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per centimeter (uS/cm) at 25 degrees Celsius. Radioactivity is expressed in picocuries per liter (pCi/L), which is the amount of
radioactive decay producing 2.2 disintegrations per minute in a unit (liter) of water.

VERTICAL DATUM

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929—A geodetic datum derived from a
general adjustment of the first-order leve! nets of the United States and Canada, formerly called “Sea Level Datum of 1929.”
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Geochemical Analyses of Ground-Water Ages,
Recharge Rates, and Hydraulic Conductivity of
the N Aquifer, Black Mesa Area, Arizona

By Thomas J. Lopes and John P. Hoffmann

Abstract

The Navajo Nation and Hopi Tribe of the Black Mesa area, Arizona, depend on ground water
from the N aquifer to meet most tribal and industrial needs. Increasing use of this aquifer is
creating concerns about possible adverse effects of increased ground-water withdrawals on the
water resources of the region. A thorough understanding of the N aquifer is necessary to assess
the aquifer’s response to ground-water withdrawals. This study used geochemical techniques as
an independent means of improving the conceptual model of ground-water flow in the N aquifer
and to estimate recharge rates and hydraulic conductivity.

Ground water flows in a south-southeastward direction from the recharge area around Shonto
into the confined part of the N aquifer underneath Black Mesa. Ground-water flow paths diverge
in the confined part of the aquifer to the northeast and south. The N aquifer thins to extinction
south of Black Mesa. This discontinuity could force ground water to diverge along paths of least
resistance. Ground water discharges from the confined part of the aquifer into Laguna Creek and
Moenkopi Wash and from springs southwest of Kykotsmovi and southeast of Rough Rock after a
residence time of about 35,000 years or more. Recent recharge along the periphery of Black Mesa
mixes with older ground water that discharges from the confined part of the aquifer and flows
away from Black Mesa.

Dissolved-ion concentrations, ratios of dissolved ions, dissolved-gas concentrations, tritium,
carbon-13, and chlorine-36 data indicate that water in the overlying D aquifer could be leaking
into the confined part of the N aquifer in the southeastern part of Black Mesa. The boundary
between the leaky and nonleaky zones is defined roughly by a line from Rough Rock to Second
Mesa and separates ground waters that have significantly different chemistries. The Dakota
Sandstone and Entrada Formation of the D aquifer could be the sources of leakage.

Adjusted radiocarbon ground-water ages and data on isotopes of oxygen and hydrogen
indicate that more than 90 percent of the water in the confined part of the N aquifer is older than
10,000 years and was recharged during glacial periods. Estimates of recharge rates made on the
basis of ground-water ages, aquifer thicknesses, and assumed porosities indicate that the annual
average recharge rate in the northwestern part of the study area during the glacial periods was
about four times the average annual rate of the past 10,000 years, and that recharge rates for the
past 10,000 years are less than modern recharge rates assumed in a previous study. Estimates of
horizontal hydraulic conductivity were 0.95 and 1.16 feet per day for the northeast and southwest
flow paths, respectively. These values are within the range of hydraulic conductivities calculated
from aquifer tests, which ranged from 0.05 to 2.1 feet per day and averaged 0.65 foot per day.

Abstract 1



INTRODUCTION

The growing population and industrial devel-
opment of the Black Mesa area, Arizona (fig. 1),
have increased the demand for water in an area
with sparse water resources. The Navajo Nation
and Hopi Tribe depend on ground water to sustain
municipal, domestic, livestock, and industrial
needs. Peabody Coal Company also uses ground
water to transport coal mined from Black Mesa
through a 273-mile pipeline to the Mohave Gener-
ating Station near Laughlin, Nevada. Most of the
water demands in the Black Mesa area are met by
pumpage from the N aquifer, and withdrawals from
this aquifer have increased about sixfold during the
last 25 years (Littin, 1992). Increased ground-
water withdrawals have raised concerns about the
adequacy of the N aquifer to sustain tribal growth
and industry, potential degradation of ground-
water quality by leakage from saline aquifers, and
reduced flow from sacred springs. Since 1971,
these concerns have led to a continual effort by The
Navajo Nation, the Navajo Tribal Utility Authority
(NTUA), the Hopi Tribe, the Bureau of Indian
Affairs (BIA), the Peabody Coal Company, and the
U.S. Geological Survey (USGS) to monitor the
water resources of the Black Mesa area. This study
was done by the USGS in cooperation with the
BIA and the Navajo Department of Water
Resources Management.

Purpose and Scope

This report describes how geochemical tech-
niques were used to improve the conceptual model
of the N-aquifer flow system of the Black Mesa
area. The conceptual model of ground-water flow
is the basis for a numerical model that represents
the N-aquifer flow system and the response of the
aquifer to pumping. Data from analyses of major
ion, radioactive carbon-14, tritium, oxygen-18,
hydrogen-2, carbon-13, and chlorine-36 were used
to estimate ground-water ages, delineate flow
directions, and estimate recharge rates and aquifer
properties. Estimated ground-water flow direc-
tions, recharge rates, average linear velocities, and
hydraulic conductivities were compared with
values estimated in previous studies. Emphasis of
sampling and interpretation was on the approxi-

mately 3,500-square-mile area of the confined N
aquifer and selected nearby areas where the aquifer
is unconfined (fig. 1).

Acknowledgments
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assisted in sampling logistics and provided infor-
mation on well construction.

DESCRIPTION OF THE BLACK
MESA AREA

The study area is about 11,000 mi® of the
Navajo and Hopi Indian Reservations in arid to
semiarid northeastern Arizona (fig. 1). Black Mesa
is a plateau near the center of the study area and
has an area of about 2,000 mi%. Black Mesa
abruptly rises about 3,000 ft above the surrounding
lowlands on the northeast and slopes gently from
the northeast to the southwest where it becomes
indistinct from the surrounding lowlands. Eleva-
tions in the study area range from about 4,000 to
8,000 ft. The total population of the study area is
about 28,500; Tuba City is the largest city, with
about 7,300 inhabitants (U.S. Department of
Commerce, 1991). Grazing of sheep and cattle,
tourism, and the coal mines are important to the
life and economy of the area.

Geology and Aquifer Systems

The study area is underlain by a complex inter-
tonguing of layered mudstone, siltstone, sandstone,
silty sandstone, limestone, conglomerate, coal, and
gypsum that range in age from Permian to late
Tertiary (Cooley and others, 1969). These sedi-
mentary rocks have a total thickness that ranges
from about 1,000 ft to more than 10,000 ft and
overlie granitic and metamorphic basement rock of
Precambrian to Cambrian age. A thin, discontin-
uous veneer of unconsolidated to weakly consoli-
dated Quaternary sediments overlies the series of
sedimentary rocks.

Black Mesa is the remnant of rocks of Jurassic
to Cretaceous age that were eroded from most of
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with fine- to very fine-grained sandstone with
interbedded siltstone. The Wingate Sandstone is
the lowest unit in the N aquifer and is a fine- to
very fine-grained sandstone. Grains of these three
units are composed primarily of quartz with trace
amounts of volcanic rock fragments and calcite
that are weakly cemented with calcium carbonate
and silica (Harshbarger and others, 1957, p. 10-22;
Geotrans, Inc., 1993). The primary water-bearing
units of the N aquifer are the Navajo Sandstone
and the fine-grained sandstones of the Wingate
Sandstone and Kayenta Formation. Rocks of the N
aquifer are more than 1,200 ft thick in the north-
western part of the study area and thin to extinction
in the southeastern part of the study area (fig. 3,
B-B’). Recharge to the N aquifer is mostly in the
north and northwest where rocks of the N aquifer
crop out (fig. 3, B—8B').

