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Full Equations (FEQ) Model for the Solution of the Full,
Dynamic Equations of Motion for One-Dimensional
Unsteady Flow in Open Channels and Through Control
Structures

By Delbert D. Franz and Charles S. Melching

Abstract

The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations
of motion for one-dimensional unsteady flow in open channels and through control structures. A stream
system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the
stream system for which complete information on flow and depth are not required (dummy branches),
and level-pool reservoirs. These components are connected by special features; that is, hydraulic control
structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and
pumps. The principles of conservation of mass and conservation of momentum are used to calculate the
flow and depth throughout the stream system resulting from known initial and boundary conditions by
means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic
characteristics of (1) branches including top width, area, first moment of area with respect to the water
surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater
and (or) tail water elevations, including the operation of variable-geometry structures) are stored in func-
tion tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables
containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or
outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs,
and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution
scheme for flow and depth throughout the stream system, an interpolation of the function tables corre-
sponding to the computational nodes throughout the stream system is done in the model. FEQ can be
applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow con-
ditions, and special features. The accuracy and convergence of the numerical routines in the model are
demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of
the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed.

The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady
flow are presented. Assumptions and the limitations of the model also are presented. The schematization
of the stream system and the conversion of the physical characteristics of the stream reaches and a wide
range of special features into function tables for model applications are described. The modified
dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor
hydraulic structures and channel constrictions determined from an equivalent energy slope is developed.
The matrix equation relating flows and depths at computational nodes throughout the stream system by
the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four
sequential examples. The solution of the matrix equation by Newton’s method is discussed. Finally, the
input for FEQ and the error messages and warnings issued are presented.
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1. INTRODUCTION

Most open-channel flows of interest to hydraulic engineers, hydrologists, and planners are unsteady and can
be considered to be one-dimensional (1-D). In unsteady flow, some aspect of the flow (velocity, depth, pressure, or
another characteristic) is changing with time. In 1-D flow, longitudinal acceleration is significant, whereas trans-
verse and vertical accelerations are negligible. Many problems involving 1-D unsteady flows have been approxi-
mated by assumption of steady flows (for example, constant peak discharges in flood-plain delineation studies) or
piecewise steady flows, wherein storage-outflow relations are derived for channel reaches from a steady-flow
hydraulic model and used in simple hydrologic-routing methods. Piecewise steady-flow analysis typically does not
consider all the forces acting on the flow and only partially accounts for channel-storage effects. The approximate
solutions for steady-flow and piecewise steady-flow analysis are adequate for certain simplified planning or design
problems but are inadequate for many others (for example, streams with rapidly rising and falling stage, flat slopes,
and broad flood plains where storage and acceleration effects could be substantial). No criteria are available to
guide engineers and hydrologists as to when steady-flow methods are acceptable and when a complete unsteady-
flow analysis is necessary. Further, problems such as tidally affected flows and sudden releases from power-
generation stations require 1-D unsteady-flow analysis.

With the recent increases in the calculation speed and storage capabilities of computers, simulation of 1-D
unsteady flow in a complex stream system with many hydraulic structures has become practicable. Runoff
response to rainfall in urban areas is rapid, and streams throughout 1llinois have relatively flat slopes and broad
flood plains. Thus, engineers with the 1llinois State government and rapidly urbanizing counties surrounding
Chicago, became interested in applying unsteady-flow analysis for flood-plain delineation, flood forecasting,
flood-control reservoir operation, and other applications. Because a wide variety of hydraulic structures in the
stream network could be simulated in the Full EQuations (FEQ) model, this model was selected by the
U.S. Geological Survey (USGS) and cooperating agencies for documentation and extensive testing (Ishii and
Turner, in press; Ishii and Wilder, 1993; Turner and others, 1996). The 1llinois Department of Natural Resources,
Office of Water Resources, and the County of Du Page, Department of Environmental Concerns, cooperated with
the USGS and Linsley, Kraeger Associates to document the model schematization, governing equations, mathe-
matical solution procedures, numerical characteristics, and input description for FEQ.

Development of FEQ, a numerical tool for the solution of the flow-governing equations for a system of inter-
connected channels, began in 1976. The structure of the program was designed to represent the general structure
of a stream system, so the model is highly flexible and capable of efficiently simulating a wide variety of stream
systems. Among the many hydraulic structures represented in the model are bridges, culverts, dams, level-pool
reservoirs, spillways, weirs, sluice gates, pumps, side weirs, expansions, contractions, drop structures, and flows
over roadways. Several options for the choice of the governing equations are available. Wind forces on the stream
surface can be calculated and their effects on flow momentum simulated.

1.1 Purpose and Scope

The purpose of this report is to document the stream-network visualization and schematization, flow-
governing equations, and solution procedures used in the FEQ model to simulate 1-D unsteady flow in a network
of open channels and control structures. The FEQ model and example inputs and outputs may be obtained by
electronic retrieval from the World Wide Web (WWW) at http://water.usgs.gov/software/feq.html and by anony-
mous File Transfer Protocol (FTP) from water.usgs.gov in the pub/software/surface_water/feq directory. Because
flow in a network of open channels and control structures is complex, the documentation of FEQ involves detailed
discussions of many hydraulic-engineering and numerical-analysis topics. These topics are discussed in the
following order. The basic principles of 1-D unsteady-flow modeling and the relation between steady flow and
unsteady flow are discussed to give readers who are familiar with steady-flow analysis points of reference for
understanding unsteady-flow analysis. The schematization of the stream system and the conversion of the
physical characteristics of the stream reaches, including the effects of curvilinearity, into function tables for
model applications are described. The modified dynamic-wave equation used in FEQ is developed for unsteady
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flow in curvilinear channels with drag forces on minor hydraulic structures and channel constrictions determined
from an equivalent energy slope. The equations approximating flow through various hydraulic-control structures
are presented, and conversions of the stage-discharge relations for these structures into function tables are given.
The matrix equation relating flows and depths at computational nodes throughout the river system by the continu-
ity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The
solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages
and warnings issued in model simulation are listed.

1.2 Classification of One-Dimensional Steady Flow and Unsteady Flow

A classification scheme for steady and unsteady flow is useful in describing the flows of interest. The
simplest steady flow is uniform flow, in which no flow variable changes with distance. In a uniform steady flow,
every flow variable is a constant with respect to distance and time. If the flow is not uniform, then it is classified
as nonuniform and can be further divided into gradually varied and rapidly varied flow. In gradually varied steady
flow, the flow variables may change with distance, but all variables are constant in time. Furthermore, the varia-
tions with distance are gradual, so vertical accelerations are small. The series of backwater profiles discussed in
the typical open-channel hydraulics course or textbook (for example, Chow, 1959, p. 227-237) are all gradually
varied flows. In rapidly varied flow, substantial variations are presentin vertical and/or transverse flow. An extreme
example is a hydraulic jump below a dam. This flow can still be analyzed as 1-D flow, but the rapidly varied zone
of the flow must be recognized and isolated in the analysis. Additional examples of rapidly varied flow are flows
through culverts and bridges and over weirs and spillways.

Unsteady uniform flow is impossible, so only nonuniform unsteady flow is of interest in hydraulic analysis.
Both gradually varied and rapidly varied unsteady flows are possible, and the same general rules for analysis apply
as for steady flow. The zones of rapidly varied flow must be isolated before analysis under the 1-D flow assump-
tion; thus, the method of analysis for steady and unsteady flow is the same in this respect.

1.3 Selection of Conservation Principles

Three conservation principles—conservation of water mass, conservation of the mechanical-energy content
of the water, conservation of the momentum content of the water—are available for analysis of 1-D unsteady flow.
Conservation of thermal energy is not considered because temperature-change and heat-transfer effects do not
affect flow depth and discharge.

The first principle selected is the conservation of water mass, which becomes the conservation of water
volume if the density is constant. Equations derived from application of the conservation of mass principle are
often referred to as “continuity equations.”

The choice of conservation of momentum instead of conservation of mechanical energy of water for FEQ
was based on how well the various flow parameters and variables can be approximated and how well each partic-
ular principle works when only approximations to physical reality are possible. Both principles are exact given
precise knowledge of all the flow parameters and variables; however, precise knowledge of these is never possible.
Yen (1973) provides a detailed list of differences between the energy and momentum approaches. Many research-
ers, including Abbott (1974), Cunge and others (1980), and Liggett (1975), argue for combined application of the
conservation of mass and conservation of momentum principles as the equations of motion because this combina-
tion gives the correct wave speed and height should abrupt waves (hydraulic bores) form during the modeling of
rapidly increasing or decreasing flow. If the conservation of momentum principle is used with the continuity equa-
tion and the equations are properly approximated, then the correct wave speed and height will be computed. In
contrast, application of the conservation of energy principle provides no simple approximation that can be applied
to yield the correct wave speed and height.

In many applications, the flow in the stream channels is derived from runoff entering the channels either
overland or from storm sewers, drainage ditches, and streams too small to be explicitly represented in the model.
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These flows generally enter approximately at right angles to the main-channel flow, and complex interaction
between these flows involves considerable turbulence. Application of the energy-conservation principle would
require that the kinetic and potential energy of lateral flows be estimated, and such estimates are nearly impossible
to make accurately. The turbulence results in an unknown increase in energy dissipation. Therefore, lateral inflows
are better approximated by use of the conservation of momentum principle. Because these flows enter approxi-
mately at right angles to the main-channel flow direction, the effect is approximated in the momentum equation
without an additional requirement for estimated losses. The applicability of the conservation of momentum prin-
ciple to the solution of lateral inflow problems has been demonstrated in modeling of side-channel spillways and
wash-water troughs (Henderson, 1966, p. 268), both of which cause much greater turbulence than normally results
in unsteady flow.

Yen and others (1972) give further evidence for the choice of the momentum-conservation principle. Using
artificial rainfall on a sloping glass flume, they computed resistance coefficients for steady, spatially varied flow
for both the energy and momentum conservation principles and found that the resistance coefficient from the
momentum principle was always closer to the coefficient estimated from steady flow without lateral inflow.
Because use of Manning's equation for resistance losses yields a better estimate of the resistance coefficient for
the momentum principle than for the energy principle, methods based on momentum conservation yield better
estimates of the water-surface profile than do methods based on energy conservation, especially if Manning’s n is
calibrated to measured water-surface profiles or historic high water marks. In addition, the resistance coefficient
estimated from the momentum principle was insensitive to variations in the velocity of lateral inflow (many appli-
cations of unsteady flow involve a wide range of lateral inflow rates).

Finally, the equation obtained with the conservation of momentum principle is simpler than the equation
obtained with the conservation of energy principle. The simplicity of the equation obtained with the conservation
of momentum principle is twofold; the equation includes fewer terms, and less information is needed for each cross
section.

1.4 Major Assumptions in Unsteady-Fiow Analysis

Analysis of 1-D unsteady flow in open channels requires many assumptions. The major assumptions are the
following:

1. The wavelength of the disturbance of the flow is very long relative to the depth of the flow. This “shallow-water
wave assumption” implies that the flow is principally 1-D and basically parallel to the walls and bottom forming
the channel. Thus, streamline curvature is small; lateral and vertical accelerations are negligible relative to the
longitudinal accelerations; and, therefore, the pressure distribution is hydrostatic.

2. The channel geometry is fixed so that the effect of deposition or scour of sediment is small.

3. The bed of the channel has a shallow slope so that (a) the tangent and sine of the angle that the bottom makes
with the horizontal have nearly the same value as the angle and (b) the cosine of the angle is approximately 1.

4. The effect of boundary friction force can be estimated with a relation derived from steady uniform flow.
Nonuniformity and unsteadiness are assumed to have only a small effect on the frictional losses.

5. Channel alignment with respect to the effect of directional changes on the conservation of momentum principle
may be treated as if it were rectilinear even though the channel is curvilinear. Thus, the water surface in any
cross section of the stream is assumed to be horizontal. Super-elevation effects on the water surface in channel
bends are not considered in the analysis and are assumed to have a small effect on the results.

