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Simulated Effects of Proposed Ground-Water 
Pumping in 17 Basins of East-Central 
and Southern Nevada

By Donald H. Schaefer and James R. Harrill 

ABSTRACT

The Las Vegas Valley Water District 
filed 146 applications in 1989 to pump about 
800,000 acre-feet per year (acre-ft/yr) of ground 
water from 26 basins in east-central and southern 
Nevada, for use in the Las Vegas urban area. The 
quantity of water that they proposed to pump was 
eventually reduced to a maximum of 180,800 
acre-ft/yr in 17 basins. A previously constructed, 
two-layer computer model of the carbonate-rock 
province was configured to simulate transient con­ 
ditions and used to develop first approximations of 
the possible effects of these withdrawals. Simula­ 
tions were made using the phased pumping sched­ 
ule proposed by the water district that reaches a 
maximum pumpage rate of 180,800 acre-ft/yr after 
18 years. No other pumping was simulated, so the 
results represent only effects of pumping proposed 
by the water district. Existing pumping was not 
simulated in the original model, so the effects 
simulated in this report are superimposed on 
conditions that are representative of the carbonate- 
rock province prior to any development.

The simulations indicate that the proposed 
pumping would cause water-level declines in 
many ground-water basins, decreased flow at 
several regional springs, and decreased discharge 
by evapotranspiration from the basins.

Ground-water levels ultimately could 
decline several hundred feet in the basins sched­ 
uled to supply most of the pumped ground water.

Model declines in the carbonate aquifer are 
somewhat larger than simulated declines in the 
overlying basin-fill deposits.

Simulated regional springflow decreased 
in several cells, including those representing the 
Muddy River springs, Hiko-Crystal-Ash Springs 
area, and the Ash Meadows springs area. Model 
simulations show flow decreases of about 
11 percent, 14 percent, and 2 percent, respectively, 
at these springs after about 100 years of pumping.

Simulated evapotranspiration also 
deceased in many basins; the largest decreases 
are in basins where ground-water withdrawals 
are greatest. These basins include Railroad, 
Spring, and Snake Valleys. The largest decrease in 
simulated evapotranspiration occurred in southern 
Railroad Valley about 33 cubic feet per second 
(64 percent) after about 100 years of pumping.

Model-sensitivity tests indicate that long- 
term results are relatively insensitive to variations 
in values used for aquifer storage. Model simula­ 
tions were made using a 50-percent variation in 
upper-layer storage coefficients and a range of 
values for the lower layer. The analysis showed 
little deviation in model results of water-level 
changes, springflow, or evapotranspiration rates.

The simulation results are based on a 
computer model of regional ground-water flow 
that greatly simplifies the complex distribution of 
geology and, consequently, the hydraulic proper­ 
ties of many of the rocks in the Great Basin. The 
adequacy of the model to simulate the effects of
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this proposed pumping cannot be tested until 
pumping stresses have been in place long enough 
to cause measurable effects within the system.

INTRODUCTION

The carbonate-rock province of the Great 
Basin is characterized by a series of generally north- 
to northeast-trending mountain ranges composed 
predominantly of carbonate rocks (limestone and 
dolomite) of Paleozoic age. The intervening valleys 
are filled with detritus (gravels, sands, silts, and clays) 
eroded from the adjacent mountain ranges. These 
basin-fill deposits may be several thousand feet 
thick (Plume and Carlton, 1988).

Virtually all types of rocks and deposits within 
the province contain ground water. The basin-fill 
deposits are the primary aquifer system, and most 
of the present ground-water pumpage is from these 
deposits. Carbonate rocks that form some of the moun­ 
tain ranges and underlie the basin-fill deposits in many 
areas may also be significant ground-water reservoirs 
in some places. Where they are fractured or contain 
solution openings, the carbonate rocks commonly can 
act as conduits for regional ground-water flow. Most 
of the larger regional springs in the province issue from 
carbonate rocks or from basin-fill deposits overlying 
or adjacent to carbonate rocks. These springs discharge 
ground water that has moved through the regional flow 
systems in the carbonate-rock aquifers from distant 
source areas.

As part of the Great Basin Regional Aquifer- 
System Analysis (RASA) project, the 100,000-mi2 
carbonate-rock province (fig. 1), also termed "the 
province" herein, was modeled using a digital, ground- 
water flow model to refine concepts of regional 
ground-water flow in the Great Basin (Harrill and 
others, 1983 and 1988; Prudic and others, 1993). The 
modeling is described in detail by Prudic and others 
(1993). In general, the simulated flow in the eastern and 
northern parts of the province is northward toward the 
Great Salt Lake and the Humboldt River; elsewhere in 
the province, flows are generally southward, toward 
either Death Valley or the Virgin and Colorado Rivers 
(fig. 2). A summary description of the various local and 
regional ground-water flow systems was reported by 
Harrill and others (1988).

In 1989, the Las Vegas Valley Water District 
(LVVWD) filed 146 applications with the Nevada State 
Engineer for water rights in east-central and southern 
Nevada. These original applications were for 26 basins 
throughout the carbonate-rock province and totaled 
about 800,000 acre-ft/yr of ground-water withdrawals. 
The total amount of pumpage was eventually reduced 
to a maximum 180,800 acre-ft/yr from 17 basins, or 
hydrographic areas (figs. 1 and 3; LVVWD, written 
commun., 1992).

In 1991, several Department of the Interior 
(DOI) bureaus requested that the U.S. Geological 
Survey rerun the regional-scale ground-water flow 
model to obtain first approximations of probable 
effects of increased ground-water pumping in the 
carbonate-rock province. The simulation was made 
using a phased pumping schedule, with ultimate pump- 
age totaling 180,800 acre-ft/yr. The agencies were par­ 
ticularly interested in the possible effects on regional 
flow, large regional springs, and evapotranspiration 
that could affect their water interests in the province.

The model used to simulate these effects has 
large grid spacing and is based on a regional-scale 
conceptualization of ground-water flow. The model 
is considered adequate to develop first approximations 
of probable regional-scale effects, but is not adequate 
to support detailed predictions. A more detailed repre­ 
sentation of the system and more information about 
how the system will respond to pumping stresses 
would permit the assessment of estimated effects, 
but this would require more detailed delineation of 
the aquifers both laterally and vertically, as well as 
additional information on hydrologic properties of 
the aquifers.

Purpose and Scope

The purpose of this report is to document the 
results obtained using the regional ground-water flow 
model to estimate potential effects of implementing the 
proposed water-rights applications filed by LVVWD.

formal hydrographic areas in Nevada were delineated 
systematically by the U.S. Geological Survey and Nevada 
Division of Water Resources in the late 1960's for scientific and 
administrative purposes (Rush, 1968). The official hydrographic 
area names, numbers, and geographic boundaries continue to be 
used in Geological Survey scientific reports and Division of Water 
Resources administrative activities.
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The report includes a description of the simulated 
effects of the pumping on regional springflow, evapo- 
transpiration (ET) rates, and ground-water levels in 
17 basins in the carbonate-rock province of the Great 
Basin. The model results are conceptual in nature 
because the model used is conceptual (Prudic and 
others, 1993, p. 18).

The conceptual model used several assumptions 
(Prudic and others, 1993, p. 15). These include: 
(1) flow through fractures and solution openings is 
the same as flow through porous media and thereby 
conforms to Darcy's Law, (2) steady-state conditions 
were in effect prior to ground-water development in 
the area, and (3) transmissivity is heterogeneous 
throughout the study area but is homogeneous within 
each individual cell.

Data used in the model are highly generalized, 
and the assumptions are simplifications of the actual 
system. Furthermore, the locations of proposed wells 
and the proposed pumping schedule described in this 
report are likely to be revised. Consequently, results 
reported should be used only as indications of possible 
generalized effects.
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DESCRIPTION OF GROUND-WATER 
FLOW MODEL

The ground-water flow model used for this study 
was constructed to conceptualize regional flow in the

carbonate rock province of the Great Basin (Prudic and 
others, 1993). The model consists of two layers of 
3,660 cells (60 columns by 61 rows; fig. 3); each cell 
is 5 mi wide by 7-1/2 mi long. Not all cells in the grid 
are used in the model simulation; each layer contains 
2,456 active cells.

The program used to simulate regional ground- 
water flow is the modular three-dimensional finite 
difference ground-water flow model, MODFLOW, 
written by McDonald and Harbaugh (1988). The 
mathematics involved in using the model to simulate 
ground-water flow systems is described in detail in that 
reference. The specific use of MODFLOW to simulate 
the regional ground-water system in the Great Basin is 
described by Prudic and others (1993).

The data used in the model, such as transmis­ 
sivity values, recharge values, and other data sets, are 
documented (Schaefer, 1993). Boundary conditions for 
the model are described in detail by Prudic and others, 
(1993, p. 18).

In general, the model boundaries of the province 
extend to mountain ranges that consist mostly of low- 
permeability consolidated rock and are assumed to be 
no-flow boundaries. General head boundaries exist 
along the northeast, northwest, southeast, and south­ 
west borders of the model (Prudic and others, 1993, 
fig. 9). A no-flow boundary is simulated beneath the 
lower layer of the model representing the depth below 
which there is little ground-water flow.

Recharge to the model is simulated as a constant 
flux to the upper model layer in cells that correspond 
to mountain ranges. Discharge occurs primarily 
as evapotranspiration and is simulated as a head- 
dependent flow boundary in the upper model layer. 
Regional springs are simulated as drains from the 
lower layer of the model.

The SIP (Strongly Implicit Procedure) solver 
(McDonald and Harbaugh, 1988, p. 12-1) was used 
by the model to solve the ground-water flow equations. 
SIP is a method for solving large systems of simulta­ 
neous linear equations by iteration. A closure criterion 
of 0.1 ft and an acceleration parameter (a value that 
increases or decreases head change at each iteration) 
of 0.8 was chosen.

Four major assumptions were used for the 
transient simulations of the flow model. The first was 
that the only pumpage simulated was that proposed by 
LVVWD, to produce a representation of the overall 
effects that development of these applications might 
have on the regional ground-water flow systems.
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In keeping with the conceptual nature of the model, the 
simulation provides information about the probable 
areas that may be affected, the general magnitude of 
possible water-level declines or other effects, and the 
general period of time over which changes may be 
expected to occur. Prediction of specific, detailed 
water-level changes throughout the area would require 
that effects of the proposed pumping be superimposed 
on the effects of existing and other anticipated future 
pumping. That was beyond the scope of this analysis.

The second assumption was that storage values 
used for transient simulations for the upper layer were 
based on the predominant aquifer material in each cell, 
determined from surficial maps. This distribution may 
not be totally correct because the material may be dif­ 
ferent at depth in the zone of saturation. Storage coef­ 
ficients in the upper layer also assume dewatering of 
the sediments.

Rock and deposit types were divided into three 
categories basin-fill materials, carbonate rocks, and 
other consolidated rocks. Distribution of these units is 
shown by Prudic and others (1993, fig. 15). Average 
values for storage coefficients in layer one were 
assigned to each of these materials. For basin-fill mate­ 
rial, a value of 0.1 was assigned on the basis of average 
values of specific yield used in U.S. Geological Survey 
reconnaissance evaluations of ground-water resources 
in most basins of the study area. For carbonate rocks, a 
value of 0.05 was assigned on the basis of an average 
porosity value of 0.047 determined from geophysical 
logs of five wells in the Coyote Spring Valley area 
(Berger, 1992, p. 18). For other rocks, a value of 
0.01 was assigned on the basis of a range of yalues 
for fractured rocks given by Snow (1979, table 1).

