood-frequency relation from table 2. The regional estimate can be improved if the site is located on the same stream as a gaged site having at least 10 years of record, and the drainage area of the ungaged site is within one-half to two times that at the gaged site. The weighted discharge, $Q_{g(w)}$, at the gaged site can be transferred to the ungaged site using the equation

$$Q_{u} = \left(\frac{Au}{Ag}\right)^{b} Q_{g(w)} \tag{4}$$

and then a weighted discharge value can be computed by the equation

$$Q_{u(w)} = \frac{2\Delta A}{Ag} Q_n + \left(1 - \frac{2\Delta A}{Ag}\right) Q_u$$
 (5)

where

Q_u is the flood discharge at the ungaged site, in ft³/s;

A_u is the drainage area of the ungaged site, in mi²;

Ag is the drainage area of the gaged site, in mi²;

b is the exponent of the drainage area term of the regional flood-frequency relation for the applicable hydrologic region and recurrence interval, from table 2;

Q_n is the regional flood discharge for the selected recurrence interval at the ungaged site computed using the applicable regional relation from table 2, in ft³/s;

 $Q_{g(w)}$ is the weighted flood discharge at the gaged site, from table 1, in ft^3/s ;

 $Q_{\mathbf{u}(\mathbf{w})}$ is the weighted flood discharge at the ungaged site, in ft^3/s ; and

 ΔA is the difference in drainage areas of the gaged station and the ungaged site, in mi².

The regional flood-frequency relations are used without adjustment where the drainage area at the ungaged site is not within one-half to two times the drainage area of the gaged site.

Sites draining more than one region

Methods for estimating the flood discharges for specific recurrence intervals for sites on large streams that drain more than one flood-frequency region differ from methods used for sites on smaller streams that fall within one region. The Ocmulgee, Oconee, Altamaha, Flint, Ogeechee, and Withlacoochee Rivers are the only streams in Georgia that drain more than one region (fig. 5). Flood discharges for selected recurrence interval for the sites on the Ogeechee and Withlacoochee Rivers were computed by assuming that the entire drainage basin of each stream was located in each of the regions that the streams flow through, and then weighting the discharge based on the percentage of the drainage area contained in each region (table 1). Flood discharges for selected recurrence intervals for sites on the Ocmulgee, Oconee, Altamaha, and Flint Rivers were based on log-Pearson Type III analysis of long-term peak-discharge records.

Note the maximum drainage-area size for streams listed in the "Limitations" section of this report. See "Numerical Application Examples", (example (2)) and "Flood-Frequency for Larger Streams" for further explanation.

Example application

Examples of regional relations applications for determining a selected recurrence interval discharge for an ungaged rural site in Georgia are presented in this section. For each of these examples, it is assumed that the user has:

- (1) determined that the site is not significantly affected by regulation, urbanization, channel improvements, diversions, or tide;
- (2) determined that the limitations of the regional flood-frequency relations described earlier are not exceeded (see "Limitations");
- (3) determined the drainage area, A, in square miles;
- (4) determined the region(s) (figs. 1-4), in which the drainage basin of the site is located; and
- (5) selected the appropriate flood-frequency relation for the region from table 2.

Example (1)--basin entirely wihin one region

The 100-year flood discharge (Q_{100}) is needed for a site that has a drainage basin entirely within region 1 and has a drainage area of 82 mi². To compute the 100-year flood discharge, the drainage area is substituted in the regional flood-frequency relation for region 1 (table 2) as follows:

$$Q_{100} = 1,010A^{.584}$$
$$= 1,010(82)^{.584}$$
$$= 13,200 \text{ ft}^3/\text{s}.$$

Example (2)--basin in two regions

The 100-year flood discharge (Q_{100}) is needed for an ungaged site that has a drainage basin in two regions. The total drainage area of the site is 2,000 mi², with 1,200 mi² in region 2 and 800 mi² in region 3.

The Q_{100} is first computed by using the regional flood-frequency relation for region 2 (table 2). Assuming that the drainage basin is totally within region 2, and then the Q_{100} is computed assuming that the drainage basin is totally within region 3 by using the equation from region 3 (table 2).

Region 2
 Region 3

$$Q_{100} = 794A.605$$
 $Q_{100} = 340A.627$
 $= 794(2,000).605$
 $= 340(2,000).627$
 $= 78,900 \text{ ft}^3/\text{s}$
 $= 39,900 \text{ ft}^3/\text{s}$

The adjusted Q_{100} for the site is then calculated as a weighted average based on the percentage of the drainage area in each region as in the following equation

$$Q_{100} \text{ adjusted} = Q_{100} \text{ region 2 } \left(\frac{1,200}{2,000}\right) + Q_{100} \text{ region 3 } \left(\frac{800}{2,000}\right)$$

$$= 78,900 \left(\frac{1,200}{2,000}\right) + 39,900 \left(\frac{800}{2,000}\right)$$

$$= 47,300 + 16,000$$

$$= 63,300 \text{ ft}^3/\text{s.}$$
(6)

Example (3)--ungaged site on same stream as gaged site

The 100-year flood discharge (Q_u) is needed for an ungaged site on the same stream as a gaged site in region 4 and the drainage area of the ungaged site is within one-half to two times that of the gaged site. The gaged site is station number 02318600, Okapiko Creek at Quitman, which has a drainage area of 101 mi² and a 100-year flood discharge of 14,600 ft³/s (table 1). The drainage area of the ungaged site is 80 mi². The 100-year flood discharge at the ungaged site (Q_u) is computed by transferring the weighted 100-year discharge at the gaged site $(14,600 \text{ ft}^3/\text{s})$ to the ungaged site using equations (4) and (5) (see section "Ungaged Sites"). The values for variables in these equations are:

```
\begin{array}{lll} A_{u} & \text{is 80 mi}^{2}, \\ A_{g} & \text{is 101 mi}^{2}, \\ \Delta A & \text{is 21 mi}^{2}, \\ Q_{n} & \text{is 13,000 ft}^{3}/\text{s (computed from equation in table 2),} \\ Q_{g(w)} & \text{is 14,600 ft}^{3}/\text{s (table 1), and} \end{array}
```

Equation (4) is solved for to transfer the 100-year flood discharge from the gaged site to the ungaged site as follows:

$$Q_{u} = \left(\frac{Au}{Ag}\right)^{b} Q_{g(w)}$$

$$= \left(\frac{80}{101}\right)^{a} 14,600$$

$$= 12,700 \text{ ft}^{3}/\text{s}.$$

The weighted discharge for the ungaged site $Q_{u(w)}$ is then calculated from equation (5) as follows:

$$Q_{u(w)} = \left(\frac{2\Delta A}{Ag}\right) Q_n + \left(1 - \frac{2\Delta A}{Ag}\right) Q_u$$

$$= \frac{2(21)}{101} 13,000 + \left(1 - \frac{2(21)}{101}\right) 12,700$$

$$= 5,410 + 7,420$$

$$= 12,830$$

$$= 12,800 \text{ ft}^3/\text{s (rounded)}.$$

Flood Frequency for Large Streams

Flood-frequency discharges for gaged sites along the mainstem of the Ocmulgee, Oconee, Altamaha, and Flint Rivers were not determined using the regional flood-frequency analysis because these sites were on streams that drained more than one region and the flood-frequency relations at such sites are not representative of the other sites used to develop the region relations. Individual relations of flood-discharges to drainage area were determined for selected flood-frequencies for sites on the Ocmulgee, Oconee, Altamaha, and Flint Rivers. These relations were based on log-Pearson Type III analysis of peak-discharge data at the gaged sites along these streams which lie within region 3, as described in Interagency Advisory Committee on Water Data (1982). The relations between flood discharges for specific recurrence interval floods and drainage area for these large streams are shown in figures 7-10.

Ocmulgee River

The Ocmulgee River begins at the confluence of the South and Alcovy Rivers, and flows southward to it confluence with the Oconee River to form the Altamaha River. The normal flow of the Ocmulgee River is regulated to some extent by the Lloyd Shoals Dam (station 02210000) (fig. 5). The Dam was constructed in 1910, has a drainage area of 1,400 mi², and maximum flood-storage capacity of approximately 20,000 acre-ft. The regulation from Lloyd Shoals Dam does not affect most annual peaks downstream from Macon (Price, 1978). The relation of flood discharge to drainage area for selected frequencies for the Ocmulgee River, which is in region 3, is based on the analysis of peak-discharge records from gaging stations 02213000, 02215000, and 02215500 is shown in figure 7. The slope of the flood-frequency discharge profiles varies somewhat because of changes in flood-plain storage between the three gaging stations downstream from Macon (fig. 7, table 1).

Oconee River

The Oconee River begins at the confluence of the Middle and North Oconee Rivers, and flows southward to the point where it joins the Ocmulgee River to form the Altamaha River. The Oconee River has two manmade reservoirs, Sinclair Reservoir (station 02222500) and Lake Oconee (station 02220450) (fig. 5). Sinclair Reservoir was constructed in 1952, has a drainage area of 2,900 mi², and a maximum flood-storage capacity of approximately 215,000 acre-ft. Lake Oconee was constructed in 1979 and has a maximum flood-storage capacity of 367,000 acre-ft. Because of the limited storage capacities, Sinclair Reservoir and Lake Oconee do not affect annual peak discharges downstream from Milledgeville (Price, 1978). The relation of flood discharge to drainage area for selected recurrence interval floods on the Oconee River, which is in region 3, is based on analysis of annual peak-discharge records from gaging stations 02223000, 02223500, and 02224500, are shown in figure 8. The slope of the flood-frequency discharge profiles varies because of increases in flood-plain storage between the three gaging stations downstream from Milledgeville (fig. 8, table 1).

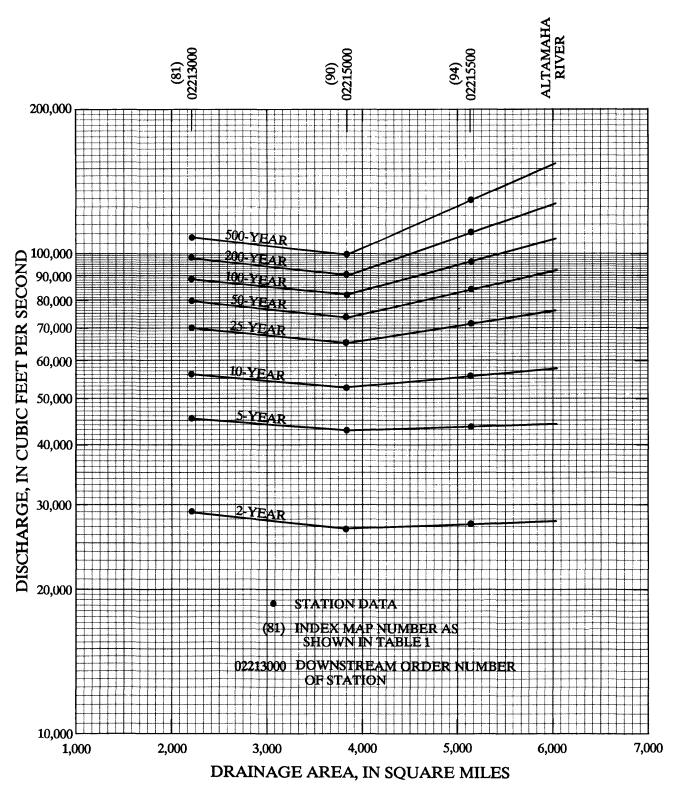


Figure 7.--Relation of flood discharge to drainage area for selected recurrence-interval floods in region 3 for the Ocmulgee River.

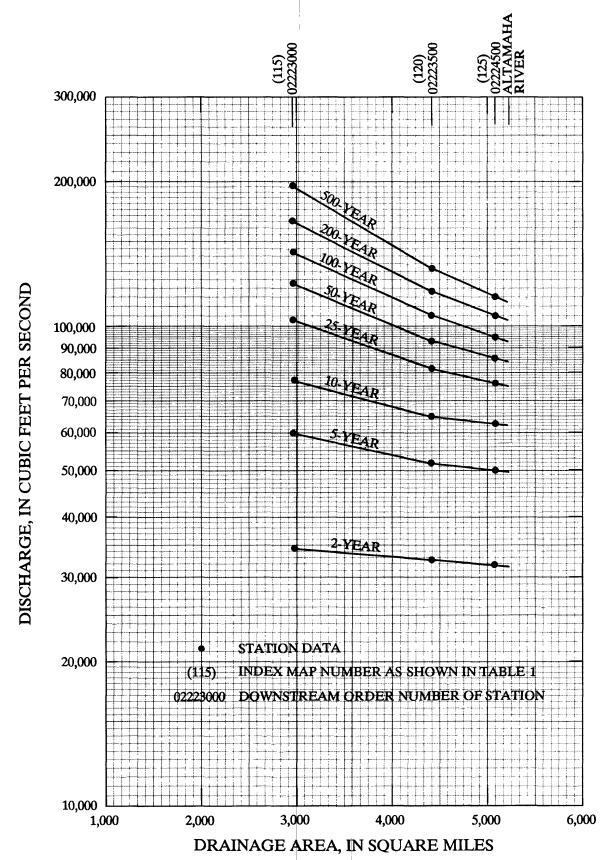
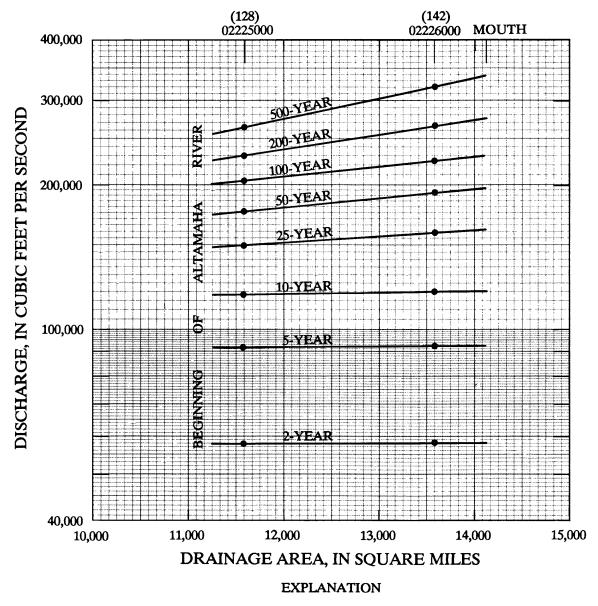



Figure 8.--Relation of flood discharge to drainage area for selected recurrence interval floods in region 3 for the Oconee River.

STATION DATA

(128) INDEX MAP NUMBER AS SHOWN IN TABLE 1
02226000 DOWNSTREAM ORDER NUMBER OF STATION

Figure 9.--Relation of flood discharge to drainage area for selected recurrence-interval floods in region 3 for the Altamaha River.

Altamaha River

The Altamaha River begins at the confluence of the Oconee and Ocmulgee Rivers, and flows southeastward into the Atlantic Ocean (fig. 5). The Altamaha River is not regulated, but the peak discharges are affected by large amounts of storage in the flood plain (Price, 1978). The relation of flood discharge to drainage area for selected recurrence interval floods for the Altamaha River, which is based on analysis of annual peak-discharge records from gaging stations 02225000 and 02226000, is shown in figure 9.

Flint River

The Flint River begins just south of Atlanta and flows southward to its confluence with the Chattahoochee River at the Georgia-Florida State Line to form the Apalachicola River. The Flint River has two reservoirs, Lake Blackshear (station 02350400) and Lake Worth (station 02350550) (fig. 5). Lake Blackshear and Lake Worth do not have sufficient storage to affect the flood peaks downstream (Price, 1978). The relation of flood discharge to drainage area for selected recurrence interval floods, which is based on analysis of annual peak-discharge records from gaging stations 02347500, 02349500, 02350500, 02352500, 02353000, and 02356000 is shown in figure 10.

