Geohydrology, Yield, and Water Quality of Stratified-Drift Aquifers in the Pemigewasset River Basin, Central New Hampshire

By JOHN E. COTTON and JOSEPH R. OLIMPIO

U.S. Geological Survey Water-Resources Investigations Report 94-4083

Prepared in cooperation with the NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES, WATER RESOURCES DIVISION

Pembroke, New Hampshire 1996

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

Chief, New Hampshire-Vermont District U.S. Geological Survey Water Resources Division 361 Commerce Way Pembroke, NH 03275 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstract	1
Introduction	
Purpose and Scope	2
Study Area	
Previous Studies	4
Numbering System for Wells, Borings, and Springs	4
Methods and Approach	
Acknowledgments	
Geohydrologic Setting	6
Geohydrologic Units	
Stratified Drift	6
Glaciofluvial Deposits	
Glaciolacustrine Deposits	
Till	
Bedrock	
Redistribution of Earth Sediments	9
Geohydrology of Stratified-Drift Aquifers	10
Delineation of Aquifer Boundaries and Water Table	
Areal Extent of Stratified-Drift Aquifers	
Stratigraphic Boundaries and Altitude of Water Tables	
Well and Boring Data	
Seismic-Refraction Data	
Test Borings	12
Ground Water	13
Recharge, Discharge, and Direction of Flow	13
Water Levels	14
Aquifer Characteristics	14
Saturated Thickness and Storage	14
Transmissivity and Hydraulic Conductivity	16
Locations and Descriptions of Selected Stratified-Drift Aquifers	19
Lower Pemigewasset River Basin	
Bagoon Brook Valley	19
New Hampton Town Center	20
Newfound River Valley	20
Confluence of the Smith and Pemigewasset Rivers	20
Needle Shop Brook Valley	20
Pemigewasset River Valley in Hill and Franklin	20
Salmon Brook Valley	20
Middle Pemigewasset River Basin	20
Ashland, Bridgewater, and New Hampton	20
Ashland, Holderness, and Plymouth	
Campton and Southern Thornton	
Upper Pemigewasset River Basin	26
Pemigewasset River Valley in Southern Thornton to Lincoln	26
Mad River Valley at Waterville Valley	27

Geohydrology of Stratified-Drift Aquifers—Continued	
Locations and Descriptions of Selected Stratified-Drift Aquifers—Continued	
Smith River and Newfound Lake Basin	28
Smith River Valley in Eastern Danbury, Alexandria, and Bristol	
Smith River Valley in Grafton and Danbury	
Fowler River Valley (Newfound Lake Basin) in Alexandria	
Cockermouth River Valley (Newfound Lake Basin) in Groton and Hebron	
Baker River Basin	
Lower Baker River Valley in Rumney and Plymouth	
Upper Baker River Valley in Wentworth and Warren	30
Evaluation of Aquifer Yield	
Ground-Water Yield of the Pemigewasset River Basin	34
Simulation of Ground-Water Flow in the Stratified-Drift Aquifer at the Town of Woodstock	36
Assumptions	
Grid and Boundary Conditions	39
Aquifer Parameters	40
Recharge and Discharge	4 1
Induced Recharge	41
Steady-State and Transient Simulations	42
Sensitivity Analysis	
Prediction of Aquifer Yield	44
Ground-Water Quality	45
Summary and Conclusions	5 1
Selected References	52
Glossary	56
Appendixes	
A. Description of Selected Wells, Borings, and Springs in the Pemigewasset River Basin,	
Central New Hampshire	59
B. Stratigraphic Logs of Selected Wells and Borings in the Pemigewasset River Basin,	
Central New Hampshire	101
C. Geohydrologic Sections Interpreted From Seismic-Refraction Data, in the Pemigewasset River	
Basin, Central New Hampshire	139
D. Low-Flow Streamflow Measurements at Stream Gages and Miscellaneous Sites, in the	
Pemigewasset River Basin, Central New Hampshire	157
E. Summary of Ground-Water-Quality Analyses in the Pemigewasset River Basin,	
Central New Hampshire	161

PLATES

[Plates are in pocket]

- 1-5. Maps showing aquifer boundaries, data-collection locations, aquifer materials, and altitudes of the water table in the Pemigewasset River Basin, central New Hampshire:
 - 1. Southern area.
 - 2. Central area.
 - 3. Northern area.
 - 4. Southwestern area.
 - 5. Northwestern area.
- 6-10. Maps showing saturated thickness and transmissivity of stratified drift in the Pemigewasset River Basin, central New Hampshire:
 - 6. Southern area.
 - 7. Central area.
 - 8. Northern area.
 - 9. Southwestern area.
 - 10. Northwestern area.

ILLUSTRATIONS

1.	Index map showing location of study area and southern, central, northern, southwestern,	3
_	and northwestern plates	3
2.	Block diagram showing conceptual model of a valley aquifer composed of ice-contact and	_
	outwash deposits	7
	Block diagram showing development of glaciolacustrine delta and bottom deposits	8
4.	Map showing location of stratified-drift aquifers in the Pemigewasset River Basin,	
	central New Hampshire	11
5.	Hydrographs showing long-term water levels at an observation well (New London well 1) in till	
	and an observation well (Franklin well 1) in stratified drift, central New Hampshire	15
6.	Graph showing relation between estimated hydraulic conductivity, median grain size, and	
	degrees of sorting of stratified-drift samples, central New Hampshire	18
7.	Graph showing ranges of transmissivity based on the relation between saturated thickness and	
	hydraulic conductivity of stratified-drift aquifers, central New Hampshire	19
8-20.	Geohydrologic sections:	
	8. <i>A-A</i> ' in Hill	21
	9. B-B' in Sanbornton	22
	10. <i>C-C</i> ' in Plymouth and Holderness	23
	11. D-D' in Ashland	24
	12. E-E' in Plymouth	25
	13. F-F' in Plymouth	26
	14. <i>G-G</i> ' in Thornton	27
		28
	15. H-H' in Danbury	
	16. I-I' in Alexandria	29
	17. J-J' in Hebron	31
	18. K-K' in Rumney	32
	19. <i>L-L'</i> in Rumney	33
	20. M-M' in Wentworth	34
21.	Map showing location of study area and areal extent of the ground-water model of the Woodstock aquifer, central New Hampshire	38
22.	Ground-water-model grid showing active cells and recharge-well locations in the Woodstock	56
44.	aquifer, central New Hampshire	39
23.	Generalized geohydrologic section showing direction of ground-water flow and conceptual	39
23.	model showing boundary conditions used to simulate the Woodstock aquifer, central New Hampshire	40
24		
24.	Map showing well locations in the Woodstock aquifer, central New Hampshire	42
TABL	.ES	
1	. Town codes used in the numbering system for wells, borings, and springs	4
	2. Relation of mean hydraulic conductivity to median grain size and degree of sorting	18
	3. Streamflow gains within the Pemigewasset River Basin, central New Hampshire, July 6-14, 1988	35
_	I. Streamflows at selected gaging stations during low flow in the Pemigewasset River Basin,	55
	central New Hampshire	36
5	5. Municipal water use in the Pemigewasset River Basin, central New Hampshire	37
_		31
C		43
_	selected pumped wells in the Pemigewasset River Basin, central New Hampshire	43
7	7. Changes in model-calculated heads during sensitivity testing of the steady-state simulation	
_	at selected model-grid cells in the Pemigewasset River Basin, central New Hampshire	44
8	3. Effects of simulated transient pumping on water levels in the Woodstock aquifer and on flow	,
_	in the Pemigewasset River, central New Hampshire	45
9	9. Summary of results of water-quality sampling in the Pemigewasset River Basin, central New Hampshire	46
10		70
10	surface water	50
	Surface William	50

CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATED WATER-QUALITY UNITS

CONVERSION FACTORS

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
	Area	
acre	0.4047	hectare
square foot (ft ²)	0.0929	square meter
square mile (mi ²)	2.59	square kilometer
	Volume	•
cubic foot (ft ³)	0.02832	cubic meter
gallon (gal)	3.785	liter
million gallons (Mgal)	3,785	cubic meter
	Flow	
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer
cubic foot per square mile (ft ³ /mi ²)	0.01093	cubic meter per square kilometer
gallon per minute (gal/min)	0.06309	liter per second
million gallons per day (Mgal/d)	0.04381	cubic meter per second
million gallons per day per square mile [(Mgal/d)/mi ²]	9.0169	cubic meter per second per square kilometer
Hydi	raulic conductivity	y
foot per day (ft/d)	0.3048	meter per day
- · · · · · · · · · · · · · · · · · · ·	Transmissivity	•
cubic foot per day per square foot times foot of aquifer thickness $\{[(ft^3/d)/ft^2]ft\}$ or foot squared per day (ft^2/d)	0.0929	cubic meter per day per square meter times meter of aquifer thickness or meter squared per day

Water temperature in degree Fahrenheit (°F) can be converted to degrees Celsius (°C) by using the following equation: °C = 5/9 (°F - 32)

VERTICAL DATUM

Sea Level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

ABBREVIATED WATER-QUALITY UNITS

 $\begin{array}{ll} meq/L & milliequivalent \ per \ liter \\ mg/L & milligram \ per \ liter \\ \mu g/L & microgram \ per \ liter \end{array}$

μS/cm microsiemen per centimeter at 25 °Celsius

Geohydrology, Yield, and Water Quality of Stratified-Drift Aquifers in the Pemigewasset River Basin, Central New Hampshire

By John E. Cotton and Joseph R. Olimpio

Abstract

Stratified-drift aquifers discontinuously underlie the land surface in valleys in the Pemigewasset River Basin in central New Hampshire. The river basin has a total drainage area of about 1,020 square miles. Saturated thickness of stratified drift in these aquifers locally exceeds 120 feet but generally is less than 80 feet. Transmissivities locally can exceed 8,000 feet squared per day but generally are less.

Storage and flow of ground water in stratified-drift aquifers are determined by the glaciofluvial environment in which the aquifer materials were deposited. These deposits were formed during the deglaciation of central New Hampshire, which occurred as stagnation-zone retreat. Within this basin, general types of stratified drift are ice-contact deposits, outwash, deltas, and lacustrine deposits.

The most productive or potentially productive stratified-drift aquifers in the Pemigewasset River Valley are between Franklin and southern Hill, at the Bristol-Hill town line; between northwestern New Hampton and the Plymouth-Bridgewater town line; at the confluence of the Baker River; and between north of Livermore Falls and southern Woodstock.

Potentially, the most productive stratifieddrift aquifer in the Smith River basin is in the center of Danbury. Stratified-drift aquifers with high potential to yield water are in the lower Cockermouth and Fowler River Valleys in the Newfound Lake Basin, in the Rumney Depot area, and in Warren in the Baker River Valley.

Pumping from most municipal wells in the basin induces streamflow that recharges the aquifers. Future ground-water production could rely not only on storage within the aquifers but also on recharge from surface water. Within the basin, about 97 million gallons per day of surface water is available between streamflows equaled or exceeded 95 percent of the time and streamflows equaled or exceeded 99 percent of the time.

An example of one effective approach to evaluate the potential yield of a streamside aquifer was presented in a ground-water-flow simulation of a sand and gravel aquifer in Woodstock. Model results indicate that, with four additional production wells, pumpage from the aquifer could be increased by more than 10 times the maximum pumping rates of the two existing wells.

Water from stratified-drift aquifers within the Pemigewasset River Basin meets the U.S. Environmental Protection Agency's Maximum Contaminant Level and generally is suitable for drinking and other domestic and commercial uses. Concentrations of iron and manganese in 8 of the 26 analyzed water samples exceeded the Secondary Maximum Contaminant Levels established by the U.S. Environmental Protection Agency. Trace amounts of chloroform were detected in one ground-water sample, and trace amounts of benzene were detected in another ground-water sample.

INTRODUCTION

The population of communities in the Pemigewasset River Basin increased by about 34 percent during 1970–90 (U.S. Bureau of the Census, 1990). Recreational and second-home development has been especially rapid in this area, which includes parts of the Lakes Region in central New Hampshire and the White Mountains, because of the area's proximity to a large metropolitan area. Interstate Highway 93 in New Hampshire (pl. 3) traverses the entire length of the basin from Franconia Notch (pl. 3) to the north (site of the "Old Man of the Mountains") to the city of Franklin (pl. 1) at the southern end, providing easy access to visitors from the eastern provinces of Canada to the north, and from eastern Massachusetts to the south.

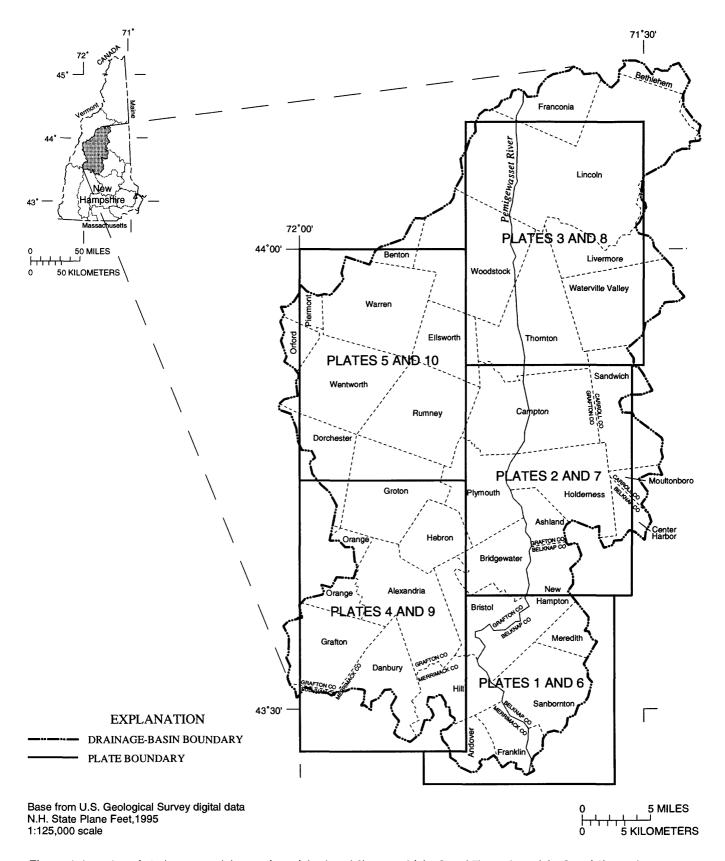
This growth has steadily increased demands for water and has stressed the capacity of existing municipal water systems as well as other community and noncommunity public-water systems. Of the 23 towns and 1 city in the Pemigewasset River Basin, 9 towns and 1 city have municipal water systems. Of these 10 municipalities, 6 use ground-water sources only, 2 use surface-water sources, and 2 use ground-water and surface-water sources, and most of them need to expand their water-supply capabilities. The rural areas of these 10 communities and the other 14 towns within the basin rely on private wells.

The U.S. Geological Survey (USGS), in cooperation with the New Hampshire Department of Environmental Services, Water Resources Division (NHDES-WRD), has done a series of ground-water studies in New Hampshire from 1983–93 to provide detailed geohydrologic information that water managers can use to determine optimal use of existing water supplies and to develop new water supplies. The Pemigewasset River Basin (fig. 1), is one of the basins included in this series.

Purpose and Scope

This report describes (1) the hydrologic and geologic characteristics of the stratified-drift aquifers within the Pemigewasset River Basin, including the areal extent of the stratified-drift aquifers, groundwater levels within these aquifers, general direction of ground-water flow, saturated thickness, and

transmissivities; (2) aquifer yields, and (3) background water quality within the stratified-drift aquifers. Major watershed divides were selected as study areas because they are the natural subdivision of the hydrologic system; only a few stratified-drift aquifers in central New Hampshire extend across major surface-water divides.


Study Area

The Pemigewasset River Basin in central New Hampshire encompasses about 1,020 mi² in the Northeast and Superior Uplands ground-water region (Heath, 1982). The basin is about 50 mi long north to south and averages about 22 mi wide (fig. 1). The mountainous northern part is in the White Mountain Section of the New England Physiographic Province, and the southern and western parts are in the New England Upland (Feneman, 1938; Raisz, 1954). Land-surface elevation ranges from 260 ft above sea level at the mouth of the basin to greater than 4,000 ft on mountain tops in the northern part of the basin.

The Pemigewasset River is about 55 mi long and flows southward through the middle of the basin. Major west-flowing tributaries are the East Branch of the Pemigewasset and the Mad Rivers in the northern part of the basin and the Squam River and Salmon Brook in the southern part. The major east-flowing tributaries are the Baker, Newfound, and Smith Rivers.

Average annual precipitation ranges from about 40 in. in the southern part of the basin to more than 60 in. in the northern headwaters. Average annual runoff in the basin ranges from about 18 to 50 in. (Knox and Nordenson, 1955).

The stratified-drift aquifers are in the Pemige-wasset River Valley and in valleys of the major tributaries. These aquifers typically are narrow deposits of sand and gravel within the valleys. Fine-grained stratified-drift deposits are in some parts of these valleys. Some segments of these valleys are directly underlain by till and bedrock; consequently, potentially productive stratified-drift aquifers are discontinuous within the basin.

Figure 1. Location of study area and the southern (pls. 1 and 6), central (pls. 2 and 7), northern (pls. 3 and 8), southwestern (pls. 4 and 9), and northwestern (pls. 5 and 10) plates.

Previous Studies

Information from reconnaissance of the availability of ground water in the Pemigewasset and Winnipesaukee River Basins was presented by Cotton (1975). This study indicated that additional information was necessary to increase understanding of boundaries of stratified-drift aquifers, the potential productivity of these aquifers, and ground-water quality. Several consultants have produced watersupply plans and test-drilling programs for some of the towns. Generalized surficial geology of this area has been published only as part of the statewide map at a scale of 1:250,000 (Goldthwait and others, 1951). Surficial geology of part of the Baker River Basin has been addressed by Haselton and Randall (George Haselton, Clemson University, written commun., 1988; and Allan Randall, U.S. Geological Survey, written commun., 1989).

Soil surveys have been published by the Natural Resources Conservation Service (NRCS) for Belknap County (Kelsey and Vieira, 1968), Carroll County (Diers and Vieira, 1977), Grafton County (Latimer and others, 1939), and Merrimack County (Winkley, 1965). More recent unpublished soil surveys for Grafton County are available from the Natural Resources Conservation Service.

Numbering System for Wells, Borings, and Springs

The identification numbers for wells, test borings, and springs are assigned according to the grid system of latitude and longitude. Each number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude; the next seven digits denote degrees, minutes, and seconds of longitude. The last two digits (assigned sequentially) identify wells or other sites within a 1-second grid. These identification numbers are the primary identifiers in the USGS data base and are included in appendixes A and B.

Local identifiers also are assigned to wells, test borings, and springs. Each identifier consists of three letters and one or more numbers. In the case of Bristol, it is letter, number, letter, and number. The first two letters designate the town, except for Bristol, which is B2 (table 1). The third letter denotes the following type of site: "A" for borings (no installed casings), which were done for hydrologic purposes; "B" for borings done primarily for constructional purposes; "S" for springs;

Table 1. Town codes used in the numbering system for wells, borings, and springs

Town	Two- letter code	Town	Two- letter code	
Alexandria	AE	Holderness	HR	
Andover	AN	Lincoln	LK	
Ashland	AP	Livermore	LO	
Bridgewater	BY	New Hampton	NH	
Bristol	B2	Plymouth	PY	
Campton	CB	Rumney	RU	
Danbury	DB	Sanbornton	SC	
Ellsworth	EL	Sandwich	SE	
Franconia	FD	Thornton	TR	
Franklin	FK	Warren	WD	
Grafton	GQ	Waterville Valley	WF	
Groton	GX	Wentworth	WI	
Hebron	HL	Woodstock	WS	
Hill	HN			

and "W" for all kinds of wells. Each site is given a sequential number within each town. For example, the first boring in the city of Franklin is FKA-1.

Methods and Approach

The following methods were used in this study.

- 1. Areal extent of the stratified-drift aquifers was mapped by USGS personnel. Soils maps from the Natural Resources Conservation Service and unpublished surficial geologic information from USGS files were used to focus field mapping in the valleys of the basin.
- 2. Published and unpublished subsurface data on ground-water levels, saturated thickness, and stratigraphy of the aquifers from the USGS, NHDES-WRD, and the New Hampshire Department of Transportation were compiled. Additional data were obtained from municipalities, local residents, well-drilling contractors, and geohydrologic consulting firms. The locations of wells, borings, and seismic lines were plotted on base maps at a scale of 1:24,000, and pertinent well and boring data were added to the Ground Water Site Inventory (GWSI) data base maintained by the USGS. Each data point is cross-referenced to a site-identification number. The site locations are shown on plates 1-5, and information from these sites is listed in appendixes A and B.

- 3. Seismic-refraction profiling, a surface geophysical technique, was used to determine depths of the water table and depths to the bedrock surface. (Locations of these profiles are shown on plates 1-5.) The seismic data were interpreted by using a time-delay, ray-tracing computer program developed by Scott and others (1972). Data from nearby wells and test holes were used to verify the interpretations. Seismicrefraction profiles are shown in appendix C. Actual depths to the bedrock surface generally are within 10 percent of the estimates from seismic-refraction profiling. Till is not identified in these interpretations because it is generally thin and cannot be distinguished from stratified drift by use of seismic-refraction methods. Where till is present, but is not identified in the interpretation, the computed depth to bedrock is slightly less than the actual depth.
- 4. Test borings were made at 47 locations to improve definition of the thicknesses and geohydrologic characteristics of the stratified-drift aquifers. (Locations of test borings are shown on plates 1–5.) Split-spoon samples of the subsurface materials below the water table generally were collected at 10-foot intervals to estimate the horizontal hydraulic conductivity at those depths and to determine the stratigraphic sequence of materials comprising the aquifers. Where test borings were made in relatively productive aquifer materials, a 2-inch-diameter well with a polyvinyl chloride (PVC) casing and a slotted well screen was installed.
- 5. Data from items 2, 3, and 4 were used to construct maps showing the water-table altitude and saturated thickness of the stratified-drift aquifers.
- 6. Bulk or vectorless hydraulic conductivities of the aquifer materials were estimated from grainsize distribution data from 454 samples of aquifer material collected during the completion of test borings and wells in southern and central New Hampshire. Transmissivities were estimated from logs of test borings and wells by assigning horizontal hydraulic conductivities to each interval sampled, multiplying the hydraulic conductivities by the saturated thickness of

- the interval, and summing these results. Additional transmissivities were obtained from reports by geohydrologic consultants. This information was used to prepare maps showing the transmissivity distribution of the stratified-drift aquifers (pls. 6–10).
- 7. Flow-duration data from eight long-term streamflow-gaging stations in the Pemigewasset River
 Basin were analyzed and used to correlate with
 miscellaneous low-flow measurements at 22
 other sites. Measurements are listed in appendix D. Gain in streamflow measurements in the
 river basin during period of low flow can be
 used to estimate water availability from
 aquifers.
- 8. An aquifer in Woodstock was selected to demonstrate a technique for estimating yield on the basis of a numerical model that simulates ground-water flow. The computer program, developed by McDonald and Harbaugh (1988), is a three-dimensional model that can be used to simulate flow in two dimensions. This model was used to estimate the potential yield and the sources of water to wells in the modeled area.
- 9. Samples of ground water from 16 USGS observation wells, 8 public-supply wells, and 2 springs were collected and analyzed. Selected physical properties (specific conductance, pH, temperature) were measured, and concentrations of inorganic constituents were determined. Samples of water from 14 of the 16 observation wells and the 2 springs were also analyzed for 36 different volatile organic compounds. These data are listed in appendix E. The data provided by these analyses were used to assess the general quality of water from the stratified-drift aquifers.

Acknowledgments

The authors thank the State, Federal, and municipal officials; residents; well contractors; and consulting firms that provided data for this study. Included are personnel from the Office of the State Geologist; the New Hampshire Department of Environmental Services, Water Resources Division; and the Natural Resources Conservation Service.

¹Unless otherwise indicated, pipe diameters are nominal inside diameters.

GEOHYDROLOGIC SETTING

Ground water underlies the land surface throughout the Pemigewasset River Basin (fig. 1). Subsurface formations that have sufficient saturated permeable materials yield significant quantities of water to wells are called aquifers. Even poorly productive aquifers could yield enough water to wells to satisfy small water demands. The three types of aquifers in the study area are (1) stratified drift, which is the major source of ground water for large water users; (2) till, which may supply ground water to private wells for single-family domestic use; and (3) bedrock, which is a major source of ground water for private domestic needs and small businesses (U.S. Geological Survey, 1985).

Geohydrologic Units

Stratified Drift

Stratified-drift aquifers in this basin were formed during the waning stages of continental glaciation, when the rate of melting of glacial ice exceeded the winter rate of accumulation of snow combined with any south-flowing glacial ice. Under these conditions, the margin of ice moved northward. The ice margin was not a simple edge of ice; rather it was a marginal zone within which the tops of mountains and hills became ice-free first. As melting (downwasting) continued, more of the uplands became ice-free while remnant ice filled the valleys. The Ice Age in New Hampshire ended with the melting of the residual ice.

Glacial ice contained all sizes of rock debris that had been eroded from the overridden land surface. Although much of the rock debris was contained in the basal part of the glacier, some of the debris in marginal ice areas (including along valley sides) was carried upward along shear zones to the surface of the ice (Koteff and Pessl, 1981). Thus, this material also was available for erosion and transport by meltwater.

Stratified-drift deposits within this basin were formed by the settling of material from sediment-laden meltwater in streams, ponds, and lakes that were temporarily present within the meltwater drainage system. Stratified-drift deposits are composed of layers of sediments having different grain-size distributions, sorted according to the local depositional environments. Sand and gravel deposits reflect a high-energy environment. Very fine sand, silt, and clay reflect a low-energy environment such as that found in ponds and lakes.

Glaciofluvial Deposits

Ground-water development in the Pemigewasset River Basin and throughout New Hampshire has been most successful in thick, saturated deposits of glacio-fluvial sediments consisting of moderately to well sorted coarse-grained sand and sand and gravel. These aquifers—the main focus of this study—are present in the valley lowlands. These aquifers are isolated from one another and form independent ground-water systems. The different types of glaciofluvial deposits that comprise valley aquifers in the study area are shown in a block diagram in figure 2.

Glaciofluvial deposits formed by meltwater streams beneath or adjacent to glacial ice are termed "ice-contact deposits." Eskers are elongate ridges of sand and gravel deposited in meltwater channels beneath or within glacial ice. An example of an esker is found in the Pemigewasset River Valley extending southward from the Plymouth-Bridgewater town line through the western part of Ashland into New Hampton (pls. 2 and 7). The saturated thickness in parts of this esker exceeds 80 ft.

Kames are small deposits formed by small icemarginal meltwater streams between ice and upper hillside and mountain slopes. The high altitudes of these deposits indicate that they were formed as the ice surface was lowered by downwasting, thereby exposing the upper slopes. Ice-marginal streams were constantly shifting position, and the drainage system was not organized. Most kames in the Pemigewasset River Basin are isolated, have thin or no saturated thickness. and were not mapped in this study. The lower slopes of some kames are contiguous with the upper slopes of stratified-drift valley deposits. An example is the sandy kame just northeast of Exit 24 off Interstate 93 in Ashland (pls. 2 and 7). Such kames have been included in the stratified-drift aquifer because they are part of the direct recharge area.

Kame terraces were formed by ice-marginal meltwater streams between ice and the lower hillslopes of the main valley and larger tributary valleys. Some of these deposits are coarse-grained sand and gravel, such as those terraces along the north side of the Smith River east of Danbury village and in southern Alexandria (pls. 4 and 9). Some are predominantly coarse-grained sand, such as terraces on the west side of the Pemigewasset River in Thornton and Hill (pls. 3 and 8). Some terraces are fine-grained sand and silt, such as those east of the Pemigewasset River in Thornton and

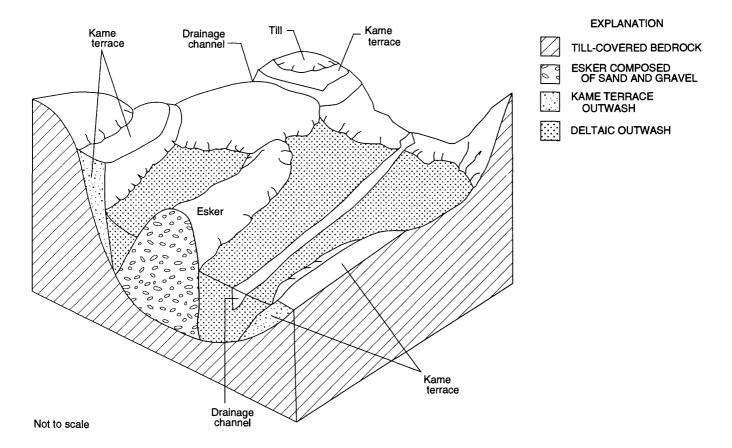


Figure 2. Conceptual model of a valley aquifer composed of ice-contact and outwash deposits.

south of the Baker River near the Rumney-Wentworth town line (pls. 5 and 10). Because these terraces are on the valley sides, the highly variable saturated thickness within these deposits depends on the grain-size distribution within these deposits and the configuration of the underlying surface. In places beneath the high terrace surface in southern Alexandria, the deposits are dry (the water table is below the terrace deposits), and in places beneath the low terrace surface, there is little saturated thickness. The saturated thickness in the finegrained terrace near the Rumney-Wentworth town line is 40 ft.

Outwash deposits were formed by meltwater streams beyond or away from the ice margin. The coarseness of these deposits ranges from predominantly sand to predominantly gravel. Coarseness generally decreases as distance of transport increases. Distribution of grain sizes (sorting) generally increases with increasing distance of transport. Thus, outwash deposits generally are better sorted than ice-contact deposits. In this basin, outwash forms extensive deposits in the lowlands of the Pemigewasset River

Valley from Lincoln to Plymouth and Bristol to Franklin, in the Baker River Valley from Warren to western Rumney, and in the Smith River Valley in Grafton and Danbury (pls. 4 and 9).

Glaciolacustrine Deposits

Sediment in meltwater streams that entered standing water formed deltaic deposits. A block diagram of the development of a typical glaciolacustrine delta is shown in figure 3. The coarseness of deltaic deposits reflects the suspended load of the stream. Foreset beds of the deltas commonly are well-sorted sands, and, where the ice margin and standing water were in proximity, sandy gravel may predominate. Such deposits may be considered either part of the fluvial sequence of deposits or part of the lacustrine deposits. Fine-grained sediment in the meltwater temporarily remained in suspension in the pond or lake. Slow settling of this material formed bottom deposits. In areas that were near the shore, these deposits can also contain sandy lenses.

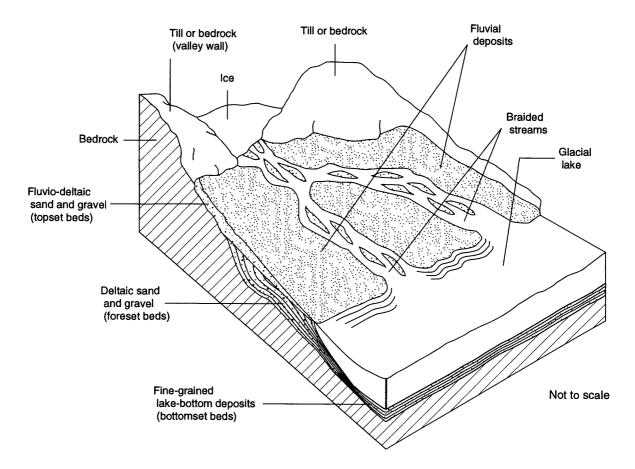


Figure 3. Development of glaciolacustrine delta and bottom deposits.

The presence of bottom deposits indicates that a glacial lake occupied the Pemigewasset and lower Baker River Valleys in Plymouth and Rumney in places; the saturated thickness of these deposits exceeds 80 ft. Fine-grained deposits indicate the presence of a small temporary glacial lake in the lowlands of the Smith River Valley in Danbury and a glacial pond in a small valley just northwest of the village of Warren.

Fine-grained deposits in lowlands are completely or nearly completely saturated and store substantial amounts of ground water, but they transmit water slowly. Although these bottom deposits are stratified drift, they are not considered productive aquifers. When these lowland basins filled with sediment or when the outlets of these temporary lakes and ponds eroded enough to drain the water bodies, throughflowing meltwater streams commonly deposited coarse sand and gravel over these bottom sediments. These partly saturated fluvial deposits may form shallow water-table aquifers. Most of the bottom

deposits in the Plymouth Lowlands (pls. 5 and 10) are overlain by as much as 20 ft of saturated material consisting of medium to very coarse sand and fine, gravelly sand. In places, lake-bottom deposits are underlain by coarse-grained ice-contact deposits.

Till

Till, the dominant surficial material in the river basin, is an unsorted mixture of rock debris ranging in size from clay to boulders. Till was deposited directly by glacial ice during the advancing and retreating stages of glaciation. Beneath flowing ice, compact basal till, generally less than 30 ft thick, was deposited discontinuously on the bedrock surface. In some areas, a large amount of basal till was deposited on north- and northwest-facing bedrock hillslopes that locally hindered the flow of the debris-laden ice. Till thickness in these areas can exceed 200 ft.

Ablation till, which discontinuously overlies compact till or bedrock, formed as residual deposits on the melting (wasting) ice surface and gradually settled

down on the underlying surface as the melting ice disappeared. Ablation till is less compact than basal till, is faintly stratified in places, and can contain lenses of stratified material. Generally, till in New Hampshire lies directly over bedrock. Thus, exploration for stratified-drift aquifers beneath till is seldom productive, although 20 ft of saturated fine sand was found beneath 40 ft of till in a test hole near Webster Lake in Franklin. Because ablation till containing stratified lenses may grade laterally into stratified drift, classification of specific deposits as either ablation till or stratified drift can be difficult.

Till generally is considered to be a poor aquifer because its unsorted texture reduces primary porosity (water storage) and hydraulic conductivity. Nonetheless, till is an important aquifer for domestic water supply in New Hampshire. Many old and new domestic wells are finished in till. Large-diameter dug wells provide adequate water storage to meet demands during daily high water-use periods. Water-level fluctuations within till can be several feet, making shallow dug wells less reliable than deeper, drilled wells during dry seasons.

Bedrock

The Pemigewasset River Basin is underlain by bedrock primarily associated with the Kearsarge-Central Maine synclinorium (Lyons and others, 1986). This structured belt trends north-northeast to south-southwest and contains metamorphic rocks of Devonian and Silurian age, as well as younger Devonian plutonic rocks. Faults are predominantly oriented parallel to this regional strike. Joint sets are at a variety of orientations.

These rocks are hard and compact; they contain recoverable water in open fractures. The size, distribution, and degree of interconnection of these fractures are highly variable, and their number generally decreases with depth. Thus, the capacity of bedrock to store water is variable, but relatively small, and generally decreases with depth. Bedrock wells commonly yield dependable supplies of water of acceptable quality for single-family domestic and small commercial needs. Some condominium complexes use water from bedrock wells.

Studies indicate small but probably significant differences in the water-yielding characteristics of the various bedrock types in the basin (Stewart, 1968); however, average well yield in metamorphic rocks in New Hampshire (about 13 gal/min) is slightly higher

than the average well yield in igneous rocks (about 10 gal/min). These yields should be used with caution because estimates of domestic well yields are generally by aquifer tests of only a few hours' duration.

Zones where bedrock is extensively fractured can yield large quantities of water. Six municipalities in New Hampshire, all outside the study area, pump from wells in crystalline bedrock, and three of these wells are reported to yield approximately 0.5 Mgal/d each. Systematic exploration might allow location of production wells in these zones (Cotton and Hammond, 1985); such exploration by consultants did prove successful in Lincoln but not in parts of Waterville Valley.

Redistribution of Earth Sediments

Erosion and redeposition of stratified drift by streams (and to a lesser extent by wind) began soon after the stratified drift was originally deposited, perhaps while glacial ice was nearby. The coarse-grained sediments overlying the lake-bottom sediments in the Plymouth Lowlands are an example of this kind of erosion and redeposition. Steep ravines formed as tributary streams have eroded terraces. In places, parts of the terraces have been eroded by the large streams. The eroded material could have been redeposited as lower terraces and alluvium in the main valleys.

Erosion of till by small streams has continued from the time the surface became ice free to the present. Alluvial fans have formed in places where tributary streams flow from steep upland till terrain onto flat till and stratified-drift areas. These fan deposits may continue to form during large floods. Landslide deposits can be found in places in headwater areas in the northern part of the basin. Deposits of redistributed sediment that are in contact with stratified drift are included as part of the stratified-drift aquifers. In headwater areas, such as Franconia Notch, landslide deposits are the major valley-fill deposit. These deposits are not stratified-drift aquifers.

On steeper slopes, surficial material of stratified drift and till is transported downslope by a process known as mass wasting. This process was probably most active soon after glacial ice melted and before vegetation was reestablished. Where these deposits (colluvium) are found, the original boundary between till and stratified drift could be buried and the present boundary could be gradational.

GEOHYDROLOGY OF STRATIFIED-DRIFT AQUIFERS

The geohydrology of stratified-drift aquifers is described by delineating aquifer boundaries, determining generalized water tables and ground-water-flow directions, estimating saturated thicknesses, and estimating transmissivity. Data sources include soil maps, surficial-geology maps, records of wells and test borings, and seismic-refraction profiles. This geohydrologic information is shown on plates 1–10.

Delineation of Aquifer Boundaries and Water Table

Lateral and lower boundaries of stratified-drift aquifers have been determined or estimated in this study. Stratified-drift aquifers in the study area are glaciofluvial sediments that form valley-fill deposits, including those that underlie or overlie glaciolacustrine deposits. The till or bedrock surface forms the lower boundary of stratified-drift aquifer. Water tables within these deposits form the upper surface of the saturated part of these aquifers.

Areal Extent of Stratified-Drift Aquifers

The areal extent of each of these valley aquifers is limited by the lateral boundaries of stratified drift. Within each of these aquifers, the boundaries enclose the area of contiguous stratified drift. Small deposits of stratified drift on upper hillslopes that are not physically in contact with stratified-drift aquifers at lower elevations are not considered part of those aquifers. Such deposits are not designated as small individual aquifers because they typically have little or no saturated thickness during dry periods.

The entire contiguous stratified-drift deposits within the valleys are appropriately designated aquifers. Although recovery of ground water in substantial quantities is possible or feasible only in parts of these aquifers, ground water in storage within these deposits could potentially contribute to future water-supply wells.

The areal extent of the stratified-drift aquifers is shown in figure 4 and on plates 1-10. Preliminary information on the location of stratified drift was obtained from the surficial geologic maps of New Hampshire (Goldthwaite and others, 1951); soil maps produced by the NRCS for Belknap County (Kelsey and Vieira, 1968), Carroll County (Diers and Vieira, 1977), Grafton County (Latimer and others, 1939), and Merrimack County (Winkley, 1965); more recent mapping of New

Grafton County (Natural Resources Conservation Service, written commun., 1988); and a reconnaissance of ground-water availability (Cotton, 1975). The stratified-drift boundaries were specifically mapped as part of this report. Boundaries of different types of stratified-drift deposits, typically shown on detailed surficial geologic maps, are not included on the plates in this report; however, main valley areas underlain by lacustrine bottom sediments are designated by a pattern on the plates. Small areas of stratified drift and alluvium along the upper reaches of the larger streams are not shown as aquifers because thin saturated thickness and small lateral extent provide only small amounts of ground-water storage.

A comparison of the boundaries of the stratified-drift boundaries on the plates with the boundaries of sandy soils formed on water-lain sediments, as mapped by Winkler (1965), Kelsey and Vieira (1968), and Diers and Vieira (1977), reveals a difference in location on hillslopes. These are typically areas where thin sand discontinuously is present at the surface along with till and bedrock; these areas are not usually designated as stratified drift on the plates in this report. Thin alluvial soils are commonly shown on soil maps along small tributary stream channels in till; these soils are from upstream and at higher elevations than stratified drift.

Aquifer boundaries are shown on the plates as solid or dashed lines. Solid lines are identified as "approximately located" because the boundary location cannot be ensured as precisely as a solid line would normally indicate. A solid-line contact on 1:24,000-scale USGS maps implies about a ±80-foot horizontal accuracy. In most areas, the solid-line boundaries probably are plotted with this accuracy. Dashed boundary lines identify inferred contacts where the level of accuracy is less certain.

Stratigraphic Boundaries and Altitude of Water Tables

Stratigraphic boundaries and altitude of subsurface stratified-drift boundaries, sediment types (lithologic units), and position (altitude) of water tables were determined by an inventory of existing water wells and borings, seismic-refraction surveys, and test drilling done during this study. Boundaries of the stratified-drift aquifers are being entered into the New Hampshire referenced analysis and information transfer system (GRANIT) and will be available for analysis relative to other geographic information that is in that data base. (GRANIT is the New Hampshire Geographic Information System (GIS), which is owned and operated by Complex Systems Research Center at the University of New Hampshire.)

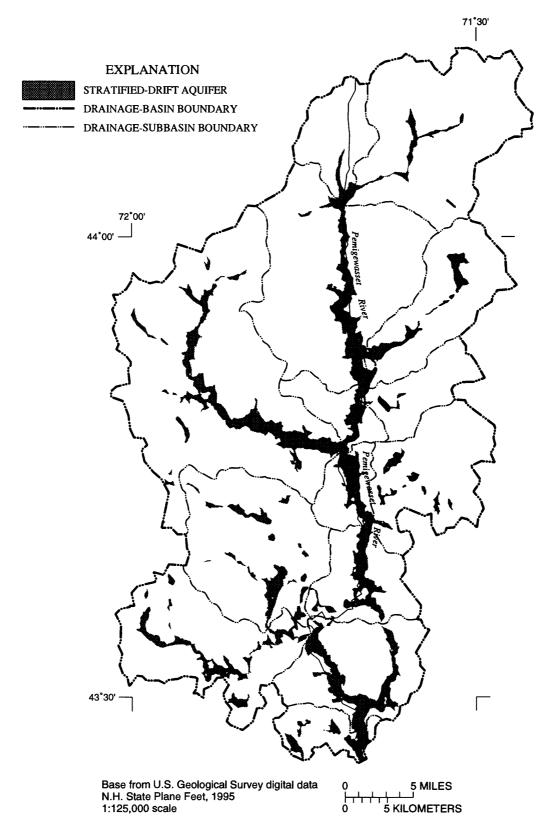


Figure 4. Location of stratified-drift aquifers in the Pemigewasset River Basin, central New Hampshire.

Well and Boring Data

Locations of inventoried subsurface data sites for wells and borings are plotted on plates 1-5. These locations have been entered in the USGS Ground-Water Site Inventory (GWSI) data base. Computer programs were used to transfer data on recently completed and inventoried water wells from the computer data base of the New Hampshire Water Well Board to the GWSI data base. Data on previously inventoried bedrock wells (Stewart, 1968) also were added to the data base. Data on bridge borings were obtained from the files of the NHDOT. Data on public water-supply wells and test wells were obtained from municipalities and consultants and were entered into the GWSI data base. Information on private wells was obtained from home owners. Data on test wells and borings done by the USGS during this study are also in the GWSI data base.

Information assembled in the GWSI data base was used to produce the plates as described in the following sections. Applications of the GWSI data base are discussed by Mercer and Morgan (1981).

Seismic-Refraction Data

Seismic-refraction surveys were completed at 45 locations in stratified-drift areas to determine depth to water table and bedrock (pls. 1–5). A 12-channel, signal-enhancement seismograph recorded the arrival times of compressional waves generated by an energy source and received at a line of 12 geophones. The data were collected according to procedures described by Haeni (1988). Interpretations of depth to water table and bedrock were made by use of a computer program (Scott and others, 1972). Profiles of these data are shown in appendix C. Estimated depths were generally in agreement with data (where available) describing nearby wells, borings, and surface water, as well as with shallow auger-hole data collected after the refraction surveys.

Seismic velocities estimated for the materials that were used in the interpretations are 900 to 1,500 ft/s for unsaturated stratified drift, about 5,000 ft/s for saturated stratified drift, and generally greater than 10,000 ft/s for bedrock. Seismic velocity does not differ significantly with coarseness or fineness of saturated drift; thus, profiling does not aid in identifying the texture of the aquifers.

The altitude of the land surface in the figures was estimated by leveling the geophone locations relative to one another, and referencing that information to sea level by use of information shown on USGS topographic quadrangle maps. The accuracy of determinations of altitude of the land surface is variable, but is at least within ± 10 ft. This accuracy is acceptable considering the uncertainty involved in determining depths of water table and bedrock.

The estimated altitude of the water table in stratified drift, as determined by interpretation of the seismic-refraction surveys, are shown in the profiles in appendix C. The altitude of the water table was estimated from well data in the GWSI data base, from seismic-refraction surveys, and from test borings. The altitudes relative to the land surface are accurate to within several feet, and they represent the water table at the time of the seismic-refraction surveys. These surveys were done in the summer and fall of 1987–89.

The estimated elevation of the buried bedrock surface are shown in appendix C. Accuracy of these elevations is less than the elevation of the water tables because errors in the interpretations of seismicrefraction surveys are cumulative. If a head, estimated by interpretation of seismic-refraction data, is high, the estimated elevation of the bedrock surface will be low by an even greater amount. Additional error will result if the relief of the bedrock surface differs considerably over distances less than the 50- to 100-foot geophone spacing used in the surveys or if a thick layer of till overlies bedrock. If the seismic velocity in one till is significantly faster than the velocity in saturated stratified drift, the estimated bedrock surface would be too high. If the seismic velocity in till only is slightly faster than the seismic velocity in saturated stratified drift, the estimated depth to bedrock would be correct, but the thickness of the saturated stratified drift would be overestimated. Estimates of depth to bedrock probably are correct to within 10 percent.

Test Borings

Test borings were drilled with a USGS hollowstem auger rig at 50 sites during this study (pls. 1–5). Many of these sites were along or near seismicrefraction surveys to verify the depth to water table, the depth to refusal or bedrock, and the saturated thickness of the stratified drift. Samples of subsurface materials at shallow depths (less than 20 ft) and from above the water table were obtained by bringing these materials to the surface by rapid rotation of the fluted augers used for drilling. Samples from greater depths and from below the water table (saturated materials) generally were collected every 10 ft by use of a split-spoon sampler. These data were used to describe the nature of the material penetrated (stratigraphic log).

Ground Water

Recharge, Discharge, and Direction of Flow

The sole source of water to the Pemigewasset River Basin is precipitation, which returns to the atmosphere by evaporation; flows overland to streams, ponds, and swamps within the area; and infiltrates the soil. Some infiltration is stored temporarily as soil moisture and is subsequently returned to the atmosphere by evaporation and transpiration from plants. The remaining infiltration percolates downward through the porous rock materials to the water table, where it becomes ground water. Ground-water recharge is, therefore, the water that is added to the zone of saturation. Ground water can reside in the saturated zone for many years, but it can return to the atmosphere by evapotranspiration and to low areas of the land surface by seepage. Ground water naturally flows through the pores of the sediments and the fractures in bedrock to discharge into brooks, streams, rivers, ponds, and lakes. Ground water can also be obtained from wells that tap the aquifers. Water that does not leave this basin through evapotranspiration or diversion by man eventually flows into the main stem of the Pemigewasset River through Franklin to the Merrimack River.

Soil permeability and vegetation affect the quantity of recharge to stratified-drift aquifers. Sandy soil on land surfaces with low relief covered by mature forests can absorb up to about 1 in/hr for short periods of time; however, a silty, clayey soil may absorb less than 0.1 in/hr (Heath, 1983). During the growing season, vegetation uses water from the unsaturated zone above the water table (soil moisture) and from the saturated zone (ground water) when the water table is at shallow depth. Soil moisture must be replaced before new water from precipitation migrates down through the unsaturated zone to the water table. Thus, recharge rates are lower during the growing season than during spring or fall. During August through October 1977, Hill (1979) estimated that one third of the rainfall that

fell on a sandy plain with low relief in southern New Hampshire reached the water table and became ground water. A high percentage of precipitation becomes ground water after the killing frost in the fall (after soil-moisture deficiencies have been replaced) and before the growing season begins in late spring. During winter, much of the precipitation is held in surface storage as snow.

Elsewhere in the Northeast, recharge to stratified-drift aquifers is estimated to be as high as one-half of the annual precipitation (MacNish and Randall, 1982; Pluhowski and Kantrowitz, 1964). In the study area, average annual precipitation ranges from about 40 in. in the south to more than 60 in. in the high elevations of the north (Knox and Nordenson, 1955). On the average, about 40 in. of precipitation falls each year on the stratified-drift aquifers in the valley. If one-half of that amount (20 in.) becomes recharge to sandy aquifers, each square mile of aquifer receives about 0.9 Mgal/d. This recharge is termed direct recharge because it is derived from precipitation that falls directly on the aquifer.

A source of indirect recharge to stratified-drift aquifers comes from adjacent till-covered bedrock uplands. Morrissey (1983) estimated that the average annual lateral inflow of ground water from upland areas to a stratified-drift aquifer in western Maine is 0.5 [(ft³/s)/mi²]. If this rate of recharge is applicable to this study area, then there could be about 0.3 Mgal/d of lateral recharge to stratified-drift aquifers from each square mile of adjacent upland area. The lateral flow probably increases after spring recharge and decreases during summer.

Indirect recharge is present where tributary streams draining upland areas cross stratified-drift aquifers (Randall, 1978). During summer, if the water table is below the stream, infiltration to the aquifer can occur through the permeable streambeds. Ambient ground water from stratified-drift aquifers discharges to streams, rivers, lakes, and wetlands and through ground-water evapotranspiration. Pumped wells produce artificial discharge. Ambient ground-water flow in stratified-drift aquifers is from the valley sides toward surface-water bodies. This flow regime is altered in some broad lowlands where ground water flows from a central area in different directions toward the main river and a tributary stream.

Water Levels

Periodic water-level measurements were made by the USGS at 27 test wells in stratified drift during this study from the time each well was installed until September 1989. Hydrographs from Franklin well 1 (an observation well with a long record in stratified drift 1 mi south of the study area) and New London well 1 (a hillside observation well with a long record in till about 8 mi west of the study area) illustrate the natural patterns of ground-water recharge and discharge (fig. 5). During the nongrowing season, a rising water table indicates that recharge exceeds discharge. During the growing season, discharge generally exceeds recharge because most of the precipitation is returned to the atmosphere through evapotranspiration. The data from Franklin well 1 and the other wells measured during this study support the conclusion reached for other parts of New Hampshire that natural water-level fluctuations rarely exceed 10 ft and are generally less than 5 ft in stratified-drift aquifers (Cotton, 1988, 1989; Moore, 1990).

The altitudes of water tables in stratified-drift aquifers are shown on plates 1–5. Maps of the water tables are based on data derived from (1) elevations of streams, rivers, ponds, and lakes as shown on USGS topographic base maps (1:24,000-scale); (2) well and boring records in the GWSI data base; and (3) seismic-refraction profiles. The contour interval on the water-table maps is either 20 or 40 ft and reflects the topographic contour interval of the base maps. In some stratified-drift areas where no water-table data were available, contours were not drawn. The horizontal component of ground-water flow is at right angles to the contour lines. Arrows are drawn on plates 1–5 to illustrate these generalized flow directions.

Aquifer Characteristics

Saturated Thickness and Storage

The saturated thickness of an unconfined stratified-drift aquifer is the vertical distance from the water table to the bottom of the aquifer, typically

the contact with till or bedrock. The saturated thickness approaches zero at the hillside boundaries of these valley aquifers and is generally, but not always, greatest at some more central part of the are underlain or overlain by fine sand, silt, or clay, the total thickness can be determined through seismic-refraction profiling, but the thickness of each subunit is not known. Total saturated thickness is used for constructing saturated-thickness maps.

The amount of ground water in storage depends not only on saturated thickness but also on the storage coefficient. In water-table (unconfined) aquifers, the storage coefficient is virtually equal to the specific yield—the amount of water that can be obtained by gravity drainage from a unit volume of the aquifer. Analyses of 13 samples of unconsolidated materials from southern New Hampshire that ranged from fine-grained lacustrine sands to coarse-grained sands and gravels indicated specific yields ranged from 0.14 to 0.34 and averaged 0.26 (Weigle and Kranes, 1966).

Saturated-thickness maps can be used to estimate the total amount of ground water stored in an aquifer. The volume of an aquifer can be approximated by summing the products of the areas between successive pairs of saturated-thickness contours multiplied by the average saturated thickness for each interval. The actual volume of ground water stored in the aquifer can then be estimated by multiplying the saturated volume by the storage coefficient.

Saturated-thickness maps shown on plates 6–10 were prepared by use of data from surficial-geology maps, seismic-refraction profiles, test drilling, and the GWSI data base. A 40-foot contour interval was used to show saturated thicknesses of stratified drift, which range from 0 to more than 280 ft. The entire saturated thickness may not be aquifer sediments. Layers of saturated silts and clays that overlie, underlie, or are within the aquifer are included in the saturated thicknesses.

The contacts between stratified drift and till mark the edge of the stratified-drift aquifers and represent zero saturated thickness. Locations of bedrock outcrops within aquifer areas indicate points of zero saturated thickness.

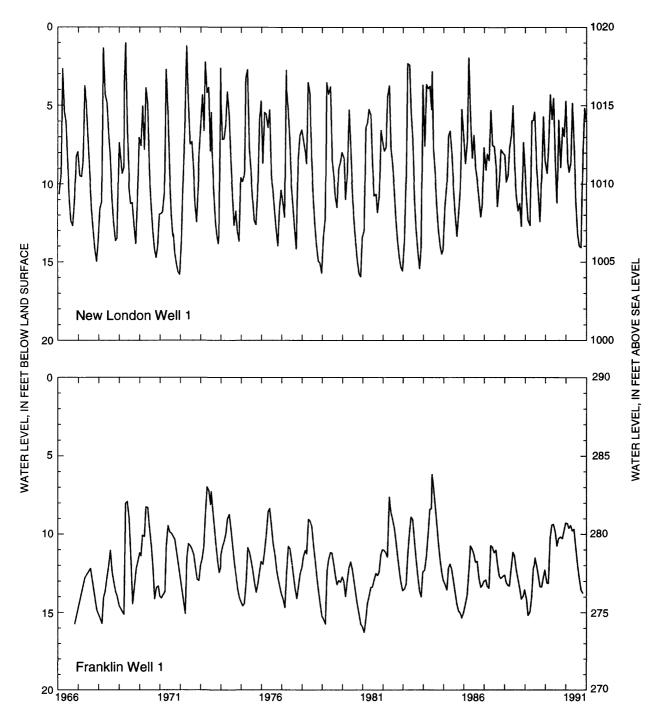


Figure 5. Long-term water levels at an observation well (New London well 1) in till and an observation well (Franklin well 1) in stratified drift, central New Hampshire.

Seismic-refraction profiles show the depths to the water table and depths to bedrock, but they generally do not show depth to till deposits unless the till is thick and has a seismic velocity that is significantly faster than the seismic velocity in saturated stratified drift. For the purpose of constructing the maps presented in this study, till was assumed to be thin (less than 10 ft thick) unless there was evidence to the contrary.

In some areas, saturated thickness was determined from test borings by the USGS. Reported saturated thickness are the distances from points where the test borings reached the water table down to the top of till or, in places, where till was not found, down to the top of bedrock.

Well and test-hole data stored in the GWSI data base were used in the construction of the saturated-thickness maps. For many sites, no data were available on the depth to the bottom of the stratified drift and the depth to the water table. For example, data from wells drilled into bedrock usually reveal depth to the bottom of the stratified drift but not depth to the water table. In contrast, data from shallow dug wells usually provide depth to the water table but not depth to the bottom of the stratified drift.

The altitude of the water table was obtained from the water-table maps (pls. 1–5). Depths to the bottom of stratified-drift deposits were assumed to be indicated by one of the following factors, in the priority shown:

- 1. depth to top of till, if known;
- 2. depth to top of bedrock, if known; and
- 3. length of well casing minus 10 ft, if the well is known to penetrate bedrock. Depth to bedrock is assumed to be about 10 ft above the bottom of the casing.

If a boring penetrated stratified drift but did not reach bedrock, the depth to refusal was taken to be equal to or less than the depth to the bottom of the stratified drift. Saturated thickness was then assumed to be greater than or equal to the difference between the water-table depth and the refusal depth. If a well penetrated stratified drift and neither bedrock nor refusal was reached, the bottom of the well was assumed to be above the bottom of the stratified drift. Saturated thickness was assumed to be greater than the difference between the water-table depth and the depth to the bottom of the well.

Saturated thickness could not be contoured in some areas because of a lack of data. Extrapolation of downstream bedrock-surface profiles in the Pemigewasset River and major tributary valleys must be used

with caution because bedrock surfaces in several reaches were scoured and overdeepened by glacial ice. As a result, altitudes of the bedrock in these areas are below any bedrock-controlled base level.

Transmissivity and Hydraulic Conductivity

Hydraulic characteristics of stratified sediments that affect ground-water storage and flow are related to size and shape of sediment grains (and consequently the size and arrangement of voids or pore spaces between grains) and grain-size distribution (sorting) within a sediment. Thus, these characteristics are also affected by depositional environments. Stratified deposits of gravel, sand, silt, and clay have abundant pore space between grains; primary porosity may be greater than 30 percent. Primary porosity increases with the degree of sorting but not necessarily as a function of grain diameter. A well-sorted medium sand and a well-sorted fine gravel may have similar primary porosities.

Primary porosity is a measure of the space available for ground-water storage. For porosity to be effective, the pore-spaces in the aquifer material must be interconnected. A more useful measure of ground-water storage is specific yield. Specific yield is smaller than porosity because some water is held on grain surfaces by tensional forces and will not drain by gravity. Specific yield is larger in well-sorted sediments than in poorly sorted sediments. Specific yield also increases with increasing grain size in sediments with the same degree of sorting.

