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PREFACE

The computer model described in this report is designed to simulate the transport and 
dispersion of a single solute in ground water flowing through porous media. The model is 
developed as a module for the U.S. Geological Survey's (USGS) MODFLOW ground-water 
model, and it is intended to be the first of a family of alternative solution methods for the solute- 
transport equation that will be compatible with MODFLOW.

This model, named MOC3D, was developed through modifications of an existing two- 
dimensional code (MOC), which was documented originally by Konikow and Bredehoeft (1978). 
Although extensive testing ofMOCSD indicates that this model will yield reliable calculations for a 
wide variety of field problems, the user is cautioned that the accuracy and efficiency of the model 
can be affected significantly for certain combinations of values for parameters and boundary 
conditions. Development of alternative codes that will optimize the accuracy and efficiency of 
solving the solute-transport equation for a broader range of conditions is planned.

The code for this model will be available for downloading over the Internet from a USGS 
software repository. The repository is accessible on the World Wide Web (WWW) from the 
USGS Water Resources Information web page at URL http://h2o.usgs.gov/. The URL for the 
public repository is: http://h2o.usgs.gov/software/. The public anonymous FTP site is on 
the Water Resources Information server (h2o.usgs.gov or 130.11.50.175) in the /pub/software 
directory. When this code is revised or updated in the future, new versions or releases will be 
made available for downloading from these same sites.

Acknowledgments. The authors appreciate the helpful model evaluation and review, 
comments provided by USGS colleagues H. I. Essaid, W. B. Fleck, and S. P. Garabedian.
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ABSTRACT

This report presents a model, MOC3D, that simulates three-dimensional solute transport 
in flowing ground water. The model computes changes in concentration of a single dissolved 
chemical constituent over time that are caused by advective transport, hydrodynamic dispersion 
(including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, 
and mathematically simple chemical reactions (including linear sorption, which is represented 
by a retardation factor, and decay). The transport model is integrated with MODFLOW, a 
three-dimensional ground-water flow model that uses implicit finite-difference methods to 
solve the transient flow equation. MOC3D uses the method of characteristics to solve the 
transport equation on the basis of the hydraulic gradients computed with MODFLOW for a 
given time step. This implementation of the method of characteristics uses particle tracking to 
represent advective transport and explicit finite-difference methods to calculate the effects of 
other processes. However, the explicit procedure has several stability criteria that may limit the 
size of time increments for solving the transport equation; these are automatically determined by 
the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary 
MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must 
have uniform grid spacing along rows and columns. The report includes a description of the 
theoretical basis of the model, a detailed description of input requirements and output options, 
and the results of model testing and evaluation. The model was evaluated for several problems 
for which exact analytical solutions are available and by benchmarking against other numerical 
codes for selected complex problems for which no exact solutions are available. These test 
results indicate that the model is very accurate for a wide range of conditions and yields 
minimal numerical dispersion for advection-dominated problems. Mass-balance errors are 
generally less than 10 percent, and tend to decrease and stabilize with time.

INTRODUCTION

This report describes and documents a 
computer model (MOC3D) for calculating 
transient changes in the concentration of a 
single solute in a three-dimensional ground- 
water flow field. The calculations require the 
numerical solution of two simultaneous partial 
differential equations. One equation is the 
ground-water flow equation, which describes 
the head distribution in the aquifer. The second 
is the solute-transport equation, which 
describes the solute concentration within the 
flow system. By coupling the flow equation 
with the solute-transport equation, the model 
can be applied to both steady-state and transient 
ground-water flow problems.

The purpose of the simulation model is 
to compute the concentration of a dissolved 
chemical species in an aquifer at any specified 
place and time. Changes in chemical 
concentration occur within a dynamic ground- 
water system primarily because of four distinct 
processes: (1) advective transport, in which 
dissolved chemicals are moving with (are being 
carried by) the flowing ground water; (2) 
hydrodynamic dispersion, in which molecular 
and ionic diffusion and mechanical dispersion 
(related mostly to variations in fluid velocity 
through the porous media) cause the paths of 
dissolved molecules and ions to diverge and 
spread from the average direction of ground-



water flow; (3) fluid sources, where water of 
one composition is introduced into and mixes 
with water of a different composition; and (4) 
reactions, in which some amount of the solute 
is added to or removed from the ground water 
because of chemical, biological, and (or) 
physical reactions in the water or between the 
water and the solid aquifer materials.

The MOC3D model is integrated with 
MODFLOW, the U.S. Geological Survey's 
(USGS) modular, three-dimensional, finite- 
difference, ground-water flow model 
(McDonald and Harbaugh, 1988; Harbaugh 
and McDonald, 1996a and 1996b). 
MODFLOW solves the ground-water flow 
equation, and the reader is referred to the 
documentation for that model and its 
subsequent modules for complete details. In 
this report it is assumed that the reader is 
familiar with the MODFLOW family of codes. 
The numerical solution to the solute-transport 
equation is based on the method-of-character- 
istics, which is advantageous (relative to other 
standard numerical schemes) for transport 
problems in which advection is a dominant 
process. The MOC3D code is based largely on 
MOC, the USGS's two-dimensional, method- 
of-characteristics, solute-transport model 
(Konikow and Bredehoeft, 1978; Goode and 
Konikow, 1989).

This model can be applied to a wide 
variety of field problems. However, the user 
should first become aware of the assumptions 
and limitations inherent in the model, as 
described in this report. MOC3D is offered as 
a basic tool that is applicable to a wide range of 
field problems involving solute transport. 
However, there are some situations in which 
the model results could be inaccurate or model 
operation inefficient. The report includes 
guidelines for recognizing and avoiding these 
types of problems.

The computer program is written in 
FORTRAN, and has been developed in a 
modular style, similar to the MODFLOW

model. At present, the model is not compatible 
with all the modules for MODFLOW that 
describe secondary flow processes or features, 
such as streamflow routing, subsidence, and 
rewetting of dry cells. As assumed by 
MODFLOW, it is also assumed by MOC3D 
that fluid properties are homogeneous and that 
concentration changes do not significantly 
affect the fluid density or viscosity, and hence 
the fluid velocity. Within the finite-difference 
grid used to solve the flow equation in 
MODFLOW, the user is able to specify a 
window or subgrid over which MOC3D will 
solve the solute-transport equation. This 
feature can significantly enhance the overall 
efficiency of the model by avoiding calculation 
effort where it is not needed. However, 
MOC3D also requires that the horizontal (row 
and column) grid spacing be uniform within the 
subgrid, although an expanding or nonuniform 
spacing may be applied outside of the subgrid 
boundaries.

The types of reactions incorporated into 
MOC3D are restricted to those that can be 
represented by a first-order rate reaction, such 
as radioactive decay, or by a retardation factor, 
such as instantaneous, reversible, sorption- 
desorption reactions governed by a linear 
isotherm and constant distribution coefficient 
(Kd). This is somewhat more restrictive than 
the two-dimensional model, MOC, which 
allowed the representation of nonlinear 
isotherms.

The report includes a detailed 
description of the numerical methods used to 
solve the solute-transport equation. The data 
requirements, input format specifications, 
program options, and output formats are all 
structured in a general manner that should be 
compatible with the types of data available for 
many field problems. We have attempted to 
maximize the use of existing MODFLOW 
output modules and styles in developing the 
MOC3D output options and features.



THEORETICAL BACKGROUND 
AND GOVERNING EQUATIONS

Mathematical equations that describe 
ground-water flow and transport processes 
may be developed from the fundamental 
principle of conservation of mass of fluid or of 
solute. A statement of conservation of mass 
(or continuity equation) may be combined with 
a mathematical description of the relevant 
process to obtain a differential equation 
describing flow or transport (see, for example, 
Bear, 1979; Freeze and Cherry, 1979; or 
Domenico and Schwartz, 1990).

Ground-Water Flow Equation

A quantitative description of ground- 
water flow is a prerequisite to accurately 
simulating solute transport in aquifers. A 
general form of the equation describing the 
transient flow of a compressible fluid in a 
heterogeneous anisotropic aquifer may be 
derived by combining Darcy's Law with the 
continuity equation. A general ground-water 
flow equation may be written in Cartesian 
tensor notation as:

where KIJ is the hydraulic conductivity of the 
porous media (a second-order tensor), LT' 1 ; h is 
the hydraulic (or potentiometric) head, L; Ss is 
the specific storage, L' 1 ; t is time, T; W is the 
volumetric flux per unit volume (positive for 
inflow and negative for outflow), T' 1 ; and xi are 
the Cartesian coordinates, L. The summation 
convention of Cartesian tensor analysis is 
implied in eq. 1. Equation 1 can generally be 
applied if isothermal conditions prevail, the 
porous medium deforms only vertically, the 
volume of individual grains remains constant 
during deformation, Darcy's Law applies (and 
gradients of hydraulic head are the only driving

force), and fluid properties (density and 
viscosity) are homogeneous and constant.

In general, the properties of porous 
media vary in space. Although fluid sources 
and sinks may vary in space and time, they 
have been lumped into one term (W) in the 
previous development for convenience in 
notation. Also, at any given location, more 
than one process may be adding or removing 
fluid simultaneously from the system, such as 
well withdrawals, diffuse recharge from 
precipitation, and evapotranspiration. 
However, the solution to the governing 
equation depends only on the net flux from 
sources and sinks as a function of time at each 
location.

If the principal axes of the hydraulic 
conductivity tensor are aligned with the x-y-z 
coordinate axes, the cross-product terms of the 
hydraulic conductivity tensor are eliminated; 
that is, KIJ = 0 when i *j. The ground-water 
flow equation may then be written to include 
explicitly all hydraulic conductivity terms as:

2-\K ^
dy( "dy.

\ f I TT 7 C* / O \ 
-v -**-T7 -v '' "*^n-v V '

dz dt

(1) where Kxx, Kyy , and Kzz are values of 
hydraulic conductivity along the x, y, and z 
coordinate axes, LT' 1 . Equation 2 is identical 
to eq. 1 of McDonald and Harbaugh (1988, p. 
2-1).

Under these same assumptions, 
Darcy's law may be written as:

dx (3a)

(3b)

where q is the specific discharge, LT' 1 .



Average Interstitial Velocity

The migration and mixing of chemicals 
dissolved in ground water will obviously be 
affected by the velocity of the flowing ground 
water. The specific discharge, q^ calculated 
from eq. 3 represents the volumetric flux per 
unit cross-sectional area. Thus, to calculate the 
actual average interstitial velocity of ground 
water, one must account for the actual cross- 
sectional area through which flow is occurring. 
This is usually calculated as follows:

(4)

where V, is the average interstitial velocity (or 
seepage velocity), LT" 1 ; and e is the effective 
porosity (dimensionless) of the porous 
medium. Assuming the same grid alignment as 
stated for eq. 2, it can also be written in terms 
of Darcy's law as:

v, = - (5)

Governing Equation for Solute 
Transport

The principle of conservation of mass 
requires that the net mass of solute entering and 
leaving a specified volume of aquifer during a 
given time interval must equal the accumulation 
or loss of mass stored in that volume during the 
interval. This relation may be expressed 
mathematically in a general governing equation 
for solute transport in three dimensions in an 
incompressible fluid flowing through a porous 
medium as (see Bear, 1979, p. 239-243; and 
Goode and Konikow, 1989):

where e is porosity, C is volumetric concen 
tration (mass of solute per unit volume of fluid, 
ML"3), pt> is the bulk density of the aquifer 
material (mass c>f solids per unit volume of 
aquifer, ML"3), C is the mass concentration of 
solute sorbed on or contained within the solid 
aquifer material (mass of solute per unit mass 
of aquifer material, MM" 1 ), V is a vector of 
interstitial fluid velocity components (LT" 1 ), D 
is a second-rank tensor of dispersion 
coefficients (L2^ 1 ), W is a volumetric fluid 
sink (W<0) or fluid source (Wi>0) rate per unit 
volume of aquifer (T" 1 ), C' is the volumetric 
concentration in the sink/source fluid (ML"3), 
and A is the decay rate (T" 1 ).

The decay term in eq. 6 typically 
represents radioactive decay of both the free 
and sorbed solute. A radioactive decay rate is 
usually expressed as a half-life (^2)- The 
half-life is the time required for the 
concentration to decrease to one-half of the 
original value, and is related to the decay rate 
as:

_ (In 2)
(7)

(6)

In limited cases, the decay term can also 
adequately represent chemical decomposition or 
biodegradation. However, if in these latter 
cases there is also a sorbed phase present, it 
must be assured that the decay process occurs 
at the same rate for both the dissolved and 
sorbed phases, an assumption that is true for 
radioactive decay.

The concentration in the fluid leaving 
the aquifer at fluid sinks is commonly assumed 
to have the same concentration as the fluid in 
the aquifer (that is, C = C for W<0). The 
summation for the sink/source term allows for 
multiple fluid sinks and sources having 
different associated source concentrations. The 
assumption of fluid incompressibility means 
that all changes in fluid storage are represented 
by changes in porosity in the three-dimensional 
transport equation.



Equation 6 contains velocity divergence 
terms that can be eliminated (Konikow and 
Grove, 1977). This removes several 
derivatives from the transport equation, which 
may reduce errors during the numerical 
solution, as well as removing the direct effect 
of fluid sinks from the governing equation. 
The accumulation and divergence terms in eq. 6 
can be expanded:

dt
= { 

dt dt
(8)

Substituting these expressions into eq. 6, 
adding (WC-WC) = 0, and rearranging terms 
yields

.ac
'&

3(pfc C) 
3*

dC

c = 0. (10)

The last term on the left side of eq. 10 contains 
a bracketed term, which is an expression of 
fluid continuity. If fluid continuity is satisfied, 
then the bracketed term is zero, leaving:

+
3(pfo C) __ dC.....r° ' _L v.

d f n *0 fD-v -\
OX;

\ J J

= 0. (11)

This form of the governing equation can be 
designated as "flow-equation-removed" and is 
advantageous, though not required, for the 
method-of-characteristics numerical solution 
because the divergence of velocity does not 
appear. Under these assumptions, including

incompressible fluid, the porosity is not 
constant unless the flow system is in a steady- 
state equilibrium (Goode, 1990b). Therefore, 
we update the porosity to account for elastic 
changes in aquifer volume caused by transient 
changes in hydraulic head using the method 
proposed by Goode (1990b). Testing and 
evaluation of this approach for incorporation 
into MOC3D is documented by Goode and 
Konikow (1991).

The governing equation can be further 
simplified for the case of reversible, 
instantaneous, equilibrium sorption of the 
solute governed by a linear isotherm. For this 
case, the sorbed concentration, C, is given by:

"r=KjC (\2\ ^ ^d^ \ 1 ^)

where K^ is the sorption coefficient, or 
distribution coefficient, which is assumed to be 
constant in time. The accumulation in the 
sorbed phase can be expressed as:

= K,
dt

(13)

if it is assumed that the aquifer bulk density is 
constant in time. Substituting eqs. 12 and 13 
into eq. 11 gives:

£ I 3f
/

1 +Mi 1 = 0. (14)

The terms controlling sorption can be combined 
into a single parameter the retardation factor 
(/?/), which is defined as:

o =
7

(15)

Rf may be slightly variable in time if the 
porosity changes due to transient flow effects. 
We ignore this possible minor variability and



assume that the retardation factor is constant in 
time. Substituting eq. 15 into eq. 14 yields:

dCac y_
dt R dxt dxt J J

eR,
(16)

This is the form of the governing equation 
solved in MOC3D.

We convert eq. 16 from an Eulerian 
framework to a Lagrangian one through the 
material derivative, yielding a simpler form of 
the governing equation (for example, see 
Konikow and Bredehoeft, 1978, p. 6) for the 
concentration of a reference point moving with 
the retarded velocity (V/R/):

(17)

Although this concentration is now that of a 
moving point in space, we retain the same 
symbol, C, as a matter of convenience.

The mathematical solution of the 
governing equations requires the specification 
of certain initial and boundary conditions. 
Because the transport equation is always solved 
for transient conditions, the initial concentration 
must be specified throughout the domain within 
which solute transport occurs (which may be 
equal to or smaller than the domain in which 
the flow equation is applied and solved).

The specification of a constant- 
concentration boundary condition at one or 
more nodes for the transport equation would be 
analogous to the use of a constant-head 
boundary condition for the flow equation. 
Although this is mathematically and 
numerically feasible, it is rare that a field 
environment would be consistent with such a

constant-concentration condition. Therefore, 
we have not implemented the use of this type of 
boundary condition in this model. Instead, 
input concentrations must always be associated 
with a fluid flux.

For the transport equation, two 
specified mass-flux boundary conditions are 
used in this model. At no-flow boundaries for 
the flow equation, the solute mass flux is also 
required to be zero. The second type of 
specified mass boundary condition is applied 
when the transport subdomain is within a flow 
domain. That is, the boundaries of the 
transport subdomain do not coincide with the 
flow domain boundary. In this case, solute 
mass movement into and out of the transport 
subdomain is assumed to be by advection only; 
no dispersive solute flux can occur across a 
subdomain boundary, which is mathematically 
equivalent to a zero gradient in concentration 
across the boundary.

The effects of all other external fluid 
sinks and sources on transport are incorporated 
through the fluid source/sink terms (W) in eq. 
17. For a fluid source (W>0), denoted W+, 
C' in eq. 17 is the specified source 
concentration of the incoming fluid. For a fluid 
sink (W<0), denoted W_, C in eq. 17 is 
assumed to equal the concentration in the 
aquifer, C, at the location of the sink. In this 
case W(C -C) = (W_)(C- C) = 0. However, 
if the fluid sink is associated with evaporation 
or transpiration, it is assumed that the fluid 
discharge mechanism will exclude dissolved 
chemicals; for this special case C" = 0 and 
W(C -C) = (WL)(0 - C) , which results in an 
increase in concentration at the location of the 
fluid sink.

Dispersion Coefficient

The third term in eq. 16 represents the 
change in concentration due to hydrodynamic 
dispersion. This expression is analogous to



Pick's Law describing diffusive flux. This 
Fickian model assumes that the driving force is 
the concentration gradient and that the 
dispersive flux occurs in a direction from 
higher concentrations towards lower 
concentrations. The dispersion coefficient may 
be related to the velocity of ground-water flow 
and to the nature of the aquifer using 
Scheidegger's (1961) equation:

V Vm n

M
/j,m,n=l,2,3 (18)

where (Xijmn is a component of the dispersivity 
tensor (L), a fourth rank tensor, Vm and Vn are 
components of the velocity vector in the m and 

directions, respectively, and I VI is then
magnitude of velocity:

\v\ = 'I + Vl + K2 . (19)

Scheidegger (1961) further shows that 
for an isotropic aquifer the dispersivity tensor 
can be defined in terms of the longitudinal and 
transverse dispersivities, (XL and (XT- This 
yields two dispersion coefficients oriented with 
the direction of flow, the longitudinal 
dispersion coefficient, DL, and the transverse 
dispersion coefficient, D? :

DL =aL \V\; = aT \V\. (20)

The directional dispersion coefficients 
in the x, y, and z coordinates are derived by a 
transformation from the L-T coordinates. 
Additionally, an isotropic diffusion coefficient, 
Dm , can be included to account for molecular 
diffusion. The diffusion coefficient includes 
the effects of tortuosity. These manipulations 
yield the components of the dispersion tensor, 
D, which includes diffusion:

(21)

where 8ij = 1 if i = j and Sy = 0 if i ^ j. This 
short-hand notation can be written explicitly as:

YL \v\

Yl
M

YL 
M

v v
\v\ \v\

v v\v\ T M

(22a)

(22b)

rr + ar-rr + Ai, (22c) 
\V\ T \V\ m

(22d)

V V

(22f)

A number of field studies have 
indicated that transverse spreading in the 
vertical direction is much smaller than 
transverse spreading in the horizontal direction 
(for example, see Robson, 1974; Robson, 
1978; Garabedian and others, 1991; and Gelhar 
and others, 1992). To allow modeling of this 
observed spreading pattern, Burnett and Frind 
(1987) made an ad hoc modification to the 
transverse terms in the preceding expressions, 
which we incorporate into MOC3D:

YLIL M

vl

v2
f  Z-

\v\

YL ~H M

vl

YL 
M

v?