6. The fluxes of momentum and energy along the cross section resulting from nonuniform velocity distribution
may be estimated by means of average velocities and flux-correction coefficients that are functions of location
along the stream and water-surface elevation.

7. The flowing fluid is homogeneous (constant density).

From these assumptions, formal statements of the conservation of water volume (mass) and conservation of
water momentum can be developed. The conservation of volume (mass) principle relates to flows and changes in
the quantity of water stored in the channels and reservoirs. No forces of any kind are considered in the conservation
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of mass. Forces, momentum fluxes, and the momentum of water in storage are related in the conservation of
momentum principle. The factors involved in this equation are

1. gravity force on the water in the channel,

2. friction force on the wetted perimeter of the channel,

3. pressure force on the boundaries,

4. wind force on the water surface, and

5. inertia of the water.

Some of these factors can be omitted to simplify the unsteady-flow computations. If all these factors are
included in the analysis, the equations are referred to as the complete, full, dynamic, Saint-Venant, or
shallow-water equations. If the inertia of the water is ignored, the zero-inertia form of the motion equation is
obtained. If, in addition, the variations of pressure force along the channel are ignored because they are thought
to be small, the kinematic form of the motion equation is obtained. Reservoir routing also is a form of
unsteady-flow analysis in which the motion equation is simplified to a relation between water-surface elevation
and the flow. In a certain sense, reservoir routing ignores all four factors although some or all are implicit in the
relation between flow and water-surface elevation. In each case, at least one of the factors is dropped from the
motion equation. FEQ includes three of the four forms of motion equations for unsteady flow: (1) the full-equation
form, including all four factors, (2) the zero-inertia form, in which the inertia of the water is omitted, and (3) the

reservoir-routing form, in which the motion equation is reduced to a relation between water-surface elevation and
flow.

1.5 Examples of Unsteady-Flow Analysis

Examples of unsteady-flow analysis are easily found, only a few are mentioned here.

1. Passage of a Flood Wave. Flood-wave movement is unsteady, but in flood-insurance studies an approximate
maximum-elevation envelope resulting from a flood wave is computed under the assumption of steady flow. Lit-
tle work has been done to evaluate the accuracy of this approximation. In addition, the effect of flood-plain fill-
ing and obstruction is often analyzed by means of steady-flow analysis. Changes in the ability of the stream to
convey water are evaluated in steady-flow analysis, whereas changes in the capability of the stream to store
water are not considered in steady-flow analysis. The changes resulting from storage may be large in some
cases. Therefore, application of unsteady-flow analysis may substantially improve flood-insurance studies.

2. Operation of Irrigation and Power Canals. Unsteady-flow analysis is required to design these canals
properly because the flow variations can often be abrupt. Allowance must be made for the wave heights that
might result. Furthermore, the traveltime of transients becomes important in the design and operation of struc-
tures intended to reduce or control transients.

3. Tidal Effects. Analysis of the effects of tides on streams requires consideration of unsteady flow. Steady-flow
analysis is often used to approximate the envelope of maximum elevations; but again, little work has been done
to evaluate the accuracy of this approximation.

4. Junctions. The complex interactions at stream junctions often require unsteady-flow analysis. For example,
a large flood or failure of a dam on a tributary to a second, larger stream can sometimes result in upstream flow
at the junction in the receiving stream. This, in turn, can lead to a very rapid rise in water-surface elevation
because the influx of water serves not only as a temporary dam but also as another source of inflow.

5. Measures to Control Floods. Evaluation of the effects of proposed measures to control floods in a stream
must involve unsteady-flow analysis. Simplified methods often fail to give adequate solutions where stream-
bottom slopes are flat enough to make flow reversals possible or where flow is strongly affected by water-
surface elevations downstream.
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2. RELATION BETWEEN ANALYSES OF STEADY AND UNSTEADY FLOW

Analyses of steady and unsteady flows are similar in many ways. Because steady-flow analysis is much more
widely applied and because hydraulic engineers are generally familiar with steady flow, steady-flow concepts are
discussed first to introduce some aspects of the analysis of unsteady flow.

2.1 Channel Segmentation

In steady-flow analysis, a governing equation is given that describes flow variation. This is most often writ-
ten as an energy-conservation equation but a momentum-conservation equation also can be used. In either case,
this equation is in differential or integral form; and the solution cannot be determined without application of
numerical methods. Thus, only an approximate solution to the governing equation can be determined. To find this
solution, the channel is subdivided into short pieces called computational elements. Then, for each computational
element, the differential or integral terms in the governing equations are approximated algebraically to yield an
algebraic equation that approximates the governing equation for that element. From these computational elements,
the whole solution scheme proceeds.

The ends of the computational element, called nodes, are defined by cross sections either measured or
estimated from field measurements. The cross section is at right angles to the direction of flow as best as can be
determined. One way to visualize a computational element is as a slice of the channel whose ends are at right
angles to the longitudinal axis (fig. 1). Adjacent computational elements have a cross section and, therefore, a node
in common; thus, there will always be one more node (cross section) than the number of computational elements.

The values of interest in the cross sections are the width of the water surface, the flow area, the first moment
of area, the conveyance, and, perhaps, an energy- or momentum-flux coefficient, all computed at any given eleva-
tion. The shape of the cross section does not appear explicitly in the governing equations, but only implicitly
through these cross-sectional characteristics.

2.2 Review of Steady-Flow Analysis

In steady-flow analysis, the equation for conservation of water volume is trivial because the flow is known
at all points in the channel unless flow over a side weir is simulated. The algebraic approximations of the conser-
vation of flow momentum or energy are carefully written such that only water-surface elevation values at the ends
of the computational element are needed. Consequently, there are two unknowns for each computational element;
namely, the elevation of the water surface at each end. Given an initial elevation, the unknown elevations along the
channel can be computed sequentially, one unknown at a time. The direction of solution must be from a point of
known or assumed elevation to points of unknown elevation. In general, if the flow is subcritical, the direction of
solution is upstream; if the flow is supercritical, the direction of solution is downstream.

One of the first steps in steady-flow analysis is to locate control points; that is, points along the stream where
the elevation can be computed once the steady flow is selected. At least one point of known elevation is needed to
start the computations. For subcritical flow, this point, called an initial condition, will be the downstream boundary
of the region of interest.

The algebraic governing equation for steady flow does not apply to rapidly varied flow at bridges, culverts,
falls, rapids, dams, and other special features. Furthermore, the governing equation does not apply to junctions of
two or more channels or to abrupt changes in channel size or shape. These special features must be isolated and
analyzed with equations other than those applied for each computational element. Each special feature forms inter-
nal control points in the stream system, one upstream and one downstream. Therefore, each stream segment
between the boundary and a special feature or between special features is simulated by a separate steady-flow
analysis that requires an initial condition. The necessary initial conditions can be computed with the equations
relating flow and elevation from upstream to downstream for the special features.
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Figure 1. Branch of a stream system discretized into computational elements.

During the first run of a steady-flow analysis, one or more of the computational elements may prove to be
too long, and computational failure results. The only recourse is to subdivide the computational element into two
or more shorter computational elements and rerun the analysis.

Also during the solution process, an elevation may result such that the flow is supercritical at the upstream
end of the computational element when the elevation at the downstream end is for a subcritical flow. This result is
incorrect. In steady flow, such a pattern indicates a hydraulic jump somewhere in the computational element. The
analyst may consider three possibilities. First, the incorrect solution may be purely a computational artifact result-
ing from the failure of the solution process to determine the subcritical solution at the upstream end of the compu-
tational element. If so, the solution process should be changed to seek a subcritical solution. Second, there may be
no subcritical solution for the unknown in the computational element. This also can be a computational artifact if

2. Relation Between Analyses of Steady and Unsteady Flow 7



the computational element is too long and the errors in the approximation of the differential or integral terms are
distorting the solution. If so, the computational element must be subdivided and the solution tried again. Third, the
flow is physically supercritical near the computational element, yielding the incorrect solution. If so, the control
point for the supercritical flow must be found, the profile downstream from the supercritical-flow control point
must be computed, and the hydraulic jump can then be located by iterating between the downstream propagation
of supercritical flow and the upstream propagation of subcritical flow.

2.3 Basic Principles of Unsteady-Flow Analysis

The previous discussion of steady-flow analysis gives background for some concepts of unsteady-flow
analysis. Although some similarities can be expected because steady flow is a special case of unsteady flow,
differences also can be expected because unsteady flow must describe conditions not included in the steady-flow
governing equations.

In unsteady-flow analysis, two governing algebraic equations must be explicitly solved because the flow and
the elevation of the water surface are both unknown. One of the governing equations is the conservation of water
volume, and the other is the conservation of water momentum. In steady-flow analysis, the equation for conserva-
tion of water volume was trivial because the flows were constant and were used to solve for the flows everywhere
in the channel (known elevations were unnecessary). In unsteady-flow analysis, however, a governing equation of
conservation of water volume must be explicitly solved for flows and elevations.

In unsteady-flow analysis, computational elements and algebraic approximations to the differential or
integral terms in the governing equations must be used to develop two algebraic equations for each computational
element written in terms of elevations and flows at the ends of the element. These governing equations are more
complex than those for steady-flow analysis. For unsteady flow, a computational element with respect to time also
must be considered, but it is simple: the time axis is divided into finite increments that, ideally, will be short enough
so that the algebraic approximations of the differential and integral terms will be sufficiently accurate. Because of
this dependence on time, the algebraic governing equations involve not only the unknown flow and elevation at
two points along the channel but also at two points in time.

Control points with known relations between elevation and flow must be identified, as well as points of
rapidly varied flow or of interaction between channels not described by the algebraic governing equations. As in
steady-flow analysis, these points establish the limits of applicability of the governing equations with respect to
distance along the channel and provide known values for the analysis. In unsteady-flow analysis, however, a start-
ing time for the computations when all the flow values are known at the computational nodes (ends of the compu-
tational elements) must be established. Flow is assumed to be steady everywhere in the system at the starting time.
This is the first major difference between steady flow and unsteady flow: a steady-flow analysis must be completed
to establish the initial condition for the unsteady-flow analysis.

A second major difference between unsteady-flow analysis and steady-flow analysis is the information
needed at the boundaries of the stream system. In steady-flow analysis, knowledge of one elevation at the down-
stream boundary is needed to start the computations for subcritical flow or at the upstream boundary for supercrit-
ical flow. A cursory analysis of the number of equations available in unsteady flow shows that more information
is needed for unsteady-flow analysis. For example, a single channel with no special features is divided into
9 computational elements yielding 10 nodes. With 2 unknowns at each node, there are 20 unknowns but only
18 equations (2 per computational element). Thus, the unknowns cannot be determined without some additional
information at the boundaries of the system. When the flow is subcritical, information at both the upstream and the
downstream boundary of the system is needed. This information can be in one of three forms: flow known as a
function of time, water-surface elevation known as a function of time, or a relation between flow and water-surface
elevation. The upstream boundary is commonly flow known as a function of time (a hydrograph), and the down-
stream boundary is commonly a known relation between flow and water-surface elevation (a rating curve). The
information supplied at a boundary is called a boundary condition.

The information supplied at a special feature internal to the stream system is often called an internal bound-
ary condition. In unsteady-flow analysis, internal boundary conditions are approximated as steady-flow relations
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because the special features generally are short enough that the changes in momentum and volume of water within
the special features are small. The isolation and description of the special features is a major component of
unsteady-flow analysis.

The same computational problems can arise for unsteady-flow analysis as steady-flow analysis because both
analyses use algebraic approximations to the differential and integral terms. These approximations are developed
for a computational element of finite length. If the computational element is too long, an incorrect solution results.
The difference between the analyses is that in unsteady-flow analysis the computational problems are more com-
plex and more frequent than in steady-flow analysis. The increased frequency is primarily because unsteady-flow
analysis involves computations over a wide range of water-surface elevations, whereas most steady-flow analysis
involves computations over a narrow range of water-surface elevations. Furthermore, the time dimension results
in additional complications.

Similarities and differences between steady- and unsteady-flow analysis are summarized in table 1. The
motion equation in this table is expressed by use of the principle of conservation of momentum.