The storage coefficient for the lower layer was 
estimated on the basis of the probable average porosity 
of the rocks present (0.01 to 0.05), the effective thick­ 
ness of aquifer material (probably between 5,000 and 
10,000 ft), the bulk modulus of elasticity of water 
(3 x 105 lb/in2), and the bulk modulus of elasticity of 
the solid skeleton of the aquifer (for limestone, about 
4.8 x 106 to 5.4 x 106 lb/in2 ; Krynine and Judd, 1957, 
table 2.5). The following equation from Lohman 
(1972, p. 9) was used to estimate the coefficients:

(1)

where S is storage coefficient (dimensionless); 
9 is porosity, as a decimal fraction; 
y is specific weight per unit, 62.4 lb/ft3  * 

144 in2/ft2 = 0.434 (Ib/in2)/ft; 
b is thickness, in feet; 

Ew is bulk modulus of elasticity of water; 
C is a dimensionless ratio, which may be 

considered unity in an uncemented 
granular material; in a solid aquifer, 
such as limestone with tubular solution 
channels, C is apparently equal to 
porosity; and 

Es is bulk modulus of elasticity of the solid
skeleton of an aquifer.

Estimates of storage values based on the above 
numbers ranged from 7.6 xlO"5 to 1.2 x 10'3 . For pur­ 
poses of this report, the storage coefficient for the lower 
layer was set at the midrange of these values, 6 x 10"4, 
for the entire layer. The data set for storage values used 
in the model is listed in appendix 1.

The third major assumption used in the model 
is from the previous steady-state model and concerns 
the lower layer. The individual basin-fill aquifers 
underlying the various ground-water basins can be 
adequately described in the upper layer as a series of 
high-transmissivity zones (the basin-fill valleys) sepa­ 
rated from each other by low-transmissivity zones (the 
intervening mountain ranges). The lower layer repre­ 
sents the distribution of carbonate-rock aquifers in the 
system in a limited way that may affect the calculated 
drawdowns in that layer.

The fourth and final assumption was that all 
input values used in the conceptual steady-state model 
remain constant during the transient simulations. 
No changes were made to transmissivity, leakance, 
recharge, or the other input data sets described by 
Prudic and others (1993) and Schaefer (1993).

RESULTS OF SIMULATIONS

Simulation of Conditions Prior to 
Proposed Pumping

The steady-state conditions simulated by Prudic 
and others (1993) represent a conceptualization of 
ground-water flow in the carbonate-rock province of 
the Great Basin before ground-water pumping within 
the province commenced. Figure 2 shows the general 
distribution of simulated steady-state heads (water
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levels) that were used as the starting heads for the 
transient simulations. Also shown in figure 2 is the gen­ 
eral direction of ground-water flow for both the alluvial 
and carbonate aquifers. The starting-head data used in 
the transient model are listed in appendix 2.

The highest simulated steady-state heads are 
generally in southwestern Utah and east-central 
Nevada. In these areas, altitudes of the valley floors 
are the highest and estimated recharge assigned to the 
mountains is the greatest. Heads generally decrease 
northward toward the Humboldt River and the Great 
Salt Lake, and southward toward the Colorado River 
and Death Valley. Ground-water flow follows a similar 
pattern flow is away from areas of highest heads. 
Many geologic and hydrologic barriers compartmen­ 
talize flow into several regions. Flow within each 
region is discussed in detail by Prudic and 
others (1993).

Proposed Pumping and Stress Periods

The proposed pumpage was to increase for 
about 18 years, from a rate of 24,500 acre-ft/yr to 
180,800 acre-ft/yr, in four phased steps. Table 1 shows 
the overall pumping schedule and the amount of pump- 
age from each basin. These data are the basis for the 
pumpage simulated in the model. The model stress 
periods coincide with the proposed pumping phases 
of LVVWD, and the simulated pumpage in the model 
duplicates the areal distribution of the proposed well 
locations. Table 2 shows how these pumping periods 
relate to the model stress periods. Appendix 3 contains 
the pumpage data set used in the model.

Simulated Effects of Proposed Pumping

The simulated effects of pumping large quantities 
of ground water from east-central and southern Nevada 
include water-level declines, reductions in evapotrans- 
piration and discharge from regional springs, and 
changes in flow to or from rivers, lakes, and the Death 
Valley playa. These results were calculated by the 
model, but because existing data are not adequate to 
allow the simulated results to be calibrated against 
observed changes, they contain a high degree of uncer­ 
tainty. They should not be considered exact predictions 
of change but rather indications of possible generalized 
effects. The trends and magnitudes of the calculated

changes are considered first approximations that can 
give valuable insight into possible regional effects of 
long-term, high-volume pumpage in the province.

Simulated Pumpage and Drawdowns

At selected time steps for all five stress periods 
of the simulation, water-level declines (drawdowns) 
were calculated for both layers by comparing water- 
level arrays of successive stress periods. Drawdown 
patterns for both model layers then were mapped and 
are shown for selected time periods in figures 4-10. The 
drawdown values were computed by subtracting the 
original starting head for each model cell from the cor­ 
responding head simulated at the end of each selected 
time step. Lines of equal drawdown for each time step 
were then produced using the Golden Software 
Company "Surfer" computer contouring package. 
Locations of the proposed pumping wells in each 
stress period are also plotted on the maps to show their 
relation to the simulated declines. Each map shows 
simulated drawdowns for a layer, and only those wells 
designated to produce from that layer during that stress 
period are shown.

A pumping well represents discharge at a point, 
but the model distributes the pumpage over a 5-mi by 
7-1/2-mi cell. Because both aquifer properties and 
changes in water level are averaged over the entire grid 
cell, some error is introduced. Furthermore, the model 
"pumps" the cell for the entire stress period at the con­ 
stant rate. In reality, this may not be so, as some type of 
site-specific pumping schedule might be used to mini­ 
mize local effects. That level of detail was beyond the 
scope of the study.

The original applications for water rights by 
LVVWD included a list of proposed well locations, and 
indicated whether each well was to be completed in the 
basin fill or the carbonate aquifer. Also included was a 
list of total withdrawals in each ground-water basin. 
To create the pumpage data set for the model, it was 
necessary to determine the pumping rate for each well 
within each basin by dividing the total pumpage from 
that basin by the total number of wells. If a well was 
completed in the basin-fill aquifer, pumpage for the 
model was assigned to the upper layer. An identical 
process was used for wells proposed to be completed in 
the carbonate aquifer (and assigned to the lower layer).
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Table 1 . Pumpage proposed by Las Vegas Valley Water District during first 20 years of pumping, by basin, east- 
central and southern Nevada

[Location of basins, by hydographic area, is shown in figure 3]

Pumpage (acre-feet per year) by basin, and hydrographic-area (HA) number

Proposed 
pumpage 
schedule

Phase 1

Phase 2

Phase 3

Year

2007
2008
2009
2010
2011

2012
2013

2014
2015
2016
2017

2018
2019
2020
2021
2022

2023
2024

Garnet 
(Dry Lake) 

Valley, 
HA 21 6

2,000
2,000
2,000
2,000
2,000

2,000
2,000

2,000
2,000
2,000
2,000

0
0
0
0
0

0
0

Hidden 
Valley, 

HA 21 7

2,000
2,000
2,000
2,000
2,000

2,000
2,000

2,000
2,000
2,000
2,000

0
0
0
0
0

0
0

California 
Wash, 
HA 21 8

2,500
2,500
2,500
2,500
2,500

2,500
2,500

2,500
2,500
2,500
2,500

2,500
2,500
2,500
2,500
2,500

2,500
2,500

Coyote 
Spring 
Valley, 
HA 210

5,000
5,000
5,000
5,000
5,000

5,000
5,000

5,000
5,000
5,000
5,000

5,000
5,000
5,000
5,000
5,000

5,000
5,000

Three 
Lakes 

Valley (S), 
HA 211 1

5,000
5,000
5,000
5,000
5,000

5,000
5,000

5,000
5,000
5,000
5,000

5,000
5,000
5,000
5,000
5,000

5,000
5,000

Three 
Lakes 

Valley (N), 
HA 168

5,000
5,000
5,000
5,000
5,000

5,000
5,000

5,000
5,000
5,000
5,000

5,000
5,000
5,000
5,000
5,000

5,000
5,000

Tikapoo 
Valley, 
HA 169 
A and B

3,000
3,000
3,000
3,000
3,000

3,000
3,000

3,000
3,000
3,000
3,000

3,000
3,000
3,000
3,000
3,000

3,000
3,000

Cave 
Valley, 
HA 180

0
0
0
0
0

0
0

2,000
2,000
2,000
2,000

2,000
2,000
2,000
2,000
2,000

2,000
2,000

Coal 
Valley, 
HA 171

0
0
0
0
0

0
0

6,000
6,000
6,000
6,000

6,000
6,000
6,000
6,000
6,000

6,000
6,000

Phase 4 2025 0 0 2,500 5,000 5,000 5,000 3,000 2,000 6,000

1 Includes three wells that are physically located in Las Vegas Valley Hydrographic Area (212) but are considered by Las Vegas Valley Water 
District to be in Three Lakes Valley (southern part).

Figure 4 shows drawdown and wells for both 
layers at the end of 7 years of pumping (conclusion 
of stress-period one). Total annual pumpage during 
this phase of the water project is planned to be 
24,500 acre-ft. Of this amount, 29 percent 
(7,100 acre-ft/yr) was assigned to the upper layer, and 
71 percent (17,400 acre-ft/yr) was assigned to the 
lower layer. Pumping is planned for Garnet (Dry Lake), 
Hidden, California Wash, Coyote Spring, Three Lakes, 
and Tikapoo Valleys (fig. 3). In the upper layer 
(fig. 4A), the drawdown exceeds 10 ft only in Three 
Lakes Valley. Drawdowns are localized around the 
cells with assigned pumpage. Drawdowns in the lower 
layer (fig. 4B) are more extensive, showing a maximum 
decline of more than 100 ft in several valleys. 
Boundaries of the topographic basins, which form

the boundaries of the alluvial basins (upper layers), 
are not barriers to flow within the carbonate system 
(lower layers). Declines in the lower layer can extend 
far beyond the basin boundary because the model 
simulates the carbonate aquifer in the lower layer as 
being confined, and storage values are much less.