(23a)v /

(23b)v /

v
7\v\

v-
\v\-T7 + aT -+- + Dm (23c)

(23d)
M



( \n = n = (a T - ar }yz zy \ L Tv )
VV

(23e)

(23f)

where aT is the horizontal transverse 
dispersivity and aT is the vertical transverse 
dispersivity. If aTfj = aTy , then eq. 23 
reduces to eq. 22.

Review of Assumptions

A number of assumptions have been 
made in the development of the previous forms 
of the governing equations. Following is a list 
of the main assumptions that must be carefully 
evaluated before applying the model to a field 
problem.
1. Darcy's law is valid and hydraulic-head 
gradients are the only significant driving 
mechanism for fluid flow.
2. The hydraulic conductivity of the aquifer 
system is constant with time. Also, if the 
system is anisotropic, it is assumed that the 
principal axes of the hydraulic conductivity 
tensor are aligned with orthogonal frame of 
reference, so that the cross-product terms of the 
hydraulic conductivity tensor are eliminated.
3. Gradients of fluid density, viscosity, and 
temperature do not affect the velocity 
distribution.
4. No chemical reactions occur that affect the 
fluid or aquifer properties.
5. The dispersivity coefficients are constant 
with time, and the aquifer is isotropic with 
respect to longitudinal dispersivity.

As noted by Konikow and Bredehoeft 
(1978), the nature of a specific field problem 
may be such that not all of these underlying 
assumptions are valid. The degree to which 
field conditions deviate from these assumptions 
will affect the applicability and reliability of the

model for that problem. If the deviation from a 
particular assumption is significant, the 
governing equations and the numerical code 
will have to be modified to account for the 
appropriate processes or factors.

NUMERICAL METHODS

Because aquifers are heterogeneous and 
have complex boundary conditions, exact 
analytical solutions to the governing equations 
can not be obtained directly. Instead, 
numerical methods are used, in which the 
continuous variables of the governing 
equations are replaced with discrete variables 
that are defined at grid blocks (or cells or 
nodes). Thus, the continuous differential 
equation, which defines hydraulic head or 
solute concentration everywhere in the system, 
is replaced by a finite number of algebraic 
equations that defines the hydraulic head or 
concentration at specific points. This system of 
algebraic equations generally is solved using 
matrix techniques.

However, numerical methods yield 
only approximate (rather than exact) solutions 
to the governing equation (or equations); they 
require discretization of space and time. The 
variable internal properties, boundaries, and 
stresses of the system are approximated within 
the discretized format. In general, the finer the 
discretization, the closer the numerical solution 
will be to the true solution.

The notation and conventions used in 
this report and in the MOC3D code to describe 
the grid and to reference (or to number) nodes 
are described in figs. 1-2. The indexing 
notation used here is consistent with that used 
in the FORTRAN code for MOD FLOW by 
McDonald and Harbaugh (1988), although not 
necessarily the notation used in the text of their 
report. Our indexing notation maintains 
conformity between the text of this report and 
the FORTRAN code in MOC3D, and the index



order corresponds to an x,y,z sequence, which 
is standard in numerical models. However, 
our notation differs from that used in some 
other ground-water models in that the x- 
direction is indexed by "j" and increases from 
left to right along a row to indicate the column 
number. Our use of Ax and Ay is synonymous 
with the use of Ar and Ac, respectively, by 
McDonald and Harbaugh (1988). The y- 
direction is indexed by "i" and increases from 
the top of the grid to the bottom within a 
column to indicate the row number. Thus, in a 
map view of any one horizontal layer, as 
illustrated in fig. 1, the node representing a cell 
in the first row and first column of the grid 
would lie in the upper left corner of the grid. 
The z-direction represents layers and is indexed 
by "k." As indicated in fig. 2, the first layer 
(k = 1) in a multilayer grid would be the top 
(or highest elevation) layer. The saturated 
thickness of a cell (£/,/,&) is equivalent to Az.

Ax:-

U)I
QC

"t

COLUMNS

EXPLANATION

© Node of finite-difference cell

Ax: = Ar: = cell dimension in row direction

Ay i = Aci = cell dimension in column direction

Figure 1. Notation used to label rows, columns, 
and nodes within one layer (/c) of a three-dimen 
sional, block-centered, finite-difference grid for 
MOC3D.
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Figure 2. Representative three-dimensional grid 
for MOC3D illustrating notation for layers.

Ground-Water Flow Equation

A numerical solution of three- 
dimensional ground-water flow equation is 
obtained by the MODFLOW code using 
implicit (backward-in-time) finite-difference 
methods. The model was coded in FORTRAN 
in a modular style to allow and encourage the 
development of additional packages or modules 
that can be added on or linked to the original 
code. Many such packages or modules, which 
typically allow additional ground-water 
processes, hydrogeological features, solution 
algorithms, or input/output options to be 
represented or used, have been documented 
since MODFLOW was first released. Most of 
these are summarized by Appel and Reilly 
(1994).

MODFLOW is based on use of a block- 
centered finite-difference grid that allows 
variable spacing of the grid in three 
dimensions. Flow can be steady or transient. 
Layers can be simulated as confined, 
unconfined, or a combination of both. Aquifer 
properties can vary spatially and hydraulic 
conductivity (or transmissivity) can be 
anisotropic. Flow associated with external 
stresses, such as wells, areally distributed 
recharge, evapotranspiration, drains, and 
streams, can also be simulated through the use 
of specified head, specified flux, or head- 
dependent flux boundary conditions.



MODFLOW offers several options to solve the 
implicit finite-difference equations, including 
the Strongly Implicit Procedure (SIP), Slice- 
Successive Overrelaxation (SSOR) methods, or 
Preconditioned Conjugate-Gradient matrix 
solvers (for example, Hill, 1990). Successful 
use of MOC3D, which is programmed as a 
module to MODFLOW, requires a thorough 
familiarity with the use of MODFLOW. 
Comprehensive documentation of MODFLOW 
is presented by McDonald and Harbaugh 
(1988), Harbaugh and McDonald (1996a and 
1996b), and the various reports for additional 
implemented modules.

Average Interstitial Velocity

Because advective transport and 
hydrodynamic dispersion both depend on the 
velocity of ground-water flow, the solution of 
the transport equation requires knowledge of 
the velocity (or specific discharge) field. 
Therefore, after the head distribution has been 
calculated for a given time step or steady-state 
flow condition, the specific discharge across 
every face of each finite-difference cell within 
the transport subgrid is calculated next.

The specific discharge components are 
calculated for each face using a finite-difference 
form of eq. 3. For example, the specific 
discharge in the horizontal plane in the x- 
direction at the block interface between cells 
j,i,k and 7 + 1, i, fc is (after McDonald and 
Harbaugh, 1988):

(24)= -K.
Ax

where Kxx^+l/2iifk ^ is the interblock hydraulic 
conductivity in the jc-direction on the forward 
face of the cell and the hydraulic gradient is 
based on implicitly calculated heads at the 
adjacent nodes. (Note that the interblock

hydraulic conductivity is commonly defined by 
the harmonic mean, but in MODFLOW the user 
can specify alternative methods for calculating 
the interblock hydraulic conductivity in the 
Block-Centered Flow [BCF] package.)

The seepage velocity at any point within 
a cell must be defined to represent advective 
transport. It is calculated at a point of interest 
within a finite-difference cell based on the 
interpolated estimate of specific discharge at 
that point divided by the effective porosity of 
the cell in which the point is located (see eqs. 
4-5). The interpolation methods are discussed 
later in the section on "Particle Tracking."

Because the velocity is one of the most 
important factors controlling solute transport, it 
is necessary to examine closely the calculated 
velocity field to understand the patterns and 
rates of solute spreading. Therefore, the 
MOC3D model offers the user several options 
to output the velocity data. These options are 
described in Appendix B. The ;c-, y-, and z- 
components of the velocity vector at the nodes 
of the finite-difference cells can be computed 
with equivalent orders of accuracy for all three 
components at a single location. For example, 
the velocity in the jc-direction at node (j,i,k) 
would be computed as

'==^-. (25)

Analogous expressions are used to compute the 
velocity components in the y- and z-directions.

Note that the specific discharge 
components themselves are computed on cell 
faces with a higher order of accuracy than are 
the velocity components at the nodes. For 
example, qx(j+\/2,i,k) * s based on the head 
difference over Ax', whereas Vx at the node is 
based on the head difference over 2Ax. 
However, an estimate of Vy or Vz at the same 
location (j + l/2,i,k) would have to be at a 
lower order of accuracy (for example, 2AxAy 
for Vy). Therefore, the more accurate estimates
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on cell faces are used in the model as the basis 
for interpolation of particle velocities, but the 
velocities at nodes are written in the output files 
either to enable direct inspection by the user or 
to facilitate postprocessing with visualization 
software.

Solute-Transport Equation

The solute-transport equation is, in 
general, more difficult to solve accurately using 
numerical methods than is the ground-water 
flow equation, largely because the mathematical 
properties of the transport equation vary 
depending upon which terms in the equation 
are dominant in a particular system. Where 
solute transport is dominated by advective 
transport, as is common in many field 
problems, then the transport equation 
approximates a hyperbolic type of equation 
(similar to equations describing the propagation 
of a wave or of a shock front). In contrast, 
where a system is dominated by dispersive 
fluxes, such as might occur where fluid 
velocities are relatively low and aquifer 
dispersivities are relatively high, then the 
transport equation becomes more parabolic in 
nature (similar to the transient ground-water 
flow equation). To further complicate matters, 
because system properties and fluid velocity 
may vary significantly, the dominant process 
(and the mathematical properties of the 
governing equation) may vary from point to 
point and over time within the same domain.

Dispersion-dominated solute-transport 
problems (and parabolic equations in general) 
are quite amenable to accurate and efficient 
solution using standard finite-difference and 
finite-element numerical methods. However, 
in solving advection-dominated transport 
problems, in which a relatively sharp front (or 
steep concentration gradient) is moving through 
a system, it is numerically difficult to preserve 
the sharpness of the front. In such cases, 
numerical solutions often will include either

erroneous oscillations (overshoot and 
undershoot) or calculate a greater dispersive 
flux than would occur by physical dispersion 
alone or than would be indicated by an exact 
solution of the governing equation (for 
example, see Finder and Gray, 1977). That 
part of the calculated dispersion introduced 
solely by the numerical solution algorithm is 
called numerical dispersion.

Method of Characteristics

The method of characteristics was 
developed to solve hyperbolic differential 
equations. A major advantage is that the 
method minimizes numerical dispersion (or 
even eliminates it in limited cases) (Garder and 
others, 1964; Finder and Cooper, 1970; 
Reddell and Sunada, 1970; Bredehoeft and 
Finder, 1973; Konikow and Bredehoeft, 1978; 
Zheng, 1990). The approach taken by the 
method of characteristics is not to solve eq. 16 
directly, but rather to solve an equivalent 
system of ordinary differential equations. 
Equation 16 can be rearranged to obtain:

d£
dt

1 d

eR<

dc

-AC.

Vi dC 
Rf dxt

(26)

Equation 26 describes the change in 
concentration over time at fixed reference 
points within a stationary coordinate system, 
which is referred to as an Eulerian framework. 
An alternative perspective is to consider 
changes in concentration over time in 
representative fluid parcels as they move with 
the flow of the fluid past fixed points in space. 
This, in effect, is a moving coordinate system, 
which is referred to as a Lagrangian 
framework. We convert eq. 16 from an 
Eulerian framework to a Lagrangian one 
(essentially, a framework of a moving grid)
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through the material derivative. The material 
derivative of concentration with respect to time, 
dC/dt, describes the change in concentration in 
a parcel of water moving at the average 
interstitial velocity of water; it may be defined 
for a three-dimensional system as:

dC_dC dCdx dCdy dC dz~^~~~^~ + ~^ "i""1""^ T""1"^! 7~' 
dt dt dx dt dy dt dz dt

The last three terms on the right side include the 
material derivatives of position, which are 
defined by the velocity in the x-, y-, and z- 
directions. We then have:

dt Rf

dt Rf

dt R

(28)

(29)

(30)
f

and a simpler form of the governing equation 
(for example, see Konikow and Bredehoeft, 
1978, p. 6) for the concentration of a reference 
point moving with the retarded velocity (V/R/) 
is obtained by substituting the right sides of 
eqs. 26 and 28-30 for the corresponding terms 
in eq. 27:

dC 1 d n dC - = -   £Dij-^ 
dt £Rf dX; \ dX;

eR<
(31)

Although this concentration is now that of a 
moving point in space, we retain the same 
symbol, C, as a matter of convenience.

The solutions of the system of 
equations comprising eqs. 28-31 may be given 
as x = x(t), y = y(t), z = z(t), and C = C(t), 
and are called the characteristic curves of eq. 
26. Given solutions to eqs. 28-31, a solution 
to the original partial differential equation may

be obtained by following the characteristic 
curves. This may be accomplished by 
introducing a set of moving points (or reference 
particles) that can be traced within the 
stationary coordinates of a finite-difference 
grid. Each particle corresponds to one 
characteristic curve, and values of x, y, z, and 
C are obtained as functions of t for each 
characteristic (Carder and others, 1964). Each 
point has a concentration and position 
associated with it and is moved through the 
flow field in proportion to the flow velocity at 
its location (see fig. 3). Equation 31 can be 
solved using any one of several approaches, 
including random-walk methods (for example, 
see Prickett and others, 1981; and Engineering 
Technologies Associates, Inc., 1989). We

EXPLANATION

Flow line and direction of flow 

  Computed path of particle 

Node of finite-difference cell 

New location of particle 

Initial location of particle

Figure 3. Part of a hypothetical finite-differ 
ence grid showing relation of flow field to 
movement of points (or particles) in method- 
of-characteristics model for simulating solute 
transport (modified from Konikow and Brede 
hoeft, 1978).

12



choose to solve eq. 31 using explicit finite- 
difference approaches because of its efficiency 
and relative simplicity. However, as noted by 
Reddell and Sunada (1970) and Konikow and 
Bredehoeft (1978), this approach also requires 
the consideration of stability criteria, which will 
be discussed in the section "Stability and 
Accuracy Criteria." In some cases, the 
efficiency may be adversely affected because of 
restrictions imposed by the stability criteria.

As noted by Konikow and Bredehoeft 
(1978), the processes of advection, dispersion, 
mixing, and reactions are occurring 
continuously and simultaneously. Therefore, 
eqs. 28-31 should be solved simultaneously, 
but for practical reasons, they are solved 
sequentially. However, the results will be 
sensitive to the order in which they are solved 
because the change in concentration due to 
dispersion depends on the concentration 
gradient, and the concentration gradient at any

location may change significantly because of 
advection during a time increment. This is 
illustrated in fig. 4. As the position of a 
concentration front or breakthrough curve 
advances with time, say from time t at the 
beginning of a time increment, to time t+l at 
the end of a time increment, the concentration 
gradient at any particular location or reference 
point is continuously changing. For example, 
in fig. 4 the concentration gradient at the 
location where the relative distance equals 0.4 
is relatively steep at time f, as indicated by the 
slope of the curve labeled O. However, if the 
solute migrated in the direction of flow to a 
new location due to advection only without 
being subjected to any dispersive flux, as 
indicated by the curve labeled Ct+adv, then the 
concentration gradient at the same point in 
space would be much smaller. If the change in 
concentration caused by dispersion were 
computed by solving eq. 31 first in the

0.0 0.4 0.6 

RELATIVE DISTANCE

0.8 1.0

Figure 4. Representative change in breakthrough curve from time level t to f+1. Note that 
concentration changes are exaggerated to help illustrate the sequence of calculations. Curve 
for Ct+adv represents the concentration distribution at time f+1 due to advection only. 
(Modified from Konikow and Bredehoeft, 1978.)
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sequence and using the spatial concentration 
gradients at the beginning of a time step, the net 
results would be different from those that 
would be computed from solving eq. 31 last in 
sequence and using concentration gradients 
after advection. Sensitivity to the sequence of 
solving the characteristic equations is 
eliminated by solving eq. 31 using 
concentration gradients based on the average of 
the concentrations at each node before and after 
advection. This effectively gives equal weight 
to the concentration gradients before and after 
advection while computing the solute flux due 
to dispersion. The averaged concentrations, 
designated as Cy- 1- ^, are calculated as:

-; ; f, J,l,K (32)

where Cj£jfv is the concentration at the new 
time level after advection alone.

Particle Tracking

Advection in flowing ground water is 
simulated by particle tracking. The other terms 
in the governing equation dispersion, 
sources, and decay are accounted for by 
adjusting the concentrations associated with 
each particle. The concentration changes 
caused by dispersion and fluid sources are 
computed in the fixed-in-space finite-difference 
grid, whereas concentration changes caused by 
decay are calculated directly on the particles, as 
described below. Initial particle locations are 
defined through model input, and subsequent 
particle positions are integrated in time using 
the spatially and temporally variable velocity 
field.

The fluid velocity is derived from a 
block-centered finite-difference solution of the 
three-dimensional flow equation (McDonald 
and Harbaugh, 1988). The components of the 
velocity vector are approximated by difference 
expressions at interfaces between adjacent

blocks occupying three-dimensional space (see 
eq. 24). In the quasi-three-dimensional 
approach taken by McDonald and Harbaugh 
(1988), horizontal fluxes are computed using 
the transmissivity of each layer and the vertical 
fluxes are computed using the vertical 
conductance, which is the vertical hydraulic 
conductivity divided by the vertical distance 
between layer centers. Thus, the components 
of the specific discharge vector can be 
represented by:

-T
Ax

  T
"

yy(j,i+l/2,k) Ay

(33a)

(33b)

(33c)

Note that in eqs. 33a-b, a value of b is 
not explicitly calculated on the face of a cell. 
Instead, we calculate a value for the product bq 
on the face using a mean transmissivity. 
Having computed specific discharge 
components at block interfaces, spatial 
interpolation is used to estimate the specific 
discharge and velocity at the locations of all 
particles (using values of b and £ for the 
particular cell in which the particle of interest is 
located).

MOC3D uses either linear or bilinear 
spatial interpolation, as specified by the user. 
These two alternatives are described below in 
the sections on interpolation. Depending on the 
velocity interpolation method chosen, changes 
in particle position are computed either 
explicitly for bilinear interpolation, or semi- 
analytically for linear interpolation. The 
integration of particle position in time is also 
described in the sections on interpolation.
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A moving point in a ground-water flow 
system will change velocity as it moves due to 
both spatial variation in velocity and temporal 
variations during transient flow. During a flow 
time step, advection is determined from 
velocities computed at the end of the flow time 
step. Temporal changes in velocity are 
accounted for by a step change in velocity at the 
start of each new flow time step. After the 
flow equation is solved for a new time step, 
specific discharges are recomputed on the basis 
of the new head distribution, and the movement 
of particles during this flow time step is based 
only on these specific discharges.

