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CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To obtain
inch (in.) 254 millimeter
foot (ft) 0.3048 meter
foot per foot (ft/ft) 0.3048 meter per meter
mile (mi) 1.609 kilometer
acre 4,047 square meter
foot per day (ft/d)! 0.3048 meter per day
foot per mile (ft/mi) 0.1894 meter per kilometer
cubic feet per second (ft3/s) 0.02832 cubic meter per second

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows:

°F=9/5 (°C) + 32

Sealevel: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived
from a general adjustment of first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

IFoot per day is the mathematically reduced term of cubic foot per day per square foot of aquifer cross-sectional area.
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Geohydrology, Water Levels and Directions of Flow,
and Occurrence of Light-Nonaqueous-Phase Liquids
on Ground Water in Northwestern Indiana and the
Lake Calumet Area of Northeastern lllinois

By Robert T. Kay, Richard F. Duwelius, Timothy A. Brown, Frederick A. Micke1,

and Carol A. Witt-Smith!

Abstract

A study was performed by the U.S. Geolog-
ical Survey, in cooperation with the U.S. Environ-
mental Protection Agency, to describe the geo-
hydrology and distribution of light-nonaqueous-
phase liquids in an industrialized area of north-
western Indiana and northeastern Illinois. The
geologic units of concern underlying this area are
the carbonates of the Niagaran Series, the Detroit
River and Traverse Formations; the Antrim Shale;
and sands, silts, and clays of Quaternary age.

The hydrologic units of concern are surface water,
the Calumet aquifer, the confining unit, and the
Silurian-Devonian aquifer.

Water levels collected in June 1992 indicate
that the water-table configuration generally is a
subdued reflection of topography. Recharge
from landfill leachate and ponded water, dis-
charge to sewers, and pumping also affect the
water-table configuration. A depression in the
potentiometric surface of the Silurian-Devonian
aquifer results from pumping. Light-nonaque-
ous-phase liquids were detected near petroleum
handling, industrial and waste-disposal facilities.

Horizontal ground-water velocity at the
water table in the confining unit ranged from

1U.S. Environmental Protection Agency, Region 5, Chicago,
Illinois.

4.4x107* to 1.0x1073 feet per day. Horizontal
ground-water velocity in the Calumet and
Silurian-Devonian aquifers ranged from
1.0x1072 to 3.4x107! and from 1.4x1072 to
2.9x1072 feet per day, respectively.

Vertical hydraulic gradients indicate gener-
ally downward flow from the Calumet aquifer
into the confining unit, then into the Silurian-
Devonian aquifer. Calculated vertical ground-
water velocity through the weathered and
unweathered parts of the confining unit are
3.8x1072 and 1.5x1073 feet per day, respectively.

INTRODUCTION

In June 1992, the U.S. Geological Survey
(USGS), in cooperation with the U.S. Environmental
Protection Agency (USEPA), began a study of the
geohydrology and distribution of light-nonaqueous-
phase liquids (LNAPL’s) in an urban and industrial
area of northwestern Indiana and northeastern Illinois
(fig. 1). Industry in this area includes several steel
mills, petroleum refineries, petroleum-tank farms,
forging and foundry plants, and chemical manufactur-
ing facilities (fig. 2). In addition, 2 hazardous-waste
incinerators, at least 11 sanitary landfills, numerous
uncontrolled waste-disposal sites, and about 80
accidental-spill sites are located within this area.
Contaminants from these and other sources have
leached to ground water and surface water

Introduction 1
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(U.S. Department of Health, Education and Welfare,
1965; HydroQual, Inc., 1985; Fenelon and Watson,
1993).

The study was designed to describe the geology
and hydrology in this area, determine surface-water-
flow directions, determine ground-water-flow direc-
tions within and between the shallow hydraulic units,
characterize the interaction between surface water and
ground water, and to obtain a preliminary estimate of
the location and extent of LNAPL’s on the water table.
This information will be used to identify areas needing
additional study.

The study was divided into two major compo-
nents: compilation and analysis of the existing
geologic, hydrologic, and water-quality data; and
collection of LNAPL and static water-level measure-
ments during a 2-day synoptic period. Geologic,
hydrologic, and water-quality data were compiled
and analyzed to assess hydraulic and water-quality
conditions and to plan the synoptic water-level survey.
Static water-level measurements were collected to
determine the directions of flow within and between the
hydraulic units and to provide a better understanding of
the factors that affect surface-water and ground-water
flow. Measurements of LNAPL’s in observation
wells were collected to obtain a preliminary estimate of
the location and extent of LNAPL’s.

Purpose and Scope

This report describes the results of an investiga-
tion designed to characterize the geohydrology and to
determine the location and extent of LNAPL’s in an
industrialized area in northwestern Indiana and north-
eastern Illinois. In addition to a description of the
geology and hydrology of the study area, the results
of an area-wide synoptic water-level survey are pre-
sented. The report identifies the direction of surface-
water flow, the direction and velocity of vertical and
horizontal ground-water flow within the hydraulic
units of concern, and the nature of the surface-water
and ground-water interaction in the study area during
the synoptic water-level survey. The location and
thickness of LNAPL’s measured on the water table
during the synoptic water-level survey also are pre-
sented.

Previous Work

Concerns about environmental problems have
resulted in several studies of the hydrology and

ground-water quality within the study area. These
investigations have focused on Lake Calumet in
Illinois and the Grand Calumet River near the Indiana
Harbor Canal in Indiana (fig. 1). These areas have
experienced the most severe environmental degrada-
tion.

One of the first investigations to provide a
framework under which the environmental effects
of industrial and waste-disposal activities could be
assessed was a compilation of industrial waste-
disposal activities in the Lake Calumet area from
1869 through 1970 (Colten, 1985). It is assumed
that the history of industrial-waste disposal in Indiana
is similar.  Colten divided industrial activity and
waste-disposal practices into three phases on the basis
of the legal and technological framework within which
disposal took place.

The first phase of waste-disposal activities in
the Lake Calumet area occurred from 1869 to 1921
and was characterized by the discharge of untreated
liquid and particulate wastes to surface-water bodies,
primarily the Calumet and Little Calumet Rivers
(fig. 1). The liquid wastes contained hundreds of
tons of phenols, cyanide, lubricating oils, sulfuric acid,
and iron sulfate (Colten, 1985, p. 27, 45, 63). Solid
wastes, especially slag and fly ash, typically were
dumped onto vacant land and into lakes and wetlands
as fill.

The second phase of waste-disposal activity
identified by Colten occurred from 1922 to 1940 and
was characterized by the opening of the Calumet Sag
Channel and construction of the Calumet Sewage
Treatment Plant (fig. 2). Opening of the Calumet
Sag Channel diverted flow in the Calumet River
system from Lake Michigan to the Illinois River
system under most hydraulic conditions. This diver-
sion greatly reduced the amount of contamination in
Lake Michigan, the principal source of water for
industrial and municipal supply in northeastern Illinois
and northwestern Indiana. Construction of the
Calumet Sewage Treatment Plant resulted in effluent
from a few of the industrial facilities receiving some
treatment before being discharged to surface water.

The third phase of waste-disposal activities
occurred from 1940 to 1970 and was characterized
by a shift from disposal of industrial wastes in water to
disposal on land. Municipal and construction refuse,
as well as industrial waste, was buried in municipal
landfills. In addition to slag and ash, which had
always been disposed of in this manner, dredge spoil

6 Geohydrology in Northwestern Indiana and the Lake Calumet Area of Northeastern lllinois



and sludges from wastewater-treatment facilities were
dumped into nearby wetlands during this period. An
increasing number of industrial facilities also began
treating wastewater before releasing the effluent to the
rivers.

The shift from water to land disposal of wastes,
environmental regulations requiring wastewater treat-
ment, and a decline in industrial activity lessened the
effect of waste disposal on the Calumet River system
since 1970 (HydroQual, Inc., 1985, p. S-3). How-
ever, significant environmental problems associated
with surface-water and ground-water degradation still
remain.

The disposal of large quantities of municipal and
industrial wastes in lakes, wetlands, and on the land
surface affects ground-water quality at several indus-
trial and waste-disposal sites, in addition to affecting
the viability of the lakes and wetlands. The effect of
land disposal is particularly severe at Lake Calumet,
where much of the lake area in 1869 had been filled
with municipal and industrial waste by 1994 (fig. 3).
Crushed and hot-poured slag also has been used as fill
to create large areas of “made” land along the shores
of Lake Michigan, Wolf Lake, and Lake George.

Colten (1985, appendix A) identified sites of
waste disposal and industrial activities in the Lake
Calumet area from 1869 to 1970 and evaluated each
site for the risk it posed to human health and the
environment. It was concluded that a number of
these sites had the potential to adversely affect human
health and the environment but that additional infor-
mation was needed to accurately characterize that
effect.

The Illinois Environmental Protection Agency
(IEPA) drilled several borings in the Lake Calumet
area and analyzed the soils and ground water from the
borings for a number of compounds (Illinois Environ-
mental Protection Agency, 1986) to determine the
effect of industrial and waste-disposal activities on
shallow ground-water quality in the Lake Calumet
area. Concentrations of several metals above back-
ground levels were detected in some of the soil
samples. Several volatile and semivolatile organic
compounds were detected in ground-water samples
collected at some industrial sites.

Expanding on the work of the IEPA, the Illinois
State Water Survey (ISWS) performed a preliminary
assessment of the hydrology and ground-water quality
in the Lake Calumet area (Cravens and Zahn, 1990).
Cravens and Zahn noted that shallow ground-water

flow is intrinsically connected to flow in the surface-
water bodies but that delineation of the shallow
ground-water-flow system was difficult because of
the sparse data then available. The report also noted
that flow in the uppermost bedrock aquifer is generally
toward Lake Michigan, though it has been disrupted
by excavations in the bedrock for the Metropolitan
Water Reclamation District of Greater Chicago’s
Tunnel and Reservoir Plan (TARP) storm-drainage
tunnels. These tunnels are about 300 ft below the
land surface and are used to transport combined-
sewer-overflow water to treatment facilities. Anal-
ysis of ground-water-quality data collected by the
ISWS and a number of government agencies and
private organizations led to the conclusion that,
although organic compounds and metals were detected
in the shallow ground water near many of the indus-
trial and waste-disposal facilities, no evidence of
widespread contamination of the shallow ground
water in the Lake Calumet area was found. Analysis
of the ground-water-quality data also led to the con-
clusion that the small amounts of contamination
detected in the uppermost bedrock aquifer could be
attributed to leakage from the surface or shallow
ground water to the bedrock aquifer around improp-
erly sealed wells or borings, not to transport through
geologic material.

The ISWS is currently (1994) investigating the
hydrogeology and ground-water quality in the shallow
ground-water-flow system near Lake Calumet and
Wolf Lake. High concentrations of metals and vola-
tile organic compounds were detected in ground-water
samples collected in several shallow wells during this
current study (Cravens and Roadcap, 1991, p. 13, 14;
Roadcap and Kelly, 1994, p. 39, 40). Slag fill was
assumed to be the source of most of the metals.

A detailed study of the shallow ground-water-
flow system in the Indiana part of the study area was
done by the USGS in 1985-86 (Watson and others,
1989). The report notes that the water-table configu-
ration in this area mirrors surface topography except
near large sewers and pumping centers where local
depressions are present.  Analysis of surface-water
and ground-water levels during this study indicates
that ground water typically discharges to the major
surface-water bodies and small ditches, though flow
reversals are common.

A follow-up study of the hydrology and ground-
water quality in the shallow ground-water system in
northwestern Indiana was done by the USGS in

Previous Work 7
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EXPLANATION

RECENT

m MADE AND MODIFIED LAND—Attificial fili and
land substantially modified by the removal of
unconsolidated deposits. Many small areas

not mapped

WISCONSINAN AND RECENT

K “] MUCK OR SILT OVER SAND AND GRAVEL—
i Outwash sand and gravel overlain in places
b{ thin lacustrine, paludal or aliuvial deposits
of peat, muck, or clay. Martinsville Formation
over outwash facies of Atherton Formation in
Indiana, glacial sluiceway in llinois

m SAND AND SOME SILT—Dune deposits.
Dune facies of Atherton Formation
in Indiana, Parkland Sand in lilinois

deposits in bars, spits, and beaches.
Some dune sand. Atherton Formation
in Indiana, Dolton Member in lllinois

CLAY AND SILT—Lacustrine deposits.
“C__ Lacustrine facies of Atherton Formation
in Indiana, Carmi Member in lllinois
WISCONSINAN

m TILL—End moraine deposit. Lagro Formation
< in Indiana, Wadsworth Till in lllinois

m TiLL—Wave-scoured lake-bottom till. Lagro
Formation in indiana, Wadsworth Till in lllinois

SILURIAN
E DOLOMITE—Marine deposit. Niagaran Series

m SAND AND GRAVEL—Beach and shoreline

Figure 3. Surficial geology, northwestemn Indiana and the Lake Calumet area of northeastem lllinois. (From Schneider and

Keller, 1970.)
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1988-89 (Fenelon and Watson, 1993). Ground-water
quality is described as being poorest at the steel and
petrochemical facilities, moderate near light industrial
and commercial areas, and best in residential and park
areas. It was estimated that ground water may con-
tribute more than 10 percent of the total chemical load
of ammonia, chromium, and cyanide to the Grand
Calumet River.

Numerous geotechnical and environmental
investigations at specific industrial and waste-disposal
sites also have been done. Results indicate environ-
mental problems at several sites, many of which are
adjacent. These site-specific investigations gener-
ally provide a detailed understanding of the geohydrol-
ogy at a specific site, but not of the hydrogeologic
relation between adjacent sites and between a site and
the area as a whole.
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DESCRIPTION OF STUDY AREA

The study area is located in the Calumet area
of northwestern Indiana and northeastern Illinois and
includes parts of Porter and Lake Counties in Indiana
and Cook County in Illinois (fig. 1). The study area
is bounded by the southern limit of the Little Calumet
River and Interstates 80 and 94 to the south, Crawford
Avenue to the west, Mineral Springs Road to the east,
and 80th Street and Lake Michigan to the north.