SUMMARY

Peak-discharge data collected prior to September 1990 were analyzed for 426 streamflow sites on rural streams in Georgia, and adjacent parts of Alabama, Florida, North Carolina, South Carolina, and Tennessee with 10 or more years of record. Flood frequencies were computed using the Pearson Type III distribution with log transformation of annual peak discharges. Flood-frequency data were computed and weighted on the basis of the generalized and station skew coefficients. Flood-frequency data were also adjusted by using historic peaks, outliers, and truncated or incomplete records. Flood discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years were tabulated for the 426 sites. Basin and climatic characteristics were used in a multiple least-squares linear-regression analyses to develop regional flood-frequency relations. Drainage area was determined to be the most significant variable in the analyses and was the only independent variable used in the development of regional flood-frequency relations. Inclusion of other significant independent variables at the 95-percent confidence limit reduced the standard error of estimate by about 2 percent and were not used in the final regional flood-frequency relations because of their additional computational complexities. Four regions having distinct peak-discharge characteristics were delineated based on previous flood-frequency studies, geologic and soils maps, drainage basin maps, and map plots of residuals from an initial regression analysis.

The regional flood-frequency relations developed are applicable to streams in Georgia that are not affected by tide or by regulation, urbanization, or channelization. These regional flood-frequency relations were developed for computing discharges for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods. Average standard errors of prediction of the regional flood-frequency relations for regions 1, 2, 3, and 4 for the 2-through 500-year floods are 31, 32, 38, and 26 percent, respectively. Flood-frequency discharges at gaged sites can be estimated using a weighted-average discharge based on regional and site estimates. For ungaged sites on the same stream as a gaged site, where the drainage area of the ungaged site is one-half to two times the drainage area of the gaged site to the ungaged site and weighting the flood-frequency discharge at the ungaged site with the regional flood-frequency data. Flood-frequency discharges for sites in more than one region can be computed by assuming that the drainage basin is located entirely within each region, and then weighting the flood-frequency discharge based on the percentage of the drainage area contained in each region, provided that the limitations described for the region are not exceeded.

On large streams, where the regional flood-frequency relations do not apply, flood discharges for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval floods can be estimated from individual relations between flood discharges and drainage areas developed for the Ocmulgee, Oconee, Altamaha, and Flint Rivers within region 3. These flood-frequency relations are based on the log-Pearson Type III analyses of peak-discharge records for gaging stations on the four rivers.

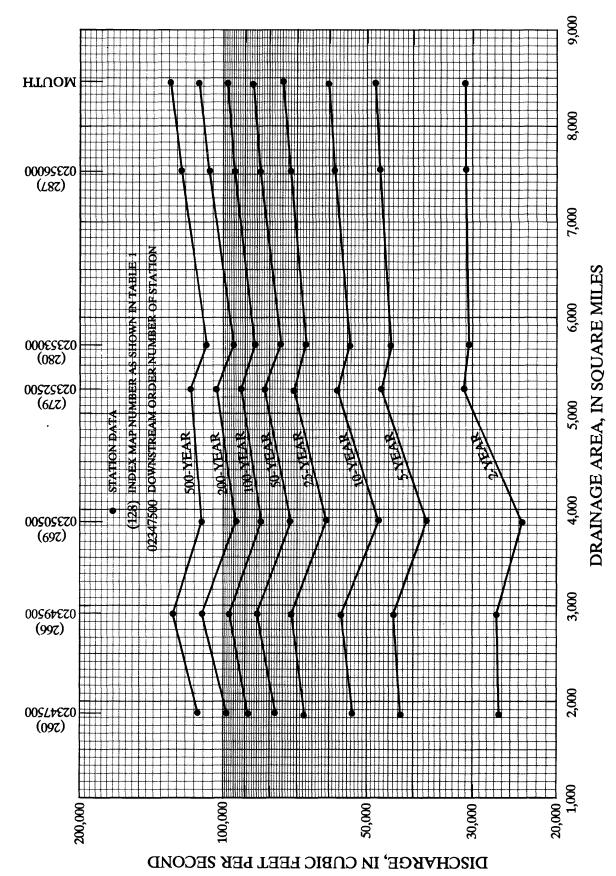


Figure 10.--Relation of flood discharge to drainage area for selected recurrence-interval floods in region 3 for the Flint River.

SELECTED REFERENCES

- Barnes, H.H., Jr., and Golden, H.G., 1966, Magnitude and frequency of floods in the United States, Part 2B, South Atlantic slope and eastern Gulf of Mexico basins, Ogeechee River to Pearl River: U.S. Geological Survey Water-Supply Paper 1674, 409 p.
- Bunch, C.M., and Price, McGlone, 1962, Floods in Georgia, magnitude and frequency: U.S. Geological Survey Open-File Report, 152 p.
- Carter, R.W., 1951, Floods in Georgia, magnitude and frequency: U.S. Geological Survey Circular 100, 127 p.
- Dalrymple, Tate, 1960, Flood-frequency analysis: U.S. Geological Survey Water-Supply Paper 1543-A, 80 p.
- Golden, H.G., and Hess, G.W., 1991, Georgia floods and droughts, in National Water Summary 1988-89, Hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 239-246.
- Golden, H.G., and Price, McGlone, 1976, Flood-frequency analysis for small natural streams in Georgia: U.S. Geological Survey Open-File Report 76-511, 75 p.
- Hardison, C.H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geological Survey Professional Paper 750-C, p. c228-c236.
- Hess, G.W., and Stamey, T.C., 1992, Annual peak discharges and stages for gaging stations in Georgia, through September 1990: U.S. Geological Open-File Report 92-113.
- Inman, E.J., 1983, Flood-frequency relations for urban streams in Metropolitan Atlanta, Georgia: U.S. Geological Survey, Water-Resources Invstigations Report 83-4203, 38 p.
- ---- 1988, Flood-frequency relations for urban streams in Georgia: U.S. Geological Survey Water-Resources Investigations Report 88-4085, 36 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for deterimining flood-flow frequency: Bulletin 17B, 183 p.
- Kirby, William, 1979, Log Pearson Type III flood-frequency analysis using guidelines of Water Resources Council (Program J407): U.S. Geological Survey Open-File Report 79-1336.
- Langbein, W.B, and Iseri, K.T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Price, McGlone, 1978, Floods in Georgia, magnitude and frequency: U.S. Geological Survey Water-Resources Investigations Report 78-137, 269 p.
- P-Stat, Inc., 1989, Regression--linear relationships in User's Manual: Princeton, N.J., ISBN 0-933754-08-06, v. II, p. 42.1-42.27.
- Riggs, H.C., 1973, Regional analysis of streamflow characteristics: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chapter B3, 15 p.
- Sanders, C.L., Jr., Kubik, H.E., Hoke, J.T., Jr., and Kirby, W.H., 1990, Flood frequency of the Savannah River at Augusta, Georgia: U.S. Geological Survey Water-Resources Investigations Report 90-4024, 87 p.
- Speer, P.R. and Gamble, C.R., 1964a, Magnitude and frequency of floods in the United States. Part 2A. South Atlantic slope basins, James River to Savannah River: U.S.Geological Survey Water-Supply Paper 1673, 329 p.
- ---- 1964b, Magnitude and frequency of floods in the United States, Part 3B, Cumberland and Tennessee River basins: U.S. Geological Survey Water-Supply Paper 1676, 340 p.

SELECTED REFERENCES--Continued

- U.S. Weather Bureau, 1925, Climatological data, Georgia section: Climate and Crop Service, Dept. of Agriculture, v. 29, no. 1, 9, p. 1, 48-50.
- ---- 1955, Rainfall intensity-duration-frequency curves: U.S. Weather Bureau Technical Paper 25, 18 p.
- ----- 1958, Rainfall intensity-frequency region: U.S. Weather Bureau Technical Paper 29, 51 p.
- ---- 1959, Climates of the States, Georgia: U.S. Weather Bureau, Climatography of the United States No. 60-9, 21 p.
- ---- 1961, Rainfall frequency atlas of the United States: Technical Paper no. 40, 50 p.

GLOSSARY

Some of the technical terms used in this report are defined for convenience of the reader. See Dalrymple (1960) and Langbein and Iseri (1960) for additional information regarding flood-frequency analyses and associated hydrological terminology. Statistical terms are defined with respect to flood-analysis applications in this report.

Annual peak discharge: The highest peak discharge in a water year, in cubic feet per second.

<u>Basin and climatic characteristics</u>: Parameters that describe the physical and climatic factors of a drainage basin. Parameters include drainage area, channel length and slope, storage, soil-infiltration index, mean annual precipitation, and rainfall intensity.

Basin length (L): The length, in miles, along the main channel from the streamflow station to the basin divide.

Bias: Systematic error or tendency to either over or under estimate the true value.

<u>Channel Slope (SL)</u>: The main channel slope, in feet per mile, measured between points which are 10 percent and 85 percent of the main channel length upstream from the study site.

<u>Crest-stage gage</u>: A device for recording only the elevation of the flood crest or peak of a stream.

<u>Distribution</u>: Function describing the relative frequency with which events of various magnitudes occur.

<u>Equivalent years of record</u>: Number of years of streamflow record that would be necessary to produce a flood frequency estimate with accuracy equal to that of the regression analysis.

<u>Exceedence probability</u>: Probability that a random event will exceed a specified magnitude in a given time period, usually one year, unless otherwise indicated. Recurrence interval is computed as the inverse of exceedence probability.

<u>Flood</u>: An overflow or inundation that comes from a river or other body of water, and causes or threatens damage. Any relatively high streamflow overtopping the natural or artificial banks in any reach of a stream.

<u>Generalized skew coefficient</u>: A skew coefficient of logarithms of annual maximum discharges derived by a procedure that integrates values obtained at many locations.

<u>Lag time</u>: Time, in hours, computed as the time from center-of-mass of rainfall excess to the center-of-mass of the corresponding runoff.

Mean: The value obtained by dividing the sum of a series of values by the number of values in the series.

<u>Multiple correlation coefficient</u>: A measure of the explanatory power of a regression involving two or more hydrologic variables.

Outlier: Data that departs significantly from the trend of the remaining data.

Rainfall intensity (RI₂): Rainfull intensity, in inches, for the 2-hour, 2-year occurrence, determined by U.S. Weather Bureau (1961).

<u>Recurrence interval (return period)</u>: The average interval of time within which the given flood will be exceeded at least once.

Residual: The difference between a station value and a value predicted by a regression equation.

GLOSSARY--Continued

<u>Skew coefficient</u>: Relative measure of the asymmetry of a flood-frequency distribution.

<u>Standard deviation</u>: A measure of the amount of variation in a sample. The standard deviation is determined by taking the square root of the average squared deviation of the observations from the means.

<u>Standard error of estimate</u>: A measure of the reliability of a regression equation. The standard error is the standard deviation of the residuals about the regression equation.

<u>Standard error of prediction</u>: A measure of how accurately the regression equation will estimate the dependent variables at locations other than calibration sites.

<u>Streamflow station</u>: A gaging station where a record of discharge is obtained. Within the U.S. Geological Survey, the term is used only for stations where a continuous record of discharge is obtained.

Stream length: Distance, in miles, along main channel from the gaging station to the basin divide.

<u>Student's "t" test</u>: A standard statistical test frequently used to determine the significance of a deviation of an individual parameter from a specified value.

<u>Water year</u>: The 12-month period beginning October 1 and ending September 30, and designated by the calender year in which it ends.

<u>Weighted means</u>: A value obtained by multiplying each of a series of values by the assigned weight, and dividing by the sum of weights.

APPENDIX I.

ALPHABETICAL LISTING OF STREAMFLOW SITES IN GEORGIA

ALPHABETICAL LISTING OF STREAMFLOW SITES IN GEORGIA

Streamflow sites in Georgia used in the regionalization study are listed in alphabetical order. This list is intended to aid the user in locating streamflow sites by name, and referencing the name with the USGS station number, and associated data listed in table 1.

Station number	Station name and location	Map number	Region number
02350520	Abrams Creek tributary near Doles	270	3
02227290	Alabaha River near Blackshear	154	3
02315650	Alapaha River tributary no. 2 near Pitts	168	3
02316260	Alapaha River tributary no. 4 near Willacoochee	175	3
02316390	Alapaha River at Lakeland	176	3
02315700	Alapaha River at Rebecca	169	3
02317500	Alapaha River at Statenville	177	3
02316000	Alapaha River near Alapaha	172	3
02208450	Alcovy River above Covington	74	2
02208050	Alcovy River near Lawrenceville	72	2
02209000	Alcovy River below Covington	75	2
02217000	Allen Creek at Talmo	97	2
02216100	Alligator Creek near Alamo	96	3
02226000	Altamaha River at Doctortown	142	3
02225000	Altamaha River near Baxley	128	3
02390000	Amicalola Creek near Dawsonville	328	1
02192420	Anderson Mill Creek tributary near Danburg	25	2
02192400	Anderson Mill Creek near Danburg	24	2
02219000	Apalachee River near Bostwick	109	2
02219500	Apalachee River near Buckhead	110	2
02317810	Arnold Creek tributary near Tifton	190	3
02317820	Arnold Creek near Tifton	191	3
02326200	Aucilla River near Boston	208	4
02387800	Bailey Creek near Villanow	320	1
02215280	Ball Creek tributary near Rochelle	93	3
02381900	Ball Creek near Talking Rock	2 96	1
02327550	Barnetts Creek near Meigs	215	4
02327700	Barnetts Creek near Thomasville	216	4
02387200	Beamer Creek near Spring Place	314	1
02189600	Bear Creek near Mize	7	2
02225850	Beards Creek near Glennville	141	3
02225330	Beaver Creek near Cobbtown	138	3
02208200	Beaverdam Creek tributary at Bold Springs	73	2
02188500	Beaverdam Creek at Dewy Rose	4	2
02335700	Big Creek near Alpharetta	230	1
02226580	Big Creek near Hoboken	148	3
02200900	Big Creek near Louisville	42	3
02214500	Big Indian Creek at Perry	89	3

Station number	Station name and location	1	Map number	Regior numbe
02223349	Big Sandy Creek tributary near Irwinton		118	3
02223360	Big Sandy Creek near Irwinton		119	3
02223300	Big Sandy Creek near Jeffersonville		117	3
02227400	Big Satilla Creek near Alma		155	3
02211459	Big Towaliga Creek near Barnesville		77	2
02202600	Black Creek near Blitchton		55	3
02343219	Bluff Springs Branch near Lumpkin		248	2
02201160	Boggy Gut Creek near Wadley		47	3
02198000	Brier Creek at Millhaven		36	3
02197520	Brier Creek near Thomson		31	3
02197830	Brier Creek near Waynesboro		35	3
02191300	Broad River above Carlton		14	2
02192000	Broad River near Bell		22	2
02191890	Brooks Creek near Lexington		17	2
02197600	Brushy Creek near Wrens		33	3
02349330	Buck Creek tributary near Tazewell		264	3
02349350	Buck Creek near Ellaville		265	3
02201350	Buckhead Creek near Waynesboro		49	3
02217250	Buffalo Creek tributary near Jefferson		99	2
02228050	Buffalo Creek at Hickox		162	3
02191930	Buffalo Creek near Lexington		19	2
02318020	Bull Creek tributary near Ellenton		203	4
02318015	Bull Creek near Norman Park		202	4
02344300	Camp Creek near Fayetteville	1	250	2
02202800	Canoochee Creek near Swainsboro		56	3
02203280	Canoochee River near Daisy		65	3
02203000	Canoochee River near Claxton		64	3
02202865	Canoochee River near Metter		60	3
02379500	Cartecay River near Ellijay		291	1
02397410	Cedar Creek at Cedartown		338	1
02397500	Cedar Creek near Cedartown		339	1
02215230	Cedar Creek near Pineview		91	3
02349030	Cedar Creek near Rupert		263	3
02336000	Chattahoochee River at Atlanta		231	1
02330450	Chattahoochee River at Helen		221	1
02339500	Chattahoochee River at West Point		240	2
02334500	Chattahoochee River near Buford		227	1
02331600	Chattahoochee River near Cornelia		224	1
02333000	Chattahoochee River near Gainesville		225	1
02333000	Chattahoochee River near Leaf		222	1
02335000	Chattahoochee River near Norcross		228	1
02335500	Chattahoochee River near Roswell		229	1
02333300	Chattahoochee River near Whitesburg		236	1
02330000	Chattanoochee River hear Whitesourg Chattanooga Creek near Flintstone		356	1