Table 1. Similarities and differences between steady- and unsteady-flow analysis

[Q, flow rate; A, cross-sectional area; y height of water surface above the minimum point in the cross section; x, distance along the channel;
t, time; g, gravitational acceleration; g, inflow into channel over or through the sides (lateral flow); Sy, bottom slope of the channel, positive
with decline downstream; Sf, friction slope]

ltem Steady Flow Unsteady Flow
dy dQ°/A 30 .9y  20°/a
Motion equation gA{-1;+ e gA (So_Sf) §+gA3_x +T = gA (So_Sf)
. dQ dA 90

M t -—= = — 4+ ==

ass equation o 5t o
Exact solution Not possible Not possible
Approximate solution At discrete points At discrete points
Algebraic equations Between nodes Between nodes
Channel description Cross sections at nodes Cross sections at nodes
Unknowns Water-surface elevations at nodes Water-surface elevations and flows at nodes
Control points Used to start solution Isolated in advance
Initial conditions At control points At all nodes
Boundary conditions None Required
Special features Must be isolated Must be isolated
Computational problems Computational elements too long Computational elements too long
Cross-section elements Computed as needed Placed in lookup tables

IThese control points typically are at the boundaries of the stream system and special features. Therefore, the initial conditions for
steady-flow analysis are often thought of as boundary conditions. In this report, the data required to begin the steady-flow analysis are
called initial conditions; this usage is similar to Chow’s definition (1959, p. 275) of an initial section for standard step-backwater computa-
tions of water-surface profiles in natural channels.
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3. SCHEMATIZATION OF THE STREAM NETWORK

The first step in applying FEQ to the analysis of a stream system is the development of a schematic diagram
that subdivides the stream system into a series of connected flow paths. A flow path conveys water between points
in the stream system. Examples of flow paths, as applied in FEQ, are a stream channel, canal, storm sewer, or
reservoir. Additional examples of flow paths on the stream are an overflow spillway, a swale that carries water over-
land during floods, or a breach in a levee or dam. In FEQ, these flow paths are connected by special features, which
include culverts, bridges, dams, junctions, sluice gates, and other components of the stream system that do not fit
the concept of flow paths considered in FEQ (branches, dummy branches, and level-pool reservoirs). The concep-
tual descriptions of each of the flow paths are given in sections 3.1.1-3.1.3. The primary hydraulic characteristic
that distinguishes special features from flow paths in FEQ simulation is that the special features are potentially
major flow transitions, either natural or constructed, small enough that changes in storage and momentum content
can be neglected and relations between water-surface elevation and discharge can be derived from steady-flow
principles. More than 20 special features are considered in FEQ. Thus, the stream system for unsteady-flow anal-
ysis with FEQ can be described in a schematic diagram that shows the branches, dummy branches, and level-pool
reservoirs and the connections with the special features. The flow paths and special features are discussed below
and in subsequent sections.

To draw the schematic diagram, the locations and types of special features in the stream system must be iden-
tified. Once the schematic diagram has been drawn, the flow paths must be labeled. The end nodes of a flow path
have a special status because they connect the flow path to the rest of the stream system. A flow-path end node
defines the end of the flow path. Each flow-path end node is labeled. A labeled schematic diagram is the basis for
describing the various connections of the stream system as modeled in FEQ. The schematic diagram also defines
how all parts of the stream system are to be modeled with the mathematical relations available in FEQ and the
companion utility program, Full EQuations UTiLities (FEQUTL) (D. D. Franz and C. S. Melching, in press).

A map of an example stream system is shown in figure 2, and a sample schematic for this stream system is
shown in figure 3. Each special feature has been isolated and the flow paths begin and end with a flow-path end
node. Some of the flow-path end nodes on branches have been labeled in figure 3. The rule for labeling is very
simple: The upstream flow-path end node on a branch is denoted by the letter “U” followed by the branch number,
and the downstream flow-path end node is denoted by the letter “D” followed by the branch number. Because the
rule is simple and is tied to the branch number, labels for flow-path end nodes are commonly omitted on branches
in the FEQ schematic. The nodes on a level-pool-reservoir flow path or on a dummy-branch flow path must be
labeled. The label is formed by the letter “F” followed by a number chosen by the user, as defined below. The
stream system shown in figure 2 includes two run of the river dams that are represented by branches in FEQ
simulation, as illustrated in figure 3.

3.1 Physical Features

The physical (geomorphologic) features of the stream system are divided into four categories in the stream-
network schematization applied in FEQ: branches, dunmy branches, level-pool reservoirs, and special features.
Detailed descriptions and examples of each of these categories of physical features and the methods used to
characterize these features in FEQ are given in the following sections.

3.1.1 Branches

A branch is the length of channel between special features (boundaries, junctions, and flow-control
structures). Flow through a branch is described by the governing equations described in section 5, and in this sense
every branch is identical. A branch is subdivided into computational elements for developing the approximate
algebraic governing equations (see section 6). A branch also has nodes at the boundaries of these computational
elements, each node representing an associated cross section. The nodes at the two ends of the branch are called
flow-path end nodes, and those not on the ends are called interior nodes. The branch has an upstream end and a
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branch gives the length of the computational element between the two nodes.

Water can enter a branch in three ways: as inflow at the two ends or inflow from the area tributary to the
branch. Thus, an associated tributary area may be assigned to each branch and computational element. The
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tributary area for a computational element is the area that will contribute lateral inflow to the computational
element. Lateral inflow to a computational element may include diffuse overland flow, seepage into (or out of) the
channel, and point discharges from tributary streams or storm sewers too small to simulate explicitly. Most often
the lateral inflow from a tributary area is estimated by a hydrologic model producing unit-area values of runoff
intensity for one or more types of land cover. For example, the area tributary to a computational element may con-
sist of agricultural, forest, and urban land. Each of these land covers would have a different rainfall-runoff relation
in the hydrologic model. Therefore, it is convenient to allow the subdivision of the tributary area into the different
land-cover types used in the hydrologic model.

An additional factor to the estimation of lateral inflow into the computational element is the gage; that is,
the precipitation gage where rainfall was measured from which the runoff was computed. More than one gage may
be available in a watershed. To consider multiple gages in a watershed in FEQ simulations, the tributary area for
each computational element must be associated with the gage used to compute the unit-area runoff intensity.

A final feature of a branch required in FEQ simulation is a way of identifying and referencing the branch.
Each branch defined in FEQ must be given a positive number for this purpose. Branch numbers can be noncon-
secutive, but they have an upper limit as discussed below in the section on Flow-Path End Nodes (3.2.2).

3.1.2 Dummy Branches

A branch conveys water along a certain flow path whose characteristics include depth, area, and length.
Other flows paths have these characteristics, but these details are not of interest in FEQ application. An example
is the flow of water over the emergency spillway of a reservoir: depths in the spillway and the associated channel
are of interest when these items are designed, but only flow over the emergency spillway is of primary interest in
an unsteady-flow analysis. The water volume in the short, steep discharge channel associated with the spillway is
too small to have an effect on the results, so adummy branch is designed to represent such a flow path, as illustrated
in figure 4.

A dummy branch has two flow-path end nodes but no associated cross sections. The only values of interest
are the water-surface elevations and the flows at the nodes. For computational purposes, a small storage and fric-
tion loss must be assigned to the dummy branch, but these values are set so small that the flows and elevations at
the two nodes are nearly equal. Other examples of the application of dummy branches include flows over a levee,
multiple outflow paths through or around a dam, and intermittent flow of water over land connecting two streams
Or reServoirs.

3.1.3 Level-Pool Reservoirs

The final flow path as previously defined is a level-pool reservoir. Storage volume of a level-pool reservoir
is large enough relative to the volume of flow entering and leaving the reservoir that the water surface can be
treated as horizontal with only a small error in the results. A level-pool reservoir, like a branch and a dummy
branch, has two flow-path end nodes (fig. 5). One node represents inflow to the reservoir, and the other node rep-
resents outflow. Long and narrow reservoirs or lakes often do not conform to the level-pool assumption and should
be treated as branches in FEQ simulation because the flows result in an appreciable slope on the water surface.

3.1.4 Special Features

The identification and description of special features in a stream system is a major part of building a math-
ematical model of the stream system. A key hydraulic aspect of special features is their size; these features are so
small that storage and momentum content changes may be neglected and relations between water-surface elevation
and discharge may be derived from steady-flow principles. The variety of special features in streams systems is
endless, especially in urban streams. The following are some examples of special features:

1. Junctions between or among tributaries or distributaries. Junctions are locations where two or more chan-
nels meet and combine to form a single channel (figs. 1 and 2). Locations where a single channel splits and
forms two or more channels also are junctions. Multiple inflows for the inflow node of a level-pool reservoir
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Figure 4. Example dummy branch: (A) dam with spillways and (B) schematic diagram of dam with spillways
application in the Full EQuations model.

also can be represented by a junction (fig. 5). Junctions are always present at connections between flow paths;
they establish the relation among the flows in the flow paths at the connections.

2. Points of known water-surface elevation or of known or knowable flow. These points are generally the
logical places for boundary conditions. The values of water-surface elevation or flow can be functions of time
and need not be constants.

3. Points of known relations between water-surface elevation and flow rate, such as streamflow-gaging
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Figure 5. Example level-pool reservoir: (A) sketch of level-pool reservoir and (B) schematic diagram of a
stream system with level-pool reservoir application in the Full EQuations model.

stations. These also make good boundary conditions especially at the downstream boundary.

4. Any change in bottom slope that might be large enough to result in a critical control. Critical controls
must be isolated because branches that include supercritical flow must be treated differently than those charac-
terized entirely by subcritical flow. Locations of potential critical flow must be isolated for proper analysis of
steady or unsteady flow.
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5. Any abrupt change in channel shape or roughness. These transitions must be isolated to account for the
additional expansion or contraction losses.

6. Dams, control weirs, and large pumping stations. These and similar features can have a substantial effect
on the water-surface elevation or the amount of water flowing in the stream.

7. Drop structures, falls, or rapids. These will be control points, at least at certain flow levels. These control
points can be drowned out at high flows and reestablished at lower flows in FEQ simulation.

8. Bridges and culverts that are to be represented explicitly.

9. Points at which a special feature may be added to improve the control of the stream system.

Anything that is not a branch, a dummy branch, or a level-pool reservoir is a special feature. The list of
special features can be further grouped into the general classes of junctions, boundary conditions, and control
structures.

Control structures can be further grouped into several subclasses. A control structure is any physical feature
that exerts a measure of control on the flow. If the control of flow is complete, so that a unique relation between
flow and water-surface elevation is established by the structure, then the structure is called a one-node control
structure because only the value of flow or elevation need be known at one flow-path end node to fully define the
other value. If the control is incomplete, in that knowledge of the water-surface elevation at two flow-path end
nodes is needed before the flow is defined, then the structure is called a two-node control structure. A major
challenge of unsteady-flow analysis is often the identification and description of the control structures.

3.2 Computational Simplifications for Schematic Development

Several simplifications are applied in the FEQ schematization of the stream (open-channel) system so that
the physical properties of the open-channel system and the general movement of flow between and among the
physical features described earlier can be efficiently considered. These simplifications are described in the follow-
ing sections.

3.2.1 Functions and Function Tables

A function is a mapping from one set of numbers, called the domain of the function, to another set of
numbers, called the range of the function. For any number in the domain there must be only one number mapped
in the range so that the function will be single valued. This definition is abstract, but it is the basis for the traditional
function definition used by most engineers and scientists.

An important example from open-channel flow analysis is the top-width function for a cross section. The top
width for a cross section is the width of the water surface at any elevation in the cross section from the minimum
point to some user-established maximum point (the elevation domain). For an elevation in the elevation domain, a
single value of top width will be determined from the top-width function. Other functions associated with a cross
section include the area function, conveyance function, and the wetted-perimeter function. Characteristics of the
cross section are viewed as a function because they are the features of a cross section considered in the governing
equations.