Physiography and Climate
The study area is in the Eastern Lake Section of

the Central Lowland physiographic province defined
by Fenneman (1938). The Indiana part is in the

Calumet Lacustrine Plain subdivision of the Northern
Moraine and Lake Region defined by the Indiana
Geological Survey (IGS) (Malott, 1922, p. 113;
Schneider, 1966, p. 50). The Calumet Lacustrine
Plain extends westward into Illinois where it is called
the Chicago Lake Plain subsection of the Great Lakes
Section of the Central Lowland physiographic prov-
ince as defined by the Illinois State Geological Survey
(ISGS) (Leighton and others, 1948, p. 21).

Glacial, lacustrine, paludal, and aeolian proc-
esses have produced the physiographic characteristics
of this area. Near the end of the last glacial period,
glacial ice moved southward along the basin currently
occupied by Lake Michigan. The ice stopped just
south of the study area, forming the Valparaiso
Morainic System (Bretz, 1939, p. 45-59, fig. 37).
The glacier receded and advanced north of the
Valparaiso Morainic System several times, forming
several end moraines in Illinois and Indiana. As the
glacier receded to the north, Lake Chicago formed
between the glacier and the moraines (Wayne, 1966,
p- 36). Lake Chicago and its successors rose and fell
repeatedly, producing physiographic features whose
locations are controlled, in part, by the location of the
shoreline during the fluctuating lake stages.

Erosional and depositional processes associated
with the advance and retreat of the glaciers and the
fluctuations in lake stage resulted in a generally flat
land surface that slopes gently toward Lake Michigan.
The flat surface of the lake plain is broken up by a
number of low beach ridges, morainal headlands and
islands, and a large glacial drainway (fig. 4). Most
of the area is swampy and poorly drained under natu-
ral conditions, and the location of surface-water bod-
ies is primarily affected by the location of the beach
ridges. The land-surface altitude on the flat part of
the lake plain ranges from about 590 ft above sea level
west of Lake Calumet to about 581 ft above sea level
along the shore of Lake Michigan.

The largest of the beach ridges is the Toleston
Beach Ridge, which separates the Grand Calumet and
Little Calumet Rivers. Rising between 10 and 15 ft
above the lake plain, the Toleston Beach Ridge is the
most lakeward of the dune and beach complexes pro-
duced by shoreline deposition during a period of
higher lake stage (Thompson, 1989, p. 711). Numer-
ous smaller sandy ridges, including dunes, spits, and
bars, also are present. Many of the ridges that were
once present have been leveled or removed by quarry-
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ing in the past century. These ridges roughly parallel
Lake Michigan.

The most prominent dune deposits in the
study area are located at the Indiana Dunes National
Lakeshore (IDNL) (fig. 4). Topographic relief at
the IDNL varies from near lake level (581 ft above
sea level) to as high as 750 ft above sea level. The
dune crests are the highest natural features in the
study area.

Blue Island is a morainal island near the western
edge of the study area (fig. 4). Blue Island trends
north-south with a maximum elevation of about 670 ft
above sea level.

Stony Island is a bedrock outcrop north of Lake
Calumet (fig. 4). About 1 mi long and a quarter of
a mile in width, Stony Island is about 20 ft above the
lake plain and trends east-west.

The principal outlet for Lake Chicago was
through a glacial sluiceway, or outwash channel,
between the Toleston Beach Ridge and Blue Island
(fig. 4) Malott, 1922, p. 152; Bretz, 1939, p. 59;
Willman, 1971, p. 55), although the lake drained to
the east during periods of low lake stage (Fullerton,
1980). Erosion along the sluiceway formed a topo-
graphic depression which is the current location of
the Calumet Sag Channel.

The climate in this area is classified as temperate
continental, with a mean annual temperature of about
10°C and a mean annual precipitation of 35.7 in.
(National Oceanic and Atmospheric Administration,
1991, 1992b). More than half of the average annual
precipitation falls from April 1 through August 31.
Although large variations in precipitation and temper-
ature may occur in any year, summers generally are
hot and humid, whereas winters are cold. Lake
Michigan has a moderating local effect on tempera-
ture.

The National Oceanic and Atmospheric Admin-
istration (NOAA) maintained two weather stations in
the study area—one at the Gary Regional Airport, and
the other at Ogden Dunes, Ind. (fig. 4). From 1951 to
1980, the mean monthly temperature at these stations
varied from about —5°C in January to about 23°C in
July, and the mean monthly precipitation varied from
1.5 in. in February to 4.0 in. in June. Precipitation at
Ogden Dunes was slightly larger than at the Gary
airport (National Oceanic and Atmospheric Adminis-
tration, 1982).

From June 1991 to June 1992, the 12-month
period before the start of the synoptic water-level

survey, the amount of precipitation measured at a
NOAA station at the University of Chicago, about

1 mi north of the northern boundary of the study area,
was 13 in. below normal (National Oceanic and
Atmospheric Administration, 1991, 1992b). The
University of Chicago station was used because the
Gary airport and Ogden Dunes stations were not in
operation from June 1991 to June 1992.

An estimated 70 percent of the average annual
precipitation on this area is returned to the atmosphere
by evapotranspiration (Mades, 1987, p. 13). Based
on this percentage, average annual precipitation avail-
able for recharge to ground water is no greater than
10.7 in. More than three-quarters of all evapotrans-
piration occurs during the growing season (U.S. Geo-
logical Survey, 1970, p. 96). During the growing
season, evapotranspiration normally exceeds precipi-
tation by about 1 to 2 in. and depletes available soil
moisture. During the nongrowing season, precipita-
tion generally exceeds evapotranspiration by about
11 in. and replenishes soil moisture and recharges
ground water. The mean annual lake evaporation
is 29.5 in. or about 83 percent of the average annual
precipitation.

Land Use

Land use in the study area is primarily residen-
tial and industrial (fig. 2). Large tracts of open water,
natural land, and land for the treatment and disposal of
wastes also are present. Much of the land along Lake
Michigan and the Calumet River is or was used for
steel production. Land used by the petrochemical
industry for tank farms and petroleum refining is
located south and west of the steel mills in Indiana
and at scattered locations along the Grand Calumet
River, the Calumet Sag Channel, and Lake Calumet
in Illinois. A variety of other industrial activities,
including automobile assembly, scrap processing,
and chemical manufacturing take place in this area.
Several landfills, wastewater-treatment plants, and
unregulated waste-disposal facilities are present near
Lake Calumet.

GEOHYDROLOGY

The geology and hydrology of the study area
have been described by a number of investigators
(Bretz, 1939, 1955; Rosenshein and Hunn, 1968;
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Willman, 1971; Hartke and others, 1975; Watson
and others, 1989; Cravens and Zahn, 1990). Their
descriptions, in combination with analysis of litho-
logic and hydrologic data compiled during this and
previous studies, form the basis for the discussion of
the geology and hydrology.

Geology

The geologic deposits of concern to this investi-
gation are bedrock deposits of Silurian and Devonian
age and unconsolidated deposits of Quaternary age.
The stratigraphic nomenclature used in this report is
that of the ISGS (Willman and Frye, 1970, p. 70-75;
Willman and others, 1975, p. 100-104) and the IGS
(Shaver and others, 1970, 1986). Their usage does
not necessarily follow the usage of the USGS.

Bedrock Deposits

The bedrock in this area is comprised primarily
of dolomite, limestone, and shale. The bedrock strata
are essentially horizontal, except in the northeastern
part of the study area where the bedrock strata dip
slightly toward the northeast.

The oldest bedrock deposits of concern to this
investigation are Silurian dolomites and limestones of
the Niagaran Series. The Niagaran carbonates are up
to 300 ft thick in the study area and are present at the
bedrock surface in Illinois and western Indiana (fig. 5).
These deposits are known as the Wabash Formation
in Indiana (Shaver and others, 1986, p. 162) and the
Racine Dolomite in Illinois (Willman, 1971, p. 29—
30).

The Niagaran carbonates are characterized by
large reefs, two of which are present at the land sur-
face at Stony Island and Thornton Quarry (fig. 3).
The reefs are composed of a vuggy dolomite with
traces of argillaceous material or sand grains. A
solid petroleum residue called asphaltum is present in
some of the vugs in the reefs (Willman, 1971, p. 30).
Beds on the flanks of the reefs commonly dip radially
away from the massive to irregularly bedded reef core.
Away from the reefs, the Niagaran deposits consist
of dense, cherty, argillaceous dolomite and limestone
with localized lenses of green shale.

The Niagaran carbonates contain an irregularly
distributed network of vertical fractures with a major
trend at N. 47° W. and a minor trend at about N. 57° E.
(Zeizel and others, 1962; Foote, 1982). Fractures

are generally more abundant near the bedrock surface,
where the bedrock is more weathered, and decrease

in number with depth as the rock becomes more
competent (Suter and others, 1959, p. 9). The reef
deposits tend to have fewer fractures than the interreef
deposits.

In addition to fractures, several vertical faults
have been identified in the bedrock in Illinois (fig. 5).
Most of these faults are oriented northwest to south-
east and are 2-3 mi long. Faulting has offset the
bedrock strata as much as 30 ft, but displacement does
not extend upward into the unconsolidated materials
(Keifer and Associates, 1976, p. 27-36). The extent
of faulting in Indiana is unknown.

Lower to middle Devonian deposits of the
Detroit River and Traverse Formations unconformably
overlie the Niagaran Series in parts of Indiana (fig. 5).
The Detroit River Formation varies from a light
colored, fine-grained, sandy dolomite near the base
of the formation to a gray to dark brown dolomite and
limestone with thin to massive beds of gypsum and
anhydrite in the upper part of the deposit (Shaver and
others, 1986, p. 35-37). The Traverse Formation
unconformably overlies the Detroit River Formation.
The Traverse Formation consists of brown to gray,
fine-to-coarse grained limestone to dolomitic lime-
stone (Shaver and others, 1986, p. 156). Both
formations thicken toward the northeast.

The Upper Devonian Antrim Shale is the young-
est bedrock unit in the study area and unconformably
overlies the Traverse Formation in Porter County
(fig. 5). The Antrim Shale consists of brown to
black, noncalcareous shale with gray calcareous shale
or limestone in the lower part of the formation (Shaver
and others, 1986, p. 5).

The bedrock surface, based on lithologic logs
compiled from throughout the study area, has more
than 175 ft of relief (fig. 6). Bedrock highs are
present at Stony Island and Thornton Quarry.
Bedrock lows are present near Burns Harbor, Gary
Harbor, the Indiana Harbor Canal, and immediately
east of Lake Calumet. Bedrock highs at Stony Island
and Thornton Quarry are attributed to the greater
resistance of the reef deposits in these areas to erosion
(Bretz, 1939, p. 66). The bedrock valleys may mark
the paths of preglacial drainage that flowed north and
east from a surface-water divide (Bretz, 1939, p. 92)
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Unconsolidated Deposits

Most of the unconsolidated sediments were
originally deposited by glaciers or were deposited as
lake-bottom and near-shore deposits of Lake Chicago
and its successors (Willman, 1971, p. 38-51; Hartke
and others, 1975, p. 7). Glacial and lacustrine proc-
esses resulted in the deposition of three types of
materials: glacial till, lacustrine silt and clay, and
fluvial and aeolian sand. Small amounts of muck,
peat, and fine gravel were deposited in localized areas
(fig. 3). The total thickness of the unconsolidated
sediments ranges from less than 1 ft in the vicinity of
Thornton Quarry to over 225 ft east of Burns Harbor
(figs. 7 and 8).

In most of the area, the bedrock is overlain by
dense, lenticular bodies of poorly sorted gravel, sand,
and silt. These deposits are informally called the
Lemont Drift in Illinois (Cravens and Zahn, 1990,

p. 15). 'The exact age of these deposits is unknown,
but they appear to have been eroded and weathered
before being covered by sediments during subsequent
glacial advances.

The Lemont Drift and similar deposits in
Indiana are overlain by a gray clayey till. The till
is very hard and tends to become denser and more
consolidated with depth, probably because of com-
pression by the ice sheets during the glacial advances.
This till is known as the Wadsworth Till Member of
the Wedron Formation in Illinois (Willman, 1971,

p. 46) and composes part of the Lagro Formation in
Indiana (Shaver and others, 1970, p. 87-88). The
Wadsworth Till Member is present at the land surface
at Blue Island (fig. 3).

The Wadsworth Till Member is overlain by
sand, silt, and clay deposits known as the Equality
Formation in Illinois (Willman, 1971, p. 49) and the
Atherton Formation in Indiana (Shaver and others,
1970, p. 7). These deposits are the surficial geologic
unit in most of the study area (fig. 3). The
Wadsworth-Equality boundary represents a transition
from deposition dominated by glacial processes to
deposition dominated by lacustrine processes.

The Equality Formation is subdivided by the
ISGS into the Carmi and Dolton Members. The
Carmi Member is equivalent to the lacustrine facies
of the Atherton Formation (Schneider and Keller,
1970; Willman, 1971, pl. 1). The Dolton Member is
equivalent to the beach and shoreline deposits of the
Atherton Formation (Schneider and Keller, 1970;

Willman, 1971, pl. 1). These units grade laterally
into each other and are superimposed in some areas.