Station number	Station name and location	Map number	Region number	
02398000	Chattooga River at Summerville	342	1	
02177000	Chattooga River near Clayton	1	1	
02333500	Chestatee River near Dahlonega at Elmodel	226	1	
02354500	Chickasawhatchee Creek near Plains	285	3	
02350685	Choctahatchee Creek Tributary	272	3	
02385000	Coahulla Creek near Varnell	309	1	
02225100	Cobb Creek near Lyons	129	3	
02346217	Coleoatchee Creek near Manchester	258	3	
02223200	Commissioner Creek at Toomsboro	116	3	
02387000	Conasauga River at Tilton	312	1	
02384500	Conasauga River near Eton	307	1	
02384000	Conasauga River near Tennga	306	1	
02397000	Coosa River near Rome	337	1	
02382500	Coosawattee River at Carters	298	1	
02380500	Coosawattee River near Ellijay	293	1	
02383500	Coosawattee River near Pine Chapel	305	1	
02227422	Crooked Creek tributary near Bristol	156	3	
02225240	Crooked Creek near Kite	134	3	
02224400	Cypress Creek near Tarrytown	124	3	
02202950	Cypress Flat Creek near Collins	63	3	
02317775	Daniels Creek near Ashburn	186	3	
02387300	Dead Mans Branch near Resaca	315	1	
02315900	Deep Creek near Ashburn	170	3	
02337400	Dog River near Douglasville	233	1	
02190800	Double Branch at Bowersville	10	2	
02191600	Double Branch near Danielsville	15	2	
02388400	Dozier Creek near Shannon	323	1	
02382800	Dry Creek at Oakman	300	1	
02397750	Duck Creek above Lafayette	340	1	
02214000	Echeconnee Creek near Macon	87	2	
02380000	Ellijay River at Ellijay	292	1	
02394000	Etowah River above Cartersville	331	1	
02392000	Etowah River at Canton	330	1	
02396000	Etowah River at Rome	336	1	
02391000	Etowah River near Ball Ground	329	1	
02388900	Etowah River near Dahlonega	325	1	
02389000	Etowah River near Dawsonville	326	1	
02395000	Etowah River near Kingston	334	1	
02212600	Falling Creek near Juliette	80	2	
02381600	Fausett Creek near Talking Rock	295	1	
02202900	Fifteenmile Creek near Metter	61	3	
03560000	Fightingtown Creek at McCaysville	350	1	
02340250	Flat Shoal Creek near West Point	241	3	
02352500	Flint River at Albany	279	3	
02356000	Flint River at Bainbridge	287	3	

Station number	Station name and location	Ma numb	
02349500	Flint River at Montezuma	266	3
02353000	Flint River at Newton	280	
02350500	Flint River at Oakfield	269	
02347500	Flint River near Culloden	260	
02344500	Flint River near Griffin	251	
02345000	Flint River near Molena	253	
02346180	Flint River near Thomaston	255	
02345500	Flint River near Woodbury	254	
02215245	Folsom Creek tributary near Rochelle	92	
02191750	Fork Creek at Carlton	16	
02207000	Garner Creek near Snellville	70	
02193400	Harden Creek near Sharon	27	
02397830	Harrisburg Creek near Hawkins	341	
02394950	Hills Creek near Taylorsville	333	
03545000	Hiwassee River at Presley	346	
02192300	Hog Fork Fishing Creek tributary near Tigna		
02385800	Holly Creek near Chatsworth	311	
02349695	Horsehead Creek at near Montezuma	267	
02191200	Hudson River at Homer	11	
02202810	Hughes Prong near Swainsboro	57	
02225210	Hurricane Branch near Wrightsville	133	
02337448	Hurricane Creek Tributary near Fairplay	234	
02227000	Hurricane Creek near Alma	151	
02353500	Ichawaynochaway Creek at Milford	284	
02353100	Ichawaynochaway Creek near Graves	281	
02355000	Ichawaynochaway Creek near Newton	286	
02223700	Indian Branch tributary near Scott	121	
02189020	Indian Creek near Carnesville	5	
02315980	Jacks Creek near Ocilla	171	
02341600	Juniper Creek near Geneva	243	
02346210	Kimbrough Creek near Talbotton	257	
02350600	Kinchafoonee Creek at Preston	271	
02350900	Kinchafoonee Creek near Dawson	273	
02317780	Lime Sink Creek near Sycamore	187	
02344700	Line Creek near Senoia	252	
02197550	Little Brier Creek near Thomson	32	
02316220	Little Brushy Creek near Ocilla	174	
03566687	Little Chickamauga Creek tributary near Rin		
03566685	Little Chickamauga Creek near Ringgold	352	
02317905	Little Creek near Omega	198	
02317890	Little Creek near Sylvester	196	
02226190	Little Creek near Willacoochee	144	
02217660	Little Curry Creek near Jefferson	103	
02227200	Little Hurricane Creek below Alma	153	
02227100	Little Hurricane Creek near Alma	152	

Station number	Station name and location	Map number	Region number
02353200	Little Ichawaynochaway Creek near Shellman	282	3
02191970	Little Macks Creek near Lexington	21	2
02327415	Little Ochlockonee River near Moultrie	213	4
02216000	Little Ocmulgee River at Towns	95	3
02200100	Little Ogeechee River at Hamburg	39	3
02225250	Little Ohoopee River near Swainsboro	135	3
02225200	Little Ohoopee River near Wrightsville	132	3
02317800	Little River near Tifton	189	3
02318000	Little River near Adel	201	4
02317760	Little River near Ashburn	183	3
02411800	Little River near Buchanan	344	1
02220900	Little River near Eatonton	112	2
02317830	Little River near Lenox	192	3
02194000	Little River near Lincolnton	30	2
02317980	Little River near Sparks	200	4
02193500	Little River near Washington	28	2
02227470	Little Satilla Creek near Jesup	158	3
02227430	Little Satilla Creek at Odum	157	3
02227500	Little Satilla River near Offerman	159	3
02213400	Little Tobesofkee Creek near Forsyth	84	2
03568933	Lookout Creek near New England	357	1
02191960	Macks Creek near Lexington	20	2
02411735	McClendon Creek tributary near Dallas	343	1
02224200	Mercer Creek near Soperton	123	3
02217500	Middle Oconee River near Athens	102	2
02217200	Middle Oconee River near Jefferson	98	2
02317795	Mill Creek near Tifton	188	3
02191280	Mill Shoal Creek near Royston	13	2
02340500	Mountain Oak Creek near Hamilton	242	2
02381100	Mountaintown Creek tributary near Ellijay	294	1
02351890	Muckalee Creek near Leesburg	277	3
02351500	Muckalee Creek near Americus	274	3
02351900	Muckalee Creek near Leesburg	27 8	3
02351700	Muckalee Creek near Smithville	275	3
02351800	Muckaloochee Creek at Smithville	27 6	3
02217450	Mulberry River tributary near Jefferson	101	2
02217400	Mulberry River tributary near Winder	100	2
02225180	Mulepen Creek near Adrian	131	3
02221525	Murder Creek below Eatonton	114	2
02221000	Murder Creek near Monticello	113	2
02201110	Nails Creek near Bartow	46	3
02317730	New River tributary near Nashville	180	3
02338660	New River near Corinth	237	2
02317734	New River near Nashville	181	3
02317770	Newell Branch near Ashburn	185	3

Station number	Station name and location	Map number	Region number
02317765	Newell Branch near Worth	184	3
02217900	North Oconee River at Athens	104	2
02228500	North Prong St Marys River at Moniac	163	3
03550500	Nottely River near Blairsville	347	1
02341900	Ochillee Creek near Cussetta	246	2
02327350	Ochlockonee River tributary near Coolidge	210	4
02327355	Ochlockonee River near Coolidge	211	4
02327200	Ochlockonee River at Moultrie	209	4
02327810	Ochlockonee River near Cairo	217	4
02327500	Ochlockonee River near Thomasville	214	4
02215000	Ocmulgee River at Hawkinsville	90	3
02212500	Ocmulgee River at Juliette	79	2
02215500	Ocmulgee River at Lumber City	94	3
02213000	Ocmulgee River at Macon	81	2
02224800	Oconee River tributary no. 2 near Glenwood	127	3
02223500	Oconee River at Dublin	120	3
02223000	Oconee River at Milledgeville	115	2
02218500	Oconee River near Greensboro	108	2
02224500	Oconee River near Mount Vernon	125	3
02218300	Oconee River near Penfield	106	2
02200000	Ogeechee River at Jewell	38	2
02202150	Ogeechee River near Dover	53	3
02200950	Ogeechee River near Wadley	44	3
02202000	Ogeechee River at Scarboro	52	3
02202500	Ogeechee River near Eden	54	3
02200500	Ogeechee River near Louisville	41	3
02225320	Ohoopee River near Aline	137	3
02225300	Ohoopee River near Oak Park	136	3
02225500	Ohoopee River near Reidsville	140	3
02225150	Ohoopee River near Wrightsville	130	3
02318700	Okapilco Creek near Quitman	206	4
02318725	Okapilco Creek at Quitman	207	4
02318600	Okapilco Creek near Berlin	205	4
02387500	Oostanaula River at Resaca	316	1
02388500	Oostanaula River near Rome	324	1
02387560	Oothkalooga Creek tributary at Adairsville	317	1
02387570	Oothkalooga Creek at Adairsville	318	1
02353400	Pachitla Creek near Edison	283	3
02182000	Panther Creek near Toccoa	3	1
02343225	Pataula Creek near Georgetown	249	2
02343200	Pataula Creek near Lumpkin	247	2
02348300	Patsiliga Creek near Reynolds	261	3
02226100	Penholoway Creek near Jesup	143	3
02224650	Peterson Creek at Glenwood	126	3
02205500	Pew Creek near Lawrenceville	67	2

Station number	Station name and location	Map number	Region number	
02341723	Pine Knot Creek near Juniper	244	2	
02382900	Pine Log Creek near Rydal	301	1	
02384600	Pinhook Creek near Eton	308	1	
02387100	Polecat Creek near Spring Place	313	1	
02327860	Popple Branch near Whigham	218	4	
02218100	Porters Creek at Watkinsville	105	2	
02346500	Potato Creek near Thomaston	259	2	
02394400	Pumpkinvine Creek below Dallas	332	1	
02383220	Redbud Creek tributary near Ranger	304	1	
02383200	Redbud Creek near Ranger	303	1	
02202850	Reedy Branch near Metter	59	3	
02225350	Reedy Creek tributary near Soperton	139	3	
02202820	Reedy Creek near Twin City	58	3	
02201800	Richardson Creek near Millen	50	3	
02385700	Rock Creek near Chatsworth	310	1	
02383000	Rock Creek near Fairmount	302	1	
02200400	Rocky Comfort Creek near Grange	40	3	
02387700	Rocky Creek at Curryville	319	1	
02224000	Rocky Creek near Dudley	122	3	
02193600	Rocky Creek near Washington	29	2	
02327400	Sallys Branch tributary near Sale City	212	4	
02227990	Satilla River tributary no. 2 at Atkinson	1 60	3	
02228000	Satilla River at Atkinson	161	3	
02226300	Satilla River near Pearson	146	3	
02226200	Satilla River near Douglas	145	3	
02226582	Satilla River near Hoboken	149	3	
02226500	Satilla River near Waycross	147	3	
02214280	Savage Creek near Bullard	88	3	
02346193	Scott Creek near Talbotton	256	2	
02191270	Scull Shoal Creek near Danielsville	12	2	
02201830	Sculls Creek near Millen	51	3	
02201250	Seals Creek tributary near Midville	48	3	
02206000	Shetley Creek near Norcross	68	2	
02389300	Shoal Creek near Dawsonville	327	1	
02337500	Snake Creek near Whitesburg	235	1	
02331500	Soque River near Demorest	223	1	
03566700	South Chickamauga Creek at Ringgold	354	1	
02199700	South Fork Ogeechee River near Crawfordville	37	2	
02204500	South River near McDonough	66	2	
02356640	Spring Creek at Colquitt	289	3	
02356100	Spring Creek near Arlington	288	3	
02357000	Spring Creek near Iron City	290	3	
02200930	Spring Creek near Louisville	43	3	
02231100	St Marys River near St. George	164	3	
02189030	Stephens Creek tributary at Carnesville	6	2	

02193300 Stephens Creek near Crawfordville 26 02388200 Storey Mill Creek near Summerville 322 02382600 Sugar Creek near Chatsworth 299 03566660 Sugar Creek near Ringgold 351 02314500 Suwannee River at Fargo 165 02314700 Suwannoochee Creek near Thelma 167 02314600 Suwannoochee Creek at Dupont 166 02337000 Sweetwater Creek near Austell 232 02382200 Talking Rock Creek near Hinton 297	2 1
02382600Sugar Creek near Chatsworth29903566660Sugar Creek near Ringgold35102314500Suwannee River at Fargo16502314700Suwannoochee Creek near Thelma16702314600Suwannoochee Creek at Dupont16602337000Sweetwater Creek near Austell232	1
03566660Sugar Creek near Ringgold35102314500Suwannee River at Fargo16502314700Suwannoochee Creek near Thelma16702314600Suwannoochee Creek at Dupont16602337000Sweetwater Creek near Austell232	-
02314500Suwannee River at Fargo16502314700Suwannoochee Creek near Thelma16702314600Suwannoochee Creek at Dupont16602337000Sweetwater Creek near Austell232	1
02314500Suwannee River at Fargo16502314700Suwannoochee Creek near Thelma16702314600Suwannoochee Creek at Dupont16602337000Sweetwater Creek near Austell232	1
02314700Suwannoochee Creek near Thelma16702314600Suwannoochee Creek at Dupont16602337000Sweetwater Creek near Austell232	3
02337000 Sweetwater Creek near Austell 232	3
02337000 Sweetwater Creek near Austell 232	3
02382200 Talking Rock Creek near Hinton 297	1
	1
02411900 Tallapoosa River at Tallapoosa 345	1
02178400 Tallulah River near Clayton 2	1
02202910 Ten Mile Creek tributary at Pulaski 62	3
02328000 Tired Creek near Cairo 220	4
02213470 Tobesofkee Creek above Macon 85	2
02213350 Tobesofkee Creek below Forsyth 83	2
02213500 Tobesofkee Creek near Macon 86	2
03559000 Toccoa River near Blue Ridge 349	1
03558000 Toccoa River near Dial 348	1
02190200 Toms Creek tributary near Avalon 9	2
02190100 Toms Creek near Eastanollee 8	2
02211500 Towaliga River near Forsyth 78	2
02211300 Towaliga River near Jackson 76	2
02218450 Town Creek near Greensboro 107	2
02191910 Trouble Creek at Lexington 18	2
02349900 Turkey Creek at Byromville 268	3
02395120 Two Run Creek near Kingston 335	1
02317910 Ty Ty Creek tributary at Crosland 199	3
02317900 Ty Ty Creek at Ty Ty 197	3
02341800 Upatoi Creek near Columbus 245	2
02197810 Walnut Branch near Waynesboro 34	3
02213050 Walnut Creek near Gray 82	2
02317845 Warrior Creek tributary near Sylvester 194	3
02317870 Warrior Creek near Sumner 195	3
02317840 Warrior Creek near Sylvester 193	3
02388000 West Armuchee Creek near Subligna 321	1
03567200 West Chickamauga Creek near Kensington 355	1
02226700 Whitehead Creek near Denton 150	3
02349000 Whitewater Creek below Butler 262	3
02220550 Whitten Creek near Sparta 111	2
02316200 Willacoochee River near Ocilla 173	3
02201000 Williamson Swamp Creek at Davisboro 45	3
02317710 Withlacoochee River tributary near Nashville 179	3
02318500 Withlacoochee River near Quitman 204	4
023177483 Withlacoochee River near Bemiss 182	4
02317700 Withlacoochee River near Nashville 178	3

Station number	Station name and location	Map number	Region number	
02327900	Wolf Creek near Whigham	219	4	
02207500	Yellow River near Covington	71	2	
02206500	Yellow River near Snellville	69	2	
02338775	Yellowjacket Creek at Hogansville	238	2	
02339000	Yellowjacket Creek near LaGrange	239	2	

APPENDIX II.

ALPHABETICAL LISTING OF STREAMFLOW SITES OUTSIDE OF GEORGIA

ALPHABETICAL LISTING OF STREAMFLOW SITES OUTSIDE OF GEORGIA

Streamflow sites outside of Georgia used in the regionalization study are listed in alphabetical order. This list is intended to aid the user in indentifying streamflow sites by name; and referencing the name with the U.S. Geological Survey station number and region number of where the site was included.