The relatively large pore spaces and specific yield of medium to very coarse sand and gravel allow not only significant storage but also relatively rapid transmission of ground water. In contrast, despite significant storage of ground water, the small pore spaces and specific yield of clay, silt, and fine sand allow very slow transmission of water. Consequently, the hydraulic conductivity of fine-grained sediments is low and these deposits form low-yield aquifers, whereas the hydraulic conductivity of medium sand and coarse-grained sediments is high and these deposits form high-yield aquifers.

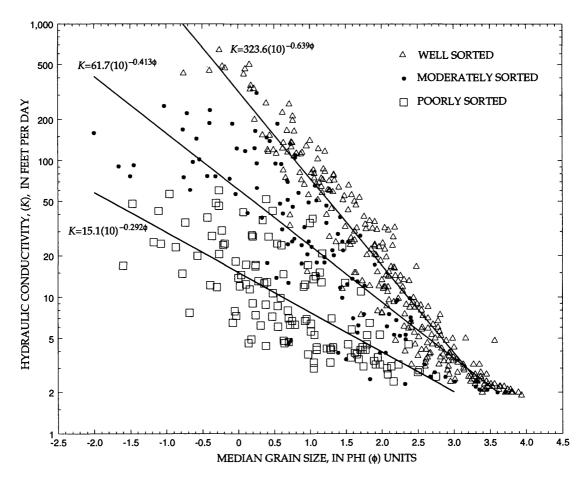
Aquifer transmissivity at a specific site was derived from estimates of bulk hydraulic conductivity of lithologic units in the aquifers. Hydraulic conductivity, in turn, was estimated from grain-size distributions of samples of aquifer materials by use of the regression equation developed by Olney (1983). The vertical and horizontal vector components of hydraulic conductivity are not accounted for by this equation. In this

relation, an effective grain size $(D_{10}$, in phi units) was used to estimate hydraulic conductivity (K, in feet per day) with the following equation:

$$K = 2,100 \times 10^{-0.655 (D_{10})}$$
 (1)

The effective grain size (D_{10}) is a controlling factor for the hydraulic conductivity of stratified drift in New Hampshire and is defined as that grain size where 10 percent of the samples consist of smaller grains and 90 percent of the samples consist of larger grains. Olney (1983) developed this relation from the results of permeameter tests of stratified-drift samples from Massachusetts. Moore (1990) found that this relation yielded results that fall within the range of results from other relations that have been developed between grain size, size distribution, and hydraulic conductivity (Krumbein and Monk, 1942; Bedinger, 1961; Masch and Denney, 1966). Results of aquifer-test data indicate that equation 1 may not give accurate results for very coarse-grained sand and (or) gravel. Estimates of hydraulic conductivity for aquifers with coarse sands and gravels were, in part, based on comparisons with aquifer-test data for similar deposits. Hydraulic conductivities (and transmissivities) based on grain-size relations are estimates only and may differ significantly from results of aquifer tests.

Hydraulic conductivity was estimated for 454 samples of stratified drift from southern New Hampshire by means of equation 1. The samples were collected in the Exeter and Lamprey River Basins (Moore, 1990); in the seacoast area and the Lower Merrimack River Basin (Flanagan and Stekl, 1990); in the Bellamy, Cocheco, and Salmon Falls River Basins (Mack and Lawlor, 1992); in the Lower Connecticut River Basin (Moore and others, 1994); and in the Contocook River Basin (Harte and Johnson, 1995; and Ayotte and Toppin, 1995). The grain-size distribution and the effective grain size (D_{10}) were determined for 153 samples for this study.


Hydraulic conductivities calculated from equation 1 were plotted against median grain size in phi groups, and the resulting plot was divided into three categories of degree of sorting (fig. 6). These categories are strictly relative and are used to describe the types of stratified-drift aquifer deposits found in New Hampshire. The degree of sorting was based on the standard deviation of each individual sample.

If standard deviations were large (greater than 1.75 phi), the samples were considered "poorly sorted"; if standard deviations were intermediate (1.25-1.75 phi), the samples were considered "moderately sorted"; and if standard deviations were small (less than 1.25 phi), the samples were considered "well sorted," (Ayotte and Toppin, 1995). A regression equation was developed for each of the three categories to determine the relation between hydraulic conductivity and median grain size (fig. 6). The coefficient of determination (R^2) was 0.93 for the "well sorted" samples, 0.72 for the "moderately sorted" samples, and 0.54 for the "poorly sorted" samples. The calculated hydraulic conductivity, grouped by ranges of median grain size and by ranges of standard deviation (degree of sorting), is shown in table 2.

Hydraulic conductivities were calculated for each median phi group and were averaged to determine a group mean hydraulic conductivity. For example, mean hydraulic conductivity of sediment samples whose median grain size was described as medium sand and well sorted was 38 ft/d (average of 25 and 51 ft/d; table 2). Very fine sand, silt, and clay deposits in the study area were not analyzed for grain-size distribution because their hydraulic conductivities are typically low (less than 4 ft/d) and are therefore considered insignificant (Todd, 1980).

The values in table 2 were used to estimate hydraulic conductivities from lithologic descriptions in logs from test borings and wells. For example, for a lithologic description of 10 ft of moderately sorted coarse sand overlying 20 ft of well sorted fine sand overlying bedrock, the hydraulic conductivities assigned would be 39 ft/d (the average of 30 and 48 ft/d) and 9 ft/d (the average of 12 and 6 ft/d), respectively. The estimate of transmissivity, based on the same description, would be $(10 \text{ ft} \times 39 \text{ ft/d}) + (20 \text{ ft} \times 9 \text{ ft/d})$ or 570 ft²/d.

Ranges of transmissivity (less than 2,000; 2,000–4,000; 4,000–8,000; and greater than 8,000 ft²/d) are shown on plates 6–10. For areas where little or no data were available, generalized drillers' logs and interpretations of depositional environments were used to estimate transmissivity from the relation between saturated thickness and hydraulic conductivity of stratified-drift aquifers shown in figure 7.

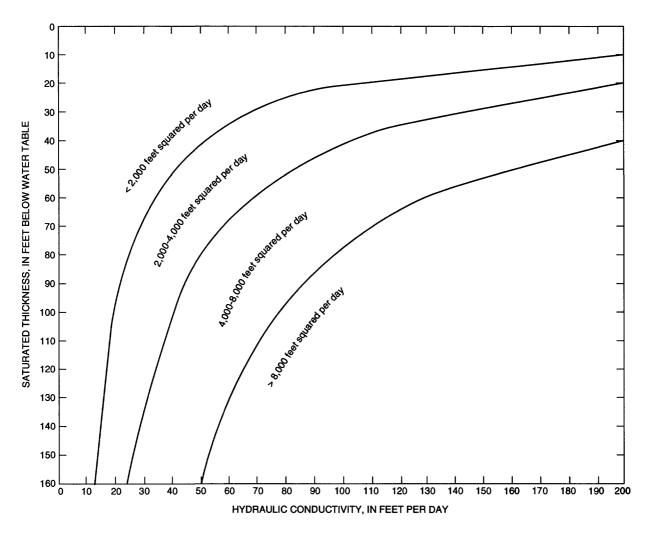


Figure 6. Relation between estimated hydraulic conductivity, median grain size, and degrees of sorting of stratified-drift samples, central New Hampshire.

Table 2. Relation of mean hydraulic conductivity to median grain size and degree of sorting

[From Ayotte and Toppin (1995). <, actual value is less than value shown; >, actual value is greater than value shown; --, no data]

		Mean hydraulic conductivity (k), in feet per day		
Median grain size (phi units)	Median grain description	Well sorted, standard deviation <1.25 phi	Moderately sorted, standard deviation 1.25 to 1.75 phi	Poorly sorted, standard deviation >1.75 phi
-1.75	Granules		320	49
-1.25	Granules		200	35
75	Very coarse sand	970	120	25
25	Very coarse sand	470	78	18
.25	Coarse sand	220	48	13
.75	Coarse sand	110	30	9
1.25	Medium sand	51	19	7
1.75	Medium sand	25	12	5
2.25	Fine sand	12	7	3
2.75	Fine sand	6	4	2
3.25	Very fine sand	3	3	
3.75	Very fine sand	2	2	

Figure 7. Ranges of transmissivity based on the relation between saturated thickness and hydraulic conductivity of stratified-drift aguifers, central New Hampshire.

Locations and Descriptions of Selected Stratified-Drift Aquifers

Most of the stratified-drift aquifers within this basin are within an area mapped as 20 contiguous topographic quadrangles (1:24,000 scale). This area has been separated into five base-map areas of four quadrangles each (fig. 1). In this report, these areas are referred to as southern, central, northern, southwestern, and northwestern areas. Aquifer boundaries, data-collection locations, and altitudes of water tables are shown on plates 1–5. Aquifer boundaries, saturated thickness, and transmissivity of stratified-drift aquifers are shown on plates 6–10. Brief discussions of information shown on the plates are included in the following sections.

Lower Pemigewasset River Basin

The lower part of the Pemigewasset River (the southern area) extends southward from New Hampton and Bristol to Franklin (pls. 1 and 6). The towns of Sanbornton and Hill also are in this area.

Bagoon Brook Valley

In Bagoon Brook Valley, stratified drift has a saturated thickness of at least 40 ft at test hole NHA-15, but because the sand is fine, the potential productivity of the aquifer is low. The aquifer deposits are coarse near the confluence of Bagoon Brook and the Pemigewasset River at the southern end of a south-trending esker.

New Hampton Town Center

The valley of the central village is filled with thin sands underlain by fine-grained deposits. Springs at the coarse-sand and fine sand contact and shallow wells in the upper sand supply much of the water used by the New Hampton Fish Hatchery.

Newfound River Valley

Surface observation indicates that stratified-drift deposits in the northern 2 mi of the Newfound River Valley are coarse grained. Saturated thickness is probably less than 40 ft except near the outlet of Newfound Lake. Transmissivity is probably less than 2,000 ft²/d.

Stratified drift in the southern part of the valley is fine grained. Directly west of Bristol center, saturated thickness exceeds 40 ft. The aquifer deposits are fine and the potential productivity of the aquifer is low.

Confluence of the Smith and Pemigewasset Rivers

Southeast of the center of Bristol near the confluence of the Smith and Pemigewasset Rivers, saturated thickness in some areas exceeds 80 ft, as determined from seismic-refraction profiling (appendix C.4). A conceptual depositional model indicates that the deposits are coarse grained and have a high potential for ground-water production.

Needle Shop Brook Valley

The present gravel-pack well (HNW-2) that supplies the village of Hill is in a small stratified-drift aquifer along Needle Shop Brook. In the past, because of a nearby dairy farm, additional pumpage from this aquifer was not possible if wellhead-protection requirements were to be met. However, the farm ceased operations in 1992.

Pemigewasset River Valley in Hill and Franklin

The aquifer in the main valley extends from just north of the confluence of Needle Shop Brook to one-half of a mile north of the Route 3 bridge in Franklin. The aquifer deposit is sand near the confluence of Needle Shop Brook at wells HNW-6 and HNW-7 (fig. 8, appendix C.8). The aquifer deposits are coarser grained at test well SCW-129, 2 mi to the south. Coarse deposits were penetrated at test well FKW-51, which is 2,000 ft upstream from Franklin Falls Dam.

The most productive gravel well for the city of Franklin (FKW-29) is about 800 ft below this dam. Municipal wells FKW-2 and FKW-3 are about 3,000 ft south of the dam; well FKW-2 was shut down in 1992 because of contamination by volatile organic compounds (VOCs).

Salmon Brook Valley

Currently (1992), only the downstream part of the aquifer in the Salmon Brook Valley is being used for large-scale water supply. Franklin has a well field consisting of 40 clustered well points in Sanbornton (SCW-50) about 1,200 ft northeast of Giles Pond. About 0.8 Mgal/d can be pumped from this well field, although only 0.5 Mgal/d was pumped in 1990.

The other area with high potential for water supply is south of Cawley Pond. Test well SCW-135 penetrated more than 60 ft of saturated sand interspersed with some gravel (fig. 9 and appendix C.12). This aquifer may be important to the village center of North Sanbornton that presently has no public water supply.

Middle Pemigewasset River Basin

The middle part of the Pemigewasset River Basin (the central area) extends northward from New Hampton to the southern part of Thornton (pls. 2 and 7). It also includes the towns of Ashland, Bridgewater, Campton, Holderness, and Plymouth.

Ashland, Bridgewater, and New Hampton

The town of Ashland uses surface water as a source for water supply. Proposals to upgrade that system are being considered by the town in response to suggestions of the NHDES, Water Supply and Pollution Control Division (WSPCD). Potentially, the most productive part of this valley aquifer in this area is an esker that extends more than 6 mi southward from about 2,000 ft north of the Plymouth-Bridgewater townline. A wastewater-treatment plant is on this esker in the southwest corner of town, and the town landfill is in fine-grained deposits just east of the esker near the treatment plant. North of these facilities a test well (APW-1) drilled in this esker in the late 1960's is reported to be about 100 ft deep. At the time of construction, water from this well reportedly contained

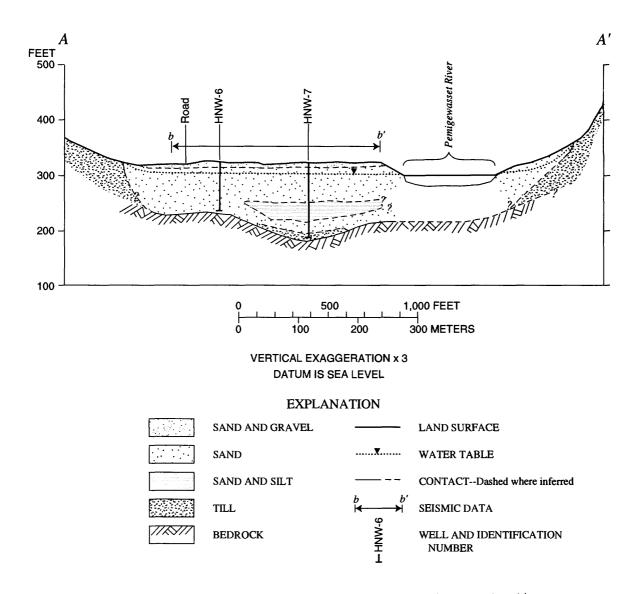


Figure 8. Geohydrologic section A-A' in the town of Hill. (Line of section is shown on plate 1.)

elevated chloride concentrations. The area between this test well and the place where the esker crosses the river into Bridgewater has a high potential for ground-water production.

The esker in the northeast corner of Bridgewater has high potential to yield water. A power company has two gravel-pack wells (BYW-41 and BYW-42) in this esker that yield about 450 gal/min. This rural part of town does not have a public supply and currently (1992) does not need one.

South of Squam River in New Hampton the esker is 4 to 5 mi long and is east of the Pemigewasset River; it has high potential to yield water. No public water-distribution system has been constructed in the eastern part of the town of Holderness around the

western shore of Squam Lake. There is a low potential for ground-water production in the few small stratified-drift deposits near the lake.

Ashland, Holderness, and Plymouth

The two gravel-pack wells (PYW-9 and -10) that supply water to the town of Plymouth are near each other and the confluence of the Pemigewasset and Baker Rivers (pl. 2). This area and eastward to the valley wall in Holderness (fig. 10) are the only proven production sites in this part of the valley, although substantial test drilling has been done. The rest of the low-lands in both valleys are underlain by thin sands overlying glacial lake bottom very fine sand, silt, and clay (figs. 11, 12, and 13). In places in the main valley



Figure 9. Geohydrologic section B-B' in the town of Sanbornton. (Line of section is shown on plate 1.)

(including the western most part of Holderness and northwestern corner of Ashland), the thinly saturated (about 20 ft) gravelly sand in the main valley (including the western most part of Holderness and northwestern corner of Ashland) offers some potential for a well-point well field (fig. 11 and appendix C.3). The fine sands and poorly sorted gravelly sands in the upper part of the aquifer in the lower Baker River Valley have low potential to yield significant amounts of water to wells (fig. 12 and appendix C.9).

The north end of the Bridgewater-Ashland-New Hampton esker is in southern Plymouth. Only meager yields may be possible from the esker in Plymouth. This area of potential production from the esker was not tested because of lack of access. The western bank of the Pemigewasset River downstream from Livermore Falls and north of the Interstate Highway 93 bridge over the river also has not been tested because of difficult access.

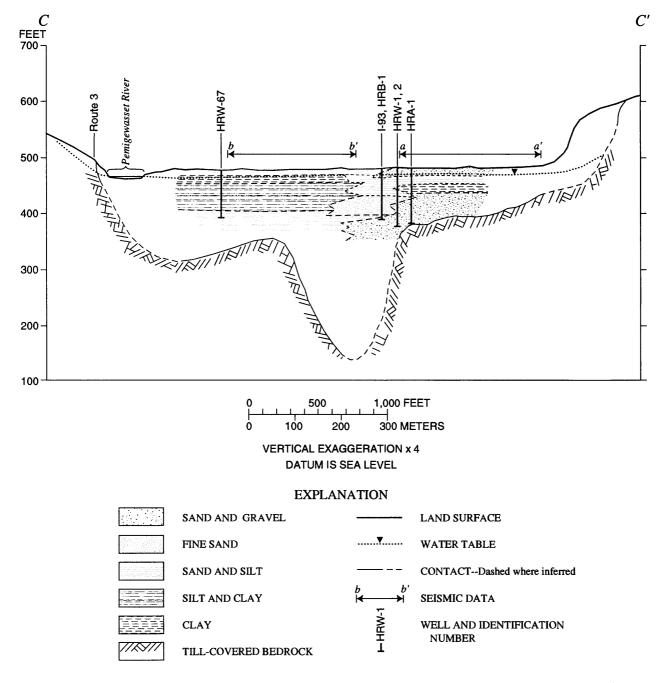


Figure 10. Geohydrologic section C-C' in the towns of Plymouth and Holderness. (Line of section is shown on plate 2.)

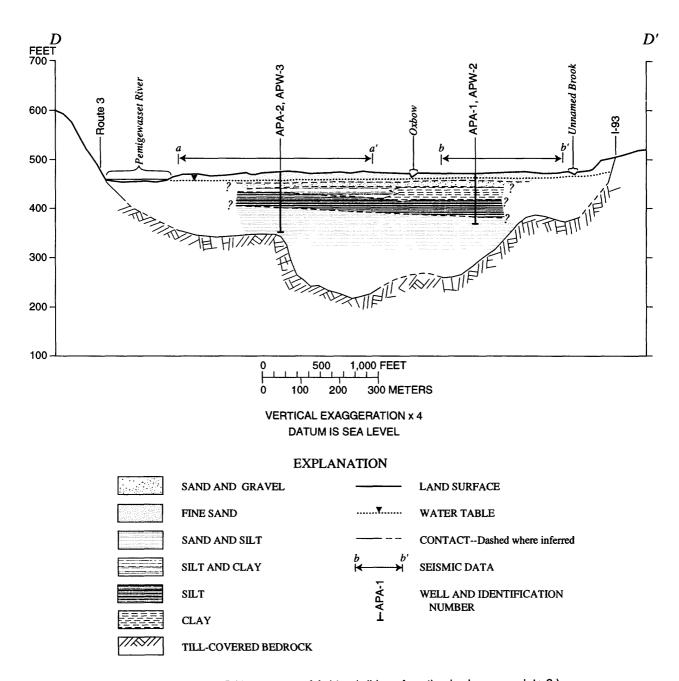


Figure 11. Geohydrologic section D-D' in the town of Ashland. (Line of section is shown on plate 2.)

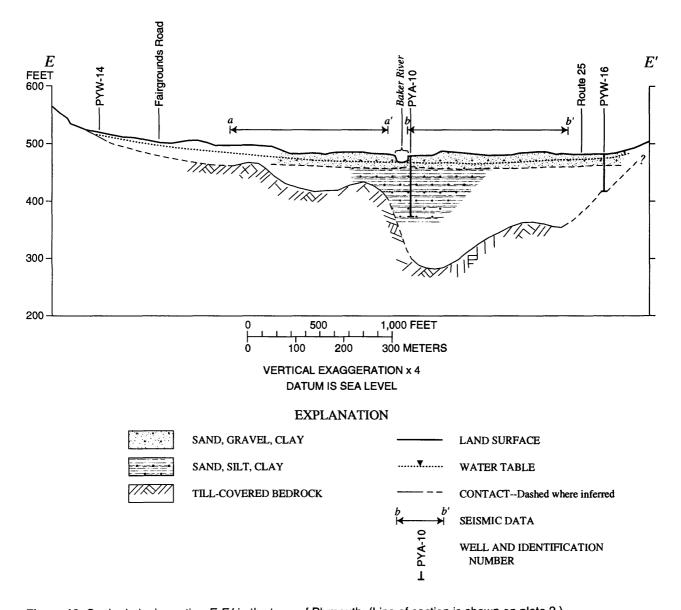


Figure 12. Geohydrologic section E-E' in the town of Plymouth. (Line of section is shown on plate 2.)

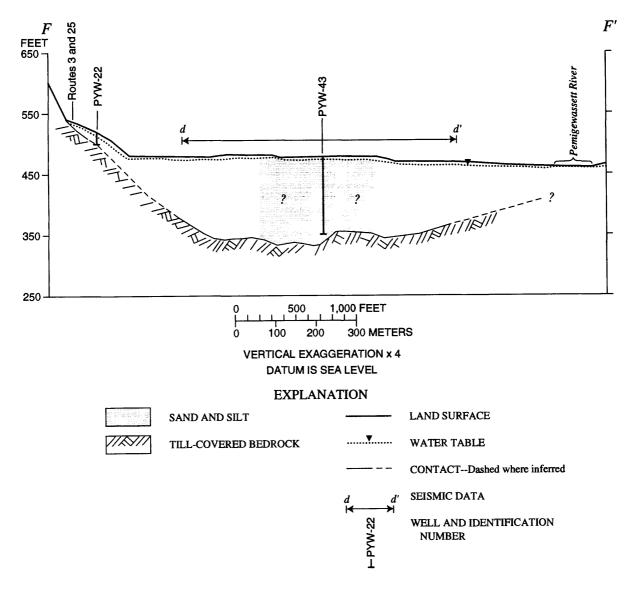


Figure 13. Geohydrologic section F-F' in the town of Plymouth. (Line of section is shown on plate 2.)

Campton and Southern Thornton

The Pemigewasset River Valley aquifer from southern Thornton to Beebe River consists of coarse-grained deposits. Test wells CBW-3 and CBW-4 penetrated 36 and 113 ft of saturated sediment (appendix C.5). Two production wells (CBW-84 and CBW-85) were drilled in Campton in 1990 on the west-ern bank of the Mad River near the confluence with the Pemigewasset River. About 0.8 Mgal/d can be pumped from these wells, although only 0.04 Mgal/d was pumped in 1992.

Upper Pemigewasset River Basin

The upper part of the Pemigewasset River Basin (the northern area) extends northward from southern Thornton to Franconia Notch (pls. 3 and 8). In addition to Thornton, it includes the towns of Lincoln, Waterville Valley, and Woodstock.

Pemigewasset River Valley in Southern Thornton North to Lincoln

The stratified-drift aquifer consists of sand and gravel or sand overlying sand and silt (fig. 14 and appendix C.13). Shallow water-supply wells in the upper

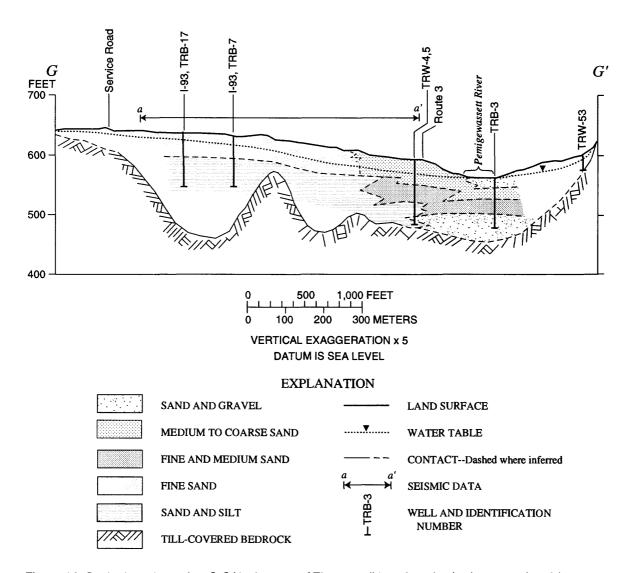


Figure 14. Geohydrologic section *G-G'* in the town of Thornton. (Line of section is shown on plate 3.)

coarse deposits provide the water supply for a local resort just south of interchange 30 on Interstate Highway 93. The stratified-drift aquifer deepens and coarsens significantly northward from the resort to the area of the two Woodstock water-supply wells (WSW-14 and WSW-38).

This public water-distribution system in Woodstock serves the small village of Woodstock and the large town center of North Woodstock. The two gravel-pack wells are on the east bank of the Pemigewasset River near Woodstock. Additional water supply is available from this aquifer. A model simulating ground-water flow was done for this aquifer and is described in the section "Evaluation of Aquifer Yield."

As part of its public-water-supply source, the town of Lincoln has a series of six shallow dug wells (LKW-1) in coarse gravel on the east bank of the main stem of the

Pemigewasset River. The pumpage from these wells is primarily induced infiltration from the river. In July 1988, measured streamflow was reduced by about 1 ft³/s in a short reach near the wells. Enough land and streamflow are probably available to allow for construction of additional large-diameter dug wells in this area.

Mad River Valley at Waterville Valley

The town of Waterville Valley pumps from a gravel-pack well (WFW-2) and a large-diameter dug well (WFW-4) in the same small stratified-drift aquifer. This is the only unconsolidated aquifer available to the town. The village center overlies part of this aquifer. Additional water can probably be withdrawn from the upgradient part of this aquifer.

Smith River and Newfound Lake Basin

In the southwestern area, the Smith River joins the Pemigewasset River in southern Bristol. The towns of Alexandria, Bristol, Danbury, Grafton, and Hebron are partly within this basin (pls. 4 and 8). The part of the Newfound Lake drainage basin shown on these plates includes parts of Alexandria, Bristol, Groton, and Hebron.

Smith River Valley in Eastern Danbury, Alexandria, and Bristol

The discontinuous stratified-drift aquifer is in this valley is composed primarily of thinly saturated kame terraces north of the river. A former glacial meltwater drainageway traverses the narrow tributary valley between Pillsbury Hill and Gordon Hill. Sands and gravels entrained by the former stream flowing through

this channel were deposited in the wider part of the Smith River Valley in southeastern Alexandria. The potential productivity of the aquifer in this area is moderate.

Smith River Valley in Grafton and Danbury

Glaciofluvial sands and gravels underlie parts of the valley lowlands in Grafton and Danbury. There is a moderate to high potential for ground-water production in the valley in the western part of Danbury. Currently (1992), the town has no public water system. In the wide valley near the town center in Danbury, a seismic-refraction line (appendix C.6) indicated 110 ft of unconsolidated material; nearly 100 ft of saturated sand and gravel was penetrated by test well DBW-29 (fig. 15). At the eastern end of this broad valley, however, only silt and clay were penetrated at test hole DBA-1.

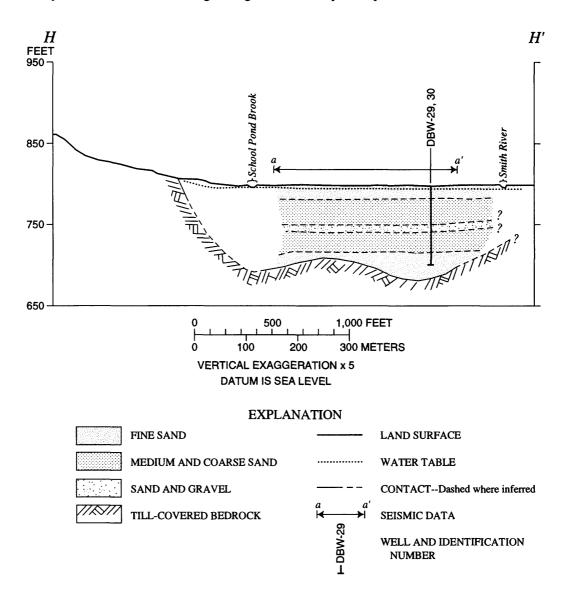


Figure 15. Geohydrologic section H-H' in the town of Danbury. (Line of section is shown on plate 4.)

Saturated thickness of stratified-drift deposits is not known in most of the Smith River Valley in Grafton. At one area north of Grafton Center near Kilton Pond, however, saturated deposits are more than 40 ft thick.

Fowler River Valley (Newfound Lake Basin) in Alexandria

Sand and gravel deposits are associated with a former glacial meltwater drainageway that extends southward from Hornet Cove on the southern shore of Newfound Lake in Bristol through the lower valley of the Fowler River and the tributary valley of Bog

Brook. To the south of the broad lowland in Alexandria, this drainageway narrows along the headwaters of Bog Brook. The sand and gravel deposits are thin and occupy the narrow col (saddle) east of Pillsbury Hill. The potentially productive part of this aquifer is the northern part, from Newfound Lake to the area of the village. About 100 ft of saturated aquifer deposits were penetrated at test well AEW-21 (north of Bristol Road about mid-way across the valley in Alexandria) (fig. 16). The saturated thickness ranges from 40 to more than 120 ft based on about 5,000 ft of seismic-refraction profiling across the valley (appendix C.1

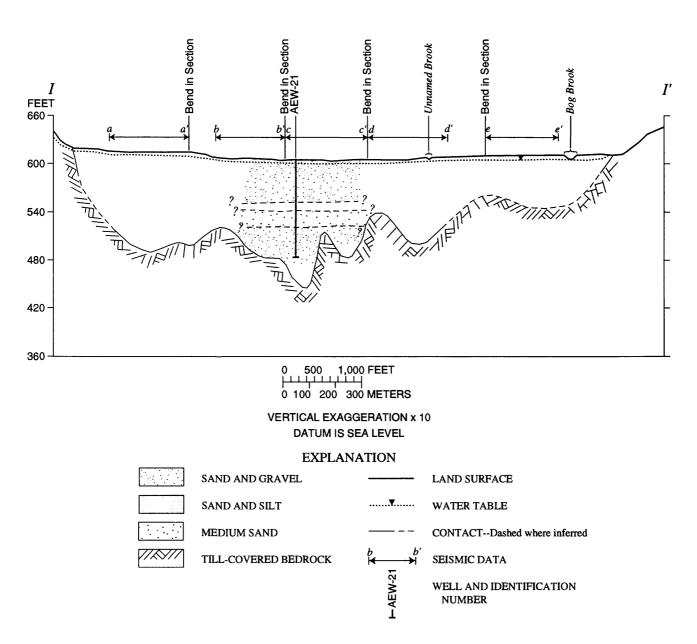


Figure 16. Geohydrologic section I-I' in the town of Alexandria. (Line of section is shown on plate 4.)

and C.2). Transmissivity exceeds 8,000 ft²/d in or near the thickest deposits. Bristol pumps from a gravel-pack well (B2W-36) on the west bank of the Fowler River near West Shore Road and has purchased land on the opposite side of the river for a future well site.

Cockermouth River Valley (Newfound Lake Basin) in Groton and Hebron

Coarse-grained stratified drift underlies the valley of the Cockermouth River from the village center of Groton to Hebron Bay on Newfound Lake. Within the valley bottom in Groton, till is at or near the surface upstream from the powerline. Saturated thickness of sand and gravel ranges from 30 to 50 ft along a seismic-refraction profile about 1,200 ft east of the Groton-Hebron town line (appendix C.6). Saturated thickness ranges from 70 to 130 ft along two seismic-refraction lines (appendix C.7) on Audubon Society land at the eastern edge of Hebron village (fig. 17). Test well HLW-1 penetrated 110 ft of saturated fine to coarse sand and fine gravel on the north side of East Hebron Road. Estimated transmissivity in this aguifer exceeds 8,000 ft²/d.

Baker River Basin

In the northwestern area, the Baker River joins the Pemigewasset River in Plymouth. The western part of Plymouth and parts of Rumney, Warren, and Wentworth are in this basin (pls. 5 and 10).

Lower Baker River Valley in Rumney and Plymouth

Most of the Baker River lowlands downstream from the central village of Rumney are underlain by fine- and medium-grained sand underlain by finer sand and silt. Coarse material underlies the terraces on the south side of Baker River (fig. 18, appendix C.11). In places, saturated thickness of these terrace deposits exceeds 120 ft. At a business location in Rumney Depot, a 355-foot well (RUW-33) with an open-end casing produces 10 gal/min from these deposits. Estimated transmissivity exceeds 8,000 ft²/d. Coarse sand and gravel overlies fine-grained deposits in the center of the valley in West Rumney, but most of the saturated thickness is in the fine and medium sands (fig. 19 and appendix C.10).

Upper Baker River Valley in Wentworth and Warren

Glaciofluvial sands and gravels form the valley aquifers in Wentworth and Warren. Test well WIW-1 penetrated about 50 ft of saturated coarse sand and sand and gravel (fig. 20). Wentworth currently (1992) does not have a public water-supply distribution system; however, a community well may be needed for the central village in the future. There is a high potential for ground-water production upstream from the village where saturated thickness is greater than 40 ft.

Two gravel wells in Warren (WDW-18 and 19) are a major part of the water supply for the New Hampshire Fish Hatchery. Combined production of the two gravel wells is estimated to be 800 gal/min, according to records at the pumphouse. Test wells drilled as part of the exploration programs flowed until the production wells went on line. The hatchery also has a spring-fed canal at the edge of the valley. A shallow dug well (less than 8 ft deep) serves as a public-supply well for about 16 houses. Saturated thickness exceeds 40 ft in the central part of the main valley near the town proper, and estimated maximum transmissivity ranges from 4,000 to 8,000 ft²/d.

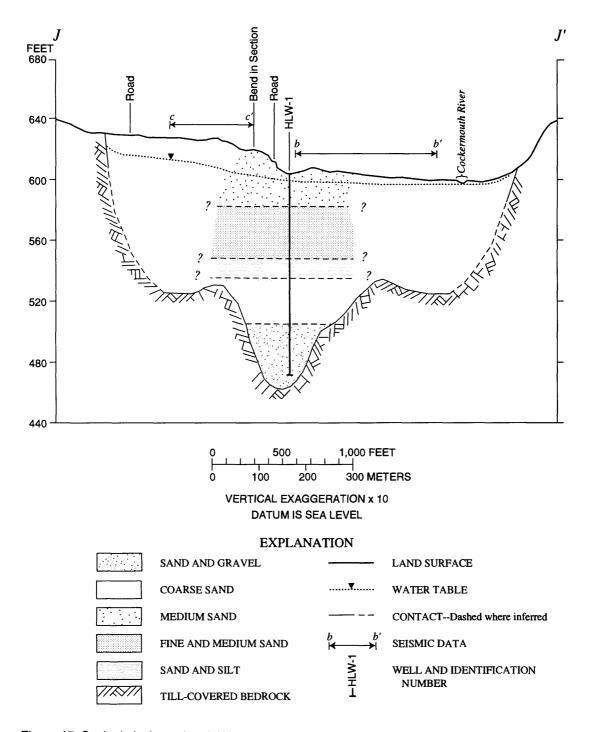
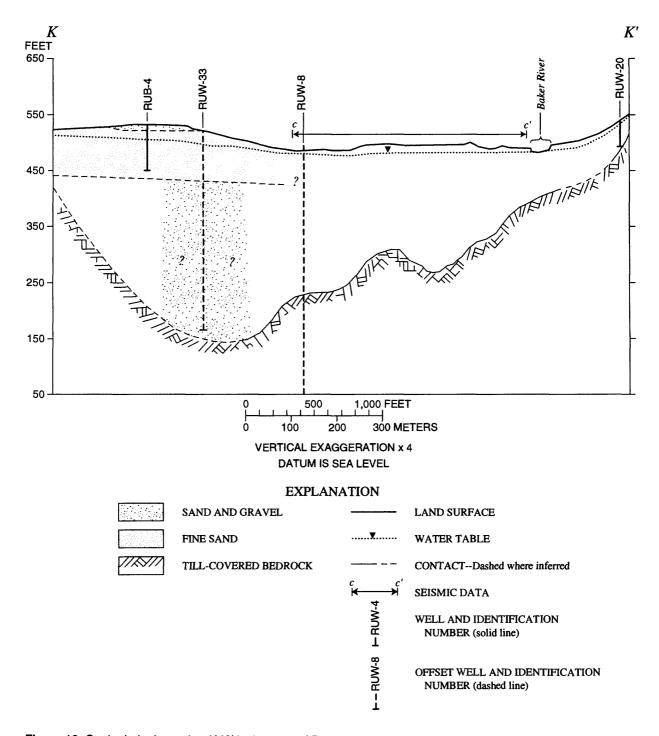
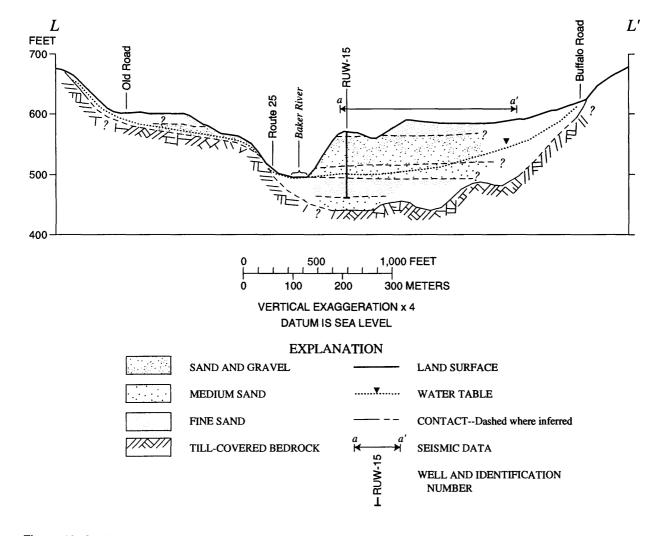




Figure 17. Geohydrologic section J-J' in the town of Hebron. (Line of section is shown on plate 4.)

Figure 18. Geohydrologic section *K-K'* in the town of Rumney. (Line of section is shown on plate 5.)

Figure 19. Geohydrologic section L-L' in the town of Rumney. (Line of section is shown on plate 5.)

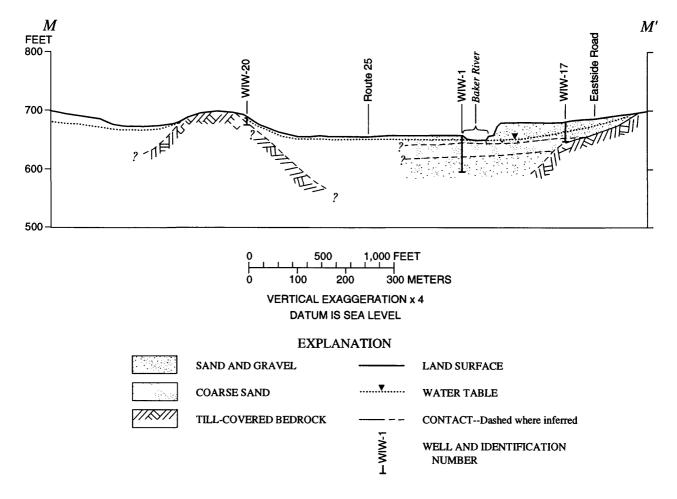


Figure 20. Geohydrologic section M-M' in the town of Wentworth. (Line of section is shown on plate 5.)

EVALUATION OF AQUIFER YIELD

Estimation of potential yield of each streamside aquifer within the Pemigewasset River Basin would require more site-specific information than could be obtained within the scope of this study. An example of one effective approach to evaluate the potential yield of a streamside aquifer is presented in a simulation of the sand and gravel aquifer in Woodstock by use of a ground-water-flow model. Ground-water yield in the stratified-drift aquifers generally is increased where surface-water bodies are in direct hydraulic connection with the aquifer. Recharge induced from surface water increases well yields, especially where large rivers are near pumping centers in coarse stratified drift. The Pemigewasset River is in direct hydraulic connection with coarse stratified drift in several sections of river valley. The aquifer in Woodstock, an

example of this kind of connection, was selected for detailed hydrologic evaluation because of its potential importance as a public water supply.

Ground-Water Yield of the Pemigewasset River Basin

Ground-water discharge is a substantial component of total streamflow and may be the major or only source of streamflow during dry periods. Measurements of streamflow during dry periods aid in assessment of ground-water discharge to surface waters for areas upstream from measurement sites. Some of the flow in a stream reach near a pumped well may induce recharge to the aquifer.

Synoptic ground-water discharge measurements were made within the basin for the period July 6-14, 1988. Data used were based on flow-duration statistics

for 9 existing or former streamflow-gaging stations and measurements made at 29 sites. These measurements are listed in appendix D. A summary of gains in streamflows for stream-valley segments with significant stratified-drift aquifers and for stream-valley segments predominantly underlain by till and bedrock are listed in table 3. Most of the streamflow gains in valley segments are the result of ground-water discharge to the streams. Some streamflow gains, such as for the Newfound River Basin, may include discharge from lakes where storage is decreasing.

During this time, total basin discharge at Franklin equaled about 457 ft³/s. Discharge of about 203 ft³/s came from major till areas in the headwaters of the Pem-

igewasset River, Mad River, Beebe River, and lower Smith River Basins, Newfound Lake Basin, and Squam Lake Basin. About 254 ft³/s (164 Mgal/d) of water came from stratified-drift aquifers and till-bedrock areas adjacent to the Pemigewasset, Baker, and upper Smith Rivers (table 3).

Some water-use management programs suggest that offstream water use (including ground-water pumpage) not exceed water quantities between 95- and 99-percent flow duration of river basin streams. On the basis of this criterion, 97 Mgal/d could potentially be available within the river basin for offstream use for the entire basin. The amount of usable water at each of eight streamflow-gaging stations is listed in table 4.

Table 3. Streamflow gains within the Pemigewasset River Basin, central New Hampshire, July 6-14, 1988

[Million gallons per day equals cubic feet per second multiplied by 0.6463. --, no data]

Station i	dentification	Flow		Streamflo subtotals,	
	or) informal number	duration (percent)	Stream reach	(cubic feet per second)	(million gallons per day)
	Pemigewasset	River Valley	y segments and larger tributary-valley segments with significant stra	tified-drift aqı	uifers
01075000	(7)	83	Pemigewasset River from Lincoln to Woodstock gage	28	18
01076500	(15)	90	Pemigewasset River from Woodstock to Plymouth	52	34
01075500	(10, 11)	91	Baker River downstream to Wentworth	14	9
01076000	(12, 13)	90	Baker River from Wentworth to gaging station	20	13
	(14)		Baker River from gage to Pemigewasset River	16	10
01077550	(19)		Pemigewasset River from Plymouth to Bristol	45	29
01077900	(17)		Smith River downstream to eastern Danbury	7	5
01078520	(27)		Pemigewasset River from Bristol to Franklin	72	46
			Subtotal	254	164
	Pemigewas	sset River Va	alley segments and larger tributary basins predominantly in till and	bedrock terra	in
01073990	(1)		Pemigewasset River downstream to Lincoln	16	10
01074500	(4, 5)	83	East Branch downstream to Lincoln	70	45
01074700	(6)		Moosilauke Brook downstream to Lincoln	6	4
01075395	(8)		Mad River downstream to Campton	28	18
01075350	(9)		Beebe River downstream to Campton Hollow	3	2
01077000	(16)		Squam River Basin downstream to Ashland	8	5
01077510	(18)		Newfound River Basin at outlet of Newfound Lake	60	39
01078010	(20)	94	Smith River from eastern Danbury to gage	7	5
01078450	(24)		Salmon Brook Basin to Prescott Road	2	1
01078200 01078545			Needle Shop Brook and Chance Pond Brook Basins	3	2
			Subtotal	203	131
01078520	(27)		Basin total and measured flow at Franklin	457	295
01081400	(29)		Winnipesaukee River Basin at Franklin	244	158
01081500	(30)	96	Merrimack River at Franklin Junction (total of Pemigewasset and Winnipesaukee Rivers)	701	453

Table 4. Streamflows at selected gaging stations during low flow in the Pemigewasset River Basin, central New Hampshire

Station name and number	Informal site number	Streamflow at	indicated duration	Potential streamflow (95-percent minus 99-percent flow duration)		
Station name and number	(Number on plates 1-5)	95-percent flow duration (cubic feet per second)	99-percent flow duration (cubic feet per second)	Cubic feet per second	Million gallons per day	
East Branch Pemigewasset River near Lincoln (01074500)	5	45	29	16	10	
Pemigewasset River at Woodstock (01075000)	7	77	60	17	11	
Baker River at Wentworth (1075500)	10	10	7	3	2	
Baker River near Rumney (01076000)	13	25	17	8	5	
Pemigewasset River at Plymouth (01076500)	15	184	130	54	35	
Squam River at Ashland (01077000)	16	52	7	45	29	
Smith River near Bristol (01078000)	20	13	7	6	4	
Pemigewasset River at Franklin (Merrimack River at Franklin Junction (01081500) minus Winnipesaukee River at Tilton (01081000))	30	500	350	150	97	

Municipal water use in 1990 is listed in table 5. About 70 percent of the 3.909 Mgal/d municipal water-supply withdrawals are from ground water. Only a small amount of available ground water is presently being used.

Simulation of Ground-Water Flow in the Stratified-Drift Aquifer at the Town of Woodstock

The aquifer area near the towns of Woodstock and Thornton, selected to simulate ground-water yield (fig. 20), is approximately 1.23 mi wide and 1.32 mi long. The 1.63-square mile stratified-drift aquifer underlies the lowlands of the Pemigewasset River and the surrounding till and bedrock uplands. The general geohydrologic features of this area are typical of glaciated river valleys in New England: a river flows through a valley that overlies a bedrock channel filled with sand and gravel. Large-capacity wells constructed in the sand and gravel are pumped for public water supply. Woodstock wells WSW-14 and 38 are on the eastern bank of the Pemigewasset River (fig. 21). Ground water in the Pemigewasset River Valley near the two Woodstock wells is present in a 0.5- to 1.0-mile-wide by 1.32-mile-long stratified-drift aquifer that fills a bedrock channel. In the northern end of the modeled area near the Woodstock gaging station, bedrock

outcrops are exposed in the river bottom. A seismic-refraction survey 2,500 ft south of the Woodstock wells indicates bedrock depths greater than 200 ft (appendix C.16). On the west side, stratified-drift deposits end abruptly at bedrock outcrops. On the east side, bedrock crops out in places to the north and to the south, and the contact between stratified drift and till or bedrock follows along the contour separating the valley lowland from the till and bedrock upland.

A transmissivity of 7,600 ft²/d was calculated from an aquifer-test record of the Woodstock wells (WSW-14 and -38). (This was a 5-day aquifer test done in August 1988.) Well records indicate the presence of sand and gravel to a depth of 76 ft.

A block-centered finite-difference ground-water-flow model (McDonald and Harbaugh, 1988) was used to simulate flow in the stratified-drift aquifer in Woodstock. This model (computer program) includes independent subroutines that simulate ground-water flow, ground-water and surface-water interaction, recharge, evapotranspiration, several types of boundary conditions, and pumping stress. Algebraic approximations of the equations that describe ground-water flow can be solved by the strongly implicit procedure or the slice-successive overrelaxation method (McDonald and Harbaugh, 1988). A transient simulation of this finite-difference ground-water-flow model was used to simulate heads that would occur in the aquifer in response to pumping of production wells. This modeling technique

Table 5. Municipal water use in the Pemigewasset River Basin, central New Hampshire

[Data from New Hampshire Department of Environmental Services, Water Resources Division]

Town/city	Water-supply source	Average daily withdrawal in 1992 (million gallons per day)
Ashland	Jackson Pond	0.204
Bristol	Storm Center Well (B2W-18) Fowler River Well (B2W-36)	.046 .412
Campton Precinct	Campton Wells (CBW-84, 85)	.041
Franklin	Acme Well #2 (FKW-3) Franklin Falls Well (FKW-29) Sanbornton Wells (SCW-50)	.014 .587 .514
Hill	(HNW-2)	.020
Lincoln	Clear Brook Well (LKW-21)	.111
	Cold Springs Wells (LKW-1)	.128
	Boyce Brook	.461
	Loon Pond Brook	.350
New Hampton	Mountain Pond	.024
Plymouth Village	Foster Street Wells (PYW-9, 10)	.474
Waterville	Well #1 (WFW-1)	.000
Valley	Well #2 (WFW-2)	.068
	Well #3 (WFW-4)	.070
Woodstock	Bradley Well #1 (WSW-14)	.265
	Bradley Well #2 (WSW-38)	.054
	Beaver Brook	.033
	Gordon Pond Brook	.033
TOTAL		3.909

is based on the assumption that the heads in a real aquifer can be approximated by the heads calculated for a simpler hypothetical aquifer that is similar to the real aquifer but is recharged only by infiltration from the river.

Heads calculated from the hypothetical aquifer, after 180 days of pumping, could then be compared to heads of the real aquifer to predict its water-table configuration after 180 days of pumping (Moore, 1990). Use of image wells (a simple system consisting of a flat water table and no recharge) to predict the response of stratified-drift aquifers to pumping stresses has been described by Mazzaferro and others (1979) and Toppin (1986). In these studies, a pumping period of 180 days with no recharge also was used because

that length of time approximates the growing season during which evapotranspiration is high and the recharge to the aquifers is assumed to be small. Recharge to the aquifer during the rest of the year is probably sufficient to allow continuous pumping at the assumed pumping rates.

Assumptions

Relative to the use of block-centered finitedifference ground-water-flow models the following assumptions were tested:

- The aquifer characteristics of transmissivity and saturated thickness, the water-table configuration and streambed characteristics, are assumed to be a reasonable representation of the natural system.
- 2. A three-dimensional ground-water-flow system can be approximated by flow in two dimensions. Although not entirely valid, this assumption can contribute significant errors in the models under discussion, only in the immediate area of the pumped wells and near the river, where a significant vertical component of ground-water flow is present. Potential errors from this source are believed to be negligible.
- 3. Ground-water flow in two dimensions (map view) can be approximated by a process of discretization, whereby the aquifer area is divided into discrete blocks or cells in which all hydraulic properties are constant. Each block is represented by a single thickness, by a single hydraulic conductivity, and by a single storage coefficient. Discretization is one way in which the numerical models are superior to the analytical image-well models used by Mazzaferro and others (1979) and by Toppin (1986). In analytical image-well models, the hydraulic properties of an aquifer are assigned a uniform average value; in numerical models, aquifer properties can be varied spatially to represent field conditions more accurately. In the numerical model used in this study, a 200-foot uniform grid spacing was used. Assignment of single aquifer thickness and hydraulic conductivity to an individual grid cell can be viewed as a possible source of error because it generalizes distributed aquifer properties.

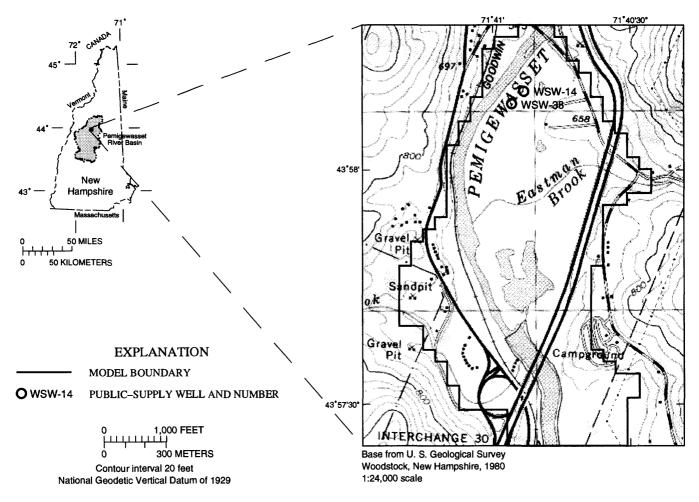


Figure 21. Location of study area and areal extent of the ground-water model of the Woodstock aquifer, central New Hampshire.

If changes in ground-water conditions with respect to time are important, time also must be discretized. For example, during extended periods of pumping, the water table declines continuously. This condition is approximated in the model by a series of time steps. The effects of 180 days of pumping were simulated with 10 discrete time steps of 18 days each. Approximations of the water-table configuration after the first 18 days of pumping were used as the initial configuration for the second 18 days, and so forth. Errors associated with this technique are minor, and the use of smaller time increments does not significantly improve the results.

4. Despite the discretization of space and time, exact solutions to the simplified systems are not possible. Instead, approximate solutions are obtained through an iterative process. The model repeatedly solved the set of governing equations until the maximum change in hydraulic head between successive iterations is less than some tolerance

- level. Tolerance was set at 0.01 ft in the model; potential errors associated with this source are insignificant compared to other factors.
- 5. The response of the ground-water-flow system can be approximated by linear equations. For natural unconfined systems, this is not strictly true because changes in saturated thickness that result from water-table fluctuations affect transmissivity and may cause nonlinear responses. In the model, however, changes in transmissivity that result from lowering of the water table in response to pumping are accounted for, and the nonlinear system is approximated by a series of linear equations. Changes in transmissivity caused by the natural fluctuation of the water table during the growing season are not accounted for. Errors from this source are thought to be small because seasonal changes in the heads are small relative to the saturated thickness.

Grid and Boundary Conditions

 \Box

 \square

ACTIVE CELL

The finite-difference grid used to discretize the stratified-drift aquifer in Woodstock is shown in figure 22. The grid represents an area 6,900 ft long and 5,300 ft wide. Cells are 200 ft on a side. Only those cells that overlie the aquifer are assumed to be active and are involved in numerical calculations. The aguifer is represented in the model as a single unconfined layer (fig. 23).

The bottom boundary of the aquifer separates the highly permeable stratified drift from the nearly impermeable till and bedrock. This boundary is simulated as a no-flow boundary; it is assumed that fluxes between the drift and the till/bedrock are negligible relative to fluxes in the overlying aquifer.

The water table, the top boundary of the aquifer, fluctuates with time. The head is dependent on the rate of evapotranspiration, areal recharge from precipitation, and local ground-water-flow patterns. This boundary is

simulated in the steady-state model as a constantflux boundary that receives recharge from areal precipitation.

The eastern and western boundaries of the aquifer separate the highly permeable stratified drift in the lowland from the nearly impermeable bedrock and semipermeable till of the uplands. These boundaries are simulated in the model as constant-flux boundaries. This constant flux represents ground-water seepage from upland areas adjacent to the aquifer.

The northern end of the aquifer is bounded by bedrock. Ground-water flow is assumed to be parallel to this boundary with no flow across this boundary; it is simulated as a no-flow boundary in the model.

The southern end of the valley is far enough from the intended pumping centers so that no flow would be induced across the boundary and, therefore, is simulated as a no-flow boundary in the model. If the locations of the intended pumping centers change in future

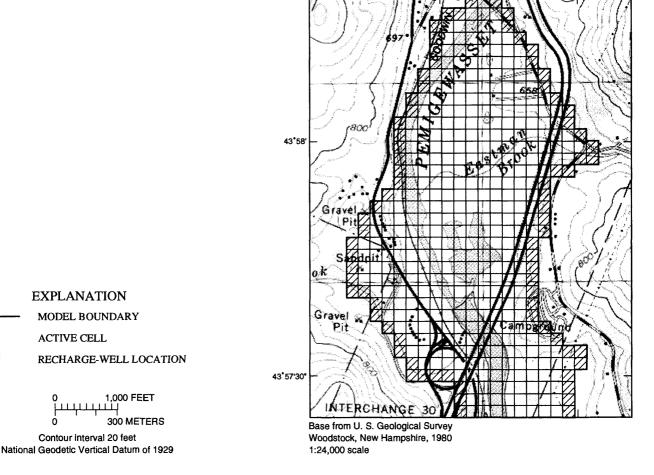
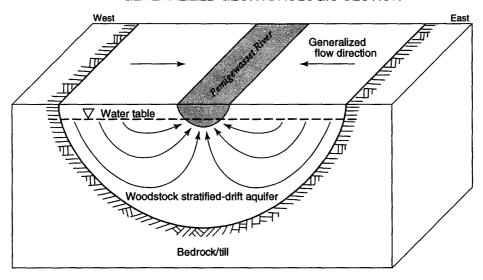
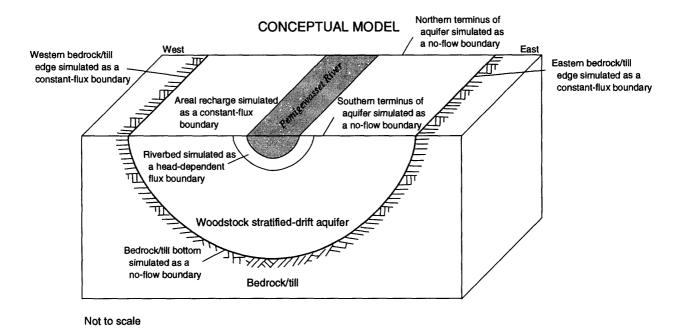




Figure 22. Ground-water-model grid showing active cells and recharge-well locations in the Woodstock aquifer, central New Hampshire.

GENERALIZED GEOHYDROLOGIC SECTION

Figure 23. Generalized geohydrologic section showing direction of ground-water flow and conceptual model showing boundary conditions used to simulate the Woodstock aquifer, central New Hampshire.

simulations where they become closer to the south end of the aquifer, the no-flow status of this boundary condition would have to be reexamined.

Aquifer Parameters

The aquifer parameters used in model construction include starting heads, bedrock-surface altitudes, and hydraulic conductivity. A matrix consisting of data for each cell in the grid was constructed for these parameters. Known values for each parameter were assigned to the corresponding cells of the grid; unknown values among known points were determined through interpolation.

A starting head is needed in the model to begin the simulations. In this model, an approximate watertable surface was used as a starting head in a steadystate simulation. The resultant steady-state heads were

40

then used as the new starting-water-table surface in a transient simulation. The bedrock-surface altitude used in the model was determined from seismic-refraction profiles, data from well logs, and interpolation. At the east side of the valley, bedrock crops out in places along the entire length of the modeled area. On the west side, saturated valley fill is adjacent to smoothed bedrock outcrops. On the north end of the valley, bedrock is exposed along the entire width of the modeled area. On the south end of the valley, saturated valley fill hides any evidence of bedrock outcrops. Depths to bedrock in this area were estimated from seismic-refraction profiling and interpolation.