The Carmi Member is comprised predominantly
of silt and clay with localized peat beds. These are
generally well bedded or laminated lake deposits and
are at the land surface in much of the area around Lake
Calumet and parts of the Little Calumet River (fig. 3).
The Carmi Member underlies the Dolton Member near
the confluence of the Calumet, Grand Calumet, and
Little Calumet Rivers (Woodward-Clyde Consultants,
1984, fig. E-3) and in most of the Indiana part of the
study area (Watson and others, 1989, p. 18).

The Dolton Member is predominantly sand but
contains thin, discontinuous beds of muck and peat as
well as pebbly sand and gravel. These sands consist
of shore and shallow-water lake deposits, commonly
found in ridges defining the former locations of spits
and beaches. The Dolton Member is at the land
surface in much of the area east of the Calumet River
and at sporadic locations west of Lake Calumet
(fig. 3). The Dolton Member underlies the Carmi
Member in much of the area from the State line to the
eastern shore of Lake Calumet and along parts of the
Little Calumet River (compare fig. 3 and fig. 8).

The Parkland Sand is a well sorted, medium-
grained sand that was blown from the glacial outwash
and beach deposits into dunes and sheet-like deposits
around the dunes (Willman, 1971, p. 50). The Park-
land Sand is found along the Toleston Beach Ridge,
the western flank of Blue Island, and at the Indiana
Dunes National Lakeshore (figs. 3, 4). The Parkland
Sand is equivalent to the dune facies of the Atherton
Formation in Indiana (Shaver and others, 1970, p. 7).

The glacial sluiceway eroded into, and in some
areas through, the till along the path of the Calumet
Sag Channel and was filled with fluvial sand and
gravel deposits (fig. 3). These sands and gravels
have a maximum thickness of about 25 ft (fig. 8).
Glacial outwash deposits of sand and gravel also are
along the path of the Little Calumet River in parts
of Indiana (fig. 3). Outwash and sluiceway deposits
are part of the Martinsville Formation described by
Shaver and others (1970, p. 107).

With the exception of the area mapped as
Wadsworth Till at Blue Island, which was never
submerged, the top of the Wadsworth Till Member
was reworked by wave erosion throughout the study
area (fig. 3) (Willman, 1971, pl. 1; Watson and
others, 1989, p. 18). Though deposition from wave
erosion was minimal, the upper surface of the
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Wadsworth Till Member was modified. Those
areas where the Wadsworth Till Member was sub-
merged and not covered by subsequent sediment
deposition are mapped as wave-scoured lake-bottom
till (fig. 3), hereafter referred to as the Lake-Plain
deposits. Equality Formation deposits are common
in the area of the Lake-Plain deposits.

The Lemont Drift, Wadsworth Till Member,
Carmi Member (where not underlain by sand), and
Lake-Plain deposits constitute a continuous layer of
fine-grained unconsolidated material overlying the
bedrock in almost all of the study area. These fine-
grained deposits are absent near Stony Island,
Thornton Quarry, and the Calumet Sag Channel
and are over 200 ft thick near the eastern edge of
the study area (fig. 7). The Lemont Drift and the
Wadsworth Till Member constitute most of the fine-
grained material. The Carmi Member typically is

less than 15 ft thick (Land and Lakes Co., 1988, p. 14).

The thickness of the fine-grained unconsolidated
deposits in Illinois was measured directly from drill-
ers’ logs. Because of the scarcity of data points in
Indiana, the elevations of the top of the bedrock and
the top of the fine-grained deposits, obtained from
drillers’ logs, were digitized into the ARC/INFO?
geographic information system. A set of adjacent
nonoverlapping triangles, referred to as a triangulated
irregular network (TIN), was computed from the
digital contour data. This TIN structure formed a
digital surface interpolated from the contour lines.
The TIN was then converted into a lattice coverage
representing 30 by 30 meter pixels. Applying map
algebra, the bedrock-surface lattice was subtracted
from the surface of the fine-grained deposit lattice to
determine the thickness of the fine-grained unconsoli-
dated deposits. A coverage containing the contour
lines was created directly from the resultant lattice
coverage. This coverage was joined in ARCEDIT
(a module of ARC/INFO) to the digitized contour
coverage created for Illinois. Additional smoothing
of the contours was done interactively in ARCEDIT.
This method does not account for the thin sand depos-
its directly overlying the bedrock and within the fine-
grained deposits, resulting in a slight overestimation of
the thickness of the fine-grained deposits in Indiana.

2Use of the brand names ARC/INFO and ARCEDIT in
this report is for identification purposes only and does not
constitute endorsement by the U.S. Geological Survey.

In those parts of the study area where the
fine-grained deposits are within a few feet of the
land surface, the upper part of this unit typically is
weathered. The weathered zone is characterized by
an extensive network of open vertical fractures,
macropores, soil joints, and root channels (Ecology
and Environment, Inc., 1990, p. 4-17). The size
and number of the weathering features decrease
with depth. These features are virtually absent below
about 30 ft (Ecology and Environment, Inc., 1990,

p. 4-17).

In most of the area east of Lake Calumet,
the fine-grained deposits are overlain by sands of
the Equality Formation, the Parkland Sand, or the
glacial sluiceway. Fill deposits consisting of sand
are present locally along the western shore of Lake
Calumet but are too discontinuous to be mapped at
the scale shown in figure 8. Continuous fill deposits
consisting primarily of sand and slag are present along
the shore of Lake Michigan in much of the study area
(fig. 3). These continuous fill deposits are mapped
in figure 8 as if they were composed entirely of sand.
The thickness of the sand deposits generally increases
from west to east, ranging from O ft in most of Illinois
west of Lake Calumet to about 100 ft along Lake
Michigan east of the Grand Calumet Lagoons (fig. 8).
In the extreme eastern part of the study area, two sand
lenses are separated by a silty-clay layer.

The map of sand thickness (fig. 8) was prepared
in the same way as the map of the thickness of fine-
grained unconsolidated deposits. The thickness of
the sand deposits in Illinois was measured directly
from drillers’ logs. Because of the scarcity of data
points and the large changes in surface topography at
the dunes in Indiana, digital line graph hypsography
data were used to create a TIN representing land
surface. The TIN surface was then converted into a
lattice coverage. The procedure for determining
the sand thickness was the same as that used to deter-
mine the thickness of the fine-grained unconsolidated
deposits. The lattice representing the surface of the
fine-grained unconsolidated deposits was subtracted
from the land-surface lattice. The contour coverage
was created directly from the resultant lattice coverage
and joined to the digitized contour coverage of the
sand thickness for Illinois. ~Additional smoothing
of the contours was done interactively in ARCEDIT.
Values of sand thickness presented in figure 8 do
not account for the presence of fill interspersed
with the sand along Lake Michigan, resulting in an
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overestimation of the actual thickness of the sand
in these areas.

The surficial and bedrock deposits have been
extensively altered by human activities in this area.
Substantial volumes of material have been removed
during quarrying, tunneling, and excavating for
buildings and landfills (fig. 7). The surficial geology
also has been modified by the deposition of large
amounts of fill including sand, silt, slag, dredging
spoil, and municipal wastes (fig. 3). These activities
have combined to disrupt the spatial continuity and
homogeneity of the deposits and to modify the surface
topography.

Hydrology

The four hydrologic units of concern to this
study are surface-water bodies, the unconsolidated
sand aquifer, the unconsolidated silt and clay confin-
ing unit, and the carbonate aquifer. These are the
units most affected by industrial and waste-disposal
activities.

Surface Water

Lake Michigan, the second largest of the
Great Lakes, is the dominant influence on surface-
water and ground-water hydrology in the study area.
From 1903 to 1991, the stage of Lake Michigan at
Calumet Harbor ranged from 576.9 to 582.3 ft above
sea level (National Oceanic and Atmospheric Admin-
istration, written commun., 1992). Water in Lake
Michigan usually flows from east to west (Fitzpatrick
and Bhowmik, 1990, p. 15).

Lake Calumet, at approximately 780 acres, is
the second largest surface-water body in the study
area. The lake occupies a depression in the postglacial
topographic surface. Lake Calumet is currently
divided into a number of basins by slag deposits
(fig. 9). The northernmost basin is hydraulically iso-
lated from the southern basins. The southern basins
are interconnected by openings in the causeways sepa-
rating the basins. Slag and other materials have been
used to fill in wetlands surrounding Lake Calumet and
to build several piers out into the lake.

Water is delivered to Lake Calumet by man-
made drainage channels and storm sewers; no natural
drainage is currently known to exist (Ross and others,
1988, p. 47). The major inflow to the lake from

surface drainage is through Pullman Creek, a drainage
channel on the west side of the lake (fig. 9). A drain-
age channel at the northeastern corner of the lake and
two storm-sewer outfalls also have been identified by
Ross and others (1988).

Wolf Lake and Lake George, approximately
770 and 130 acres in size, respectively, occupy
shallow depressions between a series of sandy
ridges. Wolf Lake is currently divided by slag
deposits into an eastern, a central, and a western
basin (fig. 9). Each of these basins has a different
water level and is divided by slag deposits into a
number of smaller, interconnected basins. Slag
and other materials have been used to fill in parts
of Wolf Lake, Lake George, and some of the
surrounding wetlands.

Wolf Lake was once connected to Lake Michi-
gan by a channel, now blocked, extending from the
northern part of Wolf Lake. Water is currently
delivered to Wolf Lake through manmade drainage
channels and industrial discharge. Most of the
discharge is from industries along the northern arm of
the lake. The discharged water is originally pumped
from Lake Michigan. A shallow drainage ditch on
the western shore of Wolf Lake connects the lake to
the Calumet River.

Lake George does not receive surface-water
flow under most conditions. During periods of
high water, however, Lake George may connect to
the Indiana Harbor Canal through a series of ditches
extending south from the lake.

In addition to the large lakes, numerous small
lakes, ponds, and wetlands are present in this area.
The smaller lakes generally occupy depressions on
the lake plain or pits created by mining of sand and
clay. Many of the smaller lakes and wetlands also
have been modified by dredging and disposal of fill
materials.

The Grand Calumet, Little Calumet, and
Calumet Rivers and the Calumet Sag Channel are
the principal rivers in the study area (fig. 9). The
natural gradient and direction of flow in these rivers
has been substantially altered by human activities.
Prior to about 1810, the Little Calumet and Grand
Calumet Rivers were two reaches of the same river,
referred to as the Grand Konomick River (Moore,
1959, p. 10). At that time, the Grand Konomick
River, fed by a number of smaller streams that drained
from the moraines to the south, meandered along the
southern edge of the nearly flat lake plain between the
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dunes and beach ridges along the path of the Little
Calumet River. Flowing westward from Indiana into
Illinois, the river reversed course in a topographic
depression between the Toleston Beach Ridge and the
moraine at Blue Island, which was presumably formed
by erosion along the path of the glacial sluiceway.
Flowing eastward into Indiana, the river followed the
approximate path of the Grand Calumet River and
discharged into Lake Michigan near what are now the
Grand Calumet Lagoons (Cook and Jackson, 1978,

p. 24) (fig. 9). Sometime between about 1809 and
1820, a small channel opened between the elbow in
the Calumet River south of Lake Calumet and the
Grand Konomick River. This created two rivers:
the Little Calumet River, which flowed west from
Indiana and discharged to Lake Michigan through the
Calumet River; and the Grand Calumet River, which
continued to flow to the east and discharge to Lake
Michigan near the Grand Calumet Lagoons (Moore,
1959, p. 10). The diversion of water from the Grand
Calumet River reduced its current enough that at some
time between 1840 and 1845, beach and dune deposits
had blocked the mouth of this channel, preventing
flow into Lake Michigan (Moore, 1959, p. 11).

Under these conditions, the Grand Calumet and Little
Calumet Rivers both originated in Indiana and flowed
westward into Illinois meeting the newly extended
Calumet River and discharging into Lake Michigan.

The Indiana Harbor Canal was constructed
from 1901 to 1906 to connect the Grand Calumet
River to Lake Michigan at East Chicago. This
canal provided an additional outlet for flow to Lake
Michigan and created a surface-water divide on the
Grand Calumet River at the Hammond Treatment
Plant near the East Chicago—Hammond boundary
(U.S. Department of Health, Education and Welfare,
1965, p. 57; G.S. Roadcap, Illinois State Water Survey,
oral commun., 1994) (fig. 9). Under typical flow
conditions, water in the Grand Calumet River between
the divide and the Indiana Harbor Canal flows east
to the canal. At the canal, this water mixes with
water from the eastern part of the study area and
discharges into Lake Michigan. West of the divide,
flow is toward the Calumet River.

The Calumet Sag Channel was opened in 1922
to connect the Calumet River system with the Illinois
River system (Moore, 1959, p. 13). This diverted
flow in the Calumet River from Lake Michigan to the
Calumet Sag Channel under most flow conditions.
The reversal of flow of the Calumet River also resulted

in a diversion of flow in the Little Calumet River and
the western part of the Grand Calumet River to the
Calumet Sag Channel (fig. 9).

Burns Harbor was constructed from 1924 to
1926 (Cook and Jackson, 1978, p. 63). This project
included dredging a portion of the Little Calumet
River to connect the eastern part of the river to Lake
Michigan. This construction created a surface-water
divide on the Little Calumet River caused by high
points in the riverbed west of Gary and east of Hart
Ditch (U.S. Department of Health, Education and
Welfare, 1965, p. 57) (fig. 9). Under normal flow
conditions, flow in the Little Calumet River east of
this divide is toward Burns Harbor and Lake Michi-
gan, whereas flow west of this divide is toward the
Calumet Sag Channel.

The O’Brien Lock and Dam was constructed in
1968 to control flow between Lake Michigan and the
Calumet Sag Channel. The O’Brien Lock and Dam
is kept closed except during floods or to transmit barge
traffic. Under typical conditions, the Calumet River
flows from Lake Michigan toward the Calumet Sag
Channel when the lock is open (fig. 9). Flow in the
Calumet River north of the lock and dam is usually
toward Lake Michigan when the lock is closed.