Linear interpolation and semi-analytic 
integration

Linear interpolation of specific 
discharge is formally consistent with the block- 
centered finite-difference flow solution in that 
the governing flow equation is satisfied locally 
within each cell (Goode, 1990a). In this case, 
each velocity component is linearly interpolated 
in the direction of the component of interest. 
The solute velocity at any particular point or 
location within a cell, which may be retarded 
with respect to the average interstitial velocity 
of water, is:

-1

where &c, Sy, and 8z are the spatial weights for 
interpolation. The spatial weights are given by:

Ax

soy =
Ay

Az

(35a)

(35b)

(35c)

where the subscript p indicates the particle 
number and Sx, Sy, and 8z can range from 0.0 
to 1.0.

Vx at p is calculated from eqs. 34a and 
3 5a. If a layer has a uniform porosity and 
thickness, and the solute were nonreactive, 
then V^ at p can be calculated directly from the 
following simplification of eq. 34a as:

(34c)

_}/2M} . (36)

The linear interpolation scheme is 
illustrated for Vx in fig. 5, which shows a 
particle p located in cell y,/,&. Vx at p depends 
on the relative position within the cell in the re 
direction only, and does not vary with changes 
in particle position in the y- or z-directions 
within the cell.

For simplicity, a dimensionless local 
coordinate is used to facilitate particle tracking. 
Internally to the program, the particle 
coordinates are represented, for example, in the 
^-direction by:

xp =(j + xp )Ax (37)

where j is the column index of the block where 
a particle is located and -0.5<Jcp <0.5 is the 
particle position in the ^-direction relative to the
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Figure 5. Spatial weights used in linear interpolation method to estimate Vx at location of a 
particle in cell j,i,k.

node (that is, xp =(xp /Ax}- y). The value 
j+ xp is stored in the model and, for example, 
ranges from 4.5 to 5.5 for particles within 
column 5. Thus, the spatial weights can be

represented in terms of the particle positions 
relative to the node, and the velocity at the 
location of a particle is estimated using linear 
interpolation as:

[(Rf } k ( £b^j,i, 

) = [(Rf)k ( £)j,i,

-1

Assuming that the velocity is constant 
in time during a time increment for solving the 
transport equation, the particle position can be 
integrated analytically within each cell (Goode, 
1990a). The integration of particle position is 
accomplished in a multi-step procedure. First, 
the velocity components in each direction at the 
starting position of the particle are computed 
using eqs. 38a-c. Then the gradient of velocity 
within the cell for each direction is computed 
from the last term of eqs. 38a-c and

(38a> 

(38b)

denominator terms appropriate for the particular 
direction. For example, the velocity gradient in 
the ^-direction, gx, is calculated by dividing the 
last term of eq. 38a by the product of the 
retardation factor, porosity, saturated 
thickness, and grid spacing in the ^-direction, 
as:
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It is implicit in the linear interpolation approach 
that

dy dz
n= 0. (40)

Given the solutions to eqs. 38a-c and 
39, the time of travel to each cell boundary, in 
the x-, y-, and z-directions, can be computed 
analytically. For example, the time for a 
particle to reach or cross the ^-boundary, Atx , 
is given by:

8
In

V.x,0
(41)

where V^o is the *-velocity at the starting 
location of the particle, *o is the initial position 
of the particle, and xe is the ^-coordinate of the 
exit face of the cell. By definition, if the 
starting velocity is positive, then the only 
possible ^-boundary for the particle to exit is 
that in the positive ^-direction. If gx is zero, or 
practically zero (that is, less than 10'20), then 
Vx is assumed to be uniform in space and 
constant during the particle motion, and the 
travel time to the exit boundary can be 
computed directly from:

"V .__ "V

(42)
Vx,0

The travel time for a particle to exit the 
cell, Ate , is the minimum of Atx , Aty , and 
Atz . If the cell exit travel time ( Ate ) is greater 
than the remaining time for this time increment, 
then the ending particle position is within the 
same cell that it started during that time 
increment, and the particle coordinates at the 
end of the time increment are determined from 
the velocity at the initial location, the rate of 
change in velocity in the direction of 
movement, and the length of that time 
increment. For example, the new ^-coordinate 
at the end of the move would be:

where the subscript "1" denotes the end of the 
particle movement for the time increment. If 
gx , the gradient in ^-velocity, is zero or 
practically zero (again, less than 10~20), then 
the ending coordinate is simply:

On the other hand, if the time to reach any 
cell boundary is less than the remaining time 
for this time increment (At), then the particle 
exits the cell during the time increment. In this 
case, the particle exits the cell on the boundary 
for the direction having the minimum travel 
time (Atx , Atyt or Atz ). For example, if Atx 
is less than Aty , Atz , and At, then the particle 
leaves the cell by crossing the ;c-cell boundary 
after the "cell exit travel time" ( Ate = Atx ) has 
elapsed.

The particle position must be evaluated 
when it leaves a cell during a time increment. 
By definition, the position in the direction of 
the exit face is known a priori. The other two 
coordinates are computed by inserting the cell 
exit travel time, Ate , into eq. 43 instead of the 
entire time increment, At. For example, for a 
particle that leaves a cell on the Xj+2/2 face, the 
y- and z-coordinates of that particle where it 
crosses the cell face are given by:

y\ = (45a)

(45b)

If the gradient terms in eq. 45a or eq. 45b are 
zero, or essentially zero, then the y and z 
equivalents of eq. 44 are used with At = Ate .

Also, if Ate < At, the time remaining in 
the time increment, At' , is the original time 
increment minus the cell exit travel time:

A? = At-At.. (46)

V,
Xl =XQ

ft

\\ (43) Subsequent particle movement is computed as

17



outlined above, but with a reduced time interval 
( At'} for its path in the new cell, until the entire 
original time increment (At) is exhausted. Note 
that in some cases, such as when a particle is 
located near a corner of a cell at the start of a 
move, it is possible that during that particular 
time increment this sequence of calculations 
may have to be repeated a third time before the 
move is completed for that particle.

Note that linear interpolation yields a 
discontinuous velocity field (Goode, 1990a). 
Equations 39 and 40 show that velocity 
components vary as a function of distance only 
in the direction of that particular component of 
the velocity vector. Thus, when linear 
interpolation is used, specific discharge and 
velocity components change abruptly at block 
or cell interfaces parallel to the direction 
indicated by that component, even for 
homogeneous aquifers. For example, the 
component of flux in the jc-direction, qx , is 
continuous at cell interfaces in the jc-direction 
(at j-l/2,i,k andy+l/2,/,fc), but it can change 
abruptly at the other four cell faces that are 
perpendicular to the y and z axes, even when K 
is uniform.

Bilinear interpolation and explicit 
integration

In a homogeneous aquifer the velocity field 
would be continuous and smoothly varying, 
except at the locations of strong sources and 
sinks, unlike the discontinuous velocity field 
calculated using linear interpolation. Bilinear 
interpolation generates such a continuous 
specific discharge field, as shown by Goode 
(1990a) for a case of two-dimensional flow. 
MOC3D includes an option to use bilinear 
interpolation in the x-y (horizontal) plane to 
determine the jc- and y-velocity components, 
which then will be continuous and smoothly 
varying in the x-y plane. Because of 
stratigraphic layering, many aquifer systems 
are more heterogeneous in the vertical direction 
than within a horizontal plane. Hence, specific 
discharge and velocity might be more often 
expected to change abruptly (rather than 
smoothly) in the vertical direction. Therefore, 
MOC3D always uses linear interpolation for 
calculating the z-component of particle velocity.

Following Konikow and Bredehoeft (1978) 
and Goode (1990a), the jc- and ^-velocity 
components are bilinearly interpolated in the 
horizontal plane by:

;,* ,*] {I1 ~ 

i/2,f*,*) + (x

and

Vy(P) =
-1

where the local particle coordinates (xp and 
yp } are as defined previously in eq. 37, and the 
interpolation factors (F,-) and adjacent node 
locators 0'* and /*) are defined as:

(47)

(48)

Fy = 0.0

Fy=yP /* = /+!

for yp <0 (49a) 

for yp =0 (49b) 

for yp >0 (49c)
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and

FX=-XP j* = 7-1

Fx = 0.0

= xr j* = 7+1

for xp < 0 (49d) 

for jcp = 0 (49e) 

for jL>0.(49f)

The bilinear interpolation scheme to 
estimate V* and V-y is illustrated in fig. 6, 
which shows a particle /? located in cell j,i,k. 
Vx and Vy at /? depend on the relative position 
within the cell in both the jc- and y-directions. 
Vx and Vy at/? are calculated from eqs. 47 and 
48 using the weighting factors defined in eqs. 
49a-f. Note that ( xp + 0.5) of eq. 47 equals Sx 
in fig. 6, and (y + 0.5) of eq. 48 equals 8y in 
fig. 6. Note that the interpolated values of Vx 
and Vy at p are determined using specific 
discharge values at differing adjacent cell faces.

Also, if the cell face adjacent to the

quadrant containing a particle of interest 
represents a no-flow boundary, then the 
component of the flow parallel to that boundary 
should not change in the area of the half-cell 
between the node and that face. Therefore, in 
such a case, linear interpolation is used within 
that half-cell area for that component only. For 
example, in fig. 6, if cell (/,/+!,£) were a no- 
flow cell, then Vx at p would be estimated by 
linear interpolation between (j-l/2,i,k) and 
(j+l/2,i,k). Vy at/? would still be estimated 
using bilinear interpolation, as shown in fig. 6, 
properly recognizing that Vy = 0.0 at 
(M+l/2,*).

Bilinear interpolation yields velocity 
components that depend on both the x- and y- 
positions, hence the semi-analytic integration of 
position used above is not applicable. For 
bilinear interpolation, particle movement is 
computed explicitly using the velocity of the

EXPLANATION

Area of influence for 
interpolating Vx at particle p

Area of influence for 
interpolating Vy at particle p

Component of velocity vector

o Node of finite-difference cell 

o Initial location of particle

Figure 6. Interpolation factors used in bilinear interpolation method to estimate horizontal 
components of velocity, Vx ar\6 Vy, at the position of a particle located in the southeast quadrant of 
cell j,i,k.
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particle at its starting position and the length of 
the time increment:

Vx>0At (50a)

(50b)

The times required for a given particle to reach 
the jt- and v-faces of the cell in which it is 
located are computed using:

4f,=
V.;c,0

and

V,

(51)

(52)

For the z-direction, all factors are computed as 
described previously in eqs. 34-45.

Also, following the same procedure as 
implemented in the previously described linear 
interpolation scheme, a particle that would 
cross a cell boundary during a move interval 
(or transport time increment) is temporarily 
stopped at whichever cell boundary (or face) it 
reaches first. At that location the particle 
velocity is updated using the porosity and 
thickness of the cell that the particle is entering, 
and the particle is then moved an appropriate 
distance in the new cell for the remainder of the 
time increment (At', as calculated from eq. 
46), or until it reaches another cell face. 
Computation of particle movement continues 
until the entire movement time interval is 
exhausted.

Discussion Choosing an appropriate 
interpolation scheme

As noted by Goode (1990a), selecting the 
best interpolation scheme to determine particle 
velocity in a ground-water flow model depends 
in part on the conceptualization of aquifer 
heterogeneity. Linear interpolation is directly 
consistent with the block-centered finite-

difference solution of the flow equation. 
However, linear interpolation produces a 
discontinuous velocity field, even for 
homogeneous media (Goode, 1990a). In the 
presence of strong heterogeneities between 
adjacent cells within a layer, it would usually 
be preferable to select the linear interpolation 
scheme.

If transmissivity within a layer is 
homogeneous or smoothly varying, bilinear 
interpolation of velocity yields more realistic 
pathlines for a given discretization than does 
linear interpolation. In such cases, the bilinear 
interpolation scheme may be preferable because 
it will yield pathlines more consistent with the 
conceptualization. For example, Goode 
(1990a) shows that bilinear interpolation yields 
more accurate travel times and pathlines for a 
case in which the interblock hydraulic 
conductivity is computed using the logarithmic 
mean (Goode and Appel, 1992) corresponding 
to a linear variation of hydraulic conductivity 
between nodes. Because vertical heterogeneity 
is significant in typical aquifer systems, the 
MOC3D code always uses linear interpolation 
for velocity in the vertical direction.

In general, the choice of interpolation 
scheme will only make a small difference in the 
final solution. Using a finer grid will 
invariably have a larger effect and yield a more 
accurate definition of the flow field, particularly 
in areas where the hydraulic properties are 
changing in space.

Decay

Decay is simulated by reducing the 
particle concentrations after advection. At this 
point the particle concentration has not yet been 
adjusted for dispersion and sources. However, 
the change in particle position accounts for 
advection up to time increment t+l. The loss 
of solute mass during a given transport time 
increment (At) because of decay processes is
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accounted for by computing the decayed 
particle concentration, Cp :

f-,d _ (~<t -kAt x*-o\ 
^P ~ ^P ? V3)

where Cp is the particle concentration at the 
start of the move interval (and before 
advection).

A major advantage of calculating the effect 
of decay directly on the particles, rather than on 
the nodal concentrations, is that this procedure 
eliminates any possible reduction in precision 
(or numerical dispersion) caused by the 
framework transfer between the moving grid 
and the fixed grid (that is, from particle 
concentrations to average nodal concentrations 
and back again to particle concentrations), as is 
done in computing changes in concentration 
due to dispersion. The dispersion calculation is 
then based on average concentration gradients 
during a time increment, an average that is 
based on the advected and decayed 
concentrations at the end of the time increment 
and the particle concentrations at the start of the 
time increment.

As noted by Goode and Konikow (1989), 
this exponential formulation has no numerical 
stability restrictions associated with it. 
However, if the half-life is on the order of the 
transport time increment or smaller, then some 
accuracy will be lost because of the explicit 
decoupling of decay and other transport 
processes.

When a solute subject to decay enters the 
aquifer through a fluid source, it is assumed 
that the fluid source contains the solute in the 
concentration specified by C". The governing 
equation and the MOC3D model assumes that 
decay only occurs within the ground-water 
system, and not within the source reservoir. In 
other words, for a given stress period, the 
model assumes that C remains constant in

time and does not decay. If the problem being 
simulated requires that the source fluid itself 
undergo decay, then the code will have to be 
modified to allow this.

Node Concentrations

After all particles have been moved, the 
concentration at each node is temporarily 
assigned the average concentration of all 
particles then located within the volume of that 
cell; this average concentration is denoted as

(54)iadv _ p \

I 
p=l

,' ; =J,l = 7 \ =k\

where the S function is 1 if the particle is within 
the cel\j,i,k, and is zero otherwise. The time 
index is labeled "adv" because this temporarily 
assigned average concentration represents the 
new time level only with respect to advective 
transport and decay. With respect to the finite- 
difference grid, the effect of advective transport 
is to move particles with differing 
concentrations into and out of each cell.

Finite-Difference Approximations

The divergence of dispersive flux is 
normalized by the retardation factor and 
porosity to yield the rate of change in 
concentration. In addition, in a quasi-3D 
approach, changes in saturated thickness are 
incorporated for horizontal flux terms. The rate 
of change in concentration due to dispersion 
and mixing in cells having a fluid source can be 
written:
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(55)

where subscript m is a summation index for the 
dispersion term. The//,k subscripts in eq. 55 
denote the spatial finite-difference grid 
indexing, as discussed previously in the section 
"Numerical Methods." The superscript "*" 
indicates that the terms depend on the average 
of the concentration at the old time level, and 
the concentration at the new time level after 
advection (see eq. 32). These averaged 
concentrations are used to calculate the solute 
flux terms indicated by the superscript "*".

The components of the dispersive flux in 
each direction across cell faces are calculated 
using finite-difference approximations that are 
centered-in-space and explicit (forward-in- 
time). A detailed description of these finite- 
difference approximations is given in Appendix 
A.

The explicit finite-difference approach is 
conceptually straightforward, but only 
applicable for certain conditions. Reddell and 
Sunada (1970, p. 62) show that for an explicit 
finite-difference solution of eq. 31 to be stable, 
the following constraint must be met:

i +
D»At . 1

<f. (56)
(AxY (AyY (AzY 2

Inspection of eq. 56 shows that the constraint 
will be most readily met for relatively small 
values of the dispersion coefficient (that is, for 
advection-dominated problems). Note that 
stability does not necessarily assure accuracy. 
If the constraint is not met for a given set of 
physical parameters, then either the grid

spacing must be increased (with a consequent 
loss of accuracy) or the time increments must 
be decreased until the condition is satisfied.

Note that the dispersive fluxes calculated by 
solving the eqs. A1-A3 include contributions 
related to the cross-product terms of the 
dispersion tensor. However, the constraint 
expressed in eq. 56 only includes the principal 
components of the dispersion tensor. In 
circumstances where the cross-product terms 
are relatively large, this can lead to a calculation 
of a negative concentration at a node if the 
calculated solute flux out of a cell during a time 
increment is greater than the solute mass in that 
cell at the end of the previous time increment. 
Considering eqs. 22a and 22d, for example, 
we can see that the cross-product terms (such 
as D and D ) would be large relative to a 
principal diagonal coefficient (such as D^) 
when both Vx and Vy are significant and aL is 
significantly greater than aT . For a given 
velocity and fixed dispersivities, the cross- 
product terms are maximized when Vx \ = Vy 
and flow is at 45 degrees to the grid. Negative 
concentrations are more likely to occur using 
this formulation in the presence of steep 
concentration gradients.

Consider the solute mass flux due to 
dispersion across one face of a cell, say in the 
jc-direction across the cell face at (j+l/2,i,k). 
The change in solute mass, Mffj+m^^k), is 
equal to the rate of dispersive flux, expressed 
in eq. Al, multiplied by the length of the time 
increment and by the width of the cell:
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This mass can be compared with the solute 
mass in the cell at the start of the time 
increment, Mj^, which is given by:

M^^AxAyebC'^. (58)

The criterion in eq. 56 is equivalent to 
requiring that the sum of the solute mass fluxes 
across all faces of a cell must be less than or 
equal to Mjti>k . However, because the 
criterion does not include the dispersive flux 
related to the cross-product terms, it can lead to 
oscillations in the solution that yield negative 
concentrations, although it would rarely lead to 
a strict stability problem. Experience shows 
that when oscillations do occur because of the 
cross-product terms, they are usually small and 
tend to damp out over time.

An ad hoc procedure was formulated and 
implemented in MOC3D to help minimize and 
limit the occurrence of negative concentrations 
due to the cross-product dispersive flux. The 
approach is to limit the mass flux during one 
time increment across each cell face, as 
calculated by eq. 57, to the mass available in 
the cell, as calculated by eq. 58. The flux 
across each cell face is checked independently, 
so this constraint will not completely eliminate 
negative concentrations, but our experience 
indicates that it will often reduce their 
occurrence significantly. Because the same 
check will be applied from both sides of a 
given face, if the constraint is applied, it will be 
applied equally from both adjacent nodes, so 
the procedure will not affect the global mass

2BM* ;
(57)

balance. That is, the solute mass flux into one 
cell always corresponds to the mass flux out of 
the adjacent cell, whether or not this limiting 
procedure is implemented for that particular cell 
face.

Stability and Accuracy Criteria

As noted by Konikow and Bredehoeft 
(1978), the explicit numerical solution of the 
solute-transport equation has a number of 
stability criteria associated with it. These may 
require that the time step used to solve the flow 
equation be subdivided into a number of 
smaller time increments to accurately solve the 
solute-transport equation.