Figure 5 shows simulated drawdown and 
location of wells for both layers at the end of 11 years 
of pumping (conclusion of stress-period two). Total 
annual pumpage proposed for this phase of the 
project is 47,000 acre-ft. Of this amount, 39 percent 
(18,300 acre-ft/yr) was assigned to the upper layer, 
and 61 percent (28,700 acre-ft/yr) was assigned to the 
lower layer. During this phase of development, pump­ 
ing wells will be added in Cave, Coal, Delamar, Dry 
Lake, Pahroc, and Patterson Valleys (fig. 3).
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Table 1 Continued

Pumpage (acre-feet per year) by basin, and hydrographic area (HA) number

Delamar 
Valley, 
HA 182

0
0
0
0
0

0
0

3,000
3,000
3,000
3,000

3,000
3,000
3,000
3,000
3,000

3,000
3,000

3,000

Dry Lake 
Valley, 
HA 181

0
0
0
0
0

0
0

2,500
2,500
2,500
2,500

2,500
2,500
2,500
2,500
2,500

2,500
2,500

2,500

Pahroc 
Valley, 
HA 208

0
0
0
0
0

0
0

5,000
5,000
5,000
5,000

5,000
5,000
5,000
5,000
5,000

5,000
5,000

5,000

Patterson 
Valley, 
HA 202

0
0
0
0
0

0
0

4,000
4,000
4,000
4,000

4,000
4,000
4,000
4,000
4,000

4,000
4,000

4,000

Snake 
Valley, 
HA 195

0
0
0
0
0

0
0

0
0
0
0

25,000
25,000
25,000
25,000
25,000

25,000
25,000

25,000

Spring 
Valley, 
HA 184

0
0
0
0
0

0
0

0
0
0
0

50,000
50,000
50,000
50,000
50,000

50,000
50,000

50,000

Garden 
Valley, 
HA 172

0
0
0
0
0

0
0

0
0
0
0

0
0
0
0
0

0
0

10,000

Railroad 
Valley, 
HA 173 
A and B

0
0
0
0
0

0
0

0
0
0
0

0
0
0
0
0

0
0

52,800

Total 
(acre-feet 
per year)

24,500
24,500
24,500
24,500
24,500

24,500
24,500

47,000
47,000
47,000
47,000

118,000
118,000
118,000
118,000
118,000

118,000
118,000

180,800

Figure 5A shows an increase in the areal extent of 
simulated drawdowns in the upper layer, but maximum 
declines do not increase appreciably. The additional 
wells pumped during this phase of the simulation cause 
new declines in those additional areas. The simulated 
drawdowns in the lower layer (fig. 5#) likewise show 
an increase in areal extent and the maximum draw­ 
downs have increased in some areas.

Figure 6 shows the simulated drawdowns for both 
layers at the end of 18 years of pumping (conclusion of 
time-step two, stress-period three). Pumpage during 
this stress period was set at 118,000 acre-ft/yr. Of this 
amount, 61 percent was assigned to the upper layer 
(72,000 acre-ft/yr), and 39 percent (46,000 acre-ft/yr) 
was assigned to the lower layer. During this stress 
period, pumping was from California Wash and from 
Coyote Spring, Three Lakes, Tikapoo, Cave, Coal, 
Delamar, Dry Lake, Pahroc, Patterson, Snake, and

Spring Valleys. Pumping was terminated in Garnet 
(Dry Lake) Valley and Hidden Valley at the start of this 
stress period.

In the upper layer (fig. 6A), maximum simulated 
declines exceed 100 ft in the area of Three Lakes 
Valley. Simulated declines exceed 50 ft in Spring 
Valley. Simulated declines in the lower layer (fig. 6#) 
are areally more extensive and are beginning to affect 
a large area of the carbonate-rock province. Simulated 
drawdown exceeds 100 ft in Spring, Snake, and proba­ 
bly in other valleys. Simulated drawdowns do not gen­ 
erally exceed 200 ft, with the exception of a localized 
maximum drawdown of about 400 ft in the California 
Wash area. Declines induced by pumping in this area 
and in the Coyote Spring Valley area to the northwest 
seem to cause the drawdowns in the Muddy River 
springs area.
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Table 2. Simulated stress periods and pumpage, east-central and southern Nevada

[Asterisks indicate key simulation lengths used for analysis; acre-ft/yr, acre-feet per year]

Stress period

Stress-period one (Phase 1) 
2007-2013 (7 years) 
Total pumpage, 24,500 acre-ft/yr

Stress-period two (Phase 2) 
20 14-20 17 (4 years) 
Total pumpage, 47,000 acre-ft/yr

Stress-period three (Phase 3) 
2018-2024 (7 years) 
Total pumpage, 118,000 acre-ft/yr

Stress-period four (Phase 4) 
2025-2036 (12 years) 
Total pumpage, 180,800 acre-ft/yr

Stress-period five (Phase 4--continued) 
2037-?
Total pumpage, 180,800 acre-ft/yr

Time 
step

1
2

1
2

1
2

1 
2 
3

1
2
3 
4
5

6
7
8
9

10

Length of time 
step (years)

3.5 
3.5

2.0 
2.0

3.5 
3.5

4.0 
4.0 
4.0

12.3 
25.4
39.5 
54.6
70.7

87.9
106.4
126.2
147.3
169.9

Cumulative length 
of simulation 

(years)

3.5 
*7.0

9.0 
*11.0

14.5 
*18.0

22.0 
26.0 

*30.0

42.3 
55.4
69.5 
84.6

* 100.7

117.9
136.4
156.1
177.3

* 199.9

Figure 7 shows the simulated drawdowns due 
to pumping in the upper and lower layers 30 years into 
the model simulation (end of time-step three, stress- 
period four). Total annual pumpage during this period 
of the simulation is 180,800 acre-ft/yr. This amount 
is the projected maximum pumpage rate for the water 
project. Pumpage is from California Wash and Coyote 
Spring, Three Lakes, Tikapoo, Cave, Coal, Delamar, 
Dry Lake, Pahroc, Patterson, Snake, and Spring 
Valleys. This is also the stress period when pumping 
begins in Railroad Valley at a rate of 52,800 acre-ft/yr 
and in Garden Valley at a rate of 10,000 acre-ft/yr 
(phase four; table 1). Of the total amount, 62 percent 
(112,100 acre-ft/yr) was assigned to the upper layer 
and 38 percent (68,700 acre-ft/yr) was assigned to 
the lower layer.

Figure 1A shows the simulated drawdowns 
in the upper layer. In the area of Three Lakes Valley, 
in the southern part of the pumping area, maximum 
drawdown is more than 100 ft. In Spring Valley, in 
the northern part of the pumping area, simulated draw­ 
downs also exceed 100 ft. Throughout most of the 
pumping area by the end of stress-period four, simu­ 
lated drawdowns exceed 1 ft. Simulated drawdowns 
exceeding 10 ft have extended throughout much of 
the area. This stress period is the first indication of sim­ 
ulated drawdowns extending into the state of Utah.

Figure IB shows the declines produced in the 
lower layer resulting from the proposed pumpage. Sev­ 
eral large areas of declines have developed coincident 
with large pumping centers. Drawdowns exceeding 
100 ft have developed in virtually all of the valleys.
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The maximum simulated drawdown of about 670 ft 
is in Garden Valley. The areas of heaviest pumpage  
Railroad, Spring, Snake, and Garden Valleys also are 
the areas of largest declines in water levels.

Stress-period five represents an extrapolation 
of the proposed pumping schedule to illustrate possible 
future effects. The model was set up so that the simu­ 
lation time steps within this stress period could be 
divided into discrete intervals. Within stress-period 
five, the ten time steps were increased in length geo­ 
metrically. This allowed a reasonable view of changes 
in the model without generating large amounts of 
output. From these ten time steps, two durations  
100 and 200 years were selected for analysis of 
drawdowns and model budgets. The cumulative 
length of simulation at the end of stress-period five 
is 200 years.

Figure 8 shows the simulated drawdowns in 
both layers of the model after about 100 years into the 
simulation (time-step five, stress-period five). The total 
pumpage at this point in the simulation was still 
180,800 acre-ft/yr. Of the total amount of pumpage, 
62 percent was assigned to the upper layer and 
38 percent was assigned to the lower layer.

Figure 8/4 shows the simulated drawdowns 
in the upper layer. The simulated drawdowns have con­ 
tinued to expand from the previous analysis time 
period because pumping has remained constant and at 
the same locations. Simulated drawdowns in Tikapoo 
Valley have continued to increase, as well as those in 
Railroad Valley which have exceeded 100 ft. Simu­ 
lated drawdowns in the Snake and Spring Valley areas 
have expanded outward and deepened to a maximum 
of about 350 ft, and the area of 10-ft drawdowns has 
extended into Utah. Finally, simulated drawdowns in 
Garden Valley have also expanded areally, but have 
not increased vertically.

Simulated drawdowns in the lower layer (fig. SB) 
have begun to stabilize, with small increases areally 
and vertically in the Coal and Garden Valley areas. 
A quasi-equilibrium apparently is being approached in 
the lower layer. Maximum drawdown is about 900 ft in 
Garden Valley.

Figure 9 shows the simulated drawdowns in 
both the upper and lower layers after about 200 years 
into the simulation (time-step ten, stress-period five). 
Total annual pumpage continues to be 180,800 acre-ft. 
Pumpage is still divided between the upper and lower

layers, as in the previous stress period. Areal distribu­ 
tion of pumping cells is the same as in the previous 
stress period.

Simulated drawdowns in the upper layer (fig. 9A), 
have continued to increase in many places. Pumping 
in Railroad and Three Lakes Valley areas has increased 
the simulated drawdowns. Pumping in Snake and 
Spring Valleys has resulted in substantial simulated 
drawdowns near Baker, with a maximum of about 
450 ft. Many of the isolated cones of depression are 
merging to form larger, composite cones of depression.

Simulated drawdowns in the lower layer (fig. 9B) 
have also increased areally and in magnitude. Pumpage 
in the lower layer in Railroad, Snake, Pahroc, Three 
Lakes, and Tikapoo Valleys has resulted in three large 
cones of depression, each greater than 100 ft and 
reaching more than 900 ft in Garden Valley.

Figure 10 shows the simulated drawdowns in 
the upper and lower layers for the final steady-state 
simulation. The model has attained a simulated hydro- 
logic equilibrium. The water that supplies the simu­ 
lated pumping has ceased to come from storage; rather, 
it is water that formerly discharged to springs and as 
ET. Pumpage remains constant and distribution is 
somewhat similar to that in figure 9. Simulated draw­ 
downs in the upper layer (fig. 10A) have expanded 
areally and have deepened. In the upper layer 
(fig. 10A), maximum simulated drawdown has 
exceeded 500 ft in Railroad, Snake, Three Lakes, Cave, 
and Patterson Valleys. In Three Lakes Valley (northern 
part), the maximum drawdown is about 1,600 ft 
because of simulated pumping in one cell. In the lower 
layer, simulated drawdowns exceed 100 ft in most of 
the area and exceed 500 ft in parts of Railroad, Garden, 
and Snake Valleys. Maximum drawdown in Garden 
Valley is about 1,100ft.