Other functions of interest in flow analysis include stage-discharge relations at gaging stations, head-
discharge relations for a wide variety of special features, elevation-area-storage relations for reservoirs, and inflow
hydrographs. Defining these functions is one of the major tasks in the analysis of any stream. Hundreds of functions
may have to be defined for even a small to medium-sized stream system.

Most of these functions of interest in flow analysis are not known as simple mathematical expressions, so
solution of the governing equations requires description of various functions in a way that is both flexible and con-
venient. Function tables are used in FEQ simulation for nearly all functions needed in unsteady-flow analysis. A
function table consists of a set of selected argument values (the tabulated argument set) and the corresponding set
of function values, as well as a rule for defining the function values for arguments not in the tabulated argument
set. This approach is taken because most functions of interest are known only approximately, and some error can
be allowed in the function value and in the rule used to compute the values not found in the table. Consequently,
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the characteristics of the cross sections used in FEQ simulation are computed in the utility program FEQUTL
(D. D. Franz and C. S. Melching, in press) and placed in specially designed function tables called cross-section
tables. The cross section is not used in simulation except as reflected in the cross-section function table. (The need
to store cross-section characteristics in function tables is another major difference between steady-flow and
unsteady-flow analysis; the characteristics of the cross section are computed as needed from fundamental (raw)
cross-section data in many steady-flow programs.)

The cross section is normally defined by a set of selected points on the periphery of the cross section in some
convenient coordinate system; the points are measured in the field or taken from topographic maps with the
assumption that adjacent points may be connected with straight lines. The cross section may be subdivided by
vertical, frictionless, fictional walls to account for problems with application of the hydraulic radius to describe the
shape of the cross section when computing the conveyance for compound and composite channels. A compound
channel is a channel whose cross section consists of subsections of variously defined geometric shapes (Yen, 1992,
p. 64). The most common example of a compound channel is one with flood plains. A composite channel is a
channel whose wall roughness changes along the wetted perimeter of the cross section (Yen, 1992, p. 60). For
compound and composite channels, each subdivision also may be assigned a separate value of Manning’s n in
FEQ simulation to account for variations in roughness along the periphery of the cross section.

The approach of computing the cross-sectional characteristics as required from the fundamental or raw
cross-section data is not efficient for unsteady-flow analysis. In steady-flow analysis, cross-sectional characteristic
values need be computed only a few times. In unsteady-flow analysis, however, values of cross-sectional charac-
teristics may be needed many thousands of times; therefore, it is economical in terms of computer time to place
the computed cross-sectional characteristics in a cross-section function table for later access.

Many types of function tables are supported in the FEQ model. Three broad classes of function tables are
one-dimensional, 1-D (one argument, perhaps several functions), two-dimensional, 2-D (two arguments, several
functions), and three-dimensional, 3-D (three arguments, several functions). Six options are available for cross-
sectional characteristics (1-D table with several functions), three for 2-D tables, four for functions of time
(1-D table with one function) such as hydrographs, and three for other 1-D tables. Details on the arguments, the
values tabulated, and the methods applied for interpolation are given in Franz and Melching (in press).

3.2.2 Flow-Path End Nodes

Flow-path end nodes have already been defined as the nodes on ends of a branch, a dummy branch, or a
level-pool reservoir. The function of flow-path end nodes requires labeling them so that they can be referenced
later. For a branch, the flow-path end nodes will have two labels: the label for the node when it is referred to in the
schematic description of the stream system and the label that is assigned to it in the computation of the governing
equations for the branch. The label assigned for the computations for a branch must be a number, whereas the label
assigned for the node as a flow-path end node in the stream-system schematic may be a number but need not be a
number.

Two styles for the treatment of flow-path end nodes are available in FEQ because of changes and enhance-
ments to the program. In the older style, derived from earlier versions of the program, the flow-path end nodes
must be numbered in the range 1 to 1998. The numbers for flow-path end nodes on branches are limited to the
range of 1 to 999. In contrast, nodes in the new style must be labeled with alphanumeric information to make
stream-system modeling easier. In the new style (figs. 3 and 4) the upstream flow-path end node on a branch must
be composed of the letter “U” followed by the branch number with no intervening spaces. For example, the
upstream flow-path end node on branch 51 would be labeled by U51, and the downstream flow-path end node on
that branch would be labeled D51. The flow-path end-node label gives both the branch number and the location
on the branch. Under the new style, the branch numbers must be in the range of 1 to 999.

The flow-path end nodes on level-pool reservoirs and dummy branches are composed of the letter “F”
followed by a number in the new style (figs. 3, 4, and 5). The letter “F” signifies that the node is free of a branch.
The number must be in the range of 1 to 999. Consistent use of either odd or even numbers for downstream nodes
on these flow paths is preferred. If all the downstream nodes are even and all the corresponding upstream nodes
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are the preceding odd number, more information about the location and function of each node is conveyed, and
modeling is easier and less prone to errors.

3.2.3 Flow-Sign Convention

All possible stream systems can be described by the correct combination of branches, dummy branches,
level-pool reservoirs, and special features. The special features form connections between and among end nodes
on flow paths. The flow paths can be connected in any order and direction desired. The direction called downstream
is defined by the user and need not be the physically downstream direction. In some cases, flow direction is
unknown; thus, the meaning of downstream must be assigned by the user. The downstream direction on any path
is always from the upstream node to the downstream node. This direction is assigned for a branch by the order in
which the nodes on it are input to FEQ. For a dummy branch and a level-pool reservoir, the upstream and down-
stream flow-path end nodes are explicitly specified. Such specification also is done for the flow-path end nodes on
branches for the older style of input.

A precise and simple sign convention is applied in FEQ for indicating the direction of flow at a node. If the
flow is printed as a positive number, it is moving downstream. If the flow is printed as a negative number, it is
moving upstream. This also indicates that a positive flow value at an upstream flow-path end node is flow into the
path to which the node is attached. For a downstream flow-path end node, a positive flow is flow leaving the path
to which the node is attached. A negative flow gives the opposite direction at a flow-path end node.

3.3 A Physical Analogy of the Schematization of the Stream Network

The schematization of a stream network applied in FEQ simulation is analogous to a child’s Tinkertoys, a
building toy composed of slender, pencil-like sticks and round knobs with holes on the periphery and a hole in the
center of each knob. A wide variety of stick structures can be built by inserting the sticks into the holes of the knobs.
In a sense, open-channel hydraulics are conceptualized like Tinkertoys in FEQ simulation. The branches, dummy
branches, and level-pool reservoirs are like the sticks, and the special features are like the knobs. A model of an
open-channel system can be built by use of these parts. Consequently, FEQ has few predefined limits. The limit to
the complexity of the simulated stream system is usually set by the memory and computer-time requirements rather
than by structure of the program. As a result, various stream systems and conditions can be described without
requiring changes to the program.

In keeping with the Tinkertoys analogy, the parts of the system are described in FEQ simulation more or less
separately. For example, the branches are completely described in terms of nodes, stations, elevations, and cross
sections before any description of the special features is given. Furthermore, the cross sections are described only
in terms of a table number, and the contents of the table are input later. All references to functions are given by the
table number containing the description of the table. This is done to allow attention to be focused on how the
various pieces are connected without concern for the location, size, or shape of the cross sections. This layered
approach to describing the system reduces the number of details that must be comprehended simultaneously,
simplifying management of the details in the application of FEQ.
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4. DESCRIPTION OF THE CHANNEL GEOMETRY

Channel geometry—the description of the size and shape of the channels in which water flows—is often
given cursory treatment in modeling documentation although it forms the foundation of any analysis of open-
channel hydraulics. The description of the hydraulic geometry should be consistent with the demands of the
analysis and the requirements of the governing equations. Use of 1-D flow equations is assumed throughout the
analysis; therefore, an extensive review of implications for the description of the channel geometry is of great
benefit.

4.1 The One-Dimensional Assumption

Because 1-D analysis ignores accelerations and velocities other than those in the longitudinal direction,
1-D analysis in even its most complex form in unsteady flow is approximate: no flow is really one dimensional.
Nevertheless, analysts frequently lose sight of the approximate nature of 1-D methods, and focus too much ana-
lytical energy on what may prove to be trivial parts of the method. There are no easy answers in defining triviality.
The only ultimate answer is comparison to experimental measurements and for some questions that may be
difficult and expensive. In this report, judgment is used in defining what is important and in making general
recommendations on approximations. The FEQ user should weigh these recommendations on the basis of new
information either from the literature of hydraulics or measurements in the field or laboratory. Engineering
judgment is a necessary part of all analysis because problems must be solved with the information at hand and
with current tools.

Whitaker (1968, p. 212) makes a comment about this issue in a chapter on macroscopic balances (his term
for 1-D analysis):

The student should be forewarned that the methods to be studied in this chapter, and subsequent
ones, are approximate; in general, there will be no “right” answers. There will often, however, be a “best”
answer, and as often as possible we shall try to determine the best answer by comparing our results with
experiments. In attacking this chapter, we should remember the macroscopic balances are perhaps the
most powerful tool the engineer possesses for solving the often ill-defined problems of everyday practice.
Judicious application of these equations comes only with experience and practice. At best, the student can
hope to understand the development of the equations and gain some insight regarding the difficulties that
may be encountered in their application.

In the methods used in FEQ and in applications of FEQ, 1-D analysis is pushed to its limits; therefore,
simplifications involved in 1-D analysis need to be thoroughly understood. Consideration also must be given to
the requirements on the hydraulic geometry to meet the assumptions of 1-D analysis and to development of a
description of a stream channel that is consistent with these assumptions. An appreciation for the approximations
of the hydraulic geometry is necessary to prevent overconfidence in the results of the FEQ analysis.

4.2 Directional Changes

The principles of conservation of mass and momentum are applicable to any flow, and simplification to a
1-D approximation is valid if the assumptions are met. These assumptions apply to linear channels that do not
change shape rapidly. The classic example is the laboratory flume or a straight reach of a canal. A straight reach
of a natural channel is an example of a gradual change in shape and a flow that follows a virtually linear path.
However, many unsteady-flow model applications involve changes in direction of the channel. This change intro-
duces curvilinear flow, which is a violation of the 1-D flow assumptions. This curvature is in the horizontal plane,
however, and not in the vertical, so the hydrostatic-pressure-distribution assumption is still valid. The selection of
the principle of conservation of momentum now causes a problem. This principle involves the momentum of the
water and the forces exerted on the surfaces that confine it. Momentum and force are vectors, having both a
magnitude and direction. Changes in direction can be as significant as changes in magnitude. Several questions
need to be considered. First, is it valid to apply momentum conservation in a curved flow, ignoring the curvature
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and the nonhorizontal water surface in channel bends? Second, how should the distance axis be defined for a curved
channel of varying size and shape? Third, how should the channel geometry be defined so that the equations are as
simple as possible yet still retain physical meaning? For 1-D flow, distance and time are the only coordinates.
Furthermore, the functions defined must be valid in terms of only distance and time. To properly integrate and
differentiate with respect to distance along the stream, a reasonable definition of a distance axis must be estab-
lished.

The definition of a distance axis includes mathematical and physical considerations. Mathematical
considerations relate to the proper evaluation of integrals and derivatives. Therefore, careful mathematical and
geometrical analysis will provide a definition. However, the effect of ignoring directional changes in the
conservation of momentum principle is a physical question that only experimental results can answer. Miller and
Chaudhry (1989) compared a physical-model result for a dam-break flood wave in a rectangular, prismatic channel
with a 180-degree curve to the result obtained from a 1-D mathematical model that did not account for channel
curvature. In this case, the definition of the distance axis was not a problem because the channel was rectangular
and prismatic. For a prismatic channel, the distance along the centerline of the channel is the correct distance to
use for the axis with the traditional equations for 1-D open-channel flow. Miller and Chaudhry (1989) found that
the 1-D computational results with a postanalysis correction for super elevation of the transverse water surface in
the bend derived for steady flow were acceptably accurate. The wave height for both the inner and outer bank was
correctly estimated with the 1-D model if directional changes in its derivation were ignored but the super-elevation
correction was applied. These experiments indicate that curved channels with compact cross sections and no over-
bank flow may be simulated with the conservation of momentum principle and that changes of direction can be
ignored in the simulation.

