Only a small part (0.3 million acre-feet) of the average annual precipitation (6.9 million acre-feet) returns to the atmosphere. The retention estimates in the abatement or evapotranspiration of precipitation are the NMSEO’s main focus. The NMSEO gathered data for the years of precipitation from 1985 to 1990.

Ground water in New Mexico is largely derived from regional recharge. The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.

The NMSEO reported 3,700,000 acre-feet of precipitation contributed to ground water recharge, 3,700,000 acre-feet of which were returned to surface water as a result of evapotranspiration or percolation of ground water. The remaining 30 percent of the precipitation was returned to surface water as a result of evapotranspiration or percolation of ground water.