A horizontal hydraulic conductivity of 100 ft/d was used as an initial input for the model. This value was determined from a 5-day aquifer test done at Woodstock wells WSW-14 and WSW-38 in August 1988. The wells are shown in figure 21.

Recharge and Discharge

Recharge to the stratified-drift aquifer is from runoff from till and bedrock uplands and from areal precipitation directly onto the aquifer. The aquifer discharges at streams and at pumping centers. Runoff from till and bedrock uplands recharges the aquifer at the contact between stratified drift and the valley wall. This recharge is simulated in the model by use of recharge wells (constant flux cells) along this boundary (fig. 21). Upland recharge to the aquifer is estimated to be 0.05 [(ft³/s)/mi²] of upland. This estimate is based on a discharge of 0.15 ft³/s at the 90-percent flow duration for Stevens Brook (period of record, 1964-81), a small till-covered watershed (2.94 mi²) 14 mi southwest of the area near Wentworth, N.H. The actual recharge applied at each boundary cell is proportional to the upland area contributing to the cell.

On the basis of discussion of recharge in the section "Recharge, Discharge, and Direction of Ground-Water Flow," areal recharge from precipitation directly on the aquifer was assumed to be equal to one-half the average annual precipitation. Mean annual precipitation for 36 years at Durham, N.H., south of the Pemigewasset River Basin, is 43 in. (National Oceanic and Atmospheric Administration, 1988). One-half of this amount (21.5 in.) was applied uniformly over the

The main discharge from the aquifer at Woodstock is at the Pemigewasset River. Eastman and Leeman's Brooks (fig. 20) drain till-covered upland

areas east and west of the Pemigewasset River. Discharges from these two brooks are assumed to be small relative to the discharge of the Pemigewasset River. Field investigations of the streambeds of the two brooks showed that the average width is 15 ft and the average depth is 0.5 ft. Field investigations of the Pemigewasset River at five locations throughout the modeled area showed that the streambed material is composed of cobbles, gravel, and fine-grained sand. Average river depth is 3 ft. The estimated vertical hydraulic conductivity of the streambeds of the Pemigewasset River and of Eastman and Leeman's Brooks is 3 ft/d, based on conductivities estimated by Lapham (1989) for three sites in Massachusetts and New Jersey. Brook and river altitude at each model cell were estimated from topographic maps. The streambeds are simulated in the model as head-dependent flux boundaries (fig. 22). This type of boundary allows simulation of flow between the aquifer and the streams as a function of head gradient and vertical hydraulic conductivity.

Currently (1992), two pumped municipal wells (WSW-14 and WSW-38) withdraw water from the stratified-drift aquifer at Woodstock. Wells WSW-14 and WSW-38 are gravel packed and are completed to a depth of 75 ft below land surface. Results from a 5-day aquifer test in August 1988 indicate that an average of 0.81 Mgal/d of water was withdrawn from the two wells. Water from a few domestic wells is pumped from the stratified-drift aquifer; however, because their numbers are few and because their discharges are returned to the aquifer through individual septic systems, the effect of domestic wells on the model simulation is assumed to be negligible.

Induced Recharge

The quantity of water available to a pumped well as induced recharge from the river depends on the pumping rate at the well and the minimum amount of flow that must be preserved in the river. An example of how availability of induced recharge is calculated can be given for USGS stream-gaging station 0107500 (informal site number 7) is on the Pemigewasset River at the northern end of the model area (fig. 20). Records of mean daily discharge for the Pemigewasset River at the Woodstock gage (period of record, 1940-77) show that streamflow equals or exceeds 77 ft³/s 95 percent of the time and equals or exceeds 60 ft³/s 99 percent of the time (table 4), thus 17 ft³/s is the flow that could be

withdrawn from the Pemigewasset River by induced infiltration 95 percent of the time while maintaining a flow of 60 ft³/s (the flow at the 99-percent flow duration) in the river (table 4).

Steady-State and Transient Simulations

A steady-state simulation was done to establish a prepumping head throughout the modeled area. In this simulation, areal recharge was applied uniformly over the modeled area. Recharge from the till and bedrock uplands was applied at each boundary cell (proportional to the upland area contributing to each cell), no pumping stresses were introduced to the system, and an arbitrary water-table altitude was applied uniformly over the modeled area. The resultant head array calculated by the steady-state simulation was then used as a starting-head array for the transient simulation. In the transient simulation, areal recharge was removed

uniformly from the modeled area, and recharge from the till and bedrock uplands was applied at each boundary cell. A storage coefficient was used uniformly throughout the modeled area, and various rates and durations of pumping were simulated at wells WSW-14 and 38 and hypothetical wells 3, 4, 5, 6 (fig. 24) over a 180-day period. The resultant water-table-altitude array calculated by the transient simulation was then compared to the starting water-table-altitude array calculated by the steady-state simulation, and drawdowns were calculated.

Sensitivity Analysis

A sensitivity analysis of the steady-state simulation was done to assess the sensitivity of the model to variations in input parameters. Values used in the model for aquifer hydraulic conductivity, streambed hydraulic conductivity, and areal recharge

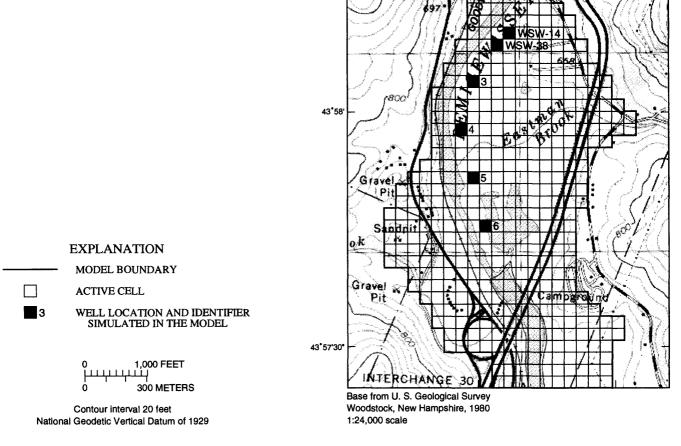


Figure 24. Well locations in the Woodstock aquifer, central New Hampshire.

were doubled and halved during sensitivity analysis. This approach provides a wider range of values for the resultant model-calculated heads given the relative uncertainty in the input parameters used in the model. The difference between heads calculated by the model for steady-state conditions and for each sensitivity run at selected pumped wells and at selected model grid cell locations are shown in tables 6 and 7.

Model-calculated heads are most sensitive to changes in horizontal hydraulic conductivity of the aquifer. When horizontal hydraulic conductivity was doubled, the model-calculated heads decreased or remained unchanged throughout the modeled area. At the pumped-well locations, the change in head ranged from 0.0 to 2.0 ft and averaged 0.6 ft. At the selected model grid-cell locations, the change in head ranged from 0.0 to 2.0 ft and averaged 1.0 ft. When horizontal hydraulic conductivity was halved, the model-calculated heads increased or remained the same throughout the modeled area. At the pumped wells, the change in head ranged from 0.0 to 1.0 ft and averaged 0.6 ft. At the selected model-grid cells, the change in head ranged from 0.0 to 4.0 ft and averaged 2.0 ft.

Changes in the streambed conductance resulted in changes in heads at the pumped wells and at the model-grid cells that were smaller than those caused by variations in horizontal hydraulic conductivity of the aquifer. When the streambed conductance was doubled, the model-calculated heads increased or remained unchanged throughout the modeled area. At the pumped wells, the change in head ranged from 0.0 to 3.0 ft and averaged 0.8 ft. At the selected model-grid cells, the change in head ranged from 0.0 to 3.0 ft and averaged 1.1 ft. When the streambed conductance was halved, the model-calculated heads decreased or remained unchanged throughout the modeled area. At the pumped wells, the change in head ranged from 0.0 to 1.0 ft and averaged 0.5 ft. At the selected model-grid cells, the change in heads ranged from 0.0 to 1.0 ft and averaged 0.9 ft.

Variations in the model-simulated areal recharge had the least effect on model-calculated heads. When the areal recharge was doubled, the model-calculated heads increased or remained unchanged throughout the modeled area. At the pumped wells, the heads remained unchanged. At the selected model-grid cells, the change in heads ranged from 0.0 to 2.0 ft and averaged 0.9 ft. When the areal recharge was halved, the model-calculated heads decreased or remained unchanged throughout the modeled area. At the pumped wells, the heads ranged from 0.0 to 1.0 ft and averaged 0.2 ft. At the model-grid cells, the change in head ranged from 0.0 to 1.0 ft and averaged 0.2 ft.

Table 6. Changes in model-calculated heads during sensitivity testing of the steady-state simulation at selected pumped wells in the Pemigewasset River Basin, central New Hampshire

[All measurements are in feet;, no data. Well locations shown in fig
--

	Changes in model-calculated heads in response to changes in model parameters												
	Aq	uifer hydrai	ulic cond	luctivity	Streambed conductance				Areal recharge				
Well number	x2.0		x0.5		x2.0		x0.5		x2.0		x0.5		
	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	
WSW-14	615	-1.0	617	1.0	617	1.0	615	-1.0	616	0	615	-1.0	
WSW-38	614	-1.0	616	1.0	616	1.0	614	-1.0	615	0	615	0	
3	612	-1.0	614	1.0	614	1.0	612	-1.0	613	0	613	0	
4	609	-1.0	611	1.0	611	1.0	610		610	0	610	0	
5	606		606		606		606		606	0	606	0	
6	604		604		603	-1.0	604		604	0	604	0	
Average absolute difference:		.6		.6		.8		.5		0		.2	

Table 7. Changes in model-calculated heads during sensitivity testing of the steady-state simulation at selected model-grid cells in the Pemigewasset River Basin, central New Hampshire

[All measurements are in feet. Model grid shown in figure 22]

			Cha	-				response		nges in			
	Aquit	er hydrau	lic con	ic conducticity		Streambed conductan			ance Areai recharge				
Location	x2.0			x0.5		x2.0		x0.5		x2.0		x0.5	
	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	New head	Amount of change	
Adjacent to western modeled boundary						<u>, , , , , , , , , , , , , , , , , , , </u>							
Row 8, Column 13	614	0	616	2.0	615	1.0	614	0	615	1.0	614	0	
Row 18, Column 8	606	-1.0	607	0	607	0	606	-1.0	607	0	606	-1.0	
Row 30, Column 10	602	-1.0	604	1.0	604	1.0	602	-1.0	603	0	602	-1.0	
Average absolute difference:	.7		1.0			.7		.7		.3		.7	
Center of modeled area													
Row 8, Column 17	613	-2.0	618	3.0	617	2.0	614	-1.0	616	1.0	615	0	
Row 18, Column 18	607	-1.0	610	2.0	609	1.0	607	-1.0	609	1.0	608	0	
Row 30, Column 18	603	-2.0	599	1.0	598	0	599	1.0	599	1.0	598	0	
Average absolute difference:		1.7		2.0		1.0		1.0		1.0		0	
Adjacent to eastern modeled boundary													
Row 8, Column 20	613	-2.0	619	4.0	618	3.0	614	-1.0	617	2.0	615	0	
Row 18, Column 20	608	-2.0	614	4.0	612	2.0	609	-1.0	611	1.0	610	0	
Row 30, Column 23	598	0	599	1.0	599	0	600	1.0	600	1.0	599	0	
Average absolute difference:		1.0		3.0		1.7		1.0		1.3		0	

Prediction of Aquifer Yield

The ground-water-flow model was used to simulate the effects of the two production wells (WSW-14 and WSW-38) and four hypothetical wells (wells 3, 4, 5, and 6) on the stratified-drift aquifer and to assess potential aquifer yield (fig. 24). The hypothetical wells are 800 ft apart. They are south of the two production wells and 300 ft east of the Pemigewasset River. This location scheme places the wells toward the center of the aquifer where transmissivities are high and allows for induced infiltration from the river. Contamination from typical urban sources (paved parking areas, buildings, industry) is not a factor in the location of wells in the aquifer because this area of meadowland and forest has a small human population.

For these analyses, it was assumed that a pumping rate that caused drawdowns to exceed 50 percent of the total saturated thickness of the aquifer would be unacceptable. Also for these analyses, the maximum amount of water available to wells for offstream use is

17 ft³/s or a total withdrawal rate of 10.9 Mgal/d. This is the amount of water potentially available based on the difference between the 99- and 95-percent flow duration for the Pemigewasset River at Woodstock (table 4).

Transient model simulations consisted of 10 time steps of 18 days each, (180 days total). Pumping rates of 6.9, 8.2, and 10.9 Mgal/d were simulated for all wells in combination. Results of these analyses are summarized in table 8. The drawdown calculated by the model for a cell simulating a production well is an average for the entire cell. Actual drawdowns at the pumped cells were determined by a formula presented by Trescott and others (1976).

For the total pumping rate of 6.9 Mgal/d, simulated drawdowns at wells WSW-14, WSW-38, 3, 4, 5, and 6 ranged from 5.9 to 21.6 ft, and the reduction in saturated thickness of the aquifer ranged from 5.2 to 24 percent. For the total pumping rate of 8.12 Mgal/d, simulated drawdowns at wells WSW-14, WSW-38, 3, 4,

Table 8. Effects of simulated transient pumping on water levels in the Woodstock aquifer and on flow in the Pemigewasset River, central New Hampshire

[Mgal/d, million gallons per day; ft, foot; ft³/s, cubic foot per second]

Well number	Pumping rate (Mgal/d)	Drawdown at well (ft)	Percentage of saturated thickness taken up as drawdown							
Total pumpage, 6.9 Mgal/d; total reduction in flow: 6.7 Mgal/d (10.4 ft ³ /s)										
WSW-14	0.5	6.46	8.5							
WSW-38	.5	6.56	8.7							
3	.5	6.56	8.7							
4	1.8	21.61	24.0							
5	1.8	10.65	6.4							
6	1.8	9.55	5.2							
Total pumpage, 8.1 Mgal/d; total reduction in flow: 7.9 Mgal/d (12.3 ft ³ /s)										
WSW-14	2.0	31.12	40.9							
WSW-38	2.0	31.12	40.9							
3	2.0	27.08	32.6							
4	.7	7.64	8.5							
5	.7	4.02	2.4							
6	.7	3.62	2.0							
tota	Total pump Il reduction in flo	age, 10.8 Mgal/d w: 10.7 Mgal/d								
WSW-14	1.0	13.6	17.9							
WSW-38	1.0	13.8	18.4							
3	1.0	12.2	14.7							
4	2.6	33.3	37.0							
5	2.6	15.4	9.3							
6	2.6	13.8	7.5							

5, and 6 ranged from 3.6 to 31.8 ft, and the reduction in saturated thickness ranged from 2.0 to 42.4 percent. For the total pumping rate of 10.9 Mgal/d (which equals the maximum amount of water available through induced infiltration of the Pemigewasset River), simulated drawdowns at wells WSW-14, WSW-38, 3, 4, 5, and 6 ranged from 12.2 to 33.3 ft, and the reduction in saturated thickness ranged from 7.5 to 37 percent.

At the total pumping rates of 6.9, 8.2, and 10.9 Mgal/d, the amount of water withdrawn from the Pemigewasset River by induced infiltration does not exceed 17 ft³/s, the maximum allowed to maintain streamflow in the Pemigewasset River at the 99-percent flow duration minus the 95-percent flow duration. Various pumping rates could be applied to the individual wells in many different combinations in this model simulation as long as the total pumping rate does not exceed 10.9 Mgal/d and the resultant drawdowns at the wells do not exceed 50 percent of the total saturated thickness of the aquifer.

GROUND-WATER QUALITY

Ground-water samples were collected from 16 USGS observation wells, 8 public-supply wells, and 2 springs in September 1988 to describe background water quality of the stratified-drift aquifers in the Pemigewasset River Basin. Sites of known groundwater contamination were avoided during sampling to ensure that water of background quality was sampled. Groundwater samples collected from observation wells reflect the geochemical properties of the stratified-drift aquifer in a small area around the well. Ground-water samples collected from public-supply wells and springs reflect the average geochemical properties of the aquifer over a larger area and may also reflect the effects of induced recharge from nearby surface water.

The sampling procedure differed with the source of water being sampled. Untreated water was sampled from two springs and eight public-supply wells. Public-supply wells are pumped continuously and springs maintain constant flow, so additional evacuation of water before sampling was unnecessary. All observation wells installed by the USGS were developed with compressed air to remove drilling water, foreign materials, and sediments, and to improver the hydraulic connection with the aquifer. Wells were allowed to stabilize for at least 1 month before samples were collected. At the time of sampling, the wells were pumped with a stainless-steel submersible pump at an average rate of 0.8 gal/min until temperature and specific conductance readings stabilized and the volume of water in the well was evacuated at least three times. This procedure was followed to ensure that the water sampled represented water in the aquifer. Once field conditions stabilized, water was collected and filtered through a 0.4 micron pore size, polycarbonate membrane filter. Any necessary preservatives were added immediately after filtration and samples were shipped to the U.S. Geological Survey's National Water Quality Laboratory (NWQL) in Arvada, Colo. for analysis.

Results of the chemical analyses are listed in appendix E. Statistical results of the chemical analysis of the ground-water samples are summarized in table 9 and are presented for comparison with the USEPA (1988) and the NHDES (Water Supply Engineering Bureau, written commun., 1988) primary and secondary drinking-water regulations. Many of the constituents summarized in table 9 were not detectable in samples at the limits shown. Where data sets contained values less than the detection limits, statistical values were estimated by use of methods developed by Helsel and Cohn (1988) and are described as estimated means, standard deviations, and quartiles.

Table 9. Summary of results of water-quality sampling in the Pemigewasset River Basin, central New Hampshire

[SMCL—Secondary Maximum Contaminant Level: Contaminants that affect the aesthetic quality of drinking water. At high concentrations or values, health implications as well as aesthetic degradation also may exist. SMCL's are not Federally enforceable but are intended as guidelines for the States (U.S. Environmental Protection Agency, 1988b). MCL—Maximum Contaminant Levels: Enforceable, health-based regulation that is to be set as close as is feasible to the level at which no known or anticipated adverse effects on the health of a person occur. The definition of feasible means the use of the best technology, treatment techniques, and other means that the Administrator of the U.S. Environmental Protection Agency finds, after examination for efficacy under field conditions and not solely under laboratory conditions, generally are available (taking cost into consideration) (U.S. Environmental Protection Agency, 1988b). A less-than symbol precedes the values whenever a concentration less than the detection limit was used in the computation. To compute statistics, those unknown low concentrations were assigned estimated values by use of the lognormal probability plotting procedure; in cases where more than 50 percent of the values were less than the detection limit, no summary statistics were computed; °C, degrees Celsius; µS/cm at 25 °C, microsiemen per centimeter at 25 degrees Celsius; mg/L, milligram per liter; µg/L, microgram per liter; --, no data]

Constituents	SMCL	MCL	Number of samples	Mean	Median	Standard deviation	Mini- mum	Maxi- mum	First quartile	Third quartile
Specific conductance (μS/cm at 25°C)			26	113.4	85.0	74.0	24.0	285	58.2	166.5
Solids, sum of constituents, dissolved (mg/L)	500		26	64.62	49.0	39.4	1.4	146	35.8	93.5
Chloride, dissolved (mg/L)	¹ 250		26	15.9	9.55	16.4	.4	58.0	2.4	30.5
Sodium, dissolved (mg/L)	¹ 20-250		26	9.5	6.1	8.7	1.3	38.0	3.2	14.5
pH (standard units)			26		6.7		5.3	9.1		
Oxygen, dissolved (mg/L)			26	6.2	6	3.45	.7	13.8	3.38	8.88
Alkalinity (mg/L as CaCO ₃)			26	15.0	13.5	8.2	2.0	37.0	8.75	19.0
Hardness, total (mg/L as CaCO ₃)			26	29.0	23	18.19	4	81	16.25	39.5
Calcium, dissolved (mg/L)			26	7.73	6.55	5.51	1.20	28.0	4.02	9.60
Magnesium, dissolved (mg/L)			26	1.73	1.30	1.30	.12	5.5	.85	2.23
Carbon, organic, dissolved (mg/L)			26	.86	.80	.30	.50	1.7	.60	1.00
Nitrogen, nitrite, dissolved (mg/L as N)			26							
Nitrogen, nitrite plus nitrate, dissolved (mg/L as N)			26	.547	.40	.490	<.10	2.20	.184	.87
Nitrogen, ammonia, dissolved (mg/L as N)			26		<.01		<.01	.03	<.01	.01
Nitrogen, ammonia plus organic, dissolved (mg/L as N)			26	.254	.222	.085	<.20	.40	.188	.30
Phosphorous, dissolved (mg/L as P)			26		<.01		<.01	.28	<.01	<.01
Potassium, dissolved (mg/L)			26	1.49	1.30	.75	.30	3.80	1.00	1.800
Sulfate, dissolved (mg/L)	¹ 250		26	8.32	7.20	4.69	2.40	23.0	5.28	9.78
Fluoride, dissolved (mg/L)	¹ 4.0		26	.132	.10	.11	<.10	.40	.06	.125
Silica, dissolved (mg/L)			26	12.01	11.00	3.82	6.10	20.0	9.25	15.25
Aluminum, dissolved (µg/L)			26	34.57	15.0	48.22	<10.0	210.0	4.58	60.0
Arsenic, dissolved (µg/L)		50.0	26		<1.0		<1.0	3.0	<1.0	<1.0
Barium, dissolved (µg/L)		2,000	26	16.85	13.0	19.03	2.0	100.0	5.75	21.0
Beryllium, dissolved (µg/L)			26		.15		<.5	2.0	.056	.41
Boron, dissolved (µg/L)			26		<10.0		<10.0	180.0	<10.0	<10.0
Cadmium, dissolved (µg/L)		10.0	26		<1.0		<1.0	2.00	<1.0	<1.0
Chromium, dissolved (µg/L)		¹ 50.0	18	1.204	1.0	.602	<1.0	2.0	.725	2.0
Cobalt, dissolved (µg/L)			26		<3.0		<3.0	4.0	<3.0	<3.0
Copper, dissolved (µg/L)	1,000		26		.74		<10.0	540.0	.073	7.46
Iron, dissolved (µg/L)			26	702.7	10.0	3,130	<3.0	16,000	4.75	22.25
Iron, total recoverable (µg/L)	300		26	832.9	130	2,557	<10.0	13,000	27.5	700
Lead, dissolved (µg/L)		50.0	26		<10.0		<10.0	20.0	<10.0	<10.0
Lithium, dissolved (µg/L)			26		2.97		<4.0	8.0	2.08	4.22
Manganese, dissolved (µg/L)	50.0		26	76.09	12.0	125.1	<1.0	430	2.75	103.7
Molybdenum, dissolved (µg/L)			26		<10.0		<10.0	<10.0	<10.0	<10.0

Table 9. Summary of results of water-quality sampling in the Pemigewasset River Basin, central New Hampshire—Continued

Constituents	SMCL	MCL	Number of samples	Mean	Median	Standard deviation	Mini- mum	Maxi- mum	First quartile	Third quartile
Mercury, dissolved (μg/L)		2.0	18		<10.0		<0.10	0.20	<0.10	<0.10
Nickel, dissolved (µg/L)			26		<100		<1.0	2.0	<1.0	1.0
Silver, dissolved (µg/L)	50.0		18		<1.0		<1.0	1.0	<1.0	1.0
Selenium, dissolved (µg/L)		10.0	18		<1.0		<1.0	1.0	<1.0	<1.0
Strontium, dissolved (µg/L)			26	56.96	46.0	33.89	17.0	150	33.5	67.75
Vanadium, dissolved (µg/L)			26		<6.0		<6.0	<6.0	<6.0	<6.0
Zinc, dissolved, (µg/L)	5,000		26	7.05	6.0	4.54	<3.0	16.0	3.0	10.25
Dichlorobromomethane, total (µg/L)			16					<.20		
Carbontetrachloride, total (µg/L)			16					<.20		
1,2-Dichloroethane, total (µg/L)			16					<.20		
Bromoform, total (µg/L)			16					<.20		
Chlorodibromomethane, total (µg/L)			16					<.20		
Chloroform, total (µg/L)			16		<20		<20	.60	<.20	<.20
Toluene (µg/L)			16					<.20		
Benzene, total (µg/L)			16		<20		<20	.30	<.20	<.20
Chlorobenzene, total (µg/L)			16					<.20		
Chloroethane, total (µg/L)			16					<.20		
Ethylbenzene, total (µg/L)			16					<.20		
Methylbromide, total (μg/L)			16					<.20		
Methylchloride, total (μg/L)			16					<.20		
Methylene chloride, total (μg/L)			16					<.20		
Tetrachloroethylene, total (µg/L)			16					<.20		
Trichloroflouromethane, total (µg/L)			16					<.20		
1,1-Dichloroethane, total (µg/L)			16					<.20		
1,1-Dichloroethylene, total (µg/L)			16					<.20		
1,1,1-Trichloroethane, total (µg/L)			16					<.20		
1,1,2-Trichloroethane, total (μg/L)			16					<.20		
1,1,2,2 Tetrachloroethane, total (µg/L)			16					<.20		
1,2-Dichlorobenzene, total (µg/L)			16					<.20		
1,2-Dichloropropane, total (µg/L)			16					<.20		
1,2Transdichloroethene, total (µg/L)			16					<.20		
1,3-Dichloropropene, total (µg/L)			16					<.20		
1,3-Dichlorobenzene, total (µg/L)			16					<.20		
1,4-Dichlorobenzene, total (µg/L)			16					<.20		
2-Dichloroethylvinylether, total (µg/L)			16					<.50		
Dichlorodifluoromethane, total (μg/L)			16					<.20		
Trans 1,3-Dichloropropene, total (μg/L)			16					<.20		
Cis 1,3-Dichloropropene, total (µg/L)			16					<.20		
1,2 Dibromoethylene, total (µg/L)			16					<.20		
Vinylchloride, total (μg/L)			16					<.20		
Trichloroethylene, total (μg/L)			16					<.20		
Styrene, total (µg/L)			16					<.20		
1,2-Dibromoethane, total (µg/L)			16					<.20		
Xylene, total (μg/L)			16					<.20		

 $^{^1}MCL$ for chromium is 50 $\mu g/L$ $Cr^{+6}.$

Results of the chemical water-quality analyses indicate that water from the stratified-drift aquifers is generally suitable for drinking and other domestic and commercial uses with the following exceptions:

- Water from three wells had dissolved sodium concentrations that exceeded the NHDES Health Advisory limit of 20 mg/L (Water Supply Engineering Bureau, written commun., 1988),
- Water from one well had a dissolved copper concentration (540 μg/L) about one-half of the USEPA secondary maximum contaminant level² (SMCL) of 1,000 μg/L, and the highest lead concentration (20 μg/L) of all samples,
- Water from eight wells had total iron concentrations that exceed the SMCL of 300 μg/L (U.S. Environmental Protection Agency, 1988a),
- Water from eight wells and one spring had dissolved manganese concentrations that exceeded the SMCL of 50 μg/L (U.S. Environmental Protection Agency, 1988a).

Specific conductance—a measure of the ability of water to conduct electrical current—is an indication of the concentration of ions in solution or of total amount of dissolved solids. Specific conductance of water samples (measured in the field) ranged from 24 μ S/cm at well WFW-2 to 285 μ S/cm at well RUW-2; the median was 85 μ S/cm. The State median was 132 μ S/cm for public-supply wells completed in stratified-drift aquifers (Morrissey and Regan, 1987).

Dissolved-solids concentrations in water from 25 samples ranged from 1.4 (well CBW-3) to 146 mg/L (well CBW-34); the median was 49.0 mg/L. The concentrations of dissolved solids in all water samples were less than the maximum recommended limit for drinking water (500 mg/L) established by the NHDES (Water Supply Engineering Bureau, written commun., 1988). The low concentration of dissolved solids in these stratified-drift aquifers is attributed to the insolubility of the aquifer matrix and the short residence time of water (Morrissey and Regan, 1987).

Nonindigenous sources of sodium and chloride in ground water in New Hampshire are natural and manmade. The principal source of natural chloride is atmospheric precipitation and dry fallout, which contribute about 0.5 mg/L to the New Hampshire land surface (Hall, 1975). The major manmade source of sodium and chloride is salt used in road deicing. In all samples in the study area, chloride concentrations were less than the SMCL (250 mg/L) established by the USEPA (1988b). Sodium concentrations exceeded the recommended Health Advisory Limit of 20 mg/L in samples from one well and one spring—well PYW-9 (22 mg/L) and spring SCS-1 (21 mg/L). The ratio of sodium to chloride in the water sample from well PYW-9 was 1.7 to 1.6 meg/L, which indicates that sodium chloride, probably from road salt, is the source of both constituents.

The pH of water is a measure of the water's hydrogen-ion concentration. Water having a pH of 7.0 is neutral, less than 7.0 is acidic, and greater than 7.0 is alkaline. The pH of most ground water in the United States ranges from 6.5 to 8.5 (Hem, 1985). The pH of water samples collected during this study and measured in the field, ranged from 5.3 to 9.1; the median was 6.7. The pH of water from stratified-drift aquifers sampled across New Hampshire (1984-89) ranged from 5.3 to 8.5; the median was 6.1 (Moore and others, 1994). The most alkaline water in this study was from well SCW-58 (9.10) and HRW-1 (8.20). Samples from three wells (WFW-2, CBW-33, and LKW-1) had pH values of 5.3, 5.8, and 5.9 respectively, less than the minimum value of 6.0 established as the SMCL by the USEPA (1986a).

The alkalinity of a solution is defined as the capacity for solutes in water to react with and neutralize acid (Hem, 1985). The principal source of ambient alkalinity is dissolved calcium carbonate (CaCO₃). Because New Hampshire does not contain sizeable carbonate mineral deposits, the buffering capacity of waters from stratified-drift aquifers is low. Alkalinity of water samples ranged from 2.0 mg/L (as CaCO₃) at well WFW-2 to 37 mg/L (as CaCO₃) at well RUW-2.

Nitrogen is present in water as nitrite (NO₂) or nitrate (NO₃.) anions, in cationic form as the ammonium (NH₄⁺) cation, and at intermediate oxidation states as a part of organic solutes and as ammonium cations (Hem, 1985, p. 124). The predominant form of inorganic nitrogen in natural ground water is nitrate, from the oxidation of nitrogenous compounds. Excess nitrate in ground water can originate from fertilizer

²SMCL, Secondary Maximum Contaminant Level: Nonenforceable regulation that affects the aesthetic quality of drinking water. At high concentrations or values, health implications as well as aesthetic degradation may exist. These are intended as guidelines for the States.

applications, as leachate from sewage systems, or as wastes from farm animals. Dissolved nitrite plus nitrate (as N) concentrations in 26 samples ranged from less than 0.10 to 2.2 mg/L; the median was 0.4 mg/L.

The most common sulfur specie under oxidizing conditions is sulfate. The SMCL for sulfate (SO_4^2) in drinking water is 250 mg/L (U.S. Environmental Protection Agency, 1988b). Oxidation of sulfide ores, gypsum, and anhydrite are natural sources of sulfate, but these minerals generally are not present in stratified-drift aquifers. Under reducing conditions, sulfate is reduced by anaerobic bacteria to hydrogen sulfide (H_2S) gas, which can be detected by smell at concentrations of only a few tenths of a milligram per liter. Sulfate concentrations for all water samples ranged from 2.4 to 23.0 mg/L; the median was 7.2 mg/L.

Iron and manganese are common elements in minerals in stratified-drift deposits within the study area. Concentrations of iron and manganese in excess of the SMCL were the most common water-quality problems found in the water samples. Eight water samples had total iron concentrations (dissolved plus suspended) above the SMCL of 300 µg/L—700 µg/L at well ANW-14; 1,000 μg/L at well APW-2; 320 μg/L at well B2W-18; 760 μg/L at well PYW-9; 13,000 μg/L at well RUW-2; 700 μg/L at well RUW-14; 3,000 μg/L at well RUW-15; and 750 µg/L at well SCW-58. If only the dissolved-iron concentration is measured, three wells (APW-2, PYW-9, and RUW-2) had concentrations above the SMCL of 300 µg/L. Water samples from eight wells and one spring had manganese concentrations above the SMCL of 50 µg/L—400 µg/L at ANW-1; 61 μg/L at APW-2; 180 μg/L at CBW-4; 250 µg/L at PYW-9; 260 µg/L at RUW-2; 130 µg/L at SCS-1; 430 µg/L at SCW-58; 95 µg/L at SCW-135; and 55 µg/L at WFW-2.

Aluminum, the third most abundant element in the Earth's crust, is rarely present in water at concentrations greater than a few tenths or a few hundredths of a milligram per liter (Hem, 1985). Water from one well (WFW-2) had the highest aluminum concentration of 210 μ g/L (0.21 mg/L) and the lowest pH (5.30). In low-pH environments, aluminum may be precipitated as an aluminum-hydroxy sulfate.

Concentrations of other elements and trace metals in all the water samples were at or no more than two times the reported detection limit for the following metals: cadmium, chromium, cobalt, lead, molybdenum, mercury, nickel, silver, and vanadium. Copper is usually present as a sulfide mineral, but it can also be derived from dissolved water pipes and plumbing

fixtures and can be present in sprays used as agricultural pesticides (Hem, 1985, p. 141). Water from one well (WSW-14) had a copper concentration of 540 μ g/L (0.54 mg/L), which is slightly more than one-half the SMCL (1,000 μ g/L) and almost seven times more than was found in any other sample. In all the water samples, the highest concentration of zinc (16 μ g/L at APW-3) was less than the SMCL of 5,000 μ g/L.

Arsenic is found in 10 to 15 percent of ground water in bedrock in many parts of New Hampshire at concentrations in excess of the maximum contaminant level³ (MCL) of 50 μ g/L (Morrissey and Regan, 1987). Only one sample from this study (well RUW-2) had a concentration of arsenic (3 μ g/L) that exceeded the detection limit of 1 μ g/L.

Water samples from 14 observation wells and 2 springs were tested for 36 different volatile organic compounds (VOC's) (appendix E). The only VOC concentrations greater than detection limits (in 2 of the 16 samples tested) were 0.60 μ g/L of chloroform at well SCW-50 and 0.30 μ g/L of benzene at well CBW-4.

River water induced to recharge an aquifer in response to pumping from a production well has little or no effect on the physical characteristics of the pumped water, with the exception of temperature. Suspended sediments, organic matter, turbidity, taste, and odor associated with the surface water are removed during its flow through bottom sediments and aquifer deposits (Johnston and Dickerman, 1974). Color, if present in the surface water, may not be entirely removed. The temperature of the pumped water fluctuates according to seasonal changes in surface-water temperatures and the travel time of infiltrated water to reach the pumped well. Temperature of the pumped water will vary less than that of the surface water because of mixing with the ground water, which maintains a nearly constant temperature.

³MCL, maximum contaminant level: Enforceable, health-based regulation that is to be set as close to the level at which no known or anticipated adverse effects on the health of a person occur as is feasible. The definition of feasible means the use of best technology, treatment techniques, and other means that the Administrator of the U.S. Environmental Protection Agency finds, after examination for efficacy under field conditions and not solely under laboratory conditions, are generally available (taking cost into consideration).

The water quality of withdrawn ground water commonly reflects the chemistry of the infiltrated surface water and the ground water. Some dissolved chemical constituents in the infiltrating water can be altered or removed from solution by precipitation, absorption, cation exchange, or other processes as the infiltrating water migrates through the aquifer, but many chemical constituents are transported in their original form (Johnston and Dickerman, 1974). Concentrations of these constituents will change, however, as a result of the mixing of the infiltrated water with ground water.

Infiltration of class A or B surface water (table 10) does not adversely affect the quality of ground water withdrawn from production wells. New Hampshire's adopted-use classification for surface water in the Pemigewasset River Basin is "B" (New Hampshire Department of Environmental Services, Water Supply and Pollution Control Division, 1979). The water-quality standards for this classification are listed in table 10.

Table 10. Recommended-use classifications and water-quality standards for New Hampshire surface water

[Standards from New Hampshire Water Supply and Pollution Control Commission (1979). The waters in each classification shall satisfy all provisions of all lower classifications. These standards shall apply to all times except during periods when the receiving streamflows are less than the minimum average 10-day flow which occurs once in 20 years. Class A: Potentially acceptable for water supply uses after disinfection. No discharge of sewage, wastes, or other polluting substances into waters of this classification. (Quality uniformly excellent.) Class B: Acceptable for swimming and other recreation, fish habitat, and after adequate treatment, for use as water supplies. No disposal of sewage or wastes unless adequately treated. (High aesthetic value.) Class C: acceptable for recreational boating, fishing, and industrial water supply with or without treatment, depending on individual requirements. (Third highest quality.)

Abbreviations: ppm, parts per million; mL, milliliter, piC/L, picocuries per liter; NTAC-DI, National Technical Advisory Committee, Department of Interior; NHF&GD, New Hampshire Fish and Game Department; NEIWPCC, New England Interstate Water Pollution Control Commission]

Characteristic	Class A	Class B	Class C
Dissolved oxygen	Not less than 75 percent of saturation, nor less than 6 ppm in cold water fisheries	Not less than 75 percent of saturation, nor less than 6 ppm in cold water fisheries unless naturally occurring.	Not less than 5 ppm in warm water fisheries, nor less than 6 ppm in cold water fisheries unless naturally occurring
Coliform bacteria	Not more than 50 colonies per 100 mL unless naturally occurring	Not more than 240 colonies per 100 mL in fresh water, unless naturally occurring. Not more than 70 coliforms per 100 mL in waters used for growing or taking of shellfish for human consumption	Not to exceed an average value of 1,000 colonies per 100 mL in any group of samples, nor shall any single sample exceed 2,500 colonies per 100 mL except when such waters are subject to over flow from a combined sewer system or as naturally occurs.
pH (acidity-alkalinity)	As naturally occurs	6.5-6.8 or as naturally occurs	6.0-8.5 or as naturally occurs
Substances, potentially toxic	None unless naturally occurring	Not in toxic concentrations or combinations	Not in toxic concentration or combinations
Sludge deposits	None	No unreasonable kinds or quantities, unless naturally occurring	No unreasonable kinds or quantities, unless naturally occurring
Oil and grease	None	No unreasonable kinds or quantities	No unreasonable kinds or quantities
Color	Not in unreasonable quantities, unless naturally occurring	Not in unreasonable quantities, unless naturally occurring	Not in unreasonable quantities, unless naturally occurring
Turbidity	Not to exceed 5 standard units unless, naturally occurring	Not to exceed 10 standard turbidity units in cold water fisheries. Not to exceed 25 standard turbidity units in warm water fisheries unless naturally occurring	Not to exceed 10 standard turbidity units in cold water fisheries. Not to exceed 25 standard turbidity units in warm water fisheries unless naturally occurring.
Slicks, odors, and surface-floating solids	None unless naturally occurring	No unreasonable kinds, quantities, or duration unless naturally occurring	No unreasonable kinds, quantities, or duration unless naturally occurring
Temperature	No artificial rise	NHF&GD, NEIWPCC, or NTAC-DI requirements, whichever provides most effective control	NHF&GD, NEIWPCC, or NTAC-DI requirements, whichever provides most effective control
Phosphorus	None, except as naturally occurs	None in such concentrations ¹ that would impair any usages assigned to this class, unless naturally occurring	None in such concentrations ¹ that would impair any usages assigned to this class, unless naturally occurring
Gross beta radioactivity	Not greater than 1,000 piC/L ²	Not greater than 1,000 piC/L	Not greater than 1,000 piC/L
Strontium-90	Not greater than 10 piC/L	Not greater than 10 piC/L	Not greater than 10 piC/L
Radium-226	Not greater than 3 piC/L	Not greater than 10 piC/L	Not greater than 10 piC/L
Phenol	Not to exceed 0.001 ppm	Not to exceed 0.001 ppm	Not to exceed 0.002 ppm

¹Generally less than 0.015 ppm.

²One picocurie is one trillionth of a curie, which is a standard measure of radioactivity.

SUMMARY AND CONCLUSIONS

Population and economic development, particularly related to tourism, have increased demands for water and stressed the capacity of the existing public-water-supply systems in the Pemigewasset River Basin. This report provides geohydrologic information on stratified-drift aquifers in this basin. The results of this study (1) describe the geohydrologic characteristics of the stratified-drift aquifers, (2) present an example of an aquifer-simulation technique for evaluating the yield of a streamside aquifer, and (3) describe the background water quality within the stratified-drift aquifers.

Stratified-drift aquifers are layered, sorted sediments (chiefly sand, or sand and gravel) deposited by meltwater streams during deglaciation. Ground water is stored in and flows through interconnected pore spaces between sediment particles (primary porosity). The initial glaciofluvial environment in which these deposits formed determine the storage and transmission characteristics of these aquifers.

The geohydrology of the stratified-drift aquifer was investigated by determining lateral and vertical aquifer boundaries and identifying water-table altitude and configuration, direction of ground-water flow, and aquifer saturated thickness, storage, and transmissivity. Lateral aquifer boundaries were delineated by field mapping. Vertical boundaries and water tables were delineated and saturated thickness and transmissivity were estimated by use of subsurface data from wells, test borings, and seismic-refraction surveys. Data collected were used to produce maps of stratified-drift aquifers showing water-table configurations, directions of ground-water flow, saturated thickness, and transmissivity.

South of Plymouth, the most productive or potentially productive stratified-drift aquifers in the Pemigewasset River Basin are north from Franklin to southern Hill, at the Hill-Bristol town line, north of northwestern New Hampton to the Plymouth-Bridgewater town line, and at the confluence of the Pemigewasset and Baker Rivers. Saturated thickness exceeds 80 ft in the central parts of these aquifers, and transmissivity ranges from 4,000 to 8,000 ft²/d.

North of Plymouth, the most productive aquifer extends northward from Livermore Falls to southern Woodstock. Saturated thickness is greater than 120 ft in the central part of the valley, and transmissivity exceeds 8,000 ft²/d from the confluence of the Beebe and the Pemigewasset Rivers northward to northern

Campton. The saturated thickness in a smaller area at the north end is also greater than 120 ft, and the transmissivity exceeds 8,000 ft²/d.

The most productive or potentially productive stratified-drift aquifer in the Smith River Basin is at the village center of Danbury, where the saturated thickness is at least 80 ft and the transmissivity exceeds 4,000 ft²/d. In the lower Cockermouth and Fowler River Valleys of the Newfound Lake Basin, the saturated thickness is greater than 100 ft and the transmissivity exceeds 8,000 ft²/d, thus indicating this would be a potentially productive aquifer.

The most productive or potentially productive stratified-drift aquifers in the Baker River Basin are in Rumney Depot in the southern part of the basin, where the saturated thickness is greater than 200 ft and the transmissivity may exceed 8,000 ft²/d, and in Warren, where the saturated thickness is greater than 40 ft and the aquifer transmissivity exceeds 4,000 ft²/d.

Pumpage from municipal wells in 1990 averaged only about 2.76 Mgal/d, and pumpage from most of these wells induced surface water to recharge the stratified-drift aquifers. Quantity of water in streams (about 97 Mgal/d for the basin) between flows equaled or exceeded 95 percent of the time and flows equal or exceeded 99 percent of the time will accommodate streamflow losses to induced recharge to streamside aquifers.

An example of one effective approach to evaluate the potential yield of a streamside aquifer was presented in a ground-water-flow simulation of a sand and gravel aquifer in Woodstock by use of a ground-water-flow model. Two municipal wells in woodstock were pumped at an average rate of 0.319 Mgal/d in 1990, but have been tested at about 0.8 Mgal/d. Model results indicate that if four additional wells were constructed, as much as 10.9 Mgal/d could be pumped from this aquifer.

Water from stratified-drift aquifers generally is suitable for drinking and other domestic and commercial uses. Samples of water from 24 wells and 2 springs were collected and analyzed for inorganic compounds. All water analyzed meets the USEPA primary drinking-water regulations. Only concentrations of iron (in water from eight wells) and manganese (in water from eight wells and one spring) were above the SMCL. Water samples from 14 wells and 2 springs were tested for 36 different VOC's. Chloroform was detected at a low concentration $(0.60 \,\mu\text{g/L})$ in one sample and benzene was detected at a low concentration $(0.30 \,\mu\text{g/L})$ in another sample.

SELECTED REFERENCES

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1980, Standard methods for the examination of water and wastewater (15th ed.): Washington, D.C., American Public Health Association, 1,134 p.
- Anderson-Nichols and Co., Inc., 1969, Public water-supply study, phase one report: Concord, N.H., New Hampshire Department of Water Resources and Economic Development, 3 v., 550 p.
- Ayotte, J.D., and Toppin, K.W., 1995, Geohydrology and water quality of stratified-drift aquifers in the Middle Merrimack River Basin, south-central New Hampshire: U.S. Geological Survey, Water-Resources Investigations Report 92-4192, 52 p., 8 pls.
- Bates, R.L., and Jackson, J.A., eds., 1980, Glossary of geology (2d ed.): Falls Church, Va., American Geological Institute, 751 p.
- Bedinger, M.S., 1961, Relation between median grain size and permeability in the Arkansas River Valley *in* Short papers in the geologic and hydrologic sciences: U.S. Geological Survey Professional Paper 424-C, p. C31-C32.
- Billings, M.P., 1956, The geology of New Hampshire, part II—Bedrock geology of New Hampshire: Northeastern Geology, v. 2, p. 81-86.
- Blackey, F.E., Cotton, J.E., and Denner, J.C., 1989, Water-resources data, New Hampshire and Vermont, water year 1988: U.S. Geological Survey Water-Data Report NH-VT-88-1, 145 p.
- Boudette, E.L., Canney, F.C., Cotton, J.E., Davis, R.I., Fincklin, W.H., and Motooka, J.M., 1985, High levels of arsenic in the ground waters of southeastern New Hampshire—a geochemical reconnaissance: U.S. Geological Survey Open-File Report 85-202, 25 p.
- Cervione, M.A., Jr., Mazzaferro, D.L., and Melvin, R.L., 1972, Water resources inventory of Connecticut, part 6, upper Housatonic River Basin: Connecticut Water-Resources Bulletin 21, 84 p.
- Chapman, D.H., 1974, New Hampshire's landscape, how it was formed: New Hampshire Profiles, v. 23, no. 1, p. 41-56.
- Cotton, J.E., 1975, Availability of ground water in the Pemigewasset and Winnipesaukee River Basins, central New Hampshire:U.S. Geological Survey Water-Resources Investigations 47-45, scale 1:125,000.

- 1988, Ground-water resources of the Lamprey River Basin, southeastern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 84-4252, 46 p.
- 1989, Ground-water resources of the Cocheco River Basin, southeastern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 87-4130, 47 p.
- Cotton, J.E., and Hammond, R.E., 1985, New Hampshire ground-water resources, *in* National Water Summary 1984: U.S. Geological Survey Water-Supply Paper 2275, p. 303-308.
- Diers, R.W., and Vieira, F.J., 1977, Soil survey of Carroll County, New Hampshire: Washington, D.C., U.S. Department of Agriculture, Soil Conservation Service, 63 map sheets, scale 1:24,000, 161 p.
- Dingman, S.L., 1978, Synthesis of flow-duration curves for unregulated streams in New Hampshire: Water Resources Bulletin, v. 14, no. 6, p. 1481-1502.
- Fenneman, N.M., 1938, Physiography of Eastern United States: New York, McGraw-Hill Book Co., 714 p.
- Ferris, J.G., Knowles, D.B., Brown, R.H., and Stallman, R.W., 1962, Theory of aquifer tests: U.S. Geological Survey Water-Supply Paper 1536-E, p. 69-174.
- Flanagan, S.M., and Stekl, P.J., 1990, Geohydrologic, ground-water-quality, and streamflow data for the stratified-drift aquifers in the lower Merrimack and coastal River Basins, southeastern New Hampshire: U.S. Geological Survey Open-File Report 89-390, 130 p., 3 pl.
- Freeze, R.A., and Cherry, J.A., 1981, Groundwater: Englewood Cliffs, N.J., Prentice-Hall, 604 p.
- Gilliom, R.J., and Helsel, D.R., 1984, Estimation of distributional parameters for censored trace-level water-quality data—I. Estimation techniques: U.S. Geological Survey Open-File Report 84-729, 25 p.
- Goldthwait, J.W., 1925, The geology of New Hampshire: New Hampshire Academy of Science Handbook 1, 86 p.
- Goldthwait, J.W., Goldthwait, Lawrence, and Goldthwait, R.P., 1951, The geology of New Hampshire, part I, surficial geology: Concord, New Hampshire State Planning and Development Commission, 83 p.
- Goldthwait, R.P., 1949, Artesian wells in New Hampshire: Concord, N.H., New Hampshire State Planning and Development Commission, Mineral Resource Survey, part XI, 24 p.

- Haeni, F.P., 1988, Application of seismic-refraction techniques to hydrologic studies: U.S. Geological Survey Techniques of Water-Resources Investigations, book 2, chap D2, 86 p.
- Hall, F.R., 1975, Chloride in natural waters of New Hampshire:
 Durham, N.H., New Hampshire Agricultural
 Experiment Station, University of New Hampshire,
 Station Bulletin 504, 25 p.
- Hammond, R.E., and Cotton, J.E., 1986, New Hampshire surface-water resources, *in* U.S. Geological Survey, National Water Summary 1985: U.S. Geological Survey Water-Supply Paper 2300, p. 329-334.
- Harte, P.T., and Johnson, William, 1995, Geohydrology and water quality of stratified-drift aquifers in the Contoocook River Basin, south-central New Hampshire, with a section on Geohydrologic setting, by Richard Bridge Moore: U.S. Geological Survey Water-Resources Investigations Report 92-4154, 72 p., 4 pls.
- Hazen, A., 1892, Some physical properties of sands and gravels with special reference to their use in filtration, *in*Massachusetts State Board of Health, 24th Annual
 Report: p. 541-556.
- Heath, R.C., 1982, Classifications of ground water systems of the United States: Ground Water, v. 20, no. 4, July-August, p. 393-401.
- _____ 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Helsel, D.R., and Cohn, T.A., 1988, Estimation of descriptive statistics for multiple censored water quality data: Water Resources Research, v. 24, no. 12, p. 1997-2004.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hill, D.B., 1979, The hydrology of an ice-contact deposit at Newmarket Plains, New Hampshire: Durham, N.H., University of New Hampshire, 93 p.
- Johnston, H.E., and Dickerman, D.C., 1974, Availability of ground water in the Blackstone River area, Rhode Island and Massachusetts: U.S. Geological Survey Water-Resources Investigations Report 4-74, 2 sheets.
- Kelsey, T.L., and Vieira, F.J., 1968, Soil survey of Belknap County, New Hampshire: Washington, D.C., U.S. Department of Agriculture, Soil Conservation Service, 62 sheets, scale 1:15,840, 68 p.

- Knox, C.E., and Nordenson, T.J., 1955, Average annual runoff and precipitation in the New England-New York area: U.S. Geological Survey Hydrologic Investigations Atlas HA-7, scale 1:1,000,000.
- Koteff, Carl, and Pessl, Fred, Jr., 1981, Systematic ice retreat in New England: U.S. Geological Survey Professional Paper 1179, 20 p.
- Krumbein, W.C., and Monk, G.D., 1942, Permeability as a function of the size parameters of unconsolidated sand: Transactions of the American Institute of Mineralogical and Metallurgical Engineers, v. 151, p. 153-163.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Lapham, W.W., 1989, Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity: U.S. Geological Survey Water-Supply Paper 2337, 35 p.
- Latimer, W.J., Layton, N.H., Lyford, W.H., Coates, W.H., and Scripture, P.N., 1939, Soil survey of Grafton County, New Hampshire: Washington, D.C., U.S. Department of Agriculture, Bureau of Chemistry and Soils, Series 1935, no. 6, 2 sheets, scale 1:62,5000, 79 p.
- Lohman, S.W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms—Revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Lougee, R.J., 1940, Deglaciation of New England: Journal of Geomorphology, v. 3, p. 188-217.
- Lyons, J.B., Bothner, W.A., Moench, R.H., and Thompson, J.B., Jr., eds., 1986, Interim geologic map of New Hampshire: Concord, New Hampshire Department of Resources and Economic Development Open-File Report 86-1, scale 1:250,000.
- Lyons, J.B., Boudette, E.L., and Aleinikoff, J.N., 1982, The Avalonian and Gander zones in central eastern New England, in St. Julien, P., and Beland, J., eds., Major structural zones and faults of the northern Appalachians: Geological Association of Canada Special Paper 24, p. 43-66.
- Mack, T.J., and Lawlor, S.M., 1992, Geohydrology and water quality of stratified-drift aquifers in the Bellamy,
 Cocheco, and Salmon Falls River Basins, southeastern
 New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 90-4161, 100 p., 6 pl.

- MacNish, R.D., and Randall, A.D., 1982, Stratified-drift aquifers in the Susquehanna River Basin, New York: Albany, N.Y., New York State Department of Environmental Conservation Bulletin 75, 68 p.
- Masch, F.A., and Denny, K.J., 1966, Grain-size distribution and its effect on the permeability of unconsolidated sands: Water Resources Research, v. 2, no. 4, p. 665-677.
- Mazzaferro, D.L., Handman, E.H., and Thomas, M.P., 1979,
 Water-resources inventory of Connecticut, part 8, Quinnipiac River Basin, Connecticut: Connecticut Water
 Resources Bulletin 27, 88 p., 5 pls.
- McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 586 p.
- Mercer, M.W., and Morgan, C.O., 1981, Storage and retrieval of ground-water data at the U.S. Geological Survey: Ground Water, v. 19, no. 5, p. 543-551.
- Moore, R.B., 1990, Geohydrology and water quality of stratified-drift aquifers in the Exeter, Lamprey, and Oyster River Basins, southeastern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 88-4128, 156 p., 8 pls.
- Moore, R.B., Johnson, C.D., and Douglass, E.M., 1994, Geohydrology and water quality of stratified-drift aquifers in the lower Connecticut River Basin, southwestern New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 92-4013, 68 p., 4 pl.
- Morrissey, D.J., 1983, Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine: U.S. Geological Survey Water-Resources Investigations Report 83-4018, 79 p., 8 pls.
- Morrissey, D.J., and Regan, J.M., 1987, New Hampshire ground-water quality: U.S. Geological Survey Open-File Report 87-739, 8 p.
- National Academy of Sciences and National Academy of Engineering, 1972 [1974], Water-quality criteria 1972: Washington D.C., U.S. Government Printing Office, Ecological Research Series, EPA-R3-73-033, March 1973, 594 p.
- National Oceanic and Atmospheric Administration, 1988, Climatological data, annual summary, New England, 1988: Ashville, N.C., v. 100, no. 13, 52 p.

- New Hampshire Department of Environmental Services, Water Supply and Pollution Control Division, 1982, Inventory of ground water and surface potential nonpoint pollution sources: Concord, N.H., 75 p.
- _____1982, Public-water supplies, facilities, and policy summary, 1981: Concord, N.H., 44 p.
- _____ 1984, Drinking-water regulations, Chapter WS 300: Concord, N.H., 85 p.
- _____ 1990, State water quality regulations: Concord, N.H.
- New Hampshire Department of Environmental Services, Water Supply and Pollution Control Commission, and U.S. Environmental Protection Agency, 1971, Waterquality standards summary (New Hampshire): Concord, N.H., Water Supply and Pollution Control Commission, 91 p.
- New Hampshire Office of State Planning, 1985, New Hampshire population projections for cities and towns: Concord, N.H., 19 p.
- New Hampshire Water Supply and Pollution Control Commission, 1979, Water pollution and waste disposal regulations, 485-A:8, Classification of waters: Concord, N.H., ENVW5-430 through 438, 20 p.
- New Hampshire Water Resources Board, 1984, Water resources management plan: Concord, N.H., 47 p.
- Olney, S.L., 1983, An investigation of the relationship between the coefficient of permeability and effective grain size of unconsolidated sands: Boston, Mass., Boston University, published Master's thesis, 61 p.
- Pettyjohn, W.A., Studlick, J.R., Bain, R.C., and Lehr, J.H., 1979, A ground-water quality atlas of the United States: National Water Well Association for National Demonstration Water Project, 272 p.
- Pluhowski, E.J., and Kantrowitz, I.H., 1964, Hydrology of the Babylon-Islip area, Suffolk County, Long Island, New York: U.S. Geological Survey Water-Supply Paper 1768, 119 p.
- Raisz, Erwin, 1954, Physiographic diagram, in U.S. Geological Survey, 1970, National atlas of the United States: Washington, D.C., U.S. Geological Survey, 417 p.
- Randall, A.D., 1978, Infiltration from tributary streams in the Susquehanna River Basin, New York: U.S. Geological Survey Journal of Research, v. 6, no. 3, p. 285-297.
- Reilly, T.E., Franke, O.L., and Bennett, G.D., 1987, The principle of superposition and its application in groundwater hydraulics: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap B6, 8 p.

- Ryder, R.B., Cervione, M.A. Jr., and Thomas, C.E., Jr., 1970, Water-resources inventory of Connecticut, part 4, southwestern coastal river basins: Connecticut Water Resources Bulletin 17, 54 p.
- Scott, J.H., Tibbetts, B.L., and Burdick, R.G., 1972, Computer analysis of seismic-refraction data: U.S. Department of the Interior, Bureau of Mines Report of Investigations RI-7595, 95 p.
- Stewart, G.W., 1968, Drilled water wells in New Hampshire: New Hampshire Department of Resources and Economic Development, Mineral Resources Survey, Part 20, 58 p.
- Theis, C.V., 1963, Estimating the transmissibility of a watertable aquifer from the specific capacity of a well, *in* Bentall, Ray, compiler, Methods of determining permeability, transmissivity, and drawdown: U.S. Geological Survey Water-Supply Paper 1536-I, p. 332-336.
- Thomas, M.P., 1966, Effect of glacial geology upon the time distribution of streamflow in eastern and southern Connecticut: U.S. Geological Survey Professional Paper 550-B, p. B209-B212.
- Todd, D.K., 1980, Groundwater hydrology: New York, John Wiley and Sons, 535 p.
- Toppin, K.W., 1986, Hydrogeology of stratified-drift aquifers and water quality in the Nashua Regional Planning commission area, south-central New Hampshire: U.S. Geological Survey Water-Resources Investigations Report 86-4358, 101 p., 6 pls.
- Trescott, P.C., Pinder, G.F., and Larson, S.P., 1976, Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 7, chap. C1, 116 p.
- Upham, Warren, 1897, Modified drift in New Hampshire, *in* Hitchcock, C.H., Geology of New Hampshire: Concord, N.H., E.A. Jenks, State Printer, v. 3, part II, 740 p.
- U.S. Army Corps of Engineers, 1980, Magnitude and frequency of low streamflows in New Hampshire: U.S. Department of the Army, 70 p.
- U.S. Bureau of the Census, 1990, 1990 census of population and housing, New Hampshire: U.S. Department of Commerce, PHC 90, p. 21-32.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking-water regulations: Federal Register, v. 40, no. 248, Dec. 24, 1975, p. 59566-59588.
- _____ 1976, Quality criteria for water: U.S. Environmental Protection Agency Report EPA-4419-76-023, 501 p.