Flow in the Calumet River south of the lock and dam
is usually toward the Calumet Sag Channel when the
lock is closed.

The previous discussion describes drainage
patterns and flow directions during typical conditions.
The locations of the flow divides on the Calumet River
system can vary over several miles, and the directions
of surface-water flow can be reversed depending on
the stage of Lake Michigan—whether the O’Brien
Lock and Dam is open or closed; the intensity, dura-
tion, and location of rainfall; and the location and
volume of discharges to the streams (Fitzpatrick and
Bhowmik, 1990, p. 13).

A decline in the stage of Lake Michigan by as
little as 0.5 ft can produce a hydraulic gradient capable
of shifting the location of the surface-water divides
on the Little Calumet and Grand Calumet Rivers to
the west and reversing flow in the Calumet River
(U.S. Department of Health, Education and Welfare,
1965, p. 60). Conversely, a rise in lake level could
increase the amount of flow from Lake Michigan into
the Calumet River and shift the surface-water divides
on the Grand Calumet and Little Calumet Rivers to the
east. Local variations in the level of Lake Michigan

28 Geohydrology in Northwestern Indiana and the Lake Calumet Area of Northeastern lllinois



of 0.5 to 1.0 ft can be caused by wind or barometric-
pressure effects.

Because the Calumet Sag Channel is unable
to transmit high volumes of flow, relatively large
hydraulic heads can form in that part of the Calumet
River system flowing toward the Illinois River during
heavy rains. This may result in a westward shift
in the surface-water divides on the Little Calumet
and Grand Calumet Rivers. In extreme cases, the
O’Brien Lock and Dam will be opened and water west
of the divides will flow toward the Calumet River and
Lake Michigan. Flow reversals on the Calumet
River caused by opening of the O’Brien Lock and
Dam are infrequent events that take place for short
periods of time (U.S. Department of Health, Education
and Welfare, 1965, p. 60-63; Fitzpatrick and
Bhowmik, 1990, p. 14).

Ground Water

The aquifers of interest in this study are the
surficial sand aquifer, hereafter referred to as the
Calumet aquifer, and the carbonate aquifer, hereafter
referred to as the Silurian-Devonian aquifer. The
aquifers are separated by a confining unit composed
primarily of till.

Calumet Aquifer

The surficial sands of the Dolton Member of
the Equality Formation, the Parkland Sand, and the
glacial sluiceway, as well as the permeable fill
deposits constitute the Calumet aquifer (Hartke and
others, 1975, p. 25). Thin layers of peat, muck,
and organic-rich clay may be present in the Calumet
aquifer, functioning as localized semiconfining units.
These semiconfining units have minimal effect on
overall flow in the aquifer.

The Calumet aquifer is under unconfined
conditions and is continuous through most of the
area east of Lake Calumet but is present only in
scattered locations west of Lake Calumet (fig. 8).
The saturated thickness of the Calumet aquifer
ranges from ( to about 70 ft and generally thickens
to the east. Though not extensively pumped, records
indicate that several wells drilled for commercial,
industrial, irrigation, and drinking-water uses are
open to the Calumet aquifer. It is unknown how
many of these wells are currently in use.

The Calumet aquifer is recharged by direct
infiltration from precipitation and is the primary
pathway for lateral ground-water flow in the
unconsolidated deposits (Watson and others, 1989,

p. 30-31; Cravens and Zahn, 1990, p. 29-30).
Ground water in the Calumet aquifer generally

flows from topographic highs toward topographic
lows. Localized changes in this pattern are a result
of vertical barriers to ground-water flow; ground-
water recharge from landfill leachate and ponded
water; and ground-water discharge to sewer lines,
small ditches, and pumping centers at quarries, under-
passes, and sites of ground-water remediation.

Discharge from the Calumet aquifer is primarily
to area rivers, lakes, and wetlands. Evapotranspira-
tion also constitutes a major portion of the total
discharge during spring and summer months
(Rosenshein and Hunn, 1968, p. 30). Some water
flows from the Calumet aquifer into the underlying
confining unit.

The position of the water table in the Calumet
aquifer ranges from near land surface along the Lake
Michigan shoreline to more than 100 ft beneath the
highest dunes. The depth to water in most of the
study area is less than 15 ft (appendix 1). Lowering
of the water table in parts of the Calumet aquifer as
a result of ditching and draining the wetlands may
have decreased the rate of recharge by dewatering
the upper part of the aquifer (Rosenshein and Hunn,
1968, p. 30). Urbanization also alters recharge by
covering large areas with buildings and pavement, and
by construction of storm sewers to drain excess water.

The Calumet aquifer is in good hydraulic
connection with the surface-water bodies, except
in the areas where sheet piles have been installed for
bank stability. Water levels in most of the Calumet
aquifer near the surface-water bodies rise and fall
within moments of changes in river or lake stage
(Lee Watson, U.S. Geological Survey, oral commun.,
1992).

Slug tests were performed in 26 wells open to
the Calumet aquifer during this study to determine
the horizontal hydraulic conductivity of the aquifer,
which is necessary to estimate ground-water velocity
(table 1). Slug testing also was used to determine
the spatial trends in horizontal hydraulic conductivity.
Slug tests consisted of inserting a solid cylinder below
the water surface in the well, then measuring the
water-level decline over time using a pressure trans-
ducer (falling-head test), followed by removing the
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Table 1. Horizontal hydraulic conductivities

calculated from slug-test data, northwestern Indiana

and the Lake Calumet area of northeastern lllinois
[WTCA, water table in the Calumet aquifer; BCA, base of the Calumet
aquifer; WTCU, water table in the confining unit; MCU, middle of the
confining unit; SD, Silurian-Devonian aquifer. Well locations noted in
appendix 1]

Horizontal
hydraulic
Well conductivity Hydrologic
number (feet per day) unit
$52 8.3x101 WTCA
S54 4.2x10° WTCA
S57 3.4x10° WTCA
S60 4.3x10° WTCA
S61 2.1x10° WTCA
S63 1.3x10] WTCA
S66 3.6x10 WTCA
S69 1.0x10! WTCA
S70 2.8x10! WTCA
S71 1.1x10! WTCA
S72 1.2x10} WTCA
S73 9.8x10! WTCA
S74 4.5x10! WTCA
S75 5.9xlog WTCA
S76 8.9x100 WTCA
s77 8.6x10{ WTCA
$260 3.0x10 WTCA
S264 1.2x10! WTCA
S272 2.4x10! WTCA
S273 2.1x10! WTCA
S284 2.0x10{ WTCA
$290 2.2x10 WTCA
$293 1.7x10" WTCA
$259 6.2x10(]) BCA
S285 2.2x10, BCA
$292 4.8x10° BCA
$49 5.4x1072 WTCU
S64 1.5x1072 WTCU
S50 1.4x1073 MCU
S55 4.2x1073 MCU
S58 5.6x1073 MCU
S67 8.7x10 MCU
S53 2.0x107} SD
S59 1.5x107} SD
S62 3.3x1072 SD
S65 4.4x107} SD
S68 6.2x1072 SD

cylinder from the well and measuring the water-level
rise over time (rising-head test). Results of the
rising-head tests and the falling-head tests were
similar.

Slug-test data were analyzed using the tech-
nique of Bouwer and Rice (1976). This technique
was developed for use in aquifers under unconfined
conditions with wells that fully or partially penetrate
the aquifer and assumes the following conditions:

1. The water-level change in the vicinity of
the well is negligible.

2. Flow above the water table can be ignored; flow
is only through the saturated zones.

Head losses as the water enters the well are
negligible.

4. The hydraulic unit is homogeneous and
isotropic.

These conditions are met or approximated in each of
the hydraulic units tested.

When analyzing the slug-test data, it was
assumed that

1. the radius of the casing is equal to the radius of
the inner casing if the water-level altitude meas-
ured before the start of the test was above the top
of the screened interval of the well. If this was
not the case, the radius of the casing was com-
puted applying the technique described by Bou-
wer and Rice (1976, p. 424);

2. the value of the length of the well through which
water enters the aquifer is equal to the length of
the screened interval of the well if the water-level
altitude measured before the start of the test was
above the top of the well screen.  If this was not
the case, the value is equal to the distance from
the bottom of the well screen to the water level
measured before the start of the test; and

3. the borehole radius is equal to the nominal outside
diameter of the auger or drill bit used to drill the
well.

These assumptions greatly simplify the analysis of
the slug-test data and should not result in a significant
error in the calculated horizontal hydraulic conduc-
tivities.

Although most of the slug tests resulted in
clearly defined trends in water level with time that
were easily analyzed (fig. 10), slug-test data from
some of the wells did not show a linear decline in
water level with time, complicating the data analysis.
Where possible, these anomalous data were analyzed
in accordance with the recommendations of Bouwer
(1989) to obtain the value most representative of the
horizontal hydraulic conductivity of the hydraulic unit
tested.

The horizontal hydraulic conductivity calculated
from slug tests in the Calumet aquifer for this study
(table 1) and studies done by other investigators
ranged from 6.5x107! to 3.6x10? ft/d. Most values
were between 2.1x10° and 3.0x10' ft/d (Baker/TSA,
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1984; Geosciences Research Associates, Inc., 1987
and 1988; Warzyn Engineering, Inc., 1987; Cravens
and Roadcap, 1991, p. 10; Kenneth Gelting, Waste
Management of Illinois, written commun., 1993;
G.S. Roadcap, Illinois State Water Survey, oral
commun; 1993: Richard Leonard, U.S. Army Corps
of Engineers, written commun., 1993).

Horizontal-hydraulic-conductivity values
obtained during this and other studies from slug-test
analysis are in only fair agreement with the values
obtained by Rosenshein and Hunn (1968, p. 29)
from specific-capacity tests throughout Lake County.
Rosenshein and Hunn reported a range of horizontal
hydraulic conductivity of about 8.0x10° to
1.3x10? ft/d, and an average value of 6.0x10! ft/d.
This value is about double the most common values
calculated from the slug-test data collected in this
and other studies. Differences in the values can
be attributed to differences in the method of analysis,
the volume of aquifer tested, and the locations where
testing was done.

The slug-test data indicate that the horizontal
hydraulic conductivity of the Calumet aquifer, where
it is composed of fill deposits, is highly variable.
Horizontal-hydraulic-conductivity values calculated
from slug tests in 30 wells open to typical fill deposits
(including clay, sand, silt, slag, and construction
debris) at one of the piers in Lake Calumet varied
from 3.7x107* to 8.2x10! ft/d with a median value of
5.3x107! ft/d (Lisa Grassel, Waste Management of
North America, Inc., written commun., 1992). These
values vary over five orders of magnitude, indicating
that the fill deposits are highly heterogeneous. This
indicates that ground-water flow through the fill will
not be uniform. Flow will be primarily through the
permeable parts of the fill, which are typically coarse
grained, fractured, and (or) poorly consolidated.

In addition to variations in the hydraulic proper-
ties of the fill, variations in the hydraulic properties of
the entire Calumet aquifer also exist. These variations
can be related to differences between the hydraulic
properties of the sand and the fill and differences in the
thickness and composition of the sand deposits. The
largest horizontal-hydraulic-conductivity value calcu-
lated from the slug tests in the Calumet aquifer was
3.6x10? ft/d (table 1). This value was calculated at a
well (S66) open to the fill deposits and is about an
order of magnitude greater than the typical value for
the Calumet aquifer where flow is through the sand.
Results from the pier in Lake Calumet and station

S66 indicate that the median horizontal hydraulic
conductivity of the fill deposits can be substantially
less than the typical value of the sand deposits, but the
largest conductivity values in the fill deposits exceed
the largest values in the sand deposits.

The horizontal hydraulic conductivity of the
Calumet aquifer generally decreases to the west
(fig. 11). Near Lake Michigan in Illinois, conduc-
tivity values calculated at three wells open to the
Calumet aquifer exceeded 8.0x10! ft/d. Horizontal-
hydraulic-conductivity values in much of the area
east of Lake George are greater than or equal to
2.0x10! ft/d, whereas values north and south of this
area are usually from 1.0x10°to 1.4x10' f/d. Except
for the highly conductive area along Lake Michigan
and small areas along the southwestern part of Wolf
Lake and the northeastern corner of Lake Calumet,
the horizontal hydraulic conductivity of the Calumet
aquifer west of Lake George is less than 2.0x10' ft/d
and is typically less than 1.0x10! ft/d. Hydraulic-
conductivity values near the eastern shore, and south
of, Lake Calumet are usually less than 1.0x10° ft/d.
This decrease in hydraulic conductivity coincides with
a decrease in the thickness of the Calumet aquifer
(fig. 8). It also coincides with a decrease in the
size of the sand grains composing the aquifer and
an increase in the percentage of silt and clay in the
aquifer, which was observed during drilling operations
(Jeff Miller, Metcalf and Eddy, Inc., oral commun.,
1992).

The horizontal hydraulic conductivity of the
Calumet aquifer decreases with depth at a site in
northwest Gary, Ind. (Geosciences Research
Associates, Inc., 1988, p. 4-25), and shows no
significant change with depth at a second site in
southwest Gary (Geosciences Research Associates,
Inc., 1987, p. 4-26). Where the horizontal hydraulic
conductivity decreased with depth, the percentage
of silt and clay in the aquifer increased with depth
(Geosciences Research Associates, Inc., 1988,

p. 4-25), suggesting that they are related.

Confining Unit

The confining unit is composed of the Antrim
Shale, the silt and clay tills of the Lemont Drift
and the Wadsworth Till, the silt and clay lacustrine
deposits of the Carmi Member of the Equality
Formation, and the fine-grained fill deposits. The
confining unit separates the Calumet and the Silurian-
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Devonian aquifers in most of the study area. In the
eastern part of the study area, a sand aquifer is present
within the confining unit (Shedlock and others, 1994,
p. 16).