The previously discussed experimental results likely apply to channels flanked by flood plains as long as the
direction of flow in the channel and flood plain are nearly the same. If these directions differ markedly, then the
effect of directional differences may be significant for certain water-surface elevations. A strongly meandering
stream set in a broad flood plain is an example where flow directions differ markedly with changes in water level.
Sometimes these can be represented by combining a 1-D model of the channel with a series of interconnected level-
pool ponds to represent the flood plain (Cunge and others, 1980, p. 152-159). This approach also has been used
with FEQ to model the complex flow paths around a series of diked islands in a braided estuary (Snohomish County
Public Works, 1989).

If the directions of flow in the channel and flood plain are not too different and if concern about the effects
of these directional differences on the momentum equation can be suppressed, then the 1-D equations can be
generalized for application to curved open channels. To do this, careful definition must be given to how the channel
size and shape should be measured and described.

421 Channel Geometry Requirements For One-Dimensional Analysis

For 1-D analysis to be valid, a three-dimensional stream system—where the flow variables are functions of
time and three spatial dimensions—must be transformed to a simplified system where all variables are functions
of distance and time. The selection of the cross-section locations and orientations and the distance axis must satisfy
the requirements of this transformation. Picking the location and orientation of these cross sections becomes
increasingly difficult as 1-D methods are applied to flow patterns that are increasingly complex. Many of these flow
patterns require two- or three-dimensional (2-D or 3-D) methods; however, as the dimension of the analysis
increases, the data requirements and computational effort also increase. The increase is not linear but steeply
nonlinear, so that a 3-D analysis, if even possible, could require on the order of 10 times the personal time and
100 times the computational effort of a 1-D analysis. A 2-D analysis might require twice the personal time and
10 times the computational effort.

For the transformation to be valid, there must be an identifiable, predominant flow direction. The flow field
in the predominant flow direction will be many times longer than the width or depth. In open-channel hydraulics,
the velocity is commonly assumed to be the same at any point in a cross section normal to the predominant flow
direction. This assumption on velocity restricts applications severely; therefore, most analyses allow for differ-
ences in the magnitude and direction of the velocity in a cross section.
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4.2.2 Orientation of Cross Sections

The cross sections of the stream selected as computational nodes are oriented so that the computation of
mass flux through a section is simplified. The mass flux through a small incremental area, AA, of a fluid of density,
p, and with a velocity, v, is pv cos 6 AA, where 0 is the angle between the direction of the water velocity and the
direction of a line normal to the incremental area. The total flux through an area, A, is _[ , pvcos 0dA , where the
angle and the magnitude of the velocity can vary over the area. To compute the mass flux, an estimate must be
made of the angle that the local velocity vector makes with the normal to the cross-section surface at all points in
the cross-section surface. The computation of the mass flux is simplified if the cross-section surface is defined to
be normal to the local velocity vector. Then, 8 = 0 and cos 6 = 1 everywhere in the cross section, so the mass flux
becomes j A pvdA.

To select the cross sections, the flow directions must be known. The problem of needing flow directions
before solving the flow equation is only apparent and is similar to the generalization from a uniform velocity in a
plane cross section to a nonuniform velocity in a plane section. This generalization forces coefficients to be intro-
duced so that expressions in which the velocity is averaged across the section give the correct flux of momentum
or energy. For example, the total flux of momentum across an area in the flow is _[ A pvsz . The momentum-flux
correction coefficient, B, is then defined by BA V= _[ A vidA , where V is the cross-sectional average velocity and
p is a constant. The local velocities appear to be needed before B can be defined, but that is not true; only knowl-
edge of the distribution of the velocity in a relative sense is needed. The actual velocities do not need to be known
and, in practice, the variation of conveyance across the stream channel is used to provide a surrogate
estimate of the velocity distribution.

When the cross sections are curved, the momentum flux also should reflect the directional nature of momen-
tum flux. The momentum per unit volume in the direction of the distance axis becomes pv cos ¢, where ¢ is the
angle between the direction of the velocity and the direction of the distance axis at the location of the cross section.
The defining equation for 3 then becomes [SAV2 = j A v2cos¢dA . The effect of the direction on the momentum
flux is small. A constant value of ¢ = 15° yields an error in momentum flux of less than 4 percent. The effect of
curvature on momentum flux is only substantial if the cross section is strongly curved. The same reasoning applied
to the integrated hydrostatic pressure on a cross section analyzed in the plan as defined here, shows that the error
in the downstream component of force also is less than 4 percent.

Although exact definition of the flow direction is impossible, reasonable assumptions can be made that
provide satisfactory results. Approximate flow directions can be defined by use of a topographic map of the stream
and flood plain, at a scale large enough to show sufficient detail. The general direction of flow when the depth of
flow is not shallow is the central point of attention. Judgment is required to (1) select the features that are to be
included in the definition of the cross-section boundary and which features are to be considered part of the rough-
ness, and (2) determine the general direction of the flow from the pattern of contour lines over a region and not at
a point. The goal is to assign the directions of flow that will be followed at each location when the flow is high
enough to minimize the effect of local features.

Determination of appropriate flow directions may depend on the water-surface elevations assumed for the
stream. An example is a strongly meandering stream with a broad, gently sloping flood plain, as sketched in
figure 6. When the flow is within the banks of the main channel, the direction of flow is the same as the direction
of the main channel. As the water level increases, water moves into the flood plain, and some water takes a shorter
route downstream. At yet higher water levels, the main channel becomes deeply submerged and the direction of
flow is affected primarily by the flood-plain topography. The principal difficulty in this example is deciding at what
water levels the change in direction results. In some streams, the directional effect of the main channel will always
be significant; in others, it will not.

The stream shown in figure 6 is the most general case, and lines showing the direction of flow sketched on
a topographic map, called flow lines, would intersect. Lines that intersect would be those applicable to the flow at
various water levels. Cross sections drawn locally perpendicular to these flow lines (orthogonal to the flow lines)
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Figure 6. Example of a strongly meandering stream for illustration of the approximations
of curvilinearity used in the Full EQuations model.

would then have curvature in the horizontal plane that changes with the water level; that is, the cross sections would
change orientation or twist as the water level increases. Hence, they become 3-D cross sections instead of the 2-D
cross sections currently used in available modeling systems. Measuring such sections in the field would be difficult,
and a detailed topographic map of the stream and flood plain would be needed to complete the cross sections.
Describing these cross sections so that the cross-sectional characteristics could be computed would be
difficult. The flow lines between sections also must be described in some way to specify the geometry. With these
practical difficulties and the theoretical difficulties of major shifts in direction and the corresponding interaction
between the flow in the main channel and the flood plain, representing a strongly meandering stream with a
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combined cross section for the main channel and flood plain seems unwise and impractical. The interaction
between the main channel and flood plain in the computation of conveyance cannot be identified in a combined
cross section. Better and perhaps simpler is to isolate this interaction and approximate this interaction explicitly
by creating a system of two or more channels, each with the cross sections orthogonal to the corresponding flow
lines, and by providing explicit interchange of flows between channels through use of flow relations that depend
on differences in water-surface elevations between channels. These relations may be difficult to select, but the
difficulty is explicit instead of implicit; this is a conceptual improvement because the uncertainties are more
explicitly recognized and, thus, more caution can be exercised in presenting and using the results.

In figure 6, one or two channels would represent flood-plain flows and one would represent the main-channel
flow. Direction of flow in each individual channel would be virtually independent of changes in water level. Thus,
sketching of the flow lines becomes easier and the cross sections can be tailored to the needs of each channel with
the cross-section spacing reflecting that channel only. The flow lines for a multiple-channel model would not inter-
sect and flow-line intersection might be a reasonable criterion for deciding if a multiple-channel model is needed.
If flow lines cannot be sketched that are, to a large degree, independent of changes in water level, then a multiple-
channel model should be considered. Each channel would have a distinct distance axis and cross-section spacing
and orientation. Computational difficulties may result for zero or near zero flow in the flood-plain channel for
multiple-channel models during low flows. These difficulties are addressed later.

Interchange of water and momentum between interacting channels would be at interaction points placed at
periodic intervals along the channels. These would approximate the continuous interchange in the stream system
by a series of discrete weirs. By careful selection of the interaction points and definition of the flows, the theoretical
basis for the results can be improved by making the interchange of momentum explicit. This multiple-channel
model, although not much different in complexity than the single-channel model with variable-curvature twisted
cross sections, nonetheless represents the strongly meandering stream more accurately with 1-D approximations
than a single-channel model does. The approximation of the system can be improved only by use of a 2-D model
at a considerable increase in time and effort.

Given the restriction that the flow lines should be independent of water-surface elevation, the cross sections
in curvilinear 1-D flow can be defined by means of the following steps:

1. Sketch several flow lines on a topographic map showing the direction that water would flow if it were suffi-
ciently deep to inundate minor topographic features. At least five flow lines are necessary: one along the
thalweg of the channel, one near each bank of the main channel, and two showing the extent of the flood plain.
Intermediate flow lines may be needed to reflect local variations within the main channel or on the flood plain.

2. Sketch the cross sections such that they are approximately orthogonal to the flow lines. If 6 = 15 degrees every-
where, then the error in the flow rate estimate is less than 4 percent, and if 6 = 30 degrees, the error is about 15
percent. (Moreover, in estimating differences between the mass inflow and the mass outflow, there is some
opportunity for compensation of errors in defining the cross-section locations.) The cross sections will be
curved surfaces, not planar. Ideally, the cross section measured in the field should follow this curved path as
closely as is practical. The curved cross sections sketched on the topographic map may be replaced by plane
cross sections if the plane sections do not intersect within the flow field and if the angles of intersection with
the flow lines are approximately perpendicular.

A hypothetical example of this process is shown in figure 7. The main-channel boundaries and the flood-
plain limits are considered to be approximate flow lines (although rigorously this is not true). The edge of the water
in the channel is a flow line, but this line depends on the variation of water-surface elevation with distance that is
unknown. Thus, the flow lines must be sketched in a general sense, with the assumption that they will apply
approximately to flow at a wide range of water-surface elevations. (That is why the lines showing the direction of
flow are referred to as “flow lines” instead of “streamlines.” To call them streamlines would make the analysis
seem more exact than is really possible.) For any real flow, some of the sketched flow lines will likely be only
partially under water; that is, one or more of the approximate flow lines will intermittently be included in the wetted
part of the channel as viewed on the horizontal plane. This should not be a problem if the direction of the flow
line is within an acceptable angle of the direction of flow when the flow line, as sketched, is inundated. What is
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Figure 7. Example definition of flow lines and cross sections as used in the Full EQuations model.

acceptable depends on the desired accuracy of the analysis. Clearly, a difference of direction of 45 degrees is
suspect, but a deviation of 30 degrees should not be of concern.

24 Full Equations (FEQ) Model for One-Dimensional Unsteady Flow in Open Channels



4.2.3 Selection of Distance Axis

The flow lines and intersecting cross sections define the channel geometry in three dimensions. Transforma-
tion of this geometry to one dimension requires definition of a curvilinear distance axis. The thalweg of the
channel—that is, the locus of the minimum elevation points in the main channel-—is a convenient choice for the
distance axis. For some stream reaches, this definition applies to more than one part of the channel, but a reasonable
choice can be made for those cases where the cross sections have multiple and equal points of minimum elevation.
In the following discussion, the distance axis is assumed to be the thalweg of the channel or near to it.

Cross sections at any location along the distance axis must be defined such that they will not intersect and
will approximately meet the requirements of a simple mass-flux computation. To apply the conservation of mass
principle to the water in the stream, the volume of water between any two cross sections along the stream must be
defined. Let x denote the distance variable, y(x) denote the height1 of the water surface above the minimum point
in the cross section at the location given by x, and A[x,y(x)] denote the area of the cross section at the location along
the distance axis given by x. As x varies, the curvature of the cross section will vary. In the 1-D equations, all cross
sections must be referenced by location along the distance axis; information regarding any other distances between
cross sections is unavailable. The following is a development of a systematic method for summarizing the effects
of this distance variation on the 1-D equations.