- U.S. Environmental Protection Agency, 1977, National secondary drinking-water regulations: Federal Register, v. 42, no. 62, March 31, 1977, p. 17143-17147.
- _____ 1979, National secondary drinking-water regulations: Washington, D.C., Office of Drinking Water, EPA-670/9-76-000, 37 p.
- _____1981, EPA study confirms arsenic contamination from natural sources, *in* EPA Environmental News June/July 1981: U.S. Environmental Protection Agency, p. 5-6.
- _____ 1986a, Quality criteria for water: Washington, D.C., Office of Water Regulations and Standards, EPA 440/5-86-001, 460 p.
- _____ 1986b, Amendment to national oil and hazardous substance contingency plan; National priorities list; final rule and proposed rules: Federal Register, v. 51, no. 111, p. 21053-21112.
- 1988a, National revised primary drinking-water regulations—Maximum contaminant levels (subpart G of part 141, National interim primary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, parts 100 to 149, revised as of July 1, 1988, p. 586-587.
- _____ 1988b, Secondary maximum contaminant levels (section 143.3 of part 143, National secondary drinkingwater regulations): U.S. Code of Federal Regulations, Title 40, parts 100 to 149, revised as of July 1, 1988, p. 608.
- U.S. Geological Survey, 1985, National water summary 1984—Hydrologic events, selected water-quality trends, and ground-water resources: U.S. Geological Survey Water-Supply Paper 2275, 467 p.
- _____ 1988, National water summary 1986—Hydrologic events and ground-water quality: U.S. Geological Survey Water-Supply Paper 2325, 560 p.
- Weigle, J.M., and Kranes, Richard, 1966, Records of selected wells, springs, test holes, materials tests, and chemical analyses of water in the lower Merrimack River Valley in New Hampshire: U.S. Geological Survey Open-File Report, New Hampshire Basic-Data Report 2, 44 p.
- Winkley, H.E., 1965, Soil survey of Merrimack County, New Hampshire: Washington, D.C., U.S. Department of Agriculture, Soil Conservation Service, Series 1961, no. 22, 76 sheets, scale 1:20,000, 94 p.

GLOSSARY

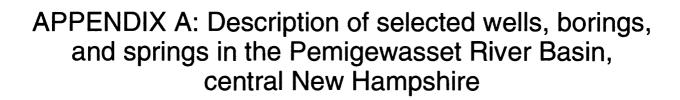
- **Ablation till:** Loosely consolidated rock debris, formerly carried by glacial ice, that accumulated in place as the surface ice was removed by melting and sublimation.
- Aquifer: A geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable materials to yield significant quantities of water to wells and springs. Where water only partly fills an aquifer, the upper surface of the saturated zone is free to rise and decline (Heath, 1983).
- **Aquifer boundary:** A feature that limits the extent of an aquifer.
- **Bedrock:** Solid rock, locally called ledge, that forms the earth's crust. It may be exposed at the surface but commonly is buried beneath a few inches to more than 100 feet of unconsolidated deposits.
- Cone of depression: A depression produced in a water table or other potentiometric surface by the withdrawal of water from an aquifer; in cross section, shaped like an inverted cone with its apex at the pumped well.
- Confined Aquifer: An aquifer saturated with water and bounded above and below by material having a distinctly lower hydraulic conductivity than the aquifer itself.
- Constant-head permeameter: A laboratory apparatus for measuring hydraulic conductivity where a sediment sample is enclosed between two porous plates in a cylindrical tube with a constant hydraulic-head difference set up across the sample as water is passed through the cylinder.
- **Contact:** A plane or irregular surface between two different types or ages of rocks or unconsolidated sediments.
- Cubic feet per second (ft³/s): A unit expressing rate of discharge. One cubic foot per second is equal to the discharge of a stream 1 foot wide and 1 foot deep flowing at an average velocity of 1 foot per second.
- Cubic feet per second per square mile [(ft³/s)/mi²]: A unit expressing average number of cubic feet of water flowing per second from each square mile of area drained.
- **Darcy's Law:** An equation relating the factors controlling ground-water flow. Darcy's law is

$$Q = KA\frac{dh}{dl},$$

where Q is the quantity of water per unit of time; K is the hydraulic conductivity and depends on the size and arrangement of the water-transmitting openings (pores and fractures) and on the dynamic characteristics of the fluid (water) such as kinematic viscosity, density, and the strength of the gravitational field; A is the cross-sectional area, at a right angle to the flow direction, through which the flow occurs; and dh/dl is the hydraulic gradient.

- **Deposit:** Earth material that has accumulated by some natural process.
- **Dissolved solids:** The residue from a clear sample of water after evaporation and drying for 1 hour at 180°C; consists primarily of dissolved mineral constituents but may also contain organic matter and water of crystallization.
- **Downwasting:** The thinning of a glacier by melting and sublimation.
- **Drainage area:** The area or tract of land, measured in a horizontal plane, that gathers water and contributes it ultimately to some point on a stream channel, lake, reservoir, or other water body.
- **Drawdown:** The lowering of the water table or potentiometric surface caused by the withdrawal of water from an aquifer by pumping; equal to the difference between the static water level and the pumping water level.
- **Drumlin:** A low, smoothly rounded, elongated oval-shaped hill of glacial till, built under the margin of glacial ice and shaped by its flow; its longer axis is parallel to the direction of movement of the ice.
- Effective grain size: The grain size at which 10 percent of the sample consists of smaller grains and 90 percent consists of larger grains.
- Esker: A long ridge of sand and gravel that was deposited by water flowing in tunnels within or beneath glacial ice.
- **First quartile:** For a set of measurements arranged in order of magnitude, that value where 25 percent of the measurements are lower in magnitude and 75 percent are higher.
- Flow duration (of a stream): The percentage of time during which specified daily discharges are equaled or exceeded within a given time period.
- **Fracture:** A break, crack, or opening in bedrock along which water may move.
- **Gneiss:** A coarse-grained metamorphic rock with alternating bands of granular and micaceous minerals.
- Granite: A coarse-grained, light colored, igneous rock.
 Granodiorite: A coarse-grained, light colored, igneous rock.
- **Gravel:** Unconsolidated rock debris composed principally of particles larger than 2 millimeters in diameter.
- **Ground water:** Water beneath the water table in soils or geologic formations that are fully saturated.
- Ground-water discharge: The discharge of water from the saturated zone by (1) natural processes such as ground-water seepage into stream channels and ground-water evapotranspiration and (2) discharge through wells and other manmade structures.
- **Ground-water divide:** A hypothetical line on a water table on each side of which the water table slopes downward in a direction away from the line. In the vertical dimension, a plane across which ground-water does not flow.

- **Ground-water evapotranspiration (GWET):** Ground water discharged into the atmosphere in the gaseous state either by direct evaporation from the water table or by the transpiration of plants.
- **Ground-water recharge:** Water that is added to the saturated zone of an aquifer.
- Ground-Water Site Inventory (GWSI): A computerized file maintained by the U.S. Geological Survey that contains information about wells and springs collected throughout the United States.
- **Head, static:** The height of the surface of a water column above a standard datum that can be supported by the static pressure of a given point.
- Hydraulic conductivity (K): A measure of the ability of a porous medium to transmit a fluid that can be expressed in unit length per unit time. A material with a hydraulic conductivity of 1 foot per day will transmit in 1 day, 1 cubic foot of water at the prevailing kinematic viscosity through a 1-foot-square cross section of aquifer, measured at right angles to the direction of flow, under a hydraulic gradient, of 1-foot change in head over 1-foot length of flow path.
- Hydraulic gradient: The change in static head per unit of distance in a given direction. If not specified, the direction is generally understood to be that of the maximum rate of decrease in head.
- **Hydrograph:** A graph showing stage (height), flow velocity, or other property of water with respect to time.
- Ice-contact deposits: Stratified drift deposited in contact with melting glacial ice. Landforms include eskers, kames, kame terraces, and grounding-line deltas.
- **Igneous:** Descriptive term for rocks or minerals solidified from molten or partially molten material; that is, from a magma, such as basalt or granite.
- Image well: An imaginary well so placed with respect to a real well and hydrologic boundary that by discharging or recharging it produces a ground-water divide or condition of no drawdown along the boundary position.
- **Induced infiltration:** The process by which water infiltrates an aquifer from an adjacent surface-water body in response to pumping.
- **Kame:** A low mound, knob, hummock, or short irregular ridge composed of stratified sand and gravel deposited by glacial meltwater; the precise mode of formation is uncertain.
- Kame terrace: A terrace-like ridge consisting of stratified sand and gravel formed as a glaciofluvial deposit between a melting glacier or stagnant ice lobe and a higher valley wall, and left standing after the disappearance of the ice.
- Lodgement till: A firm, compact, clay-rich till deposited beneath a moving glacier, containing abraided stones oriented, in general, with their long axes parallel to the direction of ice movement.


- **Marine limit:** The former limit of the sea. The highest shoreline during a period of late-glacial submergence.
- Mass wasting: A general term for the dislodgement and downslope transport of soil and rock material under the direct application of gravity.
- **Mean (arithmetic):** The sum of the individual values of a set, divided by their total number; also referred to as the "average."
- **Median:** The middle value of a set of measurements that are ordered from lowest to highest; 50 percent of the measurements are lower than the median and 50 percent are higher.
- **Metamorphic:** Descriptive term for rocks such as gneiss and schist that have formed, in the solid state, from other rocks.
- Micrograms per liter (mg/L): A unit expressing the concentration of chemical constituents in solution as the mass (micrograms) of a constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.
- Milligrams per liter (mg/L): A unit for expressing the concentration of chemical constituents in solution as the mass (milligrams) of a constituent per unit volume (liter) of water.
- Outwash: Stratified deposits chiefly of sand and gravel removed or "washed out" from a glacier by meltwater streams and deposited beyond the margin of a glacier. Usually occurring in flat or gently sloping plains.
- Outwash deltas: Deltas formed beyond the margin of the glacier where glacial meltwater entered a water body.
- **pH:** The negative logarithm, to the base 10, of the hydrogenion concentration. A ph of 7.0 indicates neutrality; values below 7.0 denote an acidic solution or condition, and those above 7.0 denote an alkaline solution or condition.
- **Phi grade scale:** A logarithmic transformation of the Wentworth grade scale based on the negative logarithm to the base 2 of the particle diameter, in millimeters.
- **Phyllite:** A fine-grained, metamorphic rock, similar to schist, commonly having a silky luster.
- **Porosity:** The property of a rock or unconsolidated deposit that is a measure of the size and number of internal voids or open spaces; porosity may be expressed quantitatively as the ratio of the volume of its open spaces to total volume of the rock or deposit.
- **Precipitation:** The discharge of water from the atmosphere, either in a liquid or solid state.
- **Primary porosity:** Porosity that is intrinsic to the sediment or rock matrix. (See secondary porosity.)
- **Runoff:** That part of the precipitation that appears in streams. It is the same as streamflow unaffected by artificial diversions, storage, or other human activities in or on the stream channels.

- **Saturated thickness (of stratified drift):** Thickness of stratified drift extending down from the water table to the till or bedrock surface.
- Saturated zone: The subsurface zone in which all open (interconnected) spaces are filled with water. Water below the water table, the upper limit of the saturated zone, is under pressure that is greater than atmospheric pressure.
- **Schist:** A metamorphic rock with subparallel orientation of the visible micaceous minerals, which dominate its composition.
- **Secondary porosity:** Porosity that may be due to such phenomena as secondary solution or structurally controlled regional fracturing.
- **Sediment:** Fragmental material that originates from weathering of rocks. It can be transported by, suspended in, or deposited by water.
- Specific capacity (of a well): The rate of discharge of water divided by the corresponding drawdown of the water level in the well. Stated in this report in gallons per minute per foot [(gal/min)/ft)].
- **Specific yield:** The ratio of the volume of water that a rock or soil will yield, by gravity drainage, after being saturated to the total volume of the rock or soil.
- Split spoon sampler: A hollow cylinder, about 2 1/2 ft long that is attached to steel rods and lowered through the inside of the hollow-stem augers to the bottom of the augers. The cylinder can be driven into the material below the auger so that a sample of this material is forced into the hollow cylinder.
- **Standard deviation:** A measure of the amount of variability within a sample; it is the square root of the average of the squares of the deviations about the arithmetic mean of a set of data.
- Storage coefficient: The volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. In an unconfined aquifer, the storage coefficient is virtually equal to the specific yield.
- **Stratified drift:** Sorted and layered unconsolidated material deposited in meltwater streams flowing from glaciers or settled from suspension in still bodies of water that are fed by meltwater streams.

- **Surficial geology:** The study or distribution of unconsolidated deposits at or near the land surface.
- Superposition: For linear systems, the principle that the solution to a problem involving multiple inputs (or stress) is equal to the sum of the solutions to a set of simpler individual problems that form the composite problem.
- **Third quartile:** for a set of measurements arranged in order of magnitude, that value where 75 percent of the measurements are lower in magnitude and 25 percent are higher in magnitude.
- **Till:** A predominantly nonsorted, nonstratified sediment deposited directly by a glacier and composed of boulders, gravel, sand, silt, and clay mixed in various proportions.
- **Transmissivity:** The rate at which water at the prevailing kinematic viscosity can be transmitted through a unit width of an aquifer under a unit hydraulic gradient. The transmissivity (T) of an aquifer is equal to the saturated thickness (b) multiplied by the horizontal hydraulic conductivity (K, a directional measure of the permeability) and is expressed in feet squared per day; thus,

$$T = Kb$$
.

- Unconfined aquifer (water-table aquifer): An aquifer only partly filled with water. In such aquifers the water is unconfined in that the water table or upper surface of the saturated zone is at atmospheric pressure and is free to rise and fall.
- **Unconsolidated deposit:** A sediment in which the particles are not firmly cemented together, such as sand in contrast to sandstone.
- Unsaturated zone: The zone between the water table and the land surface in which the open spaces are not completely filled with water.
- Variable-head parameter: A laboratory apparatus for measuring hydraulic conductivity. In use, water is passed through sediment sample in a cylindrical tube enclosed between two porous plates. Time is measured as the hydraulic head that is allowed to decline over a know distance.
- Water table: The upper surface of the saturated zone. Water at the water table is at atmospheric pressure.

Appendix A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New Hampshire

The following table lists information about wells, boreholes, and springs used for the collection of this report. The following information is included in the tables.

Local site number: First two characters are U.S. Geological Survey town code. Third character indicates type of hole; A, auger hole or test hole bored for hydrologic information; B, highway bridge boring; W, well. The numbers are sequential numbers for each town.

Latitude, Longitude: Accurate within 5 seconds.

Owner or user: NHDOT, New Hamphsire Department of Transportation; CO, Company; Hatch, Hatchery; Bldrs, builders; COU, Course; NHPUBWKSHGWYS, New Hampshire Public Works and Highways; Produc, Products; CRT, Court; Dist, District; INC, Incorporated; FD, Fire Department; DEPT, Department; CONST, Construction; PWH, Public Works and Highways; RR, Railroad.

Elevation above sea level: Elevations are expressed in feet above sea level (National Geodetic Vertical Datum of 1929); those in whole feet are interpolated from U.S. Geological Survey topographic maps and are accurate to plus or minus half the contour interval of the map (10 to 20 feet); those in tenths of feet are instrumentally determined.

Depth drilled: The greatest depth below the land surface.

Depth to bottom of casing: Depth to the bottom of casing, in feet below land surface datum.

Depth of well: Depth of well materials.

Type of finish: G, gravel screen; O, open end; P, perforated or slotted; S, screen; X, open hole.

Depth to bottom of open section: Depth to the bottom of the screen or open section in which water enters the well, in feet below land-surface datum.

Type of site: BrW, bedrock well; Bor, bored or augered; Cbl, cable tool drill; Dr, drilled; Dug, dug; DVN, driven; Sp, spring; TH, test hole; Wsh, drive and wash.

Water level: In feet below land-surface datum; negative sign indicates water level above land-surface datum; mm-dd-yy, month-day-year.

Use:

Use of site: O, observation well drilled for water-level or water-quality observations; T, test hole. Use of water: C, commercial; H, domestic; I, irrigation; N, industrial; P, public supply; S, stock; U, unused; Z, destroyed.

Maximum well yield: Discharge in gallons per minute.

Pumping period: The length of time, in hours, that the well was pumped before the measurement of pumping levels.

Remarks: CA, chemical analysis summarized in appendix E; GS, well inventoried by Glen Stewart (past New Hampshire State Geologist); L, Stratigraphic log listed in appendix B; USGS, well or test hole drilled by the U.S. Geological Survey for this investigation.

Other abbreviations and symbols: --, no data available.

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

[--, no data available; Eoh, end of hole]

Loc sit num	te	Lat- Itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea levei (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of weli (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
				1	BELKNAP	COUNTY						
					Center	Harbor						
CHW	4	434338	713057	Peston, R.	1984	580	362.0	46.0	362.0	х		BrW
CHW	16	434324	713022	Gordon	1985	580	252.0	20.0	252.0	X		BrW
CHW	18	434327	713059	Chalmers, T.	1986	580	420.0	39.0	420.0	Х		BrW
					New Ha	mpton						
NHA	11	433806	713910	NHDOT	1989	470	24.0					Bor
NHA	12	433810	713906	NHDOT	1989	460	23.0					Bor
NHA	13	433741	713859	Ambrose Company	1989	500	35.5					Bor
NHA	14	433741	713859	Ambrose Company	1989	500	33.5					Bor
NHA	15	433728	713825	Northern Insulation	1989	520	74.0					Bor
NHA	16	433452	714304	US Army Corps Engineers	1989	370	46.0					Bor
NHA	17	433614	713910	New Hampton Fish Hatch	1988	480	36.0					Bor
NHA	18	433616	713901	New Hampton Fish Hatch	1988	480	58.0					Bor
NHB	2	433612	713828	NHDOT		557	15.0					TH
NHB	3	433950	713859	NHDOT		514	67.0					TH
NHB	4	433713	713526	NHDOT		547	37.0					TH
NHB	5	433737	713904	NHDOT		455	54.0					TH
NHB	7	433649	713834	NHDOT		593	62.0					TH
NHB	8	433627	713822	NHDOT		676	90.0					тн
NHB	10	433759	713911	NHDOT	1962	535	34.0					TH
NHB	11	433647	713835	NHDOT	1962	596	66.0					TH
NHB	12	433949	713901	NHDOT	1963	499	64.0					TH
NHW	2	433627	713800	Blood, R.	1954	800		35.0	150.0			BrW
NHW	3	433318	714225	Carlson, H.	1969	550			94.0			BrW
NHW	4	433713	713526	Collins, J.	1951	620	120.0	13.0	120.0			BrW
NHW	5	433727	713654	Drake, O.	1953	610	142.0	21.0	142.0			BrW
NHW	6	433729	713731	LaChance, J.	1950	620		36.0	204.0			BrW
NHW	7	433642	713836	Price, W.	1961	600		48.0	109.0			BrW
NHW	8	433642	713841	Yourt, L.	1963	620		48.0	152.0			BrW
NHW	10	433716	713603	Pinnette, N.	1984	580	330.0	39.0	330.0	х		BrW
NHW	12	434022	713837	LeBlanc	1985	540		134.0	444.0	х		BrW
NHW	13	434047	713827	Downing	1985	540		120.0	438.0	х		BrW
NHW	15	433702	713713	Ladman	1985	560		19.0	325.0	х		BrW
NHW	17	433703	713811	L'Italian	1985	520		79.0	285.0	х		BrW
NHW	18	433306	714238	Jackson	1985	480		139.0	255.0	Х	• •	BrW
NHW	19	433711	713611	Curtin	1985	560	305.0	20.0	305.0	х		BrW
NHW	20	433956	713853	Hi1tz	1986	520		105.0	303.0	х		BrW
NHW	21	433346	714305	Beshta	1984	480		53.0	380.0	х		BrW
NHW	23	433700	713725	Elliot	1986	520		20.0	350.0	X	* *	BrW
NHW	24	433735	713750	McDermott, J.	1986	580	333.0	20.0	333.0	Х		BrW
NHW	25	433724	713818	Brown	1986	520 610		80.0	713.0	X		BrW BrW
NHW	26	433642	713838	Faucher	1986	610		57.0	473.0	Х		BrW
NHW	27	433704	713814	Reno Rossi Restaurant	1986	520		48.0	190.0	х		BrW
NHW	29	433924	713911	NHDOT	1989	510	139.0	88.8	91.7	P	91.7	Bor
NHW	30	433616	713831	New Hampton Fish Hatch	1988	540	30.0		26.0	P	26.0	Bor

Loc sit		War	ter level	Use	Maximum well yield	Pumping period	Remarks	
	nber	Donth	Date	USE	(gallons		nemarks	
Hull	ilbei	Depth (feet)	(mm-dd-yy)		(gallons per minute)	(hours)		
		(ICCI)	(IIIII-dd-yy)		per minute)			
					BR	LKNAP COUNT	TY	
					C	enter Harbor		
CHW	4	20.0	09 - 22 - 84	Н		0.3	L	
CHW	16	3.0	08-28-85	Н		.5	L	
CHW	18	5.0	10-10-86	Н		1.0	L	
						New Hampton		
NHA	11			T			USGS, L	
NHA	12			Т			USGS, L	
NHA NHA	13 14			T T			USGS, L USGS, L	
NHA	15	35.0	04 - 25 - 89	Т			USGS, L	
NHA	16	26.5	04 - 25 - 89	Т			USGS, L	
NHA	17	4.8	08-09-88	T			L	
NHA	18	4.8	08-10-88	T			L	
NHB	2		• •	т			L	
NHB	3			T			L	
NHB	4			T			L	
NHB	5 7			T		* =	L	
NHB	,			T			L	
NHB	8			T			L	
NHB	10			T			L	
NHB	11			T			L -	
NHB	12			Т		• •	L	
NHW	2						GS	
NHW	3						GS	
NHW WHN	4 5	7.0 13.0	06-18-51 07-01-53				L GS, L	
NHW	6	10.0	0150				GS GS	
NHW	7	32.0	01 61				GS	
NHW	8						GS	
NHW	10					1.0	L	
NHW	12	86.0	04-17-85	н	2.5	1.0	L	
NHW	13			н	4.0	2.0	L	
NHW	15			H	4.0	.5	L	
NHW WHM	17 18			Z H	6.0 12.0	.5 1.0	L L	
NHW	19			Н		1.0	L	
NHW	20			н	40.0	1.0	L	
NHW	21			Н	3.5	1.0	L	
NHW	23			н	6.0	1.0	L	
NHW	24			Н		.5		
NHW	25	* -		c	1.0	.5	L	
NHW	26	• -		Н	4.5	.5	L	
NHW	27	 EE 0		Н	50.0	.5	L Hada Y	
NHW	29 30	55.0 2.6	08 - 03 - 89 09 - 27 - 88	0	75.0		USGS, L	
NHW	30	2.6	09-27-88	T	75.0		L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

	e ber	Lat- Long- itude itude		Elevation Year above Owner or user comp- sea pleted level (feet)		Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site	
					BELKNAP	COUNTY						
				Nev	v Hampton	Continued						
MHM	31	433618	713832	New Hampton Fish Hatch	1988	540	32.0		20.0	P	20.0	Bor
NHW	32	433848	713853	Cloutier, P.	1990	520	94.0		94.0			
					Sanbo	rnton						
SCA	1	122127	713658	Tilton Sand and Gravel	1988	640	19.0					Bor
SCA	1 2	433427 433313	713658	Howe, R.	1988	600	14.8					Bor
SCA	3	433351	713622	Town of Sanbornton	1988	640	15.0					Bor
	-											
SCB	1	433119	713647	NHDOT		586	42.0					тн
SCB	4	432951	713754	NHDOT		462	14.0					TH
SCB	5	433110	713703	NHDOT	1962	582	28.0					TH
SCB	6	433017	713657	NHDOT	1961	694			• -			TH
SCB	9	433016	713658	NHDOT	1962	695	12.0	• •				TH
scs	1	432947	713758	Public right-of-way		460						Sp
SCW	43	432931	713702	Wardner	1963	680		62.0	131.0			BrW
SCW	44	433054	713733	Ellis, C.	1961	600		- +	199.0			BrW
SCW	48	432935	713823	Moses, G.	1959	440		66.0	132.0			BrW
SCW	50	432936	713824	Town of Franklin	1948	420						DVn
SCW	58	433356	713646	Town of Sanbornton	1988	640	32.0	- •	21.0	P		Bor
SCW	59	433250	713631	Town of Sanbornton	1988	600	28.5		22.0	P		Bor
SCW	61	433004	713920	Thompson	1984	460		19.0	125.0	x		BrW
SCW	73	433116	713549	Burbank, J.	1985	700	84.0	39.0	84.0	X		BrW
SCW	76	433349	713641	Noivo	1985	640		39.0	265.0	X		BrW
SCW	77	433050	713642	Thomson	1985	740		59.0	385.0	X		BrW
SCW	87	433054	713645	Matcheski	1986	720		158.0	436.0	X	• •	BrW
SCW	90	432930	713812	Onsager	1986	480		39.0	210.0	х		BrW
SCW	95	433001	713927	Downes	1986	440		39.0	285.0	X		BrW
SCW	99	433110	713726	Rose	1986	660		19.0	255.0	x		Br₩
	100	433148	713549	Wyman	1986	760		9.0	155.0	X		BrW
SCW	101	433050	713745	Howe	1986	700		44.0	230.0	X		BrW
SCW	102	433009	713844	Gore	1987	480		29.0	180.0	х		BrW
SCW	103	433107	713616	Ames	1987	680		79.0	205.0	x		BrW
	104	433339	713557	Gallagher	1986	660		59.0	385.0	x		BrW
	113	433147	713556	Grant	1987	680		19.0	105.0	х	••	BrW
SCW	118	433149	714032	Tessler	1988	600		39.0	230.0	Х		BrW
SCW	119	433005	713840	Driscol1	1987	480		40.0	270.0	x		BrW
	120	432955	713700	Burton	1988	700		14.0	145.0	x		BrW
	126	433013	713847	Auger	1987	460		29.0	205.0	х		BrW
	128	433417	713625	Dupuis	1985	640		64.0	155.0	x		BrW
SCW	129	433005	714036	US Army Corps Engineers	1989	320	102.0	29.6	32.5	P	32.5	Bor
SCW	135	433206	713616	Burlingame, J.	1988	600	58.0		44.4	P		Bor
	143	433206	713616	Town of Sanbornton	1988	590	20.0		16.0	P		Bor

Local site	Wat	er level	Use	Maximum well vield	Pumping period	Remarks
number	Depth (feet)	Date (mm-dd-yy)		(gallons per minute)	(hours)	

			,		В	ELKNAP COU	NTY
					New	Hampton—Con	tinued
NHW	31			т	70.0		L
NHW	32			Н			L
						Sanborntor	n
222		4.0	00 00 00				
SCA	1	4.0	08-08-88	0			USGS, L
SCA SCA	2 3	9.0	08-10-88	0 0			USGS, L USGS, L
BCA	3		¥ -	U			Oada, L
SCB	1			т			L
SCB	4			T	÷ -		_ L
SCB	5			T			L
SCB	6			T			L
SCB	9			T		• •	L
scs	1						CA
SCW	43	30.0	0663				GS, L
SCW	44						GS, L
SCW	48	10.0	03 59				GS, L
SCW	50			P			CA, Well Field; 49 Well Points, 29 to 53 feet deep
SCW	58	10.7	08-12-88	0			USGS, L, CA
SCW	59	4.8	08-12-88	o			USGS, L
SCW	61			H	10.0	.5	L
SCW	73	11.0	06-21-85	Н			••
SCW	76			H	60.0	.5	L
SCW	77			H	10.0	.5	L
SCW	87			Н	2.5	1.0	L
SCW	90	20.0	07-29-86	Н	30.0	.5	L
SCW	95			Н	20.0	.8	_ L
SCW	99	15.0	09-04-86	Н	20.0	.5	L
SCW	100			н	4.0	.5	L
SCW	101			н	10.0	.5	L
SCW	102			н	50.0	.5	L
SCW	103	10.0	02-05-87	H	60.0	.8	L
SCW	104			н	5.0	.3	L
SCW	113			Н	8.0	.5	_ L
SCW	118			н	12.0	.5	Ĺ
scw	119	• -		н	8.0	.3	L
SCW	120			Н	8.0	1.0	L
SCW	126			H	4.0	.3	••
SCW	128			Н	20.0	1.0	L
SCW	129	6.7	04-28-89	0			USGS, L
SCW	135	7.8	08-12-88	o			USGS, L, CA
SCW	143	13.0	08-12-88	0			USGS, L

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

					comp- pleted	sea level (feet)	drilled (feet)	of casing (feet)	of well (feet)	of finish	of open section (feet)	Type of site
					GRAFTON	COUNTY						
					Alexai	ndria						
EA	1	433406	714643	Morrison, B.	1988	540	13.5					Bor
EA	2	433413	714646	Morrison, B.	1988	523	14.0					Bor
EA	3	433420	714552	Walker, C.	1989	490	38.0					Bor
EB	2	433850	715225		1961	1,320				x		TH
EW	5	433647	714754	Town of Alexandria	1960	640		80.0	137.0			BrW
EW	6	433642	714635	Young, C.	1964	720		106.0	277.0			BrW
EW	7	433420	714610	Evans, J.	1963	500		34.0	150.0			BrW
EW	8	433359	714630	Morrison, B.	1988	523	35.0	23.1	26.0	P	26.0	Bor
EW	9	433637	714731	Taylor	1984	620		91.0	405.0	X	• -	BrW
EW	11	433444	714615	Irving	1985	620		19.0	305.0	x		BrW
EW	16	433449	714538	Williams	1985	640		20.0	275.0	X		BrW
EW	17	433408	714736	Smith	1984	740		87.0	250.0	x		BrW
≅W	18	433926	715113	Sloth	1985	1,000		69.0	553.0	X		BrW
≅W	19	433829	714701	McGrath	1986	600		75.0	365.0	Х		BrW
≅W	21	433728	714707	Ramsey, B.	1989	600	120.0	50.0	55.8	P	55.8	Bor
					Ashl	and						
PA	1	434440	714005	Huckins, M.	1987	480	109.0					Bor
PA	2	434438	714029	White Mountain C.C.	1987	470	123.0					Bor
PA	10	434220	713912	Obrien Lumber Company	1989	490	119.0		• •			Bor
PB	1	434233	713917	NHDOT		451	68.0					тн
PB	2	434306	713724	NHDOT		564	74.0					ТН
PB	4	434111	713834	NHDOT	1963	458	95.0					TH
PB	11	434226	713917	NHDOT		498	83.0		• -			TH
PB	12	434139	713839	NHDOT		540	95.0					TH
PB	14	434152	713847	NHDOT	1963	514	51.0					тн
PW .	1	434155	713904	Town of Ashland	1974	480	102.0		102.0			тн
PW .	2	434440	714005	Huckins, M.	1987	480	22.0		22.0	P		Bor
₽₩	3	434438	714029	White Mountain C.C.	1987	470	20.5		20.5	P		Bor
₽₩	8	434322	713641	Mershon	1986	580		90.0	341.0	х		BrW
PW	9	434353	713737	Hiltz	1987	680		60.0	401.0	X		BrW
PW .	10	434204	713915	Town of Ashland	1995	490	123.0	75.0	95.0	s	95.0	• -
₽₩	11	434409	713958	Riverbend Condos	1987	505	120.0	120.0	120.0			
PW	12	434317	713654	Simoneau	1984	600		45.0	130.0	X		BrW
W	13	434255	713750	Cole	1984	700		20.0	305.0	х		BrW
					Bris	tol						
2A	1	433528	714504	Morrison, B.	1988	505	96.0					Bor
2A	2	433542	714453	Morrison, B.	1988	460	58.5					Bor
2A	3	433528	714434	Robbins	1946	460	67.0					Dvn
2A	4	433525	714429	Robbins	1946	460	20.0		• •		• •	Dvn
2 A	5	433547	714452	Robbins	1946	460	59.0		• -		+ -	Dvn
A	6	433528	714454		1946	500	8.0					Dvn

Local site		Water level		Use	Maximum weli yleld	Pumping period	Remarks
	nber	Depth (feet)	Date (mm-dd-yy)	OSE	(gallons per minute)	(hours)	nellarks
					GR	AFTON COUN	my
							
						Alexandria	
AEA	1			0			USGS, L
AEA	2			0			USGS, L
AEA	3	17.0	05 - 24 - 89	T	• •		USGS, L
AEB	2			U			L
AEW	5	6.0	04 60				GS
AEW	6	6.0	08-16-64				GS, L
AEW	7	20.0	04 63				GS, L
AEW	8	4.0	06-21-88	0			USGS, L
AEW	9			Н	15.0	1.0	L
AEW	11			Н			L
AEW	16			Н	4.0	1.0	L
AEW	17	10.0	11 07 05	H	12.0	.5	L
AEW	18 19	10.0 8.0	11-07-85 08-04-86	H H	1.5	1.0 .8	L L
AEW	19	6.0	08-04-86	п	5.0	. 6	ц
AEW	21	12.0	04-26-89	0			USGS, L
						Ashland	
APA	1			0			USGS, L
APA	2			0			USGS, L
APA	10	38.0	04-19-89	T			USGS, L
APB	1			T			L
APB	2			T			L
APB	4			T			L
APB APB	11 12			T T			L L
AFD	12			1			п
APB	14			T			L
APW	1	36.0	07-01-74	T			L
APW	2	8.5	0688	0			USGS, CA
APW	3 8	10.8	0688 	0	75.0	1.0	USGS, CA
APW APW	9			Н Н	8.0	1.0	L L
***	,			••	0.0	1.0	-
APW	10	13.8	11-29-95	P	532.0	168.0	L; Seven day aquifer test with 5.81 feet drawdown
APW	11	72.0	09-01-87	C			L
APW	12	2.0	08-02-84	H	20.0	1.0	L
APW	13	30.0	07-30-84	Н	4.5	1.0	L
						Bristol	
B2A	1			0			USGS, L
B2A	2			0			USGS, L
B2A	3			T			L
B2A	4			T			L
B2A	5			T			L
B2A	6			T			L

Maximum

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	ie	Lat- itude	Long- Itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
				(GRAFTON	COUNTY						
				В	ristol- <i>C</i>	ontinued						
223	7	422522	714445		1000	460	30.0					Dren
32A 32A	7 8	433533 433548	714445 714453	**	1989	460 460	30.0 13.0					Dvn TH
220	0	433340	114433			400	13.0					
32B	1	433526	714411	NHDOT		446	3.0					TH
325	1	433612	714444	Public right-of-way		540						Sp
2W	1.0	433610	714313	Town of Bristol	1949	475	53.0	39.0	49.0			Dr
2W	18 23	433610 433727	714312 714406	Newell, G.	1958	586	128.0	81.0	128.0			BrW
2W	24	433710	714430	McDermott, W.	1959	600	120.0	20.0	100.0			BrW
2W	25	433708	714428	Osgood, R.	1959	600		20.0	100.0			BrW
2W	26	433701	714423	Rearick	1962	620	- •	73.0	212.0			BrW
2W	27	433656	714412	Powden, W.	1957	650		168.0	266.0			BrW
2W	28	433654	714415	Mason, L.	1961	660		140.0	170.0			BrW
2W	29	433538	714511	Morrison, N.	1959	520		50.0	110.0			BrW
2W	30	433505	714507	Int. Package Company	1962	500		135.0	400.0			BrW
2W	31	433407	714428	Sterner, M.	1962	490			100.0			BrW
2W	33	433707	714305	Young G.	1955	680		10.0	172.0			BrW
2W	34	433702	714302	Stubbs, A.	1962	680			259.0			BrW
2W	36	433801	714630	Town of Bristol	1979	595	75.0	65.0	75.0	S	75.0	Dr
2W	37	433617	714234	Rice	1984	620	405.0	49.0	405.0	x		BrW
2W	39	433640	714319	Ingham	1985	580		19.0	230.0	x		BrW
32W	40	433426	714335	Kee	1985	500		57.0	250.0	X		BrW
2W	41	433622	714440	Danahy & Mills Builders	1984	680		153.0	270.0	X		BrW
2W	42	433626	714441	Danahy & Mills Builders	1984	680		88.0	312.0	х		BrW
2W	43	433814	714643	Thompson	1986	620		14.0	365.0	x		BrW
2W	44	433714	713935	Dunscombe	1986	520		129.0	385.0	x		BrW
2W	45	433745	713930	Murphy	1986	500		99.0	285.0	х		BrW
2W	46	433626	714345	McEwen	1986	720		40.0	710.0	X		BrW
2W	48	433510	714417	Firth	1987	600		274.0	650.0	х		BrW
2W	49	433628	714003	Davidson's Campground	1986	540		169.0	450.0	х		BrW
2W	50	433728	713928	Willette	1987	520		80.0	252.0	x		BrW
2W	51	433801	714635	Town of Bristol	1972	590	78.0	65.0	75.0			TH
32W	52	433527	714432	Robbins	1946	460	41.0					Dvn
					Bridge	water						
YA		434027	713911	Congliano, A.	1989	510	79.0					Bor
BYA	6	433817	713919	Gilpatrick, L.	1989	520	50.0					Bor
YA	7	434255	713935	Bridgewater Power Co.	1986	480	31.0					Bor
SYA SYA	8 9	434257 434256	713936 713933	Bridgewater Power Co. Bridgewater Power Co.	1986 1984	480 480	31.0 27.0					Bor Bor
				-								
YB	1	433914	713925			457	43.0					TH
YW		433944	714427	Timberlock Lodge	1960	610		55.0	256.0			BrW
YW	7	433837	714404	Fogg, L.	1961	690		0 245.0	303.0	• •		BrW
YW	10	434143	713928	Bridgewater School	1961	540		86.0	167.0			BrW

Lo-		Wat	ter level	Use	Maximum well yield	Pumping period	Remarks	
	nber	Depth (feet)	Date (mm-dd-yy)	736	(gallons per minute)	(hours)	. wilding	
					a	NOW GOIN		
					GR	AFTON COUN	ry	
					Bri	stol-Continu	ned	
B2A B2A	7 8			T T			L L	
B2B	1			T			L	
B2S	1	~ -					CA	
B2W	18		- •	P			L, CA	
B2W	23						GS	
B2W	24	• •					GS, L	
B2W	25						GS, L	
B2W B2W	26 27	50.0	02-15-57				GS, L GS, L	
DZN	21	50.0	V2 13 31				OU, 11	
B2W	28	17.0	12-23-61				GS, L	
B2W	29	10.0	0559				GS, L	
B2W	30	10.0	02-02-62				GS, L	
B2W	31	20.0	0662				GS, L	
B2W	33						GS, L	
B2W	34	67.0	0762		- •		GS, L	
B2W	36	6.4	12-11-79	P	1,020.0		L, CA	
B2W	37			H		1.0	L	
B2W	39	~ •	• -	H	15.0	.5	L	
B2W	40			H	4.0	1.0	L	
B2W	41			Н	30.0	.5	L	
B2W	42			н	2.0	.5	L	
B2W	43			H	3.5	.8	L	
B2W	44			H	2.5	.3	L	
B2W	45			Н	40.0	.5	L	
B2W	46			Н	4.0	.5	L	
B2W	48			н	5.0	1.0	L	
B2W	49			Н	30.0	1.0	L	
B2W	50			Н	12.0		L	
B2W	51	• •		T			L	
B2W	52			T			L	
						Bridgewater		
BYA	5			т			USGS, L	
BYA	6	46.0	04-17-89	T			USGS, L	
BYA	7	24.5	07-02-86	T			L	
BYA	8	21.0	07-03-86	T			L	
BYA	9	22.0	09 - 24 - 84	T	- •		L	
вув	1			Т	••	• •	L	
BYW	1	3.0	06-18-60				GS, L	
BYW	7	50.0	0961				GS, L	
BYW	10	60.0	0661				GS, L	

Maximum

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
				G	RAFTON	COUNTY						
				Bri	dgewater	-Continued						
BYW	11	433828	713923	Timson, W.	1954	500		22.0	168.0			BrW
BYW	14	433846	714348	Delaney, M.	1985	780	505.0	129.0	505.0		505.0	Brw
BYW	16	433920	714321	Meacham, K.	1985	860	405.0	249.0	405.0	Х		BrW
BYW	18	434224	714040	Rafferty	1984	520		41.0	350.0	X		BrW
BYW	22	433924	714348	Woodwind Properties Inc.	1984	940		21.0	334.0	Х		BrW
BYW	23	433830	713917	Kearney	1986	480		65.0	472.0	х		BrW
BYW	24	434259	713939	Bridgewater Power Co.	1986	500		89.0	100.0	s		
BYW	25	434300	713933	Bridgewater Power Co.	1986	480		74.0	85.0			
BYW	26	434300	713933	Bridgewater Power Co.	1986	480		84.0				
BYW	30	434259	713939	Bridgewater Power Co.	1987	500		94.3	106.0	G		
DIW	21	424250	712020	Duidentes Davis Co	1006	500		120 0	121 0	a		
BYW BYW	31 33	434258 434301	713938 713935	Bridgewater Power Co. Bridgewater Power Co.	1986 1987	500 480		120.0 30.7	131.0 61.9	G 		
BYW	34	434301	713933	Bridgewater Power Co.	1987	480		28.5	62.0			
BYW	35	434300	713931	Bridgewater Power Co.	1987	480		31.8	56.3			
BYW	36	434302	713934	Bridgewater Power Co.	1987	480		27.7	56.5			
BYW	37	434001	714434	Outhet	1986	620		59.0	500.0	х		BrW
BYW	39	434300	713935	Bridgewater Power Co.	1986	480		89.0	100.0	s		
BYW	41	434259	713937	Bridgewater Power Co.	1986	480	106.0	95.3	95.3	0		
BYW	42	434259	713937	Bridgewater Power Co.	1986	480	138.0	121.0	131.0			
					Camp	ton						
CBA	1	434838	713952	State of NH	1987	550	8.0					Bor
СВВ	1	435149	713930	NHDOT		552	71.0					TH
CBB	2	435038	713849	NHDOT		556	103.0					ТН
CBB	3	435020	713905	NHDOT		535	115.0					TH
CBB	4	434904	713945	NHDOT		530	55.0					TH
CBB	5	435019	713904	NHDOT		535	125.0					TH
СВВ	6	435054	713938	NHDOT		534	50.0					тн
CBB	7		713938	NHDOT		600	38.0					TH
CBB	8	435102	713840	NHDOT		631	5.0					TH
CBB	9	435017	713859	NHDOT		536	141.0					тн
CBB	10	434754	714037	NHDOT		540	9.0					TH
							12.0					mer
CBB	11	434754	714037	NHDOT		560 600	13.0 9.0					TH TH
CBB CBB	12 13	434841 435136	714016 713910	NHDOT NHDOT		640	10.0					TH
CBB	14	435136	713910	NHDOT		620	9.0					TH
CBB	15	435143	713758	NHDOT		640						TH
	-											
CBB	16	434906	713943	NHDOT		540	58.0					TH
CBB	17	434840	714012	NHDOT		595	15.5				• •	TH
CBB	18	435038	713849	NHDOT		556	103.0					TH
CBB	19	435149	713930	NHDOT		535	77.0					TH
CBS	1	435200	713856	Public right-of-way		700						Sp
CBW	1 2	434834 434835	713920 713952	State of NH State of NH	1987 1987	635 550	107.0 20.0		102.0 19.6	P P		Bor Bor

number Depth Date (galions (hours) (feet) (mm-dd-yy) per minute)

					G	RAFTON COU	NTY
BYW 11 13.0 54 GS, L							
BYW	11	13.0	54				GS, L
	16					0.5	L
BYW	18			H	4.0	2.0	L
BYW	22			Н	2.0	.5	L
BYW	23	30.0	08-22-86	н	3.0	.5	L
BYW	24	22.3	01-24-86	0	50.0	2.5	L
BYW				0			L
BYW	30	30.7	11 - 17 - 87	N	449.0	48.0	L
BYW	36			0			L
BYW	37	5.0	11-03-86	Н	2.5	1.5	L
						Campton	
CBA	1	••		0			USGS, L
CBB	1			T			L
CBB	2			T			L
CBB	3			T			L
CBB	4			T			L
CBB	5		• •	T			L
CBB	6			т			L
CBB	7			T			L
CBB	8			T			L
СВВ	9			T			L
CBB	10		• •	т			L
CBB	11			T	~ ~		L
CBB	12			U			L
CBB	13			T			L
CBB	14			T			L
CBB	15		• •	T		* -	
CBB							
	17			U			
CBB	19			T		• •	L
CBS	1						CA
CBW	1	76.8	04-07-88	0			USGS, L
CBW	2	18.0	04-07-88	0			USGS, L

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	le	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
				G	RAFTON	COUNTY						
				Ca	ampton-C	Continued						
CBW	3	435027	713912	Campton Sand and Gravel	1987	540	45.0	43.1	45.0	P	45.0	Bor
CBW	4	435029	713919	Campton Sand and Gravel	1987	540	117.0	71.1	74.0	P	74.0	Bor
CBW	21	435102	713906	Davis, D.	1955	580		114.0	227.0			Brw
CBW	22	434956	713834	Casey, C.	1963	640		88.0	198.0			BrW
CBW	24	434904	713835	Сох. н.	1957	680		50.0	156.0			BrW
CBW	27	434821	714021	Muzzey	1961	600		16.0	212.0			BrW
CBW	32	434730	713929	Ash	1961	740		52.0	171.0			BrW
CBW	33	434853	713703	Moulton & Stickney	1988	75 5	103.0	20.2	23.1	P	23.1	Bor
ant.	~ .	42.4052	712000	Park Programmed Broadway	1000	E 4.1	117 0	101 0	107.0	ъ	107.0	D
CBW	34	434952	713909	Beebe Riv. Wood Products		541 580	137.0	101.2	107.0 303.0	P	107.0	Bor BrW
CBW CBW	36 38	434816 434820	714020 714019	Plymouth Motor Court Cook	1961 1961	580		50.0 15.0	400.0			BrW
CBW	39	435110	713725	Campton Water Dist	1984	840	875.0	35.0	875.0	х		BrW
CBW	40	434756	713930	Morden	1984	620	0/3.0	135.0	575.0	x		BrW
CBW	41	434841	714010	Malmborg	1984	560		39.0	380.0	Х		BrW
CBW	42	434726	714012	Carew	1984	540 760	155.0	119.0 19.0	385.0 155.0	X X		BrW BrW
CBW	44 45	434832 434803	714129 713931	Downing, J. Daniels	1985 1986	620	155.0	159.0	220.0	X		Brw
CBW	47	434803	713931	Joyce	1984	660		112.0	292.0	X		BrW
CBW	48	434809	713917	Duncan	1984	660	• •	121.0	192.0	Х		BrW
CBW	50	434852	713906	Strong	1984	640		100.0	492.0	X		BrW
CBW CBW	52	434925	713818	Merrill, R.	1985	740 630	610.0	55.0 66.0	610.0 273.0	X X		BrW BrW
CBW	53 54	435155 435202	713917 713721	Wilson Coffey	1985 1985	720		40.0	270.0	X		BrW
CDW	J.	433202	113121	correy	1703	720		40.0	2,0.0			22
CBW	55	434909	714007	Chapman	1985	720		171.0	313.0	x		BrW
CBW	56	435128	713810	Powers	1985	670		34.0	125.0	х		BrW
CBW	59	435051	714006	Johnson	1986	640		132.0	480.0	Х		BrW
CBW	60	434801	713937	Filion	1986	620		219.0	485.0	X		BrW
CBW	61	435056	713910	Campton Sand & Gravel	1986	580		179.0	365.0	Х		BrW
CBW	62	435107	713902	Johnson (State of NH)	1968	590		172.0	238.0	х		BrW
CBW	63	435108	713901	Johnson (State of NH)	1968	590			338.0	x	- +	BrW
CBW	64	435139	713911	Straw (State of NH)	1968	640		35.0	335.0	х		BrW
CBW	65	434728	714026	Alden Homes	1985	580		44.0	675.0	Х		BrW
CBW	66	434801	713931	Donahue	1986	620		109.0	110.0	S		
CBW	67	434900	713639	Воусе	1985	920		20.0	550.0	х		BrW
CBW	68	435100	713816	Waterville Estates	1974	580	70.0		52.6	P		
CBW	69	435102	713814	Waterville Estates	1974	580	46.0					TH
CBW	70	435032	713831	Town of Campton	1989	540	49.0	21.0	26.0	P	26.0	Wsh
CBW	71	435032	713831	Town of Campton	1989	540	49.0	42.0	46.0		48.0	Wsh
CBW	72	435032	713831	Town of Campton	1989	540	45.0	36.0	45.0	P	42.0	Wsh
CBW	73	435032	713831	Town of Campton	1989	540	49.0	45.0	45.0	P	49.0	Wsh
CBW	74	435032	713831	Town of Campton	1989	540	56.0	42.0	48.0	P	48.0	Wsh
CBW	76	435032	713831	Town of Campton	1988	540	61.0	42.0	49.0	P	49.0	Wsh
CBW	77	435033	713846	Town of Campton	1988	540	41.0		34.0	P	34.0	Wsh
CDM	70	435033	712046	Morm of Compton	1000	E40	36 0					wsh
CBW	78	435033	713846	Town of Campton	1988	540	36.0					WSII

CBW

78

13.2 07-06-88

т

	cal	Wat	ter level		well	Pumping		
si	te mber	Depth	Date	Use	yield (gallons	period (hours)	Remarks	
1101		(feet)	(mm-dd-yy)		per minute)	(HOUIS)		
					GR	AFTON COUNT	TY Y	
					Cam	pton-Continu		
CBW	3	9.2	01-29-88	0			USGS, L, CA	
CBW	4	4.4	04-07-88	0			USGS, L, CA	
CBW	21						GS, L	
CBW	22	30.0	0563				GS, L	
CBW	24						GS, L	
CBW	27				• •		GS, L	
CBW	32	10.0	0961				GS, L	
CBW	33	4.6	06-13-88	0			USGS, L, CA	
CBW	34	13.0	06-14-88	0			USGS, L, CA	
CBW	36	32.0	06-14-88				GS, L	
CBW	38	32.0					GS, L	
CBW	39	10.0	01-01-84	P		12.0		
CBW	40	60.0	07-21-84	н	50.0	1.0	L	
CBW	41	30.0	11-18-84	Н	12.0	1.0	L	
						_		
CBW	42			H	10.0	.5	L	
CBW	44			н		1.0	L	
CBW	45			н	20.0	.5	L	
CBW CBW	47 48			H H	30.0 3.5	.5 .5	L L	
CDW	40			n	3.3		n n	
CBW	50			Н	1.5	.5	L	
CBW	52	25.0	08-28-85	Н		.5	L	
CBW	53	50.0	08-08-85	Н	2.0	.5	L	
CBW	54	15.0	08-07-85	н	8.0	.5	L	
CBW	55			н	10.0	.5	L	
CBW	56			н	40.0	1.0	L	
CBW	59	40.0	12-16-86	н	50.0	1.0	L	
CBW	60			н	10.0	.3	L	
CBW	61			С	20.0	.3	L	
ar					25. 2			
CBW	62 63			H H	25.0		L 	
CBW CBW	64			H H	6.0		L	
CBW	65			H	5.0	2.0	L	
CBW	66			н	30.0	.5	L	
					20.0		-	
CBW	67			Н	3.0	1.0	L	
CBW	68			T			L	
CBW	69			T	••		L	
CBW	70	1.5	09-08-89	T			L	
CBW	71	24.0	09-07-89	T			L	
CBW	72	2.0	03-27-89	т			L	
CBW	73	1.0	03-24-89	T			r	
CBW	74	2.4	03-23-89	т			L	
CBW	76	.9	07-08-88	T			L	
CBW	77	8.8	07-07-88	Т			L	

- -

- -

L

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

CBW 79 435033 713846 Town of Campton 1988 540 8.0			
CEW 79 435033 713846 Town of Campton 1988 540 8.0			
CBW 80 435203 713849 Town of Campton 1979 680 35.0 CBW 81 434845 714005 Days Inn 1989 580 1,680.0 60.0 1,680.0 CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 83 435106 713956 McGee, R. 1988 560 325.0 60.0 355.0 CBW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1974 1,313			
CBW 80 435203 713849 Town of Campton 1979 680 35.0 CBW 81 434845 714005 Days Inn 1989 580 1,680.0 60.0 1,680.0 CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 83 435106 713956 McGee, R. 1988 560 325.0 60.0 355.0 CBW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1974 1,313			тн
CBW 81 434845 714005 Days Inn 1989 580 1,680.0 60.0 1,680.0 CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 83 435106 713956 McGee, R. 1988 560 325.0 60.0 325.0 CBW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 35.0 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1974 1,313			TH
CBW 82 434818 714023 Piper, H. 1962 600 22.0 138.0 CBW 83 435106 713956 McGee, R. 1988 560 325.0 60.0 325.0 CBW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 DOTCHEST DIB 1 434808 715817 1974 1,313 DIB 2 434800 715529 NHDDT 975 15.0 DIB 3 434852 715707 Lennox, A. 1962 1,080 145.0 57.0 145.0 DIW 1 434852 715707 Lennox, A. 1962 1,080 145.0 57.0 145.0 DIW 2 434844 715659 Dustin, H. 1962 1,040 120.0 92.0 120.0 DIW 5 434874 715443 Ashley, A. 1948 960 112 105 112 DIW 6 434754 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 GQW 1 433342 715618 NHDDT 1,043 45.0 GQB 1 433450 715618 NHDDT 1,043 45.0 GQW 1 433342 715618 NHDDT 1989 1,062 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 280.0 GQW 4 433342 715657 Cooper, M. 1966 841 23.0 280.0 GQW 4 433342 715657 Cooper, M. 1966 841 23.0 280.0 GQW 4 433342 715637 Dean, F. 1953 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 4333349 715511 Hazen, L. 1952 840 32.0 315.0 GQW 7 433338 715637 Seamans 1984 840 39.0 305.0 GQW 8 433338 715424 Walsh 1985 840 39.0 305.0 GQW 10 433517 715841 Reynolds 1985 840 39.0 505.0			BrW
CEW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 ··· 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW			BrW
CEW 84 435037 713838 Campton Village Precinct 1990 560 45.0 35.0 45.0 CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 ··· 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW			
CBW 85 435039 713841 Campton Village Precinct 1990 550 45.0 45.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW 86 435038 714014 Considine, R. 1988 740 565.0 80.0 565.0 CBW CONSIDER CONSIDE		45.0	****
Dorchester DIB	G	45.0	Wsh
Dorchester DIB 1 434808 715817 1974 1,313	G 	45.0	Wsh
DIB 1 434808 715817 1974 1,313 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 1975 15.0 145.0 1975 15.0 145.0 1975 15.0 145.0 1976 1,080 145.0 145			
DIB 2 434800 715529 NHDOT 975 15.0 DIB 3 434851 715648 1971 1,020 DIW 1 434852 715707 Lennox, A. 1962 1,080 145.0 57.0 145.0 DIW 2 434844 715659 Dustin, H. 1962 1,040 120.0 92.0 120.0 DIW 5 434807 715558 Ryea, V. 1961 1,100 25.0 115.0 DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715658 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1950 840 32.0 315.0 GQW 4 433342 715653 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 79.0 305.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 860 80.0 400.0			
DIB 2 434800 715529 NHDOT 975 15.0 DIB 3 434851 715648 1971 1,020 DIW 1 434852 715707 Lennox, A. 1962 1,080 145.0 57.0 145.0 DIW 2 434844 715659 Dustin, H. 1962 1,040 120.0 92.0 120.0 DIW 5 434807 715558 Ryea, V. 1961 1,100 25.0 115.0 DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715658 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1950 840 32.0 315.0 GQW 4 433342 715653 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 79.0 305.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 860 80.0 400.0	х		тн
DIW 1 434852 715707 Lennox, A. 1962 1,080 145.0 57.0 145.0 DIW 2 434844 715659 Dustin, H. 1962 1,040 120.0 92.0 120.0 DIW 5 434807 715558 Ryea, V. 1961 1,100 25.0 115.0 DIW 6 434754 715434 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 4343342 715625 NHDOT 1,043 45.0 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1950 840 32.0 315.0 GQW 4 433342 715633 Thoresen 1984 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 30.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 39.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			TH
DIW 2 434844 715659 Dustin, H. 1962 1,040 120.0 92.0 120.0 DIW 5 434807 715558 Ryea, V. 1961 1,100 25.0 115.0 DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715658 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715618 NHDOT 1,043 45.0 GQW 1 433342 715659 Cooper, M. 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 DIW GQW 4 433342 715427 Dean, F. 1953 840 35.0 230.0 GQW 4 433342 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0	x		TH
DIW 5 434807 715558 Ryea, V. 1961 1,100 25.0 115.0 DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 DIW DIW 9 434751 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 DIW 9 433348 715440 Hazen, L. 1950 840 32.0 315.0 DIW 9 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715657 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 DIW 9 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 Grafton GQB 1 433450 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715657 Dean, F. 1953 840 35.0 230.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
DIW 6 434754 715443 Ashley, A. 1948 960 112 105 112 DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 GRAFTON GQB 1 433450 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715657 Dean, F. 1953 840 35.0 230.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
DIW 8 434812 715808 Lachnicht, V. 1959 1,300 66 12 66 DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 Grafton GQB 1 433450 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715657 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BRW
DIW 9 434751 715508 Morgan, M. 1989 1,020 525.0 200.0 525.0 Grafton GQB 1 433450 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1950 840 35.0 230.0 GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BRW
GPAFTON GQB 1 433450 715625 NHDOT - 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715627 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
GQB 1 433450 715625 NHDOT 1,043 45.0 GQB 2 433502 715618 NHDOT 1989 1,062 GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			
GQB 2 433502 715618 NHDOT 1989 1,062 -			
GQW 1 433342 715659 Cooper, M. 1966 841 23.0 280.0 GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			TH
GQW 2 433349 715511 Hazen, L. 1950 840 32.0 315.0 GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			TH
GQW 3 433348 715440 Hazen, L. 1952 840 35.0 230.0 GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
GQW 4 433342 715427 Dean, F. 1953 840 20.0 117.0 GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
GQW 6 433329 715633 Thoresen 1984 840 79.0 305.0 GQW 7 433339 715657 Seamans 1984 840 39.0 325.0 GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			BrW
GQW 8 433338 715424 Walsh 1985 840 20.0 505.0 GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0	x		BrW
GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0	X		BrW
GQW 10 433517 715841 Reynolds 1985 860 80.0 400.0			DW
•	X		BrW BrW
NUM II 43334 /13034 ALLIES 1900 COU 100.0 300.0	X X		BrW
GQW 12 433344 715706 Parson's Lumber Company 1986 860 20.0 335.0	X		BrW
GQW 13 433519 715839 Spielman 1986 860 54.0 55.0			21
•			
GQW 15 433326 715709 Joyce 1987 840 59.0 300.0	X		BrW
GQW 17 433333 715641 Thomas 1987 840 29.0 160.0	X		Br₩
GQW 19 433335 715644 Tate 1987 860 39.0 300.0	X		BrW BrW
GQW 20 433451 715842 Ibey 1988 860 61.0 305.0 GQW 21 433412 715706 Nugent, T. 1988 960 69.0 225.0	X X		BrW BrW
GQW 22 433252 715650 Blair, R. 1980 880 140.0 59.0 140.0	х		BrW
GQW 23 433444 715843 Aldrich, D. 1990 863 0.0 109.0 445.0			BrW
GQW 24 433437 715851 King, J. 1988 865 0.0 83.0 245.0			BrW BrW
GQW 25 433523 715840 A11ard, R. 1990 890 0.0 59.0 385.0			BrW BrW
GQW 26 433445 715846 Brown, L. 1988 870 0.0 104.0 345.0 GQW 27 433447 715842 Valia, L. 1990 865 0.0 109.0 565.0			BrW
GQW 27 433447 715842 Valia, L. 1990 865 0.0 109.0 565.0			DT 14