First, consider the explicit finite-difference 
solution to calculate changes in concentration 
due to dispersion. Solving eq. 56 for At, and 
accounting for the effects of retardation, we see 
that

  (59)At < Mm
(over 
grid)

0.5
Dxx

Rf (Ax)2 ' 1
Dyy , D^

lf (Ay)2 Rf (Az)2

Because the solution to eq. 31 is actually 
written as a set of N equations for N nodes, the 
maximum permissible time increment is the 
smallest At computed for any individual node 
in the entire transport grid. The smallest At 
will then occur at the node having the largest 
value of
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Next consider the effects of mixing ground 
water of one concentration with injected or 
recharged water of a different concentration, as 
represented by the source terms in eq. 31. The 
change in concentration in a source node cannot 
exceed the difference between the source 
concentration (C'j>i>k ) and the concentration in 
the aquifer ( Cj>i>k ), and the maximum possible 
change occurs when a source completely 
flushes out the volume of water in an aquifer 
cell at the start of a time increment. Konikow 
and Bredehoeft (1978) show that this condition 
translates to

(60)

Solving eq. 60 for At at all nodes yields the 
following criterion:

At < Min
(over grid)

eR,
(61)

A third type of criterion involves the 
movement of points to simulate advective 
transport. The distance a particle moves during 
a time increment is equal to (or approximately 
so in cases where particles cross a cell face and 
the adjacent cells have different properties) the 
velocity at the location of the particle times the 
length of the time increment. In effect, this 
constitutes a linear spatial extrapolation of the 
position of a particle from one time increment 
to the next. Konikow and Bredehoeft (1978) 
note that where streamlines are curvilinear, the 
extrapolated position of a particle will deviate 
from the streamline on which it was previously 
located. This deviation introduces an error into 
the numerical solution that is proportional to 
At. An accurate computation of concentration 
changes caused by advective transport requires 
the maintenance of a relatively uniformly 
spaced field of marker particles that are moving 
along relatively smooth and continuous

pathlines. The degree of curvilinearity of 
streamlines in the calculated head field is 
constrained by the grid spacing, as the finite- 
difference solution to the flow equation 
inherently assumes linear variations in head 
between adjacent nodes. Also, if the distance a 
particle moves in any direction during one time 
increment is greater than the grid spacing in that 
direction, it might be possible for a particle to 
cross a no-flow boundary (or even leave the 
model domain) during one time increment. 
Thus, for a given velocity field and grid, some 
restriction must be placed on the size of the 
time increment to assure that the distance a 
particle moves in the x-, y-, or z-directions 
during one time increment does not exceed 
some critical distances, which can be related to 
the grid spacing in each direction.

These critical distances can be related to the 
grid dimensions by

& Vx(p) < jAx 

At V < jAy

and

At V.z(p)

(62a)

(62b)

(62c)

where y is the fraction of the grid dimensions 
that particles will be allowed to move (nor 
mally, 0</<1). Note that these accuracy 
criteria are equivalent to requiring that the 
Courant number be less than or equal to 1. 
However, the model is designed to allow the 
user to specify the value of /(named CELDIS 
in the code and input instructions).

Because these criteria are governed by the 
maximum velocities in the system, and since 
the computed velocity of a tracer particle will 
always be less than or equal to the maximum 
velocity components computed at cell 
boundaries, we have to check only the latter. 
Substituting grid velocity components and 
solving eq. 62 for At results in
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At< (63a)
max

At< , jAy (63b)

max

and

At< (63c)
max

If the time step used to solve the flow 
equation exceeds the smallest of the time limits 
determined by eqs. 59, 61, or 63, then the time 
step will be subdivided into an appropriate 
number of equal-sized smaller time increments 
to solve the solute-transport equation so that 
none of these limits are exceeded. To help the 
user analyze the results and the grid design, the 
model output will include a statement clarifying 
which of the several criteria were limiting and 
at which node the limiting condition occurred.

Mass Balance

Mass balance calculations are performed to 
help check the numerical accuracy and 
precision of the solution. The principle of 
conservation of mass requires that the net mass 
flux (cumulative sum of mass inflows and 
outflows plus any mass lost or removed by 
reactions) must equal the mass accumulation 
(or change in mass stored). The difference 
between the net flux and the mass accumulation 
is the mass residual (Rm) and is one measure of 
the numerical accuracy of the solution. 
Although a small residual does not prove that 
the numerical solution is accurate, a large error 
in the mass balance is undesirable and may 
indicate the presence of a significant error in the 
numerical solution (Konikow and Bredehoeft, 
1978).

As part of the mass balance calculations, 
the solute fluxes contributed by each distinct 
hydrologic component of the flow and

transport model are accumulated and itemized 
separately to produce a solute budget for the 
system being modeled. The budget is a 
valuable assessment tool because it provides a 
measure of the relative importance of each 
component to the total solute budget. The 
budgets should always be reviewed for 
consistency with the conceptual model and as a 
"reality check" on the model calculations.

In the method of characteristics, the 
accuracy of the solution is associated with the 
concentrations being tracked on the particles. 
However, it is computationally difficult to 
compute a mass stored in the system directly 
from the particle concentrations because their 
relative positions are constantly changing and 
they do not explicitly track a solute or fluid 
mass. Therefore, the mass in storage at any 
time is calculated from the concentrations at the 
nodes of the transport subgrid of the finite- 
difference mesh. In that sense, the calculated 
and printed mass balance values are themselves 
only an approximation.

The mass residual is computed as

Rm =AMs -Mf (64)

where AMS is the change in mass stored in the 
aquifer, and My is the net mass flux.

The above two mass balance terms are 
evaluated using the following equations:

,k) (65)

where Cjik is the initial concentration at node 
(/.*,&)» M/L3 , and C" /it is the concentration at 
that node at the end of the time increment; and

Mf =
j k i j n

(66)

For cases where W in eq. 66 represents a fluid 
source, C is the specified source concentration 
for that node. Where W represents a fluid 
sink, C" is assumed to equal the average 
concentration in cell (j,i,K) at the beginning of 
that time increment (or move interval) for 
solving the transport equation.
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The percent error (E) in the mass balance is 
calculated by relating the residual to an 
appropriate measure of the solute flux or mass 
accumulation in the system. However, the 
appropriate basis (or denominator) is problem 
dependent. Thus, the model compares the 
residual with the cumulative mass inflow to the 
system (Mi) or mass outflow from the system 
(M0), whichever is dominant in a particular 
problem. However, if the solute mass entering 
or discharging the system with fluid sources 
and sinks is zero or very small, as it would be, 
for example, in a problem simulating the 
movement of an initial slug within the system, 
then comparing the residual to the mass flux in 
or out of the system could indicate a very large 
error when the numerical solution is actually 
quite accurate. Therefore, in these cases, the 
error will be computed by comparing the 
residual with the mass of solute stored in the 
aquifer, as described by Konikow and 
Bredehoeft (1978). The model will calculate, 
print, and label whichever of the following 
three measures of error are appropriate for the 
problem being simulated.

100- OR- (67a)E,=
M,

_ 100.0Ra
       

100.0Rm

(67b) 

(67c)

ES is calculated only if the mass flux in or out 
of the system is less than 50 percent of the 
initial mass stored.

Errors in the mass balance for the flow 
model should generally be less than 0.1 
percent. However, because the solute- 
transport equation is more difficult to solve 
numerically than is the flow equation, the 
mass-balance error for a solute is often greater 
than for the fluid. Also, because the particles 
that represent advection in the method of

characteristics are discrete in nature and 
because the concentrations tracked on particles 
are translated to the finite-difference nodes for 
the purpose of computing the mass balance, the 
mass balance error will typically exhibit an 
oscillatory behavior over time. However, this 
is not a cumulative type of error; it is usually 
largest for the first few time increments and 
then tends to balance out over time. As long as 
the oscillations remain within a steady range, 
not exceeding about ±10 percent as a guide, 
then the error probably does not represent a 
bias and is not a serious problem. Rather, the 
oscillations only reflect the fact the mass 
balance calculation is itself just an 
approximation. Thus, it is recommended that 
users examine the solute budget and residuals 
for their particular problem. The significance 
of the residual and rates of change in the 
residual should be assessed qualitatively 
relative to the nature of a particular problem, 
and not merely on the basis of the magnitude of 
the error at any one time increment.

Special Problems

As noted by Konikow and Bredehoeft 
(1978), a number of special problems are 
associated with the use of the method of 
characteristics to solve the solute-transport 
equation. Some of these problems are 
associated with the movement and tracking of 
particles, whereas other problems are related to 
the computational transition between the 
concentrations of particles within a cell and the 
average concentration at that node. This 
section describes the more significant problems 
and the procedures used to minimize errors that 
might result from them.

One possible problem is related to no-flow 
boundaries. Neither water nor solutes can be 
allowed to cross a no-flow boundary. 
However, under certain conditions it might be 
possible for the interpolated velocity at the
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location of a particle near a no-flow boundary 
to be such that the particle will be advected 
across the boundary during one time increment. 
Figure 7 illustrates such a situation, which 
arises from the deviation between the curvi 
linear flow line and the linearly projected 
particle path. Figure 7 also shows the 
correction scheme built into the MOC3D 
model. If a particle is advected across a no- 
flow boundary, then it is relocated within the 
aquifer by reflection across the boundary. This 
correction thus will tend to relocate the particle 
closer to the true flow line. However, 
extensive testing indicates that it is unlikely that 
a particle will ever cross a no-flow boundary 
unless CELDIS > 1, which is not recom 
mended.

The maintenance of a reasonably uniform 
and continuous spacing of particles requires 
special treatment in areas where strong fluid 
sources and sinks dominate the flow field. 
Strong fluid sources and sinks cause significant 
convergence and divergence in the flow field, 
which will degrade the desired uniform spacing 
of particles. Without special provisions, 
particles will continually move out of a cell that 
represents a strong fluid source, but few or 
none will move in to replace them and thereby 
maintain a continuous stream of particles. 
Thus, whenever a particle that originated in a 
strong fluid-source cell moves out of that 
source cell, a new particle is introduced into the 
source cell to replace it. Placement of new 
particles in a source cell is compatible with and 
analogous to the generation of fluid and solute 
mass at the source. On the other hand, if a 
fluid source or sink is very weak, it will not 
induce significant divergence or convergence in 
the flow field and have any noticeable effect on 
particle spacing. For cells representing weak 
fluid sources or sinks, particles need not be 
added or removed. The model user must 
specify explicitly whether fluid sources and 
sink are to be flagged as either weak or strong, 
so that particle tracking is implemented 
appropriately. Source/sink cells are identified

EXPLANATION

Zero-transmissivity cell (or 
no-flow boundary)

Flow line and direction of flow 

      Computed path of particle 

© Node of finite-difference cell 

x Previous location of particle 

0 Computed new location of particle 

A Corrected new location of particle

Figure 7. Possible movement of a particle near 
an impermeable (no-flow) boundary (modified 
from Konikow and Bredehoeft, 1978).

as either strong or weak for purposes of 
particle control by the user-specified value of 
the IGENPT array (see Appendix B).

The procedure used to replace particles in 
source cells is illustrated in figure 8. A steady, 
uniformly spaced stream of particles is 
maintained by generating a new particle in the 
source cell at the original location of the particle 
that left the source cell. When a relatively 
strong fluid source is imposed on a relatively 
weak regional flow field, as illustrated in figure 
8a, then radially divergent flow will be 
maintained in the area of the source, and all 
initial and replacement points will move 
symmetrically away from node j,i,k. For 
example, after particle 7 moves from cell (j,i,k) 
at the start of a time increment to cell 
(j+l,i-l,k) at the end of that time increment, the 
replacement particle (particle 18 in fig. 8a) is 
positioned at time n in cell (j,i,k) at the same 
location as the initial position of particle 7.
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EXPLANATION

Strong fluid source

Particle pathline for 
one time increment

O

A

Node of finite-difference grid 

Initial location of particle p 

New location of particle p 

Location of replacement particle p

Figure 8. Replacement of particles in fluid-source cells (a) for case of negligible regional flow 
and (b) for case of relatively strong regional flow.

Although we normally expect particles to be 
advected out of fluid-source cells, figure 8b 
demonstrates the possibility that particles may 
sometimes enter a source cell. When a 
relatively weak fluid source is imposed on a 
relatively strong regional flow field, the 
velocity distribution within the source cell does

not possess radial symmetry, and the velocity 
within the upgradient part of the source cell is 
lower than the velocity within the downgradient 
part of the source cell. It is possible then that 
particles originating in upgradient cells (such as 
particle 2) will migrate through the designated 
source cell. This can also occur when two or
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more source cells of different strengths are 
adjacent to each other. Particles that leave a 
source cell, but did not originate in it, are not 
replaced because that would ultimately lead to 
mass balance errors in downgradient areas as 
proportionally too many particles will exist in 
downgradient areas relative to the volume of 
water being added at the source cell. Some 
particles that originated in a strong source cell 
may take more than one time increment to leave 
that cell (for example, particles 6 and 7 in fig. 
8b). Although not illustrated in fig. 8, when 
these lower-velocity particles do leave the 
source cell at time n+l, the replacement 
particles will be placed at the original positions 
of the particles (which was at time n-\) rather 
than at their positions immediately prior to 
leaving (which was at time ri).

Hydraulic sinks also require some special 
treatment. Particles will continually move into 
a cell representing a strong sink, but few or 
none will move out. To avoid the resultant 
accumulation and stagnation of tracer particles, 
any particle moving into a strong-sink cell is 
removed from the flow field after the 
calculations for that time increment have been 
completed. The numerical removal of particles 
that enter sink cells is analogous to the 
withdrawal of fluid and solute mass through 
the hydraulic sink. If the relative magnitude of 
discharge from a sink cell is not strong enough 
to maintain radially convergent flow, and a 
particle exits from the sink cell, then a 
replacement particle will be placed at the center 
of the cell. The combination of creating new 
particles at sources and destroying old particles 
at sinks will tend to maintain the total number 
of points in the flow field at a nearly constant 
value.

Both the flow model and the transport 
model assume that sources and sinks act 
uniformly over the entire area or volume of the 
cell surrounding a source or sink node. Thus, 
in effect, heads and concentrations computed at 
source or sink nodes represent average values

over the area or volume of the cell. Part of the 
total concentration change computed at a source 
node represents mixing between the source 
water at one concentration and the ground 
water at a different concentration (eq. 17). It 
can be shown from the relation between the 
source concentration (C//^) and the aquifer 
concentration at the start of a time increment 
( Cjjtk\ that the following constraints generally 
must be met in a source cell:

and

for

for

:"ji (68a)

If it is assumed that there is complete 
mixing between the source fluid and the 
resident fluid within the volume of a strong 
source cell, then these same constraints should 
also apply to all points within the cell. Because 
of the possible deviation of the concentrations 
of individual particles within a source cell from 
the average concentration, the change in 
concentration computed at a source node 
should not be applied directly to each of the 
particles in the cell. Rather, at the end of each 
time increment for solving the transport 
equation the concentration of each particle in a 
strong source cell is updated by setting it equal 
to the final nodal concentration. Although this 
may introduce a small amount of numerical 
dispersion by eliminating possible concentra 
tion variations among particles within the 
volume of the cell, it prevents the adjustment of 
the concentration for any individual particle in 
the source cell to a value that would violate the 
constraints indicated by equation 66.

In areas of divergent flow, a problem may 
arise because some cells can become void of 
particles where pathlines become spaced widely 
apart. This can occur, even in the absence of a 
strong fluid source, because of heterogeneities 
or boundary conditions. This would result in a 
calculation of no change in concentration at a 
node due to advective transport, although the
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nodal concentration would still be adjusted for 
changes caused by hydrodynamic dispersion. 
Also, some numerical dispersion is generated at 
nodes in and adjacent to the cells in which the 
advective transport of solute was 
underestimated because of the resulting error in 
the concentration gradient. This might not 
cause a serious problem if only a few cells in a 
large grid became void or if the voiding were 
transitory (that is, if upgradient points were 
advected into void cells during later or 
subsequent time increments). Figure 8a 
illustrates radial flow, which represents the 
most severe case of divergent flow. Here it can 
be seen that when four points per cell are used 
to simulate advective transport, then in the 
numerical procedure four of the eight 
surrounding cells would erroneously not 
receive any solute by advection from the 
adjacent source. If eight uniformly spaced 
particles per cell were used initially, then at a 
distance of two rows or columns from the 
source only 8 of 16 cells would be on pathlines 
originating in the source cell. So while 
increasing the initial number of points per cell 
would help, it is obvious that for purely radial 
flow, an impractically large initial number of 
points per cell would be required to be certain 
that at least one particle pathline passes from 
the source through every cell in the grid. 
Because the MOC3D model is based on a 
rectangular Cartesian coordinate system, it is 
not recommended for applications to a purely 
radial flow problem. However, if radial flow 
is localized within a predominantly nonradial 
regional flow field, then satisfactory results 
should be achievable.

The problem of cells becoming void of 
particles can be minimized by limiting the 
number of void cells to a small fraction of the 
total number of active cells that represent the 
aquifer. The user specifies this fraction 
(FZERO) in the MOC3D input data file (see 
Appendix B). If the limit is exceeded, the 
numerical solution to the solute-transport 
equation is halted temporarily at the end of that

time increment and the "final" concentrations at 
that time are saved. Next the problem is 
reinitialized at the time of termination by 
regenerating the initial particle distribution 
throughout the grid and assigning the "final" 
concentration at the time of termination as new 
"initial" concentrations for nodes and particles. 
The solution to the solute-transport equation is 
then simply continued in time from this new set 
of "initial" conditions until the total simulation 
period has elapsed. This procedure preserves 
the mass balance within each cell but also 
introduces a small amount of numerical 
dispersion by eliminating variations in 
concentration within individual cells.

Review of MOC3D Assumptions and 
Integration with MODFLOW

Following is a brief summary of model 
application assumptions that have been 
incorporated into the MOC3D model. These 
are relevant to both grid design and model 
implementation. Efficient and accurate use of 
MOC3D requires the user to be aware of all of 
these assumptions and options.

  MOC3D is integrated with MODFLOW- 
96 (Harbaugh and McDonald, 1996a) and will 
not work with earlier versions. The main 
MODFLOW subroutine is replaced with the 
MOC3D main subroutine. In addition, several 
MOCJD-specific source code files must be 
compiled and linked to the MODFLOW code.

  Particle velocities are interpolated 
spatially, but not over time. That is, we 
assume that the head distribution calculated for 
the end of a given time step applies during that 
entire time interval.

  The transport model is applied to a 
"window" of the grid used to solve the flow 
equation. This subgrid can be equal in size or 
smaller than the primary MODFLOW grid.

  Within the area of the transport subgrid, 
row and column discretization must be
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uniformly spaced (that is, Ax and Ay must be 
constant, although they need not be equal to 
each other). The spatial discretization or rows 
and columns beyond the boundaries of the 
subgrid can be nonuniform, as allowed by 
MODFLOW, to permit calculations of head 
over a much larger area than the area of interest 
for transport simulation (see fig. 9). Vertical 
discretization, defined by the cell thickness, can 
be variable in all three dimensions. However, 
large variability may adversely affect numerical 
accuracy (as discussed in second item below).

COLUMNS

EXPLANATION
Area of transport subgrid 
within primary MODFLOW grid

Figure 9. One layer of finite-difference grid 
illustrating use of uniformly-spaced transport 
subgrid for MOC3D within variably-spaced 
primary grid for MODFLOW.