The apparently natural formula for computing the volume of water, S, in the channel between a section at x;
and one at x, is

S =[2Alxy®]ldx, o
*1

where y(x) is assumed to be a known function. Equation 1 is incorrect when applied to curvilinear channels. To
obtain the correct volume by integrating in one dimension only, the integrand must represent a volume per unit
length. The unit length is defined by the variable of integration. If the cross sections are plane and parallel, then
AAx is a valid volume increment where Ax is the distance between cross sections at x; and x,. For curvilinear chan-
nels, however, the cross sections are neither plane nor parallel. Thus, multiplication of a small distance increment
by an area yields a volume increment, but not the correct volume increment. The volume increment would be
correct if two cross sections Ax apart at the x-axis would be the same distance apart, measured parallel to the
x-axis, at all other points in the cross section. This is true if the cross sections are plane or curved. If the cross
sections are plane surfaces and the x-axis follows the path traced by the centroid of the cross sections, then it also
is valid though the distance between cross sections varies with position in the section. These are special cases,
although the latter is important because equation 1 is correct in this case if the cross sections are plane and the
distance axis is the same as the path of the centroid of the areas. This can only result for varying heights of water,
¥(x), if the cross sections are symmetrical about a vertical line and the distance axis coincides with the trace made
by the line of symmetry on the horizontal plane.

In general, stream cross sections are not symmetrical, especially in bends, and the path formed by their
centroids shifts with the water-surface profile. Thus, an approach is needed to represent the channel volume in a
set of 1-D governing equations. Using DeLong’s approach (1989), a weight coefficient is introduced so that the
product of the weight coefficient and the area will yield a valid volume per unit length along the distance axis. This
weight coefficient will vary with distance, water height, and the choice of the distance axis.

IThe water height also is called the depth. Both terms are used interchangeably in this report. Height denotes measurement from some
reference point to some other point above it. In some contexts this is the appropriate direction of measurement. In other contexts, depth,
which denotes measurement downward, is more appropriate.
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The weight coefficient, M}, that will result in a valid volume per unit length when multiplied with the cross-
sectional area is defined as

) | S, (x—Ax /2, x + Ax /2)
M, (x, = lim ,
aley) = G o A,

2

where Ax; is a small increment along the distance axis of the channel, y,is a constant water-surface height, x is the
cross-section location, A(x, y,) is the flow cross-sectional area at location x for water-surface height y,, and S,(x;,x,)
is the correct volume of water between cross sections at locations x; and x,.

The computation of M, can be done at enough points at the cross-section locations in a 1-D model so that
the coefficient is defined as accurately as the area or top width. Because the weight coefficient is defined at any
point, the volume integral can be written as

Sy = [AM, 5y ()]A[xy(x) ] dx. 3)

The evaluation of the exact volume of the slice needed in the definition is presented in the development of the actual
means of computing the cross-section characteristics.

The conservation of momentum principle requires the evaluation of the change in momentum content of the
water in the stream. This also requires an integration along the distance axis and over the flow field (cross section).
This integration is complicated because the flow is not uniformly distributed along the cross section, the momen-
tum content is a vector quantity, and the direction for the vector is taken as that given by the distance axis. Thus,
to be rigorous, the analysis should include the cosine of the angle between the direction of the distance axis and
the assumed direction of the velocity at each point in the volume of water for which momentum content is esti-
mated. However, the results of the experiments of Miller and Chaudhry (1989), mentioned previously in this report,
indicate this refinement is not needed. Thus, the momentum content is considered in FEQ as if the angle were zero
everywhere.

The weight coefficient, My, that will result in a valid momentum content per unit length when multiplied
with the total flow rate through the cross section is defined as

“4)

( ) | Sq (x—Ax/2,x + Ax /2)
M, (x, = lim )
00 = 0T Qnyg Ax,

where Q(x,y,) is the total flow rate through the cross section at location x for water-surface height y, and S,(x;.x;)
is the correct momentum content of the flow between cross sections at locations x, and x,. The momentum-content
integral can be written as

Sq = K?MQ [x,y(x)1Q[x,y(x)]dx. )

The means for defining the flow per unit width is described in section 5.

These two weights, M, and M, represent the effect of curvature of the channel on the application of the
1-D principles of conservation of mass and momentum, respectively, to open-channel flow. The methods applied
to determine the exact volume by means of multidimensional integration are described later, after descriptions of
how to develop other cross-section characteristics that depend only on the cross section and not on its orientation
or the location of the distance axis.
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4.3 Characteristics of a Cross Section

The characteristics of a cross section can be placed into three classes: static, dynamic, and curvilinear. For
curvilinear characteristics, weight coefficients for integrands are derived in the previous section. The static and
dynamic characteristics of a cross section are described in the following sections.

4.3.1 Static Characteristics

The static characteristics are fixed for a given water depth at a given location along the channel. These
characteristics are the top width, the wetted perimeter, the area, and the first moment of area about the water
surface.

43.1.1 Area

A typical cross section in outline form is shown in figure 8. If the cross section was curved, the figure would
show true length along the cross section, not the projection on a plane surface. The top width, TTx,y(x,#)], is a func-
tion of the distance along the channel, x, and the height, y, of the water in the channel. The water surface is assumed
to be horizontal as required for 1-D open-channel flow. The top width is the horizontal distance across the cross
section at a given height in the plane (possibly curved) of the cross section. The area of flow in the cross section
is defined as the integral of the top-width function, resulting in

Alxy (0] = POOT(x 21 de, ©)

where z is height above the thalweg. The integrand, TTx,z], varies only with the height, z, from the minimum point
in the cross section because the location along the channel, x, and the time, ¢, are held constant during the integra-
tion.

4.3.1.2 First Moment of Area With Respect to the Water Surface

The hydrostatic pressure force on the narrow horizontal strip at height z in figure 8 is approximately
pg{y(x,1)-z}TIx,z]Az, where g is the acceleration of gravity. Thus, the pressure force, Fp, on the cross section below
y is given by the integration of the pressure forces on many small horizontal strips as

Fp=pgfy™" {y(x,0) -2} Tlx, 2] dz. @
Dividing equation 7 by pg gives the first moment of area about the water surface as
Jixyxnl = PO {yxn -2} Tlx, 2l de. ®)
Expansion of equation 8 and integration by parts yields

Jixyenl = PEYALx, 2 dz, ©)
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Figure 8. Definition of cross-section elevation characteristics.

as a simpler relation for the first moment of area. The qualifier that the first moment should be about the water
surface is now dropped, because this is the only axis where moments are determined.

The directional aspect of the hydrostatic pressure force has been ignored in keeping with the previous
discussion. If direction were to be included, the cosine of the angle between the normal to the cross-section surface
and the x-axis would have to be included in equations 7-9. However, the effect of omitting the direction is reduced
to negligible levels with the cosine function, as was the result for the computation of the mass flux through a cross
section in the flow.
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43.1.3 Wetted Perimeter

The wetted perimeter is the length of the boundary of the cross section that is under water for a given height
of water, y. It can be defined in terms of an integral involving derivatives of the boundary shape. (The mathematics
will not be discussed here because the characteristic can be simply described.) The wetted perimeter, P[x,y(x,t)],
is never less than the top width and is often nearly equal to the top width. However, there are cross sections for
which the difference between top width and wetted perimeter is substantial. Therefore, the conveyance, which
includes the wetted perimeter implicitly, is used in FEQ and FEQUTL (D. D. Franz and C. S. Melching, in press)
simulations of a channel. The conveyance is described in section 4.3.2.1.

4.3.1.4 Derivatives of Area and First Moment of Area

Partial derivatives of the area and the first moment of area are needed for some derivations and for an under-
standing of some of the terms in the equations of motion. Among these necessary partial derivatives are the rate
of change of area with distance at a fixed water-surface height and the rate of change of the first moment of area
with respect to the water surface with distance for a fixed water-surface height. The notation used should make
clear which variable is held constant. For example,

)
Sy (xn] Iy

indicates that the height, y, is held constant and that the time variable is suppressed. This does not mean that time
is held constant; on the contrary, time is ignored and the top-width function is defined by the distance along the
channel, x, and the height above the minimum point, y. A shorthand form for this notation is Ti , where the sub-
script denotes the variable used in taking the derivative and the superscript denotes the variable held constant. On
the other hand,

d
L6y (x 0]

indicates that only ¢ is held constant. The height, y, can vary so long as the time is held constant.

The derivatives of area and first moment of area with respect to the water surface with distance along the
channel may be determined by application of the Leibniz rule, resulting in

S Ay (0] = Thoy (501 2+ 4 1)

and

2 15 Y501 = Alny(nn1 2+ 1. an

The terms Ai' and Ji are not needed if the channel is prismatic. The last term in equation 11, Ji , is related to the
downstream component of the pressure force on the sides of the channel, which is given by the product of pg and
the derivative of the first moment of area at constant depth with respect to distance along the channel, that is ngi .

The effects of the curvature of the cross section and the flow in the channel are ignored in these derivatives.
Addition of the directional effect substantially increases the complexity of the analysis.
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4.3.2 Dynamic Characteristics

The dynamic characteristics of channels relate to concepts of water in motion. These include the conveyance,
the momentum-flux correction coefficient, the kinetic-energy-flux correction coefficient, and the critical flow. The
calculation of each of these dynamic characteristics is described in the following sections.

4.3.2.1 Conveyance

The conveyance is the simplest of the dynamic elements, at least if the Manning friction-loss relation is
applied. A compact channel is shaped such that the ratio of the flow area to the wetted perimeter (that is, the hydrau-
lic radius) adequately describes the effect of channel shape on the friction losses. The conveyance for a compact
channel is

K(53) = ZL2A xR, (12

where R(x,y) is the hydraulic radius, which equals A(x,y)|P(x,y); and n is Manning's roughness coefficient. If the
cross section is noncompact, it must be subdivided. The subdivision of compound and composite cross sections is
discussed in Franz and Melching (in press).

4.3.2.2 Flux Coefficients

The effects of nonuniform velocity distributions are corrected with momentum- and kinetic-energy-flux
coefficients. In 1-D flow analysis, the average velocity is used to compute the flux of momentum and kinetic
energy; however, these fluxes involve powers of the velocity at each point of the cross section (local velocities) so
that an error results if the average velocity is used. The square of the average velocity does not equal the sums of
the squares of the local velocities used to define the average.

The average velocity is defined so that continuity is preserved. That is, the flow rate Q for the cross section
is defined by

0 = [vda, (13)
A

where v is the velocity at each point in the cross section. The average velocity is then simply defined as V = Q/A.
The momentum flux through a small area, AA, is pv?AA. The sum of these fluxes for the cross section becomes

M, = pfvidA. (14)
A
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For ease of computation, the momentum flux computed by use of the average velocity should be the same as the
momentum flux computed from the point velocities in the cross section. Thus, a coefficient, 3, is introduced to
correct for the errors resulting from use of the average velocity instead of the local-velocity field in the cross
section. The defining equation for, 3, the momentum-flux correction coefficient, is then

BV2A = [v2dA, (15)
A
where p is assumed to be constant and therefore is deleted from the relation. Solving for B yields
B = oo fv2dA. (16)
ov;

The kinetic-energy-flux correction coefficient, @, is defined in a similar manner. Kinetic energy replaces
momentum in the concept development, and the defining equation is

1
o= —[V3dA, 17
QV2£ a7

where again p is deleted.
For the case where the velocities are unidirectional (all downstream) but nonuniform across the section,
Jaeger (1956, p. 115) found that

1
o-1 =3(B—1)+5‘/—2£(5v)3dA, (18)

where v = v — Vand is the deviation of the point velocity from the average velocity. Equations 16 and 17 indi-
cate that o is greater than 3.