Station number	Station name and location	Region number
02343275	Abbie Creek near Abbeville, Ala.	2
02343300	Abbie Creek near Haleburg, Ala.	2
02326500	Aucilla River near Lamont, Fla.	4
02343000	Barbour Creek near Eufaula, Ala.	2
03571800	Battle Creek near Monteagle, Tenn.	1
02246150	Big Davis Creek at Bayard, Fla.	3
02187900	Broadway Creek near Anderson, S.C.	2
02412050	Cane Creek near Heflin, Ala.	1
02326598	Caney Creek near Monticello, Fla.	4
03500240	Cartoogechaye Creek near Franklin, N.C.	1
02246832	Cedar Creek near Jacksonville, Fla.	3
02398300	Chattooga River near Gaylesville, Ala.	1
02359000	Chipola River near Altha, Fla.	3
02361000	Choctawatchee River near Newton, Ala.	4
02176000	Coosawhatchee River near Hampton, S.C.	3
03501000	Cullasaja River at Cullasaja, N.C.	1
03441000	Davidson River near Brevard, N.C.	1
03560500	Davis Mill Creek at Copperhill, Tenn.	1
02358600	Flat Creek near Chattahoochee, Fla.	4
03439000	French Broad River at Rosman, N.C.	1
03458500	Hiwassee River above Murphy, N.C.	1
02185000	Keowee River at Jocassee, S.C.	1
03441440	Little River above High Falls near Cedar Mountain, N.C.	1
02399200	Little River near Blue Pond, Ala.	1
02399000	Little River near Jamestown, Ala.	1
02192500	Little River near Mt. Carmel, S.C.	2
02329500	Little River near Quincy, Fla.	4
02185200	Little River near Wahalla, S.C.	1
02231250	Little St Marys River near Hilliard, Fla.	3
02229000	Middle Prong St Marys River at Taylor, Fla.	3
03446000	Mills River near Mills River, N.C.	1
02246900	Moultrie Creek near St. Augustine, Fla.	3
03554000	Nottely River near Ranger, N.C.	1
02329000	Ochlockonee River near Havana, Fla.	4
02246300	Ortega River at Jacksonville, Fla.	3
02340750	Osanippa Creek near Fairfax, Ala.	2
02246828	Pablo Creek at Jacksonville, Fla.	3
02342200	Phelps Creek near Opelika, Ala.	2
02231230	Pigeon Creek at Boulogne, Fla.	3
02329700	Rocky Comfort Creek near Quincy, Fla.	4

Station number	Station name and location	Region number
02188000	Rocky River near Calhoun Falls, S.C.	2
02187000	Seneca River near Anderson, S.C.	2
03546000	Shooting Creek near Hayesville, N.C.	1
03567500	South Chickamauga River near Chickamauga, Tenn.	1
02342933	South Fork Cowikee Creek near Batesville, Ala.	2
02230500	South Prong St Marys River at Glen St Marys, Fla.	3
02231000	St Marys River near Macclenny, Fla.	3
02324000	Steinhatchee River near Cross City, Fla.	3
02196000	Stevens Creek near Modoc, S.C.	2
02343700	Stevenson Creek near Headland, Ala.	3 2 2
02321700	Swift Creek near Lake Butler, Fla.	3
02414500	Tallapoosa River at Wadley, Ala.	1
02412000	Tallapoosa River near Heslin, Ala.	1
02412500	Tallapoosa River near Ofelia, Ala.	1
02330100	Telogia Creek near Bristol, Fla.	4
02400100	Terrapin Creek at Ellisville, Ala.	1
02400000	Terrapin Creek near Piedmont, Ala.	1
02246600	Trout River at Dinsmore, Fla.	3
02230000	Turkey Creek at Macclenny, Fla.	3
03556000	Turtletown Creek at Turtletown, Tenn.	1
02186000	Twelvemile Creek near Liberty, S.C.	$\overline{2}$
02342500	Uchee Creek near Fort Mitchell, Ala.	2
02342150	Uchee Creek near Seale, Ala.	2
03550000	Valley River at Tomotla, N.C.	1
02339225	Wehadkee Creek below Rock Mills, Ala.	2
03455500	West Fork Pigeon River near Hazelwood, N.C.	1
02184500	Whitewater River near Jocassee, S.C.	1
02319000	Withlacoochee River near Pinetta, Fla.	4
03566420	Wolftever Creek near Ooltewah, Tenn.	1

Table 1.--Flood-frequency discharge data for rural streams in Georgia

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= =, region 3 mainstem stream, use top line discharges]

×	n of s) record	99	56	51	35	13	13	13	13	14	16	29
	deviation (log units)	0.23	.26	.38	.26	.24	.21	.33	.28	.24	.27	.28
Generalized	skew (log units)	0.40	10	05	.18	.22	32	80.	.33	31	21	90:-
Drainage	area (mi ²)	207	56.5	32.5	35.8	7.63	0.39	3.62	3.79	1.20	0.50	61.1
years,	200	45,400 41,700	15,200 15,000	26,400 20,900	8,820 9,140	4,810 4,180	351 509	3,940 2,940	4,160	1,340	909	13,900 13,700
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	200	36,400 34,000	12,900 12,700	20,500 16,700	7,150 7,460	3,910 3,450	316 428	3,080	3,230 2,490	1,190	781 684	11,600
recurrence ond)	100	30,500 28,800	11,200	16,600 13,800	6,030 6,310	3,310 2,960	289	2,520 2,040	2,640	1,070	687 596	9,930
data for indicated recu (cubic feet per second)	50	25,300 24,200	9,660	13,200 11,400	5,010 5,260	2,770 2,500	262 320	2,020	2,130	953 837	595 511	8,390
ge data for (cubic fe	25	20,700	8,160	10,200	4,100 4,310	2,270 2,070	233 270	1,590	1,690	832 716	506 432	6,950
ood dischar	10	15,400 15,200	6,260 6,190	6,850 6,550	3,020 3,160	1,690	193	1,100	1,190	668 571	391	5,180 5,160
Fi	5	11,800	4,860	4,690	2,290 2,370	1,290	160 164	781 746	872 810	537	304	3,920 3,920
	2	7,390	2,970 2,960	2,250 2,240	se 1,370 1,400	792 754	110	411	499 478	alon 343 305	184	2,280
	Station name	Chattooga River near Clayton	Tallulah River near Clayton	Panther Creek near Toccoa	Beaverdam Creek at Dewy Rose	Indian Creek near Carnesville	Stephens Creek tributary at Camesville	Bear Creck near Mize	Toms Creek near Eastanollee	Toms Creek tributary near Avalon	Double Branch at Bowersville	Hudson River at Homer
:	Station	02177000	02178400	02182000	02188500	02189020	02189030	02189600	02190100	02190200	02190800	02191200
	Region no.	1	-	1	7	7	2	2	7	7	2	2
;	Map no.	1	2	ю	4	v	9	7	∞	6	10	11

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.
 Top line for each station entry is the log-Pearson Type III discharge;
 bottom line is the weighted-average or best-estimate discharge;
 = , region 3 mainstem stream, use top line discharges]

Years	of record	12	24	92	13	12	16	18	27	17	27	89
Standard	deviation (log units)	\$;	.25	.26	.33	.22	.35	.28	.28	.31	.33	.20
Generalized	skew (log units)	15	35	11	96.	4 0	31	.03	.12	.13	17	07
ge	area (mi ²)	8.75	0.32	092	4.77	16.0	12.3	2.70	5.60	3.45	1.77	1,430
	800	4,660	390 465	000,89	4,030 3,280	3,600 4,970	7,790 6,130	1,250	3,250 3,220	1,740 2,070	1,310	84,400 85,600
nterval in y	200	3,670 3,530	354 400	59,200 57,700	3,200	3,100 4,130	6,500	954 1,280	2,620	1,360	1,080	73,600
currence ii d)	100	3,000 2,970	324 353	51,700 50,400	2,640	2,730	5,570 4,460	781 1,050	2,210 2,220	1,120 1,370	920 993	65,800
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	80	2,430 2,470	294 309	44,400	2,140	2,380	4,680 3,790	663 884	1,830	907	768 830	58,100 57,400
data for i (cubic fee	25	2,020	261 266	37,500 36,700	1,700	2,050	3,840 3,170	554 721	1,490	718	627 676	50,500 49,700
d discharge	01	1,560	214	28,700 28,200	1,190	1,610	2,780 2,410	454 544	1,080	503 618	454 485	40,600
Floo	S	1,270 1,240	174	22,300	847	1,290	2,020	334	810 827	363 433	332 352	33,100 32,400
	5	lsville 664 673	no 111 107	13,500	nille 444 452	837 879	1,050	251 264	471	198 225	ngton 179 187	22,200 21,800
	Station name	Scull Shoal Creek near Danielsville	Mill Shoal Creek near Royston	Broad River above Carlton	Double Branch near Danielsvill	Fork Creek at Carlton	Brooks Creek near Lexington	Trouble Creek at Lexington	Buffalo Creek near Lexington	Macks Creek near Lexington	Little Macks Creek near Lexington	Broad River near Bell
	Station	02191270	02191280	02191300	02191600	02191750	02191890	02191910	02191930	02191960	02191970	02192000
	Region no.	7	2	2	2	7	7	7	7	7	2	7
;	Map no.	12	13	14	15	16	17	18	19	20	21	22

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= =, region 3 mainstem stream, use top line discharges]

	Years	of record	30	12	12	13	12	23	12	10	23	16	32
	Standard	deviation (log units)	85	.29	.38	23	23	.28	.18	.21	.20	24	.26
	Generalized	skew (log units)	40	36	37	.22	14	50	29	.29	.05	13	13
	Drainage	area (mi ²)	0.09	5.49	0.92	6.30	3.98	291	1.14	574	55.0	24.0	28.0
cars,		200	197 222	2,660 2,960	1,150	4,290 3,730	1,930 2,330	28,100 30,900	1,040	40,700 47,700	8,820 7,350	2,830 3,200	1,830 2,450
nterval in y		200	173	2,320 2,490	958 912	3,540 3,100	1,680	25,000	942 981	33,800 39,500	7,630	2,440	1,660 2,120
currence ii d)		100	154 164	2,060 2,160	820 781	3,030 2,670	1,500	22,600 23,400	863	29,100 33,900	6,770 5,450	2,160 2,340	1,470
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)		50	136	1,810	687 657	2,560	1,330	20,200	794 753	24,800 28,800	5,940 4,720	1,890	1,180
data for i		25	117	1,550	560 540	2,130	1,150	17,600	716	20,800	5,140 4,090	1,620	1,000
d discharge		10	35	1,200	401 396	1,620	922	13,900 13,700	605 526	16,100 18,000	4,120 3,370	1,280 1,270	770 886
Flood		S	72	933 916	287	1,260	745 738	11,000	513 439	12,700 13,800	3,350 2,870	1,010	600
		2	43	554 546	143 149	797 737	489 473	6,610 6,550	366 313	8,370	2,270 2,040	645 628	367
		Station name	Hog Fork Fishing Creek tributary near Tignall	Anderson Mill Creek near Danburg	Anderson Mill Creek tributary near Danburg	Stephens Creek near Crawford	Harden Creek near Sharon	Little River near Washington	Rocky Creek near Washington	Little River near Lincolnton	Brier Creek near Thomson	Little Brier Creek near Thomson	Brushy Creek near Wrens
	,	Station	02192300	02192400	02192420	02193300	02193400	02193500	02193600	02194000	02197520	02197550	02197600
		Map Kegion no. no.	7	2	2	2	2	2	61	2	3	8	3
	:	Map no.	23	24	25	56	27	28	29	30	31	32	33

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	ot record	11	24	55	20	11	56	12	¥	78	56	24
Standard	deviation (log units)	.18	.26	.28	.24	œ.	.36	.26	.31	.28	32	.19
Generalized	skew (log units)	83	.39	.30	31	.27	05	09	51	08	\$2:	.40
Drainage	area (mi ²)	11.9	473	946	31.3	242	55.0	188	800	95.8	14.2	066
1	200	1,440	42,300	34,600 32,800	5,430	47,800 35,700	8,530	8,140	39,600 40,300	5,010 6,240	2,400	47,800 47,100
nterval in y	200	1,220	30,200	25,700 25,000	4,810 5,940	36,600	6,720 5,890	6,890 9,010	35,100 34,800	4,350 5,270	1,820	39,200 38,500
currence ii d)	100	1,110	23,200	20,200	4,340	29,600	5,510 4,910	5,990	31,500 30,800	3,880 4,610	1,460	33,500 32,900
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	995	17,700	15,800	3,870 4,490	23,500	4,440 4,030	5,140 6,480	27,900 26,800	2,850	1,150	28,400 27,800
data for ii (cubic feet	25	828 979	13,300	12,100	3,390	18,400	3,480 3,250	4,320 5,270	24,100 23,000	2,030	885 1,000	23,800
l discharge	10	620 708	8,880	8,220	2,730	12,600 12,300	2,390	3,300 3,820	18,900 18,000	1,520 1,820	599 673	18,300 17,700
Flood	5	542 567	6,330 6,270	5,870	2,210	9,040	1,670	2,550 2,810	14,700 14,100	1,160	421 461	14,500 14,100
	2	285	3,670 3,650	3,290 3,330	1,430	4,920	837	1,550	8,530	680	221	9,710 9,380
	Station name	Walnut Branch near Waynesboro	Brier Creek near Waynesboro	Brier Creek at Millhaven	South Fork Ogeechee River near Crawfordville	Ogeechee River at Jewell	Little Ogeechee River at Hamburg	Rocky Comfort Creek near Grange	Ogeechee River near Louisville	Big Creek near Louisville	Spring Creek near Louisville	Ogeechee River near Wadley
:	Station	02197810	02197830	02198000	02199700	02200000	02200100	02200400	02200500	02200900	02200930	02200950
	Kegion no.	ю	κ	æ	2	7	ю	ю	ю	က	ю	æ
;	Map no.	¥	35	36	37	38	39	40	41	42	43	4

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of record	15	11	10	12	23	22	12	57	4	28	11
Standard	deviation (log units)	.46	.29	.47	.23	.35	.30	.15	.28	.32	.27	.37
Generalized	skew (log units)	10:	25	32	39	.22	90:	20	14	2 .	03	22
Drainage	area (mi ²)	109	8.36	7.05	0.99	64.0	43.0	4.38	1,940	2,150	2,650	232
years,	200	34,600 16,200	2,660	6,120 2,530	139	9,370 7,940	4,920 5,010	1,410	60,300	88,100 80,500	67,400 69,200	15,700
nterval in	200	25,000	2,120 1,710	4,820 2,100	125	8,430	3,940 4,070	1,180	50,700 51,000	70,100	56,200 57,300	12,700
ecurrence i	100	19,200 10,400	1,690	3,940 1,760	114	7,000	3,290 3,430	955 894	43,900 43,900	58,100 54,400	48,300 49,100	10,600 10,400
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	14,400 8,420	1,360	3,130 1,480	103	6,150 5,010	2,700	727 724	37,400 37,300	47,400 44,800	40,900	8,690
e data for i (cubic fee	23	10,400 6,770	995 932	2,410 1,240	92 155	5,250 4,300	2,170 2,290	869	31,300 31,000	37,800 36,200	34,100 34,300	6,920 7,000
d discharge	10	6,310 4,830	778 718	1,570 964	75	3,440 3,060	1,550	457 449	23,500 23,300	26,600	25,600 25,700	4,820
Floo	5	3,950 3,440	617 570	1,030	62 67	2,340	1,140	322 325	17,900	19,200	19,600	3,390 3,560
	2	1,620	398 370	432	41	1,160	630	197 195	10,500	10,400	11,700	1,670 1,780
	Station name	Williamson Swamp Creek at Davisboro	Nails Creek near Bartow	Boggy Gut Creek near Wadley	Seals Creek tributary near Midville	Buckhead Creek near Waynesboro	Richardson Creek near Millen	Sculls Creek near Millen	Ogeechee River at Scarboro	Ogeechee River near Dover	Ogeechee River near Eden	Black Creek near Blitchton
	Station	02201000	02201110	02201160	02201250	02201350	02201800	02201830	02202000	02202150	02202500	02202600
	Region no.	æ	8	က	æ	æ	8	æ	e	æ	က	ĸ
! !	Map no.	45	46	47	84	49	20	51	22	53	22	55