Local

site

nun	nber	Depth (feet)	Date (mm-dd-yy)		(gallons per minute)	(hours)		
					GR	AFTON COUN	ту	
					Cam	pton-Continu	aed	
CBW	79		• •	т			L	
CBW	80	• •		T			L	
CBW	81			С			L	
CBW	82	15.0	09-23-62		••		GS	
CBW	83	20.0	11-29-88	н			L	
CBW	84	1.7	01-24-90	P	266.0	48.0	L	
CBW	85	2.2	01-15-90	P	272.0	48.0	L	
CBW	86	8.0	11-29-88	Н			L	
						Dorchester		
DIB	1			T	• •		L	
DIB	2			T			L	
DIB	3			T			L L	
DIW	1	12.0	1262				GS, L	
WIC	2	2.0	1062				GS, L GS, L	
OIW OIW	5 6	12.0	1061				GS, L	
DIW	8			• •			GS, L	
WIC	9			Н				
						Grafton		
~0.D	1			_				
GQB GQB	1 2			T T			L L	
GQW	1	250.0	0766				GS, L	
GQ₩	2	20.0	11-08-50				GS, L	
2012	2	22.0	01 03 53				aa	
eQW eQW	3 4	23.0 10.0	01-03-52 07-09-53				GS, L GS, L	
3Q₩	6			н	60.0	.5	L	
GQW	7			Н	3.0	.5	L	
GQW	8			H	.1		L	
WQE	10			Н	3.0	1.0	L	
GQW COW	11 12			H P	1.5 6.0	1.0 2.0	L L	
GQW GQW	13				60.0		L	
						1.0		
GQW GQW	15 17			Н Н	2.0 12.0	1.0 1.5	L L	
3QW 3QW	19	30.0	09-03-87	н Н	2.0	.5	L L	
SQW	20			н	7.0	1.5	L	
GQW	21			н	4.0	1.5	r	
GQW	22			н			L	
GQW	23			н	1.0	2.5	L	
GQW	24			H	10.0	.7	L	
GQW	25			H	3.0	.3	L	
GQ₩	26			U H	1.0 1.5	.7 2.5	L	
GQW	27						L	

Maximum

well

yleld

Use

Pumping period

Remarks

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Locai site Lat- number itude		Long- itude	_	Owner or user	Year comp- pieted	Eievation above sea ievei (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY	1					
					Grafton-C	ontinued						
GQW	28	433502	715854	Surette, R.	1989	875	0.0	59.0	142.0			BrW
GQW	29	433426	715900	Lavoie, R.	1990	885	0.0	69.0	225.0			BrW
					Gro	ton						
		424522	545044		10.00	4 005						m.,
GXB GXB	1 2	434533 434214	715214 715001	NHDOT	1960	1,227 612	70.0			X 		TH TH
GAD	2	474214	/13001	NADOI		012	70.0					111
G XW	1	434216	714959	Howard	1986	620		39.0	385.0	x		BrW
GXW	3	434230	715002	Lingill	1986	740		28.0	805.0	x		BrW
GXW	4	434229	715006	Denton	1986	740		11.0	225.0	x		BrW
G XW	9	434232	714958	Denten	1987	800		19.0	805.0	х		BrW
					Heb	ron						
HLB	1	434206	714638	• •	1977	590				х		тн
HLB	2	434141	714836	NHDOT		607	95.0					TH
HLW	1	434137	714812	Audubon Society of NH	1988	600	127.0	109.2	115.0	P	115.0	Bor
HLW	2	434200	714948	Matthews, D.	1988	600	29.0	24.1	27.0	P	27.0	Bor
HLW	3	434142	714839	Sanborn, W.	1958	600		32.0	125.0			BrW
HLW	4	434142	714836	Mudge	1954	600			110.0			BrW
HLW	6	434140	714830	Braley, M.	1959	600		• •	78.0			BrW
HLW	7	434139	714824	Town of Hebron	1960	620			90.0			BrW
HLW	9	434254	714540	Gerburg, C.	1959	740			200.0			BrW
HLW	10	434254	714535	Chisholm, S.	1961	790		60.0	105.0			BrW
HLW	16 17	434026 434203	714724 714632	Friend & S. Larson	1984 1985	600 620	250.0	99.0 20.0	605.0 250.0	x x		BrW BRW
HLW	17	434203	/14632	Lonshe, Q.	1985	620	250.0	20.0	250.0	Α.	~ -	DKW
HLW	22	434202	714638	Hogan, J.	1984	600	270.0	29.0	270.0	x		BRW
HLW	25	434204	714950	Mathews	1987	620		19.0	445.0	х		BrW
HLW	26	434024	714733	McClelland	1986	620		39.0	385.0	X		BrW
HLW	28	434152	714859	Cowern	1987	610		71.0	445.0	х		Brw
HLW	35	434017	714720	Camp Berea Inc.	1987	600		40.0	510.0	x		BrW
HLW	37	434258	714615	Poulousi	1986	680		20.0	500.0	x		BrW
HLW	39	434146	714937	Bardsley, W.	1961	630			155.0			BrW
HLW	40	434144	714916	Barnard	1962	620			140.0	• •		BrW
					Holde:	rness						
HRA	1	434550	714042	Holderness School	1966	480	109.0					тн
HRA	2		714049	Smith	1964	470	90.0					TH
HRB	1	434536	714039	NHDOT	1962	471	74.0					TH
HRB	4	434352	713514	NHDOT		567	40.0					тн
HRB	6	434536	714041	NHDOT	1962	470	83.0					ТН
HRB	7	434535	714109	NHDOT		480	50.0					тн
HR₩	1	434551	714046	Holderness School	1987	480	97.5		87.6	P		Bor
HRW	2	434551	714046	Holderness School	1987	480	28.0		25.3	P		Bor
HRW	4	434540	713945	McClay, M.	1956	550	5.0	4.5	4.5	Х		Dug

Local

Water level

	cai	Wa	ter ievei	11	Well	Pumping	Damanta	
sit nun	e nber	Depth (feet)	Date (mm-dd-yy)	Use	yleld (galions per minute)	period (hours)	Remarks	
				- .	GR	AFTON COUNT	TY	
					Gra	fton—Continu	ned.	
gQW gQW	28 29		• •	H H	10.0 5.0	0.7 2.5	L L	
OQ.	2,5				3.0	Groton	-	
GXB	1	~ -		T	* *		L •	
GXB	2		• •	T			L	
GXW	1			Н	3.0	.8	L	
GXW	3			H	.5	1.0	L	
GXW GXW	4 9			H H	7.0	.8 1.0	L L	
GAW	,			п	.5	1.0	п	
						Hebron		
HLB	1	• •		T			L	
HLB	2		* -	T			L	
HLW	1	4.1	11-29-88	0			USGS, L	
HLW	2	5.9	11-23-88	U			USGS, L	
HLW	3		* *				GS, L	
HLW	4		* *				GS ~~ -	
HLW	6						GS, L	
HLW	7							
HLW	9						GS, L	
HLW	10	35.0	07-28-61	••	1.0		GS, L	
HLW HLW	16 17			H H	1.0	.5 1.0	L L	
				••		1.0	.	
HLW	22			Н		.5	L	
HLW	25	12.0	07-14-87	H	2.0	1.0	L	
HLW HLW	26 28	30.0	 09 - 24 - 87	H H	4.0 1.0	.3 1.0	L L	
.124	20	20.0	05 24 07	11	1.0	1.0	.	
HLW	35			н	1.5	.5	L	
HLW	37			Н	1.5	. 5	L	
HLW	39 40	35.0	1061				GS, L	
HLW	40	20.0	1062				GS, L	
						Holderness		
HRA	1			T			L	
HRA	2	8.3	11-09-64	T			L	
HRB	1			T	÷ -		L	
HRB HRB	4 6			T T			L L	
	٠			-			_	
HRB	7			T			L	
HRW	1	15.7	0688	0			USGS, L, CA	
HRW	2	18.0 1.5	08-14-87	0	+ +		USGS, L	
HRW	4	1.5	02-03-88	Н			- ·	

Maximum

well

Pumping

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
				G	RAFTON	COUNTY						
				Hol	derness-	-Continued						
HRW	8	434559	714024	St.Cyr, C.	1973	610	200.0	37.0	200.0			
HRW	9	434612	714035	Brown, T.	1987	520	205.0	97.0	205.0			
IRW	11	434700	713948	Champney, R.	1962	580		28.0	93.0			BrW
IRW	12	434655	713958	Potkay, L.	1961	560		35.0	110.0			BrW
łRW	14	434534	713606	Conrad, F.	1962	800			94.0			BrW
IRW	15	434534	713606	Conrad, F.	1962	800		47.0	119.0			BrW
IRW	16	434643	713514	French, C	1947	1,000	145.0	52.0	145.0			BrW
IRW	17	434553	713329	Barnes, W.	1956	580	80.0	34.0	80.0			BrW
IRW	18	434431	713447	Hawkins, K.	1958	590			180.0			BrW
IRW	19	434329	713638	Windsor Restaurant	1963	590		47.0	278.0			BrW
IRW	20	434340	713546	Town of Holderness	1959	590			135.0			BrW
IRW	21	434355	713458	Werner, E.	1953	570	90.0	22.0	90.0			BrW
RW	24	434215	713438	Plant, G.	1951	660	355.0	65.0	355.0			BrW
RW	25	434258	713119	Twombly, G.	1964	620		31.0	300.0			BrW
IRW	26	434315	713225	Paley, W.	1957	590			319.0			BrW
IRW	28	434317	713319	McGrew, G.	1953	630	269.0	33.0	269.0			BrW
TDL.	20	434217	713414	Commonweal B	1984	650	705.0	19.0	705.0	х		BrW
IRW IRW	29 30	434217	713414	Sprague, R.	1984	650	705.0 830.0	19.0	830.0	X		BrW
IRW IRW	31	434217	713414	Sprague, R. Howe	1984	650		62.0	505.0	X		BrW
IRW	33	434549	713330	Oldeman, J.	1984	580	305.0	19.0	305.0	x		BrW
IRW	35	434305	713226	Dunleavy	1985	610			580.0	X		BrW
	2.0	424200	E12240		1005	600		02.0	505.0	х		BrW
IRW IRW	38 39	434328 434334	7133 49 713620	McDevitt Webb	1985 1985	620		83.0 40.0	675.0	X		BrW
IRW	41	434511	713020	Pusch	1985	800		18.0	312.0	X		BrW
IRW	42	434629	713214	Howe, S.	1985	580	193.0	39.0	193.0	x		BrW
IRW	48	434308	713312	Haskell, R.	1984	600	272.0	20.0	272.0		272.0	Brw
		10.1510	543035			64.0		42.0	200.0			
RW	51 56	434518	713935	Corless	1984 1986	610 580		43.0 80.0	392.0 242.0	X X		BrW BrW
IRW IDW	56 57	434346 434355	713505	Musgrove	1986	580 570	421.0	80.0 70.0	421.0	X X		BrW BrW
IRW IRW	57 58	434355	713436 713416	Poitras, R. Crosby	1986	570 580	421.0	39.0	421.0	X		BrW
IRW	59	434442	713250	King, N.	1986	570	520.0	29.0	520.0	x		BrW
.n.	C 1	43.4601	714026	N C C Diumbine C Westin	1004	E20		65.0	700 0	v		D∽to
IRW IRW	61 63	434621 434546	714036 713300	M & S Plumbing & Heating Oldeman, J.	1984 1984	530 580	305.0	65.0 19.0	700.0 305.0	X X		BrW BrW
IRW IRW	64	434546	713558	Pemigewassett F&G Club	1984	850	26.0		23.0	P	23.0	Bor
iRW	65	434558	714039	Holderness School	1966	480	118.0					TH
IRW	67	434550	714105	Plymouth State College	1987	480	79.0		28.0	P	28.0	Bor
IRW	68	434512	713957	Montour, P.	1988	520	425.0		425.0			BrW
					Linc	coln						
ιKΆ	1	440244	714051			825	37.0					
ιKA	2	440240	714029			810	36.0					
ιKA	3	440234	714103			790	17.0					TH
ιKA	4	440232	714105			790	22.0					TH
ιKA	5	440307	713858			875	50.0					TH
. W N	6	440307	713050			875	60 0					тн
KΑ	0	440307	713859			8/5	60.0				- •	TH

Locai site	Water ievei	Use	Maximum weii vieid	Pumping period	Remarks
number	Depth Date (feet) (mm-dd-yy	_	(gailons per minute)	(hours)	

					G	RAFTON COU	NTY	
					но1	derness-Con	tinued	
HRW	8			н				
HRW	9			н				
HRW	11	15.0	0162				GS, L	
HRW	12						GS, L	
HRW	14	36.0	02 62				GS	
HRW	15						GS, L	
HRW	16						GS, L	
HRW	17	12.0	07-23-56				GS	
HRW	18						GS	
HRW	19						GS, L	
HRW	20						GS, L	
HRW	21						GS, L	
HRW	24	35.0	05-31-51				GS, L	
HRW	25	20.0	08-12-64		÷ ÷		GS, L	
HRW	26						GS, L	
HRW	28	55.0	09-10-53		÷ ÷		GS, L	
HRW	29			н		1.0	L	
HRW	30			Н		1.0	L	
HRW	31	30.0	10-20-84	Н	0.8	1.0	L	
HRW	33	30.0	12-06-84	Н		1.0	L	
HRW	35			Н	.8	1.0	L	
HRW	38			Н	4.0	1.0	L	
HRW	39			н	3.0		L	
HRW	41	3.0	12-06-85	Н	1.8	. 5	L	
HRW	42			Н		.5	L	
HRW	48			н	1.5		L	
HRW	51			Н	8.0	.5	L	
HRW	56			н	10.0	1.0	L	
HRW	57			н		1.0	L	
HRW	58			Н	5.0	1.0	L	
HRW	59			н		1.0	L	
HRW	61			н	10.0	1.0	L	
HRW	63			H		1.0	L	
HRW	64	17.0	04-20-89	0			USGS, L	
HRW	65	13.7	12-06-66	T			L	
HRW	67	23.3	08-08-88	0			USGS, L	
HRW	68			н				
						Lincoln		
LKA	1	18.0	05-21-82	T			L	
LKA	2		- -	T			L	
LKA	3	5.0	05-27-82	T			L	
LKA	4	3.0	05-27-82	T	± =		L	
LKA	5			T			L	
LKA	6			T			L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
				(GRAFTON	COUNTY						
				L	incoln-C	Continued						
KA	7	440304	713909			875	14.0					тн
KВ	1	440235	714103	NHDOT		820	25.0					TH
KB	2	440339	714111	NHDOT		866	14.0					TH
KB	3	440341	714113	NHDOT		877	25.0					TH
KB	4	440352	714124	NHDOT		887	25.0					TH
KB	5	440354	714125	NHDOT		882	45.0					TH
кв	6	440326	714124	NHDOT		869	4.0					тн
KB	7	440248	714109	NHDOT		797	40.0					TH
KB	8	440429	714118	NHDOT	1982	984	19.5					TH
KB	9	440500	714116	NHDOT	1982	1,030	15.0					тн
KB	11	440402	714132	NHDOT	1983	957	26.0				- •	TH
ΚB	12	440525	714103	NHDOT	1983	1,197	24.0					тн
KB	18	440638	714058	NHDOT	1983	1,426.3				х		TH
										_		_
KW	1	440315	714114	Town of Lincoln	1984	840		17.0	17.0	0	• •	Dug
KW	2	440329	713743	Swiftwater Builders	1984	1,000		119.0	535.0	Х		BrW
KW	3 4	440319	713820	Lyons	1985	920 840		54.0 80.0	160.0 512.0	X X		BrW BrW
KW KW	5	440255 440214	713942 714035	NH Electric Cooperative McDonald's	1985 1984	760		161.0	690.0	X		BrW
KW	6	440330	713745	Swiftwater Builders	1987	1,000		65.0	605.0	Х		BrW
KW	7	440353	713551	US Forest Service	1987	1,120		101.0	330.0	X		BrW
KW KW	8 9	440348	713551 71 4 029	US Forest Service	1987	1,120 810	E2 0	72.0	430.0 51.5	х		BrW
KW	10	440238 440238	714029	••		810	53.0 53.0		49.5			
KW	11	440230	714103			790	29.0		29.0			
KW	12	440230	714105			790	35.0		34.0		• •	
KW	13	440230	714107			790	30.0		27.0			
KW KW	14 15	440229 440307	714105 713856	••		790 875	36.0 22.0		31.0			
KW	16	440307	713857			875	36.0		21.0			
KW	17	440307	713909			875	28.0	• •	26.0			
KW VW	18	440306 440306	713908	••		875 875	28.0		21.0			
KW KW	19 20	440305	713909 713909	••		875 875	20.0 14.0					
KW	21	440356	713625	Town of Lincoln		1,180						BrW
					P1ymo	outh						
ΥA	6	434613	714156	Southerly	1964	540	140.0					TH
ΥA	7		714236	Carpenter	1964	480	53.0					TH
ΥA	8	434657	714414	Nims	1964	480	96.0					
ΥA	9	434626	714256	McCleod	1964	480	50.0	• •				
ΥA	10	434626	714337	Robie	1964	480	116.0					тн
,,	11	434610	714358	Robie		510	30.0					ТН
YΑ												

10-23-64

08-10-64 T 10-29-64 T

07-30-64 т

08-12-64 T

--

13.0

6.5 5.0

10.3

10.8

PYA 12 10.8 08-13-64

11 11.2 08-12-64

6

8

10

PYA

PYA PYA

PYA

PYA PYA

Lo sit	cai	Wat	er ievei	Use	weli weli	Pumping period	
	nber	Depth (feet)	Date (mm-dd-yy)	ose	yieid (galions per minute)	(hours)	Remarks
			-		GR	AFTON COUN	NTY
					Lin	coln-Contin	nued
LKA	7	10.5	06-28-82	т	••		L
LKB	1			т			L
LKB	2			T			L
LKB	3			T			L
LKB	4			T			L
LKB	5			T			L
22	•			•			~
LKB	6			т			L
LKB	7			T			L
LKB	8			บ			L
LKB	9			Ū			L
LKB	11	14.5	0883	U			L
T MD	12	2.0	0983	ŭ			L
LKB LKB	18	3.0	0983	U			L L
LKW	1	4.5	12-01-84	P	50.0	120.0	L, CA, Well field of six wells
LKW	2				60.0	.5	L
LKW	3			Н	75.0	.5	L
LKW	4	10.0	11-10-85		1.0	.5	L
LKW	5			С	30.0	.5	L
LKW	6				40.0	.3	L
LKW	7			Н	3.0	.3	L
LKW	8			Н	.8	.3	L
LKW	9	24.3	05-25-82	T	10.0	1	L
LKW	10	24.3	05-24-82	T	30.0	1	L
LKW	11	1.9	05-25-82	т	50.0	2	L
LKW	12	3.0	05-25-82	T	60.0	2	L
LKW	13	3.5	05-25-82	T	50.0	1	L
LKW	14	10.9	05-25-82	T	10.0		L
LKW	15	7.0	06-24-82	T			r
LKW	16	7.0	06-24-82	T			L
LKW	17	10.5	06-26-82	T			L
LKW	18	10.5	06-26-82	T			L
LKW	19	10.5	06-28-82	T			L
LKW	20	10.5	06-28-82	T			L
LKW	21			P			
						Plymouth	

L

L

L

L

L

L

. .

- -

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	e	Lat- Itude	Long- Itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY						
				P	lymouth-	Continued						
YA	13	434605	714254	Hatch	1964	520	31.0					тн
ΥA	14	434643	714031	Godds	1964	490	47.0					тн
ΥA	15	434639	714401	Dearborn	1964	480	97.0					
ΥA	16	434545	714509	Yeaton	1964	520	50.0	• •				
ΥA	18	434325	713951	Telfers	1965	480	66.0					TH
ΥA	20	434401	714018	McCormack	1965	480	66.0					тн
ľΑ	21	434344	714016	Huckins	1965	480	56.0					TH
ın	21	434344	,14011	nucking	1703	400	30.0					
ΥB	1	434559	714054	NHDOT		468	90.0					TH
ďΒ	2	434610	714241	NHDOT		464	57.0					TH
YΒ	3	434615	714510	NHDOT		489	44.0					TH
ľB	5	434615	714059	NHDOT		500	60.0		- -			TH
/B	6	434646	714045	NHDOT	• -	558	20.0					TH
ľΒ	7	434600	714054	NHDOT		480	83.0	• •				тн
/W	9	434606	714100	Town of Plymouth	1951	470				G		Dr
YW	10	434605	714100	Town of Plymouth	1955	470	48.0		48.0	G		Dr
YW	12	434620	714409	Bower, W.	1964	480		91.0	213.0			BrW
ΥW	13	434648	714340	Worthen, L.	1961	520		73.0	173.0			BrW
w.	14	434647	714333	McCloud	1951	510		15.0	98.0			BrW
	4.5	424520	744040	•	4050	F.4.0		40.0	120.0			Dest
W.	15	434638	714210	Avery, A.	1959	540		40.0	130.0			Brv Brv
w w	16 17	434613 434542	714327 714531	Hatch, C.	1948 1964	480 580		78.0 106.0	168.0 180.0			Brv
W	18	434532	714453	Keegan, F. Ireland, C.	1961	540		76.0	212.0			Brv
w	19	434532	714453	Ireland, C.	1963	540		113.0	245.0			BrV
W	22	434338	714035	Currier, E.	1959	520		40.0	165.0			Brv
W	23	434327	714035	Trojano, H.	1962	520		• •	144.0		• •	Brv
W	24	434318	714041	Haskell, W.	1952	710			125.0			BrV
W W		434321	714030	Hannaford, F.	1963	540 510		44.0	135.0 160.0			BrV BrV
**	26	434323	714024	Ahern, O.	1954	210		****	100.0	=	-	DI
W	27	434259	713944	Hobart, K.	1964	500		52.0	340.0			Br
W		434239	714031	Huckins, H.	1950	560			118.0			Brv
W		434615	714544	Whittemore, R.	1964	520			400.0			Br
W		434644	714452	Barney, J.	1954	500		147.0	209.0			BrV
W	32	434506	714442	Ireland	1984	560		93.0	530.0	х		BrV
W	34	434612	714253	Bruce	1984	480		49.0	385.0	х		BrV
W		434257	714013	Lewis	1984	570		19.0	365.0	х		Brv
W	37	434548	714531	Adrian	1985	540		19.0	305.0	Х		BrW
W	38		714430	M. Piper Inc.	1985	480		339.0	555.0	х		Br
W	42	434313	714017	Wakefield	1986	510		157.0	343.0	х		Br
W	43	434338	714009	Ahearn's Xmas Tree Farm	1989	470	127.0	30.1	33.0	Þ	33.0	Bo
W	45	434619	714218	Carpenter	1964	540	102.0	- •	88.0			T
W	46	434622	714316	Speed	1964	540	78.0		69.0			-
W	47	434615	714151	Southerly	1964	540	160.0					T
W	48	434627	714317	McCleod	1964	480	81.0		81.3			-

Local

Water level

	cal	Wa	ter level		well	Pumping		
sit			_	Use	yleid	period	Remarks	
nur	nber	Depth	Date		(gallons	(hours)		
		(feet)	(mm-dd-yy)		per minute)			
					GR	AFTON COUNT	·Y	
					P1ym	nouth-Contin	ued	
PYA	13	14.6	08-13-64	Т			L	
PYA	14	6.8	08-13-64	T			L	
PYA	15	10.5	08-13-64	Н			L	
PYA	16	2.6	01-12-64	H			L	
PYA	18	9.2	01-05-65	Т			L	
PYA	20	12.7	01-08-65	т			L	
PYA	21	12.9	01-08-65	Т			L	
PYB	1			T			L	
PYB	2			T			L	
PYB	3			T			L	
PYB	5			Т			L	
PYB	6		• •	Т			L	
PYB	7			T			L	
PYW	9	6.5	11-14-51	P			CA	
PYW	10	5.0	10-19-55	P				
PYW	12	25.0	07-14-64				GS, L	
PYW	13	18.0	11-18-61		• •		GS, L	
PYW	14	12.0	06-08-51				GS, L	
P YW	15	20.0	1059				GS, L	
PYW	16						GS, L	
PYW	17	26.0	01-30-64				GS, L	
PYW	18	15.0	07-27-61				GS, L	
PYW	19						GS, L	
PYW	22	30.0	1059			• •	GS, L	
PYW	23	20.0	0462				GS, L	
PYW PYW	24 25	13.0	0563				GS, L	
PYW PYW	25 26						GS, L GS, L	
PYW	27	40.0	08-13-64				GS, L	
PYW	28	14.0	0650				GS, L	
PYW	29						GS, L	
PYW	31	70.0	02-16-54				GS, L	
PYW	32	50.0	06-19-84	Н	12.0	1.0	L	
PYW	34			Н	15.0	.5	L	
PYW	35			H	20.0	.5	L	
PYW	37			H	3.5	1.0	L	
PYW	38	30.0	02-20-85	H	4.0	2.0	L	
PYW	42	40.0	10-31-86	Н	15.0	1.0	L	
PYW	43	25.0	04-21-89	0			USGS, L	
PYW	45	1.5	10-19-64	T			L •	
PYW	46 47	11.4 24.0	08-04-64	T			L	
PYW PYW	48	7.5	10-28-64	T			L L	
PIW	48	1.5	07-22-64	T		••	ц	

Maximum

well

Pumping

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY						
				P	1 vmouth-0	Continued						
PYW	49	434626	714311	McCleod	1964	480	105.0		102.0			
PYW	50	434628	714324	McCleod	1964	480	57.0		57.0			тн
PYW	51	434626	714324	Stiles	1964	480	42.0	• •	41.7			
PYW	52	434325	713945	Telfers	1965	480	88.0		88.3			
PYW	53	434325	713945	Telfers	1965	480	49.0					TH
PYW	54	434325	713945	Telfers	1965	480	50.0					тн
PYW	55	434322	713942	Telfers	1965	480	51.0		50.6			
PYW	56	434324	713942	Telfers	1965	480	61.0		60.5			
PY W	57	434324	713942	Telfers	1965	480	50.0		50.0			
PYW	58	434324	713942	Telfers	1965	480	50.0		50.0		• •	
PYW	59	434318	713942	Land, E.	1965	480	41.0		40.5			
D10.		424210	712040	m - 3 S	1065	400	41.0		40.5			
PYW	60	434319	713949	Telfers	1965	480	41.0	100.0	40.5			D-W
PYW PYW	61 65	434617 434326	714429 714035	Stoppe Development Inc. Ahern, D.	1989 1988	510 520	625.0 320.0	120.0 40.0	320.0			BrW BrW
,	03	434320	714033	Alerii, D.	Rumr		320.0	40.0	320.0			21
						_						
RUA	1	434909	715328	Jacques Inc.	1989	620	95.0					Bor
RUB	1	434742	715023	NHDOT		505	40.0					тн
RUB	2	434742	715023	NHDOT		500	28.5					TH
RUB	3	434910	714838	NHDOT		620	23.0					TH
RUB	4	434722	714750	NHDOT		497	85.0					TH
RUB	5	434743	715040	NHDOT		509	7.0					TH
RUB	6	434845	715205	NHDOT		519	20.0					тн
RUB	7	434803	714852	NHDOT		500	41.0					TH
RUB	8	434841	715207	NHDOT	1964	520	23.0					тн
D. I. W. I	2	434752	714934	Tuench I	1007	1 210	91.0	23.6	26.5	P	26.5	Bor
RUW				French, L.	1987	1,310		23.0	20.5		20.5	
RUW RUW	4 5	434911	715301 715249	Foster, W.	1962 1963	580 620	63.0		205.0			Cb1 BrW
RUW	6	434903	715249	Town of Rumney	1956	640			325.0			BrW
RUW	7	434818	714845	Fletcher, R.	1960	500			155.0			BrW
RUW	8	434740	714810	Lyons, J.	1963	520			515.0			BrW
RUW	9	434740	714757	Hartnett, F.	1963	540			297.0			BrW
RUW	10	434652	714652	Polar Caves	1961	500			318.0			BrW
RUW	11	434639	714619	Collins, R.	1964	520			127.0			BrW
RUW	12	434633	714610	Glover, W.	1964	520			142.0			BrW
RUW	13	434627	714609	Sweet, E.	1964	520			250.0			BrW
RUW	14	434914	715226	Ford, B.	1988	540	72.0	39.9	42.8	P	42.8	Bor
RUW	15	434830	715140	Burke, G.	1988	520	110.0		78.0	P	78.0	Bor
RUW	17	434755	715046	Fantasia	1984	600		40.0	240.0	x		BrW
RUW	18	435002	715221	O'Banion	1985	680		59.0	250.0	x		BrW
RUW	19	434729	714637	Steckmest	1985	520		201.0	575.0	х		BrW
	20	434752	714732	Perry	1985	540		60.0	334.0	X		BrW
RUW	2.11											

Maximum r level well Pumping Use yield period Remarks Date (gallons (hours) (mm-dd-yy) per minute)	te	Locai site number
--	----	-------------------------

					G	RAFTON COU	NTY	
					P1	ymouth—Cont	inued	
YW	49	11.6	07-24-64	т			L	
	77			•			2	
WY	50	11.9	07-27-64	T			L	
WY	51	6.8	07-31-64	T			L	
YW	52	12.2	01-04-65	T			L	
ΥW	53	13.0	09-29-65	T			L	
YW	54	16.0	10-05-65	T			L	
ΥW	55	14.0	01-13-65	T			L	
ΥW	56	10.2	01-15-65	T			L	
ΥW	57	11.0	10-04-65	T			L	
ΥW	58	11.0	10-04-65	T	••		L	
ΥW	59	9.1	01-18-65	T			L	
/W	60	12.5	01-19-65	T			L	
ΥW	61			T			L	
ΥW	65			Н				
						Rumney		
JA	1	16.0	06-09-89	т	••		USGS, L	
ΙΒ	1			т			L	
JB	2			T			L	
ΙB	3			T	• •		L	
JΒ	4			T			L	
JB	5	- -		T			L	
JB	6			Т			L	
JB	7			T	- •		L	
JB	8			T			L	
īw	2	12.8	08-09-88	0			USGS, L, CA	
w	4	32.0	0162	Н	20.0			
JW	5	77.0	0263				GS, L	
TW.	6	30.0	09-26-56				GS, L	
₩	7						GS, L	
₩	8	67.0	03-30-63				GS, L	
π	9	6.0	09-14-63				GS, L	
JW	10	1.0	03-15-61				GS, L	
JW	11		••				GS, L	
₩	12						GS, L	
w	13						GS, L	
JW.	14	7.5	06-15-88	0			USGS, L, CA	
w	15			0			USGS, L, CA	
w	17			Н	6.0	1.0	L	
w	18	30.0	11-29-85	Н	65.0	1.0	L	
īW	19			н	6.0	1.0	τ.	
JW JW	19 20			Н Н	6.0 4.0	1.0 2.0	L L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	e	Lat- itude	Long- Itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
				(FRAFTON	COUNTY						
				1	Rumney-Co	ontinued						
RUW	24	434627	714603	Kelly Auto Body	1984	520		63.0	430.0	х		BrW
RUW	25	434849	715217	Comeau	1985	540		145.0	473.0	x		BrW
RUW	26	434914	715314	Gottlin	1986	620		29.0	300.0	х		BrW
RUW	27	435141	714826	Martone, N.	1986	1,320	335.0	104.0	335.0	x		BrW
RUW	28	434756	715041	Roberte	1986	600		105.0	402.0	х		BrW
RUW	31	435136	714827	Lacoviello, J.	1987	1,360	422.0	220.0	422.0	x		BrW
RUW	32	434854	715316	Short, W.	1989	640	300.0	103.0				
RUW	33	434739	714834	Huckins Oil Company	1989	530	355.0		355.0			Dr
					Thorn	nton						
TRA	1	435214	713900	Campton Sand and Gravel	1987	690	8.0					Bor
rrb	1	435211	714005	NHDOT		553	48.0					тн
rRB	2	435203	713952	NHDOT		554	91.0					TH
rrb	3	435502	714101	NHDOT		573	87.0					TH
rrb	4	435214	713751	NHDOT	• •	650	15.0					TH
rrb	5	435557	714108	NHDOT		596	25.0					TH
rrb	6	435559	714116	NHDOT		600	19.0					тн
rrb	7	435503	714129	NHDOT		640	90.0					TH
rrb	8	435516	714125	NHDOT		600	20.0					TH
rrb	9	435430	714128	NHDOT		640	24.0					TH
rrb	11	435318	713443	NHDOT		880	4.0					TH
rrb	12	435329	713430	NHDOT		880	6.0					TH
rrb	13	435252	713544	NHDOT		772	36.0					TH
rrb	15	435429	714130	NHDOT	1968	644						TH
rrb	17	435503	714134	NHDOT	1968	654	90.0					TH
rRW	2	435213	713904	Campton Sand and Gravel	1987	690	85.0	58.7	61.6	P	61.6	Bor
rRW	3	435213	713904	Campton Sand and Gravel	1987	690	80.0	74.9	77.8	P	77.8	Bor
'RW	4	435504	714108	State of NH	1987	590	118.0	86.6	89.5	P	89.5	Bor
rrw	5	435503	714108	State of NH	1987	590	32.0	29.3	32.2	P	32.2	Bor
rw	8	435406	714059	Manning, D.	1961	630			150.0		- +	BrW
RW	9	435222	713737	Campton Campground	1960	665			490.0			BrW
ľRW	12	435619	714044	Shepherd, E.	1954	610			306.0			BrW
rrw		435513	714108	Heafity	1984	580		136.0	165.0	Х		BrW
rRW	41		713944	Fournier	1984	560		216.0	221.0	х		BrW
rRW	42	435239	714025	Morrill	1984	620		202.0	830.0	х		BrW
rRW		435728	714015	Poulin	1985	760		20.0	595.0	x		BrW
rrw		435336	714053	Homes	1986	640		41.0	575.0	Х		BrW
rrw		435312	713912	Morathana Construction	1986	740		22.0	500.0	X		BrW
rRW	46	435314	713914	Morathana Construction	1985	720 640		23.0	600.0	X		BrW
rw	48	435218	714024	Marsden	1984	640		57.0	333.0	х		BrW
RW	49	435227	713852	Leary	1984	710		24.0	315.0	х		BrW
'RW	50	435309	713641	Elgert	1984	830		40.0	275.0	х		BrW
rRW	51	435231	714037	Roberts	1984	620		44.0	775.0	x		BrW
'RW	52	435156	714009	Homes	1984	610		29.0	355.0	х		BrW

			Maximum		
Local	Water level		well	Pumping	
site		Use	yieid	period	Remarks
number	Depth Date		(gallons	(hours)	
	(feet) (mm-dd-y	/y)	per minute)		

					G	RAFTON COU	NTY	
					R	umney—Contin	ued	
RUW	24			н	5.5	0.5	L	
UW	25			H	12.0	.5	L	
WU	26			Н	3.0	1.0	L	
UW	27			Н		.5	L	
JW	28			н	4.5	.5	L	
W	31			H		1.0	L	
W	32			Н			L	
JW	33		* ~		10.0		L	
						Thornton		
RA	1			0	- •	• •	USGS, L	
æ	1			т			L	
RB	2			T			L	
B	3			T			L	
RB	4			T			L	
RB	5			T			L	
RB	6			T			L	
RB	7			T			L	
B	8			T			L	
RB	9			T			L	
В	11			T			L	
₹B	12			T			L	
RB	13			T			L	
RB	15			T			L	
В	17			T			L	
W	2	47.3	0688	0			USGS, L	
W	3	67.5	0688	0			USGS, L	
W	4	20.7	0688	0			USGS, L	
W	5	20.6	0688	0			USGS, L, CA	
W	8	30.0	0461				GS, L	
RW	9						GS, L	
W	12						GS, L	
W	40	35.0	02-27-84	H	75.0	.5	L -	
W	41			H	50.0	3.0	L	
W	42			Н	. 8	1.0	L	
W	43		11 20 00	н		1.0	L •	
RW Draf	44	20.0	11-20-86	Н	8.0	1.0	L •	
W	45 46			P P	10.0	2.0	L	
W W	46 48			H	15.0 15.0	2.0 .5	L L	
RW.	49			н	15.0	.5	1	
RW	50			H H	2.5	.5	L L	
W	51			Н	1.5	.5	T.	
				••				

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	е	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY						
					Thornton-	Continued						
TRW	53	435503	714050	Sellingham	1984	600		36.0	393.0	х		BrW
TRW	54	435228	713830	Uhlman	1984	700		133.0	573.0	х		BrW
TRW	56	435551	714052	Ingram	1986	600		19.0	20.0			Dug
TRW	57	435334	713457	Hubner	1985	980		366.0	377.0	x		BrW
TRW	58	435437	713931	Horgan	1985	670		60.0	333.0	x		BrW
mpt.t		425202	712721	Dukash	1005	780		41.0	233.0	х		BrW
TRW	59 61	435303 435434	713731 714103	Dubach State of NH	1985 1985	580		79.0	505.0	X		BrW
TRW TRW	62	435434	713835	Wallace	1986	680		142.0	410.0	X		BrW
TRW	63	435239	713055	Saunders	1987	580		131.0	550.0	x		BrW
TRW	64	435236	713954	Rollins Hill Inc.	1987	580	• -	128.0	500.0	x		BrW
TRW	65	435545	714108	Finn	1970	600		48.0	251.0	X		BrW
TRW	66	435537	714110	Downing	1970	600		34.4	311.0	X		BrW
TRW	67	435459	714121	Levasseur	1969	590		134.0	330.0	X		BrW
TRW	68	435313	714023	Merrill	1968	580		114.0	388.0	X		BrW
TRW	69	435243	714027	Reitsman	1968	630		112.0	508.0	X		BrW
TRW	70	435236	714003	NHDOT	1972	600		95.0	368.0	x		BrW
TRW	71	435252	713545	Anderson	1974	760			145.0	x		BrW
TRW	72	435251	713550	Robertson	1974	760		127.0	400.0	x		BrW
TRW	73	435212	713833	Trembley	1985	680		139.0	325.0	x		BrW
TRW	74	435311	713939	Mountain River Condos	1985	600		154.0	625.0	x		BrW
mptd	75	425200	712042	Mountain Divor Condon	1985	600		136.0	800.0	х		BrW
TRW TRW	76	435309 435534	713942 714109	Mountain River Condos Veerers	1984	600		70.0	437.0	x		BrW
TRW	77	435250	713823	Town of Campton	1984	760		49.0	750.0	X		BrW
TRW	78	435300	713713	Burrill	1984	760		28.0	172.0	X		BrW
TRW	79	435346	713956	Russinov, A.	1986	600	145.0					
TRW	80	435346	713956	Russinov, A.	1986	600	145.0					
TRW	81	435345	713519	Wilson, R.	1986	1,000	272.0					
TRW	82		713554	Gfalter, F.	1988	780		103.0	130.0			mu.
TRW	83 84	435206	713853 713847	Town of Campton Town of Campton	1979 1979	680 680	42.0 12.0					TH TH
TRW	04	435208	113041	TOWN OF CAMPION	13/3	000	12.0		-			111
TRW	85	435226	713843	Town of Campton	1979	750	28.0		28.0		••	тн
TRW	86	435229	713846	Town of Campton	1979	800	50.0		22.0			TH
TRW	87	435228	713801	Town of Campton	1979	680	62.0					TH
TRW	89	435235	713805	Town of Campton	1979	720	72.0		22.0			TH
TRW	90	435208	713834	Pritchard, G.	1989	680	565.0	100.0	565.0			
TRW	91	435637	714046	Keating, J.	1960	640		••	154.0			BrW
					War	ren						
WDA	1	435523	715307	Wright, R.	1988	760	20.0					Bor
WDA	4	435601	715427	Cates, L.	1988	770	111.0					Bor
WDA	5	435613	715312	Foote, C.	1988	810	23.0					Bor
WDB	5	435510	715320	NHDOT		737	12.0					TH
WDB	6	435359	715350	NHDOT		676	15.0					TH

Local

site

Water level

sii nur	te mber	Depth (feet)	Date (mm-dd-yy)	Use	yield (gallons per minute)	period (hours)	Rem	arks
					GR.	AFTON COU	NTY	
					Thor	nton-Cont.	inued	
TRW	53			н	7.5	0.5	L	
TRW	54			н	2.0	.5	L	
TRW	56	15.0	03-17-86	Н	100.0	8.0	L	
TRW	57			Н	15.0	. 5	L	
TRW	58			Н	2.0	.5	L	
TRW	59			н	150.0	.5	L	
TRW	61	24.0	12-11-85	H	2.8	1.0	L	
TRW	62			н	8.0	.5	L	
TRW	63	15.0	01-02-87	н	2.0		L	
TRW	64	20.0	01-07-87	н	4.0		L	
TRW	65			н	3.0			
TRW	66			H	2.0		L -	
TRW	67			H	10.0		L	
TRW TRW	68 69			H H	1.5 1.5		L L	
11.00	0,5			11	1.5		-	
TRW	70			н	8.0		L	
TRW	71			н	8.0		L	
TRW	72			н	8.0		L	
TRW	73			Н	5.0	1.0	L	
TRW	74			P	15.0	2.0	L	
TRW	75			P			L	
TRW	76			Н	1.5	1.0	L	
TRW	77	30.0	01-01-84	P	8.0	10.0	L	
TRW	78			н	25.0	. 5	L	
TRW	79			Н			L	
mp	0.0						-	
TRW TRW	80 81			H H	• - 		L L	
TRW	82	25.0	11-30-88	н			L	
TRW	83	23.0		T			L	
TRW	84			T			L	
TRW	85	9.0	07-16-79	T			L	
TRW	86	7.0	07-13-79	T			L	
TRW	87	5.0	07-12-79	T			L	
TRW	89 90	6.0 89.0	07-10-79 05-04-90	T H			L L	
TRW	90	89.0	05-04-90	п			T	
TRW	91	3.0	07-06-60				GS	
						Warren		
WID 3	1			Tr.			maga T	
WDA WDA	1 4			T T			USGS, I	
WDA	5			T			USGS, I	
WDB	5			T			L	-
WDB	6			T			L	

Maximum

weii

yield

Use

Pumping

Remarks

period (hours)

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- Itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY						
					Warren-Co	ontinued						
WDB	7	435433	715322	NHDOT		694	27.0				~ -	тн
WDB	9	435454	715322	NHDOT	1961	718	56.0					ТН
WDB	10	435554	715418	NHDOT	1971	765	35.0					тн
WDB	11	435535	715322	NHDOT	1974	756	55.0				~ -	ТН
WDW	2	435710	715125	Wetzler	1962	1,080		25.0	124.0			BrW
	_					.,						
WDW	3	435529	715336	Ray, F.	1961	770			160.0			BrW
WDW	4	435429	715315	Aldrich, H.		730			170.0			BrW
WDW	5	435606	715331	Morgan, J.	1955	940			115.0			BrW
WDW	6	435534	715305	Nicol	1984	780		34.0	380.0	X		BrW
WDW	7	435534	715301	Casey	1984	780		19.0	500.0	х	• •	BrW
WDW	8	435554	715325	Schlieker	1984	800		60.0	140.0	х		BrW
LIDIT	•	425614	715317	tree and house to	1004	010		26.0	260.0	х		D≠W
WDW	9	435614	715317	Hurlburt	1984	810		26.0	260.0 140.0	X		BrW BrW
WDW	10	435544	715400	Bumford	1984	780		80.0	715.0	X		BrW
WDW	11	435610	715316	Foote	1984 1985	800 780		39.0 60.0	240.0	X		BrW
WDW	12 13	435544 435453	715354 715329	Short Ball	1985	760 760		19.0	240.0	X		BrW
WDW.	13	433433	113323	Ball	1903	700		19.0	242.0	Α		D1**
WDW	14	435710	715145	Schofield	1986	1,080		19.0	635.0	х		BrW
WDW	16	435608	715333	Merrill	1986	930		19.0	300.0	x		BrW
WDW	17	435536	715350	Pike (State of NH)	1969	760		93.0	116.0	x		BrW
WDW	18	435451	715308			720		21.0	37.0			
WDW	19	435448	715314			720		14.0	52.3			
WDW	21	435725	714936	Petelle, D.	1973	1,375	6.0		6.0			
WDW	22	435544	715400	Pike, R.	1984	790	140.0	81.0	140.0			BrW
WDW	23	435544	715400	Pike, R.		790	30.0		30.0			Dug
WDW	24	435539	715356	Pike, R.	1980	776	100.0	100.0	100.0			BrW
WDW	26	435534	715300	Community Well	1984	780	500.0	20.2			~ -	BrW
WDW	28	435534	715305	Nicol, J.		780	10.0	9.5	9.5			Dug
WDW	30	435523	715303	Wright, R.	1988	760	40.0	19.8	22.7	P	22.7	Bor
	30	-55525	, 1330,	,	2300			22.0				
					Watervil1	e Valley						
WFB	2	435455	713308	NHDOT		1,116	15.0					ТH
WFB	3	435515	713231	NHDOT		1,197	17.0					TН
WFB	4	435507	713248	NHDOT		1,160	9.0					TH
WFB	5	435613	713051	NHDOT		1,370	13.0					TH
WFB	6	435730	713044	NHDOT		1,465	43.0				• •	TH
WFB	7	435645	713048	NHDOT	1967	1,460	25.5					тн
WFB	8	435645	713048	NHDOT	1987	1,492	23.5					ТН
WFB	9	435707	713011	NHDOT	1982	1,492	29.0					TH
D	,	455702	, 13007		1,02	+1272	25.0					***
WFW	1	435729	713045	Waterville Valley	1968	1,500	33.0		28.0	s		Dr
WFW	2	435734	713045	Waterville Valley	1972	1,520	47.0	35.0	47.0	G		Dr
WFW	3	435723	713028	Bean, R.	1948	1,500	498.0					Cb1
WFW	4		713051	Waterville Valley		0				0		Dug
				_	Wentw	orth						
	_		D45.55	B								
WIA	2	435137	715453	Brown, H.	1988	560	38.0					Bor

Lo si	cal	Wat	ter level	Use	Maximum well yield	Pumping period	Domarka	
	mber	Depth (feet)	Date (mm-dd-yy)	USE	(gallons per minute)	(hours)	Remarks	
					GR	AFTON COUN	PV	
					GR	THE TON COOK		
					War	ren-Continu	ed	
WDB	7	• -		T			L	
WDB	9			T			L	
WDB WDB	10 11			T T			L L	
WDW	2	11.0	0562				GS	
WDW	3	20.0	1061				GS	
WDW	4						GS, L	
WDW	5						GS, L	
WDW	6			Н	50.0	1.0	L	
WDW	7			н	7.5	1.0	L	
WDW	8			Н	12.0	1.0	L	
WDW	9			Н	45.0	1.0	L	
WDW	10			Н	50.0	1.0	L	
WDW	11			H	.5	1.0	L	
WDW	12			Н	7.5	1.0	L	
WDW	13			Н	60.0	1.0	L	
WDW	14			н	.5	1.0	L	
WDW	16			Н	6.0	1.0	L	
WDW	17			H	50.0		L	
WDW	18			Z				
WDW	19			Z				
WDW	21			Н			L	
WDW	22			Н			L	
WDW	23	29.0	10-15-84	U				
WDW	24			H			L	
WDW	26			Н			L	
WDW	28	6.4	07-16-84	U	• •			
WDW	30	8.3	11-15-88	0		ē ē	USGS, L	
					Wat	erville Vall	еу	
WFB	2			т			L	
WFB	3			T			L	
WFB	4			T			L	
WFB	5			T			L	
WFB	6			U			L	
WFB	7		••	T			L	
WFB	8			T			L	
WFB	9			T			L	
WFW	1	4.0	01-01-68	P			L	
WFW	2			P			L, CA	
WFW	3	• •		Н	25.0		L	
WFW	4			P				
						Wentworth		
WIA	2			т			USGS, L	
	-						• • -	

Maximum

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	e	Lat- itude	Long- itude	Owner or user	Year comp- pieted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY	•	· · · · · · · · · · · · · · · · · · ·	-			
				w	entworth-	Continued						
	2	425206	715442	ATT DOM		500	60.0					
IIB IIB	2 3	435206 434924	715443 715335	NHDOT NHDOT		580 556	69.0 36.0					TH TH
IB	4	434924	715440	NHDOT	1957	548	46.5					TH
IB	5	435206	715434	NHDOT	1937	574	51.0					TH
IW	1	435336	715406	Hinckley, G.	1988	660	59.0	55.6	58.5	Р	58.5	Bor
			•			•						
IW	2	435228	715450	Town of Wentworth	1960	660			349.0			BrW
IW	3	435201	715430	Town of Wentworth	1960	600			121.0			BrW
IW	4	435203	715420	Stiles, K.	1960	620			200.0			BrW
IW	5	435149	715441	Styles, K.	1962	580		• •	140.0		• •	BrW
IW	9	435041	715433	Mellican, E.	1960	560		• •	100.0	• •	• •	
IW	10	434959	715355	Cmith D	1062	600			146.0			
IM	11	434939	715355	Smith, D. Morrison, A.	1962 1959	600 620			146.0 107.0			
IM TM	12	435211	715323	MOITISOII, A.	1962	600	282.0		107.0			Cb1
IW	13	435222	715450	Clair's Snack Shack	1961	660	202.0	63.0	63.0			BrW
IW	14	435210	715442	Johnson, L.	1984	620		39.0	545.0	х		BrW
				•								
IW	16	435023	715413	Anderson	1986	640		49.0	365.0	х		BrW
IW	17	435336	715355	NHDOT	1973	680		45.0	248.0	х		BrW
IM	18	435246	715442	Viera, V.	1962	620			331.0			BrW
IW	19	435245	715414	Davis, S.		620	12.0	11.5	11.5			Dug
IW	20	435333	715427	Woodhaven Cottages	• •	685	11.0	11.2	11.2			Dug
					Woods	tock						
SA	1	435708	714047	Jack O' Lantern Resort	1987	600	20.0	17.8	20.0	P	20.0	TH
SA	2	435708	714047	Jack O' Lantern Resort	1987	600	86.0					TH
SA	3	440148	714152			740	24.0					TH
SA	4	440147	714149		* *	740	13.0					TH
SA Sa	5 6	440148 440148	714147 714132			740 730	23.5 40.0					TH TH
3A	•	440148	/14132	• •	• •	730	40.0					TH
SB	4	435846	714048			626				х		TH
SB	7	440153	714042	NHDOT		760	85.0					TH
SB	8	435738	714046	NHDOT		600	130.0					TH
SB	9	435618	714120	NHDOT		680	19.0					TH
SB	10	435922	714022	NHDOT		800	8.0					TH
SB	11	440115	714037	NHDOT		800	21.0					тн
SB	12	440205	714048	NHDOT		760	31.0					TH
SB	13	435731	714049	NHDOT		600	60.0					TH
SB	14	435821	714033	NHDOT		680	25.0					TH
SB	15	435812	714031	NHDOT	• •	640	25.0					TH
SB	17	440148	714107	NHDOT		720	17.0		• •			TH
sw	1	440054	714038	Clark,D.	1962	760			234.0			BrW
SW	2	440057	714103	Fulton, M.	1961	700			115.0			BrW
SW	3	440038	714109	Maple Lodge		700			145.0			BrW
SW	4	440031	714112	Brittons Cabins		720			127.0			BrW
SW	5	440021	714106	White Mtn. Drive-in		700	• •		156.0			BrW

			Maximum		
Locai	Water level		weil	Pumping	
site		Use	yield	period	Remarks
number	Depth Date		(gallons	(hours)	
	(feet) (mm-dd-yy	·)	per minute)		

WIB WIB WIB								
WIB WIB					Wen	.tworth-Cont	inued	
WIB WIB	2			т	~ -		L	
WIB	3			T			_ L	
VIB	4			Т			L	
	5			T			L	
VIW	1	8.2	11-18-88	0			USGS, L	
/IW	2	25.0	0760		÷ •		GS	
VIW	3	50.0	0460				GS	
IW	4	33.0	1160		• •		GS	
VIW	5	42.0	04 62				GS	
IIW	9						L	
IW	10					• •	L	
IW	11	33.0	1159				L	
IW.	12	65.0	02 62	H	4.0		L	
IIW	13	15.0	0761				GS -	
IW	14			H	80.0	0.5	L	
IW	16			Н	5.0	.3	L	
WI	17			Н	12.0		L	
IW	18	25.0	0762				GS	
IW	19	7.5	07-17-84	H			L	
IW	20	4.1	07-01-84	Н				
						Woodstock		
ISA	1	8.9	09-30-87	Т	40.0	3.0	L	
SA	2			T			L	
SA	3	3.5	09 - 21 - 82	T			L	
SA	4	3.5	09-21-82	T			L	
SA	5	3.5	09-21-82	T			L	
SA	6	4.0	09 - 22 - 82	т			L	
SB	4						L	
SB	7			T			L	
SB	8			T			L	
SB	9 10			T T			L L	
SB	11		• •	T			L	
d D	12			т			T.	
SB	13			T			L L	
SB	14			T			L L	
SB	15			T			L	
SB	17			Т			L	
SW	1	9.0	04-13-62				GS, L	
ISW	2	25.0	12 61				GS, L	
SW	3						GS, L	
ISW	4						GS, L	
SW	5						GS, L	
SW	7						GS, L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	e	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of	Depth to bottom of open section (feet)	Type of site
					GRAFTON	COUNTY						
				W	oodstock-	Continued						
isw	8	435622	714127	Canter, S.	1954	680			150.0			BrW
SW	14	435821	714055	Town of Woodstock	1988	630	76.0	56.0	76.0	G		Dr
SW	16	440037	714035	Desjardins	1985	790		24.0	300.0	x		BrW
SW	17	440106	714431	Simmons	1985	1,040		54.0	200.0	x		BrW
sw	18	440153	714219	Fadden Construction	1006	800		84.0	400.0	x		BrW
SW	20	435806	714219	Hudson	1986 1985	700		20.0	280.0	X		BrW
SW	21	435959	714013	Sherbinski	1970	660		87.5	491.0	X		BrW
SW	22	435958	714034	Holtzman	1971	660		123.0	251.0	x		BrW
SW	23	435813	714035	Avery	1986	640		110.0	600.0	x		BrW
SW	24	435826	714040	Gilman	1971	640		79.0	500.0	Х		BrW
SW	25	435748	714033	Steele	1970	700		61.0	400.0	X		BrW
SW	26	440105	714045	Carkins	1971	720		24.0	205.0	X		BrW
SW	27	440011	714029	Young	1970	800		28.5	470.0	x		BrW
SW	28	440049	714039	McAfee	1970	740		105.0	250.0	x		BrW
SW	29	440109	714042	Cox	1969	720		30.8	100.0	х		BrW
SW	30	440129	714044	Clark	1970	760		34.0	220.0	x		BrW
SW	31	435947	714022	LaCombe	1971	660		63.0	500.0	х		BrW
SW	33	440133	714043	Kneeland	1970	760		42.0	220.0	х		BrW
SW	34	440014	714031	Mueller	1970	800		41.7	175.0	X		BrW
SW	35	440154	714053	Summit Development Inc.		720		199.0	205.0			
SW	36	440200	714223	Tetley	1986	840		104.0	400.0	x		BrW
SW	37	440142	714100	Town of Woodstock	1982	720	48.0		48.0			TH
CIA	20	425017	714052	Marin of Woodstook	1000	C20	76.0	E2 0	76.0	G		D=
SW SW	38 39	435817 440138	714052 714127	Town of Woodstock	1988	630 720	76.0 53.0	53.0	48.0			Dr
SW	40	440138	714126			720	48.0		48.0			
SW	41	440138	714126			720	48.0		48.0			
SW	42	440137	714126			720	33.0		33.0			
SW	43	440138	714121		• •	720	48.0		48.0			
SW SW	44 45	440139 440139	714123 714124			720 720	58.0 59.0		56.0 56.0			
SW	46	440139	714124		1977	720	58.0		58.0			
SW	47	440144	714059		1982	725	26.0		26.0			
SW	48	440143	714100	• •	1987	718	30.0		30.0		30.0	
SW	49	440141	714056			715	90.0		75.0			
SW	51	440152	714157			750	44.0		42.0			
SW SW	52 54	440216 440150	714107 714132			760 730	28.0 51.0		28.0 47.0			
				м	ERRIMACE	COUNTY						
					Ando	ver						

	cai	Wat	er level	••	Maximum weli	Pumping		
si: nur	te mber	Depth (feet)	Date (mm-dd-yy)	Use	yleld (gallons per minute)	period (hours)	Remarks	
					GR	AFTON COUNT	Y	
					Wood	stock-Contin	ued	
wsw	8						GS, L	
WSW	14	14.9	08-28-88	P			L, CA	
wsw	16			H	40.0	1.0	L	
WSW	17	35.0	05-08-85	P	20.0	.5	L	
wsw	18	5.0	10-01-86	н	2.5	1.0	L	
WSW	20			Н	60.0	1.0	_ L	
WSW	21			Н	8.0		_ L	
WSW	22			Н	25.0		L	
мом	23			**	1 0	4.0	•	
wsw wsw	23 24			H H	1.0 2.0	4.0	L L	
WSW	25	••		н	2.0		r r	
WSW	26			н	25.0		L L	
WSW	27	• •		H	20.0			
WSW	28 29			Н	50.0		•	
wsw wsw	30			H H	20.0		L L	
WSW	31			H			L	
WSW	3 3			Н	40.5		L	
WSW	34			H	8.5		L	
wsw Wsw	35 36			C H	50.0 5.0	.3 1.0	L L	
WSW	37			п Т			L	
wsw	38	14.9	08-28-88	P			L	
WSW	39			T	20.0	2	L	
WSW	40			T	30.0	3	L	
WSW	41 42		• •	T	30.0	1	L L	
WSW	42			Т	3.0	.3	п	
WSW	43	4.0	07-28-76	T	30.0	1	L	
wsw	44	4.3	01-26-77	T	35.0	2	L	
wsw	45	5.7	01-27-77	T	55.0	2	L	
WSW	46	6.0	02-09-77	P	140.0	13.5	L	
WSW	47	6.5	10-07-82	T	75.0	4	L	
wsw	48		* =	P	89.0	48	L	
WSW	49	2.0	08-20-82	T	60.0	2.5	L	
WSW	51	4.0	05-04-76	T	20.0	1	L	
wsw	52	1.5	07-28-76	T	30.0	1	L	
WSW	54	2.0	07-21-76	T	15.0	2	L	
			***			THEOR CO.	was a second	
					MERI	RIMACK COUN	TI.	
						Andover		
ANB	9		• •	T			L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	te	Lat- itude	Long- itude	Owner or user	Year comp- pleted	Elevation above sea level (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
				М	ERRIMAC	K COUNTY						
					indover—C	ontinued						
ANW	1	432658	714507	Thompson, M.	1987	660	107.0	40.0	42.9	P	42.9	Bor
ANW	10	432639	714449	Currier, W.	1963	660		68.0	121.0			BrW
ANW	13	432818	714342	Barnes, K.	1966	600	120.0	110.0	120.0			BrW
ANW	14	432653	714531	Northern Railroad	1988	660	37.0	24.2	27.1	P	27.1	Bor
ANW	23	432736	714503	Teddy Bear Inn	1985	680		19.0	505.0	x		BrW
WNA	24	432747	714548	Hazen	1985	700		19.0	345.0	x		BrW
ANW	32	432708	714537	Kenney	1986	660		127.0	128.0			
ANW	42	432648	714548	Varnum	1987	660		219.0	565.0	x		BrW
					Danb	ury						
DBA	1	433128	714940	Phelps, J.	1989	790	84.0					Bor
овв	1	433227	714916	NHDOT		780	53.0					TH
)BB	4	433227	714916	NHDOT		780 800	15.0					TH
DBB	5	433143	715041	NHDOT	1968	810	19.0					TH
DBB	6	433109	715153	NHDOT		830				x		TH
DIA	10	422026	715007	g)	1004	0.00	225.0		205.0			D-17
DBW DBW	12 22	433036 433133	715027 715149	Sturfrant Russell	1984 1985	860 820	295.0	20.0	295.0 130.0	X X		BrW BrW
DBW DBW	29	433158	715149	Town of Danbury	1985	820 800	98.0	76.6	79.5	A P	79.5	Bor
DBW	30	433158	715144	Town of Danbury	1989	800	98.0	7.0	9.9	P	7.0	Bor
					Fran	clin						
FKA	1	432900	712020	HE Army Corns Engineers	1000	420	73.0					Por
FKA	2	432900	713930 713925	US Army Corps Engineers US Army Corps Engineers	1989 1940	420 440	73.0 220.0					Bor TH
rka	3	432813	713923	US Army Corps Engineers	1940	400	132.0				• -	TH
rKA	4	432758	713947	US Army Corps Engineers	1940	389	92.0					ТН
rKA	5	432804	713952	US Army Corps Engineers	1940	390	50.0					TH
rka.	6	432803	713934	HE Army Corns Engineers	1940	330	84.0					тн
FKA	7	432803	713934	US Army Corps Engineers US Army Corps Engineers		390	100.0					TH
FKA	8	432809	713947	US Army Corps Engineers		310	55.0					TH
FKA	9	432757	713940	US Army Corps Engineers		380	50.0					тн
FKA	10	432811	713942	US Army Corps Engineers		350	350.0				• •	TH
FKW	2	432745	713921	City of Franklin	1964	320		64.0	73.0			
FKW	3	432738	713918	City of Franklin	1964	320		73.0	82.0			
FKW	4	432812	714001	Franklin Dairy	1959	440			100.0		• -	BrW
FKW	9	432819	714047	Block, L.	1958	410	155.0		155.0			BrW
FKW	12	432851	714132	Doherty, W.	1961	440	205.0		205.0			BrW
FKW	14	432751	714137	Fe11, D.	1959	420			100.0			BrW
FKW	15	432752	713950	Furlong, W.	1963	470		50.0	100.0			BrW
FKW	17	432830	714056	Blue	1960	420	126.0	18.0	126.0			BrW
rKW	18	432750	714122	Howard, N.	1959	420			100.0			BrW
rKW	21	432924	713949	Pligga, P.	1961	420		100.0	183.0			BrW
rKW	26	432742	714026	Sylvestrie, M.	1960	430			164.0			BrW
·KW	27	432804	714146	Jurta, J.	1960	450			300.0			BrW

468

77.7

77.7

Bor

81.0 74.8

1988

28 432817 714211 McDonald, J.