The D aquifer overlies the N aquifer
throughout the Black Mesa area; erosion has
removed the rocks of the D aquifer from the rest of
the study area. The D aquifer has been described
by Cooley and others (1969, p. A42) as “consisting
of several thin isolated semiconnected sandstone
water-bearing units that are separated by thick
sequences of mudstone and siltstone.” The D
aquifer is a multiple-aquifer system composed of
the Dakota Sandstone, Westwater Canyon Member
of the Morrison Formation, and the Cow Springs
Member of the Entrada Sandstone (fig. 2). The
texture and composition of the Dakota Sandstone
vary widely; the unit generally is coarse grained to
fine grained and includes minor amounts of
conglomerate, shale, and coal. Grains of the
Dakota Sandstone are composed primarily of
quartz and are firmly cemented with iron oxide.
The Westwater Canyon Member is one of eight
members of the Morrison Formation found on the
Colorado Plateau (Peterson, 1988). Most members
of the Morrison Formation are mudstone and shale.
The Westwater Canyon Member is a
medium-grained sandstone; minor amounts of
shaley mudstone and stringers of conglomerate are
present locally. The Cow Springs Member of the
Entrada Sandstone is a cross-bedded, fine-grained
sandstone (Peterson, 1988). Grains of the Cow
Springs Member are mostly quartz and occasional
feldspar that are firmly cemented with calcium
carbonate. The underlying Entrada strata are
flat-bedded silty sandstones. The Dakota Sand-

stone is the primary water-bearing unit in the
multiple-aquifer system. Rocks of the D aquifer are
about 700 ft thick in the southeastern part of the
study area and thicken to about 1,300 ft near the
center of the study area before thinning to less than
100 ft to the northwest (fig. 3, B-8').

The D aquifer is separated from the N aquifer
by the Carmel Formation (figs. 2 and 3). The
Carmel Formation is less than 300 ft thick and
consists of weakly cemented mudstone, siltstone,
and sandstone layers. The sandstone layer prima-
rily is found in the southwestern part of the study
area (Harshbarger and others, 1957, fig. 16).
Although the Carmel Formation forms the upper
confining bed of the N aquifer, it is known to yield
water to small springs west of the study area
(Cooley and others, 1969). The water-bearing units
of the Carmel Formation generally are sandstones
and lesser amounts of siltstone. Rocks of the D
aquifer are overlain by the Mancos Shale
throughout the Black Mesa area. The Mancos
Shale is a 500-foot-thick-confining unit of marine
mudstone and gypsum. Recharge to the D aquifer
occurs on the east slopes of the mesa (fig. 3, 4—A4"),
where the aquifer is at high elevations and has the
largest exposure.

Hydrology

The climate of the Black Mesa area is arid to
semiarid. The mean annual precipitation ranges
from about 7 in. near Tuba City to about 18 in. near
Shonto and at the higher elevations of Black Mesa.
Mean annual precipitation and the proportion of
precipitation that falls as snow increases with
clevation in the Black Mesa area (Cooley and
others, 1969). Several large washes on Black Mesa
drain runoff to the southwest and into the Little
Colorado River.

Previous studies have provided valuable infor-
mation on the hydrology of the N-aquifer system.
Water levels (Eychaner, 1983) indicate that the
potentiometric surface is highest near Shonto and
lowest along Moenkopi Wash and near Laguna
Creek. Ground water would thus flow from the
Shonto area generally in a southward direction
under Black Mesa. The flow divides under the
mesa and part of the flow moves westward to
Moenkopi Wash and part moves eastward and

Description of the Black Mesa Area 5
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northeastward toward Laguna Creek. Water levels
indicate that precipitation recharges the N aquifer
primarily in the Shonto area where the Navajo
Sandstone is exposed. Recharge has been assumed
to be about 3 percent of the precipitation in the
outcrop area near Shonto and about 1 percent in
other outcrop areas (Eychaner, 1983).

A numerical model of the Black Mesa
ground-water system was developed by Eychaner
(1983) to improve the understanding of the N
aquifer and to compare possible effects of alterna-
tive pumping scenarios. Improved methods in
simulating ground-water systems and additional
data on the N aquifer were used by Brown and
Eychaner (1988) to update the numerical model.
These models assumed annual recharge to the
system in the Shonto area to be about 4,800 acre-ft
and that leakage from the D aquifer into the N
aquifer was estimated to be 200 acre-ft annually.
The potentiometric surface of the D aquifer in
1964, however, was as much as 600 ft higher than
the surface of the N aquifer (Eychaner, 1983);
therefore, it is possible that leakage from the D
aquifer accounts for a larger percentage of water in
the N aquifer. The Carmel Formation is known to
yield water to springs and generally is between 150
and 250 ft thick in the study area. Although the
leakage rate through the Carmel Formation may be
small, the areal extent of contact between the two
aquifers provides a major pathway for
ground-water flow. An investigation of the D- and
N-aquifer geochemistry by Geotrans, Inc. (1993)
identified data that indicate leakage occurs
between the D and N aquifers.

Since 1972, effects of pumping have been
monitored using several monitor wells (Littin,
1992). Total pumpage from the N aquifer for 1994
was about 7,020 acre-ft (Littin and Monroe, 1995);
about 75 percent of the total pumpage was from the
confined part of the N aquifer. Municipal water use
has increased steadily, and in 1994, municipal use
was 42 percent of the total pumpage. Peabody Coal
Company has pumped water from the confined part
of the N aquifer since 1969. Since 1986, Peabody
Coal Company has pumped about 4,000 acre-ft/yr
from the confined part only. Total pumpage from
the D aquifer is unknown but could be two orders
of magnitude less than pumpage from the N
aquifer because the D aquifer is not used by munic-
ipalities or industry.

Monitoring efforts have shown that changes in
water levels are deviating from predictions of the
numerical model, especially in the Kayenta area
(Littin, 1992) where measured water levels are
declining more than was indicated by the numer-
ical models. These differences could be caused by
pumping rates that are different from those used in
simulations or the inability of the model to simu-
late the complexities of the actual aquifer system
and its response to pumping, or both.

SAMPLE COLLECTION AND
ANALYTICAL METHODS

Ground-water samples were collected from
5 springs and 40 municipal, industrial, and live-
stock wells screened in the N and D aquifers of the
Black Mesa area between March 1993 and August
1995 (see Basic Data section at the end of the
report, tables 8, 9, and 10). Geologic and (or)
drillers’ logs, electric logs, and well-construction
information were reviewed to ensure that wells
were being pumped from a particular aquifer and
that the wells had been sealed from other aquifers.
Production wells are constructed to obtain the
greatest yield of water that is of suitable quality
for the intended uses. Not all production
wells, however, are useful for chemical or
water-level monitoring because these wells
commonly draw water from more than one aquifer
and characteristics of individual aquifers cannot be
easily distinguished.