  Retardation factor values and all 
dispersivity values are constant in each layer. 
Values for porosity may vary within a layer and 
are defined for each node (also see discussion 
in next item).

  The particle-tracking algorithm inherently 
assumes that all particles represent the 
concentration in an equal volume of water in a 
cell, where the volume equals (ebAxAy)^. 
Thus, although Ax and Ay are uniform, it is 
also very important that the variations in the 
product of porosity and thickness within the 
transport subgrid remain relatively small.

Otherwise, when a particle moves into a cell 
having a very different volume from the cell in 
which it originated, the estimate of the average 
concentration in the new cell may become 
biased, which will also have an adverse effect 
on the overall mass balance for the solute.

  MODFLOW offers flexibility to the user 
in the conceptualization of vertical discretization 
(see McDonald and Harbaugh, 1988, Ch. 2). 
As illustrated in fig. lOa, it is common in 
applications of MODFLOW to represent the 
resistance to flow in a low hydraulic 
conductivity unit by lumping the vertical 
hydraulic conductivity and thickness of the 
confining unit into the vertical conductance 
term between the adjacent layers (fig. lOc). 
However, because transport simulation 
requires that travel distances be known 
explicitly in all directions, three-dimensional 
transport simulation requires fully three- 
dimensional flow simulation (rather than a 
quasi-three-dimensional analysis) within the 
area of the transport subgrid. That is, even if 
the solution to the flow equation is insensitive 
to heads and storage releases in the clay layer, 
it must still be represented by one or more 
model layers for the solution to the transport 
equation (fig. lOb). If not, it can be seen in the 
quasi-three-dimensional analysis (fig. lOc) that 
any solute crossing the lower boundary of layer 
1 would immediately be located in and 
influenced by the properties of layer 2, and 
would never have been subject to the relatively 
long travel time through the clay.
  In MODFLOW, layers may be defined as 
representing confined or unconfined 
conditions, or allowed to switch between these 
two types, depending on the specification of 
the value of the parameter LAYCON. If 
LAYCON>0, then the user also must specify 
information about the elevations of the top and 
bottom of the layer. For layers having 
LAYCON=0 or LAYCON=2, MODFLOW 
assumes that transmissivity and saturated 
thickness remains constant; hence, the
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THREE-DIMENSIONAL 
MODEL

QUASI-THREE-DIMENSIONAL 
MODEL

Layer 1 V 
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Layer 1 ^X'vVv'/v'/v

The clay layer is represented by vertical 
conductance terms between layers 1 and 2

Layer 3   / Layer 2 :y/£$"ify.
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Figure 10. Alternative MODFLOW approaches to vertical discretization of an aquifer system (a) 
consisting of two high-permeability units separated by a confining layer consisting of a low- 
permeability clay. In the fully three-dimensional representation (b), the clay unit would be 
represented by one or more model layers. In the quasi-three-dimensional approach (c), heads are 
not calculated in the clay unit, which is represented more simply by vertical conductance terms 
between the layers above and below it; in this case, the bottom of layer 1 coincides with the top of 
layer 2. (Modified from figs. 10-12 of McDonald and Harbaugh, 1988.)

thickness values read from the MOC3D input 
files are used. However, for layers having 
LAYCON=1 or LAYCON=3, MODFLOW 
allows the transmissivity to change as a 
function of changes in saturated thickness in 
each cell on the basis of elevation data that are 
input for the MODFLOW BCF package. In 
these cases, thickness for a cell is defined as 
"TOP" minus "EOT" if the layer is confined 
and "HEAD" minus "EOT" if it is unconfmed; 
the thickness values specified in the MOC3D 
input file are ignored in the calculations. 
However, note that thickness values must still 
be specified in the MOC3D input file in all 
cases.

  Concentrations associated with fluid 
sources are read directly from MODFLOW

source/sink package files. In each of the 
package files used, the options 
"CBCALLOCATE" and "AUXILIARY 
CONC" must be included on the first line of 
input data. See MODFLOW and MOC3D input 
instructions.

  If the evapotranspiration package (EVT) is 
implemented, MODFLOW will calculate a fluid 
discharge (or sink) rate that is typically 
associated with an evapotranspirative process 
that removes water but excludes dissolved 
solids, which are retained in the remaining fluid 
at a consequently higher concentration. 
MOC3D assumes that for any such calculated 
flux, the associated source concentration ( C' in 
eq. 17) will equal 0 rather than equaling the 
concentration at the node, as is assumed

32



normally for a fluid sink. This will induce an 
appropriate increase in concentration at a cell 
representing a fluid sink due to 
evapotranspiration. Note that this MOC3D 
assumption should be viewed as a first-order 
approximation because in actuality (1) the 
evapotranspirative process may not be 100 
percent effective in excluding solutes, 
depending on the particular chemical species, 
and (2) calculated solute concentrations may 
exceed the upper limits of solubility for a 
particular chemical constituent (and MOC3D 
does not simulate mineral precipitation).

  When the solute of interest is subject to 
decay, it is assumed that the solute in liquid and 
solid phases will decay at the same rate. If a 
fluid source contains the decaying solute, it is 
subject to decay after it enters the ground-water 
system, but is not decayed within its "source 
reservoir."

  All unit numbers specified in the name 
files for a particular simulation must be unique. 
Unit numbers 99, 98, and 97 are reserved for 
the MODFLOW name file, the batch mode 
input file, and the batch mode output file, so 
cannot be specified for any other use. 
However, unit numbers may be reused in 
separate simulation runs in batch mode.

  The model includes output options to 
create separate binary data files (Ftypes CNCB, 
VELB, and PRTB); when implemented, the 
model will write calculated values from the 
simulation for the selected variables as 
unformatted data. The concentration and 
velocity files (CNCB and VELB) use the 
MODFLOW module ULASAV to write the data 
(see MODFLOW documentation). When the 
velocity option VELB is implemented, the code 
will first write the velocities in the column 
direction at all nodes, then all velocities in the 
row direction, and finally all of the velocities in 
the layer direction. The velocity and concen 
tration arrays are dimensioned to the size of the 
transport subgrid only. When particle data are 
written to a separate binary file (PRTB), the file

begins with a header line that includes the move 
number, number of particles, and length of the 
transport time increment. A record for each 
particle in sequence follows the header line and 
contains the location and concentration of each 
particle in the following order: column 
coordinate, row coordinate, layer coordinate, 
and particle concentration.

COMPUTER PROGRAM

MOC3D is implemented as a package for 
MODFLOW. MOC3D uses the flow compo 
nents calculated by MODFLOW to compute 
velocities across each cell face in the transport 
domain. The computed velocities are used in 
an interpolation scheme to move each particle 
an appropriate distance and direction to 
represent advection. The effects of fluid 
sources, dispersion, and decay on concen 
tration are then applied to the particles.

A separate executable version of 
MODFLOW, which is adapted to link with and 
use the MOC3D module, must first be 
generated and then used to run MOC3D 
simulations. The MOC3D code is written in 
standard FORTRAN, and it has been 
successfully compiled and executed on multiple 
platforms, including 486- and Pentium-based 
personal computers, Macintosh personal 
computers, and Data General and Silicon 
Graphics Unix workstations. FORTRAN 
compilers for each of these platforms vary in 
their characteristics and may require the use of 
certain options to successfully compile 
MOC3D. For instance, the compiler should 
initialize all variables to zero. Depending on 
the size of the X-array (defined by LENX in 
the MODFLOW source code), options to 
enable the compiler to handle a large array may 
be needed.

Implementing MOC3D requires the use of a 
separate "name" file similar to the one used in 
MODFLOW. The principal MOC3D input data
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(such as subgrid dimensions, hydraulic 
properties, and particle information) are read 
from the main MOC3D data file. Other files are 
used for observation wells, concentrations in 
recharge, and several input and output options. 
Detailed input data requirements and 
instructions are presented in Appendix B. 
Also, a sample input data set for a test problem 
is included in Appendix C.

MOC3D output is routed to a main listing 
file, separate from the MODFLOW listing file. 
There are also several options for writing 
specific data to separate output files, which will 
facilitate graphical postprocessing. Appendix 
D contains output from the sample data set 
described in Appendix C.

General Program Features

Because the model assumes that changes in 
concentration do not affect the fluid properties 
(such as density and viscosity), the head

distribution and flow field are independent of 
the solution to the solute-transport equation. 
Therefore, the flow and transport equations can 
be solved sequentially, rather than simultane 
ously. But because transport depends on fluid 
velocity, which is calculated from the solution 
to the flow equation, the sequence order must 
be to solve the flow equation first. This 
sequence is illustrated in figure 11 for a 
hypothetical problem involving transient flow 
and three stress periods. The numbered 
sequence from 1 through 16, which starts at the 
left edge of the double time line, illustrates the 
order of solving equations as the simulation 
progresses through the first five time steps of 
the first stress period in this hypothetical 
example. This figure also helps to illustrate the 
nomenclature used for time parameters in 
MODFLOW and MOC3D, as well as the 
relation between them.

The implicit solution to the flow equation in 
MODFLOW generally allows the use of time 
steps of increasing length during a given stress

At

(Elapsed time, 
flow) 

TOT1M  

(Elapsed time, 
transport) 
SUMTCH -

-NMOV=3 

 IMOV=1
-TIME INCREMENT 

FOR TRANSPORT (TIMV)

tfotal

Figure 11. Double time-line illustrating the sequence of progression in the MOC3D model for solving 
the flow and transport equations. This example is for transient flow and three stress periods (NPER = 
3) of durations PERLENf, PERLEN2, and PERLENs. Each time step for solving the flow equation (of 
duration DEL7) is divided into one or more time increments (of duration TIMV) for solving the transport 
equation; all particles are moved once during each transport time increment. For illustration purposes, 
the sequence of solving the two equations is labeled for the first five time steps of the first stress 
period, and the indices for counting time steps for flow and time increments for transport are labeled 
for the fourth time step.
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period. The length of the first time step for 
solving the flow equation is calculated by 
MODFLOW on the basis of user-defined 
values for the number of time steps (NSTP), a 
time-step multiplier (TSMULT), and the length 
of the stress period (PERLEN). After the flow 
equation is solved for the first time step (At]), 
the model compares the length of the time step 
for the flow equation with the limitations 
imposed by the stability and accuracy criteria 
for solving the transport equation. If any 
criteria are exceeded, MOC3D will subdivide 
the time step into the fewest number of equal- 
sized time increments that meet all of the 
criteria. In the example shown in figure 11, the 
first two time steps are small enough so that the 
transport equation can be solved for a single 
time increment of the same duration as the flow 
time step (that is, TIMV = DELT). As this 
equation-solving sequence progresses and is 
repeated for increasingly long time steps, the 
stability criteria are eventually exceeded. 
Figure 11 shows that for the third and 
subsequent time steps, the transport equation 
had to be solved over shorter time increments. 
Note that because time increments for transport 
are the same length (TIMV) during any given 
time step for flow, the length of the transport 
time increments will generally be slightly 
different between any two different flow time 
steps. For example, the length of the three 
transport time increments during the fourth 
flow time step (m = 4) are slightly different 
than the lengths of the four time increments 
during flow time step 5. At any point during 
the progress of the simulation, the elapsed time 
for transport is always less than or equal to the 
elapsed time for flow.

Transport may be simulated within a 
subgrid, which is a "window" within the 
primary MODFLOW grid used to simulate flow 
(see fig. 9). The grid dimensions are limited 
only by the size of the "X" array (see "Space 
Allocation" in the MODFLOW documentation). 
Within the subgrid, the row and column

spacing must be uniform, but thickness can 
vary within a small range from cell to cell and 
layer to layer.

Many MOC3D subroutines are linked 
closely with MODFLOW counterparts. When 
possible, MOC3D follows MODFLOW 
subroutine structure. In general, data are 
defined, space is allocated in the "X" array, and 
simulation parameters are read just as in 
MODFLOW. The overall structure of the 
MOC3D code and its integration with 
MODFLOW art illustrated in figure 12, which 
shows a flow chart for the main program 
(excluding details of the transport calculations).

A more detailed flow chart of the program 
segments controlling transport calculations is 
shown in figure 13. The fluxes that 
MODFLOW calculates within the transport 
subgrid are processed by MOC3D subroutines 
to generate a transient solution to the solute- 
transport equation.

Program Segments

MOC3D input and output utilizes the 
standard MODFLOW array reading and writing 
utilities as much as possible. MOC3D also 
takes advantage of new features in 
MODFLOW, such as the option for auxiliary 
parameters in the source and sink packages and 
storing budget flows from each of those 
packages, as documented by Harbaugh and 
McDonald (1996a and 1996b). However, 
many subroutines in MOC3D do not fit into a 
MODFLOW module class. For those model 
users who are interested in more details about 
the internal structure and organization of the 
code, Tables 1-10 list and describe briefly each 
of the subroutines in MOC3D that are used for 
ten different categories of functions.

Tables 1 and 2 include subroutines that 
initialize and set up the transport simulation. 
MOC3D data are read and checked for 
consistency with each other and with several 
MODFLOW parameters. Seepage velocities
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are calculated on the basis of hydraulic 
gradients determined by the MODFLOW 
solution to the flow equation. The VELO 
subroutine (Table 3) is called up to three times 
after each solution to the flow equation is

obtained once for each dimension of the 
simulation.

Table 4 includes subroutines controlling 
particle tracking, concentration calculations, 
and related output. The SMOC5GP subroutine

Define 
problem

  » Allocate 
space

Read and 
prepare data

Q. 
O 

_O

TJ 
.0

CD 
Q.

CO

Calculate time step 
length and set heads

Set initial saturated thickness 
for water-table cells

Calculate finite- 
difference equation 

coefficients

Calculate initial 
solute mass

Generate initial 
particles

Q. 
o 
.g

o

Calculate flow and transport 
terms from storage

Calculate flow and transport 
terms from fixed heads

Calculate flow across 
boundary of subgrid

Compute flow between 
adjacent cells

Compute and 
print velocities

Formulate and print dispersion
equation coefficients; check

stability criteria

Calculate flow and transport 
terms from source/sink cells

Yes

Yes

Transport loop 
(See Fig. 13)

Figure 12. Generalized flow chart for MOC3D.
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Compute transport 
time increment

8.
(0 

05

Move particles and
account for decay

(see Fig. 17)

I
Compute intermediate 
node concentrations

Approximate change in concentration 
due to sources/sinks

Approximate change in concentration 
due to dispersion

Compute new node and 
particle concentrations

Compute solute 
mass balance

Print concentrations and 
mass balance (optional)

ore moves to 
complete time 

step?

Figure 13. Simplified flow chart for the transport 
loop, which is shown as a single element in fig. 
12.

generates the initial coordinates for each tracer 
particle in the transport subgrid. Default 
particle placement patterns include several 
configurations for simulations in one, two, or 
three dimensions. Each of the configurations 
distributes the particles uniformly in space with 
respect to dimension. Figures 14 through 16 
illustrate the distribution of particles with each 
of the default number of particles per node. 
Note that in some cases, it may be necessary to 
customize the initial positions of the particles

(see the Two Dimensional Radial Flow and 
Dispersion test case in the Model Testing and 
Evaluation chapter). For a given transport time 
increment, particles are moved a distance and 
direction on the basis of the estimated velocity 
at the location of each particle and the length of 
the time increment. The particle velocity is 
estimated by interpolation from the velocities 
on adjacent cell faces to the location of a 
particular particle. Either linear or bilinear 
interpolation is used (in subroutines MOVE or 
MOVEBI, respectively) based on the user- 
selected value for the INTRPL flag (see 
MOC3D Input Instructions). However, when 
the bilinear interpolation option is used, particle 
velocity in the vertical (or "layer") direction will 
still be interpolated linearly. A flow chart 
describing details of the MOVE and MOVEBI 
subroutines is presented in figure 17.

Table 1. MOC3D subroutines controlling simula 
tion preparation

Subroutine Description

SMOC5O Open MOC data files
MOC5DF Define subgrid and other key 

parameters
MOC5AL Allocate space in "X" array to 

store MOC data
MOC5RP Read MOC parameters
MOC5CK Check MOC data for 

consistency
SMOC5Z Set an array to a specified 

constant value

Table 2. MOC3D subroutines controlling transport 
time factors

Subroutine Description

MOC5ST Check limiting stability 
criteria; compute time 
increment and number of 
moves for solute transport

MOC5AD Update elapsed transport time
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Table 3. MOC3D subroutines controlling velocity 
calculations and output

Subroutine Description

VELO Calculate velocities from 
flows across cell faces

SMOC5V Output velocity data

Table 4. MOC3D subroutines controlling particle 
tracking, concentration calculations, and output for 
particle and concentration data

Subroutine Description

SMOC5GP Generate initial particle 
distribution

SMOC5P Output particle locations and 
concentrations

MOVE and Advect particles; compute 
MOVEBI concentrations at the end of 

each move; decay particle 
concentrations (MOVE uses 
linear interpolation of 
velocity and MOVEBI uses 
bilinear interpolation)

MOVTM Compute time for particle to 
reach boundary of cell

MOC5AP Compute new node and
particle concentrations at 
end of move

SMOC5C Output node concentrations

(a) (b)

(c) (d)

Figure 14. Default initial particle configurations 
for a one-dimensional simulation using (a) one, 
(b) two, (c) three, and (d) four particles per cell.

(a) (b)

(c) (d)

Figure 15. Default initial particle configurations 
for a two-dimensional simulation using (a) one, 
(b) four, (c) nine, and (d) sixteen particles per 
cell.

(a)

r
- __

(b) (c)

Figure 16. Default initial particle configurations for a three-dimensional simulation using (a) one, 
(b) eight, and (c) 27 particles per cell. For clarity, only the volume of a single cell is illustrated.
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Subroutines related to dispersion 
calculations are included in Table 5. 
Dispersion coefficients are determined on cell 
faces. However, to facilitate improved 
efficiency in the code the dispersion

coefficients are lumped with the porosity, 
thickness, and an appropriate grid dimension 
factor of the cell into combined parameters 
called "dispersion equation coefficients." For 
example, the dispersion equation coefficient for

Move particle to 
cell boundary

Will particle 
reach boundary?

Compute minimum time 
to cell boundariesSelect next particle 

and get coordinates

Calculate velocity of
particle (linear or

bilinear interpolation)

Is particle in 
an active cell?

Move particle to 
new location

Sum decayed concentrations of
all particles in cell; increment

number of particles in current cell

Is particle 
outside of 
subgrid?

No ^ Did particle cross 
cell boundary?

Remove particle from
active array; place
in inactive buffer Is old cell

a strong fluid
source or sink?

Did particle 
leave an inflow 
boundary cell?

Is new
location a discharge 

undary or strong 
sink?

Place new particle 
at same relative position 
as old particle in new cell

Place new particle in 
old cell at node location

Sum decayed concentrations of
all particles in cell; increment 

number of particles in current cell

Did particle
originate in
that cell?

Place new particle 
in old cell at same 
originating position

Figure 17. Flow chart for MOVE and MOVEBI subroutines of MOC3D, which is shown as a single 
element in fig. 13.
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the j+ 1/2, i, k face in the column direction is 

(ebD\
V **//+l/2,i.fc

Ax

These combined coefficients are the ones that 
are written to the output files by SMOC5D. 
Appendix A includes a more detailed 
description of the dispersion equation 
coefficients.