Simulated drawdowns in specific cells were 
examined as part of the analysis of the effects of pump­ 
ing on the regional ground-water flow system. The 
locations of these selected cells are shown in relation to 
the model grid in figure 11. These cells are generally 
near areas in which many of the DOI bureaus have spe­ 
cific water-resource concerns. These cells act as obser-

f\

vation points, but in reality cover 37.5 mi of surface 
area. They are useful in indicating trends in simulated 
ground-water levels in the area at any given time step.
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Figure 4. Simulated water-level drawdowns, stress period one, time-step two, after 7 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 4. Continued.
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Figure 5. Simulated water-level drawdowns, stress-period two, time-step two, after 11 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 6. Simulated water-level drawdowns, stress-period three, time-step two, after 18 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 7. Simulated water-level drawdowns, stress-period four, time-step three, after 30 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 8. Simulated water-level drawdowns, stress-period five, time-step five, after 100.7 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 9. Simulated water-level drawdowns, stress-period five, time-step ten, after 199.9 years into simulation for 
(A) upper model layer and (B) lower model layer.
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Figure 10. Simulated water-level drawdowns at final steady-state simulation for (A) upper model layer and 
(B) lower model layer.
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Figure 10. Continued.
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1. Manse Springs
2. Ash Meadows area 

(several springs)
3. Rogers and Blue 

Point Springs
4. Muddy River Springs
5. Grapevine and Stainigers 

Springs
6. Pahranagat Valley 

(several springs)
7. Panaca Warm Spring
8. Hot Creek Ranch Spring
9. Lockes (several springs) 

10. Blue Eagle and Tom 
Springs

11. Moon River and Hot 
Creek Springs

12. Mormon Hot Spring
13. Northern White River 

Valley (several springs)
14. Duckwater (Big and Little 

Warm Springs)
15. Fish Creek Springs
16. Twin Spring
17. Campbell Ranch Springs
18. Shipley Hot Spring and 

Bailey Spring
19. Fish Springs 
20 Nalson Spring
21. Blue Lake and Little Salt 

Springs
22. Warm Springs

Boundary of carbonate-rock province 
model

Figure 11. Location of spring cells, pumping cells, and selected cells in model grid.
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Figure 12 shows two hydrographs for the 
selected cells in the northern part of Railroad Valley 
(173B), one near Duckwater spring (column 21, row 
29) and one near the southern part of the valley 
(column 21, row 35). Drawdown is not simulated 
at these places until after 18 years (the fourth stress 
period), when pumpage is assigned in Railroad Valley, 
then drawdowns increase steadily.

Simulated drawdowns at the selected cell near 
Duckwater are small, generally a few tenths of a foot 
in the upper layer and lower layer. The simulated draw­

down at the selected cell in the southern part of the 
valley is more substantial, approaching 100 ft in both 
the upper and lower layers. Because placement of the 
proposed pumping wells is primarily in the southern 
part of Railroad Valley, pumping will have much more 
effect on water levels in the southern part than in the 
northern part.

Figure 13 shows hydrographs for three selected 
cells representing areas near Ash Meadows springs, 
Baker, and Moapa (locations shown in fig. 11).
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Figure 12. Hydrographs for two selected cells representing areas in 
northern Railroad Valley, east-central Nevada.
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Figure 13. Hydrographs for three selected cells representing areas 
near Ash Meadows springs, Baker, and Moapa, southern Nevada.
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The selected cell near Ash Meadows shows small 
changes in the simulated water level in the lower layer 
soon after the simulation is started. The simulated 
drawdown increases after about 7 years (during stress- 
period two), then increases rapidly after 100 years 
(during stress-period five). Equilibrium in the water 
level of the lower layer is not achieved even during 
the last stages of the model simulation. Simulated 
drawdowns in the lower layer near Ash Meadows 
springs reach a maximum of about 6 ft, whereas no 
decline is apparent in the upper layer. The hydrograph 
for the cell near Baker shows that effects from pump­ 
ing begin after 10 years into the simulation, when 
pumping begins in Snake Valley. Simulated draw­ 
downs increase steadily, exceeding 100 ft in the upper 
layer and 200 ft in the lower layer.

The selected cell near Moapa shows small 
declines in the lower layer and virtually no drawdown 
in the upper layer. The lower-layer drawdowns begin 
almost immediately, due to pumpage in the general 
area, and continue to increase throughout the entire 
200 years of simulation. Simulated drawdowns in 
the lower layer at the Moapa cell reach about 13 ft 
near the end of the simulation.

Regional Springs

Effects of pumping on regional springs can be 
attributed to many factors. One of the most important 
factors is the distance from the proposed pumping to 
the springs. Most of the proposed well sites (shown 
as pumping cells in fig. 11) are miles from the major 
regional springs in the carbonate-rock province. As 
the wells are pumped, the removal of water from the 
ground-water system can, in some places, result in a 
decrease in flow at the springs. These regional springs 
commonly support large populations of wildlife, 
including several threatened or endangered species 
and, consequently, may be of interest to the 
Federal Government.

As discussed by Prudic and others (1993), 
regional springs in the carbonate-rock province are 
treated as discharging from the lower layer in the 
model. Because of the coarseness of the model grid, 
these springs must occupy a cell size of 5 by 7.5 mi. 
Exact effects at the spring itself are difficult to predict 
because of this grid coarseness. The model can only 
show that flow at these springs might be reduced, 
depending on the amount and location of pumpage.

Figure 14 shows how simulated flow from 
several selected regional springs may be affected by 
the proposed pumping schedule. The Muddy River 
spring complex (No. 4, figs. 11 and 14) demonstrates 
some early effects from the simulated pumping sched­ 
ule. The simulated flows decreased by almost

o

10 percent (about 4 ft /s) by the end of the first phase 
of development and continued to decrease until much 
later in the simulation. After about 100 years of pump­ 
ing, simulated springflow has decreased about
11 percent (6 ft3/s). This spring is affected early in the 
simulation because of its proximity to the areas in 
southern Nevada that will be pumped first.

Other springs shown in figure 11 have similar 
decreases. The combined flow from Hiko, Crystal, 
and Ash Springs (Pahranagat Valley) decreased about 
14 percent (5 ft3/s) after 100 years (end of time-step 
five, stress-period five). Simulated discharge at the 
Duckwater spring area in Northern Railroad Valley is 
relatively unaffected by pumpage in the valley even 
during later time steps. Water-level declines are less 
than 1 ft near the north end of Railroad Valley (fig. SB). 
Springs in the central part of Northern Railroad Valley 
(Lockes, Blue Eagle, and Tom Springs) exhibit no 
decrease until pumpage from the valley is simulated 
during the fourth phase of the water project (after 
18 years). Once pumping commences in Railroad 
Valley, flow from these springs decreases rapidly 
(fig- 14).

The spring complex at Ash Meadows (No. 2, 
fig. 11), shows little change in flow until about 
100 years into the simulation (fig. 14), with a decrease

o

of about 2 percent (about 0.5 ft /s). Subsequently, flow 
from the springs continues to decrease throughout the 
simulation.

The other springs shown in figure 11 do not 
generally show effects of pumpage to any great degree. 
This is probably due to the distance between these 
springs and any pumping centers, or possibly the effect 
of intervening hydrologic boundaries. Moon River and 
Hot Creek Springs and Panaca Warm Spring do, how­ 
ever, show a decrease in springflow in the later time 
steps of stress-period five (greater than 100 years of 
model simulation). Table 3 lists the discharge from 
the various springs shown in figures 11 and 14 for 
the selected stress periods.

Simulated Effects of Proposed Pumping 31



EC

LU

EC
LU

200

ULU
< LU

co O°
Q. CO

O

h- 150 -

100 -

0.01 0.1 1.0 10 100 

TIME INTO SIMULATION, IN YEARS

EXPLANATION

Spring   Number in parentheses is map number in figure 11 
and cell number in table 3. Simulated steady-state 
pumpage is listed in table 3.

Ash Meadows (2) 
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Pahranagat (6)
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Blue Eagle, Tom, Lockes (9 and 10)

Moon River, Hot Creek (11)

Duckwater(14)

Figure 14. Changes in discharge of selected regional springs with changing pumpage, 
east-central and southern Nevada.

Evapotranspiration

Sustained pumpage of ground water can cause 
declines in water levels that may affect plants that send 
roots down far enough to reach the water table. These 
plants, known as phreatophytes, are the major source 
of ground-water discharge in many valleys. This use 
of ground water by phreatophytes is one part of the

overall ground-water discharge quantity called evapo- 
transpiration, or ET. The other component is actual 
evaporation, whether from a free water surface, such 
as standing water exposed to the atmosphere on a 
playa, or water beneath the ground surface but 
shallow enough to move upward by capillary 
action and evaporate.
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Table 4 lists ET changes for selected groups of 
cells during the selected time steps of the simulation. 
This simulated discharge is in addition to simulated 
spring discharge, most of which is ultimately con­ 
sumed by ET. These groups of cells represent areas in 
several ground-water basins where phreatophytes are 
consuming ground water. In many valleys, this area of 
ET is in the center of the valley where ground water is 
near land surface and phreatophytes or evaporation can 
cause discharge from the ground-water system. Evapo- 
transpiration can often be the major source of discharge 
in some of the basin-fill aquifers. This is the case in 
Railroad Valley where outflow from the ground-water 
system of the entire valley (including Duckwater and 
other springflow) due to ET was estimated to be 
80,000 acre-ft/yr (Van Denburgh and Rush, 1974,

p. 29), and is by far the largest component of discharge. 
Spring Valley also has a large discharge component due 
to ET. Rush and Kazmi (1965, table 7) estimated an ET 
discharge of 70,000 acre-ft/yr in the valley. Table 4 also 
shows that the three valleys with the largest proposed 
pumping (Railroad, Spring, and Snake Valleys) have 
the largest decrease in ET rates.

Figure 15 shows the relation between the rate 
of ET from these groups of cells to proposed phased 
pumpage in the study area. Most cells show little effect 
of the pumping during the early stress periods because 
water from storage supplies the requirements. The 
cells representing ET areas in virtually all the valleys, 
however, show some effect from the pumpage, 
usually starting within about 30 years from the onset 
of pumping.

Table 4. Simulated pumpage and evapotranspiration rates in selected areas, east-central and 
southern Nevada

Total pumpage Evapotranspiration (cubic feet per second)

_. _. Years Stress Time . . . . into period step . , .. K K simulation

Steady-state model 0

1
2
3
4
5
5

Final

2
2
2
3
5
10

steady-state

7
11
18
30

100
200

Acre-feet 
per year

0

24,500
47,000

118,000
180,800
180,800
180,800

180,800

Cubic 
feet per 
Second

0

32.75
62.83

157.75
241.71
241.7,1
241.71

241.71

Las Death Amargosa v
Valley area ..   7 Valley

6.66

6.64
6.66
6.66
6.67
6.66
6.66

6.58

Total pumpage

Stress
period

Time . .Years
into 

p simulation Acre-feet 
per year

Cubic 
feet per 
Second

11.98

11.98
11.98
11.97
11.97
11.91
11.84

10.18

34.26

34.23
34.20
34.17
34.16
34.11
34.02

32.45

Lower 
White 
River 
Valley

18.28

18.25
18.23
18.19
18.13
17.79
17.40

14.70

_ . . Garden, Pahrangat _ .
Valley  "' 

7 Valleys

13.49

13.41
13.33
13.18
12.95
12.10
11.25

6.04

0.00

.00

.00

.00

.00

.00

.00

.00

Evapotranspiration (cubic feet per second)

Southern Northern 
Railroad Railroad 

Valley Valley

White 
River 
Valley

Spring 
Valley

Lake Snake 
Valley Valley

Steady-state model 0

2
2
2
3
5
10

7
11
18
30

100
200

0

24,500
47,000

118,000
180,800
180,800
180,800

0

32.75
62.83

157.75
241.71
241.71
241.71

Final steady-state 180,800 241.71

2.99

2.99
3.00
2.99
2.96
2.59
2.16

.19

89.38

89.38
89.40
89.38
65.71
56.76
52.01

43.38

19.34 102.97 10.87 93.51

19.36
19.36
19.34
19.33
19.25
19.16

102.97
102.99
78.41
70.37
57.76
53.04

10.87
10.89
10.72
10.37
8.68
7.46

93.52
93.53
87.19
84.27
75.28
68.79

18.27 46.94 3.46 56.55
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Figure 15. Changes in simulated evapotranspiration at cells in selected basins with changes in proposed pumpage.
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Sensitivity of Model Results to 
Storage Values

To test the sensitivity of the model to input 
values, several additional simulations were made by 
varying the values of aquifer storage. Transmissivity 
values from the original model (Prudic and others, 
1993) were not tested during this study. Previous sensi­ 
tivity analyses were deemed sufficient, and although 
transmissivity values may be more variable than 
storage values in a given geologic unit, storage values 
may be more responsible for long-term effects in 
the simulation.