Number Copy Copy	Lo		Wa	ter ievei	Use	Maximum Weii yleid	Pumping period	Remarks	
Andover-Continued ANN 1 1 18.6 08-15-88 0					USE	(gailons		nemarks	
Andover-Continued ANN 1 1 18.6 08-15-88 0		-							
ANN						MER	RIMACK COUN	TY	
NANN						And	over—Continu	ed	
NAN	ANW	1	18.6	08-15-88	0			USGS, L, CA	
ANN	ANW				• •				
ANN 23									
NN									
No. No.									
No. No. No	11111	24			**			<u>.</u>	
DBB	ANW	32	20.0	06-20-86	н	100.0	.5	L	
DBA 1 2.0 06-08-89 T	ANW	42	30.0	09-21-87	Н	1.0	1.0	L	
DBB							Danbury		
DBB	DBA	1	2.0	06-08-89	T			USGS, L	
DBB		_			_			_	
DBB 5									
DBB 6									
DBW 12									
DBW 22									
DBW 29	DBW					• •	.5		
DBW 30									
Franklin									
FKA 1 38.0 04-27-89 T USGS, L FKA 2 T T L FKA 3 T L FKA 4 T L FKA 5 T L FKA 6 T T L FKA 7 T L FKA 8 T T L FKA 8 T T L FKA 9 T T L FKA 10 T T L FKA 10 T T L FKW 12 T T L FKW 4 T T L FKW 5 T T L FKW 6 T T L FKW 12 40.0 05-61 GS, L FKW 14 GS, L FKW 15 35.0 07-63 GS, L FKW 18 GS, L FKW 18 GS, L FKW 18 GS, L FKW 18 GS, L FKW 17 2.0 05-60 GS, L FKW 18 GS, L FKW 18 GS, L FKW 17 2.0 05-60 GS, L FKW 18 GS, L FKW 17 2.0 05-61 GS, L FKW 18 GS, L FKW 17 2.0 05-61 GS, L FKW 18 GS, L FKW 21 50.0 12-61 GS, L FKW 27 GS, L	DBW	30	4.1	08-08-89	0			USGS, L	
FKA 2 T L FKA 3 T L FKA 4 T L FKA 5 T L FKA 6 T L FKA 7 T L FKA 8 T L FKA 9 T L FKW 10 T L FKW 3 L FKW 4 GS, L FKW 12 40.0 0561 GS, L FKW 17 2.0 0563							Franklin		
FKA 2 T L FKA 3 T L FKA 4 T L FKA 5 T L FKA 6 T L FKA 7 T L FKA 8 T L FKA 9 T L FKW 10 T L FKW 3 L FKW 4 GS, L FKW 12 40.0 0561 GS, L FKW 17 2.0 0563	FKA	1	38.0	04-27-89	т			USGS, L	
FKA 4 T L FKA 5 T L FKA 6 T L FKA 7 T L L FKA 8 T L L FKA 9 T L L FKW 1 L L FKW 3 L L FKW 3 L L FKW 4 GS, L FKW 12 40.0 05- -61 GS, L FKW 17 2.0 05- -60									
FKA 6	FKA	3			T			L	
FKA 6									
FKA 7 T T T L FKA 9 T T L FKA 10 T T L FKW 2 T T L FKW 3 T T L FKW 4 T T T FKW 9 T T T FKW 12 40.0 0561 T FKW 15 35.0 0763 T FKW 17 2.0 0560 T FKW 18 T FKW 18 T FKW 18 T FKW 18 T FKW 17 50.0 1261 T FKW 26 T FKW 27 T FKW 28 T FKW 27 T FKW 27 T FKW 28 T FKW 27	FKA	5			T			L	
FKA 7 T L FKA 8 T L FKA 9 T L L FKA 10 T L L FKA 10 T L L FKW L FKW 10 L L FKW L FKW 10 L L FKW L FKW 10 L L FKW FKW 10 GS, L L FKW 10 GS, L FKW 15 35.0 07- -63 GS, L FKW 18 GS, L FKW	FKA	6			т			Ť.	
FKA 8 T L FKA 9 T L FKA 10 T L FKW 2 L FKW 3 L FKW 4 GS, L FKW 9 GS, L FKW 12 40.0 05- -61 GS, L FKW 15 35.0 07- -63 GS, L FKW 17 2.0 05- -60 GS, L FKW 15 50.0 12- -61 GS, L FKW 26 GS, L FKW 26 GS, L FK									
FKA 9 T L FKA 10 T L FKW 2 L L FKW 3 L L FKW 4 GS, L L FKW 12 40.0 05- -61 GS, L FKW 14 GS, L FKW 15 35.0 07- -63 GS, L FKW 17 2.0 05- -60 GS, L FKW 18 GS, L FKW 26 GS, L FKW 26 GS, L FKW 27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
FKW 2 L FKW 3 L FKW 4 GS, L FKW 9 GS, L FKW 12 40.0 05 61 GS, L FKW 15 35.0 07 63 GS FKW 15 35.0 07 63 GS, L FKW 18 GS, L FKW 21 50.0 12 61 GS, L FKW 26 GS, L FKW 27 GS, L	FKA	9			T			L	
FKW 3 L FKW 4 GS, L FKW 9 GS, L FKW 12 40.0 0561 GS, L FKW 14 GS, L FKW 15 35.0 0763 GS FKW 17 2.0 0560 GS, L FKW 18 GS, L FKW 21 50.0 1261 GS, L FKW 26 GS, L FKW 27 GS, L	FKA	10			T			L	
FKW 4 GS, L FKW 9 GS, L FKW 12 40.0 05-61 GS, L FKW 14 GS, L FKW 15 35.0 07-63 GS FKW 17 2.0 05-60 GS, L FKW 18 GS, L FKW 21 50.0 12-61 GS, L FKW 26 GS, L FKW 27 GS, L	FKW	2						L	
FKW 9 GS, L FKW 12 40.0 0561 GS, L FKW 14 GS, L FKW 15 35.0 0763 GS, L FKW 17 2.0 0560 GS, L FKW 18 GS, L FKW 21 50.0 1261 GS, L FKW 26 GS, L FKW 27 GS, L		3							
FKW 12 40.0 05 - 61 GS, L FKW 14 GS, L FKW 15 35.0 07 - 63 GS FKW 17 2.0 05 - 60 GS, L FKW 18 GS, L FKW 21 50.0 12 - 61 GS, L FKW 26 GS, L FKW 27 GS, L									
FKW 14 GS, L FKW 15 35.0 07- -63 GS, L FKW 17 2.0 05- -60 GS, L FKW 18 GS, L FKW 21 50.0 12- -61 GS FKW 26 GS, L FKW 27 GS, L									
FKW 15 35.0 07- 63 GS FKW 17 2.0 05- 60 GS, L FKW 18 GS, L FKW 21 50.0 12- 61 GS FKW 26 GS, L FKW 27 GS, L									
FKW 18 GS, L FKW 21 50.0 12- -61 GS FKW 26 GS, L FKW 27 GS, L									
FKW 18 GS, L FKW 21 50.0 12- -61 GS FKW 26 GS, L FKW 27 GS, L				0560				CS I	
FKW 21 50.0 12 - 61 GS FKW 26 GS, L FKW 27 GS, L									
FKW 26 GS, L FKW 27 GS, L									
·									
FKW 28 8.1 06-24-88 O USGS, L	FKW	27					• •	GS, L	
	FKW	28	8.1	06-24-88	0			USGS, L	

Table A-1. Description of selected wells, borings, and springs in the Pemigewasset River Basin, central New

Loc sit num	e	Lat- itude	Long- itude	Owner or user	Year comp- pieted	Eievation above sea ievei (feet)	Depth drilled (feet)	Depth to bottom of casing (feet)	Depth of well (feet)	Type of finish	Depth to bottom of open section (feet)	Type of site
				MI	ERRIMACI	K COUNTY						
				F)	canklin-c	Continued						
FKW	29	432808	713921	City of Franklin	1985	320	122.0		117.0	G	122.0	Wsh
KW KW	31	432753	713921	-	1984	440	122.0		605.0	x	122.0	BrW
'KW	33	432733	714136	Jurta Pisani	1984	420			230.0	X		BrW
								59.0	305.0	X		BrW
'KW	34	432822	713903	Woodward	1985	460 500			225.0	X		BrW
'KW	35	432821	713851	Allyn Construction	1987	500		59.0	225.0	Α.		DIM
KW	36	432817	713848	Allyn Construction	1987	480		39.0	125.0	х		BrW
KW	37	432822	713856	Marceau	1987	500		39.0	185.0	х		BrW
KW	38	432817	714211	Mayo-Smith	1986	580		19.0	180.0	х	- +	BrW
'KW	39	432821	713854	Smith	1987	500		52.0	320.0	х		BrW
'KW	40	432824	713900	Gomes	1986	480		19.0	180.0	x		BrW
1771.7	41	433036	714150	G3 and	1986	420		89.0	485.0	х		BrW
'KW 'KW	41 42	432836 432848	714152 714135	Clark Bennett, B.	1986	420	225.0	89.0	225.0	X		BrW
'KW	43	432830	713853	Middleton	1986	540		49.0	325.0	X		BrW
'KW	44	432824	713858		1986	500		59.0	485.0	X		BrW
'KW	45	432824	714215	Lepene Densch	1986	560		109.0	725.0	X		BrW
VM	#)	432031	/14213	Delisch	1900	300		105.0	723.0	Λ		DI
KW	47	432818	713852	Ambrose, S.	1988	460		62.0	205.0	х		BrW
'KW	48	432653	713943			380		99.0	280.0	X		BrW
KW	49	432703	714003	Nadeau	1988	440		134.0	230.0	x		BrW
'KW	50	432740	714100	Whittemore	1987	420		79.0	280.0	X		BrW
KW	51	432830	713937	US Army Corps Engineers	1989	330	116.0	89.6	92.5	P	92.5	Bor
					Hil	11						
INA	1	433303	714259	US Army Corps Engineers	1989	320	45.0					Bor
INW	2	433133	714322	Town of Hill		505	100.0		40.0			
NW	4	433112	714213	Cohen, S.	1959	434			202.0			BrW
NW	5	433346	714409	Evans, C.	1959	480			135.0			BrW
NW	6	433147	714147	US Army Corps Engineers	1988	329	79.0	57.4	60.3	P	60.3	Bor
t NTC?	7	433340	714147	HC Arms Corns Basins	1000	225	120 4		120.0	Р		Bor
INW		433148	714141	US Army Corps Engineers	1988	335	128.0		120.0 545.0	_		
WAI	8	433030	714506	Miner, A.	1985	1,020	545.0	279.0	545.0 410.0	X		BrW
WAI	9	433025	714443	Pabst, G.	1984	980	410.0	89.0		X X		BrW BrW
INW	15	433350	714439	McGilviary	1988	460		62.0	600.0	Λ		DIV

Local site		Water level		Uee	well Pumping		Demonto	
	re nber	Depth Date		Use	yieid (gaiions	period (hours)	Remarks	
···ui		(feet)	(mm-dd-yy)		per minute)	(Hours)		
					MER	RIMACK COU	INTY	
					Fran	nklin <i>—Conti</i>	nued	
FKW	29	12.2	07-29-85	P	1,100.0	96.0	L, CA	
FKW	31			Н	2.0	.5	L	
FKW	33			H	4.0		L	
rkw	34			Н	19.0	.5	L	
rKW	35	20.0	07-16-87	н	7.0	1.0	L	
rkw	36			н	10.0	1.0	_ L	
KW	37	4.0	05-21-87	н	6.0	1.0	_ L	
'KW	38	30.0	04-26-86	н	6.0	.5	_ L	
KW	39	23.0	04-25-87	Н	4.0	.5	L	
ĸw	40			н			L	
KW	41			н	10.0	.3	_ L	
KW	42			Н		.3	_ L	
KW	43			Н	30.0	.3	L	
KW	44			H	5.0	.3	L	
KW	45			Н	4.0	.3	L	
rKW	47	25.0	01-06-88	н	5.5		L	
KW	48			н			L	
KW	49			н	30.0	.5	L	
KW	50	30.0	10-22-87	н	10.0	.5	_ L	
rkw	51	15.1	05-22-89	0			USGS, L	
						Hill		
INA	1	6.4	05-23-89	T			USGS, L	
INW	2			P	190.0	3.0		
INW	4						GS, L	
INW	5						GS, L	
HNW	6	25.6	06-22-88	0			USGS, L	
HNW	7	22.2	06-23-88	0	• •		USGS, L, CA	
HNW	8			H	• •	.5	L	
WMH	9			Н		.5	L	
HNW	15	50.0	01-20-88	Н	2.0	1.0	L	

APPENDIX B: Stratigraphic logs of selected wells and borings in the Pemigewasset River Basin, central New Hampshire

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire

[Local site number: First two characters are U.S. Geological Survey town code. Third character indicates—A, auger hole or test hole bored for hydrologic information; B, highway bridge boring; W, well. The numbers are sequential numbers for each town. Depth to top: Depth to top of each stratigraphic unit in feet below land-surface datum. Depth to bottom: Depth to bottom of unit, in feet below land-surface datum. Sampling intervals represent when samples were taken. --, indicates no data available]

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Center Harbor
CHW	4	35.0		Bedrock
CHW	16	0 6.0	6.0	Till Bedrock
CHW	18	$\begin{smallmatrix}0\\10.0\end{smallmatrix}$	10.0	Till Bedrock
				New Hampton
NHA	11	0 7.0 11.0	7.0 11.0	Sand, very fine to fine, yellow Gravel Refusal on boulder at 11 feet
NHA	12	2.0 7.0 12.0 23.0	7.0 12.0 23.0	Sand, very fine to fine, some silt, orange Sand, very fine to fine, some gravel, gray-brown Sand, very fine to fine, predominantly fine sand; some gravel Refusal at 23 feet
NHA	13	7.0 12.0 17.0 32.0 34.5	7.0 12.0 17.0 32.0 33.5	Sand, medium to very coarse, predominantly medium; gravel, very fine to fine, tan; some pebbles Sand, medium to very coarse; some fine gravel; pebbles Sand, very fine to medium; some pebbles Sand, very fine to fine, gray to tan Gravel Refusal on bedrock or boulder
NHA	14	2.0 12.0 17.0 22.0 27.5 32.5	12.0 17.0 22.0 27.0 32.5	Sand, fine to medium, tan Sand, very fine to fine, tan Sand, fine to coarse, predominantly medium Sand, very fine to coarse, predominantly medium Sand, very fine to coarse, predominantly fine to medium Refusal at 32.5 feet
ИНА	15	2.0 7.0 12.0 69.0 74.0	7.0 12.0 69.0 74.0	Sand, very fine to coarse, predominantly medium, tan Sand, very fine to fine, gray to tan; some cobbles; some silt Sand, very fine to fine, gray to tan; some cobbles; some silt Sand, very fine to fine; silt Refusal at 74 feet, pegmatite fragments in bit sample
NHA	16	0 7.0 12.0 17.0 37.0 46.0	7.0 12.0 17.0 22.0 46.0	Sand, very fine to medium, predominantly fine, buff Sand and gravel Sand, very fine to medium, predominantly fine; some cobbles Sand, very fine to medium, predominantly fine; some cobbles Sand and silt, very fine, gray; some cobbles Refusal on bedrock at 46 feet
NHA	17	0 5.0 34.0	5.0 34.0 36.0	Sand, fine, brown; some medium to coarse sand Sand, fine, brown to gray; some coarse gravel Sand, fine to coarse, brown; some gravel
NHA	18	0 4.0 8.0 22.0 26.0 30.0 36.0 45.0 56.0	4.0 8.0 22.0 26.0 30.0 36.0 45.0 56.0 58.0	Sand, fine to medium, brown; some coarse sand Sand, fine to coarse, brown; some gravel Sand, fine, brown Sand, fine, brown; some medium to coarse sand Sand, fine, brown; some silt Sand, fine, brown; some medium to coarse sand Sand and silt fine, brown Sand, fine, brown Sand, fine, brown Sand, fine to coarse, brown; some gravel
NHB	2	0 8.0 15.0	8.0 15.0	Sand, organic Till; with boulders Till; end of hole
NHB	3	0 3.0 9.0 25.0 35.0 67.0	3.0 9.0 25.0 35.0 67.0	Sand and gravel Sand, medium; some gravel Sand, fine Sand, coarse Sand, fine Sand, end of hole
ИНВ	4	0 37.0	37.0	Till; with boulders Till; end of hole

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Locai site number		Depth to top (feet)	Depth to bottom (feet)	Lithology			
				GRAFTON COUNTY			
				New Hampton-Continued			
NHB	5	0 5 4 .0	54.0	Sand, fine Sand; end of hole			
NHB	7	0 4.0 24.0 42.0 55.0 62.0	4.0 24.0 42.0 55.0 62.0	Gravel, fine Sand, fine Gravel Sand, fine to medium Sand, silty Sand; end of hole			
NHB	8	0 76.0 90.0	76.0 90.0	Sand, fine to medium Sand, fine to medium; some cobbles Sand; end of hole			
NHB	10	0 1.0 14.0 34.0	1.0 14.0 34.0	Topsoil Gravel Till, sandy, bouldery Till; end of hole			
NHB	11	0 15.0 20.0 49. 0 58.0 66.0	49. 0 58.0	Sand, fine Gravel, sandy Sand, coarse Sand, silty and cobbles Till Till; end of hole			
NHB	12	0 6.0 13.0 40.0 64.0	6.0 13.0 40.0 64.0	sand, fine silt sand, fine to medium sand, coarse sand; end of hole			
NHW	4	5.0					
NHW	5	14.0					
NHW	10	30.0	30.0	Sand and gravel Bedrock			
NHW	12	125.0		Bedrock			
NHW	13	0 100.0		Sand Sand and gravel Till Bedrock			
NHW	15	10.0		Bedrock			
NHW	17	60.0		Bedrock			
NHW	18	120.0		Bedrock			
NHW	19	0 16.0		Sand and gravel Bedrock			
NHW	20	0 85.0		Sand Sand and gravel Bedrock			
NHW	21	0 42. 0	42.0	Till Bedrock			
NHW	23	0 7.0	7.0	Till Bedrock			
NHW	25	62.0	62.0	Sand Bedrock			
NHW	26	0 41. 0	41.0	Sand and gravel Bedrock			
NHW	27	0 30.0	30.0	Till Bedrock			
NHW	29	7.0 37.0 45.0 47.0 57.0	37.0 45.0 47.0 49.0 59.0	Sand, very fine to fine; some silt, tan Sand, very fine to coarse, predominantly fine to medium; some pebbles Gravel Sand, fine to very coarse, predominantly medium, tan Sand, fine to very coarse, predominantly medium to coarse; some fine gravel; trace cobbles			

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Local site number	Depth to top (feet)	Depth to bottom (feet)	Lithology	
				GRAFTON COUNTY

New Hampton-Continued NHW 29-Continued 79.0 89.0 99.0 109.0 119.0 Sand, fine to very coarse, predominantly medium; gravel, fine to coarse; some pebbles Sand, fine to very coarse, predominantly coarse; gravel, fine; some pebbles; cobbles Sand, fine to very coarse, predominantly coarse; gravel, fine; some pebbles; cobbles Sand, fine to very coarse, predominantly medium to coarse; gravel, fine to coarse Sand, fine to very coarse, predominantly medium to coarse; gravel, fine to coarse Sand, very fine to very coarse, predominantly medium to coarse 77.0 87.0 97.0 107.0 Sand, fine to coarse, brown; some gravel to boulders Sand, fine to medium, brown; some coarse sand Sand, fine to medium, brown; some fine to coarse gravel NHW 0 22.0 7.0 26.0 30.0 Sand, fine to medium, brown; some silt, gravel 0 Sand, fine to medium, some coarse sand Sand, fine to coarse, brown; some fine to medium gravel; trace sand Sand, fine, brown; some silt Sand, fine to coarse, brown; some fine to medium gravel NHW 4.0 31 4.0 7.0 12.0 7.0 12.0 20.0 20.0 Sand, fine, brown Sand, fine, brown; some gravel; some silt NHW 90.0 32 Sand 90.0 94.0 Gravel Gravel; end of hole 94.0 Sanbornton Sand, fine to very coarse, predominantly medium to coarse; pebbles Sand, fine to very coarse, predominantly medium to coarse; pebbles Sand, fine to very coarse, predominantly medium Sand, fine to very coarse; pebbles and cobbles Sand, very fine to very coarse, predominantly fine and medium; pebbles and cobbles; Pofusal at 19 foot 0 5.0 7.0 5.0 7.0 9.0 SCA 1 12.0 17.0 Refusal at 19 feet Gravel and sand, predominantly medium to coarse Gravel and fine to very coarse sand, predominantly medium to coarse Sand, very fine to medium, predominantly fine, may be till, refusal at 14.8 feet Refusal on gray stone and granite at 32 feet 0 5.0 12.0 31.0 5.0 9.0 SCA 2 14.0 32.0 37.0 39.0 Cobble 47.0 57.0 67.0 77.0 Gravel; some sand, poorly sorted Gravel; some sand, fine to very coarse; pebbles Gravel; some cobbles; pebbles Gravel; some cobbles and sand Gravel, some cobbles, silt Gravel; end of hole 49.0 59.0 69.0 79.0 87.0 102.0 89.0 Gravel; cobbles and sand Gravel; pebbles and cobbles; refusal at 15 feet SCA 0 5.0 3 15.0 Topsoil Sand, fine Sand, medium to coarse (muck) Sand, fine (muck) Sand, gravelly, silty Refusal on boulders or bedrock 0 1.0 1.0 SCB 1 5.0 15.0 15.0 29.0 29.0 42.0 42.0 SCB 0 Gravel; some boulders Till; with boulders Till; end of hole 4.0 4.0 14.0 14.0 0 SCB 5 1.0 Topsoil 1.0 3.0 8.0 Silt and sand; trace of muck Till, gravelly Bedrock 3.0 8.0 1.0 SCB 6 0 Topsoil Sand, fine 1.0 13.0 13.0 Bedrock SCB 9 0 1 0 Topsoil 1.0 Sand, fine Till, sandy, gravelly Refusal on boulder or bedrock (mica schist) 8.0 8.0 12.0 12.0 10.0 SCW Bedrock 43 22.0 Bedrock SCW 44 SCW 48 10.0 Bedrock

Refusal at 20 feet; tight drilling may be till

20.0

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Sanbornton-Continued
6CW	58	0 7.0 17.0 27.0	17.0 14.0 19.0 29.0	Sand and gravel to small boulders Sand, fine to very coarse, predominantly medium; and gravel Sand, medium to very coarse Sand, very fine to fine; cobble
CW	59	0 17.0 27.0	17.0 19.0 28.5	Sand, predominantly coarse, gravel, cobbles, and boulders Sand, very fine to coarse, predominantly medium Refusal at 28.5 feet. Sand, very fine to very coarse; pebbles and cobbles; poorly sorted
CW	61	3.0		Bedrock
CW	73	0 24.0		Till Clay Bedrock
CW	76	20.0		Bedrock
CW	77	40.0		Bedrock
CW	87	0 140.0		Till Clay Bedrock
CW	90	0 30.0	30.0	Till Bedrock
CW	95	0 30.0	30.0	Sand Bedrock
CW	99	0 9.0	9.0	Sand and gravel Bedrock
CW	100	0 5.0	5.0	Till Bedrock
CW	101	39.0	39.0	Sand and gravel Bedrock
CW	102	0 10.0	 	Sand Till Bedrock
CW	103	68.0		Bedrock
CW	104	50.0		Bedrock
CW	113	0 8.0		Til1 Bedrock
CW	118	$^{0}_{20.0}$	20.0	
CW	119	0 6.0	6.0	Sand and gravel Bedrock
CW	120	0 3.0	3.0	Sand Bedrock
CW	126	0 28.0	28.0	Till Bedrock
CW	128	0 5 4 .0		Sand and gravel Bedrock
CW	129	2.0 27.0	27.0 29.0	Sand, very fine; silt Sand, very fine to very coarse, predominantly medium to coarse; gravel, very fine to fine
CW	135	0 12.0 17.0 27.0 37.0	12.0 14.0 19.0 29.0 39.0	Gravel, cobble sizes to 0.4 feet. Sand, fine to very coarse, predominantly medium, pebbles and cobbles Sand, very fine to very coarse, predominantly medium, few pebbles and cobbles Sand, very fine to medium, predominantly fine to medium Sand, fine to coarse, predominantly medium
		47.0 57.0 58.0	49.0 58.0	Sand, very fine to very coarse, predominantly medium Sand, very fine to fine, broken stone Refusal at 58 feet.
CW	143	0 12.0 17.0	14.0	Gravel and medium to very coarse sand, pebbles and cobbles Sand, very fine to medium Sand, very fine to very coarse, predominantly fine, some silt and cobbles

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local [site number

GRAFTON COUNTY Alexandria 0 3.0 7.0 3.0 7.0 AEA Gravel Sand, medium to very coarse; gravel sizes to 2.25 inches. 13.5 Gravel; refusal at 13.5 feet 13.5 0 2 AEA Sand, fine to very coarse; gravel 14.0 Gravel: refusal at 14 feet 14.0 Sand, very fine to coarse Sand, very fine to medium; some cobbles; pebbles Sand, and gravel Sand, very fine to fine; silt Refusal on bedrock or boulder 0 7.0 3 AEA 12.0 27.0 37.0 38.0 27.0 32.0 AEB 0 2 Gravel and boulders 3.0 23.9 Sand, medium Refusal on boulders or bedrock 23.9 98.0 - -Bedrock AEW 6 7 - -24.0 Bedrock AEW Sand, very fine to coarse; gravel, fine to coarse, predominantly coarse Sand, very fine to very coarse; some silt; gravel, fine to coarse Sand, very fine to very coarse; some silt; some clay Refusal at 35 feet 8 AEW 0 4.0 4.0 27.0 35.0 29.0 0 AEW Clay Sand and gravel Bedrock - -80.0 46.0 - -AEW 11 Bedrock Sand and gravel AEW 16 10.0 10.0 Bedrock 0 74.0 AEW 17 74.0 Bedrock AEW 18 0 20.0 20.0 Sand and gravel Bedrock 0 62.0 62.0 AFW 19 Sand and gravel Bedrock 0 AEW 21 49.0 Sand, fine to coarse, predominantly medium to coarse; gravel, very fine to fine; some cobbles some cobbles Sand, very fine; silt, gray Sand, very fine; silt, gray Sand, fine to very coarse, predominantly medium to coarse, orange; some pebbles Sand, very fine to coarse, predominantly medium; some pebbles Sand, very fine to very coarse; gravel, fine to coarse Sand, fine to coarse, predominantly medium; gravel fine to very coarse Sand, fine to very coarse, predominantly medium and coarse, pebbles and cobbles 57.0 **6**7.0 69.0 77.0 87.0 107.0 89.0 109.0 119.0 Ashland 0 27.0 57.0 97.0 7.0 29.0 59.0 APA Sand, fine, tan Clay, gray Silt; very little clay, light gray Sand, very fine; with silt, light gray Sand; end of hole 99.0 107.0 Sand, fine, tan Sand, fine, tan Sand, medium, dark brown Sand, very coarse and gravel; predominantly gravel Silt and clay, predominantly silt, light gray 7.0 12.0 17.0 2.0 APA 2 12.0 22.0 23.0 27.0 37.0 47.0 57.0 29.0 39.0 Silt and clay; predominantly clay; light gray Silt, light gray Silt, light gray Silt, light gray Silt, light gray Sand, very fine, light gray 49.0 67.0 69.0 Sand, very fine, light gray Sand, very fine, light gray Till?, end of hole 77.0 79.0 97.0 123.0 99.0 sand, very fine to medium, predominantly very fine to fine, reddish buff to buff sand, very fine to coarse, predominantly fine, buff; some pebbles 2.0 APA 10 39.0

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

|--|

GRAFTON COUNTY Ashland-Continued APA 10-Continued Sand, very fine to fine, buff; Silt Sand, very fine to very coarse, predominantly coarse; some silt; cobbles Sand, very fine to medium, predominantly fine; some silt Sand, very fine to medium, buff; some silt Bottom of hole 59.0 79.0 107.0 47.0 77.0 87.0 107.0 109.0 119.0 APB 0 5.0 Sand and gravel Sand, yellow Sand, firm; and gravel, fine Sand and gravel; end of hole 53.0 68.0 68.0 4.0 8.0 20.0 51.0 55.0 66.0 70.0 74.0 0 APB Sand; trace of muck Sand, fine to medium Sand, fine to coarse; and gravel Sand, fine to medium 4.0 8.0 20.0 51.0 55.0 66.0 Sand, gravelly Sand, fine; trace silt Sand, fine to coarse 70.0 Til1 74.0 Refusal on boulder or Bedrock APB 0 Sand, fine 40.0 45.0 50.0 45.0 50.0 55.0 Sand, medium Sand, coarse; trace gravel sand, fine Sand, medium; trace gravel 65.0 95.0 Grave1 0 46.0 Sand, coarse; little gravel Sand, sharp, yellow Sand; end of hole APB 11 46.0 83.0 0 Topsoil Sand, fine to medium; trace silt Sand; end of hole APB 12 95.0 95.0 0 APB 14 1.0 Topsoil 1.0 14.0 36.0 39.0 14.0 36.0 39.0 42.0 Sand, coarse Sand, fine to medium sand, coarse sand, fine 42.0 51.0 51.0 Sand, medium-coarse Sand; end of hole 15.0 35.0 55.0 80.0 n APW 1 Sand 15.0 Gravel 35.0 55.0 Sand, medium; some pebbles Gravel; some pebbles Sand, medium; some gravel 80.0 90.0 90.0 100.0 102.0 Gravel coarse; some pebbles Sand and gravel 100.0 APW 0 22.0 Sand, medium End of hole Sand, medium 20.5 APW 3 20.5 End of hole APW 8 0 75.0 75.0 Til1 Bedrock Til1 APW 16.0 16.0 Bedrock Sand, medium-coarse; gravel, fine-coarse Sand, fine-coarse; gravel, fine Sand, medium-coarse; gravel, fine-coarse Sand, fine-coarse; gravel, fine Sand, coarse; little gravel Sand, medium-coarse; gravel, fine-coarse; some boulders Sand, medium-coarse; gravel, fine-coarse; some boulders; red-brown End of hole APW 10 0 7.5 7.5 15.0 51.0 58.0 15.0 51.0 58.0 86.0 86.0 95.0 95.0 0 120.0 Sand and gravel APW 11 APW 12 36.0 Till 36.0 Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Bristol
APW	13	0 5.0	5.0	Till Bedrock
B2A	1	0 37.0 47.0	37.0 39.0 49.0	Sand, very fine to fine; light buff Sand, very fine to fine, buff and gray Sand, very fine to fine; some medium; gray
		77.0 91.0 96.0	79.0 96.0	Sand, very fine to medium; pebbles; silty Till, clayey silt matrix; pebbles Till; refusal at 96 feet
B2A	2	1.0 7.0 17.0 27.0	9.0 17.0 19.0 29.0	Sand and gravel Silt Silt Sand, very fine to medium, pebbles, gray; tight
B2A	2	37.0 47.5 57.0 58.5	38.0 49.0 58.5	Sand, very fine to medium; layered Sand, very fine to medium; with silt layers Silt and very fine to fine sand, gray; clayey compacted End of hole
B2A	3	0 3.5 14.0	3.5 14.0 66.5	Loam Sand and grave1 Sand and clay
B2A	4	0 2.5 13.0 19.9	2.5 13.0 20.0 20.0	Sand loamy Sand, fine Sand and gravel Bedrock
B2A	5	0 2.5 13.0 22.5	2.5 13.0 22.5 58.5	Sand, loamy Sand, fine Sand and gravel some coarse Clay
B2A	6	0	8.0	Sand and clay
B2A	7	0	30.0	Sand, fine
B2A	8	0	12.5	Sand and clay
B2B	1	0 3.0	3.0	Sand; gravel and boulders Refusal on boulders or bedrock
B2W	18	0 3.0 4.0 7.0 12.0 19.0 22.0 27.0	3.0 4.0 7.0 12.0 19.0 22.0 27.0 53.0	Top soil Sand and gravel Sand, medium Sand and gravel Sand, medium Sand, coarse Sand, coarse Sand, fine Gravel
B2W	23	71.0		Bedrock
B2W	24	10.0		Bedrock
B2W	25	10.0		Bedrock
B2W	26	63.0		Bedrock
B2W	27	168.0		Bedrock
B2W	28	132.0	• •	Bedrock
B2W	29	10.0		Bedrock
B2W B2W	30 31	125.0		Bedrock Redrock
B2₩ B2₩		23.0		Bedrock Redrock
B2W B2W	33 34	5.0		Bedrock
B2W		174.0		Bedrock
B2W	36	0 10.0 19.0 40.0 55.0 60.0 75.0	19.0 40.0 55.0 60.0	Sand, fine Gravel, medium Sand, fine, silty; clay Sand, fine Sand, fine Sand, fine to medium Sand, medium; gravel End of hole

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Bristol-Continued
B2W	37	0 39.0	39.0	Till Bedrock
B2W	39	0 7.0	7.0	Till Bedrock
B2W	40	0 4 5.0	45.0	Sand Bedrock
B2W	41	0 1 4 0.0	140.0	Sand and gravel Bedrock
B2W	42	70.0		Bedrock
B2W	43	0 6.0	6.0	Sand and gravel Bedrock
B2W	44	0 120.0	120.0	Other Bedrock
B2W	45	0 82.0	82.0	Sand and gravel Bedrock
B2W	46	0 12.0	12.0	Till Bedrock
B2W	48	273.0		Bedrock
B2W	49	156.0		Bedrock
B2W	50	0 65.0		Sand Sand and gravel Bedrock
B2W	51	0 10.0 19.0 25.0 30.0 35.0 40.0 56.0 63.0 75.0	60.0 70.0 75.0	Sand, fine, brown Gravel, medium, brown Sand, fine, brown Sand, silty, brown Sand, fine, brown Sand, fine, brown Sand, fine, brown Sand and gravel brown Gravel medium, brown Sand, fine, brown Sand, fine, brown
B2W	52	0 3.0 15.0 37.0 40.0	15.0	Peat Sand and gravel Sand and clay Sand and gravel Sand and gravel Sand and gravel brown
				Bridgewater
BYA	5	0 17.0 37.0 67.0 77.0	17.0 37.0 59.0 69.0 79.0	Sand, very fine to fine, tan Sand, very fine to medium, predominantly fine to medium, tan Sand, very fine to medium, gray Sand, very fine to fine, predominantly very fine; silt, gray; some clay Till; some sand; cobbles
BYA	6	7.0 27.0 37.0 47.0	19.0 29.0 38.0 49.0	Sand, fine to coarse, predominantly medium, buff; some gravel; some cobbles Sand, fine to coarse, predominantly coarse Sand, very fine to coarse; some cobbles Sand, fine to very coarse, predominantly medium to coarse; gravel, fine to very coarse; some cobbles
		50.0		Gravel, refusal at 50 feet.
ВУА	7	0 4.0 9.0 14.0 19.0 19.5 24.0 29.0	1.5 5.5 10.5 15.5 19.5 20.5 25.5 30.5	Sand, fine, brown, loose; trace silt Sand, fine to medium, brown, dense Sand, fine, brown, dense; trace silt Sand, fine, brown, dense; trace silt Sand, fine, brown, dense; trace silt Sand, fine, gray to brown, dense; some silt Sand, fine to medium, brown, dense; trace silt Sand, fine, gray to brown, dense; some silt Sand, fine, brown, dense; some silt
BYA	8	4.0 9.0 14.0 19.0	5.5 10.5 15.5 20.5	Sand, fine to coarse; some gravel Sand, fine to coarse; trace gravel Sand, fine to coarse; trace gravel Sand, fine to coarse; trace gravel

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire–Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Bridgewater- <i>Continued</i>
ВУА	9	0 5.0 20.0	2.0 7.0 22.0	Sand, medium to fine, brown, dry; little gravel Sand, medium to fine, brown, dry; gravel, fine to coarse Sand, medium to coarse, brown, wet; trace gravel, fine to medium
вув	1	0 8.0 27.0 43.0	8.0 27.0 43.0	Gravel Sand and cobbles Till, sandy Refusal on boulders or bedrock
BYW	1	52.0		Bedrock
BYW	7			Bedrock
BYW	10	76.0		Bedrock
BYW	11	13.0		Bedrock
BYW	14	0 120.0	120.0	Till Bedrock
BYW	16	230.0		Bedrock
BYW	18	0 30.0	30.0	Sand and gravel Bedrock
BYW	22	0 10.0	10.0	Till Bedrock
BYW	23	0 48.0	48.0	Sand and gravel Bedrock
BYW	24	0		Sand and gravel Sand and gravel
BYW	25	0		Sand and gravel
BYW	30	0		Sand Sand and gravel Sand
				Sand and gravel
BYW	31	0		Sand and gravel
BYW	33	0		Sand and gravel
BYW	34	0		Sand and gravel
BYW	35	0		Sand and gravel
BYW	36	0		Sand and gravel
				Sand and gravel
BYW	37	0 50.0	50.0	Sand and gravel Bedrock
BYW	39	0		Sand and gravel
				Sand Sand gravel
BYW	41	0 60.0 65.0 75.0 85.0 90.0	60.0 65.0 75.0 85.0 90.0	Sand and gravel fine to coarse Gravel, fine to medium Sand and gravel fine to medium Sand fine to medium; gravel, fine Sand and gravel fine to coarse Sand and gravel fine to coarse
BYW	42	0	138.0	Sand and gravel
				Campton
CBA	1	0 2.0 4.0 5.0 8.0	4.0 5.0	Sand, fine to coarse, predominantly medium, buff colored Gravel and sand Sand, fine to coarse, predominantly medium, buff colored Gravel, small cobbles, sand, medium to coarse Sand and gravel; refusal at 8 feet

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site numb		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Campton-Continued
СВВ	1	9.0 17.0 36.0 50.0 58.0 68.0	17.0 36.0 50.0 58.0 68.0	Sand, fine to medium
		71.0		Refusal at 71 feet
СВВ	2	0 20.0 60.0 95.0 100.0	60.0 95.0	Gravel Sand, fine Sand, coarse Till, sandy Refusal, bedrock or boulder
CBB	3	0 14.0 80.0 115.0	14.0 80.0 115.0	Gravel Sand, fine Sand, medium to coarse Refusal, on bedrock or boulder
СВВ	4	0 5.0 18.0 20.0 53.0 55.0	20.0 53.0	Sand Sand, medium gravel Sand, medium Gravel; with stones Refusal on bedrock or boulder
CBB	5	0 8.0 12.0 40.0 125.0	12.0 40.0	Sand Gravel Sand, medium to coarse Sand, fine Refusal on boulders or bedrock
СВВ	6	0 6.0 14.0 22.0 50.0	14.0 22.0	Sand, coarse gravel Sand, fine Sand, fine with silt Bottom of hole
СВВ	7	0 17.0 38.0	17.0 37.9	Gravel Gravel sandy Bottom of hole
СВВ	8	0 5.0	4.9	Gravel coarse with boulders Refusal on bedrock
СВВ	9	0 6.0 22.0 35.0 40.0 45.0 115.0 135.0	22.0 35.0 40.0 45.0 115.0 135.0	Gravel sandy, brown Sand, fine silty; with some gravel Sand, coarse, brown Sand, fine to medium Sand, fine Gravel sandy, brown Sand, fine to medium Sand, fine to medium Sand, fine Refusal on bedrock or boulders
СВВ	10	0 9.0	8.9	Sand, silty; some gravel Refusal on bedrock
СВВ	11	0 4.0 6.0	6.0	Sand, Coarse Sand; some gravel Hardpan; refusal at 13 feet
СВВ	12	0 9.0	8.9	Till sandy; with boulders Refusal on bedrock or boulder
свв	13	0 10.0	9.9	Gravel, sandy Refusal on bedrock or boulder
СВВ	14	0 3.0 9.0	3.0	Gravel Gravel, sandy Bedrock or boulder
СВВ	16	0 10.0 20.0 30.0 50.0 58.0	30.0 50.0	Gravel Sand fine

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire–Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology						
				GRAFTON COUNTY						
		Campton-Continued								
СВВ	17	0 1.0 15.5	1.0 15.5	Topsoil Sand, medium Refusal on boulder or bedrock						
СВВ	18	0 10.0 35.0 50.0 92.0 103.0	35.0 50.0 92.0	Gravel Sand, fine Gravel Sand, fine Till Refusal on boulders or bedrock						
CBB	19	0 10.0 20.0 70.0		Sand, fine Gravel Sand, fine Sand, fine with stones						
CBW	1	0 2.0 7.0 20.0 27.0	2.0 7.0 20.0 22.0 29.0	Sand, fine; silt, brown Sand, very fine to coarse, predominantly fine to medium; scattered cobbles Sand, very fine to medium, predominantly fine to medium Sand, very fine to medium, predominantly fine; light buff color Sand, predominantly very fine, light buff						
		37.0 47.0 67.0 77.0 87.0	39.0 59.0 69.0 87.0 89.0	Sand, predominantly fine to medium; clayey silt Sand, predominantly very fine; with silt Sand, fine to medium; predominantly medium, light buff Sand, very fine, with silt Sand; very fine with silt Sand, end of hole						
CBW	2	0 9.0 20.0		Sand, very fine to fine, predominantly fine Gravel; small cobbles; sand, fine to very coarse Sand and gravel; refusal at 20 feet						
CBW	3	0 12.0 42.0 45.0	37.0	Gravel and sand Gravel, very fine to fine; sand, coarse to very coarse Sand, coarse to very coarse; gravel, very fine Sand and gravel; end of hole						
CBW	4	0 22.0 47.0 57.0 67.0 79.0 80.0 87.0 107.0 114.0	37.0 57.0 59.0 69.0 80.0 81.0 89.0	Sand, predominantly coarse to very coarse; gravel, very fine to fine, blackish brown color Sand, fine to medium, brown, gravel, very fine Sand, coarse to very coarse, light brown, gravel, very fine Sand, medium to very coarse, predominantly coarse, light brown, gravel, very fine Sand, medium to coarse, predominantly medium Sand, medium to very coarse Sand, very fine, with silt Sand, medium to very coarse, predominantly medium, gray Sand, medium to very coarse, gray Till; slow and difficult drilling; bedrock at 117.5 feet						
CBW	21	104.0		Bedrock						
CBW	22	78.0		Bedrock						
CBW	24	40.0		Bedrock						
CBW	27	5.0		Bedrock						
CBW	32	50.0		Bedrock						
CBW	33	7.0 17.0 27.0 37.0 47.0	9.0 19.0 29.0 39.0 49.0	Sand, fine to very coarse, predominantly medium and coarse Sand, fine to very coarse, predominantly fine to medium Sand, very fine to very coarse Sand, very fine to very coarse, predominantly medium and coarse Sand, very fine to fine; with silt						
		57.0 67.0 77.0 100.0		Sand, very fine to fine; with silt Sand, very fine to fine; with silt Sand; clayey silt Till, tight drilling at 100 feet; end of hole at 103.5 feet						
CBW	34	5.0 17.0 22.0	9.0 19.0 24.0	Sand, medium to very coarse; gravel, fine to very fine Sand, medium to very coarse; gravel, very fine Sand, fine to very coarse, predominantly medium and coarse; gravel, very fine to fine						
		27.0		Sand, fine to very coarse, predominantly medium and coarse; gravel, very fine to fine						
		37.0 47.0 57.0 67.0	49.0 59.0	Sand, fine to very coarse, predominantly medium; gravel, very fine to fine Sand, fine to very coarse, predominantly medium; gravel, very fine to fine Sand, very fine to very coarse, predominantly medium Sand, fine to very coarse; little very fine to fine gravel						

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site numb		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Campton-Continued
CBW	34-0	92.0 107.0 117.0 137.0	94.0 109.0 119.0	Sand, very fine to coarse, predominantly fine to medium Sand, very fine to very coarse, predominantly medium to coarse Sand, fine to very coarse, predominantly medium to coarse; gravel, very fine to fine Sand and gravel; end of hole
CBW	36	38.0		Bedrock
CBW	38	7.0		Bedrock
CBW	39	0 20.0	20.0	Till Bedrock
CBW	40	0 124.0		Sand and gravel Clay Bedrock
CBW	41	0 28.0	28.0	Sand Bedrock
CBW	42	90.0		Bedrock
CBW	44	0 15.0	15.0	Till Bedrock
CBW	45	0 142.0	142.0	Sand Bedrock
CBW	47	0 95.0	95.0	Sand and gravel Bedrock
CBW	48	0 85.0	85.0	Sand and gravel Bedrock
CBW	50	0 85.0	85.0	Sand and gravel Bedrock
CBW	52	0 28.0	28.0	Sand and grave1 Bedrock
CBW	53	0 48.0	48.0	Sand and gravel Bedrock
CBW	54	0 22.0	22.0	Till Bedrock
CBW	55	0		Till Sand Clay Bedrock
CBW	56	0 20.0		Till Bedrock
CBW	59	105.0		Bedrock
CBW	60	0 210.0	210.0	Other Bedrock
CBW	61	0 170.0		Other Bedrock
CBW	62	113.0		Bedrock
CBW	64	18.0		Bedrock
CBW	65	0 30.0	30.0	Sand and gravel Bedrock
CBW	66	0	110.0	Sand and gravel
CBW	67	0 10.0	10.0	Till Bedrock
CBW	68	0 7.0 14.0 21.0 28.0	7.0 14.0 21.0 28.0 35.0	Sand, fine to coarse, brown Sand, fine to coarse Sand, medium to coarse; gravel, fine Sand, medium to coarse; gravel, fine Sand, fine to coarse; brown
		35.0	42.0	Sand, medium to coarse, some gravel

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Local site number	Depth to top (feet)	Depth to bottom (feet)	Lithology		
				GRAFTON COUNTY	

				Campton-Continued
CBW	68–C	ontinued 42.0 49.0 53.0 70.0	49.0 53.0 70.0	Sand, fine to medium, brown; some gravel sand, fine to coarse, Brown sand, fine, brown; some silt end of hole
CBW	69	0 7.0	7.0 14.0	Sand, fine to medium, some boulders Sand, medium to coarse, brown
		14.0 21.0 28.0 35.0 42.0	21.0 28.0 35.0 42.0 46.0	Sand, medium to coarse, brown Sand, medium to coarse, brown; some gravel Sand, medium to coarse, brown; some gravel Sand, medium to coarse, brown Sand, fine to medium, brown; refusal at 46.0 feet
CBW	70	0 6.0 19.5 33.0	6.0 19.5 27.0 49.0	Brown Sand Sand, fine to coarse, brown; fine to medium gravel; trace silt Sand, fine to coarse, brown; some coarse Sand, fine to medium, brown; fine gravel; some silt
CBW	71	0 5.0 16.0 23.0 28.0 37.0 46.0 49.0	5.0 16.0 23.0 28.0 37.0 46.0 49.0	Sand, fine to coarse, brown Sand, fine to coarse, brown; fine to medium gravel Sand, fine to coarse, brown; fine to medium gravel; some silt Sand, fine to coarse, brown; fine to medium gravel Sand, fine to coarse, brown; fine to medium gravel; some silt Sand, fine to coarse, brown; fine to medium gravel; some silt Sand, fine to coarse, brown; fine gravel Till
CBW	72	0 4.0	4.0 45.0	Sand, fine to coarse, brown; cobbles, gravel Sand, fine to coarse, brown
CBW	73	0 5.0 46.0	5.0 46.0 49.0	Sand, fine to coarse; cobbles; boulders Sand, fine to coarse, brown Sand, fine to medium, brown
CBW	74	0 48.0	48.0 56.0	Sand, fine to coarse, brown Sand, fine to medium, brown
CBW	76	0 9.0 27.0 42.0 51.0	9.0 27.0 42.0 51.0 60.5	Sand, fine to coarse, brown; fine to medium gravel Sand, fine to coarse, brown Sand, fine to coarse, brown; fine to medium gravel Sand, fine to coarse, brown; fine gravel Sand, fine; some silt, brown
CBW	77	0 26.0 33.0	26.0 33.0 41.0	Sand, fine to coarse, brown; fine to medium gravel Sand, fine to medium, brown; some gravel Sand, brown; some gravel and silt
CBW	78	0 7.0 18.0 32.0 36.0	7.0 18.0 32.0 36.0	Fine to coarse Sand; some gravel Sand, fine to coarse, brown; some gravel Sand, fine to medium, brown Sand and gravel, brown; some silt Till
CBW	79	0	8.0	Boulders and sand
CBW	80	0 14.0 21.0 28.0 32.0	14.0 21.0 28.0 32.0 35.0	Sand and gravel; hard packed sand Sand fine to coarse; hard packed Sand fine to medium; silty Sand fine to coarse; hard packed Sand fine; silty
CBW	81	0 18.0	18.0	Sand and gravel Bedrock
CBW	83	0 25.0	25.0 325.0	Sand Bedrock
CBW	84	0 45.0	45.0	Medium to coarse sand and gravel, brown; some cobbles End of hole
CBW	85	0 10.0 20.0 30.0 45.0	10.0 20.0 30.0 45.0	Medium to coarse sand with large gravel and cobbles, brown Medium to coarse sand and gravel, brown Fine to coarse sand and medium gravel Medium to coarse sand, large gravel and cobbles, brown End of hole
CBW	86	0 60.0	60.0 565.0	Sand and gravel Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numb		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Dorchester
DIB	1	0 21.0 25.0	21.0 25.0	Gravel, sandy with boulders Till Refusal on boulder or bedrock
DIB	2	0 15.0	15.0	Till, with boulders Till; end of hole
DIB	3	0 2.0 14.0	2.0 14.0	Topsoil Till with boulders Till
DIW	1	47.0		Bedrock
DIW	2			Bedrock
DIW	5	15.0		Bedrock
DIW	6	100.0		Bedrock
DIW	8	7.0		Bedrock
DIW	9	7.0		Bedrock
				Grafton
GQB	1	0 5.0 11.0 20.0 25.0 33.0 45.0	5.0 11.0 20.0 25.0 33.0 44.9	Gravel Gravel with silt Till sandy, gray Till dense, gray Sand silty Granite End of hole
GQB	2	0 0.3 1.2	0.3 1.2 4.0	Topsoil Sand, fine, silty, Loamy Sand, fine to coarse and gravel, fine to coarse, cobbly; trace silt; occasional boulders Bedrock
G QW	1	13.0		Bedrock
G Q₩	2	24.0		Bedrock
GQ W	3	30.0		Bedrock
GQ W	4	14.0		Bedrock
g QW	6	60.0		Bedrock
GQ W	7	25.0		Bedrock
G QW	8	8.0		Bedrock
GQW	10	0 70.0		Sand and gravel Till Bedrock
G QW	11	0 90.0	90.0	Sand Bedrock
GQW	12	0 8.0	8.0	Sand Bedrock
G Q₩	13	0		Sand and gravel
g QW	15	0 50.0	50.0	Sand Bedrock
G QW	17	0 13.0	13.0	Sand and gravel Bedrock
GQW	19	30.0	30.0	Sand and gravel Bedrock
GQ W	20	0 5 2. 0	52.0	Clay Bedrock
G QW	21	0 50.0	50.0	Clay