The water table is located in the confining unit
in most of the area west of Lake Calumet, where the
surficial deposits are predominately fine grained.

The confining unit is more than 200 ft thick in Porter
County and is thin or absent near Stony Island, Thorn-
ton Quarry, and in isolated areas south of Blue Island
(fig. 7).  Except for small areas northeast of Stony
Island and south of Blue Island, the confining unit
underlies the Calumet aquifer restricting flow between
the Calumet aquifer and the underlying Silurian-
Devonian aquifer.

The confining unit is recharged by the Calumet
aquifer and by infiltration from precipitation where
the Calumet aquifer is absent. Discharge from the
confining unit is primarily to the Silurian-Devonian
aquifer and to rivers, lakes, and wetlands. Where
the Calumet aquifer is absent, evapotranspiration
constitutes a major part of the discharge during spring
and summer months (Rosenshein and Hunn, 1968,

p- 30). The depth of the water table in the confining
unit ranges from near land surface around Lake
Calumet to about 27 ft below land surface near some
of the landfills (appendix 1).

Vertical and horizontal flow in the confining
unit is increased by a network of fractures, root
channels, macropores, and soil joints in the weathered
part of the unit. This weathered zone is typically
about 30 ft thick (Ecology and Environment, Inc.,
1990, p. 4-15) and appears to be restricted to areas
where the Calumet aquifer is less than about 5 ft
thick (Woodward-Clyde Consultants, 1984, p. V-13).
Though fractures are present in the deeper, unweath-
ered parts of the confining unit, their size and number
are greatly reduced and other forms of secondary
permeability are absent.  Vertical flow through both
the weathered and unweathered parts of the confining
unit is considerably greater than lateral flow (Cravens
and Zahn, 1990, p. 37-38).

Laboratory tests of soil-moisture content of the
confining unit were performed on saturated samples
collected from more than 50 boreholes at 10 facilities
in Illinois. The reported soil-moisture content
ranged from 8 to 37 percent and decreased with depth
at almost every borehole. The moisture content of
the upper part of the confining unit is typically about
20 percent. The moisture content of the lower part

of the confining unit is typically about 15 percent.
The soil-moisture content of a saturated deposit is
equivalent to its porosity (Freeze and Cherry, 1979,
p- 39).

Horizontal-hydraulic-conductivity values
were calculated from slug tests done in 42 wells
open to the confining unit during this and previous
investigations. These values ranged from 1.7x1073
to 5.5x107! ft/d (Geosciences Research Associates,
Inc., 1987 and 1988; Ecology and Environment, Inc.,
1990, p. 4-37; Eldridge Engineering Assoc., 1990;
Cravens and Roadcap, 1991, p. 10; G.S. Roadcap,
Illinois State Water Survey, oral commun., 1993;
Richard Leonard, U.S. Army Corps of Engineers,
written commun., 1993; Lisa Grassel, Waste
Management of North America, Inc., written
commun., 1993; Luci Alteiri, Land and Lakes Co.,
written commun., 1993). Slug tests were done in
24 wells open to the weathered zone and 18 wells
open to the unweathered zone. The median
horizontal hydraulic conductivity of the weathered
part of the confining unit was calculated to be
5.8x1072 ft/d, whereas the median value for the
unweathered part of the confining unit was calcu-
lated to be 2.8x1073 fr/d.

The horizontal hydraulic conductivity within
30 ft of the water table is substantially less where
the water table is in the confining unit than where
the water table is in the Calumet aquifer (fig. 11).
East of Lake Calumet, where the water table is
primarily in the Calumet aquifer, horizontal-
hydraulic-conductivity values almost always
exceed 1.0x10° ft/d. West of Lake Calumet,
where the water table is primarily in the confining
unit, values are usually between 1.0x1072 and
7.5%x107! fyd.

Rosenshein (1963, p. 22) estimated an average
vertical hydraulic conductivity of 4.0x10™ ft/d for the
confining unit in Lake County. Permeameter tests at
three sites near Lake Calumet and two sites in Gary
indicate a range of vertical hydraulic conductivity
from 3.7x107% to 1.6x10™> ft/d (Geosciences Research
Associates, Inc., 1987 and 1988; Roy F. Weston
Consultants, 1989, p. 5-15; Kenneth Gelting, Waste
Management of Illinois, written commun., 1993).
The confining unit does not appear to be weathered
at these sites. Permeameter tests from these sites do
not indicate a correlation between vertical hydraulic
conductivity and depth or stratigraphy within the
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confining unit. It is probable, however, that the
vertical hydraulic conductivity is greatest where the
confining unit is weathered.

Silurian-Devonian Aquifer

The dolomite and limestone of the Racine,
Detroit River, and Traverse Formations compose
the Silurian-Devonian aquifer. This aquifer is
unconfined at Stony Island and Thornton Quarry.
Northeast of Stony Island and south of Blue Island
the confining unit is absent and the Silurian-Devonian
aquifer is in direct hydraulic connection with the
Calumet aquifer (fig. 7). In the rest of the study area,
the aquifer is semiconfined. The Silurian-Devonian
aquifer is pumped for commercial and industrial
supply and serves as a source of drinking water in the
study area. The aquifer is pumped more extensively
in Illinois than in Indiana.

The Silurian-Devonian aquifer in the study
area is recharged primarily by vertical flow through
the confining unit. However, recharge to the
Silurian-Devonian aquifer through the till in any
area is less than 1 percent of the total flow through
the aquifer beneath that area (Land and Lakes Co.,
1988, p. 27). Where the confining unit is absent,
recharge is from the Calumet aquifer or direct
infiltration from precipitation.

Lateral ground-water flow in the Silurian-
Devonian aquifer is generally toward Lake Michigan,
though there is localized flow toward excavations in
the bedrock and pumping centers (Cravens and Zahn,
1990, p. 30, 34). Movement of ground water within
the Silurian-Devonian aquifer is primarily through an
interconnected network of joints, fissures, faults,
bedding plane openings, and solution cavities in the
bedrock. Very little ground water flows through the
rock matrix. With the exception of the extensive
network of vertical faults in Illinois, most of the
openings in the bedrock are irregularly distributed
both vertically and horizontally but tend to be more
abundant near the top of the bedrock (Suter and others,
1959, p. 9).

Discharge from the Silurian-Devonian aquifer
is primarily to pumping, including dewatering centers
for the Tunnel and Reservoir Plan (TARP) (Cravens
and Zahn, 1990, p. 30-35). Some ground water may
discharge from the Silurian-Devonian aquifer to Lake
Michigan through the confining unit and the Calumet
aquifer in the eastern quarter of the study area (Watson

and others, 1989, p. 18). Rosenshein (1963) showed
that local recharge to the Silurian-Devonian aquifer
through the confining unit would increase as water
levels in the aquifer were lowered by pumping.

Horizontal-hydraulic-conductivity values
calculated from 25 slug tests in wells open to the
upper few feet of Silurian-Devonian aquifer ranged
from 2.0x1072 to 1.1x10° ft/d (Woodward-Clyde
Consultants, 1984, p. V-18; Geosciences Research
Associates, Inc., 1987; Ecology and Environment,
Inc., 1990, p. 4-37; Eldridge Engineering Assoc.,
1990; Luci Alteiri, Land and Lakes Co., written
commun., 1993). The median value was calculated
to be 1.6x107! ft/d. No trends were identified in the
areal distribution of horizontal hydraulic conductivity
in the Silurian-Devonian aquifer.

Median horizontal-hydraulic-conductivity
values calculated from the slug tests are somewhat
larger than the median value of 6.2x1072 ft/d calcu-
lated from water-pressure tests in deep boreholes
drilled for the TARP (Harza Engineering Co., 1972).
This is consistent with the analysis of Hartke and
others (1975, p. 30), who noted that horizontal-
hydraulic-conductivity values are generally larger in
the upper 200 ft of the aquifer because of weathering,
fracturing, and development of limited karst solution
features. Differences in the method of testing and the
volume of aquifer tested by each method also may
account for the differences in the values.

WATER LEVELS AND DIRECTIONS OF
FLOW

Water levels were measured in 523 wells and at
34 surface-water stations during a synoptic water-level
survey on June 23-25, 1992 (appendix 1). Water
levels were not measured during this period in seven
of the wells listed in the appendix because of equip-
ment problems or lack of accessibility during the
survey. All but two water levels were measured
between 0700 hours on June 23 and 1530 hours on
June 24. Ground-water levels were measured at
wells open to the Calumet aquifer, the confining unit,
and the Silurian-Devonian aquifer. Surface-water
levels were measured from established reference
marks on bridges and culverts and at six USGS
streamflow-gaging stations.

Most water levels were measured with steel
tapes. Successive measurements were made until
at least two measurements agreed within 0.01 ft.
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Measurements were made with electric tapes if
obstructions in the well prevented a steel-tape
measurement or if LNAPL’s were detected in the
well. Measurements of LNAPL thickness were
made with an oil-water interface tape. Corrections
were made to account for the effects of LNAPL’s on
ground-water levels (Farr and others, 1990, p. 50).

All steel tapes and electric tapes were calibrated
at one well open to the water table and a second well
open to the Silurian-Devonian aquifer. All measure-
ments agreed to within 0.03 ft. These differences are
minor compared to the differences in the water-level
altitudes in the wells at different sites and no correc-
tions for tape measurements were necessary.

Inspection of ground-water levels in well S297
(USGS observation well 413559087270301) from July
1986 to September 1992 shows that the water-level
altitude in well S297 ranged from 586.8 to 591.9 ft
above sea level (Stewart and others, 1993, p. 316) and
averaged 589.6 ft above sea level. Well S297 is open
to the Calumet aquifer in Indiana (fig. 4). Water
levels in well S297 averaged 588.4 ft above sea level
during the synoptic survey, indicating that water levels
in the Calumet aquifer at this time may be slightly
lower than normal (fig. 12). The lower ground-water
levels probably resulted from below normal amounts
of recharge from precipitation in the months prior to
the synoptic survey.

Water levels in well S297 from June 15-29,
1992, indicate that the synoptic survey began on the
fifth day of a period of slowly declining ground-water
levels in the Calumet aquifer. The water level in well
$297 declined 0.30 ft during the synoptic period.

Water levels were monitored continuously dur-
ing the synoptic survey at two other wells in Indiana
(wells S299 and S277) (figs. 4, 13) and three wells
in lllinois (wells S64, S57, and S59) (figs. 4, 14) to
determine the timing and magnitude of background
water-level changes. Wells 5299, $277, and S57
are open to the Calumet aquifer. Wells S59 and S64
are open to the Silurian-Devonian aquifer and the con-
fining unit, respectively. Total changes in water
levels in these wells ranged from 0.04 to 0.30 ft.
These changes are minor compared to the differences
in water levels in the wells at different sites, and it is
assumed that no corrections for background fluctua-
tions in water level were necessary.

In addition to ground-water levels, the stage
of Lake Michigan at Calumet Harbor (fig. 15) was
monitored by NOAA, who provided daily mean
water-level altitudes. The total change in the stage of
Lake Michigan at Calumet Harbor during the synoptic
survey was 0.19 ft. This change in stage is probably
too small to produce significant changes in surface-
water elevation or ground-water altitudes, and no
corrections for changes in lake stage were made.

The results of the synoptic water-level survey
depict hydrologic conditions during June 23-25,
1992. Seasonal variations in water levels cannot
be accounted for and the conditions during this
survey may not be completely representative of
conditions during periods of heavy precipitation,
large fluctuations in the stage of Lake Michigan, or
changes in the amount and location of pumping from
the aquifers.

Surface Water

Surface-water-flow directions during the synop-
tic survey were consistent with the typical hydrologic
conditions described during previous investigations
(compare fig. 9 and fig. 15). The O’Brien Lock and
Dam was closed during the synoptic period except to
transmit barge traffic. Though 2.02 in. of rainfall
was measured at the University of Chicago on June
18, 1992 (National Oceanic and Atmospheric Admin-
istration, 1992b, p. 8), the effects of the rainfall on
water levels appear to have dissipated by the start of
the survey. The stage of Lake Michigan did not
change significantly during the survey.

The surface-water elevation of Lake Michigan
was measured at Gary Harbor (SW-21) and at Calumet
Harbor (SW-1). The surface-water elevation at both
stations was 580.1 ft above sea level (fig. 15). The
data are inadequate to identify the flow direction in
Lake Michigan.

Water levels were measured at two sites in the
eastern and western basins of Wolf Lake (fig. 15).
The water-level altitude at the western shore of Wolf
Lake was 582.1 ft above sea level; the water-level
altitude at the eastern shore was 583.0 ft above sea
level. This suggests the potential for flow from east
to west between the basins of Wolf Lake.
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The surface-water elevation (591.8 ft above
sea level) measured on the Little Calumet River near
Hart Ditch at station SW-30 is substantially higher
than at any of the nearby stations, indicating a flow
divide near this site (fig. 15). East of the divide, the
Little Calumet River flows toward Burns Harbor and
Lake Michigan. West of the divide, the Little Calu-
met River flows toward the Calumet Sag Channel.

The Grand Calumet River flows westward
from its source near the Grand Calumet Lagoons into
the Indiana Harbor Canal and Lake Michigan (fig. 15).
Though it is likely that there is some eastward flow
between station SW-14 and the inlet to the Indiana
Harbor Canal, the water levels indicate that westward
flow of the Grand Calumet River continues to its
confluence with the Little Calumet River. Flow in
the Little Calumet River south of the O’Brien Lock
and Dam and west of the confluence with the Grand
Calumet River is westward to the Calumet Sag
Channel.