The storage values for both the basin-fill and 
carbonate aquifers are not well known, and may cause 
the results of the model to vary significantly. Changing

the storage values of the upper layer by a range of 
± 50 percent, and changing the storage values of the 
lower layer to the two endpoints of 7.6x10"5 and 
1.2 x 10 , were assumed to give a reasonable test of 
how results might change. The model was rerun using 
these adjusted storage values, and figures 16 through 
18 show how various key budget components change 
throughout the simulation, compared to the results 
obtained using the original storage values.

Figure 16 shows how regional spring discharge 
varies in response to changing storage-coefficient 
estimates. In general, storage-coefficient values for 
the upper layer have little effect on simulated spring 
discharge. At any given time, the smaller storage coef­ 
ficients cause less discharge from the drains, whereas 
larger storage values for the upper layer allow for more
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Figure 16. Changes in total model-simulated spring discharge with selected storage values 
and changing pumpage, east-central and southern Nevada. (All simulated spring discharge 
totals for the several values converged to a simulated total spring discharge of 234 cubic feet 
per second in the steady-state simulation.)
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discharge. Adjusting the lower-layer storage coeffi­ 
cient has virtually no effect on the simulated spring 
discharge of the model.

Figure 17 shows how simulated evapotrans- 
piration changes in response to varying storage coeffi­ 
cients. During the first 10 years of the simulation, 
simulated ET differs little for any of the storage- 
coefficient values shown in figure 17. However, 
as the simulation continues and pumpage increases, 
simulated ET begins to decrease as it is captured by 
pumping. The simulated rate of decrease in ET varies 
with the values assigned to the upper layer storage 
coefficient. Generally, decreasing the storage 
coefficient caused ET to be captured more quickly.

The model is relatively insensitive to changes 
in the lower layer, which has a storage coefficient typi­ 
cal of a confined aquifer. The amount of evapotrans- 
piration ultimately captured by pumping is the same 
(about 190 ft3/s), so varying the storage coefficient 
has no effect on the ultimate reduction of evapotrans- 
piration. Adjusting the lower-layer storage coefficient 
has virtually no effect on the simulated ET discharge of 
the model.

After 100 years, the simulated change in ET 
ranged from about 48 percent of the total change in 
ET (with the storage coefficients in the upper layer 
increased by 50 percent) to about 62 percent of the total 
change in ET (with the storage coefficients in the upper 
layer decreased by 50 percent).
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Figure 18 shows how varying aquifer storage 
coefficients affect the amount of ground water coming 
out of storage. The graph demonstrates that the model 
is somewhat insensitive to varying the storage coeffi­ 
cients, but is extremely sensitive to increasing pumping 
rates. As the overall rates are increased with time, more 
water is withdrawn from storage to satisfy the demand. 
As the time steps progress within each stress period, an 
equilibrium is reached or a decline takes place as water 
is drawn from other sources to feed the pumpage.

Figures 19-23 are hydrographs from the 
selected cells described previously that show the 
effect of changing storage values. Figure 11 shows 
the locations of these cells in relation to the proposed 
pumping schedule of LVVWD. Figure 19 contains 
a hydrograph for each layer of the selected cell near 
Ash Meadows and shows virtually no change in the 
simulated drawdown in either layer due to storage-

coefficient variations. The upper layer shows a differ­ 
ence of less than 0.01 ft after about 100 years of simu­ 
lation. The lower layer shows a difference of about 3 ft 
of simulated drawdown after the same period.

Figure 20 shows simulated drawdowns for both 
layers at the selected cell near Baker. The hydrograph 
for the upper layer shows considerable variation after 
100 years into the simulation, with about 90 ft of differ­ 
ence in water levels computed using the two storage- 
coefficient end points. The difference in simulated 
drawdowns in the lower layer is less, with about 40 ft 
of difference after the same 100 years of simulation.

Figure 21 shows the simulated drawdowns at 
the selected cell near Duckwater in Northern Railroad 
Valley. Both layers demonstrate an insensitivity to 
storage-coefficient changes by differing less than 0.2 ft 
after about 100 years of simulated pumping.
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Figure 22 shows the simulated drawdowns at 
the selected cell in Northern Railroad Valley in both 
layers. The upper layer demonstrates a difference in 
drawdowns of about 40 ft after about 100 years into 
the simulation. The lower layer shows a difference 
of about 50 ft after the same time period.

Figure 23 shows the simulated drawdowns at 
the selected cell near Moapa for both layers. The upper 
layer shows a difference of about 0.02 ft in the simu­ 
lated drawdowns and the lower layer shows about a 2-ft 
difference, after about 100 years into the simulation.

Overall, the model appears to be relatively 
insensitive to variations in aquifer storage coefficients. 
Changes in these values elicit only minor changes in 
evapotranspiration, spring discharge, movement of 
ground water out of storage, and variations in simu­ 
lated drawdowns. Changes in pumping location 
and rate have a greater influence on model results.

Ultimate Source of Pumped Water

The simulation of pumping ground water in 
east-central and southern Nevada illustrates several 
concepts discussed by Theis (1940). The ultimate 
source of pumped ground water in an aquifer system 
is an increase in recharge, a decrease of natural dis­ 
charge, or removal of ground water from storage. 
As was stated succinctly by Theis (p. 280), "All 
water discharged by wells is balanced by a loss of 
water somewhere."

The boundaries for this simulation do not allow 
additional water to be made available to the ground- 
water system of the Great Basin; pumpage will not 
increase precipitation and, hence, recharge. If wells 
were placed near some of the bounding surface-water 
bodies, some additional water would recharge the local 
ground water to make up any deficit caused by pump­ 
ing. But throughout the study area, additional water 
from these sources is not available.

The previous discussion of how pumping in 
the study area affects ET and spring discharge suggests 
that much of the ground water pumped would be 
derived from these sources. Since ET is dependent on 
shallow water levels to support vegetation, once water 
levels decline sufficiently, ET would cease. Simulated 
spring discharge is also affected by the proposed

pumping in the sense that ground-water flow to 
the spring is intercepted by the expanded cones of 
depression of the wells.

The last source of water available to the proposed 
pumping is from ground water in storage. Figure 24 
illustrates the change in various ground-water model 
budget components as the simulation progresses. Also 
shown is a series of figures illustrating the source of 
water pumped in the simulation. Early in the simula­ 
tion, the major source of pumped water is from ground- 
water storage (83 percent at 9 years into the simula­ 
tion). As the simulation progresses, less and less 
water is removed from storage and the remainder of 
the pumped water comes from reduction in ET and 
spring discharge. The final stage of this progression is 
the steady-state simulation, where none of the pumped 
water is from storage, 77 percent is from what had been 
used by ET, and 23 percent is from reduction of spring- 
flow. This represents a simulated equilibrium within 
the ground-water system.

Limitations and Uses of the Model

Simulations of the proposed pumpage show that 
many aspects of the ground-water systems in the Great 
Basin may be affected. The simulations were based on 
a computer model of regional ground-water flow that 
greatly simplifies the complex distribution of geology 
and, consequently, the hydraulic properties of many 
of the rocks in the Great Basin. As the authors of the 
original model state, "Simulation results are based on 
assuming recharge to the province is known with the 
distribution of transmissivities simulated to match the 
general distribution of water levels and estimates of 
discharge. However, water levels in consolidated rocks 
are generally unknown and estimates of recharge and 
discharge are known only approximately" (Prudic 
and others, 1993, p. 91).

The adequacy of the model in simulating the 
effects of the proposed pumping will remain untested 
until actual pumping stresses have been in place long 
enough to cause measurable effects within the system. 
This would allow for calibration of transient simula­ 
tions that was not possible with the previous model.
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SUMMARY AND CONCLUSIONS

In 1989, the Las Vegas Valley Water District 
(LVVWD) filed applications with the Nevada State 
Engineer for water rights in east-central and southern 
Nevada. These applications would result in a maxi­ 
mum pumpage of about 180,800 acre-ft/yr from 17 
basins (LVVWD, written commun., 1992).

In 1991, several Department of the Interior (DOI) 
bureaus requested that the U.S. Geological Survey sim­ 
ulate possible effects of this pumping on regional flow, 
as well as on large regional springs, using a two-layer 
ground-water flow model originally designed to con­ 
ceptualize regional flow in the carbonate-rock prov­ 
ince. The simulations were made using a phased 
pumping schedule, with ultimate pumpage totaling 
180,800 acre-ft/yr.

The simulation of pumping in the carbonate-rock 
province of the Great Basin indicates that water levels, 
the flow of regional springs, and ground-water dis­ 
charge by evapotranspiration would be affected. The 
upper layer of the model generally represents basin fill 
and the intervening mountains. Simulated water levels 
in the basin fill are most strongly affected by localized 
pumping within the basin. The lower layer of the 
model, simulating the more extensively connected 
and confined carbonate-rock aquifer system, generates 
larger, areally more expansive declines. Several tens 
of years of pumpage can result in hundreds of feet of 
simulated water-level declines throughout a large area 
of the aquifer system.

By extending the pumping schedule for long 
periods of time, some estimate can be made of when 
the ground-water system will approach a new equilib­

rium. This equilibrium is reached when the change 
in water-level decline approaches zero, and pumpage 
is sustained entirely by water diverted from other 
sources, instead of by depletion of stored ground water.

The simulations also showed that discharge 
from several regional springs could decrease. Model­ 
ing indicated that, after about 100 years of simulation, 
flow from Muddy River springs; Hiko, Crystal, and 
Ash Springs; and Ash Meadows springs would all be 
affected to some degree. Discharge at Muddy River 
springs decreased the most, with a reduction of about 
6 ft3/s (11 percent). Discharge from the Hiko-Crystal- 
Ash Springs complex decreased about 5 ft3/s 
(14 percent), and flow from Ash Meadows springs

o

decreased about 0.5 ft /s (2 percent).
The modeling also indicated that ground-water 

discharge by evapotranspiration would probably be 
affected by the pumpage proposed by LVVWD. The 
model indicates that the three valleys with the largest 
proposed pumpage will have the largest decrease in 
ET rates. In Spring Valley, which is scheduled to 
have 50,000 acre-ft/yr of ground water pumped, ET 
decreases about 45.21 cubic feet per second in the first 
100 years of pumping (table 4). This is based on the 
normal estimated ET discharge of 70,000 acre-ft/yr 
(Rush and Kazmi, 1965, table 7). Railroad and Snake 
Valleys show similar patterns, with a decrease in ET 
discharge of 33.02 and 18.23 cubic feet per second, 
respectively, after about 100 years of pumping.