Table 5. MOC3D subroutines controlling disper 
sion calculations and output

Subroutine Description

DSP5FM Calculate dispersion 
coefficients

SMOC5D Output dispersion equation 
coefficients

DSP5AP Use explicit finite-difference 
formulation to compute 
changes in concentration 
due to dispersion

Subroutines that link the MOD FLOW 
source/sink package calculations of fluid flux to 
the MOC3D calculations of solute concentration 
and solute flux are listed in Table 6. 
MODFLOW source and sink packages contain 
an option called CBCALLOCATE. When 
used, the package will save the cell-by-cell 
flow terms across all faces of every source or 
sink cell. MOC3D uses these fluid fluxes to 
calculate solute flux to or from the source/sink 
nodes. Because these individual solute fluxes 
are required to compute the solute mass 
balance, the CBCALLOCATE option must 
always be selected when using MOC3D. 
Calculations of concentration changes at nodes 
caused by mixing with fluid sources are 
controlled by the "SRC" subroutines listed in 
Table 7.

Subroutines controlling observation well 
features are listed in Table 8. Table 9 lists 
subroutines related to the solute mass balance

calculations. Table 10 lists subroutines related 
to calculating fluid storage terms in the solute- 
transport equation.

Table 6. MOC3D subroutines controlling 
MODFLOW source/sink package calculations

Subroutine Description

CDRN5FM Calculate solute flux to drains
CEVT5FM Calculate solute flux to 

evapotranspiration
CGHB5FM Calculate solute flux to/from 

general head boundary cells
CRCH5AL Allocate space in "X" array 

for concentrations 
associated with recharge

CRCH5FM Calculate solute flux from 
recharge

CRTV5FM Calculate solute flux to/from 
river cells

CWEL5FM Calculate solute flux to/from 
well cells

Table 7. MOC3D subroutines controlling cumula 
tive calculations relating to sources and sinks

Subroutine Description

SRC5FM Initialize source/sink array; 
compute terms at fixed 
heads

SRC5AP Calculate changes in
concentration due to flux at 
sources and sinks

Table 8. MOC3D subroutines controlling observa 
tion wells

Subroutine Description

OBS5DF Read number of observation 
wells

OBS5AL Allocate space in "X" array 
for observation well data

OBS5RP Read observation well 
locations

SOBS5O Output observation well data
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Table 9. MOC3D subroutines controlling mass 
balance calculations and output

Subroutine Description

SMOC5IM Calculate initial solute mass 
stored

SMOC5BY Calculate flows across
boundaries of subgrid (for 
mass balance)

SMOC5BD Compute cumulative solute 
mass balance

SMOC5M Output mass balance 
information

Table 10. Miscellaneous MOC3D subroutines

Subroutine Description

SMOC5TK Set initial saturated thickness 
for water-table cells

SMOC5UP Update fluid storage terms for 
transport equation

MODEL TESTING AND 
EVALUATION

In developing and documenting a new 
numerical model, it must be demonstrated that 
the generic model can accurately solve the 
governing equations for various boundary 
value problems. This is accomplished by 
demonstrating that the numerical code gives 
good results for problems having known 
solutions, such as those for which an analytical 
solution is available.

The accuracy of numerical solutions is 
sometimes sensitive to spatial and temporal 
discretization. Therefore, even a perfect 
agreement for selected test cases proves only 
that the numerical code can accurately solve the 
governing equations, not that it will under any 
and all circumstances.

Analytical solutions generally require that 
an aquifer can be assumed to have simple

geometry, uniform properties, and idealized 
boundary and initial conditions. A major 
advantage of numerical methods is that they 
relax the simplifications required by analytical 
methods and allow the representation of more 
realistic field conditions, such as heterogeneous 
and anisotropic properties, irregular geometry, 
mixed boundary conditions, and multiple 
stresses that vary in time and space. However, 
analytical solutions approximating these 
complexities are unavailable for comparison. 
Therefore, it is difficult to prove that the 
numerical models can accurately solve the 
governing equations for the very situations for 
which they are most needed. For such cases, 
we are limited to relatively simple tests, such as 
benchmarking and evaluating the global mass- 
balance error. In the benchmarking approach, 
we compare the results of the MOC3D model 
for selected complex problems to results of 
other well accepted models. Although 
benchmarking is useful to improve confidence 
in the model, it is largely a measure of 
consistency and does not guarantee or measure 
accuracy. Overall, we have attempted to test 
and evaluate the MOC3D model for a range of 
conditions and problem types so that the user 
will gain an appreciation for both the strengths 
and weaknesses of this particular code. Ad 
ditional testing and benchmarking of MOC3D 
is documented in Goode and Konikow (1991).

One-Dimensional Steady Flow

Wexler (1992) presents an analytical 
solution for one-dimensional solute transport in 
a finite-length aquifer system having a third- 
type source boundary condition. The 
governing equation is subject to the following 
boundary conditions:

VC' = VC-D dC_ 

dx
(69)
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dx
x = L (70)

and the following initial condition:

C = 0, 0<x<L. (71)

For this test problem we assumed that the 
length of the system, L, is equal to 12 cm, 
(7 = 1.0, and V = 0.10 cm/s. The analytical 
solution is given by equations 52 and 53 of 
Wexler (1992, p. 17). In generating an 
equivalent solution using MOC3D, we set up a 
one-dimensional grid having 122 cells (nodes) 
in the ^-direction within which the flow 
equation was solved. The solute-transport 
equation was solved in a 120-cell subgrid to 
assure a constant velocity within the transport 
domain and to allow an accurate match to the 
boundary conditions of the analytical solution. 
The grid spacing was Ax = 0.1 cm. The 
numerical solution was implemented using 
three initial particles per cell (NPTPND = 3) 
and a CELDIS factor of 0.5. The input 
parameters for the model simulation are 
summarized in Table 11.

Two different values of dispersion 
coefficients were evaluated in the first set of 
tests. The values were Dxx = 0.1 and 0.01 
cm2/s, which are equivalent to aL = 1.0 and 
0.1 cm, respectively. Breakthrough curves 
showing concentration changes over time at 
three different locations as calculated with both 
the analytical and numerical solutions for the 
lower dispersion case are compared in figure 
18. To improve clarity, this plot only shows 
every fourth data point for the numerical model 
results, except for the curve for x = 0.05 cm, 
where every data point is shown for times less 
than 10 seconds. Note that this distance (x = 
0.05) is the first node downgradient from the 
source location. With the possible exception of 
very early time at locations very close to the 
source, there is essentially an exact fit between 
the numerical and analytical solutions. At early 
times and short distances the numerical solution 
exhibits some nonsmoothness and oscillation

Table 11. Parameters used in MOC3D simulation 
of transport in a one-dimensional, steady-state 
flow system

Parameter Value

= Tyy

&TH ~ aTv
PERLEN (length of stress 

period)
Vx
Vy = Vz
Initial concentration (Co)
Source concentration ( C" )
Number of rows
Number of columns
Number of layers
DELR(Ax)
DELC(Ay)
Thickness (b)
NPTPND (Initial number of 

particles per cell)
CELDIS
INTRPL (Interpolation 

scheme)

0.01 cm2/s 
0.1
0.1 cm 
0. 1 cm 
1 20 s

0.1 cm/s
0.0 cm/s
0.0
1.0
1 22
1
1
O.lcm
O.lcm
1 .0 cm
3

0.5
2

about the mean, which is related to the discrete 
nature of the particles used to represent the 
advection process. However, this small loss of 
precision is not a cumulative error, as it 
vanishes after moderate travel times or 
distances.

The results for the higher dispersion case 
are presented in figure 19. Because dispersion 
is a limiting stability criterion and the 
dispersion coefficient is ten times higher in the 
same grid, the transport simulation takes many 
more time increments (or particle moves). 
Thus, in figure 19 only every 100th point is 
shown (as small circles) for the numerical 
solution at the two larger distances. For these 
two curves, the match between the analytical
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Figure 18. Numerical (MOC3D) and analytical solutions at three different locations for 
solute transport in a one-dimensional, steady flow field. Parameter values for this base 
case are listed in Table 11.

solution and the numerical solution is almost 
perfect. For the location that is close to the 
source, every point is plotted as a small dot to 
illustrate again the small loss of precision for 
short travel distances and times.

To help assess the significance of the 
oscillations and loss of precision at nodes very 
close to the source, the early (times less than 10 
seconds) part of that breakthrough curve is 
replotted at a larger scale in figure 20. The 
oscillation is caused by the fact that the stability 
requirements related to the explicit solution for 
the dispersive flux causes the time increment 
for solving the transport equation to be so small 
that particles used to track the advective flux 
can only move a small fraction of the width of a 
cell during a given time increment. Because the 
distance that the particles move during one time

increment (about 0.005 cm in this case) is 
smaller than the spacing between particles (one- 
third of Ax for this case in which three particles 
per cell are used, or 0.033 cm), particles only 
cross cell boundaries after every seven moves 
in this case. Therefore, the change in 
concentration caused by advection is 
underestimated during six moves when no 
particles cross a cell boundary and 
overestimated during the seventh move when 
one particle does cross the cell boundary. 
However, there is essentially no cumulative 
error and the numerical solution oscillates 
regularly in a small and decreasing range about 
the true solution. Also, the magnitude of the 
oscillations diminishes over time as dispersion 
reduces the local concentration gradients. To 
check this explanation and to demonstrate that
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20 40 60 80 
TIME (SECONDS)

100 120

Figure 19. Numerical (MOC3D) and analytical 
solutions at three different locations for solute 
transport in a one-dimensional, steady flow field 
for case of increased dispersivity (ai = 1.0 cm, 
DXX= 0.1 cm2/s, and other parameters as defined 
in Table 11).

the error shown in figure 20 is primarily an 
artifact of having too few initial particles per 
cell for this particular combination of 
parameters, and that it is not a generic 
deficiency in the algorithm, MOC3D was run 
for the same problem using an initial particle 
density of 50 particles per cell. The results for 
the same location for the first 10 seconds are 
shown in figure 21 for comparison. When 50 
particles are used, the distance that each particle 
moves during one time increment (again about 
0.005 cm) is greater than the spacing between 
adjacent particles (0.002 cm). For this case, 
the agreement between the analytical solution 
and the MOC3D results are much closer than in 
figure 20 and the oscillations are almost entirely 
eliminated.

The results of these tests can also be 
presented in the form of breakthrough curves 
that plot concentration against distance for 
various times. Figure 22 shows the results for 
the same set of parameters as shown in figure 
18 (that is, the low dispersion case). For

clarity in figure 22, only every fourth data 
point is plotted for the numerical results, 
except every data point is shown for distances 
less than 1.5 cm on the curve for t = 6 
seconds. The results show an almost perfect 
agreement between the analytical and numerical 
solutions.
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   Analytical
   MOC3D
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Figure 20. Detailed view of numerical and 
analytical solutions for early times (f < 10 s) at the 
first node downgradient from the inflow source 
boundary for same problem as shown in fig. 19.
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Figure 21. Detailed view of numerical and 
analytical solutions for early times (t < 10 s) at the 
first node downgradient from the inflow source 
boundary for same conditions as shown in fig. 
20, except that the initial number of particles per 
node, NPTPND, equals 50.

44



The effect of incorporating a retardation 
factor to represent a linear, equilibrium, 
reversible, sorption process is illustrated in 
figure 23. This shows a comparison between 
the analytical solution and the MOC3D results 
for the same low-dispersion problem 
represented in figures 18 and 22, except that 
the elapsed time is 240 seconds and the three 
different curves are for cases in which Rf= 2, 
4, and 40. Only every fourth data point is 
plotted in figure 23 for the numerical results, 
except for the case for Rf = 40, where every 
data point is shown for distances less than 1.5 
cm. The agreement is excellent. Note that

1.0

z 0.8 
o
<0.6
H-

0.4

O 
0 0 .2

0.0

t = 60 sec
t = 120 sec

0

Analytical 
MOC3D

468 
DISTANCE (cm)

10 12

Figure 22. Numerical (MOC3D) and analytical 
solutions at three different times for same one- 
dimensional, steady flow, solute-transport 
problem shown in fig. 18.

468 

DISTANCE (cm)

10 12

Figure 23. Numerical (MOC3D) and analytical 
solutions after 240 seconds for three different 
retardation factors for same problem 
represented in fig. 22.

because the net effect of the retardation factor is 
to transform the time scale, the three sets of 
curves and data points shown in figure 23 for t 
= 240 s are identical to the three sets of curves 
and data points shown in figure 22 for shorter 
times andRf = 1.0.

The effect of decay is evaluated by 
specifying the decay rate as A = 0.01 S' 1 for the 
same low-dispersion, no sorption, problem as 
defined for figures 18 and 22. These results 
are presented in figure 24, which shows 
excellent agreement between the analytical and 
numerical solutions. Only every fourth data 
point is plotted in figure 24 for the numerical 
results.

1.0r

468

DISTANCE (cm)
10 12

Figure 24. Numerical (MOC3D) and analytical 
solutions for four different times for solute 
transport in a one-dimensional, steady flow field 
for case with decay at rate of A = 0.01 s~ 1 . All 
other parameters as defined in Table 11.

Three-Dimensional Steady Flow

To further evaluate and test MOC3D for 
three dimensional cases, we compare the 
numerical results with those of the analytical 
solution developed by Wexler (1992) for the 
case of three-dimensional solute transport from 
a continuous point source in a steady, uniform 
flow field in a homogeneous aquifer of infinite 
extent. Relative to the previous tests, and 
because the flow field is aligned with the grid
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in this test case also, this evaluation primarily is 
a test of the accuracy of the calculated 
dispersive flux in three directions. The 
analytical solution of Wexler (1992, p. 42-43) 
is subject to the following boundary conditions:

= 0, 

= 0,

# = ±00

y = +00

(72a)

(72b)

C = 0, z = ±°° (72c) 

and the following initial condition (at t = 0):

C = 0,

 oo < x < °°,   oo < y < oo ?   oo < 2 < oo. (73)

For the analytical solution to this test problem, 
we assumed that Vx = 0.1 m/d, Vy = Vz = 0.0 
m/d, Dx = 0.06 m2/d, Dy = 0.003 m2/d, Dz = 
0.0006 m2/d, e = 0.25, and that the source 
strength (or solute mass flux) is QCf - 10.0 
g/d. The analytical solution is given by 
equation 105 of Wexler (1992, p. 47), and 
assumes that the fluid source does not affect the 
flow field.

Whereas the analytical solution assumes an 
infinite aquifer, the numerical solution can only 
be applied to a finite system. In generating an 
equivalent solution using MOC3D, we aimed to 
use a grid that was sufficiently large so as to 
minimize any effects of the boundaries on the 
solution. Because of the symmetry of the 
problem, we only simulated one quadrant of 
the cross-sectional area of the aquifer 
downgradient from the point source. The 
three-dimensional transport subgrid had 30 
rows of cells (nodes) at a grid spacing of 3 m 
that are parallel to the ^-direction of the 
analytical solution, 12 columns at a grid 
spacing of 0.5 m in the j-direction, and 40 
layers at a grid spacing of 0.05 m in the z- 
direction, within which the transport equation 
was solved. Boundary conditions, values of 
heads on boundaries, hydraulic conductivity, 
and porosity were specified to assure that the 
velocity would equal 0.1 m/d in the ^-direction. 
Identical values for the dispersion coefficients

were generated by specifying on = 0.6 m, OTH 
= 0.03 m, and aTv = 0.006 m. The point 
source was represented in the numerical model 
by a combination of g = 1.0xlO~6 m3/d and 
C" = 2.5xl06 g/m3 (note that g/m3 i s 
equivalent to mg/L), which together yield one- 
fourth of the source flux assumed in the 
analytical solution. The very small fluid 
injection rate at the point source assures that the 
fluid has only a negligible effect on the flow 
field, as required for consistency with the 
analytical solution. However, another small 
but unavoidable difference between the 
analytical and numerical solutions is that the 
former has the solute source at a true point but 
the numerical model inherently assumes the 
solute source is within the volume of one cell. 
Both models were run for a total elapsed time 
of 400 days. The numerical solution was 
implemented using three initial particles per cell 
(NPTPND = 3) and a CELDIS factor of 0.1. 
The input parameters for the model simulation 
are summarized in Table 12.

The results of the analytical solution are 
compared graphically with those of MOC3D 
for three different planes in figs. 25-27. Figure 
25a shows the concentrations in the x-y plane 
of the point source as calculated using the 
analytical solution and figure 25b shows the 
same for the MOC3D results. In this view, the 
left edge of each map is a line of symmetry, so 
that the map represents only half of the true 
problem domain. Both sets of contours were 
generated for an identical number of points and 
locations to eliminate any differences 
attributable solely to the contouring procedure. 
The results agree very closely, although a 
slightly greater distance of migration or 
spreading is evident in the MOC3D results, 
both upstream as well as downstream of the 
source. However, a large part of this small 
difference can be explained simply by the fact 
that the source is applied over a larger area in 
the horizontal plane of the MOC3D model, in 
which the length of the source cell is 3 m in the 
direction parallel to flow.
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Figure 26 shows a comparison of the 
results in a vertical plane parallel to the flow 
direction and aligned with column 2 of the 
numerical grid (and y = 0.75 m in the analytical 
solution). In this view, the top edge is a line of 
symmetry, so that the cross section represents 
only the lower half of the true problem domain. 
Overall the agreement is very close, although 
the numerical results show slightly more 
upstream dispersion, particularly for the lower 
concentrations (less than 10). Figure 27 shows 
a comparison of the results in a vertical plane 
transverse to the flow direction and aligned

Table 12. Parameters used in MOC3D simulation 
of transport from a continuous point source in a 
three-dimensional steady-state flow system

Parameter Value

= T
yy

PERLEN (length of stress 
period)

Source concentration (C") 
Q (at well) 
Source location

Number of rows 
Number of columns 
Number of layers 
DELR (Ax) 
DELC (Ay) 
Thickness (b)
NPTPND (Initial number 

of particles per cell)
CELDIS
INTRPL (Interpolation 

scheme)

0.0125 m2/day 
0.25 
0.6m 
0.03m 
0.006 m 
400 days

0.1 m/day 
0.0 m/day 
0.0 m/day 
2.5 x 106 g/m3 
1.0 x 10-6 m3/d
row 8, column 

1,layer 1
30
12
40
3m
0.5 m
0.05m
3

0.1 
1

with row 12 of the numerical grid (and x = 
34.5 m in the analytical solution). In this view, 
both the left and top edges are lines of 
symmetry, so that this cross section represents 
only one quarter of the true problem domain. 
Once again the overall agreement is excellent. 
The only noticeable difference is a minor one. 
In the numerical results there is slightly more 
lateral spreading, as indicated by a 
displacement of the contours for the lower 
values of concentration by less than half a cell 
distance away from the axis of symmetry, but 
only in the upper half of the grid.
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Figure 25. Concentration contours for (a) analyt 
ical and (b) numerical solutions in the horizontal 
plane containing the solute source (layer 1) for 
three-dimensional solute transport in a uniform 
steady flow field. Parameters are defined in 
Table 12.
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Figure 26. Concentration contours for (a) analytical and (b) numerical solutions in the vertical 
plane parallel to the flow direction and aligned with column 2 for three-dimensional solute 
transport in a uniform steady flow field. Parameters are defined in Table 12.
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Figure 27. Concentration contours for (a) analytical and (b) numerical solutions in the vertical 
plane transverse to the flow direction and aligned with row 12 for three-dimensional solute 
transport in a uniform steady flow field. Parameters are defined in Table 12. Flow is towards the 
reader.
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Two-Dimensional Radial Flow and 
Dispersion

A radial dispersion problem was used to 
compare the MOC3D solution to the analytical 
solution given by Hsieh (1986) for a finite- 
radius injection well in an infinite aquifer of 
two dimensions. The problem is equivalent to 
flow from a single injection well; the velocities 
vary in space and are inversely related to the 
distance from the injection well. The 
governing equation for the analytical solution is

Table 13. Parameters used in MOC3D simulation 
of two-dimensional, steady-state, radial flow case

dc_
dt

A^dC_ 
r dr

Ad2 C 
r dr2

r>rw t>0 (74)

where A = Q/27tbe, r is the radial distance 
from the center of the well, rw is the radius of 
the injection well, a is the longitudinal 
dispersivity in radial flow, Q is the volumetric 
rate of the well injection, b is the thickness of 
the aquifer, and e is porosity. The initial and 
boundary conditions are

(75a)

C(rw,t) =

r>r

r>0

f>0.