Surface-water levels at the Calumet River
indicate a high in the vicinity of station SW-3 (fig. 15).
This high water level appears to be caused by surface-
water discharge from Wolf Lake to the Calumet River
at the drainage ditch near station SW-3. North of
station SW-3, flow of the Calumet River is toward
Lake Michigan. South of station SW-3, flow is
toward Lake Calumet.

Several surface-water-level measurements
(stations SW-7 and SW-8 on the Little Calumet River,
station SW-6 on the Calumet Sag Channel) indicate
different flow directions than those shown by the
arrows in figure 15. The apparent discrepancies are
probably the result of measurement errors caused by
wind blowing the steel tape during measurement or by
water-level changes associated with wind effects,
stream turbulence, or obstructions in the channel
(Sauer and Meyer, 1992, p. 14 and 16).

Surface-water gradients were determined by
dividing the change in water level between two sta-
tions by the measured distance along the stream
between the stations. Gradients for the Grand
Calumet and Calumet Rivers averaged 0.4 ft/mi.
Gradients for the Little Calumet River were generally
the largest and averaged 0.7 ft/mi.  Gradients for the
Indiana Harbor Canal were small, with an average
value of about 0.2 ft/mi. No gradient could be calcu-
lated for the Calumet Sag Channel because only one
data point was available.

Discharge readings were made at stations
SW-24 and SW-31 on the Little Calumet River and
at station SW-12 on the Grand Calumet River.
During June 23-25, 1992, daily mean discharge
of the Little Calumet River was 37 ft¥/s at station
SW-24 and 10 ft*/s at station SW-31 (Stewart and
others, 1993, p. 203 and 243). Daily mean discharge
of the Grand Calumet River averaged 18 ft¥/s at sta-
tion SW-12 (Stewart and others, 1993, p. 244).

Ground Water

The configuration of the water table and the
potentiometric surface of the top of the Silurian-
Devonian aquifer were plotted to define the horizontal
direction of ground-water flow in these units and to
identify the factors that control ground-water levels.

Water Table

The water-table configuration generally
follows surface topography where topographic relief
is significant (compare fig. 4 and pl. 1). In those
parts of the study area where the surface topography is
relatively flat (particularly between the Calumet River,
the Grand Calumet River, Lake Michigan, and the
Indiana Harbor Canal), the water-table configuration
is more complex. This is consistent with the results
of the water-table mapping done in Indiana during
previous studies (Watson and others, 1989, p. 32-33).

Plotting the water-table configuration is compli-
cated by the lack of ground-water-level data in some
parts of the study area. The well coverage between
the western shore of Lake Calumet and the eastern
edge of the study area is sufficient to provide a
detailed depiction of the water-table configuration at
the scale presented on plate 1. Data points are scarce
or absent, however, in most of the area south of the
Little Calumet River and west of Lake Calumet. It
is possible that the water-table configuration in these
areas is more complex than is shown on plate 1.

A long (approximately 5 mi) north-south
trending ground-water divide, defined as a ridge in
the water table from which ground water moves away
in both directions normal to the ridge line, is present
along the topographic ridge at Blue Island (pl. 1).
Ground-water flow west of the divide is directed south
and west toward the Calumet Sag Channel. Flow
east of the divide is directed south and east toward
the Little Calumet River and Lake Calumet.
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An east-west trending ground-water divide is
present beneath the topographic high associated with
the Toleston Beach Ridge (pl. 1). The western extent
of the divide is at the bend in the Little Calumet River
near the Calumet Sag Channel. The divide extends
eastward beyond Gary Harbor and the Grand Calumet
Lagoons to the vicinity of Burns Harbor. North of
the divide, ground water flows northward to the Little
Calumet River, the Grand Calumet River, or Lake
Michigan. South of the divide, ground water flows
toward the Little Calumet River.

A small east-west trending ground-water divide
is present between the Grand Calumet River and Lake
Michigan east of the Indiana Harbor Canal. North
of the divide, ground water flows northward to Lake
Michigan. South of the divide, ground water flows
southward toward the Grand Calumet River.

An elongated, east-west trending ground-water
divide was identified between Gary Harbor and the
Grand Calumet Lagoons. Ground water flows
radially away from this high toward Lake Michigan,
the Grand Calumet River, Gary Harbor, and the
western lagoon. Near the eastern lagoon, ground
water flows northward toward Lake Michigan.

A fourth east-west trending ground-water divide
is present in the northern edge of the study area.

This divide is associated with the topographic high
at Stony Island. Flow from Stony Island is toward
Lake Calumet and Lake Michigan.

In addition to the ground-water divides, several
ground-water mounds, defined as a raised area in the
water table resulting from ground-water recharge,
have been identified in the study area. The largest
water-table mound is the north-south trending mound
along the western shore of Lake Calumet. Ground-
water flow east of the mound is toward Lake Calumet.
Along the northwestern part of the mound, flow is
toward the west, changing toward the east away from
the mound. Southwest of the mound, ground water
flows toward the Little Calumet River. The mound is
a local feature partially caused by enhanced recharge
to ground water from ponded water at some of the
industrial facilities in this area. The current well
network is inadequate to fully define the extent of
water-table mounding in this area, but results from
a previous investigation do not indicate enhanced
recharge to ground water from ponds at the Calumet
Sewage Treatment Plant (Ecology and Environment,
Inc., 1990, p. 4-29).

A second north-south trending ground-water
mound is present between Lake Calumet and the
Calumet River. This mound appears to be the result
of additional recharge to ground water from one or
more of the landfills in this area. Flow in the vicinity
of this mound is toward Lake Calumet or the Calumet
River.

Several small ground-water mounds are associ-
ated with the piers in Lake Calumet. The height and
location of the mounds at these piers is controlled by
enhanced recharge of ponded water to ground water.

Several depressions in the water-table surface
were identified throughout the study area. Most
of these are between the Calumet River, the Grand
Calumet River, Lake Michigan, and the Indiana
Harbor Canal. Most of the depressions in this and
other areas appear to result from ground-water drain-
age into sewer lines (Watson and others, 1989, p. 30)
(compare pl. 1 and fig. 1).

Three areas display depressions in the water
table that cannot be attributed to ground-water drain-
age to sewer lines. Two of these are in the bend
of the Little Calumet River immediately west of the
confluence with the Grand Calumet River (pl. 1).

The eastern depression is caused by drainage to, and
pumping from, an excavation at the southern edge of
the landfill at this site. The western depression may
be caused by water-level measurements in monitoring
wells where water levels had not returned to equilib-
rium after dedicated sampling pumps were removed.
Water levels in these wells are not entirely representa-
tive of actual conditions. The actual water-table
altitude at this depression is likely to be higher than
shown on plate 1. The third area where the water
table is depressed is northwest of the Indiana Harbor
Canal and east of Lake George. The water-table
configuration in this area is affected primarily by
pumping associated with ground-water remediation
efforts and dewatering at highway underpasses.
Drainage to sewer lines also has some affect on the
water-table configuration. In this area, ground water
flows toward Lake Michigan, the Indiana Harbor
Canal, pumping centers, and sewers.

Silurian-Devonian Aquifer

Identifying the direction of ground-water flow
in the Silurian-Devonian aquifer is complicated by the
lack of ground-water-level data. Most of the wells
open to this aquifer for environmental investigations
are in the Lake Calumet area. Only four wells open
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to the Silurian-Devonian aquifer, none of which were
located in the eastern third of the study area, could be
measured in Indiana.  The wells drilled for environ-
mental investigations are open only to the top few feet
of the aquifer. The wells drilled for the TARP are
located over a large area of Illinois but are open to the
aquifer over tens or hundreds of feet (S135 to S152 in
appendix 1). Because of the long open intervals,
water levels from the TARP wells are considerably
lower than water levels in the shallower monitoring
wells in the same area, indicating downward flow
within the aquifer. Only the water levels from the
wells open to the top 20 ft of the Silurian-Devonian
aquifer are discussed because water-level altitudes
from the shallow and deep wells represent different
parts of the flow system and should not be compared.
The potentiometric surface of the top of the
Silurian-Devonian aquifer is highest at the bedrock
high near Stony Island (fig. 16). A second water-
level high associated with the bedrock high north-
northeast of Thornton Quarry is inferred. These
areas are separated by a depression near the confluence
of the Little Calumet and Grand Calumet Rivers.
This depression appears to be centered at a drop shaft
open to the aquifer that was being dewatered by
pumping. Pumping at the drop shaft ceased shortly
after the synoptic survey. It is unclear if the potentio-
metric surface shown in figure 16 is representative of
current conditions. Ground-water pumping from the
Silurian-Devonian and underlying aquifers at indus-
trial facilities along the Calumet River and Lake
Calumet also may have some effect on the potentio-
metric surface. The depression in the potentiometric
surface around Thornton Quarry is attributed to
excavation and pumping at the quarry.

Surface-Water and Ground-Water Interactions

Comparison of surface-water and ground-water
levels indicates complex interactions between surface
water and ground water. Ground-water contours
indicate that the general direction of ground-water
flow, which is perpendicular to the potentiometric
contours, is toward the major surface-water bodies
(pl. 1). However, ground-water levels in wells
nearest surface-water stations indicate the potential
for surface-water recharge to ground water in parts
of the study area.

Interpretation of the interaction between
surface water and ground water is further complicated
by sheet piles driven through the Calumet aquifer.
Gary Harbor is lined with sheet piles that extend
east from the mouth of the harbor approximately
1.5 mi into Lake Michigan and then south to the
shoreline.  Sheet piles also are present along long
reaches of the Calumet River, Lake Calumet, the
Indiana Harbor Canal, and Lake Michigan. The
sheet piles form a barrier to the flow of surface water
and ground water, forcing water to move under the
wall or through cracks, holes, and joints in the sheet
piles. As a consequence of the lack of area through
which discharge can occur, large gradients can be built
up between ground water and surface water. Such
gradients are evident around Gary Harbor (pl. 1).
Although the large hydraulic gradient indicates the
potential for substantial flow from ground water to
surface water, the lack of a flow pathway may (or
may not) prevent this flow.

The surface-water elevation of Lake Michigan
measured at station SW-1 in Calumet Harbor and
station SW-21 in Gary Harbor was 580.1 ft above sea
level. It is assumed, therefore, that the lake level
throughout the study area is about 580.1 ft above sea
level. Ground-water levels in wells nearest Lake
Michigan exceeded the lake levels except in one well
near the State line in Indiana. This indicates the
potential for ground-water discharge to Lake Michi-
gan in virtually all of the study area. Sheet pilings
along Lake Michigan at several of the steel-manufac-
turing facilities restrict ground-water flow to the lake.

The surface-water elevation measured at station
SW-4 is assumed to approximate the level of Lake
Calumet (fig. 15). This is lower than the ground-
water altitude in the wells around the lake, indicating
the potential for ground-water discharge to Lake
Calumet. Sheet piling along the southwestern
corner of Lake Calumet near station SW-5 indicates
that the higher ground-water levels in this area are
caused by a restriction of flow behind the sheet piles.
It is unclear how much ground water is discharging
to the lake in this area.

Surface-water/ground-water interaction at
Wolf Lake is affected by lake level, which is affected
by industrial discharge to the lake, and ground-water
levels, which are affected by drainage to sewer lines.
The surface-water elevation at station SW-10 is from
0.2 to 0.8 ft higher than the ground-water altitude in
nearby wells (fig. 15). This indicates the potential
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for surface-water discharge to ground water in most
of the eastern basin. The eastern basin is the site of
industrial discharge, and several large sewers are near
this area (fig. 1). The surface-water elevation in the
western basin at station SW-9 is about 0.9 ft lower
than the ground-water altitude in a well about 300 ft
west of the station, about 0.5 ft higher than the ground-
water altitude in a well next to the lake about 1,400 ft
south of the station, and about 0.3 ft lower than the
ground-water altitude in a well next to the lake along
the southern tip of the western basin. This indicates
the potential for ground-water discharge to surface
water in the west-central and southeastern parts of
Wolf Lake and surface-water recharge to ground water
along the southwestern part of the lake. Ground-
water levels exceed surface-water levels in the north-
western part of the basin (G.S. Roadcap, Illinois
State Water Survey, written commun., 1994). No
industrial discharge or large sewers are present near
the western basin, but small sewers are present in the
residential areas southwest of the lake (fig. 2).

The measured surface-water elevations on
the Calumet River at station SW-4 were from 0.11 to
1.0 ft higher than ground-water levels in nearby
wells. This indicates the potential for the river to
recharge the Calumet aquifer in this area. The
surface-water elevation of the Calumet River at
station SW-2 was about 0.50 ft lower than ground-
water levels in nearby wells. This indicates the
potential for discharge from ground water to surface
water in this area. Sheet piling is present near station
SW-2, indicating that the higher ground-water levels
are caused by a restriction of flow behind the sheet
piles. It is unclear how much ground water is dis-
charging to the river near station SW-2.

Wells are present near stations SW-12, SW-13,
SW-19, and SW-20 on the Grand Calumet River
(fig. 15). Ground-water levels exceeded surface-
water levels at each of these stations, indicating the
potential for ground-water discharge to the Grand
Calumet River over its entire reach.

Ground-water levels near the Calumet Sag
Channel at station SW-6 are lower than surface-
water levels, indicating the potential of water from
the Calumet Sag Channel to discharge to ground
water in this area. The low ground-water levels
in this area appear to be caused by drainage to
sewer lines (compare pl. 1 and fig. 1).

The surface-water elevation of the Little
Calumet River east of station SW-8 (fig. 15)

exceeds ground-water altitudes in the area of the
depression in the water table near the confluence

of the Little Calumet and the Grand Calumet Rivers
(pl. 1). Water from the Little Calumet River has
the potential to discharge to ground water in this
area. No wells are located near stations SW-24
through SW-34 on the Little Calumet River. The
available data indicate that ground water will
discharge to the Little Calumet River along this
reach.