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Grafton-Continued
GQW	22	35.0		Bedrock
g QW	23	0 95.0	95.0 445.0	Sand
g QW	24	0 4 5.0	45.0 50.0	Clay
		50.0 64.0 69.0	64.0 69.0 245.0	Gravel Clay Bedrock
GQW	25	0 50.0	50.0 385.0	Sand and gravel Bedrock
G QW	26	0 90.0	90.0 3 4 5.0	Sand Bedrock
GQ W	27	0 98.0	98.0 565.0	Sand Bedrock
G QW	28	0 51.0	51.0 142.0	Gravel Bedrock
GQ W	29	0 58.0	58.0 225.0	Gravel Bedrock
				Groton
GXB	1	0 16.0	16.0	Gravel and boulders, silty Refusal on boulders or bedrock
GXB	2	7.0 23.0 41.0 70.0	23.0 41.0 70.0	Gravel Sand Sand cobbles Refusal on boulder or bedrock
GX W	1	0 23.0	23.0	Sand and gravel Bedrock
GX W	3	0 18.0	18.0	Till Bedrock
GXW	4	0 3.0	3.0	Sand Bedrock
GX W	9	0 4.0	4.0	Till Bedrock
				Hebron
HLB	1	0 30.0	30.0	Sand Sand
HLB	2	0 10.0 20.0 27.0 57.0 90.0 95.0	10.0 20.0 27.0 57.0 90.0 95.0	Sand and silt; boulders Sand, silt and clay Sand, fine to medium Sand, medium to coarse; trace of grave1 Sand, fine to medium, very dense (till?) Till Refusal on boulder or bedrock
HL W	1	0 22.0 27.0 57.0 67.0	19.0 23.0 49.0 60.0 69.0	Sand, fine to very coarse, predominantly medium, brown Sand, very fine to very coarse, predominantly fine to medium, gray Sand, very fine to fine, predominantly fine to medium; some silt; some clay Sand, very fine to fine, brown to gray; some silt; clay Sand, very fine to coarse, predominantly medium to coarse, tan
		77.0 87.0 97.0 107.0 117.0	79.0 89.0 99.0 109.0 127.0	Sand, medium to coarse, predominantly coarse, brown Sand, medium to coarse, predominantly coarse, brown; some pebbles Sand, medium to very coarse, tan; some gravel; cobbles Sand, medium to coarse, predominantly coarse; gravel, fine; some pebbles Sand, medium to very coarse, predominantly medium to coarse; pebbles; cobbles
HL W	2	0 7.0	7.0 29.0	Silt, very fine to fine, brown Sand, fine to very coarse, predominantly medium to coarse; some gravel; some pebbles
HLW	3	27.0		Bedrock
HLW	6	12.0	+ +	Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Hebron-Continued
HLW	9	136.0		Bedrock
HLW	10	52.0		Bedrock
HLW	16	80.0		Bedrock
HLW	17	0 10.0	10.0	Till Bedrock
HLW	22	0 11.0	11.0	Sand Bedrock
HLW	25	0 13.0	13.0	Till Bedrock
нLW	26	30.0		Bedrock
HLW	28	61.0		Bedrock
HLW	35	0 27.0	27.0	Till Bedrock
HLW	37	0 9.0	9.0	Sand and gravel Bedrock
HLW	39	43.0		Bedrock
HLW	40	44.0		Bedrock
				Holderness
HRA	1	0 20.0 50.0 80.0 90.0	90.0	Sand, fine, brown Sand, fine; some silt Silt; trace clay Sand, brown; some silt Silt, gray
HRA	2	0 21.7	21.7 87.5	Sand, fine to medium, brown; some gravel Sand and clay, fine, gray
HRB	1	2.0 6.0 15.0 21.0 26.0 51.0	6.0 15.0 21.0 26.0 51.0 74.0	Sand and silt, fine Sand, medium to coarse Gravel Sand, fine Sand and silt, fine Sand and silt, fine
HRB	4	0 10.0 30.0 40.0		Sand, Fill Sand, fine Till, sandy Refusal on boulder or bedrock
HRB	6	0 1.0 15.0 20.0 32.0 46.0 83.0	15.0 20.0 32.0 46.0 83.0	Topsoil Sand, fine; some wood Gravel Sand, fine Silt and sand, fine Silt, sand and cobbles Refusal on boulder or bedrock
HRB	7	0 9.0 14.0 22.0 37.0 42.0	9.0 14.0 22.0 37.0 42.0 49.9	Sand, coarse Sand, medium Sand, coarse with gravel Sand, fine Sand, coarse with fine gravel Sand, with coarse gravel
HRW	1	2.0 7.0 12.0 27.0 37.0 47.0 48.0 57.0 67.0 87.0 97.0	29.0 39.0 48.0 49.0 59.0 69.0	Sand, very fine to fine; predominantly fine Sand, coarse; with few pebbles; light tan Sand, coarse to very coarse, predominantly coarse; with pebbles Silt; little very fine sand, light gray Clay and silt, light gray Sand, coarse to very coarse, predominantly very coarse; some gravel and pebbles Silt, very fine, light gray Gravel, very fine to fine; and sand, coarse to very coarse Sand, coarse; with few pebbles Sand, coarse; with few pebbles Sand, coarse to very coarse, predominantly very coarse; some gravel Sand, medium to coarse, predominantly medium, tan colored Till, encountered rough drilling at 90 feet, refusal at 97.5 feet

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– *Continued*

Loca site numl		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Holderness-Continued
HRW	2	2.0 7.0 12.0	7.0 12.0	Sand, very fine to fine, predominantly fine Sand, coarse; with few pebbles Sand, coarse to very coarse, predominantly coarse; end of hole
HRW	11	18.0		Bedrock
HRW	12	25.0		Bedrock
HRW	15	37.0		Bedrock
HRW	16	42.0		Bedrock
HRW	17	24.0		Bedrock
HRW	19	37.0		Bedrock
нRW	20	52.0		Bedrock
HRW	21	17		Bedrock
HRW	24	60.0		Bedrock
HRW	25	25.0		Bedrock
HRW	26	22.0		Bedrock
HRW	28	24.0		Bedrock
HRW	29	0 8.0	8.0	Till Bedrock
HRW	30			
HRW	31	0 50.0	 	Sand and gravel Till clay, hardpan Bedrock
HRW	33	0 13.0	13.0	Till Bedrock
HRW	35	0 64.0	64.0	Sand and gravel Bedrock
HRW	38	$\begin{array}{c} 0 \\ 72.0 \end{array}$	72.0	Clay Bedrock
HRW	39	18.0		Bedrock
HRW	41	0 2.0	2.0	Till Bedrock
HRW	42	0 16.0	16.0	Till Bedrock
HRW	48	0 7.0	7.0	Sand and gravel Bedrock
HRW	51	0 28.0	28.0	Sand Bedrock
HRW	56	0 70.0		Till Clay Bedrock
HRW	58	0 15.0	15.0	Sand and gravel Bedrock
HRW	57	55.0		Sand Till Clay Bedrock
HRW	59	0		Till Bedrock
HRW	61	0 50.0		Till Bedrock
HRW	63	0 1 4 .0	14.0	Sand and gravel Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numl		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Holderness-Continued
HRW	64	7.0 12.0 17.0 22.0 26.0	12.0 17.0 19.0 25.0	Sand, very fine to medium, buff Sand, very fine to coarse, predominantly fine to medium, red to buff Sand, very fine to coarse, predominantly fine to medium Till Refusal on bedrock or boulder
HRW	65	0 15.0 20.0 50.0 70.0 85.0 90.0	15.0 20.0 50.0 70.0 85.0 90.0 118.0	Sand and gravel brown Sand, fine, brown; some silt Silt, gray Sand, medium, brown; some gravel Sand, fine, Brown Silt, fine, gray
HRW	67	3.0 8.0 27.0 37.0 47.0 57.0 67.0 77.0	8.0 13.0 29.0 39.0 49.0 59.0 69.0	Sand, very fine to fine, predominantly fine Sand, fine to medium, predominantly medium Clay, with silt, light gray Silt and clay Silt and clay Silt and clay Silt and some stratified layers of clay Silt and very fine sand End of hole
				Lincoln
LKA	1	0 18.0 28.0 37.0	18.0 28.0 37.0	Sand, brown, well-graded; some large cobbles Sand, coarse; some silts and angular gravel Sand, fine to medium; some silts and medium to coarse gravel Sand; end of hole
LKA	2	0	36.0	Sand, well-graded; and gravel; some large cobbles
LKA	3	0 10.0 13.0 17.0	10.0 13.0 17.0	Sand, fine; some large cobbles Sand, fine, brown; some silts and angular gravel Sand, well-graded and gravel; some silts and large cobbles Till; refusal
LKA	4	0 17.0 22.0	17.0 22.0	Sand, coarse; some fine sand and angular gravel Sand, fine, brown; some large angular gravel Till; refusal
LKA	5	0 18.0 28.0 40.0	18.0 28.0 40.0	Gravel; some silt and boulders Sand, fine to medium; some silt Till, sandy Till; end of hole
LKA	6	0 20.0 30.0 60.0	20.0 30.0 60.0	Gravel; some boulders and silt Sand, fine to medium; some silt Till, sandy Till; end of hole
LKA	7	0 10.0 14.0		Sand, medium to coarse; and gravel Sand, medium and gravel; some silt Sand and gravel; end of hole
LKB	1	0 25.0	25.0	Gravel End of hole
LKB	2	0 14.0	14.0	Gravel with boulders Refusal on bedrock or boulder
LKB	3	0 25.0	25.0	Gravel; end of hole
LKB	4	0 6.0 25.0	6.0 25.0	
LKB	5	0 8.0 29.0 45.0	8.0 29.0 45.0	Sand, fine Sand, gravelly with cobbles and boulders Sand, fine; with cobbles and boulders Refusal on bedrock or boulder
LKB	6	0 4.0	4.0	Gravel Refusal on bedrock
LKB	7	0 15.0		Gravel Till, silty with boulders, end of hole

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site num		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Lincoln—Continued
LKB	8	0 5.0	5.0 15.0	Gravel, brown; little sand; trace silt; roots; cobbles Sand, silty, fine to medium, gray; little gravel; trace coarse sand; cobbles; boulders
		15.0 19.5	19.5	Bedrock, conway granite
LKB	9	0 2.0 9.0	2.0	Silt, red brown; little sand; trace gravel and roots Till, sandy Bedrock, conway granite
LKB	11	0 2.5 8.5 26.0	2.5 8.0 26.0	Silt, sandy, yellow brown, compact; little roots; trace gravel Sand, silty, gravelly, compact Till, sandy, gravelly Refusal, possible bedrock
LKB	12	0 7.0 24.0	7.0 24.0	Fill, brown silt; little fine sand; trace roots Till, sandy Till; end of hole
LKB	18	0 2.0 9.0 22.5	9.0	Silt, sandy, brown; trace roots Gravel, sandy, brown; trce silt; numberous cobbles and boulders Till, gravelly Bedrock, conway granite
LKW	1	0	17.0	Sand and gravel
LKW	2	0 4 5.0	45.0	Sand Bedrock
LKW	3	0 4 5.0	45.0	Sand and gravel Bedrock
LKW	4	0 62.0	62.0	Till Bedrock
LKW	5	0 142.0	142.0	Sand and gravel Bedrock
LKW	6	0 40.0	40.0	Sand and gravel Bedrock
LKW	7	0 80.0	80.0	Sand and gravel Bedrock
LKW	8	0 54.0	 	Sand and gravel Sand Sand and gravel Bedrock
LKW	9	0 43.0 48.0 53.0	43.0 48.0 53.0	Sand, brown, well to graded and gravel; some large cobbles Sand, fine, brown and gravel Sand, coarse, brown; some fine sand and coarse gravel Sand; end of hole
LKW	10	0 37.0 41.0 46.0 53.0	37.0 41.0 46.0 53.0	Sand, brown, well graded and gravel; some large cobbles Sand, fine to medium, predominantly medium, brown Sand, fine, brown; some medium gravel Sand, fine, brown; some silt Sand; end of hole
LKW	11	0 14.0 17.0 22.0 29.0	14.0 17.0 22.0 29.0	Sand, well to graded and gravel Sand, fine to coarse, predominantly medium, brown Sand, fine to medium, predominantly fine; some silts Sand, fine to coarse, predominantly coarse, brown; some silt and angular gravel Till refusal
LKW	12	0 13.0 16.0 21.0 32.0 35.0	13.0 16.0 21.0 32.0 35.0	Sand, fine to coarse, predominantly fine, brown Sand, well-graded, brown and gravel Sand, fine to medium, predominately fine, brown Sand, coarse; some fine gravel Sand, coarse; some fine gravel and silts Sand; end of hole
LKW	13	0 16.0 26.0	26.0	Sand, well-graded and gravel Sand, fine to medium, dark brown Sand, fine, silty; some angular gravel
LKW	14	0 23.0 30.0 36.0	23.0 30.0 36.0	Sand, well-graded and gravel; some large cobbles Sand, coarse and gravel Sand, fine; some angular gravel Sand; end of hole

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Lincoln-Continued
LKW	15	0 14.0 22.0	14.0 22.0	Gravel, large and boulders Sand, fine to coarse and gravel; some silt Refusal on boulders or bedrock
LKW	16	0 14.0 25.0 36.0	14.0 25.0 36.0	Gravel, large and boulders; some silt Sand, fine to medium; some silt and gravel Till; with boulders Till; end of hole
LKW	17	0 11.0 15.0 23.0 28.0	11.0 15.0 23.0 28.0	Sand, fine to coarse and gravel; some large boulders Boulders Sand, medium to coarse and gravel, large; fine, silty sand lenses Till, sandy, loose Till; end of hole
LKW	18	0 11.0 15.0 23.0 28.0	11.0 15.0 23.0 28.0	Sand, fine to coarse and gravel; some large boulders Boulders Sand, medium to coarse and gravel, large; fine, silty sand lenses Till, sandy, loose Till; end of hole
LKW	19	0 11.0 15.0 20.0	11.0 15.0 20.0	Sand, fine to coarse and gravel; some boulders Boulders Sand, medium to coarse and large gravel; some silt and fine sand lenses Sand and gravel; end of hole
LKW	20	$0 \\ 10.0 \\ 14.0$	10.0 14.0	Sand, fine to coarse and gravel; some boulders Boulders Boulders; end of hole
				Plymouth
PYA	6	0 20.4 140.0	20.4 140.0	Sand, fine, brown Sand and clay, gray, fine Bedrock
PYA	7	0 23.0 48.0 50.0	23.0 48.0 50.0 52.0	Sand, fine, brown Sand, fine, brown Sand, gray, fine Sand and gravel gray, fine sand
PYA	8	0	96.3	Sand and clay gray, fine
PYA	9	0 25.0 40.0	25.0 40.0 50.0	Sand, fine, brown; some gravel Sand, fine, light brown; some gravel Sand, fine, gray; some gravel
PYA	10	0 23.0 100.0	23.0 100.0 114.0	Sand, fine, brown Sand and clay gray, fine Sand and clay gray, fine to medium
PYA	11	0 30.0	30.0	Sand, fine, brown; some cobbles and clay Refusal at 30 feet
PYA	12	0 23.0 28.0	23.0 28.0 33.0	Sand, fine, brown Sand and clay gray, fine Sand and clay gray, fine
PYA	13	0	30.0	Sand, fine, brown
PYA	14	0 23.0 41.5 47.0	23.0 41.5 46.5	Sand and gravel, fine, brown sand Sand and gravel, fine sand Brown, fine sand Sand and gravel, refusal at 47 feet
PYA	15	0 23.0 81.0 83.0	23.0 81.0 83.0 95.0	Sand, fine brown; some clay; gravel Sand, fine, gray; some clay Sand, fine, gray; some clay Sand, fine, gray; some clay
PYA	16	0 21.7	21.7 46.9	Sand, fine, gray and clay Sand, medium to coarse, gray
PYA	18	0 25.5	25.5 65.7	Sand, medium to coarse, brown Sand, fine, gray
PYA	20	0 25.5 30.4	25.5 30.4 65.5	Sand, medium, brown Sand, fine, brown Sand, fine, gray

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Plymouth—Continued
PYA	21	0 25.5	25.5 55.5	Sand, medium to coarse, brown; some gravel and clay sand and clay gray, fine
PYB	1	0 5.0 15.0 25.0 40.0 65.0 90.0	5.0 15.0 25.0 40.0 65.0 90.0	Sand, coarse and gravel Sand, fine, silty Sand, fine Sand, coarse Sand, medium Sand, fine to medium Refusal (weathered mica schist)
РУВ	2	0 9.0 53.0 57.0	53.0	Sand, coarse Silt Till, Silty Refusal on bedrock or boulder
PYB	3	0 11.0 18.0 20.0 44.0	11.0 18.0 20.0 44.0	Sand, fine Sand, coarse Clay, silty Sand, fine Refusal?, Bottom of hole
PYB	5	0 12.0 17.0	17.0	Sand, fine Gravel Sand, fine
PYB	6	0 2.0 6.0	6.0	Muck Sand, medium Till, sandy with boulders
PYB	7	0 5.0 25.0 35.0 40.0	25.0 35.0 40.0	Sand, fine with gravel Sand, fine Sand and gravel Sand, fine; with silt Sand, coarse; with gravel
		45.0 55.0 60.0 83.0	60.0 82.9	Sand, medium to fine Sand, coarse Sand, fine Refusal on bedrock, mica schist
PYW	12	81.0		Bedrock
PYW	13	63.0		Bedrock
PYW	14	12.0	• •	Bedrock
PYW	15	10.0		Bedrock
PYW	16	73.0		Bedrock
PYW	17	96.0		Bedrock
PYW	18	70.0		Bedrock
PYW	19	107.0		Bedrock
PYW	22	10.0		Bedrock
PYW	23	25.0		Bedrock
PYW	24	28.0		Bedrock
PYW PYW	25 26	36.0		Bedrock
PYW	27	32.0 45.0		Bedrock Bedrock
PYW	28	33.0		Bedrock
PYW	29	20.0		Bedrock
PYW	31	139.0		Bedrock
PYW	32	0 84.0	84.0	Other Bedrock
PYW	34	30.0		Bedrock
PYW	35	3.0		Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Plymouth-Continued
PYW	37	0 12.0	12.0	Sand and gravel Bedrock
PYW	38	320.0		Bedrock
PYW	42	140.0		Bedrock
PYW	43	0 29.0 37.0	29.0 37.0 127.0	Sand, very fine to fine, predominantly very fine, buff Sand, very fine to very coarse; predominantly medium, some pebbles Sand, very fine to fine; silt, gray; end of hole
PYW	45	0 58.3 88.3 102.0	58.3 88.3 98.4	Gray, fine sand and clay Sand, gray Gray, coarse sand Bedrock
PYW	46	0 28.6 50.0 69.0 78.0	28.6 50.0 69.0 74.0	Brown, fine sand; some gravel and clay Sand and clay, gray, fine Gray, fine Sand and gravel, fine, gray Bedrock
PYW	47	0 25.0 137.0 147.0 160.0	25.0 137.0 147.0 157.0	Brown, fine sand and clay Gray, fine sand and clay Sand, gray, medium Sand and clay, fine, gray Bedrock
P YW	48	0 20.0 61.0	20.0 61.0 81.0	Sand, fine, gray; some gravel, and clay Sand and clay, fine, gray Sand, fine, gray; some gravel, and clay
P YW	49	0 25.0 70.0 86.0 99.0	25.0 70.0 86.0 99.0 105.0	Sand, fine, brown; some gravel, and clay Sand and clay, fine, gray Sand, fine, gray; some gravel, and clay Sand, fine, gray Sand, fine, gray
PYW	50	0 23.0 56.0	23.0 56.0 57.0	Sand, fine brown Sand, fine, gray; with some clay Sand and gravel gray, fine
P YW	51	0 24.0	24.0 39.0	Sand, fine, brown Sand and gravel gray, fine
P YW	52	0 20.5 35.7 45.8	20.5 35.7 45.8 88.3	Sand, fine, brown Sand, medium to coarse, brown; and clay Sand, brown, fine to medium Sand, brown, fine to medium
PYW	53	0 20.0 30.0 40.0	20.0 30.0 40.0 48.8	Sand, fine to medium Sand, fine to coarse Sand, very coarse; some boulders Sand, fine to coarse
PYW	54	0 10.0 30.0	10.0 30.0 50.0	Sand, fine Sand, fine to medium; coarse gravel Sand and gravel; some boulders
PYW	55	0 20.3 25.3 30.4 35.4 40.5	20.3 25.3 30.4 35.4 40.5 50.5	Sand and clay brown, fine to medium Sand, fine to medium, brown Sand, fine, brown Sand, fine to medium, brown; some gravel and clay Sand, medium to coarse, brown; some Clay Sand, brown, medium to coarse
PYW	56	0 30.3 45.5 55.5	30.3 45.5 55.5 60.5	Sand, fine to medium, brown Sand, fine, brown Sand, medium to coarse, brown Sand, fine to medium, brown
P YW	57	0 20.0 30.0 40.0	20.0 30.0 40.0 50.0	Sand, fine to medium Sand, fine to medium Sand, fine to medium Sand, fine to medium; some coarse sand
PYW	58	0 40.0	40.0 50.0	Sand, fine to medium Sand, fine to medium, some coarse sand
PYW	59	0 20.4	20.4 40.5	Sand and clay, fine, brown Sand, fine to medium, brown

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire–Continued

Loca site num		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Plymouth-Continued
PYW	60	0 35.5	35.5 40.5	
PYW	61	0 110.0	110.0	Sand and gravel Bedrock
				Rumney
RUA	1	0 17.0 27.0 37.0 47.0 57.0 77.0	12.0 19.0 29.0 39.0 49.0 59.0	Sand, very fine to fine, buff; some silt Sand, very fine to fine, predominantly very fine; some silt Sand and silt Sand of silt; some clay End of hole, drilling problems
RUB	1	0 4.0 10.0 14.0	4.0 10.0 14.0 40.0	Sand, loamy Gravel sandy Sand and silt Sand, fine, with trace of silt; end of hole
RUB	2	0 11.0 28.5	11.0 28.5	Gravel, sandy Sand, fine; trace silt Sand; end of hole
RUB	3	0 3.0 19.0 22.5	3.0 19.0 22.5	Gravel with boulders Sand, fine Silty, hardpan Refusal on bedrock or boulder
RUB	4	0 7.0 10.0 55.0 68.0	7.0 10.0 55.0 68.0 85.0	Gravel loamy Sand, fine, gray; with silt Sand, fine Sand, fine, brown; with silt Sand, fine, gray; with silt, end of hole
RUB	5	0 7.0	7.0	Till, gravelly Refusal on boulders or bedrock
RUB	6	0	20.0	Sand and silt, gravelly, end of hole
RUB	7	0 4.5 22.0	4.5 22.2 40.5	Sand, coarse; with boulders Sand, fine; with little blue clay Sand, fine; end of hole
RUB	8	0 4.0 9.0 13.0 20.0 23.0	20.0	Sand and cobbles Sand, fine Gravel Sand, coarse Sand, fine Sand, end of hole
RUW	2	0 7.0 20.0 23.0 37.0 47.0 57.0 67.0 77.0 87.0 91.0	7.0 12.0 22.0 25.0 39.0 49.0 59.0 69.0 79.0	Loam, fine sandy Sand, loamy Sand, fine, gray Sand, fine, gray Sand with silt, predominantly very fine sand, gray Sand, very fine, gray Sand, very fine; with silt Sand, fine; and silt, gray Sand, medium to very coarse, predominantly medium and coarse; pebbles Till? End of hole
RUW	5	10.0	• •	Bedrock
RUW	6	285.0		Bedrock
RUW	7	15.0		Bedrock
RUW	8	367.0	• •	Bedrock
RUW	9	18.0		Bedrock
RUW RUW	10 11	70.0		Bedrock Redrock
RUW	12	34.0 22.0		Bedrock Redrock
VOW.	14	£2.U		Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Locai site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Rumney-Continued
RUW	13	50.0		Bedrock
RUW	14	0 17.0 27.0 37.0 47.0 57.0 67.0	17.0 19.0 29.0 39.0 49.0 59.0 68.0	Sand, fine to very coarse, predominantly medium and coarse; gravel and pebbles Sand very fine to coarse, predominantly fine and medium Sand, very fine to coarse, predominantly fine to medium Sand, very fine to coarse, predominantly fine and medium Sand, very fine to coarse, predominantly fine and medium Sand, very fine to fine; minor silt Sand, very fine to fine; silty clay Refusal at 72 feet
RUW	15	0 5.0 17.0 47.0 57.0	5.0 17.0 37.0 49.0 59.0	Sand, very fine to fine, gray Sand, fine to very coarse, predominantly medium and coarse Sand, fine to very coarse, predominantly medium and coarse; minor fine gravel Sand, very fine to very coarse, predominantly medium to coarse; gravel Sand, fine to coarse, predominantly medium
		67.0 77.0 87.0 108.0 110.0	69.0 79.0 89.0 110.0	Sand, fine to very coarse, predominantly medium Sand, very fine to medium, predominantly fine, gray Sand, very fine to fine, minor silt Sand, fine to very coarse, predominantly medium; pebbles to 1 inch Sand, end of hole
RUW	17	0 30.0		Other Bedrock
RUW	18	0 48.0		Sand and gravel Till Bedrock
wu	19	0 188.0	188.0	Sand Bedrock
.UW	20	0 48.0	48.0	Till Bedrock
.UW	23	0 150.0	150.0	Sand and gravel Bedrock
wu	24	0 40.0	40.0	Sand Bedrock
wu	25	0 129.0	129.0	Sand and gravel Bedrock
UW	26	0 20.0	20.0	Sand and grave1 Bedrock
NUW	27	0 85.0		Sand and gravel Sand Bedrock
UW	28	0 100.0		Sand Bedrock
UW	31	0 200.0		Till, gravel, hardpan Till Bedrock
wu	32	0 91.0	91.0	Sand and gravel Bedrock
υw	33	0 120.0 200.0 355.0	120.0 200.0 355.0	Sand Sand and gravel Gravel End of hole
				Thornton
RA	1	0	8.0	Gravel, all sizes; boulders to 8 feet; sand, predominantly coarse to very coarse; refusal at 8 feet $$
RB	1	0 10.0 30.0 43.0 48.0	30.0 43.0 48.0	Sand fine Gravel Sand fine Till, sandy Refusal on bedrock or boulder
'RB	2	0 18.0 91.0		Gravel Sand, fine Refusal on bedrock or boulder

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Loca site numi		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Thornton-Continued
TRB	3	0 14.0 30.0 65.0 87.0	14.0 30.0 65.0 87.0	Gravel Sand, coarse Sand, fine to medium Gravel Refusal on bedrock or boulder
TRB	4	0 11.0	11.0 15.0	Gravel with boulders Sand, with silt, end of hole
TRB	5	0 14.0 17.0 25.0	14.0 17.0 25.0	Gravel Sand, fine Sand and gravel Refusal on bedrock or boulder
TRB	6	0 19.0	19.0	Gravel Refusal on bedrock or boulder
TRB	7	0 40.0 90.0	40.0 90.0	Sand, fine Silt and sand, fine Sand and grave1; end of hole
TRB	8	0 5.0 15.0	15.0	Gravel Sand, fine with silt Till, sandy; end of hole
TRB	9	0 11.0 21.0 24.0	21.0 24.0	Gravel Sand, coarse Till, sandy Refusal on bedrock or boulder
TRB	11	0 4.0		Gravel Refusal on bedrock or boulder
TRB	12	0 5.5		Sand and gravel with boulders Refusal on bedrock or boulder
TRB	13	0 4.0 9.0	9.0	Sand, with boulders Boulders Till, silty with boulders; end of hole
TRB	15	0 9.0 16.0 39.0	16.0 39.0	Gravel, sandy; and boulders Sand, fine and cobbles Till, sandy; boulders Refusal on boulders or bedrock
TRB	17	0 1.0 38.0 86.0 90.0	38.0 86.0 90.0	Topsoil Sand, fine Silt and sand, fine Till Till; end of hole
TRW	2	0 2.0 7.0 12.0 32.0	7.0 12.0 17.0	Gravel, all sizes; boulders to 12 feet; sand, coarse to very coarse Sand, fine to coarse, predominantly medium Sand, predominantly very fine to fine; silt Sand, fine to coarse, predominantly medium Sand, very fine to very coarse, predominantly fine
		42.0 52.0 62.0 72.0 77.0	55.0 65.0 75.0	Sand, medium to coarse, predominantly coarse; with fine pebbles Sand, fine to coarse in layers Sand, very fine to fine Sand, very fine with silt Till, sand, very fine to fine, silty; end of hole
TRW	3	2.0 7.0 40.0 47.0 60.0	12.0 42.0 49.0	Sand, very fine, light brown Sand, very fine, gray to tan colored Sand, very fine to fine, predominantly very fine, silt Sand, coarse and gravel, very fine, with pebbles Sand, medium to very coarse, predominantly very coarse
		67.0 77.0 79.0	79.0	Sand, very coarse, with 1/4 inch to 1 inch pebbles Sand, very coarse, with many 1/4 inch to 1 inch pebbles End of hole
TRW	4	3.0 38.0 58.0 68.0 78.0	40.0 60.0 70.0	Sand, medium to very coarse, predominantly medium to coarse; few pebbles Sand, medium to very coarse, predominantly coarse; gravel and pebbles Sand, fine to medium, predominantly fine Sand, fine to coarse, predominantly medium Sand, fine to coarse, predominantly medium Sand, very fine; with silt

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site numb		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Thornton-Continued
TRW	4	88.0 108.0 118.0	90.0	Sand, fine to coarse, predominantly coarse Sand, very fine; with silt Refusal on granite at 118 feet
TRW	5	0 32.0	32.0	Sand, fine to very coarse, predominantly medium Sand, End of hole
rrw	8	36.0		Bedrock
TRW	9	134.0		Bedrock
TRW	12	18.0		Bedrock
TRW	40	0 120.0		Sand Bedrock
TRW	41	197.0		Bedrock
TRW	42	185.0		Bedrock
TRW	43	0		Sand and gravel
	44	15.0		Bedrock
TRW TRW	44 45	30.0 0 15.0	15.0	Bedrock Sand and gravel Bedrock
rw	46	0 15.0	15.0	Sand and gravel Bedrock
rw	48	0 47.0	47.0	Sand Bedrock
ľRW	49	0	4.0	Sand Bedrock
rw	50	0 18.0	18.0	Clay Bedrock
rw	51	0 28.0		Sand Bedrock
rw	52	0 15.0		Till Bedrock
rw	53	20.0	20.0	Sand and gravel Bedrock
rw	54	124.0	124.0	Sand and gravel Bedrock
TRW	56	0		Sand and gravel
rw	57	0 3 4 5.0		Sand Till, clay, hardpan Bedrock
rw	58	0 44.0	44.0	Sand and gravel Bedrock
rw	59	25.0		Bedrock
RW	61	0 65.0	65.0	Sand Bedrock
RW	62	0 120.0	120.0	Sand and gravel Bedrock
rw	63	0 70.0		Sand Bedrock
rw	64	0 120.0		Sand Bedrock
RW	65	34.0		Bedrock
RW	66	20.0		Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Thornton-Continued
TRW	67	120.0		Bedrock
TRW	68	80.0		Bedrock
TRW	69	60.0		Bedrock
TRW	70	80.0		Bedrock
TRW	71	90.0		Bedrock
TRW	72	100.0		Bedrock
TRW	73	0	120.0	Sand and gravel
		120.0		Bedrock
TRW	74	0	145.0	Sand
TRW	75	145.0 0 120.0	120.0	Bedrock Sand Bedrock
TRW	7 7	35.0		Bedrock
TRW	78	0		Clay
		7.0		Bedrock
TRW	79	0	90.0	Sand and gravel
TRW	80	0	92.0	Sand and gravel
TRW	81	0	46.0	Sand and gravel
TRW	82	0	130.0	Sand and gravel
TRW	83	0 14.0 21.0 38.0	21.0 38.0	Gravel Sand, fine; trace clay Sand and silt, very fine Clay some hardpan
TRW	84	0 4.0	4.0 12.0	Sand and gravel Clay some hardpan
TRW	85	0 7.0 21.0	21.0	Gravel, bony Sand, fine to medium, brown; trace clay Sand, fine to coarse, brown; some silt
TRW	86	0 7.0 22.0 30.0 35.0 45.0	7.0 22.0 30.0 35.0 45.0 50.0	Gravel, bony Sand, very fine to fine, light brown Sand, fine to coarse, brown Sand, very fine, light brown; and silt Sand and clay, light brown Sand; gravel and clay, gray
TRW	87	0 7.0 14.0 21.0 30.0 38.0 48.0 56.0	7.0 14.0 21.0 30.0 38.0 48.0 56.0 62.0	Sand and gravel, brown Sand and gravel, brown Sand, light brown; some gravel Sand, very fine, light brown Sand, very fine, gray Sand, fine to coarse, brown Sand, fine to coarse, gray Sand, fine to coarse, gray
TRW	89	0 7.0 14.0 24.0 28.0 35.0 56.0 63.0	7.0 14.0 24.0 28.0 35.0 56.0 63.0 72.0	Gravel, bony Sand, medium, brown Sand, medium to coarse, brown Sand very fine, light brown Sand, very fine, light brown; some clay Sand, very fine, light brown; some clay Sand, very fine to fine, brown; clay Sand, very fine, gray; some clay
TRW	90	0 78.0	78.0 565.0	Gravel Bedrock
				Warren
WDA	1	0 4.5 9.0 15.0	4.5 9.0 15.0 20.0	Sand, fine, buff Gravel Gravel; some cobbles Sand, fine to medium; some gravel, fine

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Warren-Continued
WDA	4	17.0 27.0 37.0 47.0 57.0	19.0 29.0 39.0 49.0 59.0	Sand, very fine; silt, gray Silt and clay; trace sand, fine Silt and clay Clay some silt Silt and clay
WDA	5	0 7.0 17.0	4.0 9.0 20.0	Sand, very fine to fine, brown Sand, medium to very coarse; some gravel Sand and gravel
WDB	5	0 2.0 5.0	2.0 5.0 11.9	Gravel Sand Gravel
WDB	6	1.0	14.9	Gravel, sandy
WDB	7	0 12.0 22.0	12.0 22.0 26.9	Gravel Sand, medium to coarse Gravel silty
WDB	9	0 5.0 12.0 47.0 56.0	5.0 12.0 47.0 56.0	Sand, silty Gravel, Sand, coarse Till, gravelly Refusal on boulder or bedrock
WDB	10	0 35.0	35.0	Clay and silt Silt and clay; end of hole
WDB	11	0 55.0	55.0	Gravel and boulders Refusal on boulders or bedrock
WDW	4	40.0		Bedrock
WDW	5	23.0		Bedrock
WDW	6	0 25. 0	25.0	Other Bedrock
WDW	7	0 10.0	10.0	Other Bedrock
WDW	8	0 50.0	50.0	Other Bedrock
WDW	9	0 15.0	15.0	Other Bedrock
WDW	10	0 70.0	70.0	Other Bedrock
WDW	11	0 20.0	20.0	Other Bedrock
WDW	12	0 51.0	51.0	Other Bedrock
WDW	13	0 7.0	7.0	Sand and gravel Bedrock
WDW	14	0 4. 0	4.0	Other Bedrock
WDW	16	0 10.0	10.0	Till Bedrock
WDW	17	77.0		Bedrock
WDW	21	0	6.0	Gravel bony
WDW	22	71.0		Bedrock
WDW	24	70.0		Bedrock
WDW	26	10.0		Bedrock
WDW	30	0 17.0 27.0 37.0	2.0 19.0 29.0 39.0	Sand fine, brown; some cobbles Sand, fine to very coarse, gray; some pebbles Sand, very fine to fine; some silt Sand, very fine; some silt, gray

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithoiogy
				GRAFTON COUNTY
				Waterville Valley
WFB	2	0	15.0	Till, sandy with boulders; end of hole
WFB	3	0 17.0	17.0	Till, gravelly with boulders Refusal on bedrock or boulder
WFB	4	0 7.0	7.0	Till, gravelly with boulders Refusal on bedrock or boulder
WFB	5	$\begin{smallmatrix}0\\1.0\\13.0\end{smallmatrix}$	1.0	Sand, gravelly Till, sandy with silt Refusal On bedrock or boulder
WFB	6	0 5.0 40.0 43.0	5.0 40.0 43.0	Gravel Silt and sand, fine Till Till; end of hole
WFB	7	0 4.5 9.0 25.0	4.5 9.0 25.0	Sand, fine to coarse, brown; and gravel, fine to coarse Silt, brown; trace fine sand Sand, fine to coarse, brown; some silt; fine gravel; and cobbles Sand; end of hole
WFB	8	0 3.0 24.5	3.0 24.5	Gravel, fine to medium, loamy Till Refusal on boulders or bedrock
WFB	9	0 2.0 7.0 9.0 15.5 29.0	2.0 7.0 9.0 15.5 29.0	Sand, fine to medium Gravel, sandy, dense Sand, fine to medium, silty, loose Sand, fine, silty, dense Till, tan Till refusal
WFW	1	0 4.0 15.0 15.0 30.0 32.0	4.0 8.0 30.0 30.0 32.0 33.0	Sand and gravel Boulders Sand and gravel Sand fine to medium Sand, coarse Silt
WFW	2	0 5.0 13.0 20.0 28.0 45.0	5.0 13.0 20.0 28.0 45.0 47.0	Sand, brown Sand and gravel brown; some boulders Sand and gravel brown; some silt Sand, coarse, brown Sand and gravel brown Sand, brown, fine
WFW	3	12.0		Bedrock
	2	0	3 -	Wentworth
WIA	2	0 7.5 27.0	7.5 15.0 29.0	Sand, very fine to fine; some silt Gravel; some pebbles; cobbles Sand, very fine to fine, gray
WIB	2	0 2.8 14.8 32.0 45.0 68.7	2.8 14.8 32.0 45.0 68.7	
WIB	3	0 2.0 9.0 14.0 36.0	14.0	Sand Gravel Sand, silty Till, sandy Refusal on bedrock or boulder
WIB	4	0 4.0 14.0 29.0 39.0 44.0 46.5	39.0	Sand, fine to coarse Gravel, silty
WIB	5	0 4.0 6.0 50.0 51.0		Sand Sand, coarse and gravel Sand, fine Sand and gravel Refusal on boulder or bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Wentworth-Continued
WIW	1	0 17.0 27.0 37.0 47.0 56.5	7.0 19.0 29.0 39.0 49.0 58.5	Sand, fine to very coarse; gravel Sand, fine to very coarse, predominantly medium to coarse, buff; some cobbles; pebbles Sand, fine to very coarse, predominantly medium to coarse, buff; some cobbles; pebbles Sand, fine to very coarse, predominantly medium to coarse, buff; some cobbles; pebbles Sand, fine to very coarse, predominantly medium to coarse, buff; some cobbles; pebbles Sand, very fine to medium, predominantly fine; gravel, very fine to very coarse; some pebbles
WIW	9	22.0		Bedrock
WIW	10	53.0		Bedrock
WIW	11	10.0		Bedrock
WIW	12	27.0		Bedrock
WIW	14	25.0		Bedrock
WIW	16	40.0	• -	Bedrock
WIW	17	28.0		Bedrock
WIW	19	11.5		Bedrock
WSA	1	0	17.0	Woodstock Sand and gravel coarse
WSA	2	17.0 0	20.0 13.0	
WSA	2	13.0 40.5 50.0 65.0 78.0	40.5 50.0 65.0 78.0 86.0	Gravel coarse Clay brown, silty Sand and gravel fine Clay, brown Sand and gravel fine, dense; some clay Till
WSA	3	0 13.0 22.0 24.0	13.0 22.0 24.0	Cobbles and boulders; some silty sand and gravel Sand, fine to coarse, silty; some fine to coarse gravel Sand, fine to coarse, silty; some clay and gravel Till refusal
WSA	4	0 13.0	13.0	Cobbles and boulders; some silty sand and gravel Refusal
WSA	5	0 8.0 23.5	8.0 23.5	
WSA	6	0 3.0	3.0 29.0	Sand, black, organic Sand, fine to coarse, brown; some gravel; some silts and clay bottom half of
		29.0 34.0 40.0	34.0 40.0	<pre>interval Sand, fine, silty, gray; some medium sand and gravel Till Refusal in rock</pre>
WSB	4	0 6.0 13.0 30.0 35.0 50.0	6.0 13.0 30.0 35.0 50.0	
WSB	5	0 10.0 20.0 25.0 35.0 40.0	10.0 20.0 25.0 35.0 40.0	Sand, fine silty
WSB	7	0 15.0 85.0	15.0 85.0	Gravel; with cobbles Gravel, sandy Refusal on bedrock or boulder
WSB	8	0 5.0	5.0 15.0	Sand Sand and gravel

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number	Depth to top (feet)	Depth to bottom (feet)	Lithology	
				GRAFTON COUNTY

Woodstock-Continued

				woodstock-continued
WSB	8—	Continued 15.0 25.0 80.0	25.0 80.0 130.0	Gravel Sand, fine with stones Sand, with stones; end of hole
WSB	9	0 10.0 19.0	10.0 19.0	Sand, gravelly Till, gravelly; with boulders Refusal on bedrock or boulder
WSB	10	0 4.0 8.0	4.0 8.0	Silt Till, silty Refusal on bedrock or boulder
WSB	11	0	7.0	Sand, with boulders
		7.0 21.0	21.0	Till sandy with boulders Refusal on bedrock or boulder
WSB	12	0 15.0	15.0 31.0	Gravel with cobbles and boulders Sand with cobbles; end of hole
WSB	13	0	60.0	Sand and gravel; end of hole
WSB	14	$\begin{smallmatrix}0\\10.0\\24.0\end{smallmatrix}$	10.0 24.0 25.0	Gravel Sand Gravel; end of hole
WSB	15	0 5.0 11.0	5.0 11.0 25.0	Gravel Sand, silty with clay Sand, fine, silty; end of hole
WSB	17	7.0 12.0 17.0	7.0 12.0 17.0	Gravel, silty; with boulders Gravel, silty Gravel, sandy Refusal on bedrock or boulder
WSW	1	36.0		Bedrock
wsw	2	4.0		Bedrock
wsw	3	10.0		Bedrock
wsw	4	27.0		Bedrock
Wsw	5	145.0		Bedrock
wsw	7	58.0		Bedrock
WSW	8	25.0		Bedrock
WSW	14	0 10.0 60.0	10.0 60.0 76.0	Sand, fine to coarse; brown, with gravel and boulders Sand, fine to coarse; brown, gravel and some cobbles Sand and gravel, fine to coarse, reddish brown, some cobbles
wsw	16	0 15.0	15.0	Sand and gravel Bedrock
WSW	17	42.0	• •	Bedrock
WSW	18	62.0		Bedrock
WSW	20	0	10.0	Till Bedrock
WSW	21	70.0		Bedrock
WSW	22	84.0		Bedrock
WSW	23	91.0		Bedrock
WSW	24	65.0		Bedrock
WSW	25	43.0		Bedrock
WSW	26	7.0		Bedrock
WSW	29	5.5		Bedrock
WSW	30	50.0		Bedrock
WSW	31	47.0		Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
				Woodstock-Continued
wsw	33	25.0		Bedrock
wsw	34	12.0		Bedrock
WSW	35	0 185.0	185.0	Sand Bedrock
wsw	36	0 95.0	95.0	Sand and grave1 Bedrock
WSW	37	0 10.0 13.0 18.0 20.0 24.0	10.0 12.0 15.0 20.0 22.0 26.0	Fine to coarse, brown; some gravel; cobbles; boulders Sand, fine to coarse; some gravel Sand, fine to coarse; some gravel Sand, fine to coarse; some gravel Sand, fine to coarse, brown; some gravel Sand, fine to coarse, brown; some gravel
		26.0 30.0 34.0 38.0 43.0	28.0 32.0 36.0 40.0 45.0 46.0	Sand, fine to coarse, brown; some cobbles Sand, fine to coarse, brown; some cobbles Sand, fine to coarse, brown; some medium gravel Sand, fine to coarse, brown; some gravel Sand, fine to coarse, brown; some gravel Sand, fine to medium; some gravel
WSW	38	0 10.0 60.0	10.0 60.0 73.0	Sand and gravel, fine to coarse, brown, boulders Sand and gravel, fine to coarse, brown, some cobbles Sand and gravel, fine to coarse, reddish brown, some cobbles
WSW	39	0 35.0 41.0 53.0	35.0 41.0 53.0	Sand, coarse, gray; and gravel, sharp; some silt
WSW	40	0	48.0	Sand, fine, brown; some grave1; trace clay
wsw	41	0 48.0	48.0	Sand, fine, brown; some gravel and clay Sand; end of hole
wsw	42	0 33.0	33.0	Sand, fine, brown; some sharp gravel; trace clay and mica
WSW	43	0 48.0	48.0	Sand, fine, brown; some gravel; trace clay Sand; end of hole
WSW	44	0 7.0 28.0 58.0	7.0 28.0 58.0	<pre>sand, fine, brown Sand, coarse; and gravel; some fines Sand, coarse, sharp; and gravel, gray Till refusal</pre>
WSW	45	0 7.0 59.0	7.0 59.0	Sand, fine Sand, coarse, gray; and gravel Till refusal
WSW	46	0 5.0 25.0 30.0	5.0 25.0 30.0 58.0	Silt, brown Sand, medium to coarse, brown Sand, fine to medium, brown Sand, medium to coarse, brown; and gravel
wsw	47	0 26.0	26.0	Sand, medium to coarse, brown; some fines; some fine to medium gravel sand; end of hole (not refusal)
Wsw	48	0 17.5 30.0	17.5 30.0	Sand, coarse and gravel; some cobbles Sand, medium to coarse, brown; some fine gravel Sand; end of hole
wsw	49	0 20.0 38.0 58.0 68.0 75.0 90.0	20.0 38.0 58.0 68.0 75.0 90.0	Sand, fine to coarse, gray; some gravel and boulders sand, fine to coarse, brown; some medium gravel sand, coarse, brown; some fine to medium gravel sand, fine to coarse, predominantly medium, brown Gravel, medium; some medium to coarse brown sand; trace silt sand, medium, brown; some gravel sand; end of hole
wsw	51	0 35.0 44.0	35.0 44.0	Sand, fine brown and gravel Sand, fine, brown; some clay and gravel Till, refusal
WSW	52	0	28.0	Sand, fine, brown; some gravel; trace of clay

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– Continued

Loca site num		Depth to top (feet)	Depth to bottom (feet)	Lithology
				GRAFTON COUNTY
WSW	54	0 34.0 41.0 51.0	34.0 41.0 51.0	Sand, grayish brown and gravel, sharp Silt, grayish brown and sand; some sharp gravel Till, gravelly Till, refusal
		-		MERRIMACK COUNTY
				Andover
ANB	9	0 9.5 13.2	9.5 13.2	
ANW	1	0 37.0 60.0 96.0 107.0	37.0 60.0 96.0 107.0	Sand, very fine to medium, predominantly fine; well sorted; brown Sand, very fine to fine; well sorted; grayish brown Sand, very fine to fine; silt?; well sorted?; gray Sand, predominantly very fine; silt; pebbles Sand and silt; end of hole
ANW	10	10.0		Bedrock
ANW	13	100.0		Bedrock
anw s	14	0 2.0 17.0 27.0 28.0 29.0 32.0 37.0	2.0 17.0 27.0 28.0 29.0 30.5 34.0	Sand, fine to coarse, predominantly medium Sand, fine to coarse, predominantly fine to medium, Sand, fine to very coarse, predominantly medium; yellow-brown Sand, fine to very coarse; predominantly medium and coarse; gray Sand and gravel; uniform sharp to sub-rounded pebbles and cobbles Till; very bumpy drilling; change in lithology, probably till Till, silt and clay matrix; sharp pebbles; garnet schist cobble Till; end of hole
ANW	23	67.0		Bedrock
ANW	24	81.0		Bedrock
ANW	32	0 		Sand Till Clay Sand and gravel
ANW	42	207.0		Bedrock
				Danbury
DBA	1	0 26.5 38.5 66.5 84.0	38.5 48.5 68.5	Sand and silt, gray, very fine Refusal at 84 feet; Till?
DBB	1	0 3.8 5.1 11.1 18.0 20.5 43.8	5.1 11.1 18.0 20.5 43.8	Sand, loamy Sand and clay; trace of gravel Sand, firm; with gravel Sand, gray; with little clay Sand, loose; with gravel Sand, line; with little clay Sand, fine, whath little clay Sand, fine, hard; with clay; end of hole
DBB	4	0 6.8 8.3	8.3	Sand; with boulders Sand; with gravel and little clay Sand, hard, with gravel and little clay; refusal on bedrock or boulder
DBB	5	0 2.0 6.0 19.0	6.0 19.0	Gravel Muck and wood Till, sandy Refusal on boulder or bedrock
DBB	6	0 1.7 6.2 7.5 11.5	7.5 11.5	Mud Sand, coarse and grave1 Sand, fine to medium, gray Sand, coarse, grave1; and boulders Refusa1 on boulders or bedrock
DBW	12	100.0		Bedrock
DBW	29	0 27.0 37.0 47.0 57.0	37.0 39.0 49.0	Sand, very fine to medium, predominantly fine to medium; some gravel Sand, fine to very coarse, predominantly medium, gray; some cobbles Sand, fine to very coarse, predominantly medium, gray; some cobbles Sand, very coarse; some gravel; cobbles Sand, medium to very coarse, predominantly medium; gravel, fine

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				MERRIMACK COUNTY
				Danbury-Continued
DB W	29—	Continued 67.0 77.0 87.0 97.0 98.0	69.0 79.0 89.0 98.0	Sand, fine to very coarse, predominantly medium to coarse, gray Sand, fine to very coarse, predominantly medium to coarse, gray Sand, fine to very coarse, predominantly medium Sand, very fine to medium, predominantly very fine to fine, gray, firm; some pebbl Refusal at 98 feet
DBW	30	0 17.0 27.0 37.0 47.0 57.0	6.0 19.0 29.0 39.0 49.0 59.0	Sand, very fine and organic brown silt Sand, very fine to very coarse, predominantly fine to medium, fine gravel Sand, fine to very coarse, predominantly medium and coarse Sand, fine to very coarse, predominantly medium and coarse Sand, very coarse and gravel, cobbles Sand, predominantly medium and fine gravel
		67.0 77.0 87.0 97.0	69.0 79.0 89.0	Sand, fine to very coarse, predominantly medium and coarse Sand, fine to very coarse, predominantly medium to coarse Sand, very fine to very coarse, predominantly medium, pebbles Sand, very fine to medium, predominantly very fine to fine, pebbles, refusal at 98 feet
				Franklin
FKA	1	2.0 7.0 12.0 17.0 22.0	7.0 12.0 17.0 22.0 27.0	Sand, very fine; some silt
		27.0 32.0 37.0 42.0 57.0 73.0	32.0 37.0 42.0 47.0 59.0	Sand, very fine; some silt Sand, very fine; some silt Sand, very fine; some silt Sand, very fine; some silt Sand, very fine to medium, predominantly fine to medium, gray Refusal on bedrock or boulder
FKA	2	0 41 .0	41.0 220.0	Sand, fine to coarse; some gravel, Sand, fine; silty
FKA	3	0 15.0 50.0 117.0	15.0 50.0 117.0	Sand, silty Sand, fine t <i>o</i> medium Sand, silty Bedrock
FKA	4	0 9.0 16.5 76.3	9.0 16.5 76.3	Sand, fine to medium, silty Sand, fine to medium, silty Sand, fine to coarse; some silt; gravel Bedrock
FKA	5	0 19.0 34.0	9.0 3 4 .0	Sand, fine to medium, silty Sand, fine to medium, silty; some gravel Bedrock

0 12.0 27.0 30.0 56.0 59.0 72.0

0 8.0 18.0 25.0 55.0 72.0 82.0

0 4.0 34.8

0 16.0 42.0

FKA

FKA

FKA

FKA

FKA

8

9

10

12.0 27.0 30.0 56.0 59.0 72.0

8.0 18.0 25.0 55.0 72.0

82.0 100.0

Bedrock

Sand, fine to medium, silty Sand, fine, silty Sand, fine, gravelly Sand, fine to coarse Sand, medium to coarse, gravelly Sand, fine to medium

Sand and silt
Sand fine, silty
Sand, fine to coarse, silty
Sand, fine, silty
Sand, fine to medium
Sand, fine, Silty
Sand, fine to medium, silty

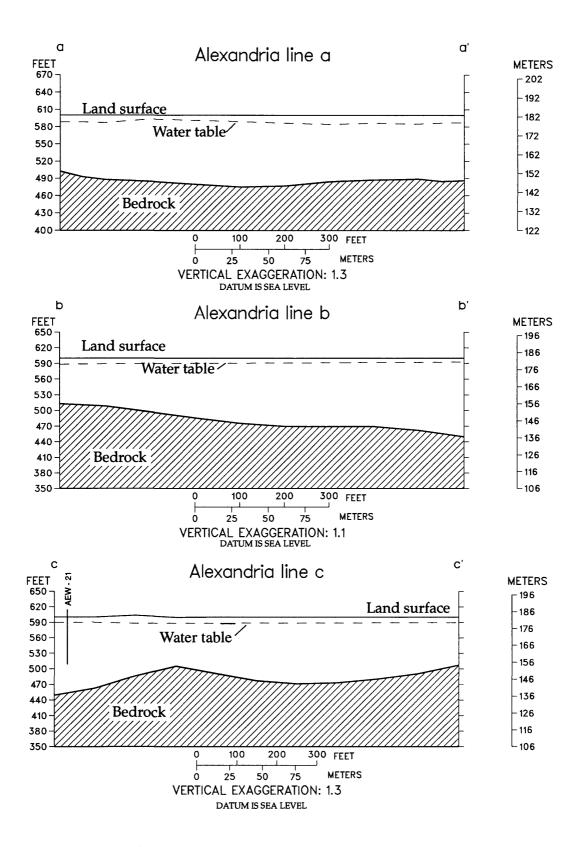
4.0 Sand, fine, silty
34.8 Sand, fine, silty; some cobbles and boulders
-- Bedrock

16.0 Sand, fine to coarse, silty
42.0 Sand, fine to coarse, silty with some gravel
-- Bedrock

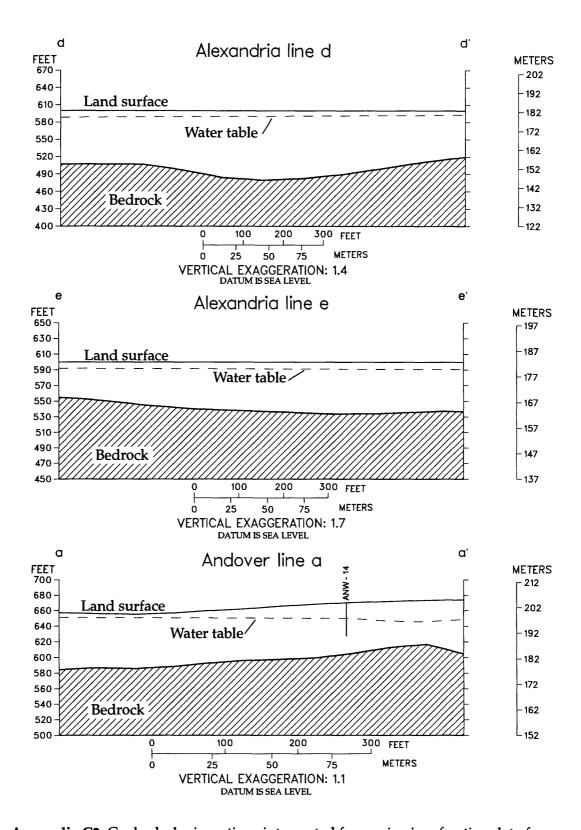
9.5 Sand, fine to medium
23.5 Sand, Silty; with some gravel; boulders
-- Bedrock

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire– *Continued*

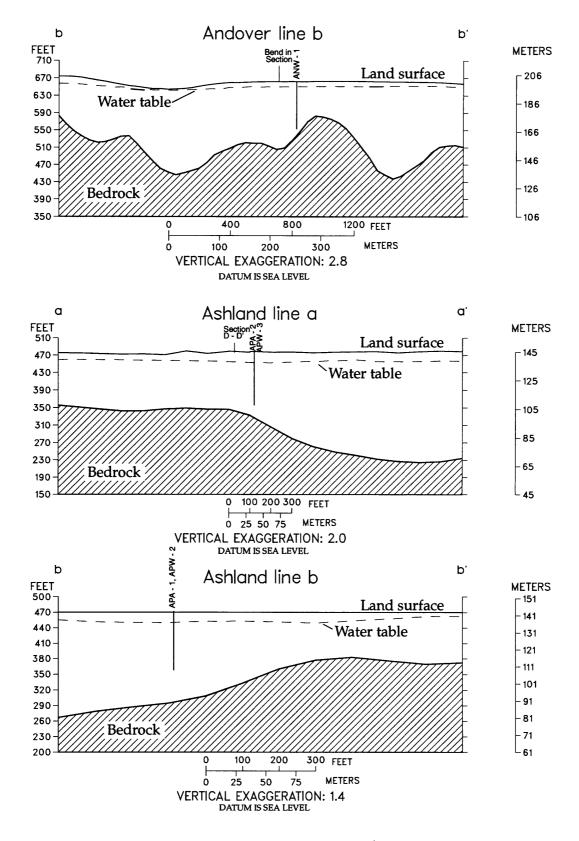
Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				MERRIMACK COUNTY
				Franklin-Continued
FKW	2	0 11.0 20.0 30.0 50.0 60.0	11.0 20.0 30.0 50.0 60.0 73.0	Sand Clay and sand Sand, medium Sand, fine to medium Sand, medium to coarse Sand, fine to medium
FKW	3	0 6.0 20.0	6.0 20.0 82.0	Sand, fine Sand, hard packed Sand, medium to fine
FKW	4	10.0		Bedrock
FKW	9	11.0		Bedrock
FKW	12	80.0		Bedrock
FKW	14	36.0		Bedrock
FKW	17			
FKW	18	19.0		Bedrock
FKW	26	24.0		Bedrock
FKW	27	110.0		Bedrock
FKW	28	3.0 5.0 42.0 57.0 67.0 77.0 81.0	57.0 59.0 69.0 78.0	Sand, very fine to very coarse Till, sand, very fine to very coarse, gravel Clayey silt, gray Sand, very fine, and clayey silt Sand, very fine, and silt Grave and sand, very fine to coarse, cobbles and pebbles Refusal at 81 feet
FKW	29	0 20.0 39.0 60.0 65.0 75.0	75.0	Sand; gravel Sand, fine, brown; trace clay Sand; gravel Clay, gray Sand, fine Sand; gravel End of hole
FKW	31	40.0		Bedrock
FKW	33	0 14.0		Sand and gravel Bedrock
FKW	34	40.0		Bedrock
FKW	35	0 50.0		Sand and gravel Bedrock
FKW	36	0 30.0		Sand and gravel Bedrock
FKW	37	0 30.0		Sand and gravel Bedrock
FKW	38	0 15.0		Sand and gravel Bedrock
FKW	39	0 47.0		Till Sand Bedrock
FKW	40	0 15.0		Sand Sand and gravel Bedrock
FKW	41	0.08	80.0	Other Bedrock
FKW	42	0 80.0		Other Bedrock
FKW	43	0 4 0.0		Other Bedrock