Irrespective of the obvious limitations of this 
model, the results of the simulation provide valuable 
insight regarding the regional-scale response to pump­ 
ing and can serve as a basis for the development of a 
more detailed analysis of pumping effects.
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APPENDIX 1. STORAGE VALUES USED FOR SIMULATION

(Units are dimensionless; multiply values by 0.005 to obtain acutal value used)
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APPENDIX 2. STARTING HEADS USED FOR SIMULATION

(Units are feet above sea level)
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4209

0
0
0
0

5689
4212
4199

0
0
0

5903
4189
4180

0
0
0

6558
4179
4180

0
0

5239
6026
4179
4214

0
0

5193
5782
4147
4247

0

.0

.0

.0

.0

.0

.0

.0

.0

.6

.1

.0

.0

.0

.0

.3

.1

.0

.0

.0

.0

.5

.0

.0

.0

.0

.0

.2

.0

.0

.0

.0

.0

.4

.0

.8

.0

.0

.0

.8

.0

.2

.0

.0

.0

.4

.2

.4

.0

.0

.1

.1

.0

.2

.0

.0

.7

.3

.0

.6

.0

0.0
0.0

5449.2
4622.7

0.0
0.0
0.0
0.0

5420.1
4373.0

0.0
0.0
0.0
0.0

5405.6
4261.1

0.0
0.0
0.0
0.0

5392.4
4212.0

0.0
0.0
0.0
0.0

5412.9
4209.0

0.0
0.0
0.0
0.0

5583.4
4202.0
4200.4

0.0
0.0
0.0

5781.8
4147.0
4199.7

0.0
0.0

5381.9
5743.3
4153.0
4180.2

0.0
0.0

5306.1
5557.3
4179.0
4397.8

0.0
0.0

5224.5
5667.0
4153.0
4530.3

0.0

0.0
0.0

5489.0
4362.6

0.0
0.0
0.0
0.0

5472.7
4353.2

0.0
0.0
0.0
0.0

5445.9
4251.3

0.0
0.0
0.0
0.0

5321.1
4227.1

0.0
0.0
0.0
0.0

5219.7
4242.6

0.0
0.0
0.0
0.0

5390.2
4340.0

0.0
0.0
0.0

5471.0
5579.0
4170.0
4207.8

0.0
0.0

5411.5
5392.6
4179.0
4189.2

0.0
0.0

5374.6
5484.1
4179.0
4327.6

0.0
0.0

5328.4
5557.3
4179.0
4559.1

0.0

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

ROW 9

ROW 10
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APPENDIX 2. STARTING HEADS USED FOR SIMULATION Continued

0.0
5253.4
5538.3
5702.7
4212.0
4948.8

0.0
4896.5
7507.8
5598.6
4212.0
5157.1

0.0
4841.3
7051.8
5504.3
4212.0
5185.9

0.0
4801.6
6015.9
5344.1
4212.0
5268.0

0.0
4890.2
5934.6
5316.4
4212.0
5398.9

0.0
5157.3
5952.6
5383.2
4212.0
5141.7

0.0
5843.5
5952.3
5738.1
4245.1
4665.0

0.0
5606.0
5952.7
6149.2
4435.3
4586.3

0.0
5731.3
6610.5
6204.2
4531.1
4570.0

0.0
6053.8
6377.8
6131.4
4539.8
4555.1

0.0
6112.5
6217.8
6454.8
4495.3
4575.9

0.0
5257.9
6426.9
6431.1
4225.1
4942.9

0.0
4984.7
6102.1
6301.4
4216.5
5099.4

0.0
4917.9
5938.7
6137.4
4212.1
5152.9

0.0
4899.1
5890.4
5278.6
4213.0
5231.3

0.0
5067.1
5920.2
5155.7
4235.3
5520.9

0.0
5393.4
5955.9
5229.2
4212.0
5385.2

0.0
5405.0
5962.4
5758.1
4266.1
4841.2

0.0
5480.0
6460.5
6060.8
4389.6
4650.1

0.0
5650.0
6498.6
6109.7
4454.8
4610.0

0.0
6092.4
6132.2
5968.2
4477.3
4585.0

0.0
6190.8
6084.3
5801.1
4436.0
4583.8

0.0
5274.7
5975.3
5018.0
4245.3
5264.0

0.0
4980.7
5953.0
4963.7
4213.5
5115.8

0.0
4972.8
5958.4
5064.9
4241.5
5144.2

0.0
4976.8
5995.2
5697.9
4237.7
5258.4

0.0
5103.2
5952.0
5306.0
4245.3
5657.1

0.0
5176.1
5967.9
5112.2
4212.1
5791.2

0.0
5296.5
6159.1
5603.4
4242.2
4921.5

0.0
5495.2
6468.0
5787.7
4345.4
4761.6

0.0
5685.3
6507.2
5819.2
4423.1
4687.6

0.0
6461.0
6050.6
5890.8
4434.3
4619.0

0.0
6202.2
6256.6
5707.3
4384.2
4599.1

0.0
5244.1
5810.7
4245.1
4278.0
5304.0

0.0
4980.5
5913.7
4498.0
4250.2
5149.3

0.0
5000.8
5959.3
4765.6
4248.5
5130.9

0.0
5096.3
5968.0
5317.6
4256.8
5226.4

0.0
5229.7
5988.8
5271.8
4269.4
6072.1

0.0
5312.1
6336.7
5393.1
4294.0
5571.7

0.0
5420.6
6500.5
5543.5
4245.4
4934.8

0.0
5601.8
6632.2
5680.8
4281.9
4820.3

0.0
5813.1
6240.4
5813.9
4399.4
4719.0

0.0
6396.3
6508.2
6062.9
4432.3
4613.4

0.0
6174.4
6634.0
5914.5
4418.2
4647.1

0.0
5443.2
5577.6
4212.0
4323.2
5028.6

0.0
5028.7
5900.4
4137.0
4308.1
4995.4

0.0
5029.0
6048.3
4510.0
4268.3
5002.6

0.0
5212.7
5954.7
5172.3
4273.6
5124.0

0.0
5715.8
6066.1
5265.5
4287.8
5525.2

0.0
5797.8
6191.4
5383.4
4311.4
5329.2

0.0
5872.6
6248.9
5549.5
4317.9
4985.4

0.0
5770.2
6205.1
5687.2
4336.7
4897.7

0.0
5844.8
6243.1
6100.9
4409.5
4784.8

0.0
5937.9
6152.1
7054.4
4437.4
4673.2

0.0
5990.2
6238.4
6293.5
4468.4
4742.5

0.0
5093.6
5626.3
4206.0
4369.3
4895.8

0.0
5065.7
5909.2
4219.0
4389.1
4830.7

0.0
5196.2
6269.4
4255.0
4303.0
4765.7

0.0
5334.9
6044.6
4969.2
4312.0
4889.9

0.0
5564.8
6230.1
5285.3
4328.4
5223.3

0.0
5690.0
6400.3
5353.2
4336.6
5222.8

0.0
5758.6
6246.6
5577.5
4364.8
5070.8

0.0
5754.3
6293.3
5721.7
4392.2
5033.8

0.0
5736.3
6649.4
6329.6
4428.7
4906.6

0.0
5754.6
6425.2
5872.0
4439.1
5317.3

0.0
5831.8
6215.1
5620.9
4471.8
5278.1

0.0
5109.8
5557.9
4173.0
4357.6
4614.9

0.0
5199.5
5858.2
4212.0
4393.5
4631.5

0.0
5351.4
6371.7
4248.0
4379.8
4477.4

0.0
5369.1
5952.5
4980.4
4381.4
4550.4

0.0
5561.9
6096.6
5325.0
4394.4
5085.7

0.0
5615.0
7120.7
5499.1
4397.7
5278.4

0.0
5680.4
6659.0
5650.7
4424.5
5158.9

0.0
5796.6
6725.2
5771.7
4441.6
5132.7

0.0
5833.9
6435.4
6734.4
4445.5
5124.6

0.0
5757.2
6439.2
5337.2
4459.4
5401.4

0.0
5841.3
6204.1
5059.9
4487.0
5564.5

0.0
5231.4
5679.5
4153.0
4376.4
4533.0

0.0
5301.6
5843.0
4186.0
4412.1
4524.2

0.0
5419.7
6088.1
4212.0
4499.7
4503.7

0.0
5393.5
5814.7
4212.0
4445.0
4507.2

0.0
5568.1
5787.6
4827.7
4464.6
4864.6

0.0
5544.5
6139.9
5128.2
4488.9
5046.2

0.0
5594.8
6044.8
6254.8
4496.0
5196.1

0.0
5706.5
5821.8
5964.7
4506.0
5199.4

0.0
5932.4
5953.1
5665.3
4459.6
5139.9

0.0
5855.8
6079.3
4858.1
4517.8
5111.8

0.0
5915.4
6075.9
4903.2
4518.4
5306.8

0.0
5335.6
5683.9
4160.0
4506.6

0.0
4669.0
5699.3
5778.0
4179.0
4586.6

0.0
4672.4
6089.4
5565.1
4212.0
4731.4

0.0
4656.0
6280.4
5737.8
4212.0
4723.0

0.0
4726.3
5813.5
5793.5
4371.0
4840.4

0.0
4747.2
5875.6
5820.2
4565.0
4588.6
4891.9
4837.7
5898.7
5821.6
4794.3
4568.7
5213.1
5442.6
5913.6
5826.7
4839.2
4569.7
5216.8
5590.0
6165.1
5887.0
4594.4
4509.4
5199.8
5590.1
5787.8
5955.8
4704.2
4541.6
5085.2
5590.5
5787.6
5984.5
4737.1
4545.0
5176.9

0
5426
5557
4173
5331

0
4673
7046
5548
4206
5349

0
4741
7413
5507
4179
5344

0
4734
7843
5578
4212
5174

0
4747
7473
5707
4212
5360

0
4744
6112
5655
4212
5082

0
4758
6416
5859
4245
4626
5366
5702
6440
6377
4353
4587
5321
5729
6355
6500
4590
4560
5297
6049
6203
6081
4620
4551
5093
6077
6191
6128
4633
4556
5118

.0 ROW

.8

.2

.0

.5

.0

.4 ROW

.8

.2

.0

.8

.0

.8 ROW

.5

.3

.0

.5

.0

.2 ROW

.6

.5

.0

.7

.0

.9 ROW

.5

.6

.0

.6

.0

.1 ROW

.4

.6

.0

.1

.0

.1 ROW

.2

.0

.8

.9

.9

.3 ROW

.2

.6

.8

.1

.0

.2 ROW

.5

.4

.0

.2

.5

.2 ROW

.7

.5

.6

.0

.5

.7 ROW

.8

.7

.4

.6

.1

11

12

13

14

15

16

17

18

19

20

21
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APPENDIX 2. STARTING HEADS USED FOR SIMULATION Continued