(75b) 

(75c)

The radius of the well (rw) was set to 1.0 
(dimensionless) and the concentration of the 
injected tracer (C') was 1.0 (dimensionless) at 
the well.

The problem was modeled using a grid 
having 30 cells in the ̂ -direction and 30 cells in 
the y-direction, representing one quadrant of 
the radial flow field (90 of 360 degrees). The 
initial concentration was set to 1.0 at the well 
node (1,1), defined by a specified flux of 
56.25 m3/h. The input parameters for the 
model simulation are summarized in Table 13. 
Initial particle positions were defined using the 
custom particle placement option in the input 
data set and were aligned in a quarter circle in 
two-degree increments, equidistant from the 
center point of radial symmetry in the upper left 
corner of the grid (see fig. 28). Using a large

Parameter Value

TXX  

£

UTV
PERLEN (length of stress 

period)
Q (at well)

Source concentration (C") 
Number of rows 
Number of columns 
Number of layers 
DELR (Ax) 
DELC (Ay) 
Thickness (b)
NPTPND (Initial number of 

particles per cell)
CELDIS
INTRPL (Interpolation 

scheme)

3.6 m2/hour 
0.2
10.0 m 
10.0m 
10.0m 
1000 hours

56.25 
m3/hour

1.0 
30 
30 
1
10.0 m 
10.0 m 
10.0 m 
46

0.5
2

number of particles per cell in this 
configuration ensures that all cells in the grid 
will include at least one particle pathline 
emanating from the source cell. If one of the 
MOC3D default options was selected to place 
fewer particles in a regular geometric pattern 
where strong flow divergence exists, then 
some cells located just a few rows or columns 
away from the source cell would never receive 
particles originating in the source cell. This 
would make it impossible to calculate 
accurately concentration changes caused by 
advection. This custom configuration also 
parallels the expected solute distribution pattern 
in a radially divergent flow field; standard 
particle positioning (linear, quadratic, or cubic 
configurations) results in extreme spreading of
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particles at small distances from the source, 
distorting contours of concentration in that 
area. The same pattern of particles shown for 
the source cell in figure 28 is repeated in all 
cells of the grid at the start of the simulation.

Figure 29 shows a comparison of the 
concentrations calculated in one quadrant after 
1000 hours using both the analytical (a) and 
numerical (b) solutions. The two solutions are 
almost identical.

Point Initial Condition in Uniform 
Flow

A test problem for three-dimensional solute 
transport from an instantaneous point source, 
or Dirac initial condition, in a uniform flow 
field was used to test the MOC3D model. An 
analytical solution for an instantaneous point 
source in a homogeneous infinite aquifer is 
given by Wexler (1992), and he presents a 
code (named POINTS) for a related case for a 
continuous point source. The POINTS code 
was modified to solve for the desired case of an 
instantaneous point source. Test problems

-0.5

X

0.0
-0.5

0.5

0.0

0.5

(1,1)

EXPLANATION

  Node location
  Initial particle location

Figure 28. Initial particle positions within the 
source cell for radial flow case (based on 
custom particle placement and NPTPND = 46). 
The relative coordinates on the x- and y-axes 
shown for the cell (1,1) are the same for any 
cell of the grid; this relative coordinate system 
is used for the custom definition of particle 
locations in the input file.
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Figure 29. Contours of relative concentrations calculated using (a) analytical and (b) numerical 
models for solute transport in a steady radial flow field. Source concentration is 1.0 and source is 
located in cell (1,1). Grid spacing is 10.0 m.
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were designed to evaluate the numerical 
solution for two cases one in which flow is 
parallel to the grid (in the ^-direction) and one 
in which flow occurs at 45 degrees to the x- 
and y-axes. This allows us to evaluate the 
accuracy of the numerical model for this basic 
type of problem, and also to evaluate the

sensitivity of the numerical solution to the 
orientation of the flow relative to that of the 
grid.

The governing equation and boundary 
conditions for an instantaneous point source are 
(seeWexler, 1992, p. 42):

dc_ 
dt

WL C

where V is the velocity in the direction of flow 
(assumed to be the ^-direction in eq. 76), K is 
the decay rate (K = 0 for this problem), Q is the 
injection rate for the well, 8 is a dirac delta 
function, Xc, Yc, and Zc are coordinates of the 
point source, and t' is the time at which the 
instantaneous point source activates. 

The initial condition (at t' = 0) is:

C = 0,

 oo < X < oo,   oo < _y < +00,   oo < i < +00. (78)

For the test case of flow in the ^-direction, we 
assumed Vx = 1.0 m/d, and Vy = Vz = 0.0 
m/d. For flow at 45 degrees to x and y, we 
assumed Vx = Vy = 1.0 m/d, and Vz = 0.0 
m/d. For both cases, the distance the plume 
travels in the ^-direction is the same for equal 
simulation times. Note, however, that the 
magnitude of velocity is higher in the latter 
case; therefore, there will be more dispersion in 
that problem during an equivalent time interval.

Several different grid spacings were used 
for the model simulations to help show the 
relation between discretization and the accuracy 
of the numerical results. The coarsest transport

d2 C ,.dC

-Yc )S(z-Zc )S(t-t')

c=o,
c=o,
c=o,

X = ±oo

y = ±00

Z = ±oo

(76)

(77a) 

(77b) 

(77c)

subgrid used 24 rows, 24 columns, and 24 
layers with a grid spacing of 10.0 m in each 
direction. Subsequent runs doubled and tripled 
the number of rows and columns; the grid 
spacing was reduced accordingly so that the 
model domain (the aquifer volume being 
simulated) remained the same for all grids, and 
changes in accuracy would be attributable only 
to changes in the spatial discretization. 
Because advective transport occurs only in the 
x-y plane, the number of layers was held 
constant at 24. The input parameters for the 
simulations are presented in Table 14, which 
includes the several different values used for 
grid dimensions and spacing.

The results for both the analytical and 
numerical solutions for the case in which flow 
occurs only in the ^-direction are shown in 
figure 30. The MOC3D results for the coarsest 
grid (fig. 30b) clearly show too much 
spreading transverse to flow (that is, in the y- 
direction) relative to the analytical solution (fig. 
30a). Note that the analytical solution was 
contoured for values only at the same exact 
locations as the nodes in the grid used for the 
numerical solution to which it is being
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compared (fig. 30b); this eliminates differences 
for a visual comparison due only to artifacts of 
the contouring procedure, and is the reason that 
the analytical solution appears less smooth than 
it should. To improve numerical and 
contouring accuracy, a finer grid was used for 
both the analytical and MOC3D solutions (figs. 
30c and 30d). Using three times as many 
nodes in each direction in the horizontal plane, 
the numerical dispersion is reduced 
significantly and the numerical solution very 
closely matches the analytical solution. (Note 
that the analytical solution mapped in fig. 30c is 
based on values calculated at nine times as 
many points as that in fig. 30a.)

The results of the test problem for flow at 
45 degrees to the grid are shown in figure 31. 
The analytical solution (fig. 3la), which 
provides the basis for the evaluation, was 
solved on a 72x72 grid, and the MOC3D 
solutions are shown for a 24x24x24 grid (fig. 
31b), a 48x48x24 grid (fig. 31c), and a 
72x72x24 grid (fig. 31d). Unlike the 
previous case (where flow is aligned with the 
grid), the numerical results in figure 31 show a 
noticeable difference in the shape of the plume 
relative to the analytical solution. The 
numerically calculated "hourglass" shape is 
characteristic of a grid-orientation effect and is 
related to the cross-product terms of the 
dispersion tensor. When flow is oriented 
parallel to the grid, or when longitudinal and 
transverse dispersivities are equal, the cross- 
product terms of the dispersion equation are 
zero. Because flow is at 45 degrees to the grid, 
the cross-product terms of the dispersion 
equation are nonzero. The model estimates the 
concentration gradients associated with the 
cross-product terms less accurately than those 
associated with the diagonal terms, and 
therefore the overall solution is less accurate.

The magnitude of this effect is minimized 
by using a finer grid. Overall, the coarsest grid 
exhibits too much spreading, but the next finer 
grid results in minimal numerical dispersion

(although the grid-orientation effect is not 
eliminated). Further reducing the grid spacing 
(fig. 3 Id) does not significantly further reduce 
numerical dispersion, thereby indicating the 
desired characteristic of grid convergence.

Table 14. Parameters used in MOC3D simulation 
of three-dimensional transport from a point source 
with flow in the x-direction and flow at 45 degrees 
to x and y

Parameter Value

e 
OCL

PERLEN (length of 
stress period)

Vx
Vy

Source concentration(C')

Source location

Number of rows 
Number of columns 
Number of layers 
DELR (Ax)

DELC (Ay}

Thickness (b)
NPTPND (Initial number 

of particles per cell)
CELDIS
INTRPL (Interpolation 

scheme)

10.0 m2/day 
0.1 
1.0m 
0.1 m 
O.lm 
90 days

1.0 m/day 
0.0 m/day* 
0.0 m/day 
1 x 106

x = 30 m, 
y = 120 m, 
z = 40 m**

24, 48, and 72 
24, 48, and 72 
24
10.0 m, 5.0 m, 

and 3.33 m
10.0 m, 5.0 m, 

and 3.33 m
10.0m 
8

0.5
2

* For flow at 45 degrees to x and y, Vy = 1.0 m/day 
** For flow at 45 degrees to x and y, the source 
location is x = 30 m, y = 30 m, z = 120 m.
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Each of the MOC3D results also shows a 
slight asymmetry in the shape of the plume in 
the direction of flow (that is, there is slightly 
less forward spreading compared to backward 
spreading), which is inconsistent with 
symmetrical spreading indicated by the

analytical solution. This is caused by the 
sequence in which the dispersive and advective 
terms of the transport equation are solved.

The numerical errors are exaggerated in 
figures 30 and 31 because the concentrations 
are contoured on a logarithmic scale. Some of
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Initial location of point source

(a) Analytical (calculated 
at 24x24 points)
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(b) MOC3D (24x24 grid)
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at 72x72 points)

20

40

60

(d) MOC3D (72x72 grid)
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Figure 30. Concentration contours for (a, c) analytical and (b, d) numerical solutions for transport of 
a point initial condition in uniform flow in the x-direction. The z-component of flow is zero, but there 
is dispersion in all three directions. Contour values are the log of the concentrations.
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Figure 31. Concentration contours for (a) analytical and (b, c, d) numerical solutions for transport of 
a point initial condition in uniform flow at 45 degrees to xand y. Contour values are the log of the 
concentrations.

the discrepancies may also be due to the 
contouring program used to visually represent 
the solutions.

When the flow is at an angle to the grid, as 
for the case illustrated in fig. 31, then negative 
concentrations are most likely to occur. In this 
case, some small areas of slightly negative 
concentrations were calculated, but are not

evident in fig. 31 because they were filtered out 
during the contouring process to allow a clear 
depiction of the position of the plume. 
However, to indicate the extent of the area of 
negative concentrations, we have replotted the 
central part of the domain illustrated in fig. 3 Ib 
(for the 24x24 grid) in fig. 32, in which all 
areas where the relative concentration is less
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Figure 32. Concentration contours showing effects on areas of negative concentrations related 
to decreasing CELDIS factor in MOC3D in simulation of flow at 45 degrees to grid having 24 rows 
and 24 columns of nodes: (a) CELDIS = 0.50; (b) CELDIS = 0.25; and (c) CELDIS = 0.10.

than -0.05 are shaded. Figure 32a represents 
the same solution as shown in fig. 31b. We 
tested the sensitivity of the solution and of the 
extent of negative concentrations to the size of 
the transport time increment by adjusting the 
value of CELDIS. The area in which negative 
concentrations occurred at the same elapsed 
simulation time was slightly smaller for the 
smallest value of CELDIS. In all three cases 
the mass balance errors were about the same 
and always less than 0.2 percent relative to the 
initial solute mass stored.

Constant Source in Nonuniform 
Flow

Burnett and Frind (1987) used a numerical 
model to analyze a hypothetical problem having 
a constant source of solute in a finite area at the 
surface of an aquifer having homogeneous 
properties, but nonuniform boundary 
conditions, which result in nonuniform flow. 
Because an analytical solution is not available 
for such a complex system, we use their results 
for this test case as a benchmark for com 
parison with the results of applying MOC3D to 
the same problem. Burnett and Frind (1987)

used an alternating-direction Galerkin finite- 
element technique to solve the solute-transport 
equation in both two and three dimensions. 
Their model also includes the capability to vary 
0(T as a function of direction, thereby allowing 
that feature of MOC3D to be evaluated in the 
same problem set.

A simplified diagram of the problem is 
illustrated in figure 33. The left (x = 0) and 
bottom surfaces are no-flow boundaries, 
representing a ground-water divide and an 
impermeable base, respectively. The top and 
right surfaces are constant-head boundaries, 
representing the water table and a discharge 
boundary, respectively. The front and back 
vertical faces are no-flow boundaries, 
representing streamlines or flow paths parallel 
to those surfaces. The length of the domain is 
200 m and the saturated thickness varies from 
21 m on the left no-flow boundary to 20 m on 
the right constant-head boundary. The heads 
on the upper surface are specified as a one- 
quarter cosine from 1 m on the left to 0 m on 
the right. Heads are fixed at a slightly negative 
value (-0.00736 m) at all nodes in the right 
column of cells, so that the head on the right 
side of the transport domain (at x = 200 m) will 
almost exactly equal 0 m, and the heads and
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Figure 33. Transport domain and boundary conditions for nonuniform-flow test problem of 
Burnett and Frind (1987); front surface represents a plane of symmetry (modified from Burnett 
and Frind, 1987, fig. 4).

hydraulic gradients throughout the domain 
calculated using MOC3D would be consistent 
with those in the analysis of Burnett and Frind 
(1987). The aquifer properties are assumed to 
be homogeneous and isotropic. These 
boundary conditions yield a two-dimensional 
flow field, which has components of flow in 
the jc- and z-directions only. Therefore, the 
specified width of the domain is varied for each 
particular simulation to accommodate the 
plume, and depends on the dimensionality of 
the simulation (whether two- or three- 
dimensions) and on the values of the 
dispersivity coefficients. The solute source is 
located between 18.25 and 32.50 m from the 
left side of the aquifer and has a width of 10 m, 
extending 5 m on either side of the plane of 
symmetry at y = 0.

Cases of both two- and three-dimensional 
transport were examined for this basic 
problem. The grids used in the MOC3D 
simulations were designed to maximize 
compatibility with the results of the finite- 
element models used by Burnett and Frind 
(1987), so that comparisons of results would 
represent a reasonable benchmarking exercise. 
However, some differences in discretization 
could not be avoided because the finite-element 
methods allow specifications of values at 
nodes, which can be placed directly on

boundaries. Nodes in MOC3D are located at 
the centers of cells, and values specified at 
nodes are always one-half of the grid spacing 
away from the edge of the model domain. 
Among the small differences arising from the 
alternative discretization schemes is that (1) the 
modeled location of the 14.25 m long source 
area is offset by 0.225 m towards the right in 
the MOC3D grid, and (2) the total length of the 
domain is 199.5 m in the MOC3D grid.

The first analysis of this test case focused 
on the simplest one a two-dimensional 
analysis. The input data values for this 
analysis are listed in Table 15. The MOC3D 
grid consisted of 141 columns and 91 layers. 
However, the top layer and right column of 
cells are devoted to assuring consistent 
boundary conditions between the two models, 
and they were considered to lie outside of the 
domain of the transport problem for 
benchmarking purposes. That is, 140 columns 
at a spacing of 1.425 m yields a transport 
domain length of 199.5 m, which is 
approximately equal to the desired total 
horizontal distance of 200 m. Similarly, the 
appropriate height of the domain is assured by 
setting the thickness of each cell within a given 
column equal to l/90th of the height of the 
column, where the height (or total saturated 
thickness) varies from 21 m on the left to 20 m
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on the right. (In comparison, Burnett and 
Frind used a variable spacing in which Ax 
ranged from 2.5 to 6.0 m and Az ranged from 
0.75 to 1.25 m.) The top flow layer consisted 
of constant-head nodes and the solute source. 
Because of the symmetry in the flow field, we 
were able to increase the efficiency of the 
simulation by using a custom initial particle 
placement of only three particles in each cell, as 
shown in figure 34, and still achieve reason 
ably accurate results. Burnett and Frind (1987) 
report that their solution yielded an average

Table 15. Parameters used in MOC3D simu 
lation of transport in a vertical plane from a 
continuous point source in a nonuniform, 
steady-state, two-dimensional flow system 
described by Burnett and Frind (1987)

-4

Parameter Value

K 
e

Dm

PERLEN (length of 
stress period)

Source concentration(C')
Number of rows 1 
Number of columns 
Number of layers 1 
DELR (Ax) 
DELC (Ay) 
Thickness (b)
NPTPND (Initial number 

of particles per cell)
CELDIS
INTRPL (Interpolation 

scheme)

1.0 m/day 
0.35 
3m 
0.01 m 
10-4 m2/day 

12,000 days

1.0

141
1
91
1.425 m
1.0m
0.2222-0.2333 m
3

1.0 
1

1 One row and layer were allocated to defining 
boundary conditions, so concentrations calculated in 
only 140 rows and 90 layers were used for 
benchmarking.

areal recharge rate of about 8x10 m/day; the 
MOC3D solution yielded an average areal

-4
recharge rate of about 7.8 x 10 m/day. This 
agreement is evidence that the parameters and 
boundary conditions for the two model 
analyses are similar enough to permit a 
benchmarking comparison.

-0.5

o.o
(1,1)

0.5 
-0.5 0.0 0.5 

X

EXPLANATION 

Node location 

Initial particle location

Figure 34. Initial particle positions within a cell 
for the Burnett-Frind (1987) test case (based 
on custom particle placement and NPTPND = 
3). The relative coordinates on the x- and z- 
axes shown for the cell (1,1) are the same for 
any cell of the grid; this relative coordinate 
system is used for the custom definition of 
particle locations in the input file.