Ground-Water Sample Collection and
Analyses

All wells were purged before sampling;
temperature, specific conductance, dissolved-
oxygen concentration, and pH were monitored
during purging. Samples were collected after three
well volumes had been purged from the wells or
after field measurements had stabilized, or both
(Radtke and Wilde, in press). Purging commonly
took more than 8 hours because most wells
exceeded 1,000 ft in depth and pumping rates
generally were less than 60 gal/min. Ground-water
samples were collected for analysis of dissolved-
constituent  concentrations; the radioactive

Sample Collection and Analytical Methods 7



isotopes—tritium (*H), carbon-14 ('*C), and
chlorine-36 (*¢Cl); and ratios of the stable isotopes
of carbon ('})C/'?C), oxygen ('*%0/'°0), and
hydrogen (?H/'H) (tables 8, 9, and 10). Samples for
dissolved-constituent analysis were filtered in the
field using a 0.45-micrometer effective pore-size
filter. Concentrated nitric acid was added to
filtered samples for dissolved-metal analysis.
Dissolved alkalinity was measured in the field by
incremental titration using sulfuric acid and by the
fixed end-point method.

The USGS National Water-Quality Laboratory,
Arvada, Colorado, analyzed samples for dissolved-
constituent concentrations. All ion-balance calcu-
lations were within 5 percent; this level of accu-
racy indicated that most major ions were
accurately quantified in the samples. 2H/'H and
180/1¢0 were analyzed at the USGS Isotope Frac-
tionation Project Laboratory, Reston, Virginia, and
3H was analyzed at the USGS Water-Quality Labo-
ratory, Menlo Park, California, and by Dr. H. Gotte
Ostlund at the University of Miami. Samples for
4C and '3C were analyzed at the Radiocarbon
Dating Laboratory, University of Arizona, Tucson.
Samples for **Cl were measured by accelerator-
mass spectrometer at Purdue University’s PRIME
laboratory.

Geochemical Approach and Methods

Geochemical techniques provide an indepen-
dent means of understanding an aquifer system and
can be used to test a conceptual-flow model devel-
oped using hydrologic methods. These techniques
include collection of additional information on the
chemical composition of ground water in aquifers
and use of geochemical-modeling programs to
evaluate conceptual models of geochemical
processes occurring in the aquifers.

Major-ion chemistry data were used to charac-
terize water from the N aquifer and evaluate the
hydraulic connection of the N aquifer with other
water-bearing formations. An earlier study of the
aquifer by Eychaner (1983) noted a small amount
of leakage from the D aquifer into the N aquifer
and that an increase in leakage should appear as an
increase in dissolved-solids concentrations in wells
in the N aquifer. Major-ion chemistry data obtained

in this study made possible an examination of the
extent of leakage between the D and N aquifers.

Isotope data also are useful in determining if
an aquifer is hydraulically connected to other
water-bearing units. Isotopes used here to deter-
mine if isotopic differences exist between the D
and N aquifers and provide additional information
about leakage between the aquifers include the
radioactive isotopes of 3H, *C, and 3°Cl and the
stable isotopes of '!0, ?H, and '>C and "C.
Concentrations of radioactive isotopes (radionu-
clides) are referred to as activities because analyses
measure the energy emissions in a given volume of
sample rather than the mass of radionuclides.
Concentrations of stable isotopes typically are
measured relative to a standard in which the ratios
of two isotopes (for example, 1*C/!C) are known.
Differences from the standard are expressed by
delta notation (3) in parts per thousand (%,,), which
is called per mil. The delta notation is computed
from the equation:

( Rx - Rstd

o =
Rstd

JI,OOO, 1)

delta notation,
o ratio of isotopes measured in
sample, and

ratio of same isotopes in the
standard.

Water that is enriched in lighter isotopes relative to
the standard has negative delta values.

The stable isotopes, '*0 and 2H, are useful in
hydrologic studies because these isotopes are part
of the water molecule. Ratios of '*0/!%0 and ?H/'H
are measured relative to an arbitrary standard
known as standard mean ocean water (SMOW),
and evaporation and condensation are the most
significant processes that change the proportions
of these isotopes (Fritz and Fontes, 1980). Varia-
tions in '830/!°0 and H/'H in ground water reflect
differences in latitude, elevation, and seasonal or
paleoclimatic variations, which are factors that
affect recharge temperature. The ratios of these
isotopes are virtually unaffected by relatively
low-temperature geochemical processes in ground-
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water systems (Muir and Coplen, 1981), such as
occur in the N aquifer.

The ratio '3C/'2C is affected by photosynthesis
and other biological and environmental factors
(Drever, 1988). Ground water acquires a '3C/'?C
value that depends on the isotopic composition of
carbon dioxide in soil from the recharge area and
on reactions between carbonate minerals and
ground water. The ratio '3C/'?C is measured in
relation to a belemnite of the Pedee Formation
(PDB) in South Carolina. The ratios measured in
ground water from the aquifer can be used to iden-
tify biological and depositional environments and
are used to adjust ground-water ages determined
from 'C data.

Radioactive isotopes can be used to calculate
the time since recharged water was isolated from
the atmosphere. Under steady-state flow condi-
tions, lines of equal water age (isochrons) can be
used to estimate flow directions, assuming that
water flows perpendicular to the isochrons.
Ground-water ages can be estimated if the
following are known: (1) the initial radionuclide
activity in the recharge water, (2) the radionuclide
activity in ground water at some time after
recharge has occurred, (3) geochemical processes
occurring within the aquifer that affect the activity
of the radionuclide, and (4) the radionuclide-decay
rate. Estimates of ground-water age are made by
assuming that radionuclide production in the atmo-
sphere is constant and that ground waters from
different aquifers and (or) of different ages do not
mix.

Ground water can have a wide range of age;
therefore, different radionuclides are needed to
estimate ground-water ages. 3H has a half life of
12.3 years (Fritz and Fontes, 1980). Measurable
concentrations of *H indicate that ground water
was recharged since 1953, when large amounts of
3H, 'C, and **Cl were released into the atmosphere
during the testing of nuclear weapons (Michel,
1976; Koide and others, 1982; and Michel, 1989).
The half-life of *°Cl is about 300,000 years, which
makes it suitable for dating in the range of I
million to 60,000 years before present (Coplen,
1993). 36Cl also is useful for recognizing waters
recharged since about 1953. 36Cl, used as a method
of age dating, is measured as a ratio of **Cl atoms
to the total number of chlorine atoms in the sample
(table 10, at the back of the report). In order to

accurately date the 3Cl in the water, however,
in-situ production of 3¢Cl and the elemental
concentrations of the rock units must be known.
36CI/Cl ratios, therefore, were used to qualitatively
evaluate '“C dates and possible mixing of waters
from the D and N aquifers. Analyses from dupli-
cated and triplicated samples collected from nine
wells were comparable, indicating that *$Cl/Cl
ratios were reproducible.