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	record	26	12	#	12	17	21	24	11	\$	39	33
Standard	deviation (log units)	.23	.20	.27	.13	.22	.25	Ķ.	52:	.24	.20	.26
Generalized	skew (log units)	01	.29	23	14	24	.01	.17	90.	.30	.17	.10
ခွင့	area (mi ²)	46.0	5.05	9:36	3.41	202	147	1.14	1.39	555	833	456
	200	3,490 4,200	869 1,130	2,900	412	7,440	8,510 9,690	650 584	674 614	25,800 25,800	21,400 24,800	61,500 54,400
ıterval in y	200	2,970 3,510	699 921	2,120	380	6,600	7,130 8,020	549 492	559 512	20,700	18,200 20,800	50,300 45,100
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	100	2,600 3,030	588 783	1,650	355	5,960 7,620	6,160	481	480	17,400 17,500	16,000 18,000	42,700 38,800
data for indicated recu (cubic feet per second)	20	2,250 2,580	490	1,280	329	5,320 6,530	5,260	437 378	407	14,400 14,500	13,900 15,400	35,700 32,800
data for ii (cubic feet	25	1,920 2,140	404 526	970 961	302	4,680 5,450	4,400	344	339 310	11,800	11,900	29,400 27,400
1 discharge	10	1,490 1,590	306 375	655 678	310	3,800	3,350 3,520	279 249	256 236	8,680	9,430 9,810	21,800 20,700
Floor	S	1,180 1,220	240 275	468	232	3,110 3,220	2,590	195 183	197 184	6,600	7,610 7,740	16,500 15,900
	5	754 760	158	267 274	180	2,070	1,590	100 97	120 113	4,040 4,030	5,130 5,110	9,810 9,620
	Station name	Canoochee Creek near Swainsboro	Hughes Prong near Swainsboro	Reedy Creek near Twin City	Reedy Branch near Metter	Canoochee River near Metter	Fifteenmile Creek near Metter	Ten Mile Creek tributary at Pulaski	Cypress Flat Creek near Collins	Canoochee River near Claxton	Canoochee River near Daisy	South River near McDonough
	Station	02202800	02202810	02202820	02202850	02202865	02202900	02202910	02202950	02203000	02203280	02204500
	Region no.	က	e	E	6	ю	ဇ	ю	ю	8	e	2
	Map no.	99	57	28	59	09	61	62	63	2	89	99

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

					Floo	Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	data for ii (cubic feet	data for indicated recu (cubic feet per second)	scurrence ii d)	nterval in y		Drainage (Generalized	Standard	Years
Map no.	Region no.	Station number	Station name	3	5	10	25	20	100	200	200	area (mi ²)	skew (log units)	deviation (log units)	of record
<i>L</i> 9	2	02205500	Pew Creek near Lawrenceville	301	550	735 702	985 934	1,180 1,120	1,380	1,580	1,850	2.23	35	.33	10
88	7	02206000	Shetley Creek near Norcross	159	327 319	484 445	745 625	991	1,290	1,640	2,210	86.0	.20	38.	11
69	7	02206500	Yellow River near Snellville	3,730 3,740	5,490 5,590	6,810 7,040	8,650 9,120	10,200	11,800	13,500	16,000 17,500	134	.29	.19	84
70	7	02207000	Garner Creek near Snellville	552 545	1,000	1,370	1,920 1,710	2,390	2,910 2,480	3,490 2,910	4,350 3,530	5.54	2 .	.31	11
71	7	02207500	Yellow River near Covington	5,860	9,000	11,500 12,300	15,300	18,600	22,300 24,200	26,500 28,700	32,900 35,400	378	38.	.20	%
22	2	02208050	Alcovy River near Lawrenceville	803	1,070	1,250	1,490	1,680	1,870 2,620	2,070	2,350	76.6	.30	.14	10
73	2	02208200	Beaverdam Creek tributary at Bold Springs	138	216 250	271 333	343 452	399	455 645	512 756	591 914	1.03	15	24	11
74	2	02208450	Alcovy River above Covington	2,580	4,290 5,060	6,240 7,410	7,870 9,910	9,220 11,900	10,700	12,300 16,500	14,600 19,900	185	.18	.23	18
75	2	02209000	Alcovy River below Covington	2,900	5,150 5,840	7,010	9,800	12,200	14,900 17,500	17,900	22,400 25,900	244	.12	.29	22
92	2	02211300	Towaliga River near Jackson	3,280 3,280	4,790 4,940	5,800 6,160	7,100	8,080	9,060	10,100	11,400	105	10	.20	24
11	2	02211459	Big Towaliga Creek near Barnesville	323 320	520 522	676 684	904	1,100	1,310	1,550 1,560	1,900	2.36	.26	77.	13

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	83	21	56	86	53	25	12	13	98	35	12
Standard	deviation (log units)	.23	.19	.28	.26	.30	\$2	4 .	.26	72.	.29	52
Generalized	skew (log units)	24	.30	15	45	10	11	.00	3 8	12	.21	80:-
Drainage (area (mi ²)	315	1,960	72.2	2,240	29.0	53.4	16.8	156	182	147	33.0
	200	21,900 27,400	113,000 110,300	16,000 15,500	108,400	19,200 13,700	14,300 13,400	20,000	17,800 21,100	19,500 21,900	34,400 29,400	11,400 6,220
nte rval in y	200	19,300 23,300	95,000	13,500	97,200	15,900	12,200	14,700 12,700	15,800	16,400 18,200	27,100 23,900	8,110 4,910
currence ii d)	100	17,400 20,400	82,600 80,500	11,700	88,300	13,500 10,100	10,700 9,890	11,400	14,200 15,600	14,200	22,300 20,100	6,110 3,990
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	15,400 17,700	71,100 69,100	10,000 9,600	79,200	11,400	9,220	8,580	12,600 13,500	12,100	18,100	4,480 3,200
data for ir (cubic feet	25	13,500 15,100	60,500 58,800	8,380	009'69	9,330 7,250	7,820 7,210	6,290	11,000	10,200	14,400 13,500	3,160 2,510
l discharge	10	10,800	47,500 45,900	6,320	56,200 55,200	6,840 5,650	6.040	3,900	8,770	7,660	10,200	1,830
Flood	5	8,750 9,150	38,200 36,900	4,820 4,710	45,200 44,500	5,090	4,720 4,450	2,490	086'9	5,860 6,170	7,490	1,090
	2	5,700	25,800 24,800	2,820	28,500 28,200	2,860	2,910 2,790	1,060	4,350 4,320	3,460 3,580	4,220 4,200	397 440
	Station name	Towaliga River near Forsyth	Ocmulgee River at Juliette	Falling Creek near Juliette	Ocmulgee River at Macon	Walnut Creek near Gray	Tobesofkee Creek below Forsyth	Little Tobesofkee Creek near Forsyth	Tobesofkee Creek above Macon	Tobesofkee Creek near Macon	Echeconnee Creek near Macon	Savage Creek near Bullard
	Station	02211500	02212500	02212600	02213000	02213050	02213350	02213400	02213470	02213500	02214000	02214280
	Region no.	61	2	2	2	2	2	2	2	7	2	ε
	Map no.	78	79	08	81	83	83	\$	82	%	87	88

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	发	80	11	27	18	83	39	18	23	15	13
Standard	deviation (log units)	.35	.26	.33	.41	.31	\$2	\$2.	.28	.29	.20	.23
Generalized	skew (log units)	11	52	.01	37	19	-11	.27	%;	.14	20	.17
ည္	area (mi ²) (108	3,800	7.80	1.44	2.45	5,180	351	255	17.3	128	0.39
	200	8,500	99,400	2,550	977 792	1,400	130,200	15,900	18,600 16,500	9,540 7,810	15,600 18,500	600
nterval in y	200	6,820 7,070	9,600	2,020	803	1,170	111,300	12,800 13,700	14,300 13,300	7,610 6,400	13,900	500 516
currence ii d)	100	5,680	81,800	1,670 1,380	679 560	1,010	97,600	10,700	11,600	6,330 5,450	12,700 13,800	430 440
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	4,630 4,870	73,600	1,360	561 470	850 653	84,500	8,890 9,560	9,230 9,180	5,180 4,550	11,400 12,100	366 372
data for ii (cubic feet	25	3,690	= =	1,080	450 388	701 551	71,800	7,260 7,740	7,230 7,390	4,160 3,740	10,100	307
1 discharge	10	2,580 2,710	52,700	755 692	313 284	517 429	55,600	5,350	5,040 5,290	2,990	8,370 8,240	235
Floor	\$	1,830	42,400	541 516	218 207	385	43,600	4,060	3,650 3,850	2,200	6,960	184 180
,	2	934	26,600	286 282	103 102	214	27,100	2,470 2,500	2,060	1,250	4,820 4,560	117
	Station name	Big Indian Creek at Perry	Ocmulgee River at Hawkinsville	Cedar Creek near Pineview	Folsom Creek tributary near Rochelle	Ball Creek tributary near Rochelle	Ocmulgee River at Lumber City	Little Ocmulgee River at Towns	Alligator Creek near Alamo	Allen Creek at Talmo	Middle Oconee River near Jefferson	Buffalo Creek tributary near Jefferson
-	Station number	02214500	02215000	02215230	02215245	02215280	02215500	02216000	02216100	02217000	02217200	02217250
	Region no.	ဇ	e	8	8	ဇ	8	33	က	6	7	2
	Map no.	68	8	91	92	93	94	95	96	97	86	86

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

					Floo	d discharge	e data for i	Flood discharge data for indicated recurrence interval in years,	ecurrence i	interval in y	/ears,				
							(במסור זכב	i pei secol	ĺ.			Drainage	Generalized		Years
Map no.	p Region	jon Station 5. number	Station name	2	5	10	23	\$0	100	200	200	area (mi ²)	skew (log units)	deviation (log units)	of record
100		2 02217400	Mulberry River tributary near Winder	417	609	759 757	976 986	1,160	1,360	1,590	1,930	2.68	53	.18	56
101		2 02217450	Mulberry River tributary near Jefferson	191 177	244 248	282	333 397	372 472	414	458 640	519 769	0.72	.52	.12	10
107		2 02217500	Middle Oconee River near Athens	7,140 7,160	10,500	12,600	15,200	17,000	18,700 20,800	20,400	22,500 26,500	398	37	.21	56
103		2 02217660	Little Curry Creek near Jefferson	203	336	430	554	629	742	838	966	0.87	28	72.	13
104		2 02217900	North Oconee River at Athens	4,360 4,530	6,950 7,440	8,940	11,800 13,300	14,100 16,000	16,600	19,300 22,200	23,300	290	.15	4 2	33
105		2 02218100	Porters Creek at Watkinsville	314	564 527	765	1,060	1,310 1,120	1,580	1,870	2,310 1,890	1.95	01	.30	12
106		2 02218300	Oconee River near Penfield	13,200 13,100	20,100	25,300 25,900	32,500 33,800	38,400 40,100	44,700	51,400 54,200	61,200	940	.20	.21	23
107		2 02218450	Town Creek near Greensboro	625 652	1,110 1,170	1,510	2,100	2,610 2,760	3,180 3,320	3,810 3,950	4,750 4,860	11.9	80.	.29	25
108		2 02218500	Oconee River near Greensboro	12,700 12,800	20,100	25,700 26,100	33,700 34,500	40,400 41,400	47,500 48,700	55,400 56,800	66,700 68,400	1,090	.18	.23	82
109		2 02219000	Apalachee River near Bostwick	4,400 4,420	6,870 7,040	8,640	11,000	12,800 14,000	14,700 16,300	16,700 18,800	19,400 22,400	176	07	.23	18
110		2 02219500	Apalachee River near Buckhead	8,190	13,800	17,900 17,800	23,600 23,300	28,100 27,800	32,800 32,400	37,800 37,400	44,600 44,300	436	14	.27	49

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

					Floo	d discharg	e data for (cubic fee	data for indicated recu (cubic feet per second)	Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	nterval in	years,	Drainage	Generalized	Standard	Years
Map no.	Region no.	Station	Station name	2	\$	10	25	50	100	200	200	area (mi²)	skew (log units)	deviation (log units)	of record
111	7	02220550	Whitten Creek near Sparta	1,370 1,310	2,080	2,600	3,300 3,150	3,870 3,710	4,460 4,310	5,090	5,980	15.0	.10	.21	26
112	2	02220900	Little River near Eatonton	6,030	9,860	12,400 12,400	15,700	18,200 18,800	20,500	22,800 24,500	25,800 28,700	262	-:40	.27	22
113	7	02221000	Murder Creek near Monticello	1,290	2,110	2,690	3,470 3,590	4,070 4,270	4,680	5,310 5,720	6,160	24.0	21	.26	56
114	7	02221525	Murder Creek below Eatonton	3,830 4,010	6,450 6,870	8,360	10,900 12,100	12,800 14,400	14,800 16,900	16,800 19,500	19,400 23,200	190	27	.28	15
115	2	02223000	Oconee River at Milledgeville	34,600 33,900	59,800 57,300	78,400 73,800	103,700 95,700	123,400 112,700	143,900 130,900	165,000 149,200	194,100 175,000	2,950	23	.29	49
116	က	02223200	Commissioner Creek at Toomsboro	2,660	4,850	6,520 5,960	8,820	10,600 9,350	12,500	14,500 12,900	17,200 15,400	191	27	.32	53
117	က	02223300	Big Sandy Creek near Jeffersonville	372 411	747	1,080	1,610 1,810	2,080	2,630	3,260	4,240 4,190	31.0	96.	.36	13
118	က	02223349	Big Sandy Creek tributary near Irwinton	21 24	41	56 75	77 110	92 136	108	124	146 225	0.50	47	% :	14
119	ဗ	02223360	Big Sandy Creek near Irwinton	2,200 2,150	3,290 3,290	4,030	4,970 5,400	5,670 6,430	6,370 7,490	7,070 8,560	8,010 10,100	177	18	.21	18
120	ε	02223500	Oconee River at Dublin	32,500	51,900	65,000	81,500	93,700	105,700	117,600	133,100	4,400	Ķ.	\$2	97
121	8	02223700	Indian Branch tributary near Scott	106	172	218 246	279	326 403	373 474	421 547	486	2.13	22	.26	11

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of record	25	11	11	22	10	10	32	17	21	10	56
	deviation (log units) r	.36	71.	.35	.27	.15	77:	.24	.29	.31	.28	.33
pez	skew de	01	4 9.	.33	32	.11	90:-	11	.10	24	22	96.
ಜ	area (mi ²) (lo	62.9	16.1	6.77	5,110	5.16	1.38	11,600	0.69	55.0	13.8	63.0
	200 (12,500 9,340	2,030 2,470	2,350	==	674 1,060	409 516	267,600 11	6,430 6,670	7,220 6,580	2,050 2,330	9,690 8,150
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	200	10,300	1,800	2,150	105,000	601	343 430	229,600	5,140 5,420	6,080	1,750 1,950	7,620 6,570
currence in d)	100	8,150 6,340	1,640	1,830	95,700	247 786	296 370	202,000	4,280	5,260 4,7 20	1,530	6,250 5,470
data for indicated recu (cubic feet per second)	50	6,280 5,100	1,470	1,540	86,400	494 673	252 311	175,400	3,510 3,780	4,470	1,330	5,050 4,510
e data for i (cubic fee	25	5,050 4,220	1,310	1,270	76,400	441 561	211 255	149,600	2,820 3,040	3,710 3,340	1,120	3,980 3,640
d discharge	10	3,820 3,310	1,090	876 718	62,100	371 425	159	116,500	2,020	2,760	859 878	2,770
Floo	S	2,640	918	589 529	50,100	317	122 135	91,700	1,490	2,070 1,950	662	1,970
	5	1,310	664	289 279	31,400	236	73	57,400	836	1,150	393 391	1,040
	Station name	Rocky Creek near Dudley	Mercer Creek near Soperton	Cypress Creek near Tarrytown	Oconee River near Mount Vernon	Peterson Creek at Glenwood	Oconee River tributary No. 2 near Glenwood	Altamaha River near Baxley	Cobb Creek near Lyons	Ohoopee River near Wrightsville	Mulepen Creek near Adrian	Little Ohoopee River near Wrightsville
:	Station	02224000	02224200	02224400	02224500	02224650	02224800	02225000	02225100	02225150	02225180	02225200
	Region no.	ю	e e	က	8	ю	ю	က	ю	က	ε	9
:	Map no.	122	123	124	125	126	127	128	129	130	131	132