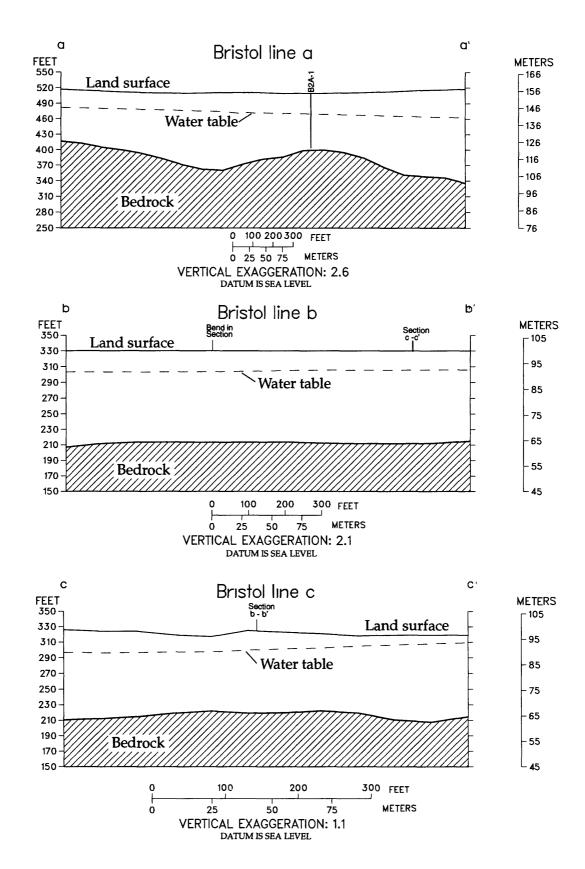

Table B-1. Stratigraphic logs of wells and borings in the Pemigewasset River Basin, Central New Hampshire— Continued

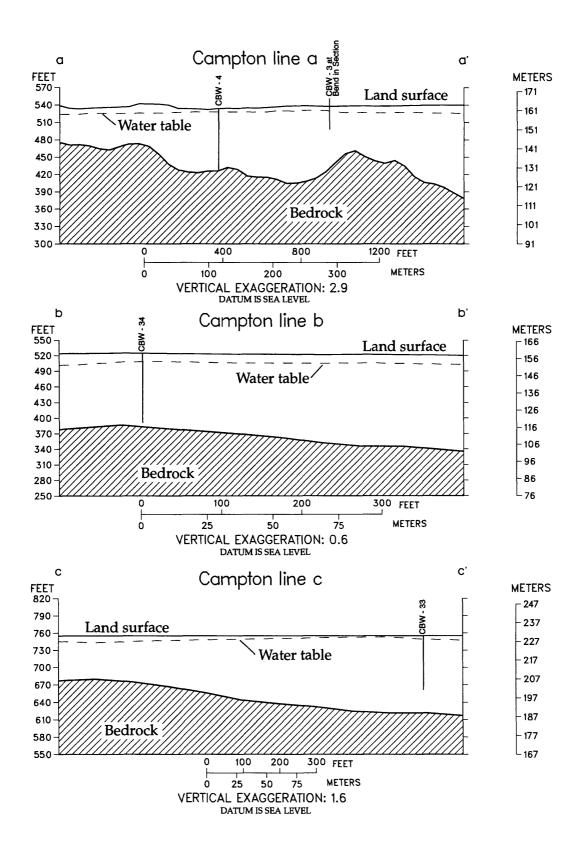
Local site number		Depth to top (feet)	Depth to bottom (feet)	Lithology
				MERRIMACK COUNTY
FKW	44	0	50.0	Franklin-Continued Other
I KH	**	50.0		Bedrock
FKW	45	0 100.0	100.0	Other Bedrock
FKW	47	0 55.0	55.0	Sand Bedrock
FKW	48	90.0		Bedrock
FKW	49	0 127.0		Sand Clay Bedrock
FKW	50	0	70.0	Till
		70.0		Bedrock
EKW	51	0	12.0	Sand, fine to very coarse, predominantly medium to coarse; some pebbles coarse; some pebbles
		12.0 27.0 47.0 57.0	17.0 29.0 49.0 59.0	Sand, very fine to fine, buff Sand, fine to coarse, predominantly medium, buff Sand, very fine to coarse, predominantly fine to medium; some clay; some cobbles Sand, fine to coarse, predominantly medium, buff; some pebbles
		67.0 77.0 87.0 97.0 107.0 108.0 115.0	69.0 79.0 89.0 99.0 108.0	Sand, fine to coarse, predominantly medium, buff; some pebbles Sand, medium to very coarse, predominantly medium to coarse; gravel, fine to coarse Sand, fine to coarse, predominantly medium; gravel, fine to coarse Sand, fine to coarse, predominantly medium, buff Sand, fine to coarse, predominantly medium, pebble 3/4 inch Sand, very fine to coarse, predominantly very fine to fine, buff Refusal at 115 feet Hill
HNA	1	2.0 17.0 20.0	7.0 19.0 27.0	Sand, very fine to fine; silt Sand, fine to very coarse, predominantly medium; some gravel; pebbles Sand, fine to very coarse, predominantly medium to coarse
		27.0 37.0 45.0	29.0 39.0	Sand, very fine to coarse, predominantly fine to medium, buff Sand, very fine to fine, buff; some silt, refusal at 45 feet Refusal on bedrock or boulder
HNW	4	65.0		Bedrock
HNW	5	40.0		Bedrock
HNW	6	0 17.0 27.0 37.0 47.0 57.0 67.0 79.0	17.0 19.0 29.0 39.0 49.0 59.0	sand, very fine to coarse, predominantly medium; gravel sand, very fine to coarse, predominantly fine sand, fine to coarse, predominantly medium sand, very fine to very coarse, predominantly medium sand, fine to very coarse, predominantly fine; gravel sand, fine to very coarse, predominantly medium to coarse sand, very fine to coarse, predominantly fine sand; refusal at 79 feet
HNW	7	0 9.0 27.0 37.0 38.0	9.0 22.0 29.0 38.0 39.0	Gravel and sand, fine to coarse Sand, very fine to fine, predominantly fine, light buff Sand, fine to medium, predominantly fine, buff colored Sand, fine to medium, predominantly medium, buff colored Sand, fine to medium, predominantly fine
		47.0 57.0 67.0 77.0	49.0 59.0 69.0 79.0	Sand, very fine to very coarse, predominantly coarse, buff colored Sand, very fine to very coarse, predominantly medium Sand, very fine; and silt, grayish buff colored Sand, very fine; and silt, buff gray colored
		87.0 97.0 107.0 117.0 128.0	89.0 99.0 109.0 119.0	Sand, very fine; and silt, minor clay Sand, very fine to very coarse, predominantly fine; some silt Sand, very fine to very coarse; predominantly medium Sand, fine to very coarse, predominantly medium and coarse; trace very fine gravel Till, refusal at 128 feet
HNW	8	250.0		Bedrock
н NW	9	0 72.0	72.0	Till Bedrock
HNW	15	0 49. 0	49.0	Sand and gravel

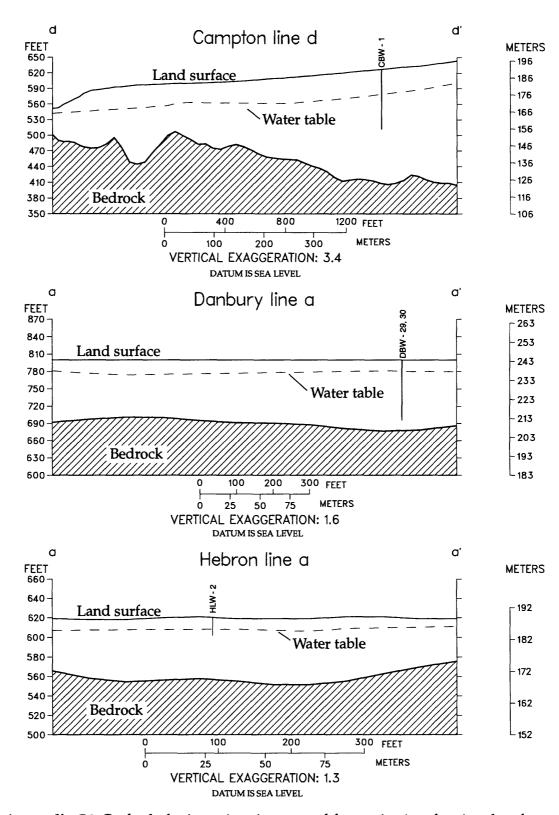

APPENDIX C: Geohydrologic sections interpreted from seismic-refraction data, in the Pemigewasset River Basin, central New Hampshire

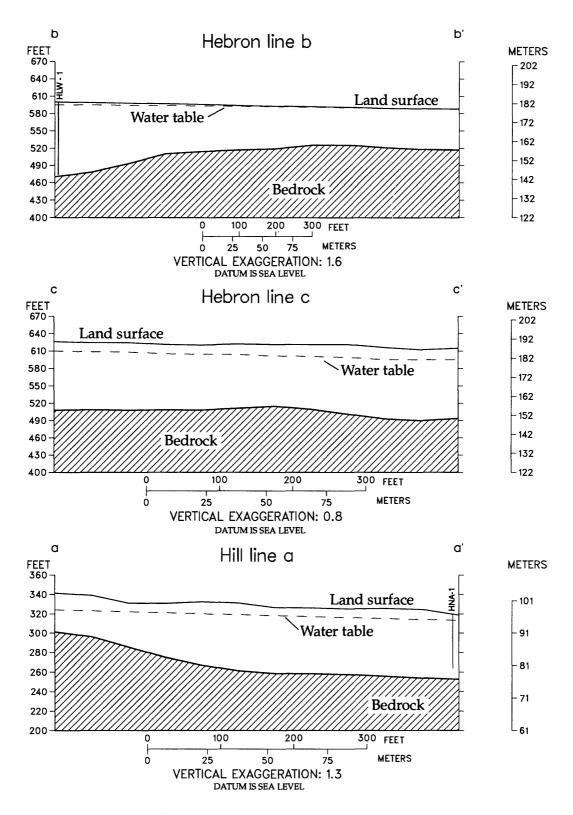
Geohydrologic sections interpreted from seismic-refraction data for:

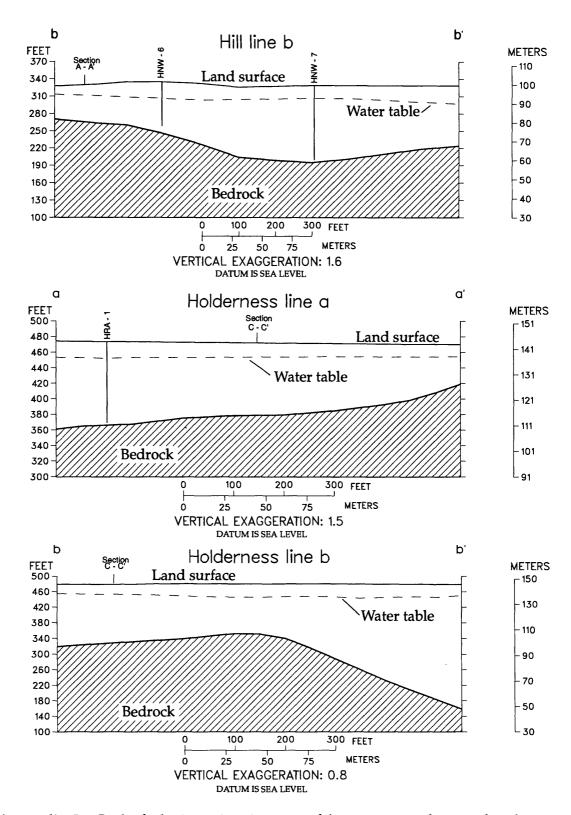

C1. Alexandria a-a', b-b', and c-c'	141
C2. Alexandria d-d' and e-e' and Andover a-a'	142
C3. Andover b-b' and Ashland a-a' and b-b'	143
C4. Bristol a-a', b-b' and c-c'	144
C5. Campton a-a', b-b', and c-c'	145
C6. Campton d-d', Danbury a-a', and Hebron a-a'	146
C7. Hebron b-b', c-c' and Hill a-a'	147
C8. Hill b-b', Holderness a-a' and b-b'	148
C9. New Hampton a-a', Plymouth a-a' and b-b'	149
C10. Plymouth c-c' and Rumney a-a'	150
C11. Rumney b-b' and c-c' and Sanbornton a-a'	151
C12. Sanbornton b-b', c-c', and d-d'	152
C13. Sanbornton e-e' and Thornton a-a' and b-b'	153
C14. Thornton c-c' and Warren lines a-a' and b-b'	154
C15. Warren c-c' and d-d' and Wentworth a-a'	155
C16 Woodstock a-a'	156

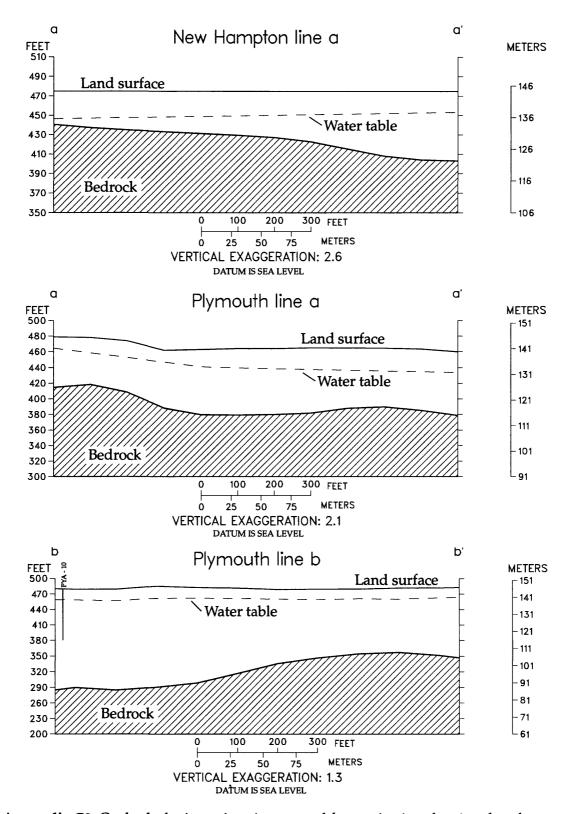

Appendix C1. Geohydrologic sections interpreted from seismic-refraction data for Alexandria lines a-a', b-b', and c-c' (locations shown on plate 4).

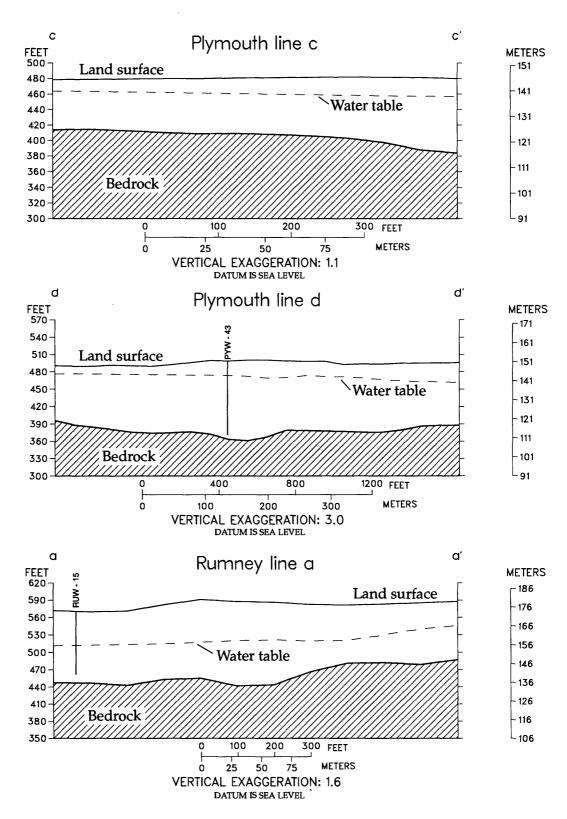

Appendix C2. Geohydrologic sections interpreted from seismic-refraction data for Alexandria lines d-d' and e-e'(locations shown on plate 4), and Andover line a-a'(shown on plate 1).

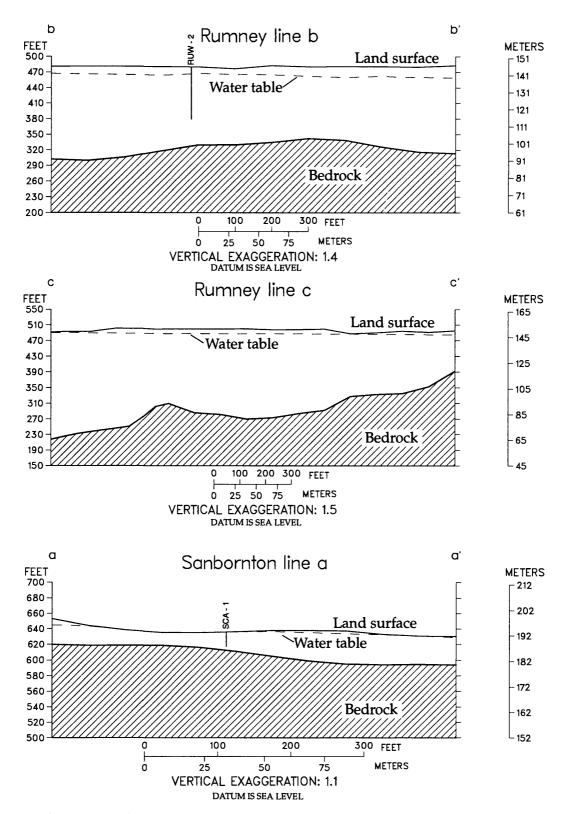

Appendix C3. Geohydrologic sections interpreted from seismic-refraction data for Andover line b -b' (location shown on plate 1), and Ashland lines a-a' and b -b' (locations shown on plate 2).

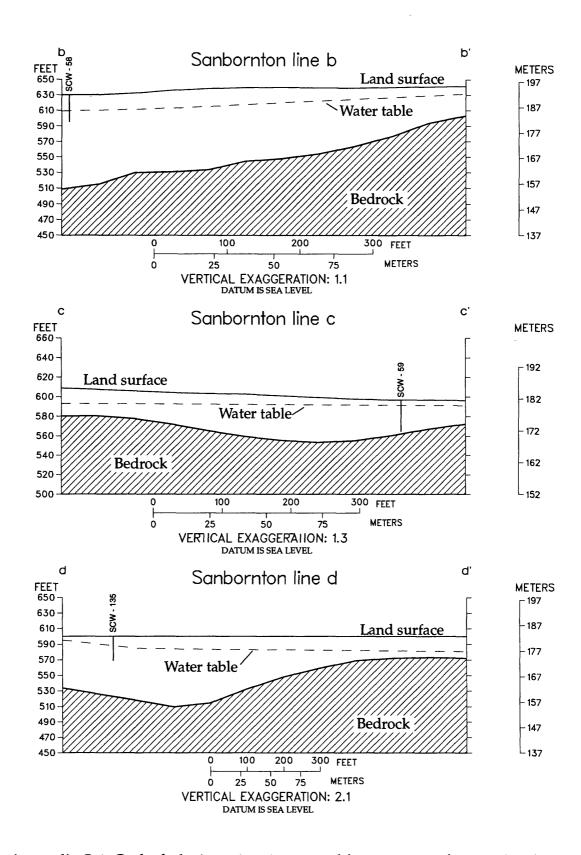

Appendix C4. Geohydrologic sections interpreted from seismic-refraction data for Bristol lines a-a' (location shown on plate 4), and b-b', c-c' (locations shown on plate 1).

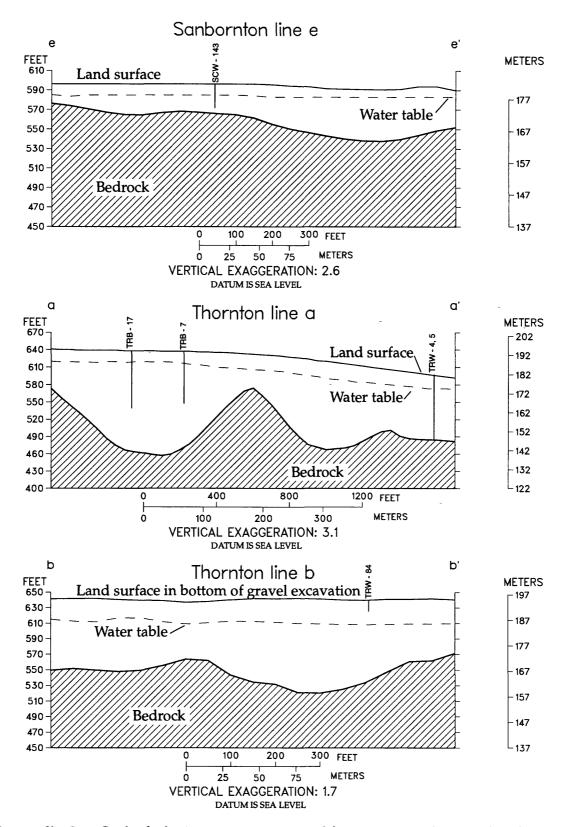

Appendix C5. Geohydrologic sections interpreted from seismic-refraction data for Campton lines a-a', b-b', and c-c' (locations shown on plate 2).

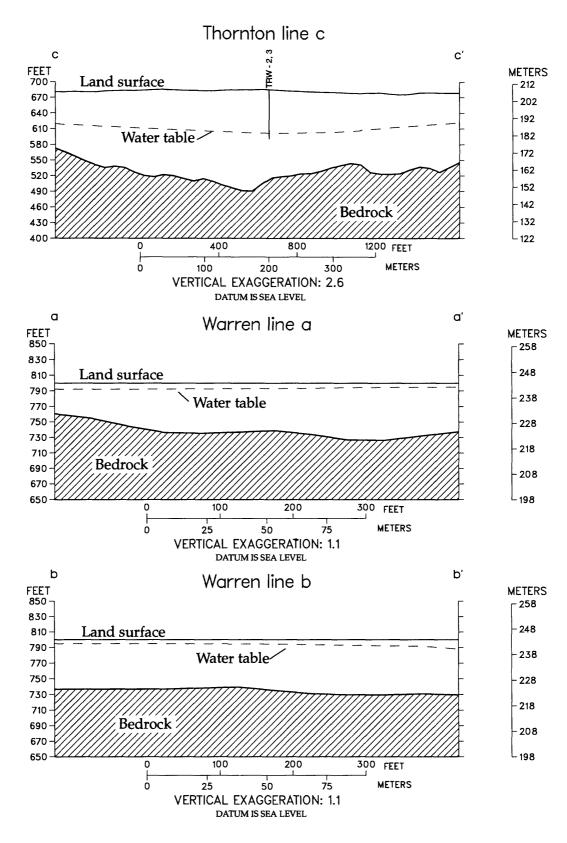

Appendix C6. Geohydrologic sections interpreted from seismic-refraction data for Campton line d-d' (location shown on plate 2), Danbury line a-a' (location shown on plate 4), and Hebron line a-a' (location shown on plate 4).

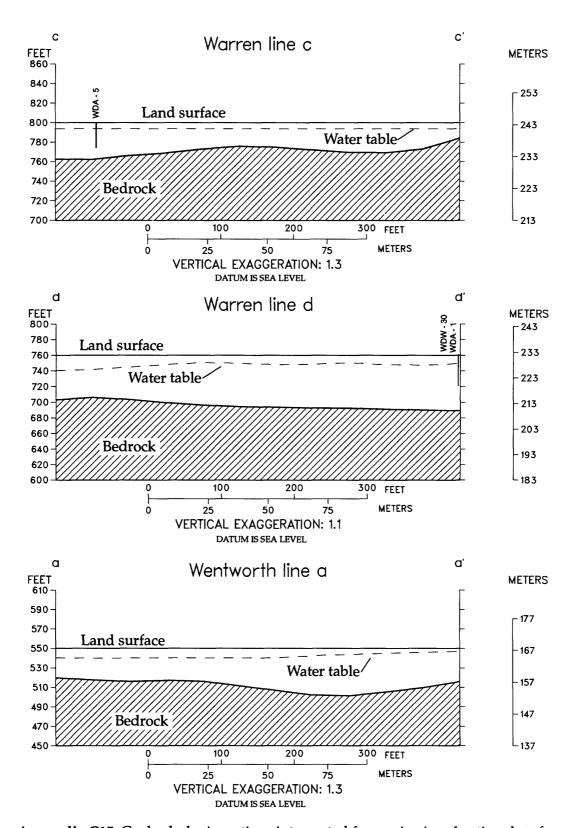

Appendix C7. Geohydrologic sections interpreted from seismic-refraction data for Hebron lines b-b' and c-c' (locations shown on plate 4), and Hill line a-a' (location shown on plate 1).

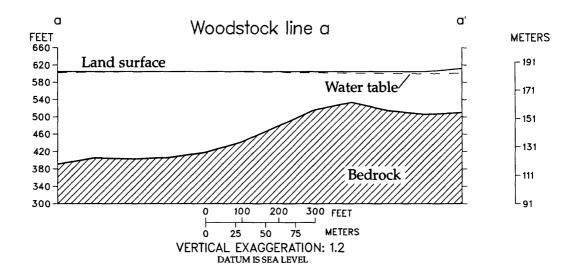

Appendix C8. Geohydrologic sections interpreted from seismic-refraction data for Hill line b-b' (location shown on plate 1), Holderness lines a-a' and b-b' (locations shown on plate 2).


Appendix C9. Geohydrologic sections interpreted from seismic-refraction data for New Hampton line a-a' (location shown on plate 2), Plymouth lines a-a' and b-b' (locations shown on plate 2).


Appendix C10. Geohydrologic sections interpreted from seismic-refraction data for Plymouth lines c-c' and d-d' (locations shown on plate 2), and Rumney line a-a' (location shown on plate 5).


Appendix C11. Geohydrologic sections interpreted from seismic-refraction data for Rumney lines b-b' and c-c' (locations shown on plate 5), and Sanbornton line a-a' (location shown on plate 1).


Appendix C12. Geohydrologic sections interpreted from seismic-refraction data for Sanbornton lines b-b', c-c', and d-d' (locations shown on plate 1).


Appendix C13. Geohydrologic sections interpreted from seismic-refraction data for Sanbornton line e-e' (location shown on plate 1), and Thornton lines a-a' and b-b' (locations shown on plate 3).

Appendix C14. Geohydrologic sections interpreted from seismic-refraction data for Thornton line c-c' (location shown on plate 2), and Warren lines a-a' and b-b' (locations shown on plate 5).

Appendix C15. Geohydrologic sections interpreted from seismic-refraction data for Warren lines c-c' and d-d' (locations shown on plate 5), and Wentworth line a-a' (location shown on plate 5).

Appendix C16. Geohydrologic sections interpreted from seismic-refraction data for Woodstock line a-a' (location shown on plate 3).

APPENDIX D: Low-flow streamflow measurements at stream gages and miscellaneous sites, in the Pemigewasset River Basin, central New Hampshire

Table D-1. Low-flow streamflow measurements at stream gages and miscellaneous sites in the Pemigewasset River Basin, central New Hampshire

[Informal site No.: Number shown on plates 1-5. USGS, U.S. Geological Survey; mi², square mile; ft³/s, cubic foot per second; (ft³/s)/mi², cubic foot per second per square mile; --, no data; lat, latitude; long, longitude]

	USGS				Measured	Measurements			
Informal site No.	site- identi- fication No. and stream	Tributary to	Location	Drainage area (mi ²)	previousiy (water year)	Date	Dis- charge (ft ³ /s)	Discharge [(ft ³ /s)/mi ²]	
1	01073990 Pemigewas- set River	Merrimack River	Lat 44°03′19", long 71°41′15", Grafton County, Hydrologic Unit 01070001, adjacent to Lincoln Municipal Well Field at upstream well, 1.70 miles north of North Woodstock, N.H.	32.6		7-07-88	16	0.49	
2	01073991 Pemigewas- set River	do	Lat 44°03′14″, long 71°41′17″, Grafton County, Hydrologic Unit 01070001, 274 feet downstream from Lincoln Municipal Well Field, 1.6 miles north of North Woodstock, N.H.	32.7		7-07-88	14	.43	
4	01074498 East Branch	Pemigewasset River	Lat 44°03'25", long 71°38'04", Grafton County, Hydrologic Unit 01070001, at downstream edge of bridge on Loon Mountain Road, 1.89 miles northeast of Lincoln, N.H.	110.9		7-12-88	64	.58	
5	01074500 East Branch	d o	Lat 44°03′23", long 71°38′18", Grafton County, Hydrologic Unit 01070001, 1,100 feet downstream from Loon Mountain bridge off of State Highway 112, 1.89 miles northeast of Lincoln, N.H.	109	1928-53	7-07-88	74	.66	
6	01074700 Moosilaukee Brook	do	Lat 44°01'33", long 71°41'10", Grafton County, Hydrologic Unit 01070001, 275 feet upstream from U.S. Highway Route 3 bridge over Lost River, 0.28 mile south of North Woodstock, N.H.	27.6		7-08-88	6.3	.23	
7	01075000 Pemigewas- set River	Merrimack River	Lat 43°58'35", long 71°40'47", Grafton County, Hydrologic Unit 01070001, 0.6 miles upstream from Eastman Brook, 0.34 mile southeast of Woodstock, N.H.	194.6	1940-77 1978-87	7-06-88 7-08-88	112 121	.58 .62	
8	01075395 Mad River	Pemigewasset River	Lat 43°50′60″, long 71°38′21″, Grafton County, Hydrologic Unit 01070001, 4,500 feet south of Campton Pond at Campton Trailer Park, 0.95 mile south of Campton Upper Village, N.H.	60.6		7-08-88	28	.46	
9	01075350 Beebe River	do	Lat 43°49′16″, long 71°37′54″, Grafton County, Hydrologic Unit 01070001, at new highway bridge on Bump Flat Road, 0.47 mile southeast of Campton Hollow, N.H.	27.9		7-08-88	2.8	.10	
10	01075500 Baker River	do	Lat 43°52'05", long 71°54'35", Grafton County, Hydrologic Unit 01070001, on left bank, immediately downstream from old Route 25 bridge in downtown Wentworth, N.H.	57.8	1940-52				
11	01075600 Baker River	d o	Lat 43°51'57", long 71°54'49", Grafton County, Hydrologic Unit 01070001, 1,000 feet downstream from bridge on State Highway 25, 0.19 mile west of Wentworth, N.H.	78.4		7-07-88	13	.17	
lla	01075800 Stevens Brook	Baker River	Lat 43°50′09", long 71°53′10" Grafton County, Hydrologic Unit 01070001, on left bank 150 feet upstream from highway bridge, 0.2 mile upstream from mouth, 2.5 miles southeast of Wentworth, N.H.	3.2	1963 to current year	7-07-88	.23	.07	
12	01076000 Baker River	Pemigewasset River	Lat 43°47'46", long 71°50'42", Grafton County, Hydrologic Unit 01070001, 0.3 mile upstream from Halls Brook, 1.8 miles southwest of Rumney, N.H.	142.8	1929-77 1978-87				
13	Baker River	Pemigewasset River	Lat 43°47'48", long 71°50'40", Grafton County, Hydrologic Unit 01070001, 600 feet downstream of site 12, 1.8 miles southwest of Rumney, N.H.	144.3		7-07-88	33.5	.23	
14	 Baker River	d o	Lat 43°45′54″, long 71°41′10″ Grafton County, Hydrologic Unit 01070001, 100 feet upstream from the confluence with the Pemigewasset River, and 0.4 mile upstream from the Plymouth gaging station on the Pemigewasset River	213.6		7-07-88	50.3	.24	
15	01076500 Pemigewas- set River	Merrimack River	Lat 43°45'32", long 71°41'12", Grafton County, Hydrologic Unit 01070001, on right bank 150 feet downstream from bridge at Plymouth and 0.3 mile downstream from Baker River	622.9	1903 to current year	7-08-88	253	.41	
16	01077000 Squam River	Pemigewasset River	Lat 43°42′20″, long 71°37′48″, Grafton County, Hydrologic Unit 01070001, on right bank 200 feet upstream from highway bridge, 0.7 mile north of Ashland, and 1.4 miles downstream from Little Squam Lake	57.9	1939 to current year	7-08-88	7.9	.14	

Table D-1. Low-flow streamflow measurements at stream gages and miscellaneous sites in the Pemigewasset River Basin, central New Hampshire—Continued

	USGS				Massured	Measurements			
informai site No.	site- identi- fication No. and stream	Tributary to	Location	Drainage area (mi ²)	Measured previousiy (water year)		Dis- charge (ft ³ /s)	Discharge [(ft ³ /s)/mi ²]	
17	01077900 Smith River	Pemigewasset River	Lat 43°32'06", long 71°49'15", Grafton County, Hydrologic Unit 01070001, 2,500 feet downstream from steel bridge on State Highway 104, 2.08 miles northeast of Danbury, N.H.	66.2		7-08-88	7.4	0.11	
18	01077510 Newfound River	do	Lat 43°37'01", long 71°44'28", Grafton County, Hydrologic Unit 01070001, 225 feet downstream from Newfound Lake Dam, 1.70 miles north of Bristol, N.H.	95.5		7-08-88	59	.62	
19	01077550 Pemigewas- set River	Merrimack River	Lat 43°34'24", long 71°43'13", Grafton County, Hydrologic Unit 01070001, 2,000 feet south of Blake Brook, 1.51 miles southeast of Bristol, N.H.	852.2		7-12-88	366	.43	
20	01078000 Smith River	Pemigewasset River	Lat 43°34′00″, long 71°44′54″, Merrimack County, Hydrologic Unit 01070001, on right bank in Hill, 1.5 miles upstream from mouth and 1.8 miles southwest of Bristol, N.H.	85.9	1918 to current year	7-08-88	14	.16	
20a	01078010 Smith River	Pemigewasset River	Lat 43°34′04″, long 71°43′56″, Grafton County, Hydrologic Unit 01070001, at upstream edge of bridge on Old Bristol Highway, in Franklin Falls Reservoir 750 feet downstream of Profile Falls, 3.5 miles north of Hill, N.H.	87.7		7-08-88	14	.16	
21	01078200 Needle Shop Brook	do	Lat 43°31'45", long 71°41'49", Grafton County, Hydrologic Unit 01070001, at upstream edge of bridge on Old Hill Village Road in Franklin Falls Reservoir, 0.4 mile northeast of Hill, N.H.			7-13-88	1.7	.21	
22	01078350 Hermit Brook	Salmon River	Lat 43°33′29″, long 71°35′52″, Grafton County, Hydrologic Unit 01070001, 100 feet upstream from bridge, on Hermit Woods Road, 0.68 mile northeast of North Sanbornton, N.H.	3.4		7-14-88	.02	.01	
23	01078450 Salmon Brook	Cawley Pond	Lat 43°33′14″, long 71°36′21″, Grafton County, Hydrologic Unit 01070001, at upstream edge of bridge on Hermit Woods Road, 1,500 feet east of intersection with State Highway 132, 0.10 mile northeast of North Sanbornton, N.H.	7.4		7-14-88	.96	.13	
24	01078450 Salmon Brook		Lat 43°29'49", long 71°38'00", Grafton County, Hydrologic Unit 01070001, 400 feet downstream from bridge on Prescott Road at Sanbornton General Store, I mile west of Sanbornton, N.H.	22.1		7-13-88	1.9	.09	
25	01078540 Sucker Brook	Webster Lake	Lat 43°28′15″, long 71°42′05″, Grafton County, Hydrologic Unit 01070002, 600 feet upstream from bridge on Lake Shore Drive, 2,000 feet north of intersection of U.S. Route 11 and Lake Shore Drive, 3.16 miles northwest of Franklin, N.H.	12.4		7-13-88	.76	.06	
26	01078545 Chance Pond Brook	Pemigewasset River	Lat 43°26'41", long 71°39'49", Grafton County, Hydrologic Unit 01070001, 50 feet upstream from railroad bridge over Chance Pond Brook, 1,000 feet upstream from mouth, 0.8 mile northwest of Franklin, N.H.	18.5		7-13-88	.64	.03	
27	01078520 Pemigewas- set River	Merrimack River	Lat 43°26'36", long 71°39'31", Grafton County, Hydrologic Unit 01070002, 1,500 feet south of Eastman Falls Dam, 0.57 mile west of Franklin, N.H.	1,021.8	-	7-11-88	457	.45	
28	01081000 Winnipesau- kee River	do	Lat 43°26′31″, long 71°35′15″, Belknap County, Hydrologic Unit 01070002, on right bank at Tilton and 0.3 mile upstream from Packer Brook, Tilton, N.H.	471	1937 to current year	7-07-88	246	.52	
29	01081400 Winnipesau- kee River	do	Lat 43°26′29″, long 71°39′04″, Grafton County, Hydrologic Unit 01070001, behind Franklin High School, 1,500 feet north of confluence with Pemigewasset River, 0.40 mile southwest of Franklin, N.H.			7-11-88	244		
30	01081500 Merrimack River	Atlantic Ocean	Lat 43°25'22", long 71°39'10", Merrimack County, Hydrologic Unit 01070002, 1 mile downstream from confluence of Pemigewasset and Winnipesaukee Rivers at Franklin Junction	1,507	1903-78 1983-88	7-11-88	701	.47	

APPENDIX E: Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire

Table E-1. Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire

[ft, feet; μ S/cm, values are reported in microsiemen per centimeter at 25 degrees Celsius; °C, degrees Celsius; mg/L, milligram per liter; μ g/L, microgram per liter; NO₂⁻ + NO₃⁻, nitrite plus nitrate; WAT WH, water whole, unfiltered; TOT INC, total incremental titration; dissolved, filtered water; recoverable, less than 95 percent of total; --, no data collected. A less than sign indicates a value less than the detection limit. Agency analyzing samples was U.S. Geological Survey Central Laboratories, Arvada, Colo.]

Local identifier	Date of sampling	Depth of well total (ft)	Screened interval (ft)	Specific conductance lab (µS/cm)	pH (standard units)	Temper- ature (°C)	Oxygen , dissolved (mg/L)	Hardness, total (mg/L as CaCO ₃)	Acidity (mg/L as CaCO ₃)
ANW- 1	9-01-88	42.9	39.5-42.5	77	7.50	9.4	9.4	25	0.1
ANW-14	9-01-88	27.1	23.7-26.7	64	6.20	9.5	2.6	20	<.1
APW- 2	9-02-88	22.0	19.0-22.0	257	6.80	10.5	.7	20	<.1
APW- 3	9-02-88	20.5	17.5-20.5	93	7.70	9.5	3.5	20	<.1
B2W-18	9-13-88	36.0	39.0-49.0	60	6.00	10.1	3.0	14	<.1
B2W-36	9-13-88	70.0		93	7.20	8.7	5.2	28	<.1
CBS- 1	9-05-88			26	6.30	10.6	13.8	7	<.1
CBW-3	9-05-88	29.4	26.4-29.4	189	6.90	11.1	3.5	36	<.1
CBW-4	9-05-88	74.0	71.0-74.0	53	7.40	10.4	.7	49	<.1
CBW-33	9-03-88	23.1	19.7-22.7	64	5.80	10.9	9.9	51	<.1
CBW-34	9-03-88	107.0	103.6-106.6	237	6.20	8.8	6.0	60	<.1
FKW-29	9-07-88	45.0	97.0-122.0	116	6.70	9.9	5.8	41	<.1
HNW-7	9-01-88	120.0	117.0-120.0	53	8.20	7,7	9.7	33	<.1
HRW-1	9-03-88	87.6	84.6-87.6	162	8.20	7.7	9.7	33	<.1
LKW- 1	9-12-88	15.0		70	5.90	12.8	8.2	11	<.1
PYW- 9	9-06-88	45.0		209	6.30	9.2	2.8	39	<.1
RUW- 2	9-03-88	26.5	23.5-26.5	285	6.70	9.9	2.8	81	< .1
RUW-14	9-03-88	42.8	39.4-42.4	151	7.20	8.5	5.3	43	<.1
RUW-15	9-03-88	77.8	74.4-77.4	70	6.70	10.2	8.7	20	<.1
SCS- 1	9-05-88			180	6.10	9.8	12.8	36	<.1
SCW-50	9-07-88	45.0	+-	114	6.70	15.6	4.3	39	<.1
SCW-58	9-01-88	21.0	17.6-20.6	35	9.10	13.9	6.0	9	<.1
SCW-135	9-01-88	44.4	41.0-44.0	76	7.90	9.2	6.0	19	<.1
TRW- 5	9-05-88	32.2	29.2-32.2	53	6.30	8.6	10.6	10	<.1
WFW- 2	9-07-88	58.0		24	5.30	7.2	7.6	4	<.1
WSW-14	9-07-88			137	6.10	11.0	6.0	21	<.1

Local identifier	Calcium, dissolved (mg/L as Ca)	Magnesium, dissolved (mg/L as Mg)	Sodium, dissolved (mg/L as Na)	Potassium, dissolved (mg/L as K)	Alkalinity, WAT WH TOT INC field (mg/L as CaCO ₃)	Sulfate, dissolved (mg/L as SO ₄)	Chlo- ride, dis- solved (mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Solids sum of consti- tuents, dissolved (mg/L)
ANW-1	7.6	1.4	2.6	2.1	14	15	1.1	<0.10	11	46
ANW-14	6.2	1.1	3.4	1.0	13	3.6	6.7	.20	12	47
APW- 2	6.4	1.0	38	1.8	14	7.9	58	.40	9.7	128
APW- 3	6.7	.83	8.2	1.0	12	4.2	14	.20	11	51
B2W-18	3.8	.97	5.4	.70	9.0	6.6	6.6	.10	9.6	41
B2W-36	7.8	.0	6.9	1.2	24	5.3	9.1	.10	15	62
CBS-1	2.1	.34	2.2	.30	8.0	3.1	.80	<.10	12	18
CBW- 3	11	2.1	19	1.7	18	5.8	.36	.20	9.3	1.4
CBW-4	4.1	.96	3.9	1.3	16	6.8	.40	20	40	
CBW-33	5.7	1.9	2.1	1.2	8.0	14	1.4	<.10	7.4	36
CBW-34	18	3.6	20	2.0	25	9.7	44	<.10	17	146
FKW-29	9.9	3.9	6.0	1.3	30	7.2	10	.10	16	71
HNW- 7	5.3	.86	2.2	1.8	14	6.5	1.9	<.10	8.3	32
HRW- 1	9.4	2.2	16	1.8	18	7.5	30	.10	16	92
LKW- 1	3.4	.49	8.7	.70	5.0	5.8	11	.40	8.4	40
PYW- 9 RUW- 2 RUW-14 RUW-15 SCS- 1	11 28 12 5.6 8.3	2.3 5.5 3.1 1.4 1.8	22 10 10 5.1 21	1.6 3.8 2.5 1.3 2.8	12 37 22 14	14 23 16 9.3	41 37 17 4.2 32	.10 .10 .10 <.10 <.10	16 20 14 12 9.3	127 142 88 42 98
SCW-50	9.5	3.7	6.2	1.3	27	7.2	10	.10	15	64
SCW-58	2.9	.49	1.6	.70	8.0	4.3	1.5	.10	9.1	18
SCW-135	5.5	1.2	5.1	1.5	12	7.7	5.8	.10	8.1	35
TRW- 5	3.0	.57	5.1	1.0	7.0	5.2	6.7	.10	10	30
WFW- 2	1.2	.12	1.3	.70	2.0	2.4	2.6	.10	6.1	12
WSW-14	6.7	1.1	14	1.6	10	8.2	25	.10	10	70

Table E-1. Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire—Continued

Local identifier	Nitrogen, NO ₂ ⁻ + NO ₃ ⁻ , dissolved (mg/L as N)	Nitrogen, ammonia, dissolved (mg/L as N)	Nitrogen, ammonia + organic, dissolved (mg/L as N)	Nitrogen, nitrite, dissolved (mg/L as N)	Phospho- rous, dissolved (mg/L as P)	Aluminum, dissolved (μg/L as Al)	Arsenic, dissolved (μg/L as As)	Barium, dissolved (μg/L as Ba)	Beryllium, dissolved (μg/L as Be)
ANW-1	0.420	<0.020	<0.20	<0.010	<0.010	<10	<1	10	<0.5
ANW-14	.860	<.010	<.20	<.010	<.010	10	<1	4	<.5
APW-2	<.100	<.030	<.20	<.010	<.010	80	1	22	<.5
APW-3	.530	<.010	<.30	<.010	<.010	60	<1	11	<.5
B2W-18	.300	<.010	.30	<.010	<.010	40	<1	13	<.5
B2W- 36	.630	<.010	.30	<.010	.010	<10	<1	6	<.5
CBS-1	<.100	.010	<.20	<.010	<.010	20	<1	13	8
CBW-3	.480	<.010	<.20	<.010	<.010	30	<1 <1	18	.8 <.5
CBW-4	<.100	<.010	<.20	<.010	<.010	<10	<i< td=""><td>14</td><td><.5</td></i<>	14	<.5
CBW- 33	1.20	<.010	.40	<.010	<.010	60	₹i	21	.5
CBW- 34	1.20	<.010	.30	<.010	<.010	20	<1	21	2
FKW29	.950	<.010	.30	<.010	<.010	<10	< <u>1</u>		<.5
HNW-7	.260	<.010	<.20	<.010	<.010	<10	<1	2 5	<.5
HRW-1	1 .270	<.010	.30	<.010	<.010	<10	<1	9	2
LKW-4	.220	<.010	.30	<.010	<.010	130	<1	4	7
PYW-9	.310	.010	.40	<.010	.280	80	<1	23	<.5
RUW-2	<.100	.020	.40	<.050	<.010	10	3	100	<.5 .8 <.5
RUW-14	.480	<.010	.20	<.010	<.010	<10	<1	30	.8
RUW-15	.860	<.010	.30	<.010	<.010	10	<1	15	<.5
SCS-1	2.20	<.030	.40	<.010	<.010	20	<1	38	<.5
SCW-50	.970	.010	.30	<.010	<.010	<10	<1	17	<.5
SCW-58	<.100	<.010	<.20	<.010	<.010	<10	<1	5	<.5
SCW-135	.900	<.010	<.20	<.010	<.010	<10	<1	8	<.5
TRW-5	.200	<.010	<.20	<.010	<.010	20	<1	13	<.5
WFW-2	.110	<.010	<.20	<.010	<.010	210	12	7	<.5
WSW-14	.380	<.010	.20	<.010	<.010	60	<1	4	<.5

Local identifier	Boron, dissolved (μg/L as B)	Cadmium, dissolved (μ g/L as Cd)	Chromium, dissolved (μg/L as Cr)	Cobalt, dissolved (μg/L as Co)	Copper, dissolved (μg/L as Cu)	iron, total recoverable (μg/L as Fe)	Iron, dissolved (μg/L as Fe)	Lead, dissolved (μg/L as Pb)	Lithium, dissolved (μg/L as Li)
ANW1	<10	<1	1	<3	<10	180	88	<10	<4
ANW-14	<10	<1	$\overline{2}$	<3	<10	700	8	<10	<4
APW- 2	<10	<Ī	<1	<3	<10	1,000	1,000	<10	<4
APW- 3	<10	<1	<1	<3	<10	40	9	<10	<4
B2W-18	20	<1		<3	80	320	190	<10	<4
B2W-36	<10	<1		<3	<10	40	26	<10	<4
CBS- 1	<10	<1	<1	<3	<10	<10	16	<10	<4
CBW-3	<10	<1	<1	<3	<10	20	3	<10	<4
CBW- 4	<10	<1	1	<3	<10	30	<3	<10	7
CBW-33	<10	<1	2	<3	<10	20	10	<10	<4
CBW-34	<10	<1	1	<3	<10	130	11	<10	8
FKW-29	<10	<1		<3	50	<10	7	<10	<4
HNW-7	<10	<1	1	<3	<10	260	10	<10	<4
HRW- 1	<10	<1	2	<3	<10	230	<3	<10	<4
LKW- 1	<10	<1		<3	30	40	16	<10	<4
PYW- 9	<10	<1		<3	10	760	800	10	<4
RUW- 2	<10	2	2	4	<10	13,000	16,000	<10	6
RUW-14	<10	<1	1	<3	<10	700	<3	<10	<4
RUW-15	<10	<1	2	<3	<10	3,000	3	<10	<4
SCS- 1	80	<1	<1	<3	<10	10	12	<10	<4
SCW-50	<10	<1	<1	<3	<10	750	17	<10	<4
SCW-60	<10	<1	<1	<3	<10	60	4	<10	<4
SCW-135	<10	<1		<3	80	40	21	<10	<4
TRW- 5	<10	<1	2	<3	<10	130	5	<10	<4
WFW- 2	<10	<1		<3	<10	180	7	<10	<4
WSW-14	<10	<1		<3	540	10	7	20	<4

Table E-1. Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire—Continued

Local identifier	Man ganese, dissolved (μg/L as Mn)	Mercury, dissolved (μ g/L as Hg)	Molyb- denum, dissolved (μg/L as Mo)	Nickel, dissolved (μg/L as Ni)	Selenium, dissolved (μg/L as Se)	Silver, dis- solved (μg/L as Ag)	Strontlum, dissolved (µg/L as Sr)	Vanadium, dissovied (μg/L as V)	Zinc, dis- solved (μg/L as Zn)	Carbon, orgranic, dissolved (μg/L as C)
ANW-1	400	<0.1	<10	<1	<1	<1.0	63	<6	<3	0.8
ANW-14	3	<.1	<10	<1	<1	<1.0	47	<6	<3	.8
APW- 2	61	<.1	<10	ī	<1	<1.0	54	<6	9	1.0
APW- 3	4	<.1	<10	<1	<1	<1.0	42	<6	16	.6
B2W-18	2		<10	1			44	<6	11	1.1
B2W-36	8		<10	1			45	<6	10	1.0
CBS- 1	ī	<.1	<10	1	<1	1.0	17	<6	3	.9
CBW- 3	<1	<.1	<10	<1	<1	<1.0	100	<6	3	.9 .9 .8
CBW- 4	180	<.1	<10	1	1	<1.0	35	<6	<3	.8
CBW-33	4	.1	<10	<1	<1	1.0	42	<6	4	1.2
CBW-34	19	.2	<10	<1	<1	<1.0	150	<6	7	.7
FKW-29	<1		<10	<1			61	<6	10	.5
HNW-7	27	<.1	<10	<1	<1	<1.0	28	<6	3	1.1
HRW- 1	18	<.1	<10	<1	<1	1.0	64	<6	4	1.0
LKW- 1	3		<10	<1			22	<6	8	1.5
PYW- 9	250		<10	<1			91	<6	15	.5
RUW- 2	260	<.1	<10	<1	<1	1.0	140	<6	<3	1.7
RUW-14	2	<.1	<10	1	<1	1.0	57	<6	4	.8 .6
RUW-15	2	<.1	<10	<1	<1	1.0	45	<6	5	.6
SCS-1	11	30	<.1	<10	1	<1	1.0	76	<6	5
SCW-50	5		<10	1			65	<6	9	.7
SCW-58	430	<.1	<10	2	<1	<1.0	29	<6	14	.8
SCW-135	95	<.1	<10	2	<1	<1.0	38	<6	13	.8 .8
TRW- 5	3	<.1	<10	<1	<1	<1.0	23	<6	3	.6
WFW- 2	55		<10	1			19	<6	7	.5
WSW-14	16		<10	<l< td=""><td></td><td></td><td>84</td><td><6</td><td>13</td><td>.5</td></l<>			84	<6	13	.5

Local dentifler	Dichloro- bromo methane, total (μg/L)	Carbon tetra- chloro- ethane, total (µg/L)	1, 2-di- chloro- form, total (μg/L)	Bromo- form, total (μg/L)	Chloro- dibromo- ethane, total (µg/L)	Chloro- form, total (μg/L)	Toluene, total (μg/L)	Benzene, total (μg/L)	Chloro- benzene, total (μg/L)	Chloro ethane total (μg/L)
ANW-1										
ANW-14										
APW- 2										
APW- 3										
B2W-18	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	< 0.20
B2W-36	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBS-1	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW-3	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 4	<.20	<.20	<.20	<.20	<.20	<.20	<.20	.30	<.20	<.20
CBW-33										
CBW-34										
FKW-29	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HNW-7	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HRW- 1										
LKW- 1	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
PYW- 9	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW- 2	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW-14										
RUW-15										
SCS- 1	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-50	<.20	<.20	<.20	<.20	<.20	.60	<.20	<.20	<.20	<.20
SCW-58										
SCW-135	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
TRW-5	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WFW- 2	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WSW-14	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20

Table E-1. Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire—Continued

Local identifier	Ethyl- benzene, total (μg/L)	Methyl- bromide, total (μg/L)	Methyl- chloride, total (μg/L)	Methylene chloride, total (μg/L)	Tetrachioro- ethylene, total (μg/L)	Tri- chloro- fluoro- methane, total (µg/L)	1,1- Dichloro- ethane, total (µg/L)	1,1- Dichloro- ethylene, total (µg/L)	1,1,1-Tri- chloro- ethane, total (μg/L)	1,1,2-Tri- chloro- ethane, total (µg/L)
ANW-1					-					
ANW-14										
APW- 2										
APW- 3										
B2W-18	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
B2W-36	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBS-1	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 3	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 4	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW-33										
CBW-34										
FKW-29	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HNW- 7	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HRW- 1										
LKW- i	<.20	<.20	<.20	<.20	<.20	<.20	<.20	.20	<.20	<.20
PYW- 9	<.20	<.20	<.20	<.20	<.20	<.20	<.20	.20	<.20	<.20
RUW- 2	<.20	.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW-14										
RUW-15										
SCS-1	<.20	.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-50	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-58										
SCW-135	<.20	.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
TRW- 5	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WFW- 2	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WSW-14	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20

Local identifier	1,1,2,2 Tretra- chloro- ethane, total (µg/L)	1,2-Di- bromo- ethane, water whole, total (µg/L)	1,2-Dibro- moethylene, total (μg/L)	1,2-Di- chloro- benzene, total (μg/L)	1,2-Di- chloro- propane, total (µg/L)	1,2-Trans- di- chloro- ethene, total (μg/L)	1,3 Di- chloro- propene, total (μg/L)	3-DI- chloro benzene, total (μg/L)	1,4-Di- chloroether, total (μg/L)	2-Chioro ethyl vinyl ether, total (μg/L)
ANW-1										
ANW-14										
APW- 2										
APW- 3										
B2W-18	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
B2W-36	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBS- 1	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 3	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 4	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW-33										
CBW-34										
FKW-29	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20	.20
HNW- 7	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
HRW- 1										
LKW- 1	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
PYW- 9	<.20		<.2	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW- 2	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW-14									- <u>-</u>	
RUW-15										
SCS-1	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-50	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-58										
SCW-135	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
TRW-5	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
WFW- 2	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20
WSW-14	<.20	<.20		<.20	<.20	<.20	<.20	<.20	<.20	<.20

Table E-1. Summary of ground-water-quality analyses in the Pemigewasset River Basin, central New Hampshire—Continued

Local identifier	Dichloro- difluoro- methane, total (μg/L)	Trans-1,3- dichioro- propene, total (μg/L)	Cis 1,3- Dichloro- propene, total (μg/L)	Vinyl chloride, total (μg/L)	Tri- chloro- ethylene, total (μg/L)	Styrene, total (μg/L)	Xylene, total water, whole recoverable (μg/L)
ANW-1		*-					
ANW-14							
APW- 2							
APW- 3							
B2W-18	<.20	<.20	<.20	<.20	<.20	<.20	<.20
B2W-36	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBS- 1	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 3	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW- 4	<.20	<.20	<.20	<.20	<.20	<.20	<.20
CBW-33					••		
CBW-34							
FKW-29	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HNW-7	<.20	<.20	<.20	<.20	<.20	<.20	<.20
HRW- 1							••
LKW- 1	<.20	<.20	<.20	<.20	<.20	<.20	
PYW- 9	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW- 2	<.20	<.20	<.20	<.20	<.20	<.20	<.20
RUW-14							
RUW-15							
SCS-1	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-50	<.20	<.20	<.20	<.20	<.20	<.20	<.20
SCW-58							
SCW-135	<.20	<.20	<.20	<.20	<.20	<.20	<.20
TRW- 5	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WFW- 2	<.20	<.20	<.20	<.20	<.20	<.20	<.20
WSW-14	<.20	<.20	<.20	<.20	<.20	<.20	<.20