14C has a half life of 5,730 years (Fritz and
Fontes, 1980) and can be used to date dissolved-
inorganic carbon in ground water to about 35,000
years before present. Inorganic carbon enters
ground water from precipitation, by dissolution of
carbon dioxide into recharge in the unsaturated
zone, and by dissolution of carbonate minerals.
Bomb-related '“C also can enter ground water,
which will result in underestimated ground-water
ages if activities are not corrected for this source.
The initial activity of '“C in recharge and the
activity at a point in the flow system must be
known to date the carbon and estimate
ground-water ages. Estimating ages is a two-part
process: (1) definition of this initial '“C activity,
and (2) adjustment of the initial activity for
water-rock reactions that affect the '“C activity of
dissolved-inorganic carbon along the flow path
(Wigley and others, 1978). Many techniques for
correcting '“C activities for water-rock reactions
have been developed (Ingerson and Pearson, 1964;
Tamers, 1975; Fontes and Garnier, 1979; and
Eichinger, 1983), however, it is beyond the scope
of this report to describe these techniques in detail.
Ground-water ages and traveltimes can be calcu-
lated using the corrected '“C activities and the
radioactive-decay equation:

A
Al < 5,17;oln(A nd J o
n meas
where
At = age or traveltime, in year,
In = natural logarithm,

A,; = initial "C activity, corrected for
reactions assuming no radioactive
decay, and

meas =~ mMmeasured '“C activity at a point

downgradient from the initial well.
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CHEMICAL EVIDENCE OF LEAKAGE
IN THE N AQUIFER

Ratios of dissolved ions, dissolved-ion and
dissolved-gas concentrations, 8'3C data, *¢Cl data,
and *H data indicate that water in the D aquifer
could be leaking into the confined part of the N
aquifer in the southeastern part of Black Mesa. On
the basis of the available data, the boundary
between the leaking and nonleaking zones was
drawn as a line that extends in a roughly northeast-
ward to southwestward direction from Rough Rock
to Second Mesa (fig. 4). Additional data are needed
to determine whether the leakage boundary is a
gradual ftransition, an abrupt change in
ground-water chemistry, or if isolated areas of
leakage occur in the confined part of the aquifer.
Leakage could be occurring northwest of this
boundary, but the amount of leakage is too small to
significantly change the chemistry of water in the
N aquifer. For a constant leakage rate, the propor-
tion of water from the D aquifer into the N aquifer
is larger to the south than to the north of the
boundary because the N aquifer is thinner to the
south. Constituent concentrations and ion ratios in
the D aquifer are varied, few data exist to charac-
terize the spatial distribution of concentrations and
ratios, and recharge areas and flow directions are
not well defined. Additional data are needed to
have meaningful estimates of the amount of
leakage from the D aquifer into the N aquifer.

Ratios of anions in ground water north of the
leakage boundary are different from ratios of
anions in ground water south of the leakage
boundary (fig. 54 and 5B). Thirty-eight ground-
water samples collected north of the leakage
boundary have calcium sodium bicarbonate
compositions. The proportions of sodium and
bicarbonate increase along flow paths from the
recharge area into the confined aquifer (fig. 5A).
Nineteen ground-water samples collected south of
the leakage boundary have sodium compositions
with varying proportions of bicarbonate, sulfate,
and chloride. Nine samples from the D aquifer also
have sodium compositions and proportions of
anions similar to ground water from the N aquifer
south of the leakage boundary, which suggests that
water from the D aquifer is affecting the major ion

chemistry of water in this part of the N aquifer
(fig. 5C).

A one-way analysis of variance using Tukey’s
multiple-comparison test and a 5-percent level of
significance was used to compare ground-water
samples collected north and south of the leakage
boundary and from the D aquifer. Concentrations
of dissolved boron, chloride, and fluoride are
significantly larger south of the leakage boundary
than concentrations to the north (fig. 6), and 8'*C
values for ground water south of the boundary
generally are heavier than those for ground water
north of the boundary. 8'*C values, however, were
not significantly different at a level of 5 percent.
Concentrations of boron and chloride were not
significantly different between samples south of
the leakage boundary and the D aquifer.

Boron-to-alkalinity ratios south of the leakage
boundary were significantly larger than ratios to
the north, and ratios were nearly constant for most
ground-water samples north of the leakage
boundary (fig. 7). South of the leakage boundary,
these ratios lacked a linear trend in comparison
with those north of the boundary. The constant
ratio indicates that dissolution of aquifer material
controls the concentrations of boron and alkalinity
north of the leakage boundary. The large ratios and
lack of linearity indicate that one or more sources
of boron are leaking into the southern part of the
confined part of the N aquifer. Samples collected
from the Dakota Sandstone and Entrada Formation
of the D aquifer had similar concentrations of
boron and boron-to-alkalinity ratios as samples
south of the leakage boundary. These similarities
indicate that these formations could be the source
of leakage.

For most of the confined part of the N aquifer,
dissolved-oxygen concentration and the partial
pressure of carbon dioxide are significantly corre-
lated (rank correlation of 0.76), and each gas
significantly correlates with water temperature
(-0.65 and -0.67, respectively) and well depth
(-0.76 and -0.74, respectively; fig. 8). The rank
correlation refers to the Spearman rank correlation,
which correlates two variables using their relative
ranking rather than using absolute values and gives
outliers less weight in the correlation. Water
temperature was positively correlated with well
depth (rank correlation of 0.90; fig. 8) and
increases about 5°C/1,000 ft. This slope indicates
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> COMPOSITION ALONG
——=1»"  FLOW PATH

CALCIUM CHLORIDE + FLUORIDE + (NITRITE + NITRATE)
PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER

CALCIUM CHLORIDE + FLUORIDE + (NIiTRITE + NITRATE)
PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER

Figure 5. Relative compositions of ground-water samples collected from the N and D aquifers, Black Mesa
area, Arizona, 1993-95. A, N aquifer north of leakage boundary. B, N aquifer south of leakage boundary. C, D

aquifer.
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CALCIUM
PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER

Figure 5. Continued.

have unusually large dissolved-oxygen concentra-
tions, which could be caused by aeration in the
wells.

36C1/Cl was measured at 10 wells—-8 samples
were from the N aquifer and 2 were from the D
aquifer. 3*CI/Cl values in the D aquifer are small
(127x10°'5 and 10x10-'5; table 10 at the end of the
report) compared with calculated 3¢CI/Cl values of
about 650x10°'* in precipitation and dry fallout
near the study area (Bentley and Davis, 1982). The
small values may indicate that 3¢Cl decay has
occurred and that chloride in the D aquifer is older
than 100,000 years or are related to input of old
chloride from overlying evaporite deposits of the
Mancos Shale (Stanley N. Davis, professor,
University of Arizona, oral commun., 1996).

%CI/Cl values from Rocky Ridge, Kayenta
NTUA4, and Peabody #9 were 840x10°'5,
882x10°'°, and 653x10°'5, respectively, which indi-
cates that leakage from the overlying D aquifer has
not affected °Cl values and that decay of 3*Cl has
not occurred; therefore, the chloride in water from
these sites is less than 100,000 years old. **Cl/Cl

CHLORIDE + FLUORIDE + (NITRITE + NITRATE)

values from Kykotsmovi PM2, Forest Lake, Rough
Rock, and Pifion wells of 64x10°'%, 27x10°'3,
2x10°5, and 308x107'5, respectively, indicate that
the 3°Cl in the water has decayed or been diluted
with old chloride from water in the overlying D
aquifer. The small value is indicative of chloride
with an age of more than 100,000 years (Stanley N.
Davis, professor, University of Arizona, oral
commun., 1996). A 3¢Cl/Cl value of 16,200x10°'
for Keams Canyon PM2 indicates contamination
from nuclear detonation or *Cl accumulation from
an uranium-rich formation. The large value at
Keams Canyon PM2 is somewhat problematic
because the well is screened in a 200-foot interval
of the Navajo Sandstone.

CARBONATE CHEMISTRY

Understanding the carbonate chemistry of the
N aquifer is necessary to accurately estimate
ground-water ages. This section only focuses on
the carbonate chemistry of the N aquifer north of

Carbonate Chemistry 13
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Figure 6. Ranges in selected constituent concentrations and §13C values relative to the N-aquifer leakage
boundary, Black Mesa area, Arizona (see figs. 1 and 4; tables 8, 9, and 10).

the leakage boundary. '“C activities south of the
leakage boundary cannot be corrected without
additional data on the D aquifer. The N aquifer is
an unconfined, open system around Shonto where
precipitation recharges the aquifer directly through
the exposed Navajo Sandstone. The open system is
indicated by the high partial pressure of carbon
dioxide (Pco,) in ground water (Log,O(PCOZ) =
-2.85) and the '“C activity of carbonates in two soil
samples collected during the study in the uncon-
fined part of the aquifer near Tuba City and Red
Lake, which had 45 and 97 percent modern carbon
(pmc), respectively.