Stream analyses have provided considerable evidence that values of o and B are significantly and frequently
different from 1. For example, 36 of 62 values of B computed by the U.S. Geological Survey from current-meter
measurements> were substantially greater than 1 for natural trapezoidal-shaped channels without overbank flow,
bridge piers, or other manmade obstructions. Thus, these channels were compact, yet f was greater than 1.1 in
more than one-half of the channels; in fact, B was greater than 1.2 for 8 of the 62 channel measurements. Further,
o was greater than 1.3 and greater than 1.5 in 30 and 13 channel measurements, respectively. The average value
of o for the 62 measurements was 1.36, and the average for [} was 1.12. These measurements show that the flux
correction coefficients may be substantially different from 1 in compact natural channels. Consideration of exten-
sive overbank flow could make the values of o and B much higher. Therefore, the effect of velocity distribution
may have to be included in the governing equations.

Recent research by Xia and Yen (1994) indicates that the effects of flow nonuniformity and of approxima-
tions of 3 may not substantially affect the calculated water-surface profile. Xia and Yen (1994) compared the
relative accuracy of the Saint-Venant equations (B = 1) with the results from the nearly exact momentum equa-
tions (Yen, 1973), including pressure correction coefficients (k and k') and B # 1. A series of numerical experi-
ments was done for various values of k, k', and B (parameter interaction was only partially considered) for flow
subject to various downstream backwater conditions. These experiments involved routing a sinusoidal stage

2The values of B were computed by Harry Hulsing and others in 1966, but the results were not published. A copy of the results was
obtained from U.S. Geological Survey personnel in Menlo Park, Calif.
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hydrograph with a peak 2.25 times the base stage, h,, through a 54-mile long channel of rectangular, wide rectan-
gular, or trapezoidal geometry. The maximum error in the computed depth was found to be 0.36 percent for

B = 1.33and 1.11 percent for = 2 for a channel with a bed slope of 0.00019 and downstream backwater ranging
from 0 to 2.53 times h,. Thus, a reasonable approximation of §§ should not result in substantial error in the
computed water-surface profile.

4.3.2.3 Critical Flow and Critical Depth

Critical flow and critical depth are important concepts in open-channel hydraulics in establishing the bound-
ary between two broad classes of flow that must often be distinguished to understand hydraulic effects and compute
estimates of the flow variables. Critical flow is adequately defined in steady flow, and unsteady flow only compli-
cates the derivations. Thus, steady flow is used in all derivations in this section. Traditionally, critical depth is
defined as the depth that minimizes the specific energy at a cross section when the flow is constant. The specific
energy, E(Q.y), is defined as the sum of the velocity head and the water-surface height of flow as

EQy=—2 . (19)
A T LA

(Explicit functional notation is applied in equation 19 to emphasize dependence on water-surface height and flow
rate. Subsequent equations will include explicit arguments only when necessary to show the functional depen-
dence. Otherwise, any cross-sectional characteristic in an equation is a function of the water-surface height in the
cross section.) If the partial derivative of specific energy with respect to water-surface height is set to zero, the

result is
_ (gAY, [sA
0 = [t88) =482, (20)

for the critical flow. Here, Q, is the critical flow rate producing a minimum in the specific energy at a given water-
surface height, y. Hereafter, for convenience, critical flow is the basis for discussion rather than the water-surface
height at critical flow. Most introductory treatments of critical flow go on to develop the concept of force plus
momentum, M, called specific force by Chow (1959, p. 53). Specific force is the sum of the hydrostatic pressure
force on a cross section and the momentum flux for the section (treating the density of water as 1 because it is
constant). Thus, specific force is defined as

My = e+Z. @D

If the partial derivative of specific force with respect to water-surface height is set equal to zero, the result is

0, = /L’fl:AJg%, (22)

which is the same as the result obtained from minimization of specific energy.

Much is made of the equivalence of critical flow defined from specific momentum and specific energy in
some introductory hydraulics texts and with good reason. If the cross sections are compact and the velocity distri-
bution is virtually uniform, then equivalence of critical flow determined from specific energy and specific force
follows. However, when the flow is sufficiently nonuniform to require values of f > 1 and o > 1 be included in
the analysis, mathematical inconsistencies can arise for steady, gradually varied, nonuniform flow. In most
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discussions, the effects of nonuniformity are not considered, and the inconsistencies resulting fromo. #f # 1 are
not recognized.

Generalizing the specific energy and the specific force values to include the flux-correction coefficients
yields

Q2
E((Q3) = 00)7 5+ (23)
and
Q2
M(Q,y) = gJ+B(y) ik (24)

As indicated in equations 23 and 24, the flux coefficients vary with the water-surface height in the cross section
(Chow, 1959, p. 43). Again, if the partial derivatives with respect to water-surface height are set to zero and the
equations are solved for the critical flow, the result is

0, = (25)

and

— 35’ (26)
BT-As=
dy
where Qp is the critical flow defined from specific energy and Q,, is the critical flow defined from specific force.
These results clearly show that the functions representing the flux-correction coefficients must follow certain
restrictions for these two values to be the same at all depths.

Jaeger (1956, p. 93-119) extensively discusses the equivalence of these two definitions of critical flow. He
includes coefficients for potential energy and hydrostatic-pressure force to correct for the effect of streamline
curvature and he is able to show that the two values of critical flow are the same. This equivalence is based on the
assumption that the appropriate correction-coefficient values have been used. In the above derivation, substantial
inconsistency may result for some flows if only the flux-correction coefficients are applied. Experiments with
steady uniform flow in a laboratory compound channel with flood plains indicate that minimization of specific
energy or minimization of specific force yielded the same values for critical flow and water-surface height (Blalock
and Sturm, 1981, 1983). In these experiments, many point measurements of velocity were made to accurately
estimate the values of o and . If the flux-correction coefficients are included in the analysis and if they are
estimated by the usual means (applying subsection conveyances as a surrogate for the velocity distribution), then
the difference in Q. and Q,  can be greater than 30 percent. It should be recognized immediately that the flux-
correction coefficients cannot be computed exactly because the calculated velocity distribution is only approxi-
mate. Thus, part of the large differences in Q. and @, reflects the approximate values of o and B.

Direct observation of critical flow in a stream is impossible. Thus, inferences about flow values must be
made from the mathematical description of the flow. Consequently, the value computed for critical flow will
depend on the governing equation selected to describe the flow. A change in the choice of the governing equation
or in the terms to be included in such an equation will change the computed value of critical flow. Furthermore,
critical flow results in mathematical problems (singularities) in the governing equations, such as division of a quan-
tity by zero. These singularities are commonly a direct result of ignoring certain terms in the governing equations.
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The classic example is the flow of water over a brink. The 1-D governing equations indicate that the water-surface
slope at the brink should be vertical and the depth should be the critical depth; however, as the flow approaches the
brink, the streamlines become strongly curved and the pressure distribution deviates appreciably from hydrostatic.
This deviation violates the assumption of the governing equation. Thus, the depth at the brink is not the critical
depth nor is the water surface vertical. The critical depth as computed from equation 20 is some distance upstream
from the brink, and the depth at the brink is appreciably less than the critical depth given by equation 20
(Henderson, 1966, p. 191).

Steady flow has been assumed in equations 19-26. Blalock and Sturm (1983), however, show that equations
25 and 26 also are obtained from unsteady-flow governing equations. These equations include the effect of velocity
distribution, but deviations from hydrostatic pressure distribution are ignored; these are the typical assumptions
made in current applications of steady and unsteady flow. The unsteady-flow governing equations applied by
Blalock and Sturm (1983) are of the same form as those developed in section 5.

Although the equations for critical flow derived from steady and unsteady flow are the same, the velocity
distribution in a channel at a given stage may not be the same for steady flow as for unsteady flow. The difference
could be substantial in a compound channel. If the stage is rising, water will be moving from the main channel into
the flood plains; whereas if the stage is falling, the water will move in the opposite direction. This flow interchange
with the flood plains must have an effect on the velocity distribution and, therefore, on o and B. This interchange
also indicates that the simple assumption that the flux coefficients depend only on the water-surface height is only
an approximation. In a compound channel, a more rigorous analysis might indicate that a rate of change of water-
surface height also must be included. No studies that examine this problem are known. Therefore, the simple
assumption is retained.

Critical flow is a function of the governing equation selected to represent the flow. The critical-flow value
used must be consistent with the governing equation to avoid improper solutions. The physical meaning and inter-
pretation of the computed critical flow must be established by observation and practice, as has been done for
compact channel shapes in steady flow. In these cases, critical flow clearly defines a boundary in the physical
system that has proven useful in describing various flow phenomena. The physical basis for critical flow computed
for noncompact channels is less clear. Blalock and Sturm (1981) and Petryk and Grant (1978) have made some
general observations, but no extensive body of experience is available to validate the physical interpretation of
these estimates.

Because the momentum-conservation principle is used in FEQ to represent the 1-D flows, Q,, is the best esti-
mate of critical flow. This estimate will be as consistent with the governing equations as possible. The effects of
unsteadiness, however, cannot be included. Furthermore, representations of special features may be inconsistent
(as described previously). The flow equations for some special features are based on energy-conservation princi-
ples. In most cases, however, the cross sections considered will be compact and simple, such as the barrel of a
culvert, so that taking oo = B = 1 will be reasonable. For flexibility, the option of applying either equation 25 or
26 is available in the utility program, FEQUTL (Franz and Melching, in press). For most flow conditions, equation
26 should be selected.

Another practical problem with the critical-flow estimates with flux-correction coefficients is that the critical
flow may become undefined. In equations 25 and 26, the estimated rate of change of the flux-correction coefficient
with respect to water-surface height may be such that the argument for the square root becomes negative. If the rate
of change in the flux-correction coefficient is positive and large enough, the numerator in these equations can
become zero or negative. The critical flow then becomes a complex number that is physically undefined. This can
be a result of large inconsistencies between the estimated value of the flux-correction coefficient and the estimated
rate of change with respect to water-surface height.
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5. FULL, DYNAMIC EQUATIONS OF MOTION FOR ONE-DIMENSIONAL, UNSTEADY
FLOW IN OPEN CHANNELS

The equations presented in section 5 include the major physical factors affecting shallow-water flows and
are thus called full equations. Various forms of the equations are shown. All are mathematical restatements of the
same physical principles, each having advantages and disadvantages as detailed in the subsections that follow.
The integral form of the equations is basic to all forms, so it is presented first. The integral form is used as a basis
for defining numerical approximations to shallow-water flows applied in the FEQ model and described in the
section 6, “Approximation of the Full Equations of Motion in a Branch.”

Detailed derivations of the unsteady-flow equations are given in Cunge and others (1980, p. 7-24),
Strelkoff (1969), and Yen (1973). Abbott and Basco (1989, p. 1-43) present a detailed mathematical and philo-
sophical discussion of these equations. The major assumptions applied in the derivation of the full, dynamic equa-
tions of motion are listed in the section 1.4.

5.1 Integral Form of the Equations

The integral form of the full equations is a macroscopic statement of the principles of conservation of mass
and momentum for what is called a control volume. A control volume is a conceptual device for clearly describing
the various fluxes and forces in open-channel flow. A conceptual control volume for open-channel flow is shown
in figure 9. The upstream face of the control volume at station x; is assumed to be orthogonal to the flow direction
at that point in the channel, as outlined previously. The downstream face of the control volume at station xz also
is assumed to be orthogonal to the flow direction. The sides and bottom of the control volume are formed by the
sides and bottom of the channel. The top of the control volume is formed by the water surface. The length of the
control volume, Axcy = xi — x;, does not have to be small and is measured along the distance axis defined previ-
ously.

The integral form of the equations can be explained simply in a 1-D approximation; therefore, the equations
are presented here without derivation, followed by discussion of what each major term or set of terms represents
in the conservation principle. To keep the details as simple as possible, the weight coefficients used to correct
certain integrands in the integral form for the effects of curvilinear flow are omitted at first. These weights are
added later when the full form of the equations is developed for curvilinear channel alignments.