0.0
6079.6
6133.8
6395.2
4571.2
4559.7

0.0
6068.1
6044.1
6410.3
4661.2
4573.0

0.0
6104.9
6051.3
6468.1
4740.5
4616.2

0.0
6424.2
6033.4
6827.8
4849.4
4723.5

0.0
6508.8
5920.7
6526.7
4929.8
4866.6

0.0
6585.1
5767.6
6576.6
5038.3
4947.5

0.0
6595.9
5551.8
6542.8
5240.8
4899.7

0.0
6640.5
5163.9
6443.2
5561.0
5044.6

0.0
6703.9
4966.9
6109.7
5972.4
5049.0

0.0
6732.4
4820.9
5894.3
6205.0
5066.6

0.0
6743.6
4723.3
5524.8
6377.9
5032.3

0.0
6070.4
6165.1
5736.1
4433.1
4540.2

0.0
6030.6
6152.4
6309.0
4547.9
4573.0

0.0
6075.7
6110.8
6364.4
4637.5
4583.8

0.0
6241.2
6127.6
6500.3
4785.1
4732.1

0.0
6495.5
5947.4
6467.0
4913.0
4896.1

0.0
6603.9
5776.9
6519.5
4866.5
5015.5

0.0
6641.2
5547.3
6350.9
4884.2
5157.8

0.0
6683.2
4976.7
6427.9
5206.4
5244.0

0.0
6756.1
4921.3
6082.1
5669.4
5243.8

0.0
6753.4
4724.7
6002.7
6022.3
5184.9

0.0
6758.9
4645.2
5780.8
6703.9
5322.6

0
6046
6216
5532
4389
4563

0
6016
6181
5526
4491
4573

0
6039
6366
5527
4566
4637

0
6112
6533
5721
4686
4757

0
6317
6413
5806
4799
4944

0
7193
5811
5814
4821
5319

0
6798
5608
6002
4851
5608

0
6775
5247
6025
4946
6546

0
6476
4839
5912
5329
6439

0
6444
4705
5950
5717
5613

0
6498
4672
6094
6331
5739

.0

.2

.6

.9

.1

.1

.0

.5

.2

.1

.7

.1

.0

.2

.5

.4

.9

.7

.0

.4

.4

.0

.3

.1

.0

.0

.8

.6

.8

.1

.0

.1

.1

.9

.2

.4

.0

.1

.1

.6

.2

.5

.0

.8

.8

.9

.0

.8

.0

.8

.8

.9

.2

.9

.0

.3

.3

.8

.4

.7

.0

.7

.3

.7

.1

.1

0
6011
6608
5934
4401
4572

0
5989
6258
5527
4493
4599

0
6036
6305
5622
4569
4652

0
6072
6297
5654
4634
4774

0
6091
6386
5788
4697
5043

0
6164
6369
5788
4727
5680

0
6492
6312
5788
4788
6010

0
6396
5932
5867
4871
6651

0
6190
5262
5903
5007
6000

0
6124
4952
5905
5625
5786

0
6029
4986
5912
6406
6267

.0

.9

.2

.7

.2

.1

.0

.7

.1

.1

.6

.4

.0

.4

.6

.7

.2

.3

.0

.8

.5

.4

.3

.7

.0

.6

.5

.4

.1

.4

.0

.5

.9

.8

.2

.8

.0

.3

.5

.2

.1

.3

.0

.2

.1

.9

.4

.2

.0

.5

.3

.9

.4

.5

.0

.0

.2

.3

.7

.6

.0

.8

.2

.2

.4

.6

0.0
6002.9
6266.9
7066.7
4466.7
4730.0

0.0
5987.5
6504.3
6783.8
4535.7
4574.9

0.0
6107.9
6334.1
6847.7
4605.6
4618.1

0.0
6099.4
6258.2
6299.0
4645.1
4676.3

0.0
6102.2
6202.0
5903.9
4669.8
5373.6
5576.4
6176.8
6214.7
5847.8
4709.5
5888.6
5528.9
6415.3
6455.0
5788.3
4761.0
6280.3
5557.3
6524.1
6243.6
5858.0
4814.4
6701.1
5660.6
6815.6
5424.2
5906.4
4846.8
6209.7
5683.5
6078.9
5474.8
5968.8
5442.3
5751.8
6210.5
5936.1
5128.6
6052.0
6872.1
6228.5

0.0
5939.7
6230.8
6288.5
4494.5
5037.6
6209.7
6038.0
6769.5
6628.4
4539.0
4923.2
6148.5
6435.5
6431.2
6904.1
4588.1
5030.2
5900.2
6151.0
6255.8
5994.7
4648.6
5256.1
5652.9
6056.4
6141.3
6317.4
4663.3
5786.9
5564.4
6158.9
6094.4
6443.9
4704.8
6152.1
5461.4
6666.7
6003.2
6839.5
4757.3
6544.5
5402.0
6414.1
5820.5
5946.9
4808.2
6984.4
5427.6
6199.1
5922.1
5911.4
4838.9
7054.1
5503.8
6051.8
5449.2
6031.1
5130.2
6524.6
5677.1
5842.4
5176.2
6311.0
5872.0
6652.0

0
5897
6185
5061
4511
5335
6097
6021
6653
5382
4532
5253
6110
6515
6674
5350
4535
5387
5812
6026
6368
5638
4525
5701
5635
6040
6105
5423
4562
6024
5522
6140
6006
5588
4656

0
5459
6162
5834
6894
4756

0
5545
6230
5620
5882
4959
7216
5586
6539
5378
5845
5020
7261
5627
6236
5368
6060
5092
7007
5680
5654
5262
6655
5257
6907

.0

.9

.6

.0

.7

.8

.3

.5

.3

.1

.2

.2

.6

.3

.8

.3

.1

.5

.4

.3

.0

.5

.6

.9

.8

.0

.5

.0

.1

.7

.0

.7

.2

.8

.2

.0

.3

.2

.6

.5

.2

.0

.3

.0

.7

.6

.5

.3

.2

.7

.5

.4

.7

.1

.8

.9

.0

.3

.7

.7

.2

.4

.5

.0

.2

.5

0
5975
5985
4772
4528
5513
5984
6078
6213
4863
4529
5519
6091
6251
6301
5021
4475
5669
5851
5954
6374
5103
4521
5932
5633
6054
6112
5106
4531
6163
5580
6138
5900
5375
4556

0
6344
6145
5578
5703
5102

0
6170
6119
5357
5692
5487

0
6708
5834
5295
5723
5468
7389
6773
5488
5236
5904
5105
7206
6770
5455
5195
6377
5024
6991

.0

.9

.6

.0

.7

.1

.7

.5

.5

.1

.0

.4

.2

.4

.6

.4

.1

.0

.6

.6

.7

.4

.7

.0

.4

.0

.3

.6

.8

.0

.9

.7

.4

.9

.3

.0

.8

.7

.6

.7

.1

.0

.0

.3

.5

.5

.9

.0

.7

.6

.3

.9

.1

.5

.5

.5

.2

.8

.1

.6

.7

.3

.0

.0

.8

.9

5659.5
5787.6
5984.8
4757.0
4544.4
5346.3
6043.1
5787.6
6083.3
4803.8
4542.6
5507.8
6373.3
6002.1
6156.8
4836.6
4527.7
5657.1
6165.9
5979.2
6377.1
4941.7
4621.8

0.0
6109.2
6168.7
6413.0
4974.5
4605.6

0.0
6697.0
6442.4
6709.0
5277.7
4731.5

0.0
6634.6
6311.1
6536.8
5423.4
4959.9

0.0
6663.4
5813.2
5884.6
5555.0
5072.5

0.0
6706.9
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0.
0.

800.
2688.

0.
0.
0.
0.

837.
2774.

0.
0.
0.
0.
0.

2868.
0.
0.

0
0
9
0
0
0
0
0
1
6
0
0
0
0
9
2
0
0
0
0
8
6
0
0
0
0
9
7
0
0
0
0
9
2
0
0
0
0
0
3
0
0

0
0

2134
2224

0
0
0
0

1967
2451

0
0
0
0

1727
2526

0
0
0
0

1435
2546

0
0
0
0

1028
2670

0
0
0
0

968
2739

0
0
0
0
0

2824
0
0

.0

.0

.1

.4

.0

.0

.0

.0

.5

.8

.0

.0

.0

.0

.1

.1

.0

.0

.0

.0

.2

.3

.0

.0

.0

.0

.7

.6

.0

.0

.0

.0

.8

.5

.0

.0

.0

.0

.0

.6

.0

.0

0
0

2326
2001

0
0
0
0

2159
2241

0
0
0
0

1876
2410

0
0
0
0

1762
2410

0
0
0
0

1418
2630

0
0
0
0

1191
2709

0
0
0
0
0
0
0
0

.0

.0

.9

.3

.0

.0

.0

.0

.4

.6

.0

.0

.0

.0

.4

.8

.0

.0

.0

.0

.9

.7

.0

.0

.0

.0

.5

.8

.0

.0

.0

.0

.0

.7

.0

.0

.0

.0

.0

.0

.0

.0

0
-38

2571
1766

0
0
0
0

2312
1860

0
0
0
0

2181
2036

0
0
0
0

2235
2154

0
0
0
0

1841
0
0
0
0
0

1583
0
0
0
0
0
0
0
0
0

.0

.8

.2

.6

.0

.0

.0

.0

.1

.9

.0

.0

.0

.0

.4

.3

.0

.0

.0

.0

.4

.8

.0

.0

.0

.0

.5

.0

.0

.0

.0

.0

.8

.0

.0

.0

.0

.0

.0

.0

.0

.0

0
292

2777
1620

0
0
0

62
2530
1699

0
0
0

36
2421
1791

0
0
0
0

2564
1960

0
0
0
0

2200
0
0
0
0
0

2001
0
0
0
0
0
0
0
0
0

.0

.6

.0

.1

.0

.0

.0

.9

.1

.0

.0

.0

.0

.8

.1

.3

.0

.0

.0

.0

.2

.7

.0

.0

.0

.0

.4

.0

.0

.0

.0

.0

.1

.0

.0

.0

.0

.0

.0

.0

.0.0'

0.
750.

2915.
1558.

0.
0.
0.

255.
2716.
1637.

0.
0.
0.

104.
2579.
1751.

0.
0.
0.

55.
2736.
1889.

0.
0.
0.
0.

2462.
0.
0.
0.
0.
0.