Reactions change the chemistry of ground
water as it flows from the recharge area around
Shonto into the confined parts of the N aquifer
(fig. 9). Calcium and magnesium concentrations
are about 45 and 6 mg/L, respectively, around
Shonto and decrease to less than 10 and 1 mg/L,
respectively, in the confined part of the aquifer.
Alkalinity and sodium concentrations increase by
several factors with distance from Shonto. These
trends reflect water-rock interactions that change
the ionic composition of water from mostly
calcium and bicarbonate in the recharge area to
mostly sodium and bicarbonate in the confined part
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Figure 7. Boron concentration as a function of alkalinity relative to the N-aquifer leakage boundary, Black Mesa area,

Arizona.

of the aquifer. These reactions also could change
the C activity of dissolved inorganic carbon.

Precipitation becomes acidic by dissolving
carbon dioxide and forming carbonic acid as it
flows through the unsaturated zone. The dissolu-
tion of carbon dioxide in water and the dissociation
of carbonic acid (H,CO3) into hydrogen and bicar-
bonate can be represented by the equation:

+ -
CO,+H,0 = H,CO, = H +HCO,. (3)

The acidic recharge can dissolve carbonate
minerals from aquifer material. Previous investiga-
tions of the mineralogy of the N aquifer (Harsh-
barger and others, 1957; Geotrans, Inc., 1993)

indicate that calcite is the only carbonate mineral
present; calcite (CaCQO;) also can have small
amounts of magnesium. Calcite reacts with
hydrogen ions from carbonic acid and releases
calcium and bicarbonate ions, which would explain
the high concentration of calcium at Shonto:

H™ +CaCO, = Ca’' +HCO3. 4)

The initial "*C activity and '*C value of ground
water that flows into the confined part of the
aquifer, therefore, is mostly due to the carbon from
carbon dioxide and calcite in the unsaturated zone.
Ground water is near saturation with calcite at

Carbonate Chemistry 15
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Figure 8. Dissolved-oxygen concentration and water temperature as functions of well depth, Black Mesa area,

Arizona.

Shonto and in most of the confined part of the
aquifer (table 1). As ground water flows south into
the confined part of the aquifer, reactions with
other minerals cause calcite to precipitate, which
results in a decrease in calcium concentrations.

Units of the N aquifer are composed mostly of
quartz with minor amounts of primary silicates and
secondary minerals, which are coated on the quartz
and primary silicates (Harshbarger and others,

1957; Geotrans, Inc., 1993). Silicate hydrolysis
and exchange of calcium for sodium on clays are
reactions that could affect calcite equilibrium.
Plagioclase is a solid solution of sodium (albite)
and calcium (anorthite) feldspars and is a reactive
primary silicate. An example reaction of silicate
hydrolysis for an intermediate member in the solid
solution series is:
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Table 1. Saturation indices of ground water from the N aquifer, Black Mesa area, Arizona

Saturation index

Well Calcite Dolomite Gypsum Chalcedony Log(Pcoz)
Shonto PM4 ......cocevvveiiiriaenee 0.072 -0.55 -2.50 0.085 -2.85
Red Lake NTUAL ................... .082 -27 -3.59 -.030 -3.48
Red Lake PM1I ..o -077 -48 -3.62 -.092 -3.31
Tuba City #3.....c.oveeicreree -.26 -1.03 -3.01 -.088 -2.97
Peabody #6....cccocoevervrveiirns -27 -2.22 -3.79 -.031 -4.41
Peabody #9.....c..ccoveerrerecrnennne -013 -1.46 -4.18 -.056 -3.84
Kayenta NTUA4 ........cccooenen. 35 31 -3.25 -.092 -4.06
Chilchinbito NTUAT .............. -.026 -94 -5.00 - 11 -4.28
Dennehotso PM2..................... .60 .82 -3.12 -.063 -4.05
Forest Lake.....ccco.ccoeerurennnnnn. -.001 -.59 343 -.10 -4.15
Rough Rock ..ccovvvricrvirienennnn, - 11 -.80 -3.14 -.10 -3.44
Kitsillie..ooucrevemreieeererccannes .046 -40 -2.38 -.18 -3.44
PifON c.covveee e 12 -1.03 -5.25 -36 -5.27
Hard Rocks........coocoemiicnnnenns -19 -1.04 -3.71 -.029 -3.94
Rocky Ridge....cccooeevirvennnn. =37 -1.64 -4.98 -1 -4.50
2nd Mesa PM2 ..., -12 -1.08 -4.67 -.051 -4.13
Kykotsmovi PM2.......ccccoevennn. -.16 -1.30 -4.85 -.054 -4.62
Hopi HS-1 .o 26 .24 -2.87 -.19 -3.57
Hopi HS-2 oo -.19 -74 -3.18 =21 -3.09
Polacca ...c.cocevnvivcniiee .022 -.52 -4.41 -.18 -4.08
Keams Canyon PM2 ............... -.045 -.50 -4.07 -17 -3.70
Keams Canyon PM3 ............... -.048 -48 -4.30 =22 -3.83
Oraibi ..ccevvveerrrcerircee e -24 -1.33 -4.98 -.15 -4.94
Hotevilla......ccovemrrrireencrnnnnas -.020 -1.16 -4.83 -13 -4.70
Burro Spring......cc.ccovvevvevenieneen 92 96 -1.85 -.094 -3.18
Whisky Spring ........cccccveeenne 46 45 -1.31 .129 -3.14
Moenkopi School Spring ........ -46 -1.37 -2.41 .026 -2.43
Sand Spring.......cceveenvrmnnreennn. -43 -1.57 -1.99 -.035 -2.47
Burro Corn Spring Well .......... 22 -.96 -2.61 -26 -3.31
Rock Ledge Spring........co...... 44 27 -42 .14 -2.77
Peabody #7......ccoveccrvcinnennee -1.48 -5.17 -3.44 .06 -2.12
Peabody #2......cccocoecviineniannns .38 -1.16 -3.33 .02 -4.01
Shonto .....c.oeveevcinereiencienae 01 -1.28 -2.44 A1 -2.75
Kayenta PM2........coeveinnnnnn. .26 -.647 -1.80 .10 -3.05
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1.25CO, + Na, (Ca ,Al, ,Si

1451605 + 2.69H,0 =

0.18AlL,Si,0

251,05 (OH), +

)

0.33 . +
0.22Ca "~ Al ¢, Si; 330,, (OH), +0.6Na +

0.32Ca”" + 0.63H,Si0, + 1.25HCO,; .

The calcium and bicarbonate produced from
this reaction would cause waters that are saturated,
such as ground water near Shonto, to be supersatu-
rated with calcite. Calcite should precipitate as
ground water flows into the confined part of the
aquifer, as indicated by the saturation indices and
decrease in calcium concentrations. Precipitation
of calcite, however, would not affect '“C activities
unless isotopic fractionation occurs between calcite
and ground water.