Horizontal Hydraulic Gradients and Ground-
Water Velocities

Horizontal hydraulic gradients at the water
table and at the top of the Silurian-Devonian aquifer
were calculated with water levels measured during
the synoptic survey. Horizontal hydraulic gradients
were calculated by dividing the change in the altitude
of the water table or the potentiometric surface of the
Silurian-Devonian aquifer along two points parallel
to the direction of ground-water flow by the horizontal
distance between those points.

The calculated horizontal hydraulic gradient
of the water table along nine transects along lines of
flow in Illinois ranged from 1.2x1073 to 4.4x1073 fuft
(fig. 17, table 2). These values do not vary substan-
tially with location or changes in lithology.

The calculated horizontal hydraulic gradient
along five lines of flow at the water table in Indiana
ranged from 7.8x107* to 5.1x1073 fu/ft (fig. 17,
table 2). The transects cross the ground-water
divides so two values were calculated for each
transect.

The calculated horizontal hydraulic gradient of
the potentiometric surface of the Silurian-Devonian
aquifer along five transects in Illinois and Indiana
ranged from 8.8x10™* to 1.8x1073 ft/ft (fig. 18,
table 3). Gradients increase toward the pumping
center in the dolomite aquifer north of the confluence
of the Grand Calumet and Little Calumet Rivers.

Horizontal hydraulic gradients calculated from
water levels collected during the synoptic survey
generally are less than those calculated during the
site-specific investigations. This is probably because
of the unusually small amount of precipitation in the
months prior to the synoptic survey and the larger
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Table 2. Calculated horizontal hydraulic gradient and ground-water velocity at the water table along
transects, northwestern Indiana and the Lake Calumet area of northeastem lllinois

Horizontal Horizontal Horizontal
Transect hydraulic hydraulic ground-water
(see gradient Porosity conductivity velocity
fig. 17) (foot per foot) (percent) (feet per day) (feet per day)
Flow line primarily through confining unit
A-A' 3. 1x10‘§ 20 5.8x10‘§ 9.0x10™
B-B' 3.1x10™ 20 5.8x10™ 9.0x10 3
c-C 3.6x10’3 20 5.8><10‘2 1.0x10™
H-H' 1.5x10™ 20 5.8x10™ 4.4x10
Flow line primarily through Calumet aquifer
X-D' 4.4x1073 30 1.5x10° 2.2x1072
X-E' 2.0x10'3 30 1.5x100 1.0><10‘2
-F 2.6x10‘3 30 1.5x100 1.3><10“2
G-G' 3.9x10‘3 30 5.0x100 6.5x10‘2
G-G" 3.2x10™ 30 5.0x10 5.3x10™
I-T 1.2x10—§ 30 5.0x109 2.0x10'f
J-r 1.6x10'3 30 2.0><10l 1.1x10‘I
J-I" 1.8x10™ 30 2.0x10 1.2><10'2
K-K' 9.4x107 30 1.0><10(‘) 3.1x1072
K-K" 1.6x10™ 30 5.0x10 2.7x10™
L-L 2.7x10‘§ 30 2.0x10! 1.8x107]
L-L" 1.6x10“3 30 2.0x10! 1.1x10™
M-M' 5.1x1073 30 2.0x10! 3.4x107!
M-M" 3.0x107 30 2.0x10: 2.0x10";
N-N' 7.8x10 3 30 2.0x101 5.2x10‘l
N-N" 3.6x10” 30 2.0x10 2.4x10”

distances over which the horizontal hydraulic gradi-
ents were calculated.

Average linear ground-water velocity (V) at the
water table along the lines of transect was calculated
by solving the equation

V= (KxI)/n,

where

K is the horizontal hydraulic conductivity, in feet
per day;
I is the horizontal hydraulic gradient, in foot per
foot; and
n is the effective porosity, in percent.
Ground-water velocities near the water table
in the confining unit were calculated using the
median horizontal-hydraulic-conductivity values
obtained from the slug tests, the horizontal hydraulic
gradient along a transect, and a representative value
for effective porosity (table 2). Use of a mean
horizontal hydraulic conductivity for the calculation
of ground-water velocity will result in an estimate

1)

Horizontal Hydraulic Gradients and Ground-Water Velocities

of the velocity through a typical section of the
confining unit. Larger or smaller ground-water
velocities are likely locally.

The effective porosity of the Calumet aquifer
is assumed to be 30 percent (Freeze and Cherry, 1979,
p- 37). 'The horizontal hydraulic conductivity of
the aquifer is variable along the lines of transect
(figs. 11, 17) so approximate values were used
(table 2). Where no data were available in Indiana,
the horizontal hydraulic conductivity was assumed
to be 2.0x10' ft/d. Where no data were available
in Illinois, a value of 5.0x10° ft/d was assumed.
Applying these values, the calculated ground-water
velocity through the Calumet aquifer along the lines of
transect ranges from about 1.0x1072 to 3.4x107! ft/d.

The effective porosity of the confining unit at
the water table is about 20 percent, whereas the
median horizontal hydraulic conductivity in the
confining unit at the water table was calculated to be
5.8x1072 ft/d. Applying these values, the ground-
water velocity at the water table in the confining unit
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Table 3. Calculated horizontal hydraulic gradient and ground-water
velocity in the Silurian-Devonian aquifer along transects, northwestern
Indiana and the Lake Calumet area of northeastem lllinois

Horizontal Horizontal Horizontal
hydraulic hydraulic ground-water
Transect gradient Porosity conductivity velocity
(see fig. 18)  (foot per foot) (percent) (feet per day) (feet per day)
A-A' 1.5x1073 1 1.6x107] 2.4x1072
A-X 1.8x10™ 1 1.6x10” 2.9x10™
B-X 1.3x1073 1 1.6x107! 2.1x1072
C-X 1.3x1072 1 1.6x10"} 2.1x1072
D-X 8.8x10 1 1.6x10™ 1.4x10™

along the lines of transect ranged from 4.4x107* to
1.0x1073 ft/d (table 2).

The effective porosity of the Silurian-Devonian
aquifer is estimated to be about 1 percent based on
typical porosity values of dolomite deposits (Freeze
and Cherry, 1979, p. 375). The median horizontal
hydraulic conductivity, as determined from the 24 slug
tests performed by the USGS and other investigators,
is 1.6x107! f/d.  Using these values, the average
linear ground-water velocity through the upper part
of the Silurian-Devonian aquifer along the lines of
transect is calculated to range from 1.4x1072 to
2.9x1072 ft/d (table 3).

Vertical Hydraulic Gradients and Ground-
Water Velocities

The vertical hydraulic gradient is the difference
in the altitude of the water levels in wells in the same
location but open to different depths divided by the
vertical distance separating the midpoints of the satu-
rated open interval of the wells. If the water-level
altitude in the shallow well is higher than that in an
adjacent deeper well, the vertical hydraulic gradient
is downward and water has the potential for downward
flow. If the water-level altitude in the shallow well
is lower than in the deep well, the vertical hydraulic
gradient is upward and water has the potential for
upward flow. As a convention, upward gradients are
positive and downward gradients are negative.

Vertical hydraulic gradients between four
hydraulic horizons—the water table and the base
of the Calumet aquifer, the water table and the
confining unit, the confining unit and the top of the
Silurian-Devonian aquifer, and the water table and
the top of the Silurian-Devonian aquifer—were
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calculated to determine the vertical direction of
ground-water flow (table 4). Because the water
level in well S67 had not recovered from well devel-
opment during the synoptic survey, the vertical
hydraulic gradient at the S66/S67/S68 well cluster was
calculated using water-level measurements collected
on October 27, 1992. It is assumed that measured
water levels in all well clusters at which vertical
hydraulic gradients were calculated are representative
of hydrostatic conditions.

Forty-three sites have wells open to different
depths in the Calumet aquifer. Differences between
water levels within well clusters ranged from O to
3.9 ft (appendix 1). Vertical hydraulic gradients were
calculated for the 30 well clusters with differences
in water-level altitude greater than 0.02 ft. Assuming
an uncertainty of 0.01 ft for each measurement, water-
level differences of 0.02 ft or less are considered indic-
ative of horizontal flow.

Of the 30 well clusters in the Calumet aquifer
where vertical flow was identified, downward gradi-
ents were measured at 14 well clusters and upward
gradients were measured at 16 well clusters (table 4).
Downward gradients range from ~9.7x107* to
-1.3x107! ft/ft and average —2.1x1072 ft/ft. Upward
gradients range from 1.2x1073 to 3.3x10™" f/ft and
average 3.6x1072 ft/ft.

No clear pattern to the direction of vertical
hydraulic gradients in the Calumet aquifer is evident.
Downward gradients are present along ground-water
divides south of Burns Harbor, on the peninsula east
of Indiana Harbor, and between the Grand Calumet
River, the Indiana Harbor Canal, Gary Harbor, and
Lake Michigan (compare pl. 1 and fig. 19). Upward
gradients are present at several well clusters along the
ground-water divide at the Toleston Beach Ridge.
Vertical gradients are absent, indicating horizontal

Geohydrology in Northwestern Indiana and the Lake Calumet Area of Northeastern lllinois



Table 4. Calculated vertical hydraulic gradient at selected points, northwestern Indiana and the Lake Calumet
area of northeastern lllinois

[—, Denotes that the altitude of the water level in the deep well in the well cluster is lower than in the shallow well, indicating the potential
for downward movement; Well locations noted in appendix 1]

Calculated vertical Calculated vertical
Well hydraulic gradient Well hydraulic gradient
number (foot per foot) number (foot per foot)
Water Table in Calumet Aquifer/Base of Calumet Aquifer Middle of Confining Unit/Top of Silurian Aquifer
$259/5260 3.3x10-; S10/S11 —2.6x107!
$269/5270 4.0x10™ $28/S29 —1.4x10
$275/S276 —3.0x10’; $33/S34 —5.9><10‘}
$338/5339 -2.3x10" $36/S37 —9.0x10”
S$343/S344 —42x1073 S58/S59 —4.0x107!
$347/5348 1.9x1073 1s67/568 —5.6x107!
$350/8351 1.2x1073 $199/5200 1.3x107!
$353/5354 -2.6x1073 $202/5204 —2.0x107!
$356/S357 4.7x1072 $203/S204 -2.8x107!
$358/5359 8.1x1073
Water Table/Silurian Aquifer
S$361/5362 4.8x10‘g S01/S02 ~1.7x107!
$363/5364 —4.7x107 S03/504 -5.0x107!
$367/5368 5.0x107 S06/S07 -5.7x107!
S$372/S373 —3.2x10™ S09/S11 —2.2x107!
$374/S375 52x1073 S12/S13 -3.9x107!
$376/S377 3.7x10'g $21/522 -6.1x107!
$401/5402 2.3x10™ $23/S24 —6.6x107!
S431/5432 1.0x1071 $25/526 -6.1x107!
S435/S436 -6.4x1073 $27/S29 -6.2x107!
$439/S440 -9.7x107% S30/S31 -5.5x107!
$447/5448 1.8x1073 $52/S53 2.2x1072
S451/5452 24x1072 S$57/S59 —3.7x107!
$454/5455 -1.9x1072 S61/562 -1.7x107!
$456/S457 -3.3x107 S64/S65 —3.6x107!
S458/S459 -6.7x1073 S66/S68 -2.9x107!
S460/S461 -1.3x1072 S96/S97 —4.7x1071
S463/S464 —4.0x1072 $98/S99 -2.5x1071
S466/S467 —1.3x10-; $100/5101 -3.6x107!
S472/5473 3.3x107 S103/S104 —2.6x107!
$490/5491 3.8x10™ S106/S107 —2.8x107!
Water Table/Middle of Confining Unit S108/S109 —2.0x107}
S09/S10 —1.8x10‘é S116/S117 ~3.0x107!
$27/528 -6.0x10" S118/S119 -3.5x107!
$49/S50 -8.0x1072 S121/5122 -3.5x107!
S54/S55 —1.0x10“} S184/S185 -20x107!
S57/S58 —1.4x10™
S186/S187 —4.3x107!
1566/567 —4.0x1072 S188/S189 -2.0x107!
$198/S199 -34x107} S190/S191 -3.7x107}
$201/S202 —L2x10’; $192/S193 —3.3x10‘;
$201/5203 5.0x1073 $198/5200 —~7.7x10”
$205/S206 4.9x10"

S201/5204 —2.2x107!
$207/5208 -1 .1x1o-; $239/5240 -3.2x10—}
$209/5210 -9.0x10~ $380/5381 ~1.1x10"
S211/S212 -1.9x107! $383/S385 -1.8x107!
S213/S214 -2.4x107! $447/5449 -2.6x1072

$451/5453 -1.5x107!

Base of Calumet Aquifer/Middle of Confining Unilt
$339/5340 —2.0)(10_2 IMeasurement made 10/27/92.
$351/8352 -1.3x107
$432/8433 —3.9x10"
S436/5437 ~1.5x107!
S440/S441 1.8x10~2

Vertical Hydraulic Gradients and Ground-Water Velocities
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flow, at several well clusters near the Grand Calumet
River, Burns Harbor, Wolf Lake, and parts of Lake
Michigan. Flow in the area between Lake George,
Lake Michigan, and the Indiana Harbor Canal is
primarily upward or horizontal. Vertical flow in the
Calumet aquifer appears to be affected primarily by
pumping and drainage to sewers.

Vertical hydraulic gradients were directed
downward at 16 of the 19 well clusters where one
well is open to either the water table or the base of
the Calumet aquifer and a second well is open to the
middle of the confining unit (table 4). This indicates
the potential for flow from the water table or the base
of the Calumet aquifer down into the confining unit in
most of the study area. Differences in water levels
within wells open to the water table or the base of the
Calumet aquifer and the middle of the confining unit
at a cluster range from 0.23 to 11.86 ft (appendix 1).
Downward vertical hydraulic gradients average
-1.3x107! ft/ft, whereas upward gradients average
1.9x107! fu/ft.