2345.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0
4
6
9
0
0
0
7
4
7
0
0
0
0
8
8
0
0
0
4
4
2
0
0
0
0
4
0
0
0
0
0
7
0
0
0
0
0
0
0
0
0

0
1145
3006
1504

0
0
0

638
2824
1583

0
0
0

336
2645

0
0
0
0

128
2735

0
0
0
0
0

2626
0
0
0
0
0

2631
0
0
0
0
0

2806
0
0
0

.0

.0

.3

.6

.0

.0

.0

.8

.0

.1

.0

.0

.0

.7

.0

.0

.0

.0

.0

.5

.3

.0

.0

.0

.0

.0

.5

.0

.0

.0

.0

.0

.8

.0

.0

.0

.0

.0

.3

.0

.0

.0

0
1395
3148

0
0
0
0

1005
2894

0
0
0
0

659
2640

0
0
0
0

343
2631

0
0
0
0

482
2700

0
0
0
0

654
2788

0
0
0
0
0

2859
0
0
0

.0

.6

.0

.0

.0

.0

.0

.3

.4

.0

.0

.0

.0

.7

.6

.0

.0

.0

.0

.7

.9

.0

.0

.0

.0

.5

.5

.0

.0

.0

.0

.0

.6

.0

.0

.0

.0

.0

.9

.0

.0

.0

0.
1613.
3216.

0.
0.
0.
0.

1314.
2940.

0.
0.
0.
0.

1035.
2672.

0.
0.
0.
0.

669.
2620.

0.
0.
0.
0.

528.
2716.

0.
0.
0.
0.

683.
2854.

0.
0.
0.
0.
0.

2909.
0.
0.
0.

0
6
5
0
0
0
0
6
2
0
0
0
0
4
0
0
0
0
0
4
4
0
0
0
0
1
8
0
0
0
0
6
2
0
0
0
0
0
6
0
0
0

ROW 55

ROW 56

ROW 57

ROW 58

ROW 59

ROW 60

ROW 61
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APPENDIX 3. PUMPAGE DATA USED IN SIMULATION

(Pumpage units are cubic feet per second)

FIRST STRESS
LAYER

2
1
1
2
2
2
1
2
2
1
2
2
1
1
2
2
2
2
1
1
2
2
2
2
2
2
2

SECOND STRESS
LAYER

2
1
1
2
2
2
1
2
2
1
2
1
1
2
1
1
2
1
1
2
2
1
2
1
1
2
1
2

PERIOD
ROW

47
47
47
48
41
42
42
45
46
47
47
47
47
48
48
49
49
50
50
51
49
50
50
50
50
49
48

PERIOD
ROW

47
47
47
48
41
42
42
45
46
47
35
36
39
39
32
33
38
38
40
41
35
35
36
36
36
36
36
37

COLUMN
29
29
29
30
25
27
27
30
31
31
35
35
34
34
30
29
28
27
28
28
30
30
30
35
34
38
35

COLUMN
29
29
29
30
25
27
27
30
31
31
28
28
28
27
31
31
34
33
32
34
37
36
38
37
31
30
30
30

RATE
-1.7265

-1.72650
-1.72650
-1.7265
-0.6906
-0.6906

-0.69060
-0.6906
-0.6880

-0.68800
-1.7260
-1.7260

-1.72600
-1.72600
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-2.7620
-2.7620
-1.726
-1.726

RATE
-1.7265
-1.7265
-1.7265
-1.7265
-0.6906
-0.6906

-0.69060
-0.6906
-0.6906

-0.69060
-2.0720

-2.07200
-2.07200
-2.0720
-1.3810

-1.38100
-1.7260

-1.72600
-2.07200
-2.0720
-1.3810

-1.38100
-1.3810

-1.38100
-0.98600
-0.9860

-0.98600
-0.9860

PERMIT NO.
54061
54060
54068
54069
53949
53948
53947
53952
53951
53950
54058
54059
54056
54057
54066
54065
54106
54064
54063
54062
54072
54070
54071
54073
54074
54075
54076

PERMIT NO.
54061
54060
54068
54069
53949
53948
53947
53952
53951
53950
53958
53956
53957
53959
53988
53987
53990
53989
53991
53992
54033
54031
54034
54032
54043
54048
54044
54045

BASIN
168
168
168
168
169A
169A
169A
169B
169B
169B
210
210
210
210
211
211
211
211
211
211
211
211
211
216
217
218
218

BASIN
168
168
168
168
169A
169A
169A
169B
169B
169B
171
171
171A
171
180
180
181A
181
182
182
202
202
202
202
208
208
208
208
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APPENDIX 3. PUMPAGE DATA USED IN SIMULATION Continued

2
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
2
2
2

THIRD STRESS
LAYER

2
1
1
2
2
2
1
2
2
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
1
1
2
1
1
1
2
1
1
1
1
1
1
2
1

38
38
39
47
47
47
48
48
49
49
50
50
51
49
50
50
50
50
49
48

PERIOD
ROW

47
47
47
48
41
42
42
45
46
47
35
36
39
39
32
33
38
38
40
41
24
25
25
25
26
25
26
26
26
26
27
30
28
29
29
30
30
31
26
26

30
31
30
35
35
34
34
30
29
28
27
28
28
30
30
30
35
34
38
35

COLUMN
29
29
29
30
25
27
27
30
31
31
28
28
28
27
31
31
34
33
32
34
33
33
33
33
35
34
33
34
33
33
34
36
34
34
35
35
36
36
37
37

-0.9860
-0.9860
-0.9860
-1.7260
-1.7260

-1.72600
-1.72600
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-2.7620
-2.7620
-1.726
-1.726

RATE
-1.7265

-1.72650
-1.72650
-1.7265
-0.6906
-0.6906

-0.69060
-0.6906
-0.6906

-0.69060
-2.0720

-2.07200
-2.07200
-2.0720
-1.3810

-1.38100
-1.7260

-1.72600
-2.07200
-2.0720

-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.83700
-3.83700
-3.83700
-4.3160

-4.31600

54046
54049
54047
54058
54059
54056
54057
54066
54065
54106
54064
54063
54062
54072
54070
54071
54073
54074
54075
54076

PERMIT NO.
54061
54060
54068
54069
53949
53948
53947
53952
53951
53950
53958
53956
53957
53959
53988
53987
53990
53989
53991
53992
54018
54017
54021
54016
54015
54014
54013
54020
54011
54010
54009
54019
54008
54007
54006
54005
54004
54003
54026
54022

208
208
208
210
210
210
210
211
211
211
211
211
211
211
211
211
216
217
218
218

BASIN
168
168
168
168
169A
169A
169A
169B
169B
169B
171
171
171A
171
180
180
181A
181
182
182
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
195
195
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APPENDIX 3. PUMPAGE DATA USED IN SIMULATION Continued

2
1
2
1
2
1
2
1
2
1
1
2
1
2
2
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
2

FOURTH AND
LAYER

2
1
1
2
2
2
1
2
2
1
2
1
1
2
2
1
1
1
2
1
1
2
1
1
2
1
1
1

27
27
27
28
28
28
35
35
36
36
36
36
36
37
38
38
39
47
47
47
48
48
49
49
50
50
51
49
50
50
49
48

FIFTH STRESS
ROW

47
47
47
48
41
42
42
45
46
47
35
36
39
39
34
34
36
38
39
32
33
33
33
33
34
34
34
34

37
38
38
39
38
38
37
36
38
37
31
30
30
30
30
31
30
35
35
34
34
30
29
28
27
28
28
30
30
30
38
35

PERIODS
COLUMN

29
29
29
30
25
27
27
30
31
31
28
28
28
27
25
26
26
26
26
24
24
24
23
23
23
20
23
23

-4.3160
-4.31600
-4.3160

-4.31600
-4.3160

-4.31600
-1.3810

-1.38100
-1.3810

-1.38100
-0.98600
-0.9860

-0.98600
-0.9860
-0.9860
-0.9860
-0.9860
-1.7260
-1.7260

-1.72600
-1.72600
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-0.7670
-1.726
-1.726

RATE
-1.7260

-1.72600
-1.72600
-1.7260
-0.6906
-0.6906

-0.69060
-0.6906
-0.6906
-0.69060
-2.0720

-2.07200
-2.07200
-2.0720
-2.7620

-2.76200
-2.76200
-2.76200
-2.7620

-3.64600
-3.64600
-3.6460

-3.64600
-3.64600
-3.6460

-3.64600
-3.64600
-3.64600

54027
54023
54026
54024
54029
54030
54033
54031
54034
54032
54043
54048
54044
54045
54046
54049
54047
54058
54059
54056
54057
54066
54065
54106
54064
54063
54062
54072
54070
54071
54075
54076

PERMIT NO.
54061
54060
54068
54069
53949
53948
53947
53952
53951
53950
53958
53956
53957
53959
53964
53962
53961
53960
53963
53985
53986
53975
53965
53966
53976
53973
53967
53968

195
195
195
195
195
195
202
202
202
202
208
208
208
208
208
208
208
210
210
210
210
211
211
211
211
211
211
211
211
211
218
218

BASIN
168
168
168
168
169A
169A
169A
169B
169B
169B
171
171
171A
171
172
172
172
172
172
173B
173B
173B
173B
173B
173B
173B
173B
173B
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APPENDIX 3. PUMPAGE DATA USED IN SIMULATION Continued

34
34
35
35
35
35
36
36
39
39
39
32
33
38
38
40
41
24
25
25
25
26
25
26
26
26
26
27
30
28
29
29
30
30
31
26
26
27
27
27
28
28
28
35
35
36
36
36
36
36
37
38
38
39
47
47
47
48
48
49
49
50

23
22
22
20
22
21
20
21
17
19
19
31
31
34
33
32
34
33
33
33
33
35
34
33
34
33
33
34
36
34
34
35
35
36
36
37
37
37
38
38
39
38
38
37
36
38
37
31
30
30
30
30
31
30
35
35
34
34
30
29
28
27

-3.6460
-3.64600
-3.6460

-3.64600
-3.6460

-3.64600
-3.64600
-3.6460
-3.6460

-3.64600
-3.64600
-1.3810

-1.38100
-1.7260

-1.72600
-2.07200
-2.0720

-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.8370

-3.83700
-3.83700
-3.83700
-3.83700
-3.83700
-3.83700
-4.3160

-4.31600
-4.3160

-4.31600
-4.3160

-4.31600
-4.3160

-4.31600
-1.3810

-1.38100
-1.3810

-1.38100
-0.98600
-0.9860

-0.98600
-0.9860
-0.9860
-0.9860
-0.9860
-1.7260
-1.7260

-1.72600
-1.72600
-0.7670
-0.7670
-0.7670
-0.7670

53977
53969
53979
53974
53978
53970
53971
53980
53983
53982
53981
53988
53987
53990
53989
53991
53992
54018
54017
54021
54016
54015
54014
54013
54020
54011
54010
54009
54019
54008
54007
54006
54005
54004
54003
54026
54022
54027
54023
54026
54024
54029
54030
54033
54031
54034
54032
54043
54048
54044
54045
54046
54049
54047
54058
54059
54056
54057
54066
54065
54106
54064

173B
173B
173B
173B
173B
173B
173B
173B
173A
173A
173A
180
180
181A
181
182
182
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
195
195
195
195
195
195
195
195
202
202
202
202
208
208
208
208
208
208
208
210
210
210
210
211
211
211
211
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APPENDIX 3. PUMPAGE DATA USED IN SIMULATION Continued

1 50 28 -0.7670 54063 211
1 51 28 -0.7670 54062 211
2 49 30 -0.7670 54072 211
2 50 30 -0.7670 54070 211
2 50 30 -0.7670 54071 211
2 49 38 -1.726 54075 218
2 48 35 -1.726 54076 218
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