Hydrolysis of plagioclase feldspars produces
an excess amount of bicarbonate compared to
calcium. As calcite precipitates, the ground water
will increase in alkalinity and sodium concentra-
tions and decrease in calcium concentrations, as
observed in the N aquifer (fig. 9). The ratio of

sodium to alkalinity (Na/Alk) in ground water
where silicate hydrolysis is the primary reaction is
determined by the stoichiometry of equation 5 and,
for this example, is about 0.5. The ratio Na/Alk in
the northern part of the N aquifer is about 1
(fig. 10), which indicates other reactions could be
occurring. Wickham (1992) concluded that cation
exchange is another important reaction in the N
aquifer:

Clay—2Na' +Ca’" = Clay—Ca’" +2Na". (6)

Exchange of calcium for sodium on clays will
increase sodium concentrations and the Na/Alk
ratio, decrease calcium concentrations, and
decrease the saturation of calcite. Cation exchange
could explain why some ground water in the
confined part of the N aquifer is slightly undersatu-
rated with calcite. Calcite could be dissolving
along certain flow paths where cation exchange is
occurring, which would affect the '“C activity of
dissolved inorganic carbon.

NETPATH (Plummer and others, 1994) was
used to determine which combinations of mineral
reactions are possible along flow paths in the N
aquifer north of the leakage boundary. NETPATH
determines the net mass transfer between specified
phases and the initial water to obtain the chemistry
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Figure 10. Sodium as a function of alkalinity north of the leakage boundary, Black Mesa area, Arizona.
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of water at a downgradient site. 1sotopic composi-
tion of minerals and gases also can be used to
check the validity of reaction models by comparing
isotopic values computed from the reaction model
with the observed values. Rainwater (Hem, 1985,
p. 36) was reacted with phases to determine how
water chemistry at Shonto and Tuba City evolves;
Shonto PM4 was used as the upgradient well to
calculate reaction models for flow paths from the
recharge area into the confined part of the N
aquifer.

Phases used to estimate the net-mass transfer
along flow paths (table 2) were included on the
basis of previous studies of the N-aquifer miner-
alogy (Harshbarger and others, 1957; Geotrans,
Inc., 1993). Possible weathering products of these
minerals (Drever, 1988) were added to maintain
mass balance, but are not important in estimating
ground-water ages because calcite and carbon
dioxide are the only phases that could affect the
carbonate chemistry and 'C activities. Although
aluminum was not analyzed in water samples, it
was constrained at 10 ug/L in all mass-balance
calculations to prevent unrealistic concentrations
from occurring. Carbon, silica, calcium, magne-
sium, sodium, and potassium also were constrained
by specifying their upgradient and downgradient
concentrations. Sulfur and chloride were not
constrained for reaction models between Shonto
and the confined aquifer because sulfur- and chlo-
ride-bearing minerals have not been found in the N
aquifer; evaporative concentration, however,
could cause the precipitation of these minerals in
the unsaturated zone of the recharge area. Concen-
trations of sulfur and chloride in the confined
aquifer north of the leakage boundary are small,
and ground waters are undersaturated with sulfate
and chloride minerals. NETPATH could calculate
precipitation of sulfur and chloride minerals
because of these small differences in sulfate and

chloride concentrations, but precipitation is not
thermodynamically possible. Differences in
concentration of sulfur and chloride are likely due
to variations in the composition of recharge.
Solid-phase samples collected during this study
and by Geotrans, Inc. (1993) indicate the mean
8'3C of calcite in the N aquifer is about -3.2%,.
3'3C of carbon dioxide in soils from southeastern
Arizona is about -19.9%_, today (Robertson, 1992)
and is similar to values from other arid areas of the
West (Parada, 1981, Wood and Petraitis, 1984;
Thorstenson and others, 1990). This value was
assumed to be the mean 8'3C for carbon dioxide.
Calculated 8'3C values from reaction models were
compared with observed values to determine if the
models were plausible.

No unique reaction models were found that can
account for the difference in chemistry along any
of the flow paths. Only certain models, however,
resulted in a 8'C value similar to the observed
value at the downgradient well (table 3). These
reaction models are variations of similar combina-
tions of reactions because only two carbonaceous
phases can affect carbon-isotope values; reaction
models that calculated 8'*C values similar to the
observed value also calculated similar mass
balances of carbonaceous phases. Positive values
of moles reacted (table 3) indicate dissolution and
negative values indicate precipitation.

GROUND-WATER AGES

NETPATH (Plummer and others, 1994) also
was used to estimate ground-water ages and
traveltimes along flow paths. NETPATH has
several adjustment methods for calculating the
initial 'C activity, adjusts '*C activities for
water-rock reactions between the initial and final
well in a flow path, and estimates ground-water

Table 2. Phases used to model evolution of ground-water chemistry, Black Mesa area, Arizona

[Ca, calcium; Na, sodium; K, potassium; Mg, magnesium]

Albite Anorthite Calcite

Gibbsite Illite
Silica

Na-montmorillonite Potassium feldspar

K-montmorillonite

Carbon dioxide Ca-Na exchange

Kaolinite Mg-Na exchange
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The 'C activity measured in ground water at
Shonto (59.6 pmc) was used as the initial activity
of water that enters the confined part of the aquifer
because sensitivity analysis indicated that bias due
to bomb-related '“C is negligible. Traveltimes for
ground water that flows from Shonto to wells in the
confined part of the aquifer were estimated by
correcting the measured '*C activity at Shonto for
water-rock reactions, then using this corrected
value and measured '*C activities in the confined
part of the aquifer directly in equation 2. Most of
the ground water in the confined part of the N
aquifer is saturated with calcite, and reaction
models indicate precipitation of calcite is likely
along flow paths. Precipitation of calcite would not
affect '*C activities and estimated ground-water
ages, however, isotopic fractionation can occur
during precipitation (Turner, 1982). Plummer and
others (1994) note that isotopic fractionation
should only be considered when evidence indicates
fractionation is occurring. Isotopic fractionation
was not included because of the lack of evidence.

Although reaction models were not unique,
estimated traveltimes from Shonto to wells in the
confined aquifer were found to be robust because
only two carbonaceous phases can affect
carbon-isotope values; reaction models that
resulted in a 8'°C value similar to the observed
value (table 3) also calculated similar traveltimes.
Few reactions affect the carbonate chemistry of the
N aquifer north of the leakage boundary; therefore,
differences in 'C activities are due mostly to
radioactive decay and not to reactions with carbon-
aceous material.

A mean age of 2,700 years was used for
ground water in the Shonto area; the uncertainty in

this age is about 2,000 years. Mean ages in the
confined part of the aquifer are the sum of travel-
times and the mean age of ground water at Shonto
(table 6). Ages in the confined part of the N aquifer
were consistent with 3*Cl/Cl ratios, which indi-
cated an age of less than 100,000 years. All ages
are given to two significant figures because of the
large uncertainties. The uncertainty in traveltimes
from Shonto to wells in the confined part of the
aquifer was assumed to be 1,000 years because,
relative to estimates of ground-water age at
Shonto, fewer factors can affect traveltime esti-
mates. Uncertainty of ages in the confined part of
the aquifer was estimated as the sum of uncertainty
in ground-water age at Shonto and uncertainty in
traveltimes for a total uncertainty of 3,000 years.

Ground water at Red Lake NTUA1l and
Kayenta NTUA4 had not mixed with water from
another source, but *H was detected at Red Lake
NTUA1 and heavy 80 and 8*H values were
measured at Kayenta NTUA4. The *H and heavy
8'80 and &°H values indicated that ground water at
these wells had mixed with younger water of the N
aquifer. The estimates for Red Lake NTUA1 and
Kayenta NTUAA4, therefore, represent minimum
ages (table 6).