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	ot record	10	11	15	23	10	97	23	89	22	99	32
Standard	deviation (log units)	33	.35	.28	.28	.24	.33	.28	.27	.28	.24	.20
Generalized	skew (log units)	08	.02	.28	.20	. 0	31	22	03	.30	.16	15
ge	area (mi ²)	3.53	7.22	216	620	869	9.58	1.68	1,110	74.4	13,600	210
years,	200	1,670	1,460	27,400 18,800	36,400 32,000	26,600	1,490	615	43,300 42,400	10,420 8,750	323,700	7,280
nterval in	200	1,320	1,130	21,300 15,200	28,900 25,900	22,600 23,700	1,250	525 535	36,200 35,300	8,100	267,000	6,430 7,970
scurrence i	100	1,090	922 1,070	17,400 12,700	23,900 21,600	19,800 20,300	1,090	459 464	31,100 30,200	6,610 5,840	228,200	5,800
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	886 712	736	14,000	19,500 17,900	17,100	923 1,020	396 396	26,400 25,600	5,320 4,800	192,700	5,170 6,080
e data for i (cubic fee	23	700 585	573 700	11,100	15,600	14,500 14,200	765 834	334	22,000 21,300	4,200 3,890	160,100	4,550 5,130
d discharge	10	484	389 478	7,800 6,510	11,200	11,200	566 604	255 251	16,600 16,100	2,960 2,830	120,900	3,710 3,960
Floo	5	342 321	271 324	5,680	8,240	8,850	420	196 193	12,700 12,400	2,160 2,110	93,500	3,050 3,140
	2	173	136 156	3,210 3,000	4,710	5,570 5,280	227 234	116	7,540 7,450	1,220	58,100	2,070
	Station name	Hurricane Branch near Wrightsville	Crooked Creek near Kite	Little Ohoopee River near Swainsboro	Ohoopee River near Oak Park	Ohoopee River near Aline	Beaver Creek near Cobbtown	Reedy Creek tributary near Soperton	Ohoopee River near Reidsville	Beards Creck near Glennville	Altamaha River at Doctortown	Penholoway Creek near Jesup
:	Station	02225210	02225240	02225250	02225300	02225320	02225330	02225350	02225500	02225850	02226000	02226100
	Kegion no.	ю	ဇ	ю	ю	ε	ε	ю	ю	ε	ε	ဇ
;	Map no.	133	13.	135	136	137	138	139	140	141	142	143

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	23	78	15	¥	22	10	10	37	15	33	23
Standard	deviation (log units)	¥	.30	.33	.33	.29	.20	.30	.32	.28	.39	.31
Generalized	skew (log units)	15	80:	01	37	16	.52	11	.05	10	39	.13
Drainage (area (mi ²)	6.38	235	355	1,200	0.09	1,350	28.0	150	61.0	1111	414
years,	200	1,910	15,900 15,500	32,200 24,100	46,400 45,100	5,930 6,100	63,300 50,500	5,110 4,260	15,100	11,000	11,600	39,200 29,600
nterval in y	200	1,550 1,420	12,700 12,500	25,500 19,600	39,700 38,200	4,990 5,090	51,200 41,300	4,240 3,540	11,900	9,180 6,720	9,670 8,880	30,600
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	100	1,310 1,200	10,600	21,100 16,400	34,800 33,200	4,320	43,200 34,900	3,620 3,020	9,790	7,200	8,270 7,580	25,000 19,800
data for indicated recu (cubic feet per second)	20	1,080	8,710 8,710	17,100	29,900 28,300	3,680	36,100 29,200	3,050 2,550	7,920 7,450	5,770 4,560	6,920	20,100 16,300
data for ir (cubic feet	25	874 823	7,000	13,500	25,000 23,700	3,070 3,060	29,800 24,200	2,510 2,120	6,270	4,200 3,590	5,620	15,800 13,300
l discharge	10	623 602	5,020 5,070	9,420 8,240	18,800 18,000	2,310	22,500 18,700	1,850	4,370 4,280	2,570 2,440	3,990 3,810	10,900 9,700
Flood	s	450 443	3,680 3,720	6,700	14,100 13,700	1,750	17,700 15,100	1,380	3,130 3,110	1,500	2,840	7,800
	7	237 237	2,060	3,480 3,380	7,710	1,010	11,600 10,200	780 734	1,660	550 604	1,380	4,170
	Station name	Little Creek near Willacoochee	Satilla River near Douglas	Satilla River near Pearson	Satilla River near Waycross	Big Creek near Hoboken	Satilla River near Hoboken	Whitehead Creek near Denton	Hurricane Creek near Alma	Little Hurricane Creek near Alma	Little Hurricane Creek below Alma	Alabaha River near Blackshear
	Station	02226190	02226200	02226300	02226500	02226580	02226582	02226700	02227000	02227100	02227200	02227290
	Region no.	ю	ю	m	в	ю	ю	ю	ю	ю	ю	ю
	Map no.	44	145	146	147	148	149	150	151	152	153	154

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of record	¥	15	31	17	40	14	99	22	49	10	57
Standard	deviation (log units)	.29	.28	4	22	.31	.32	%;	.33	.33	.26	¥
Generalized	skew (log units)	.49	28	45	45	.07	16	05	05	. .	.42	53
Drainage (area (mi ²)	112	0.42	49.0	83.0	646	0.38	2,790	62.0	160	068	1,260
	200	19,100	143	7,310 6,560	11,400 9,240	41,000	246 252	90,300	10,600	12,500 12,300	65,400 42,800	20,300
nterval in y	200	14,300 11,500	123 174	6,170 5,510	9,140 7,560	32,600 29,200	203 210	74,000	8,460 6,820	066'6 068'6	50,800 34,700	18,100 21,400
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	100	11,300	108	5,300 4,720	7,530	27,000 24,400	172 179	62,800 59,200	7,040 5,730	8,330	41,600 29,000	16,400 19,100
data for indicated recu (cubic feet per second)	20	8,850 7,500	94 128	4,450 3,970	6,020	22,000 20,100	144	52,400 49,500	5,760 4,770	6,810	33,600 24,100	14,500 16,500
data for ii (cubic feet	25	6,810 5,990	80	3,620 3,280	4,640 4,180	17,500 16,300	118	42,800 40,700	4,610 3,920	5,450 5,480	26,700 19,900	12,500 13,800
l discharge	10	4,640	62	2,550	3,010 2,900	12,400	89	31,200 30,100	3,250 2,910	3,850 3,890	19,100 15,100	9,760 10,400
Floo	5	3,310 3,170	48 55	1,780	1,940 1,970	8,950 8,720	63	23,200 22,700	2,330	2,770 2,800	14,100 11,900	7,490 7,780
	2	1,840	% & %	815 817	762 813	4,870 4,820	¥ %	13,000 12,900	1,230	1,470	8,350	4,160 4,250
	Station name	Big Satilla Creek near Alma	Crooked Creek tributary near Bristol	Little Satilla Creek at Odum	Little Satilla Creek near Jesup	Little Satilla River near Offerman	Satilla River tributary No. 2 at Atkinson	Satilla River at Atkinson	Buffalo Creek at Hickox	North Prong St Marys River at Moniac	St Marys River ncar St. George	Suwannee River at Fargo
	Station	02227400	02227422	02227430	02227470	02227500	02227990	02228000	02228050	02228500	02231100	02314500
	Region no.	æ	ю	8	3	ဇ	8	8	3	ဗ	ĸ	ю
	Map no.	155	156	157	158	159	160	161	162	163	491	165

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	record	27	x	17	27	27	17	41	89	11	11	21
Standard	deviation (log units)	.30	25	.17	.27	82	.31	œ.	.31	.32	29	.23
Generalized	skew (log units)	53	.02	02	27	15	.33	37	90:-	07	£:	40
ည္	area (mi²)	143	232	0.14	112	137	1.21	993	0.06	1.65	4.16	1,080
	200	4,050 6,180	6,690 9,530	147 140	6,760	9,730 10,100	1,190 772	19,900 22,500	9,250	587 627	1,650	23,400 30,100
iterval in y	200	3,650 5,290	5,660	131	5,870 6,570	8,210	893 619	17,200	7,510 7,190	476 517	1,260	21,100 25,700
currence ir 1)	100	3,130 4,520	4,650 6,570	120	5,200	7,120 7,250	711 513	15,200	6,320	440	1,010	19,200 22,600
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	2,600 3,720	3,780 5,340	108	4,550	6,090 6,140	558 421	13,300 14,200	5,230	330 367	800 736	17,300 19,600
data for in (cubic feet	23	2,250 3,040	3,160 4,270	96	3,900	5,100	429 343	11,300	4,240	267 298	623 595	15,300 16,500
discharge	01	1,770 2,180	2,390	80 65	3,040 3,110	3,850 3,820	290 251	8,640	3,050 3,010	191 213	429 427	12,600 12,900
Flood	s	1,380	1,840 2,130	88 56	2,380	2,940	205	6,630	2,230	139 152	307 312	10,300 10,300
	7	805 864	1,120	49	1,450	1,730	110	3,810 3,840	1,220	75 80	169 172	6,740 6,610
	Station name	Suwannoochee Creek at Dupont	Suwannoochee Creek near Thelma	Alapaha River tributary No. 2 near Pitts	Alapaha River at Rebecca	Deep Creek near Ashburn	Jacks Creek near Ocilla	Alapaha River near Alapaha	Willacoochee River near Ocilla	Little Brushy Creek near Ocilla	Alapaha River tributary No. 4 near Willacoochee	Alapaha River at Lakeland
	Station	02314600	02314700	02315650	02315700	02315900	02315980	02316000	02316200	02316220	02316260	02316390
	Region no.	ю	ю	€	ю	m	m	ю	ю	ю	ю	ю
	Map no.	166	167	168	169	170	171	172	173	174	175	176

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	record	63	53	83	18	18	11	11	11	11	23	70
Standard	deviation (log units)	.31	٤ċ	.40	.22	.24	.46	.25	.31	.19	.36	.32
Generalized	skew (log units)	30	37	25	60:	40	.03	12	.20	44	56	40
Drainage	area (mi ²)	1,400	132	98.0	0.95	146	202	8.54	0.98	6.48	1.11	0.68
	200	32,800 35,600	11,600	989 870	420	11,800	89,800 69,300	1,770	702 540	723 1,180	482	489
nterval in y	200	27,900	9,920 9,350	562 469	354	9,990	64,400 51,900	1,520	543 441	666 1,010	423 422	422
scurrence i	100	24,200 25,800	8,640	467 395	309 319	8,700	48,900 41,200	1,330	441 371	620 890	377 370	371 316
ndicated re t per secon	50	20,700 21,900	7,400	380	266 271	7,480 6,950	36,300 32,100	1,150	353 308	571 769	329 318	320 271
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	25	17,300	6,170 5,730	300 267	225 227	6,320 5,830	26,100 24,300	980	276 250	519 646	280	270 230
d discharg	10	13,000	4,590 4,330	206	175	4,860	15,600	760 714	191	443 496	212 204	204
Floo	S	9,740 9,910	3,420 3,290	142 138	139	3,800 3,560	9,710 10,800	596 561	137 135	377 392	160	154 140
	2	5,430 5,480	1,850 1,820	89	68	2,350 2,240	3,930 4,560	369	4 4	268	8 8	86 82
1	Station name	Alapaha River at Statenville	Withlacoochee River near Nashville	Withlacoochee River tributary near Nashville	New River tributary near near Nashville	New River near Nashville	Withlacoochee River near Bemiss	Little River near Ashburn	Newell Branch near Worth	Newell Branch near Ashburn	Daniels Creck near Ashburn	Lime Sink Creek near Sycamore
·.	Station	02317500	02317700	02317710	02317730	02317734	023177483	02317760	02317765	02317770	02317775	02317780
Region	Region no.	ю	က	က	æ	က	4	ю	က	က	က	ю
;	Map no.	177	178	179	180	181	182	183	184	185	186	187

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of record	13	23	56	10	13	12	11	22	11	30	13
Standard	deviation (log units)	.39	.30		25	.25	52:	.20	.23	.25	.28	.26
Generalized	skew (log units)	21	20	25	15	.07	.36	05	41	21	25	40
ည္အ	area (mi ²)	6.21	145	0.47	4.88	208	8.24	1.64	109	0.39	47.0	4.22
	200	3,590 2,120	8,800 9,770	281 286	916 1,150	14,700	2,100	611 634	7,870 8,470	288 270	4,260	1,560
nterval in y	200	2,880	7,420 8,120	240 242	790 865	12,200	1,670 1,560	535	7,090	250 229	3,670 3,960	1,380
currence ir d)	100	2,390	6,430 6,980	210	697	10,500 9,990	1,380	479 469	6,470 6,460	222	3,230 3,440	1,250 986
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	50	1,940	5,480	180	607 709	8,930	1,140	424 403	5,830	194 171	2,810 2,940	1,110
data for ir (cubic feet	25	1,530 1,040	4,570 4,830	151 149	519 586	7,460	919	371 342	5,170 4,840	166	2,390	966 735
l discharge	10	1,050	3,430 3,560	115	406 437	5,660	669	300	4,240 3,900	130	1,840	771 598
Flood	5	730	2,590	87 86	320 332	4,380	505 500	246 220	3,460 3,210	103 91	1,430	614 502
	2	352 326	1,480	50 49	200	2,700	305	168	2,270 2,140	2 %	858	382
	Station name	Mill Creek near Tifton	Little River near Tifton	Arnold Creek tributary near Tifton	Arnold Creek near Tifton	Little River near Lenox	Warrior Creek near Sylvester	Warrior Creek tributary near Sylvester	Warrior Creek near Sumner	Little Creek near Sylvester	Ty Ty Creek at Ty Ty	Little Creek near Omega
	Station	02317795	02317800	02317810	02317820	02317830	02317840	02317845	02317870	02317890	02317900	02317905
	Region no.	ε	က	3	3	æ	ю	ဗ	e 3	6	ဇ	ю
;	Map no.	188	189	190	191	192	193	194	195	196	197	198

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	record	16	23	40	11	17	24	24	11	13	23	59
Standard	deviation (log units)	.23	.26	.32	.41	.30	.41	.31	.41	38	.46	.28
Generalized	skew (log units)	23	.27	01	&:	43	03	17	.13	% :	25	.46
ည့	area (mi ²) (2.07	555	577	1.36	0.27	1,480	101	269	278	81.0	0.96
-	200	738 745	47,100 58,000	43,600 53,500	1,420	387 536	144,000 131,500	22,100 23,100	60,200 47,100	62,800 48,900	18,100	14,300 18,400
nterval in y	200	649 636	37,700 45,500	35,100 42,500	1,130	339	108,700 99,400	17,300	43,700 35,500	44,100 36,400	14,000 15,200	11,300 14,500
currence i	100	582 556	31,400 37,300	29,400 35,100	937 1,070	302 379	86,200 79,200	14,100 14,600	33,700 28,300	33,100 28,800	11,300	9,500
ndicated re per secon	20	516 481	25,900 30,200	24,200 28,600	758 866	265 316	66,800	11,400	25,400 22,200	24,500 22,400	8,870 9,780	8,930 10,300
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	25	449 410	21,000	19,400 22,600	59 5 684	227 257	50,300 47,200	8,970 9,120	18,600	17,700	6,730 7,550	6,620 7,920
l discharge	10	360 325	15,300	13,900	403	176 184	32,400 31,300	6,250	11,600	10,900	4,330	4,500
Floor	5	290 265	11,600	10,100	275 323	136 134	21,400 21,300	4,490 4,420	7,520	7,050 7,630	2,810 3,300	3,310 3,730
	2	188 175	6,910 6,650	5,480	127 143	n 79 74	9,590 9,840	2,440 2,370	3,350 3,560	3,270 3,510	1,170	1,310
	Station name	Ty Ty Creek tributary at Crosland	Little River near Sparks	Little River near Adel	Bull Creek near Norman Park	Bull Creek tributary near Ellenton	Withlacoochee River near Quitman	Okapilco Creek near Berlin	Okapilco Creek near Quitman	Okapilco Creek at Quitman	Aucilla River near Boston	Ochlockonee River at Moultrie
ć	number	02317910	02317980	02318000	02318015	02318020	02318500	02318600	02318700	02318725	02326200	02327200
Region	no.	ю	4	4	4	4	4	4	4	4	4	4
ž	Map no.	199	200	201	202	203	204	205	206	207	208	209