Vertical hydraulic gradients between the
confining unit and the Silurian-Devonian aquifer
were directed downward at eight of the nine well
clusters measured (table 4). This indicates the
potential for ground water to flow from the confining
unit down to the Silurian-Devonian aquifer in most
of the area where data are present. Differences in
water levels within well clusters open to the confining
unit and the Silurian-Devonian aquifer ranged from
5.98 t0 29.39 ft. Downward gradients average
-5.7x107" f/ft. ‘The value of the one upward
gradient was 1.3x107! ft/ft.

Vertical hydraulic gradients between the water
table and the top of the Silurian-Devonian aquifer
were directed downward at 35 of the 36 well clusters
measured (table 4). This indicates the potential
for ground-water flow from the water table down to
the Silurian-Devonian aquifer except in the area east
of Stony Island where flow is from the Silurian-
Devonian aquifer to the water table. Differences
in water levels within well clusters open to these
units ranged from 1.52 to 37.44 ft (appendix 1).

The average of the downward gradients was
-3.3x107! ft/ft. The value of the one upward
gradient was 2.2x1072 ft/ft.

The average downward vertical hydraulic
gradient between the water table or the base of the
Calumet aquifer and the middle of the confining unit
is —1.3x107! ft/ft. This value is substantially lower

than the average gradient between the water table
and the Silurian-Devonian aquifer (-3.3x107! ft/ft).
Both of these gradients are less than the average
gradient between the middle of the confining unit
and the top of the Silurian-Devonian aquifer
(-5.7x1071 ft/ft). These trends are independent
of the presence or absence of the Calumet aquifer.
These trends indicate that the vertical hydraulic con-
ductivity of the Calumet aquifer and the weathered
part of the confining unit are both greater than that
of the unweathered part of the confining unit.

The vertical ground-water velocity can be
calculated by solving equation 1 if vertical hydraulic
conductivity is substituted for horizontal hydraulic
conductivity and vertical hydraulic gradient is substi-
tuted for horizontal hydraulic gradient. The vertical
and horizontal hydraulic conductivity of the unweath-
ered part of the confining unit are approximately equal
(Keros Cartwright, Illinois State Geological Survey,
oral commun., 1994). Where vertical fractures are
present, as in the weathered part of the confining unit,
vertical hydraulic conductivity typically exceeds hori-
zontal hydraulic conductivity. It is assumed that
the median vertical hydraulic conductivity of the
weathered part of the confining unit is equal to the
median horizontal-hydraulic-conductivity value of
5.8x1072ft/d. The actual value is likely to be larger.
Laboratory tests of soil-moisture content show that
the porosity of the weathered part of the confining
unit typically is about 20 percent. Applying the
average of the vertical hydraulic gradients between
the water table and the middle of the confining unit
(-1.3x107! ft/ft), the vertical ground-water velocity
through the weathered part of the confining unit is
conservatively estimated to be 3.8x1072 ft/d. This is
more than 30 times greater than the horizontal ground-
water velocity in the weathered part of the confining
unit, indicating that vertical flow will greatly exceed
horizontal flow.

In the unweathered parts of the confining unit,
the mean vertical hydraulic conductivity is assumed
to be 4.0x10™* ft/d (Rosenshein, 1963, p-22). The
porosity of the confining unit at depth is about
15 percent. If the average of the downward vertical
hydraulic gradients between the middle of the confin-
ing unit and the top of the Silurian-Devonian aquifer
(=5.7x107! ft/ft) is used, the vertical ground-water
velocity through the unweathered part of the confining
unit is calculated to be 1.5x1073 ft/d.  Vertical flow
through the unweathered part of the confining unit is
likely to exceed horizontal flow.
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OCCURRENCE OF LIGHT-NONAQUEOUS-
PHASE LIQUIDS ON GROUND WATER

LNAPL’s were detected in several wells near the
petrochemical facilities in Indiana, particularly north
and east of Lake George (table 5; figs. 2 and 20).

The measured thickness of LNAPL's in the vicinity
of the petrochemical facilities ranged from a thin film
to more than 10 ft. Measurements indicate that,
although not ubiquitous, LNAPL’s are present in a
large part of the petrochemical land-use area.

LNAPL’s were detected in wells at several gas
stations and at a few industrial or waste-disposal facil-
ities in Illinois and Indiana (table 5). The measured
thickness of LNAPL'’s in these wells ranged from a
thin film to greater than 10.0 ft. No LNAPL’s were
detected in any well that was not near a refinery, gas
station, industrial facility, or waste-disposal facility,
which indicates that LNAPL’s are not likely to be
present on ground water beneath residential areas that
are not near such facilities.

The measured thickness of LNAPL’s in a well is
affected by the location of the oil-water interface in
relation to the well screen. The LNAPL’s may have
been present at some shallow wells but were not
detected because the water level in the well was above
the screened interval. This could result in an under-
estimation of the location and thickness of LNAPL’s
in the study area. If the oil-water interface at a well
is located within the well screen and a capillary fringe
is present above the water table, LNAPL’s may move
laterally into the monitoring well. The weight of the
LNAPL’s will depress the surface of the water in the
well below that of the actual water table (Fetter, 1993,
p- 225). 'This results in an increase in the LNAPL
thickness and a decrease in the water-level altitude in
the well that is not representative of conditions outside
of the well bore. It is possible that the measured
thickness of LNAPL’s in some of the wells is greater
than is actually present in the aquifer. It is also possi-
ble that the actual water-table altitude near some of
these wells is higher than was determined from the
water-level measurement.

Table 5. Light-nonaqueous-phase-liquid (LNAPL) thickness, northwestem
Indiana and the Lake Calumet area of northeastem lllinois, June 23-24, 1992
[--, measurement not taken; >, greater than; well locations noted in appendix 1]

Measured depth Measured depth LNAPL
Well Latitude/ to LNAPL to water thickness
number Longitude (feet) (feet) (feet)
S162 414138/873326 10.02 10.52 0.50
S233 413602/873330 5.71 film
S$234 413601/873330 4.00 film
S235 413721/873452 9.42 film
S$236 413720/873451 9.40 film
S$237 414016/873640 4.39 5.36 97
S269 414044/872908 7.48 7.75 .27
S$270 414043/872908 8.97 9.06 09
S338 414017/872918 9.65 >20.34 >10.69
S343 414015/872858 9.14 9.19 .05
S349 413953/872919 15.44 17.69 2.25
S350 413940/872818 13.07 14.75 1.68
S416 413606/872338 - 7.95 film
S428 413816/872822 - film
S478 413831/872938 7.54 film
S481 413832/872937 7.57 7.58 01
S482 413832/872936 7.18 film
S486 413832/872935 747 7.48 01
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Figure 20. Location of wells where light-nonaqueous-phase liquids were detected, northwestern Indiana and the
Lake Calumet area of northeastern lllinois, June 23-25, 1992.
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The extent of the LNAPL’s at the refineries
and industrial and waste-disposal facilities has not
been completely defined in this study, in part because
permission to measure LNAPL’s could not be obtained
at a number of facilities and in a number of wells
where LNAPL’s were known or suspected to be
present. Furthermore, no monitoring wells were
available at a number of industrial facilities where
LNAPL’s may be present. The extent of LNAPL’s
in the study area determined during this survey should
be considered as a minimum.

SUMMARY AND CONCLUSIONS

In June 1992, the U.S. Geological Survey, in
cooperation with the U.S. Environmental Protection
Agency, began a study of the hydrogeology and distri-
bution of light-nonaqueous-phase liquids (LNAPL’s)
in a heavily industrialized area of northwestern
Indiana and northeastern Illinois. The study was
designed to describe the geology and hydrology in
the area, determine the direction of surface-water
and ground-water flow, characterize the interaction
between surface water and ground water, and to obtain
a preliminary estimate of the location and extent of
LNAPL’s on the water table.

The bedrock geologic deposits of concern are
Silurian dolomites of the Niagaran Series, lower to
middle Devonian limestones and dolomites of the
Detroit River and Traverse Formations, and the upper
Devonian Antrim Shale. The Silurian deposits are
at the bedrock surface in the western half of the study
area. The Detroit River and Traverse Formations are
at the bedrock surface in the central part of the study
area. The Antrim Shale is at the bedrock surface in
the eastern edge of the study area.

The bedrock deposits are overlain by unconsoli-
dated silt and clay tills. The tills are at the land
surface in most of the area west of Lake Calumet.
Sand deposits overlie the tills and are at the land
surface in most of the area east of the Calumet River.
Thin silt and clay lacustrine deposits overlie the tills
or the sands and are at the land surface around Lake
Calumet and parts of the Little Calumet River.

The four hydrologic units of concern are
surface-water bodies, the Calumet aquifer, the
confining unit, and the Silurian-Devonian aquifer.
The most important surface-water bodies are Lake
Michigan, Lake Calumet, Wolf Lake, Lake George,
the Calumet River, the Grand Calumet River, the Little

Calumet River, and the Calumet Sag Channel. The
Calumet aquifer is composed primarily of sand
deposits. The confining unit is composed primarily
of silt and clay tills and lacustrine deposits. The
Silurian-Devonian aquifer is composed of Silurian
and Devonian carbonate deposits.

The Calumet aquifer is unconfined and continu-
ous through most of the area east of Lake Calumet
but is only present in scattered locations west of Lake
Calumet. The horizontal hydraulic conductivity of
the Calumet aquifer ranges from 6.5x107! to
3.6x10? ft/d and generally decreases to the west.

The water table is located in the confining unit
in much of the area west of Lake Calumet where the
Calumet aquifer is absent. The upper part of the
confining unit is typically weathered where the
Calumet aquifer is thin or absent. The confining unit
underlies the Calumet aquifer in most of the remainder
of the study area. The horizontal hydraulic conduc-
tivity of the confining unit ranges from 1.7x107> to
5.5x107' ft/d. The horizontal hydraulic conductivity
of the weathered part of the confining unit is larger
than that of the unweathered part of the confining unit.

The Silurian-Devonian aquifer is confined
except at Stony Island and Thornton Quarry, where the
water table is in the dolomite, and northeast of Stony
Island and south of Blue Island, where the confining
unit is absent and the aquifer is in direct hydraulic
connection with the Calumet aquifer. The horizontal
hydraulic conductivity of the Silurian-Devonian
aquifer ranges from 2.0x1072 to 1.1x10° ft/d.

Water levels were measured in 523 wells and at
34 surface-water stations during a synoptic water-level
survey on June 23-25, 1992. The water-table config-
uration on June 23-25, 1992, generally followed
topography. Ground-water divides were along
topographic highs at Blue Island, Stony Island, and the
Toleston Beach Ridge. Ground-water mounds were
present southwest of Lake Calumet, between Lake
Calumet and the Calumet River, and between the
Indiana Harbor Canal, the Grand Calumet River,
Lake Michigan, and Gary Harbor. Recharge to
ground water from landfill leachate and ponded water
affected the location of the ground-water mounds.

Several depressions in the water-table surface
were also identified. The depressions in most of
these areas appear to be caused by ground-water
drainage into sewer lines and excavations and pump-
ing from shallow wells.

62 Geohydrology in Northwestern Iindiana and the Lake Calumet Area of Northeastern lllinois



The potentiometric surface of the top of the
Silurian-Devonian aquifer shows two highs separated
by a depression. The northern high point is associ-
ated with the bedrock high at Stony Island. The
southern high point is associated with the bedrock
high at Thornton Quarry. The deepest part of the
depression in the potentiometric surface of the
Silurian-Devonian aquifer coincides with the location
of a drop shaft open to the aquifer, which was being
dewatered by pumping.

Comparison of surface-water and ground-water
levels indicates a complex interaction between surface
water and ground water. The general direction of
ground-water flow inferred from plots of ground-water
contours is toward the major surface-water bodies, but
surface water may be discharging to ground water in
several areas.

The horizontal hydraulic gradient at the water
table along several transects range from 7.8x10™* to
5.1x1073 ft/ft. These values do not vary substantially
with changes in location or lithology.

_ The horizontal hydraulic gradient of the potenti-
ometric surface of the Silurian-Devonian aquifer along
several transects range from 8.8x107* to 1.8x1073 f/ft.
These values show no significant variation with
changes in lithology but tend to increase near the
pumping center located near the confluence of the
Grand Calumet and Little Calumet Rivers.

The average linear horizontal ground-water
velocity in the Calumet aquifer ranged from 1.0x1072
to 3.4x107! f/d. The horizontal linear ground-water
velocity through the silt and clay deposits at the water
table ranged from 4.4x107* to 1.0x1073 f/d. The
ground-water velocity through the upper part of
the Silurian-Devonian aquifer ranged from 1.4x1072
to 2.9x1072 fr/d.

Vertical hydraulic gradients within the Calumet
aquifer indicate complex vertical flow. Vertical
hydraulic gradients indicate the potential for down-
ward flow from the Calumet aquifer to the confining
unit and from the confining unit to the Silurian-
Devonian aquifer over most of the study area.

The vertical ground-water velocity through the
weathered part of the confining unit is calculated to
be 3.8x1072 ft/d. The vertical ground-water velocity
through the unweathered part of the confining unit is
calculated to be 1.5x1073 fy/d.

Light-nonaqueous-phase liquids were detected
in several wells near the petrochemical facilities in
Indiana and at several gas stations and a few industrial

or waste-disposal facilities in Illinois and Indiana.
No LNAPL’s were detected in any well that was not
near a refinery, gas station, industrial facility, or
waste-disposal facility.
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Geohydrology in Northwestern Iindiana and the Lake Calumet Area of Northeastern lilinois
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