GROUND-WATER FLOW
DIRECTIONS

H data indicate that rain and snowmelt
recharge the N aquifer along the periphery of Black
Mesa where the Navajo Sandstone is exposed and
that recent recharge to the east, west, and south of
Black Mesa mixes with older ground water that

Table 6. Estimated ground-water ages at wells in the Black Mesa area, Arizona

Well name Mgan age,’ Uqcertainty, Well name M'ean age,’ Ur)cenainty,

in years in years in years inyears
Shonto PM4................... 2,700 2,000 Tuba City #3 2,500 2,000
Red Lake NTUAIZ........ 9,800 3,000 Peabody #6 .........cce.... 17,400 3,000
Peabody #9 ........c.ccec.. 20,000 3,000 Kayenta NTUA4Z........ 29,000 3,000
Chilchinbito NTUAL ..... 34,000 3,000 Forest Lake 34,000 3,000
Pifion....cccoovvecvnreieinenn 35,000 3,000 Hard Rocks 28,000 3,000
Rocky Ridge.................. 28,000 3,000

IRepresents traveltime from Shonto plus 2,700 years (does not apply to Shonto or Tuba City).

2Represents a minimum age because isotope data indicate ground water at these wells had mixed with younger water of the N aquifer.
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discharges from the confined part of the aquifer
and flows away from Black Mesa. Ground water
younger than about 45 years occurs only in the
unconfined parts of the N aquifer or in the margins
of the confined part of the aquifer (near Red Lake
and Rough Rock). *H activities were greater than
the minimum detection level in 4 of 12 samples
from the N aquifer; the activities in the four
samples ranged from 0.4 to 1.1 pCi/L. Current
recharge rates and ground-water velocities are too
small for *H to be detected in all but the margins of
the confined part of the N aquifer. Isochrons
(fig. 11) and equipotentials (Eychaner, 1983; fig. 3)
indicate that recharge to the confined part of the
aquifer occurs north of Black Mesa.

Ground-water ages, estimated at 11 wells,
increase gradually from a few thousand years near
Shonto to about 35,000 years in the confined part
of the aquifer in the south-central and eastern parts
of Black Mesa (fig. 11). A sufficient number of
wells were sampled in the central and eastern areas
of the confined part of the aquifer to interpolate
isochrons. The isochron patterns are similar to
equipotentials in these areas (Eychaner, 1983).
Data, however, are sparse in the area of Moenkopi
Wash. Isochron patterns around Moenkopi Wash
were extrapolated on the basis of ground-water
levels (Eychaner, 1983). Although '*C data were
collected from wells on the Hopi Indian Reserva-
tion and at Rough Rock, ground-water ages were
not estimated because chemical data indicated that
ground water had mixed with ground water from
another source. Data from Hard Rocks and Forest
Lake also could be affected by mixing with this
source, and water at Red Lake and Kayenta
NTUA4 has mixed with younger water from the N
aquifer. Improved estimates of ages at Red Lake
and Kayenta NTUA4 could change the locations of
the 10,000~ and 30,000-year isochrons. The esti-
mated ages of ground water at Hard Rocks and
Forest Lake are shown in figure 11, but were not
used in locating the 30,000-year isochron. Addi-
tional data are needed to accurately estimate
ground-water ages at these wells.

Most recharge occurs in an area near Shonto
where the Navajo Sandstone is exposed at eleva-
tions above 6,300 ft (fig. 3, B-B'; and fig. 4).
Ground water flows in a south-southeastward
direction from the recharge area and into the
confined part of the aquifer underneath the mesa.

Isochrons and equipotentials (Eychaner, 1983)
indicate that ground-water flow paths diverge to
the northeast and southwest in the confined part of
the aquifer, which results in a ground-water divide.
The axis of the ground-water divide was approxi-
mated by a straight line that is perpendicular to all
of the isochrons. The discontinuity of the Navajo
Sandstone could force ground water to diverge.
Ground water discharges from the confined part of
the aquifer into Laguna Creek and Moenkopi Wash
and from springs near the contact between the
Kayenta and Chinle Formations southwest of
Kykotsmovi and southeast of Rough Rock.

From isochrons (fig. 11), cross sections (fig. 3),
and an equal-thickness map of the N aquifer
(Eychaner, 1983, fig. 4), it was estimated that about
94 percent of the water in the confined part of the
aquifer is older than 10,000 years (table 7). 6'%0
and 8°H data indicate that this older water was
recharged during glacial periods (at least 10,000
years before present) when the climate was much
colder than today. Mean values of 8'*0 and 8°H in
35 ground-water samples from the confined part of
the aquifer are 3.3 and 20.1°/, lighter, respectively,
than mean values in 11 samples from the uncon-
fined part of the aquifer (fig. 124). The heavier
composition of recent recharge may be due, at least
in part, to climatic warming since the last glacial
period. The observed average shift of about 3.3%,
in 8'*0 indicates that glacial period temperatures
were about 5.9°C cooler than present temperatures
(L. Niel Plummer, hydrologist, U.S. Geological
Survey, written commun., 1996). In addition, other
paleoclimate studies have found a 5°C shift in
recharge temperature for glacial-age water from
the Southwest (Anderson, 1993). The shift to
precipitation that is enriched with heavier isotopes
is demonstrated by the changes in 6'%0 and &°H
values along the ground-water flow path from
Shonto to Kitsillie (fig. 12B).

The relation between 880 and 82H in meteoric
water is represented by:

§H = 85'°0+d , (7

where d is the deuterium-excess parameter. Craig
(1961) found that the global mean value of d for
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Figure 12. Oxygen and hydrogen isotopes in ground water, Black Mesa area, Arizona. A, Relation between §2H
and 8180 composition. B, Relation between §2H and distance from Shonto, Arizona.

under temperate conditions without intense evapo-

ration.

The heavy isotopic composition of water from
the unconfined part of the aquifer and deviation of
the slope from the global meteoric water line are
due to the high evaporation rates of the current
semiarid and arid climate (Gat, 1981). One sample

from the confined part of the aquifer, at Kayenta
PM2, has a heavy isotopic composition similar to
that of samples from the unconfined part of the
aquifer. The similarity suggests that this well is
capturing ground water from the unconfined part of
the N aquifer that had been recently recharged.
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RECHARGE RATES AND
HYDRAULIC CONDUCTIVITY

The small percentage of water younger than
10,000 years in the confined part of the aquifer
(fig. 11) and 8'30 and 8°H data (fig. 12) indicate
that recharge is occurring at a lower rate than
during the last glacial period. Changes in recharge
rates owing to climate change were estimated from
the volume of water stored in the aquifer between
consecutive isochrons (table 7). The volume of
water in storage was estimated from the area
between isochrons, average aquifer thickness
(fig. 11, this report; Eychaner, 1983, fig. 4), and
effective porosity. Ranges in recharge rates were
estimated by using effective porosities between
0.25 and 0.35, which is the range in 24 samples
from the Navajo Sandstone (Cooley and others,
1969, p. A47). Porosity measured in five samples
of the Navajo Sandstone (Geotrans, Inc., 1993) had
a similar range and did not change significantly
with increasing confining stress. The estimation of
recharge rates depends on the amount of data avail-
able to interpolate isochrons, and few data exist to
control the position of the 10,000-year isochron.
The age of ground water at Shonto was assumed to
be the youngest water in the confined part of the
aquifer and was used to estimate average annual
recharge during the last 10,000 years.