5.1.1 Conservation of Mass

The conservation of mass principle for a control volume is

J'XR[A(xt ) —A(x, t,)]dx = rU[Q(x D +1(t) —Q(xp, H)]dt 27
XL U © D p ’ ' '

The time interval of integration is defined by two points in time, #,; and #;, such that ¢, > #5,. (The meaning of the
subscripts on these time points is explained in more detail in subsequent sections.) The term I(f) denotes the inflow
of water that enters the control volume over or through the sides of the channel. Density is constant and is not
shown in equation 27 because each term would have a constant multiplier that cancels from the relation. Thus, the
conservation of mass is equivalent to conservation of water volume in FEQ simulation. Equation 27 is a precise
mathematical statement of a simple concept. The left-hand side of equation 27 is the change in volume of water
contained in the control volume during the time interval (¢, t;)). The integral of flow area with respect to distance
at a fixed time defines the volume of water in the control volume at that time. The right-hand side of equation 27
is the net volume of inflow to the control volume (inflow minus outflow) during the time interval. Water enters
from upstream, Q (x,, £), leaves downstream, Q (x, f), and enters over or through the sides of the channel, I(¢).
Thus, equation 27 indicates that the change in volume of the water in the control volume during any time interval
is equal to the difference between the volume of inflow and the volume of outflow during that time interval. The
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Figure 9. Control volume in a stream for unsteady-flow equations.

term /(f) represents what is commonly called the lateral inflow, which comes from several sources: runoff from the
land surface, discharges from sewers, outflows of water from pumping, and others. If the lateral flow is out of the
channel, then I(¢) is negative.
5.1.2 Conservation of Momentum

The principle of conservation of water volume includes only the flows and changes in volumes. The conser-

vation of momentum includes the momentum flux and various forces on the boundaries of the control volume.
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Because forces are vectors, the momentum equation is vectorial; therefore, the terms are written relative to the
direction assigned to downstream flow in the channel. As discussed previously, preliminary evidence from labo-
ratory studies shows that the vector nature of momentum does not substantially affect 1-D flows; therefore, flow
is treated as if it were all in the same direction.

To satisfy the conservation principle, the change in momentum of the water in the control volume over any
time period must be equal to the net downstream impulse during the time period plus the net flux of momentum
during the time period (that is, influx minus efflux). Impulse is a time integral of a force. In most basic fluid
mechanics texts (for example, Streeter and Wylie 1985, p. 117), the conservation of momentum for a control
volume in one dimension, x, is expressed as

SF, = %J’CV pv,aV + [ pvV e dA, 28)

where

are the forces acting on the control volume, CV;

is the velocity in the x-direction;

is the volume differential;

is the velocity vector; and

is the differential area taken as a vector normal to the control surface, CS, of the control volume.
The first term on the right-hand side of equation 28 is the rate of change in momentum stored in the control volume,
and the second term is the momentum flux through the control volume.

For open-channel flow, the forces included are pressure forces on the upstream and downstream faces,
downstream component of the pressure force on the sides of the channel, gravity force, channel friction, and wind-
shear stress on the water surface. By moving the momentum stored in the control volume to the left-hand side and
the sum of forces to the right-hand side and expanding the sum of forces, the conservation of momentum for the
control volume becomes
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where
S, is the bottom slope of the channel,
T is the average shear stress on the water from the channel boundary,
C P, U2 is the wind-induced shear stress on the water surface in the direction of the wind-velocity
vector,
p, is the density of air, U is the wind velocity,
is the dimensionless drag coefficient for wind shear stress, and

y is the angle between the downstream flow direction in the channel and the velocity of the
wind.
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The integral on the left-hand side of equation 29 is a rewritten form of the change in momentum stored
in the control volume. The downstream component of the pressure force on the sides of the channel also is
given by integration with respect to distance of the force per unit length discussed previously. The gravity force is
represented by the integration of the product of fluid density and area (the mass per unit length of channel) and the
bottom slope of the channel. The friction force per unit length is given by the product of the shear stress and the
wetted perimeter. The friction force per unit length is then integrated over the length of the control volume to yield
the friction force at any time. The wind-shear stress per unit length of the channel is given by the product of the
wind-shear stress in the direction of the channel and the top width of the channel. Integration with respect to
distance yields the total wind-shear force at any time. The influx and efflux of momentum are represented by the
first integral to the right of the equal sign in equation 29. The time integration of the distance integrals for the forces
on the control volume yield the impulses from these sources. The arguments affecting the elements integrated with
respect to both time and distance in equation 29 are not shown to simplify the notation. The arguments of time and
of distance are both implicit in these instances.

Although complicated, the integral equation (eq. 29) is a precise mathematical statement of the conservation
of momentum principle; specifically, that the change in momentum of the water in the control volume is given by
the net influx of momentum and the net downstream impulse from all forces acting on the water in the control
volume. Given the selection of forces and other assumptions, equation 29 is an exact statement that applies for any
length of control volume.

The friction-force term simplifies if it is assumed that the relation between slope and boundary friction from
steady-uniform flow,

s = 2P (30)

can be generalized to unsteady flow by replacing the bottom slope, Sy, with the friction slope, S;. Applying this
definition of the friction slope and dividing equation 29 by p results in
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as the integral form for the conservation of momentum equation for open-channel flow. This and related equations
are called motion equations. In equation 31, the momentum contribution from the lateral inflow is ignored.
Reliable information is rarely available regarding the velocities and depths of lateral inflows, and lateral inflows
are often nearly orthogonal to the flow in the channel. Thus, omitting the effects of lateral inflow in equation 31
should not result in substantial error.
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The friction slope must be estimated from the cross-sectional characteristics and the flow. In terms of the
total channel conveyance, K, the friction slope is computed from

_ 29
S; = = (32)

Use of the product 0l ¢linstead of Q2 as normally seen in steady-flow analysis gives the result that the friction is
aretarding force on the water in the control volume for either direction of flow. Therefore, the possibility of revers-
ing flows is simulated in FEQ.

5.2 Differential Form of the Equations

The integral form of the equations (eqs. 27 and 29 or 31) is a basis for all other forms of the governing
equations for unsteady open-channel flow. These other forms involve differential equations derived by manipulat-
ing the integral form or an approximation of it by taking limits as the time and distance intervals approach zero.
The wind-stress terms are omitted in these developments to simplify the equations because these terms are not
necessary for the general development of the differential equations of motion. Furthermore, the momentum-flux
correction coefficients are assumed to be 1.

5.2.1 The Conservation Form

Approximating the integrals in equations 27 and 31 by finite differences and taking limits yields
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where q is the lateral inflow per unit length along the channel, defined as a function of distance and time such that

I(t) = ﬁf q(x, 1) dx. (35)

Equations 33 and 34 are in conservation form because the basic variables are explicitly expressed.

The area in equation 33 should be considered the volume per unit length of channel. Thus, the time deriva-
tive of area gives the rate of change of volume per unit length. The derivative of the flow rate in the channel with
respect to distance should be considered the channel outflow per unit length of channel. All of the quantities in
equations 33 and 34 are algebraic expressions and can be positive or negative; therefore, a negative outflow is an
inflow. Equation 33 is a statement of the conservation of mass principle (with p constant) on a per-unit-length
basis.

Similarly, equation 34 is a statement of the principle of conservation of momentum per unit length. In the
time derivative of flow, the flow rate is the momentum per unit length. The terms involving derivatives of J on the
right-hand side of the equal sign represent the net downstream pressure force per unit length. The derivative of QV,
when moved to the right of the equal sign, represents the net efflux of momentum per unit length. Finally, the term
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8A(Sy-Sy) is the net downstream force per unit length from gravity and friction forces. Thus, equation 34 (with all
terms but the time derivative of flow moved to the right-hand side) defines the time rate of change of momentum
per unit length as the sum of the net downstream forces and the net efflux of momentum.

5.2.2 The Saint-Venant Form

Expanding the derivatives in the conservation form and simplifying the equations yields
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which is often called the Saint-Venant form of the equations of motion (Chow, 1959, p. 528). This and other similar
forms of the equations are the most common forms in the hydraulic literature. The relation between the principles
of conservation of mass and momentum and the terms in the equations has been obscured in equations 36 and 37.

5.2.3 The Characteristic Form

The final form of the equations to be presented here is obtained by transforming the Saint-Venant form so
that derivatives taken in the proper directions, called characteristic directions, can be written as ordinary deriva-
tives and not partial derivatives. The result of this transformation is

BV dxd ay dx dy c y
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where c is wave celerity, the speed of an infinitesimal disturbance in the channel relative to the water. If the flux
correction coefficients are taken to be unity, then the celerity is equal to Q |A, where Q. is given by equation 22. If
the characteristic form is derived from a mass-energy formulation, the celerity is given by Qg|A, where Q is given
by equation 25; if it is derived from a mass-momentum formulation, the celerity is given by Q,,|A, where Q,, is
given by equation 26. This relation between steady flow and unsteady flow is expected because the steady-flow
equations are special cases of the unsteady-flow equations.

The bracketed terms in equation 38 represent the ordinary derivatives of velocity and water-surface height
when these derivatives are taken in the directions given by equation 39. Then equation 38 becomes
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Equation 40 is best understood as representing the rate of change of velocity and water-surface height that an
observer moving along the stream channel in the characteristic direction and with the velocity given by equation 39
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would measure. The characteristic form of the equations of motion is not applied in FEQ simulation; however, the
characteristic form of the equations is presented here because understanding the movement of waves along the
characteristic direction provides valuable insight on several aspects of unsteady-flow analysis, such as boundary
conditions, initial conditions, and solution methods, as discussed in the next section.

5.3 Nature of Shallow-Water Waves

The various forms of governing equations progress from physical to mathematical forms. The integral form
and the conservation form relate closely to the fluxes and forces acting on the flow. In contrast, the relation to the
fluxes and forces is missing in the Saint-Venant and characteristic forms. The characteristic form has lost almost
all reference to the forces and fluxes included in the equation for the conservation of momentum; however, the
characteristic form provides insight into shallow-water wave motion, which is not evident in the other forms. This
insight is vital to understanding the requirements (boundary and initial conditions) that must be met as approximate
solutions to these equations are sought. Thus, no single form of the governing equations is adequate for under-
standing unsteady 1-D open-channel flow.

The insight to be gained from the characteristic form is best visualized by tracking small but identifiable
disturbances in a stream channel. Consider a long rectangular stream channel with no special features, a branch in
the FEQ network schematization. Also, imagine that the flow is steady and subcritical but nonuniform. To intro-
duce a small shallow-water-wave disturbance, a short segment of the channel bottom is made of some flexible
material that can be given a sudden sharp but small upward displacement. This displacement disturbs the whole
column of water above the location of the flexible strip and is analogous to the mechanism thought to initiate
tsunamis in the Pacific Ocean. Because the flow is subcritical, a shallow-water wave will move upstream and
downstream. To track each of these small waves, the location of the waves along the channel is measured period-
ically. The path or trajectory of the wave or waves can then be depicted by use of a coordinate system in which
the distance along the channel, x, is shown on the horizontal axis and the time, ¢, is shown on the vertical axis, as
in figure 10. This coordinate system defines the x-¢ plane.

Suppose that the disturbance was introduced at station X; at time ¢ = ¢, Small shallow-water waves will
travel upstream and downstream from this station. The upstream wave will have a velocity V - ¢ and the down-
stream wave a velocity of V + c. The trajectory of the upstream wave is denoted as C- and of the downstream
wave is denoted as C+ in figure 10. The region of the x-¢ plane between these two trajectories is the region of influ-
ence of the disturbance at point X; at time ¢ = ¢, Outside this region, the disturbance has no effect on the flow.
Another disturbance has been introduced at a station X, some distance downstream from X;. The C+ and
C- trajectories for this disturbance also are shown on figure 10. The region of the x-¢ plane between the C+ trajec-
tory of the disturbance at X; and the C- trajectory of the disturbance at X is called the domain of uniqueness
because the flows in this region cannot be affected by disturbances upstream from X; or downstream from
Xy originating atany time ¢ > ¢,. The distance interval from X; to Xj is called the interval of dependence for point
G because the flow at point G is dependent on knowledge of the flow on this interval at time ¢ = ¢,

These features of shallow-water-wave motion are important in designing methods to compute approxima-
tions to the motion. In these methods, a known condition in the stream channel at a time ¢ = ¢,is applied, and the
conditions in the channel at some later time are computed with the equations of motion. The known conditions at
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