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	record	26	10	10	10	43	21	53	70	14	27	88
Standard	deviation (log units)	.33	35	.32	क्ष	%	.37	.33	.30	.26	£.	.33
Generalized	skew (log units)	-11	.30	11	.14	.26	13	12	.56	.37	90:-	.43
ಕ್ಟ	area (mi ²)	1.81	260	3.70	8.	550	15.0	104	747	1.71	19.0	0.09
_	200	1,590 1,820	53,200 44,800	2,950 3,110	17,000 15,100	98,200 83,500	7,960	41,300	108,100 90,400	1,350	8,020	28,800 22,800
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	200	1,290	39,000	2,410 2,460	13,000	70,900	6,330	30,400 23,300	78,300 67,300	1,060	6,560	20,900 16,900
scurrence i id)	100	1,090	30,400 27,100	2,040	10,500 9,410	54,500 48,000	5,230 4,900	25,000 18,900	60,600	873 1,150	5,550 5,490	16,200 13,300
data for indicated recu (cubic feet per second)	50	895	23,200 21,400	1,690	8,270 7,480	41,100	4,230	20,000	46,300 41,500	710 936	4,620 4,460	12,300 10,300
e data for i (cubic fee	25	721 793	17,400	1,370	6,380	30,200 27,600	3,340 3,080	14,900 11,300	34,700 31,600	269 744	3,770 3,540	9,210 7,810
d discharge	10	513 552	11,300	886	4,300	19,100 18,100	2,290	9,500	22,900 21,300	409	2,740 2,500	5,990 5,260
Floo	8	370 389	7,660	723	3,000	12,600	1,600	6,270 5,310	15,900	305	2,020 1,820	4,100 3,700
	5	196 197	3,810	391 351	1,530	5,900	789 764	le 2,080 2,110	8,510	181 186	1,130	2,100
	Station name	Ochlockonee River tributary near Coolidge	Ochlockonee River near Coolidge	Sallys Branch tributary near Sale City	<u>Little Ochlo</u> ckonee River near Moultric	Ochlockonee River near Thomasville	Barnetts Creek near Meigs	Barnetts Creek near Thomasvill	Ochlockonee River near Cairo	Popple Branch near Whigham	Wolf Creek near Whigham	Tired Creek near Cairo
-	Station	02327350	02327355	02327400	02327415	02327500	02327550	02327700	02327810	02327860	02327900	02328000
	Region no.	4	4	4	4	4	4	4	4	4	4	4
:	Map no.	210	211	212	213	214	215	216	217	218	219	220

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of	13	51	%	51	18	56	52	25	36	30	9	56
Standard	deviation (log units)	.31	.24	.24	.22	.22	.26	ı	ŀ	1	.32	1	.21
Generalized		.41	29	90:	æ:-	01	80:-	ŀ	1	ı	21	ı	11
Drainage (44.6	150	156	315	559	153	1,060	1,170	1,230	72.0	1,450	246
	200	22,100 16,200	27,400 26,900	28,000 27,400	39,600 39,400	77,500 64,600	33,600 31,600	ŀ	!	ı	14,600 15,500	ŀ	18,800 21,700
ıterval in y	200	16,300 12,900	24,200	23,500 23,100	35,600 35,000	66,500 55,800	28,500 26,800	1	ł	I	12,200	ı	15,800
currence ir 1)	100	12,800	21,700	20,400	32,600 31,700	58,600 49,300	24,800 23,400	ŀ	ı	ł	10,400	ŀ	12,400 14,500
idicated re	50	9,850	19,200 18,500	17,500 17,300	29,400 28,500	51,000 43,600	21,300 20,200	i	t	ł	8,740 9,280	ı	10,900
data for indicated recu (cubic feet per second)	25	7,460	16,800 16,200	14,700 14,600	26,100 25,200	43,700 37,900	17,900 17,100	1	ı	ł	7,180	I	9,520 10,700
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	10	4,950	13,400 13,100	11,300	21,500	34,400 31,900	13,700 13,400	1	1	ı	5,240	l	7,670 8,080
Flood	s	3,440 3,550	10,700	8,880	17,700 17,400	27,500 25,800	10,600 10,500	;	1	ŀ	3,860	I	6,240 6,500
	7	1,810 1,920	6,850	5,600	11,800	17,900 17,100	6,490 6,440		· SSC	:	2,090	ţ	4,170
	Station name	Chattahoochee River at Helen	Chattahoochee River near Leaf	Soque River near Demorest	Chattahoochee River near Cornelia	Chattahoochee River near Gainesville	Chestatee River near Dahlonega	Chattahoochee River near Buford	Chattahoochee River near Norcross	Chattahoochee River near Roswell	Big Creek near Alpharetta	Chattahoochee River at Atlanta	Sweetwater Creek near Austell
	Station	02330450	02331000	02331500	02331600	02333000	02333500	02334500	02335000	02335500	02335700	02336000	02337000
	Region no.	1	 -	-	-	-	-	1	1		-	-	1
	Map no.	221	222	223	224	225	226	227	228	229	230	231	232

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	88	14	36	17	12	10	21	62	13	31	88
Standard	deviation (log units)	.30	.37	.20	1	%	%;	.33	I	.23	\$.	.26
Generalized	skew (log units)	31	02	.30	ı	9 6.	42.	.12	I	41	22	.50
မွ	area (mi ²)	43.0	0.33	37.0	2,430	127	42.5	182	3,550	204	61.7	47.4
years,	200	17,700 15,600	830	9,860	1	22,000 21,200	24,100	38,200 31,400	ł	14,200 21,400	22,200 18,100	6,000
nterval in y	700	15,200 13,300	656 649	8,910 9,160	1	17,800 17,500	17,700	29,600 25,400	i	12,800 18,100	16,600 14,300	4,610 6,180
currence ii d)	100	13,400	532 530	8,170	ı	15,000	13,700 9,510	24,000 21,400	1	11,700	13,100	3,730 5,020
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	20	11,500	423	7,410	1	12,500 12,600	10,500	19,100	ı	10,600	10,100 9,400	2,990
data for ir (cubic feet	25	9,740 8,620	328 333	6,620	:	10,200 10,400	7,810 6,320	14,900 14,200	ı	9,420	7,690	2,360 3,190
discharge	10	7,420 6,980	220 225	5,520	1	7,390	5,010	10,200 10,100	1	7,760 8,920	5,080	1,660 2,140
Flood	S	5,670 5,400	152 157	4,620	1	5,510 5,740	3,360 3,260	7,180	1	6,390	3,490 3,570	1,230
	7	3,270 3,180	4 8	3,200 3,110	1	3,160 3,290	1,620	3,740 3,870	I	4,240 4,400	1,760 1,820	722 820
	Station name	Dog River near Douglasville	Hurricane Creek tributary near Fairplay	Snake Creek near Whitesburg	Chattahoochee River near Whitesburg	New River near Corinth	Yellowjacket Creek at Hogansville	Yellowjacket Creek near LaGrange	Chattahoochee River at West Point	Flat Shoal Creek near West Point	Mountain Oak Creek near Hamilton	Juniper Creck near Geneva
:	Station	02337400	02337448	02337500	02338000	02338660	02338775	02339000	02339500	02340250	02340500	02341600
	Region no.	1	-	_	-	2	7	7	7	7	7	2
	Map no.	233	234	235	236	237	238	239	240	241	242	243

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	12	22	12	31	14	30	13	8	26	42	78
Standard	deviation (log units)	.31	22.	43	.40	.27	¥	.18	.26	.23	.27	.25
Generalized	skew (log units)	38	.56	.41	.22	.40	4 .	.20	43	.21	37	60
56	area (mi ²)	33.1	342	53.3	70.0	2.98	295	17.2	272	101	066	1,090
	200	3,840 6,720	53,300 45,000	28,500 16,700	28,100 21,500	1,290	67,400 51,100	4,220 5,380	18,700 21,900	15,500 16,600	66,500 68,100	71,100 74,700
ıterval in y	200	2,850	40,700	18,800 13,000	20,100 16,600	988	45,800 38,200	3,620 4,480	16,600 18,900	12,800 13,700	58,500 58,800	63,200 63,200
currence ir d)	100	2,240	32,800 30,200	13,400 10,500	15,300	800 1,140	33,800 30,200	3,200 3,850	15,100 16,800	11,000	52,400 52,200	55,400 55,100
data for indicated recu (cubic fect per second)	50	1,740 3,390	26,200 24,800	9,390 8,240	11,400	640 933	24,500 23,300	2,800	13,500 14,800	9,270	46,200 45,600	47,900 47,500
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	25	1,320	20,600	6,400 6,310	8,260 7,970	503 735	17,500 17,600	2,420 2,760	11,800	7,730 8,220	40,000 39,300	40,700 40,200
l discharge	10	883 1,650	14,600 14,600	3,630 4,080	5,090	352 496	10,700	1,950 2,110	9,470 9,920	5,880 6,160	31,500 30,800	31,500 31,100
Floor	S	616 1,060	10,800	2,200	3,280 3,440	257 342	7,020 7,550	1,600	7,580 7,810	4,580	24,900 24,400	24,700 24,400
	2	325 484	6,390 6,460	908	1,470	147 179	3,450 3,700	1,110	4,740 4,810	2,900	15,200	15,400 15,200
	Station name	Pine Knot Creek near Juniper	Upatoi Creek near Columbus	Ochillee Creek near Cussetta	Pataula Creek near Lumpkin	Bluff Springs Branch near Lumpkin	Pataula Creek near Georgetown	Camp Creek near Fayetteville	Flint River near Griffin	Line Creek near Senoia	Flint River near Molena	Flint River near Woodbury
	Station	02341723	02341800	02341900	02343200	02343219	02343225	02344300	02344500	02344700	02345000	02345500
	Region no.	7	7	2	7	2	2	61	2	2	2	2
	Map no.	244	245	246	247	248	249	250	251	252	253	254

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	70	19	19	21	37	22	22	35	12	14	12
Standard	deviation (log units)	23	.25	.22	.42	22.	\$2:	52:	.21	\$5.	\$2:	.43
Generalized	skew (log units)	17	01	22	60:-	22	-:30	19	.40	04	60:	17
Drainage (area (mi ²)	1,220	3.36	6.62	2.82	186	1,850	139	93.4	41.1	0.40	146
	200	71,900	3,500	3,210 3,370	3,970 2,890	16,200 19,300	112,300 110,300	6,390	2,910 4,270	1,270 2,980	214 243	11,300
nterval in y	200	62,700 63,700	2,950 2,390	2,830	3,040 2,330	14,100 16,300	98,600	5,530	2,370 3,450	1,080 2,450	178 202	8,770
currence ii d)	100	55,900 56,400	2,560	2,550	2,430	12,600	88,200 85,600	4,900	2,010	940 2,100	152	7,090
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	80	49,200 49,300	2,200	2,260 2,190	1,900	11,000	77,900	4,280 5,080	1,690 2,420	809	129	5,600 6,100
data for ii (cubic feet	25	42,600 42,500	1,850	1,980	1,440 1,260	9,500	67,400 65,100	3,670 4,200	1,400	684 1,370	107	4,290 4,820
1 discharge	10	33,900 33,700	1,420	1,600	931 877	7,490	53,500 51,800	2,880 3,130	1,060	527 913	88	2,810 3,260
Floor	s	27,200 27,000	1,110	1,300	616	5,950 6,210	42,500 41,400	2,280	828 956	412	65	1,870 2,170
	5	17,600 17,500	685 620	n 851 798	275 285	3,750 3,830	26,600 26,200	1,430 1,450	535 572	257 319	% % %	830 954
	Station name	Flint River near Thomaston	Scott Creek near Talbotton	Kimbrough Creek near Talbotton	Coleoatchee Creek near Manchester	Potato Creek near Thomaston	Flint River near Culloden	Patsiliga Creek near Reynolds	Whitewater Creek below Butler	Cedar Creek near Rupert	Buck Creek tributary near Tazwell	Buck Creek near Ellaville
	Station	02346180	02346193	02346210	02346217	02346500	02347500	02348300	02349000	02349030	02349330	02349350
	Region no.	61	7	2	2	2	7	ю	ю	æ	က	ю
	Map no.	255	256	257	258	259	260	261	262	263	264	265

Table 1,--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

>	ion of nits) record	98 9	0 14	7 40	4 32	7 11	2 36	3 13	9 26	9 21	8 16	5 29
	deviation () (log units)	.26	.30	37	.24	.17	.32	.43	.29	.29	.28	.35
Generalized	skew (log units)	24	43	22	<u>\$</u> .	.22	80.	30	.15	.31	.29	10
Drainage	area (mi ²)	2,900	0.72	45.0	3,860	3.77	197	0.32	527	140	265	47.0
years,	200	127,400	406	8,500 7,240	110,800	972 1,050	22,000 18,400	385	26,700 25,900	15,000 12,800	18,300 17,100	6,070
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	200	110,200	356 336	6,910 5,950	94,500	4 8 88	17,300	309	21,200 20,900	11,600	14,300 13,700	4,870 4,700
recurrence ind)	100	97,500	318 293	5,810	82,800	752 770	14,200 12,300	256 198	17,600	9,420 8,470	11,700	4,050 3,950
data for indicated recu (cubic feet per second)	50	85,000	279 252	4,780	71,700	999	11,500	208	14,400 14,400	7,550 6,940	9,460 9,420	3,310 3,260
ge data for (cubic fe	25	72,700	240 214	3,830	61,100	582 558	9,100	163 136	11,600	5,940	7,500 7,580	2,640
od discharg	10	56,500	187 167	2,700	47,500 = =	475	6,360	110	8,300	4,150	5,310 5,430	1,850
Flo	S	44,200	145 132	1,910	37,500	396	4,560 4,390	75 71	6,11 <i>0</i> 6,180	3,010 2,970	3,890	1,310
	2	27,000	85	964	23,800	283 254	2,440	* *	3,470 3,490	1,690	2,220	676 888
	Station name	Flint River at Montezuma	Horsehead Creek near Montezuma	Turkey Creek at Byromville	Flint River at Oakfield	Abrams Creek tributary near Doles	Kinchafoonee Creek at Preston	Choctahatchee Creek tributary near Plains	Kinchafoonee Creek near Dawson	Muckalee Creek near Americus	Muckalee Creek near Smithville	Muckaloochee Creek at Smithville
:	number	02349500	02349695	02349900	02350500	02350520	02350600	02350685	02350900	02351500	02351700	02351800
	Kegion no.	ю	3	8	6	æ	8	æ	æ	ю	ю	က
;	Map no.	566	267	268	269	270	271	272	273	274	275	276

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	record	11	22	86	53	22	12	33	25	39	10	%
Standard	deviation (log units)	52:	.26	.21	.20	.22	.29	.25	.25	.24	.29	.22
Generalized	skew (log units)	.07	.28	11	11	.21	¥	16	-36	15	35	12
Drainage	area (mi²)	362	405	5,310	5,740	118	52.0	188	620	320	1,020	7,570
	200	16,600 18,500	20,100	116,700	108,400	6,610 7,920	5,520 5,670	13,200 13,100	20,400 22,100	9,800	31,500 35,600	122,000
nterval in y	500	13,700 15,200	16,000	102,300	95,500	5,830 6,740	4,210 4,540	11,300	18,100 19,200	8,490 10,200	27,300 29,600	106,400
currence i	100	11,800	13,200 13,900	91,700	===	5,230 5,890	3,390 3,780	9,950 9,620	16,400 17,100	7,520 8,920	24,200 25,500	94,900
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	20	9,970 10,800	10,900	81,300	76,400	4,650	2,700 3,100	8,640	14,600 14,900	6,580	21,100 21,500	83,700
data for i (cubic fee	25	8,300	8,760 9,240	71,000	= =	4,060	2,100 2,450	7,370 6,980	12,700 12,800	5,660	18,000	72,600
d discharge	10	6,260	6, 34 0 6,630	57,300	54,600	3,270 3,310	1,450 1,700	5,730 5,430	10,200	4,460	13,800 13,400	58,100
Floo	\s \	4,820 4,930	4,740 4,890	46,800 = =	44,800 = =	2,650	1,040	4,500 4,310	8,190	3,540 3,680	10,700	46,900
	2	2,940 2,940	2,800	31,400	30,500	1,740	577 627	2,790 2,710	5,190	2,250	6,260	30,900
	Station name	Muckalee Creek near Leesburg	Muckalee Creek near Leesburg	Flint River at Albany	Flint River at Newton	Ichawaynochaway Creek near Graves	Little Ichawaynochaway Creek near Shellman	Pachitla Creek near Edison	Ichawaynochaway Creek at Milford	Chickasawhatchee Creek at Elmodel	Ichawaynochaway Creek near Newton	Flint River at Bainbridge
	Station	02351890	02351900	02352500	02353000	02353100	02353200	02353400	02353500	02354500	02355000	02356000
	Region no.	ю	ы	ю	ю	8	8	ю	ε	33	ю	ε
:	Map no.	772	278	279	280	281	282	283	284	285	286	287