Estimates of average annual recharge in the
northwestern part of the study area during the
glacial periods was about four times the average
annual rate of the past 10,000 years (table 7).
Although uncertainties exist in the estimated
values of recharge rate, the greater recharge rate for
the glacial periods is well outside the level of
uncertainty for the recharge calculation and coin-
cides with known climatic changes. A wetter
climate and corresponding higher recharge rates in
the southwestern United States have been hypothe-
sized on the basis of numerous paleoclimate
studies (see for example, Galloway, 1970; Van
Devender, 1977; Brakenridge, 1978; Van Devender
and Spaulding, 1979; Wells, 1979; Van Devender,
1990; and Anderson, 1993). Eychaner (1983)
assumed annual recharge to be about 4,800 acre-ft
for the Shonto area, which is more than the
maximum value of 3,500 acre-ft for the period
10,000 to 2,700 years ago determined in this study.
The estimated annual recharge rate for the period
10,000 to 2,700 years ago may be underestimated
because of the unknown age of the ground water at
the boundary between unconfined and confined
ground-water conditions. This study assumed a
ground-water age of 2,700 years at the boundary
on the basis of the ground-water age estimated at
the Shonto well, which is 6 mi from the boundary.
A ground-water age at the boundary of about 5,500
years would result in an estimated recharge rate

Table 7. Estimated ranges in recharge rates for ground water of different ages in the confined part of the N aquifer,

Black Mesa area, Arizona

Average Recharge rate, in acre-feet per year
Average volume of -
Age range Area, thickness of ground water in Effective porosity
of ground water, in square aquifer, storage, in
in years before present miles in feet' acre-feet? 0.25 0.3 0.35
2,700-10,000 104 1,100 22,000,000 2,500 3,000 3,500
10,000-15,000 219 1,000 40,700,000 6,800 8,100 9,500
15,000-20,000 234 833 37,400,000 6,200 7,500 8,700
20,000-25,000 347 750 50,000,000 8,300 10,000 11,700
25,000-30,000 601 600 69,200,000 11,500 13,800 16,200
Greater than 30,000 1,929 200 74,100,000
Totals 3,434 293,400,000

!From Eychaner (1983); and figure 3.

2A porosity of 0.3 was used in estimating average volume in storage.
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equivalent to that estimated by Eychaner (1983).
Although estimates are approximate and average
annual recharge rates for this period may not be
equivalent to current recharge rates, the actual
recharge in the Shonto area could be less than what
Eychaner (1983) assumed. Given the uncertainties
of the ground-water age at the boundary, the loca-
tion of the 10,000-year isochron, and thickness and
porosity of the aquifer, it is not certain that
recharge estimates for the past 10,000 years differ
from those of earlier studies. A lower actual
recharge rate than was used in numerical models,
however, could explain the differences between
calculated and observed water-level declines in the
Kayenta area (Littin, 1992). Differences in rates for
25,000 to 10,000 years are not significant for the
accuracy of this estimation technique.

Total volume of ground water in the saturated
N aquifer is estimated to be about 293 million
acre-ft (table 6). Eychaner (1983, p. 11) conserva-
tively estimated storage in the N aquifer to be
about 180 million acre-ft. The difference between
these estimates is due, at least in part, to the use of
a specific yield of 0.10 by Eychaner and a porosity
of 0.3 in this report.

Hydraulic-conductivity values were estimated
from average linear velocity (¢;), effective
porosity, and from Darcy’s Law (equation 8),
which describes flow through a porous medium.

g, = Kx1, @®)

where

q, = specific discharge,
K = horizontal-hydraulic

conductivity, and

1 = hydraulic gradient.

The specific discharge is related to the average
linear velocity by:

qd; = 4 *n, &)

where

n = effective porosity.

Average linear velocities were estimated from
ground-water ages by dividing the distance along
northeast and southwest flow paths by the differ-
ence in age between the isochrons. The average
linear velocity does not describe the actual velocity
because a water molecule travels along a tortuous
path through an aquifer. Average linear velocities
along the northeast and southwest flow paths are
about 5.4 and 7.3 ft/yr, respectively. Hydraulic
gradients estimated from the water-level map of
1964 (Eychaner, 1983) are 0.0038 for the northeast
flow path and 0.0043 for the southwest flow path
(fig. 4). Hydraulic conductivity of the N aquifer
was calculated by rearranging equation 8 and
substituting equation 9 for g, so that

K =gq.xn/l. (10)

Using effective porosities from 0.25 to 0.35,
hydraulic conductivities varied from 0.95 ft/d for
the northeast flow path to 1.16 ft/d for the south-
west flow path. These values are similar to
hydraulic-conductivity values calculated from
more than 40 aquifer tests, which ranged from 0.05
to 2.1 ft/d and averaged 0.65 ft/d (Eychaner, 1983).
A hydraulic conductivity of 0.65 ft/d was used for
most of the study area in the numerical models
developed for the Black Mesa area (Eychaner,
1983; Brown and Eychaner, 1988).

SUMMARY

The Black Mesa area in Arizona, home of The
Navajo Nation and Hopi Tribe, is an arid to semi-
arid region with sparse water supplies. Most of the
water demands are met by pumping from the N
aquifer, and increasing pumpage has raised
concerns about the adequacy of the N aquifer to
meet tribal and industrial needs without causing
adverse effects on the water resources of the
region. Geochemical techniques were used as an
independent means of improving the conceptual-
flow model in the N aquifer and estimating
recharge rates and hydraulic conductivities.

Dissolved-ion and dissolved-gas concentra-
tions; ratios of dissolved ions; and 3H, 36Cl, and 1*C
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data indicate that water from the D aquifer may be
leaking into the southeastern part of the confined
part of the N aquifer. The boundary between the
leaking and nonleaking zones is defined roughly by
a line from Rough Rock to Second Mesa and sepa-
rates ground waters that have significantly different
chemistries. Few data exist on the chemistry of the
ground water in the D aquifer; therefore, the
amount of leakage cannot be quantified.

Estimated ground-water ages increase gradu-
ally from recent age in the recharge area near
Shonto to at least 35,000 years old in the confined
part of the aquifer in the south-central and eastern
parts of Black Mesa. Ground water flows
south-southeastward from the recharge area and
into the confined part of the aquifer underneath the
mesa. A ground-water divide results as ground
water flows either northeastward or southwestward
in the confined part of the aquifer. Ground water
discharges from the confined part of the aquifer
into Laguna Creek and Moenkopi Wash and from
springs southwest of Kykotsmovi and southeast of
Rough Rock. Recent recharge along the periphery
of Black Mesa mixes with older ground water that
discharges from the confined part of the aquifer
and flows away from Black Mesa.

Ground-water ages and 8'30 and 8°H data indi-
cate that more than 90 percent of the water in the
confined part of the aquifer is older than
10,000 years and was recharged during glacial
periods. Estimates of average annual recharge in
the northwestern part of the study area during the
glacial periods was about four times the average
annual rate of the past 10,000 years. Recent
(2,700-10,000 years before present) recharge rates
are estimated to be between 2,500 and 3,500
acre-ft/yr in the Shonto area. Estimated hydraulic
conductivities were 0.95 and 1.16 ft/d for the
northeast and southwest flow paths, respectively.
These values are within the range of hydraulic
conductivities calculated from aquifer tests, which
ranged from 0.05 to 2.1 ft/d and averaged 0.65 ft/d.
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42 Geochemical Analyses—Ground-Water Ages, Recharge Rates, Hydraulic Conductivity, N Aquifer, Black Mesa, AZ