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	25	10	49	49	23	49	13	25	11	56	53
Standard	deviation (log units)	.35	.20	38.	.28	72.	.26	.28	¥	.31	.28	ŀ
Generalized	skew (log units)	17	15	41	2 ;	01	-11	.12	.17	26	.32	ı
ည	area (mi ²)	49.0	281	485	134	87.7	236	2.41	6.69	3.50	119	521
	200	9,570 7,510	10,100 14,100	27,600	26,400 25,800	23,800	34,100 33,800	1,920 2,240	7,980	2,550 2,880	39,200 31,300	ı
nterval in y	200	8,600	8,960	23,400	21,500	19,700 18,100	28,900 28,700	1,540	6,090 5,430	2,160 2,360	30,300 25,200	1
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	100	7,230 5,540	8,080	20,400	18,200 18,000	16,800	25,100 25,000	1,290	4,880 4,460	1,870 2,000	24,600 21,100	J
data for indicated recu (cubic feet per second)	50	5,960 4,630	7,200 8,740	17,300	15,200	14,200	21,500 21,500	1,060	3,850 3,620	1,600	19,700 17,600	l
e data for i	25	4,790 3,850	6,330	14,400	12,400 12,500	11,800	18,100 18,100	862 983	2,970 2,870	1,330	15,500 14,300	ı
d discharge	10	3,400 2,910	5,150	10,600	9,080	8,780	13,800 13,800	624 675	2,000	998	10,800	ı
Floo	S	2,440	4,230	7,730	6,790	6,670 6,580	10,600	463 496	1,400	751 760	7,870 7,790	l
	2	1,260 1,210	2,860 2,770	4,010 3,980	3,920 3,980	3,940 3,930	6,390	266 282	t 716 736	422 431	4,440 4,470	ı
	Station name	Spring Creek near Arlington	Spring Creek at Colquitt	Spring Creek near Iron City	Cartecay River near Ellijay	Ellijay River at Ellijay	Coosawattec River near Ellijay	Mountaintown Creek tributary near Ellijay	Fausett Creek near Talking Rock	Ball Creek near Talking Rock	Talking Rock Creek near Hinton	Coosawattee River at Carters
	Station	02356100	02356640	02357000	02379500	02380000	02380500	02381100	02381600	02381900	02382200	02382500
	Region no.	ю	ĸ	8	-	1	-	-	1	1	1	-
	Map no.	288	289	290	291	292	293	294	295	296	297	298
				69								

Table 1.--Flood-frequency discharge data for nıral streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

l	l	l			Flood	1 discharge	data for in	data for indicated recu (cubic feet per second)	currence ir d)	Flood discharge data for indicated recurrence interval in years, (cubic feet per second)		Drainage arca	Generalized skew		Years
no.	ä	number	Station name	7	5	10	25	20	100	200	200	(mi ²)	(log units)	(log units)	record
1	05	02382600	Sugar Creek near Chatsworth	643	926 1,010	1,110	1,340	1,500	1,660 2,500	1,820 2,900	2,020 3,470	7.30	25	.20	10
	05.	02382800	Dry Creck at Oakman	397 403	633 656	810 855	1,060	1,250	1,460	1,690	2,010 2,510	3.06	.05	4 2	11
-	02.	02382900	Pine Log Creek near Rydal	745 797	1,410	2,020	3,020 3,060	3,950	5,070 4,740	6,400	8,560 7,280	12.8	.33	.32	14
1	05.	02383000	Rock Creek near Fairmount	420 442	724 769	1,010	1,310	1,600	1,920 2,260	2,260	2,760 3,310	6.17	.03	82.	25
-	02	02383200	Redbud Creek near Ranger	327 326	547 547	714 719	949 974	1,140	1,340	1,560	1,870 2,080	1.97	02	.27	13
1	05	02383220	Redbud Creek tributary near Ranger	91	168	240 265	365 413	486 537	637	824 853	1,140	0.56	.46	.30	12
	05	02383500	Coosawattee River near Pine Chapel	1	ı	ı	1	ı	ı	1	1	831	i	1	37
-	05	02384000	Conasauga River near Tennga	9,700 9,170	13,000 12,300	15,000	17,300	18,900 17,300	20,300	21,700 20,500	23,400 22,700	108	37	.16	39
-	05	02384500	Conasauga River near Eton	8,640	14,100 13,800	18,300 17,800	24,200 22,700	29,100 26,800	34,400 31,200	40,100	48,400 42,900	252	86.	.25	33
-	05	02384600	Pinhook Creek near Eton	367 381	563 597	704	894 1,070	1,040	1,200	1,360	1,590 2,170	4.28	.01	.22	27
-	05	02385000	Coahulla Creek near Varnell	3,460 3,520	5,650 5,720	7,270 7,350	9,480	11,200	13,100 13,400	15,000 15,400	17,700	86.7	08	\$2:	16

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	10	8	22	14	13	*	8	10	11	10	10
Standard	deviation (log units)	.21	.26	.20	.23	.20	\$2	ı	.23	.21	.22	क्ष
Generalized	skew (log units)	60:	.43	18	.33	.23	19	į	.15	.35	.13	:28
وي	area (mi ²)	3.46	64.0	£89	1.22	1.29	0.17	1,602	3.56	21.7	9.41	3.82
ears,	200	1,900	25,300 21,300	48,200 51,000	1,700	1,500	352 430	1	2,420 2,850	7,080	5,220 5,340	3,050 3,180
nterval in y	200	1,480 2,050	19,600	42,800	1,380	1,270	305 355	I	1,880 2,270	5,590	4,180	2,560 2,610
ecurrence i id)	100	1,210	16,000	37,800 39,500	1,170	1,110	271 303	ı	1,540 1,870	4,630 5,450	3,500 3,640	2,110 2,170
data for indicated recu (cubic feet per second)	20	982 1,370	12,900	34,700 35,800	975 952	957 959	237 254	I	1,250	3,800	2,910 3,040	1,700 1,780
e data for i (cubic fee	22	789 1,080	10,200	30,600 31,300	804	817 797	204 211	1	998	3,090	2,380 2,490	1,400
d discharge	10	576 701	7,290 7,140	25,100 25,300	602 586	620	160	ı	723 820	2,280	1,780	1,140
Floo	S	440 518	5,390	20,700	465 450	519 493	127	1	547 609	1,750	1,380	850 845
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	7	281 315	3,180 3,180	14,100	293	350	88	I	340	1,120	884	533 524
	Station name	Rock Creek near Chatsworth	Holly Creek near Chatsworth	Conasauga River at Tilton	Polecat Creek near Spring Place	Beamer Creek near Spring Place	Dead Mans Branch near Resaca	Oostanaula River at Resaca	Oothkalooga Creek tributary at Adairsville	Oothkalooga Creek at Adairsville	Rocky Creek at Curryville	Bailey Creek near Villanow
	Station	02385700	02385800	02387000	02387100	02387200	02387300	02387500	02387560	02387570	02387700	02387800
	Region no.	-	1	-	-	-	-	1	1	-	-	1
	Map no.	310	311	312	313	314	315	316	317	318	319	320

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Years	of record	21	22	Ξ	62	29	40	18	14	11	86
Standard	deviation (log units)	.23	.23	.27	1	.26	.17	\$2	.16	.17	.23
Generalized	skew (log units)	.22	60.	.10	ı	.28	26	17	38	.17	.07
50	area (mi ²)	36.4	6.02	3.00	2,115	69.7	107	21.7	89.0	477	613
years,	200	28,100 18,700	3,670 3,900	2,580 2,740	I	18,200 17,600	9,910 12,600	9,530	10,000	36 ,100 43 ,800	55,600 55,800
nterval in	200	20,900	3,100 3,240	2,100	I	14,600 14,400	8,840 10,900	8,230	9,300	31,600 37,700	46,900 47,200
scurrence i d)	100	16,400 12,200	2,690 2,770	1,780	1	12,200 12,100	7,530 9,250	7,280	8,710 11,200	28,300 33,200	40,900
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	80	13,500 10,400	2,310 2,350	1,480 1,540	1	10,000	6,910 8,190	6,350	8,080 9,830	25,200 29,000	35,200 35,500
data for i (cubic fee	25	11,200	1,960	1,210	ŀ	8,110	6,260 7,170	5,44 0 4.94 0	7,400	22,100 24,900	29,800 30,100
d discharge	10	8,560 7,550	1,510	895 912	ı	5,920 6,020	5,340 5,640	4,260	6,420 6,750	18,200 19,300	23,100
Floo	~	6,260	1,190	675 685	ı	4,450 4,540	4,57 0 4,74 0	3,370	5,560	15,200 15,800	18,300 18,400
	7	3,620 3,400	765 752	398 403	ı	2,660	3,340 3,400	2,110	4,120	11,000	11,700
	Station name	West Armuchee Creek near Subligna	Storey Mill Creek near Summerville	Dozier Creek near Shannon	Oostanaula River near Rome	Etowah River near Dahlonega	Etowah River near Dawsonville	Shoal Creek near Dawsonville	Amicalola Creek near Dawsonville	Etowah River near Ball Ground	Etowah River at Canton
: ć	Station	02388000	02388200	02388400	02388500	02388900	02389000	02389300	02390000	02391000	02392000
	Map Kegion no. no.	H	-	1	-	1		1	-	H	
;	Map no.	321	322	323	324	325	326	327	328	329	330

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Years	of record	12	ક્ષ	18	16	10	29	55	22	¥	12
Standard	deviation (log units)	ŀ	.25	.31	ı	35	ı	ı	.26	.21	.17
Generalized	skew (Iog units)	I	15	.03	:	10	i	I	.12	13	%;
Drainage	area (mi ²)	1,119	42.8	25.0	1,634	33.1	1,819	4,040	6.99	115	6.34
ears,	200	I	10,900	12,600	ï	10,200	I	1	24,500 20,400	19,500 20,400	2,960 3,720
nterval in y	200	l	9,390	10,100	1	8,150	i	ł	20,000	17,100 17,600	2,530 3,070
currence ii d)	100	I	8,280 8,540	8,430 7,520	1	6,760	ł	1	16,900 14,500	15,300	2,230
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	20	1	7,200	6,920	I	5,510 6,140	ł	ŀ	14,100 12,400	13,600 13,700	1,950 2,220
data for ii (cubic feet	25	1	6,150 6,240	5,560 5,180	ŧ	4,370 4,970	i	l	11,500	11,900	1,680 1,850
1 discharge	10	١	4,790 4,810	3,970	I	3,040 3,390	i	l	8,510	9,590 9,520	1,350 1,400
Floor	5	I	3,770 3,780	2,890	•	2,160 2,430	i	1	6,430	7,820	1,120 1,130
	2	l	2,350	1,590		1,100	;	ŀ	3,820 3,740	5,220 5,170	06Z 95Z
	Station name	Etowah River above Cartersville	Pumpkinvine Creek below Dallas	Hills Creek near Taylorsville	Etowah River near Kingston	Two Run Creek near Kingston	Etowah River at Rome	Coosa River near Rome	Cedar Creek at Cedartown	Cedar Creek near Cedartown	Duck Creek above Lafayette
	Station	02394000	02394400	02394950	02395000	02395120	02396000	02397000	02397410	02397500	02397750
	Region no.	1	~	—	+		1	1	1	-	
	Map no.	331	332	333	334	335	336	337	338	339	340

Table 1.--Flood-frequency discharge data for rural streams in Georgia--Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
==, region 3 mainstem stream, use top line discharges]

Standard	deviation of (log units) record	.34 11	.25 53	.23 14	72 27	.23 31	.24 49	.22 48	.23 78	- 19	.21 31
Generalized	skew (log units)	80.	07	.21	08	.29	08	00:	03	ı	.49
Drainage	area (mi ²)	13.3	192	0.88	20.2	236	45.5	74.8	177	233	70.9
	200	16,360 9,280	42,700 38,900	1,460	7,900	35,200 34,400	9,130 10,100	14,700 15,400	20,500 21,800	I	14,100 15,100
interval in	200	12,690	36,300 33,200	1,200	6,730	28,700 28,500	7,800 8,510	12,600 13,100	17,500 18,500	ı	11,200
ecurrence nd)	100	10,310 6,370	31,700 29,100	1,030	5,890	24,400 24,500	6,840 7,390	11,100	15,400 16,200	l	9,410 10,300
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	20	8,220	27,400 25,300	867 815	5,080	20,400 20,700	5,930	9,640	13,400 14,000	I	7,810 8,550
e data tor (cubic fee	25	6,410 4,450	23,200	720 670	4,310 4,240	16,800 17,200	5,040	8,250 8,410	11,400	ŀ	6,400
d discharg	10	4,380	17,800	543 515	3,330 3,290	12,600	3,920 4,020	6,480 6,520	8,920 9,070	ł	4,790
F100	5	3,070	13,900	421 398	2,600	9,770 9,930	3,080 3,140	5,160 5,180	7,080	l	3,730 3,880
	7	1,580 1,470	8,610 8,480	264	1,610	6,140 6,240	1,930	3,350 3,360	4,540 4,590	I	2,430 2,500
	Station name	Harrisburg Creek near Hawkins	Chattooga River at Summerville	McClendon Creek tributary near Dallas	Little River near Buchanan	Tallapoosa River at Tallapoosa	Hiwassee River at Presley	Nottely River near Blairsville	Toccoa River near Dial	Toccoa River near Blue Ridge	Fightingtown Creek at McCaysville
	Station number	02397830	02398000	02411735	02411800	02411900	03545000	03550500	03558000	03559000	03560000
	Region no.	-	-	1	-	1	1	1	1	1	1
	Map no.	341	342	343	¥	345	346	347	348	349	350

Table 1.--Flood-frequency discharge data for rural streams in Georgia -- Continued

[no., number; mi², square miles; --, data used in analyses are prior to stream regulation, and are not shown.

Top line for each station entry is the log-Pearson Type III discharge;
bottom line is the weighted-average or best-estimate discharge;
= = , region 3 mainstem stream, use top line discharges]

Veak	of record	11	12	11	18	27	24	=
Standard	deviation (log units)	.24	.30	.29	.20	2 2	.20	.28
generalized	skew (log units)	4.	.14	4 .	.21	82	.13	.18
Orainage .		444	35.5	3.36	169	73.0	50.6	149
	200	4,120 3,750	16,500 13,200	3,810 3,300	40,100 33,200	24,200 21,100	12,200 12,900	51,500 33,400
nterval in y	200	3,240 3,010	13,000 10,800	2,860	33,900 28,300	19,700 17,400	10,400	41,000
currence ii d)	100	2,670 2,510	10,700 9,140	2,270	29,500 24,700	16,600	9,150 9,480	34,000 23,900
data for indicated recu (cubic feet per second)	50	2,170 2,080	8,640	1,780	25,500 21,600	13,900 12,700	7,950	27,800
data for ir (cubic feet	22	1,750	6,860	1,370	21,700	11,400	6,810 6,920	22,300 17,300
Flood discharge data for indicated recurrence interval in years, (cubic feet per second)	10	1,260	4,820	931 958	17,000	8,550 8,260	5,380	16,000
Flood	S	949	3,490 3,470	689	13,600 12,600	6,580 6,410	4,330 4,320	11,800
	2	575 569	1,910 1,950	365	9,090 8,550	4,100	2,890	6,750 6,450
	Station name	Sugar Creek near Ringgold	Little Chickamauga Creek ncar Ringgold	Little Chickamauga Creek tributary Ringgold	South Chickamauga Creek at at Ringgold	West Chickamauga Creek near Kensington	Chattanooga Creek near Flintstone	Lookout Creek near New England
	Station	0356660	03566685	03566687	03566700	03567200	03568500	03568933
	Map Region no. no.	11	1	-	-	н	н	1
	Map no.	351	352	353	354	355	356	357