Results for the two-dimensional case from 
the MOC3D model closely match those of 
Burnett and Frind (see fig. 35). Both models 
represent the solution on the plane of symmetry 
(that is, on the front face of the block shown in 
fig. 33). The concentration contours are 
located in almost exactly the same positions for 
both models. However, in the MOC3D 
results, the contours lag slightly behind those 
of Burnett and Frind (1987). This may be
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Figure 35. Two-dimensional simulation results for nonuniform-flow test case 
showing plume positions as contours of relative concentration: (a) finite- 
element model (modified from Burnett and Frind, 1987, fig. 8a), and (b) 
MOC3D. Contour interval is 0.2 relative concentration.

attributable to small differences in the numerical 
treatment of the source between the two models 
and (or) to the slightly lower flux (and velocity) 
in the MOC3D solution. Note that the solution 
to the two-dimensional case in the x-z plane 
does not depend on the value of &TH-

For the three-dimensional analyses, the 
MOC3D grid is expanded to 15 rows having 
Ay of 1.0 m. The source is applied over the 
first 5 rows, taking advantage of the symmetry 
along the j-axis to account for the 10 m width

of the source. Note that because of symmetry, 
the flow fields are identical in the two- and 
three-dimensional cases. Figure 36 shows the 
transport results for both models for the case in 
which (%TV =0.01 m and O,TH = 0.1 m. In the 
MOC3D results (fig. 36b) the vertical plane in 
the first row is contoured. Note that there will 
be a slight discrepancy in the basis of 
comparison because concentrations from 
MOC3D are evaluated at the center of the block 
(1/2 of a cell width from the plane of

20

10

(a) 3D Finite-Element Model

40 80 120 160 

(b) MOC3D Model

200

40 80 120 160 200

Figure 36. Three-dimensional simulation results for nonuniform-flow test case 
in which ajH = 0.1 m and ajv = 0.01 m: (a) finite-element model (modified 
from Burnett and Frind, 1987, fig. 8c), and (b) MOC3D. Plume positions are 
represented by contours of relative concentration; contour interval is 0.2 
relative concentration.
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symmetry), whereas those from Burnett and 
Frind (1987) are evaluated on the cell faces 
(directly on the plane of symmetry). A three- 
dimensional visualization of the MOC3D 
results are presented in fig. 37, which was 
generated from the concentrations on particles 
(as opposed to nodal concentrations in fig. 
36b) using a three-dimensional visualization 
software package. (The plume definition from 
particle concentrations and locations is 
inherently more precise than can be defined 
from averaged nodal concentrations.) This 
perspective shows more clearly the entire 
plume and the magnitude of lateral spreading of 
the plume. It also illustrates the impact of 
specifying unequal transverse dispersivity 
coefficients, in that the transverse spreading in 
the horizontal direction increases more rapidly 
than does the transverse spreading in the

vertical direction, as evident in the "chair" cut 
near the source location and on the face of the 
plume at the downgradient boundary. Figure 
38 shows the results for the case in which the 
vertical transverse dispersivity is increased by a 
factor of ten, so that CCTH = arv = 0.1 in- 
Overall, the MOC3D results (figs. 35b, 36b 
and 38b) agree closely with those of Burnett 
and Frind (1987) (figs. 35a, 36a and 38a).

Comparison of the three-dimensional 
results with the two-dimensional analysis 
shows that all contours are closer to the source 
of solute in the three-dimensional cases. This 
is expected because the contaminant source has 
a finite length and consideration of the 
additional dimension for the dispersion process 
allows spreading of solute in the ^-direction, 
which means that less solute mass will remain 
in the vertical plane being contoured. This

Figure 37. Perspective view of MOC3D results for three-dimensional problem of constant source 
in nonuniform flow and unequal transverse dispersivity coefficients. This visualization of the 
plume was generated from particle concentrations using a three-dimensional visualization 
software package and is derived from the same simulation that is the basis of fig. 36b. Note that a 
piece of the plume near the source is cut away (a "chair" cut) to expose a clearer view of the 
degree of transverse spreading in the selected vertical and horizontal planes. Shading 
increments are in relative-concentration intervals of 0.20, and interval bounds range between 0.9 
and 0.1. Concentrations less than 0.10 are transparent.
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Figure 38. Three-dimensional simulation results for nonuniform-flow test case in 
which CCJH = aTv = 0.01 m: (a) finite-element model (modified from Burnett and 
Frind, 1987, fig. 9b), and (b) MOC3D. Plume positions are represented by 
contours of relative concentration; contour interval is 0.2 relative concentration.

makes it appear that the plume has not spread 
as far in the ^-direction during the same elapsed 
time. In the three-dimensional simulations, the 
lower-value and higher-value contours are 
slightly closer to the 0.5 contour in the MOC3D 
results, and the contours defining the lateral 
edges of the plume are spaced closer together. 
These characteristics indicate that the MOC3D 
results may include less numerical dispersion 
than the finite-element results. However, this 
minor difference may simply be an outcome of 
having used a finer grid spacing in MOC3D.

Relative Computational Efficiency

The computational effort required by the 
MOC3D code is strongly dependent on the size 
of the problem being solved, as reflected 
primarily by the total number of nodes, total 
number of particles, and total number of time 
increments. Analyses indicate that the greatest 
computational effort, as measured by CPU 
time, is typically expended in the particle 
tracking

routines. For a given problem, the efficiency 
of the code may vary significantly as a function 
of the characteristics of the particular computer 
on which the simulation is performed, and to 
some extent on which FORTRAN compiler 
(and which compiler options) were used to 
generate the executable code.

To provide a qualitative indication of these 
relations, we have run all of the sample 
problems described in this report on a variety 
of computers. The relative running times for 
each problem on a variety of different 
computers are presented in table 16. The run 
times are measured as CPU time in seconds. 
As indicated in table 16, the efficiency for a 
given problem may vary by more than a factor 
of ten, depending on which of the tested 
computers were used. However, for the given 
test problems, the efficiency was much more 
sensitive to the overall size of the problem, and 
the CPU time on a given computer varied by 
about four orders of magnitude between the 
simple one-dimensional problem and the more 
complex three-dimensional problem. The 
model user should be aware that in some cases, 
model efficiency may be a serious constraint.
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CONCLUSIONS

The MOC3D model described in this report 
can simulate the transient, three-dimensional, 
transport and dispersion of a solute subject to 
decay and retardation. The solute-transport 
model is integrated with the MODFLOW 
model, which is used to solve the ground-water 
flow equation for either steady-state or transient 
flow. The numerical methods used to solve the 
governing equations allow their application to 
systems having heterogeneous properties and 
complex boundary conditions. The package 
thus has broad general application and 
flexibility for application to a wide range of 
hydrogeological problems.

The accuracy and precision of the numerical 
results were tested and evaluated by 
comparison of the MOC3D results with 
analytical solutions for several relatively simple 
and idealized problems and by benchmarking 
comparisons against the results of other 
numerical codes for more complex problems 
for which no analytical solutions are available. 
These tests indicate that the model can 
successfully and accurately simulate the three- 
dimensional transport and dispersion of a 
solute in flowing ground water. This 
implementation of the method of characteristics 
is not strictly mass conservative and the method 
of calculating a solute mass balance is 
inherently an approximation. Therefore, 
calculated mass-balance errors may be nonzero, 
but are generally less than 10 percent and often 
decrease and stabilize with time. For some 
problems, the accuracy and precision of the 
numerical results may be sensitive to the initial 
number of particles placed in each cell. The 
efficiency of the solution is sensitive to the total 
number of particles used and to the size of the 
transport time increment, as determined by the 
stability criteria for the solute-transport 
equation. An advantage of this method is that, 
in general, its accuracy and efficiency are 
greatest for advection-dominated problems,

which is a characteristic of many ground-water 
contamination problems that pose serious 
environmental risks.
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APPENDIX A: FINITE-DIFFERENCE APPROXIMATIONS

Applying finite-difference approximations that are centered-in-space and explicit (forward- 
in-time), the component of the dispersive flux in the ^-direction across the cell face at (j+l/2,i,k) 
(equivalent to My(7- +1/2,t,£)/^ Ay from eq. 57) may be written:

= -(£bD\
\ xx /7+l/2,f, Ax

[ CU^'xy)j+l/2,i,

S^i* S^i*

l,i+l,k ~ Cj,i-\,k ~ Cj+l,i-l,

4Ay

-(fifrl>_y+1 -
V xz 'j+\/2,i,k 2 t+\

(Al)

where 2Bjj i> jc = bj^k + 1/2 (bj^k-1 + bj^+i) is the vertical distance between nodes (j,i,k+l) and 
(j,i,k-l). The superscript "*" indicates the use of an average concentration, as defined in eq. 55.

Similarly, the y-component of the dispersive flux vector atj,i+l/2,k is approximated by:

dC i \t+i 
= -(£bDyy )_ M/2

I \f+l 

-K*l>l/2,

Ay

4Ax

t+\ ]_

2
. (A2)

The z-component does not include the saturated thickness and is approximated by:
N *

^ dC}
3m -»

oxt

[^zxjj^k+m

S~t*

Cj+\,i,k

~*"

4Ay

(c*   + c*     c*     c*   
J ' '______J' '________J* '______J* '

4Ay
(A3)

Applying centered finite-difference approximations, the change in concentration due to dispersion, 
neglecting the sink/source term, can be written:
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dC 
dr

A*
'+ (c*+m -C* )-
/+l/2,aV J +l' l ' K J' l ' k )

2AxAy
(ebD,

t+i * 
+

'

t+1

,,
i

t+l

2Bj,i,k

+

i \r-t-i

/  *

j,i,k
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+ I* *~>* /I*
j+l,i,k ~ Cj-l,i,k+l ~ ~/-l

+ -

( \£+l i * * * * 
Vlj,i,k-\/2\ i' i+l- k + CJ,i+lk-l ~ Cj,i-\,k ~ Cj,i-\,k-\ (A4)

where the dispersion coefficient terms ebD and eD are given by:

v2

\D(i\j+\/2,i,k

(btfz(j+l/2,i,k)

IH+i/2,a
(A5)

-V2,i,k f
\hn\ H I/?/? \ OCl\j-\/2,i,k \D(l\j-\/2,i,k

ebD

-aa

= a - a

\j+l/2,i,k

  \- aT (]f ,rv(^); b4x(j-l/2,i,k)b4z(j-l/2,i,k)  !J   L^-J:   ̂   J-:-jL

(A7)

(A8)

(A9)

(A10)

/ , n \\ebD\
V yy)j,i+i/2

=a
,k

a v (A12)
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-a<*TH (k)

(ebD\ = (aL(k) - aT )^zl^d^ (A14)
V yx >j,i-\/2,k V L(k) TH(k)j \ h I v >D

ebD\ 
*>J.i

- aT 5r

+aTv (k+l/2)

4y(j,i, 
(XTv (k-U2)         + aL(k-l/2)

-aa

where all terms are at time level t+l. The flux terms normal to the finite-difference block (or cell 
faces) are known directly from the solution to the flow equation. For the horizontal terms, bq, the 
volumetric flux per unit width is known, whereas the vertical flux is specific discharge, or 
volumetric flux per unit area.

To compute the dispersion coefficients at a block interface, the flux must be computed at 
this location. The flux normal to the block face is known from the finite-difference solution of the 
flow equation. However, the other two components must be interpolated from nearby values. 
Horizontal fluxes are averaged for x fluxes at y block interfaces, and vice versa, by:
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Lt}4xix(j,i+V2,k)

, _ b4y(j,i-l/2,k) + b4y(j,i+\/2,k) + b4y( j+\,i-\/2,k) + b4y(j+\,i+l/2,k) t>4y(j+l/2,i,k)-                         ̂                          

Horizontal fluxes per unit width are averaged and normalized by corresponding layer thicknesses 
to convert to fluxes per unit area at layer interfaces:

_ bclx(j-\/2,i,k-\) +bclx(j+\/2,i,k-\) . bclx(j-\/2,i,k) +bclx(j+\/2,i,k) f \^n\    +    -     (A27)

_ -t A( j i/^.,i,K,-t-is____-t A( y-ri/z,,t> A,-riy , "x(j \/2,i,k)____-^A; JTI/^.,I,K.J /AOQ\^f;,a+l/2J -         T7             +        77           CAZ8)

_ b4y(j,i-\/2,k+\) +b(ly(j,i+V2,k+l)                 

b4y(j,i-l/2,k) + b4y(j,i+l/2,k)

Vertical fluxes per unit area are averaged and multiplied by corresponding layer thicknesses to 
convert to fluxes per unit width at row and column interfaces:

'
b4z(j,i+l/2,k) = ~~£~[4z(j,i,k-l/2) + Qz(j,i,k+l/2)\ + '4 '

i / /  i k r
(j,i,k-l/2) + Qz(j,i,k+\/2)\ + ' ' \4z(j,i-\,k-\/2)

7 i k F 1 7+1 i k
b4z(j+l/2,i,k) = ~

i / i / ^ r i
J +    "[^zO-1,1^-1/2) + ^z(;-l,i,Jfc+l/2) J-
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The magnitudes of fluid flux at block interfaces are:

i/2

l/2r 2 / \2 \2 1 
\bq\     1/0; = (bq) ,. . , /0 ,, + (for) ... . « ,, + (bq} ,. . . /0 ,,

J I / / I /v Jt' IV  *  / Yl 1 1   1 /V K \ \  * / Vr 7 /  I / y * 1 \  *- J 7( 1 1 1 /V fc' ) I1 If* *-* ***  *  I  * I /»*  * » ^j **/ /l/j* -1' ^*> **/ <*!/»*  *-/ -^i"' / I./? ' L ^*7 ' 7/ ^^^' '/ ^17' (/ J

(A39)

f-

As before, all terms that are determined from the flow solution are at time level t+l.
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APPENDIX B: DATA INPUT INSTRUCTIONS FOR MOC3D

MODFLOW Name File

Transport simulation is activated by including a record in the MODFLOW name file using 
the file type (Ftype) "CONC" to link to the transport name file. The transport name file specifies 
the files to be used when simulating solute transport in conjunction with a simulation of ground- 
water flow using MODFLOW. The transport name file works in the same way as the MODFLOW 
name file.

MODFLOW Source and Sink Packages

Except for recharge, concentrations associated with fluid sources (C') are read as auxiliary 
parameters in the MODFLOW source package. The source concentration is read from a new 
column appended to the end of each line of the data file describing a fluid sink/source (see 
documentation for revised MODFLOW model; Harbaugh and McDonald, 1996a and 1996b). For 
example, concentrations associated with well nodes should be appended to the line in the WEL 
Package where the well's location and pumping rate are defined. These concentrations will be read 
if the auxiliary parameter "CONCENTRATION" (or "CONC") appears on the first line of the well 
input data file. The concentration in recharge is defined separately, as described in following 
section "Source Concentration in Recharge File."

To simulate solute transport the MODFLOW option enabling storage of cell-by-cell flow 
rates for each fluid source or sink is required in all fluid packages except recharge. The key word 
"CBCALLOCATE" (or "CBC") must appear on the first line of each input data file for a fluid 
package (see Harbaugh and McDonald, 1996a and 1996b).

MOC3D Input Data Files

All input variables are read using free formats, except as specifically indicated. In free 
format, variables are separated by one or more spaces or by a comma and optionally one or more 
spaces. Blank spaces are not read as zeros.
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MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

1. Data: FTYPE NUNIT FNAME

The name file consists of records defining the names and units numbers of the files. Each 
"record" consists of a separate line of data. There must be a record for the listing file and for the 
main MOC3D input file.

The listing (or output) file ("CLST") must be the first record. The other files may be in any 
order. Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST MOC3D listing file (separate from the MODFLOW listing file) [required].

MO C Main MOC3D input data file [required].

CR CH Concentrations in recharge [optional].

CNCA Separate output file containing concentration data in ASCII (text-only) format. 
Frequency and format of printing controlled by NPNTCL and ICONFM 
[optional].

CNCB Separate output file containing concentration data in binary format [optional].

VELA Separate output file with velocity data in ASCII format. Frequency and format 
of printing controlled by NPNTVL and IVELFM [optional].

VELB Separate output file with velocity data in binary format [optional].

PR TA Separate output file with particle locations printed in ASCII format. Frequency 
and format of printing controlled by NPNTPL [optional].

PR TB Separate output file with particle locations printed in binary format [optional]. 

OBS Observation wells input file [optional].

DA TA For formatted files such as those required by the OBS package and for array 
data separate from the main MOC3D input data file [optional].

DATA(BINAR Y) For formatted input/output files [optional].

NUNIT The FORTRAN unit number used to read from and write to files. Any legal unit 
number other than 97, 98, and 99 (which are reserved by MODFLOW) can be 
used provided that it is not previously specified in the MODFLOW name file.

FNAME The name of the file.
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Main MOC3D Package Input (MOC)

Input for the method-of-characteristics (MOC3D) solute-transport package is read from the 
unit specified in the transport name file. The input consists of 18 separate records or data sets, as 
described in detail below. These data are used to specify information about the transport subgrid, 
physical and chemical transport parameters, numerical solution variables, and output formats. 
Output file controls for the MOC3D package are specified in the transport name file, described 
previously.

FOR EACH SIMULATION:

1. Data: HEDMOC A two-line character-string title describing the 
simulation (80 text characters per line).

2. Data: HEDMOC (continued)

3. Data: ISLAYl ISLAY2 ISROWl ISROW2 ISCOLl ISCOL2

ISLAY1 

ISLAY2 

ISROWl 

ISROW2 

ISCOLl 

ISCOL2

Notes:

Transport may be simulated within a subgrid, which is a "window" within the primary 
MODFLOW grid used to simulate flow. Within the subgrid, the row and column spacing must be 
uniform, but thickness can vary from cell to cell and layer to layer. However, as discussed in the 
section reviewing MOC3D assumptions, the range in thickness values (or product of thickness and 
porosity) should be as small as possible.

ISLAYl ISLAY2 ISROWl ISROW2 ISCOLl

Number of first (uppermost) layer for transport.
Last layer for transport.
First row for transport.
Last row for transport.
First column for transport.
Last column for transport.

4. Data: NODISP DECAY DIFFUS

NODISP Flag for no dispersion (set NODISP=1 if no dispersion in problem; this will reduce 
storage allocation).

DECAY First-order decay rate [1/T] (DECAY=0.0 indicates no decay occurs). 
DIFFUS Effective molecular diffusion coefficient [L2/T].

Notes:
The decay rate (A) is related to the half life (?1/2) of a constituent by A = (In 2)/?1/2 . 
The effective molecular diffusion coefficient (Dm) includes the effect of tortuosity.
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5. Data: NPMAX NPTPND

NPMAX Maximum number of particles available for particle tracking of advective transport 
in MOC3D. If set to zero, the model will calculate NPMAX according to the 
following equation:

NPMAX = 2xNPTPNDxNSROWxNSCOLxNSLAY.

NPTPND Initial number of particles per cell in transport simulation (that is, at t = 0.0). Valid 
options for default geometry of particle placement include 1, 2, 3, or 4 for one- 
dimensional transport simulation; 1,4, 9, or 16 for two-dimensional transport 
simulation; and 1, 8, or 27 for three-dimensional transport simulation. The user 
can also customize initial placement of particles by specifying NPTPND as a 
negative number, in which case the minus sign is recognized as a flag to 
indicate custom placement is desired. In this case, the user must input local 
particle coordinates as described below.

IF NPTPND IS NEGATIVE IN SIGN:

6. Data: PNEWL PNEWR PNEWC

PNEWL Relative position in the layer (z) direction for initial placement of particle within any 
finite-difference cell.

PNEWR Relative position in the row (y) direction for initial placement of particle. 
PNEWC Relative position in the column (x) direction for initial placement of particle.

Notes:
The three new (or initial) particle coordinates are entered sequentially for each of the 

NPTPND particles. Each line contains the three relative local coordinates for the new particles, in 
order of layer, row, and column. There must be NPTPND lines of data, one for each particle. The 
local coordinate system range is from -0.5 to 0.5, and represents the relative distance within the cell 
about the node location at the center of the cell, so that the node is located at 0.0 in each direction.

FOR EACH SIMULATION:

7. Data: CELDIS FZERO INTRPL

CELDIS Maximum fraction of cell dimension that particle may move in one step (typically,
0.5 < CELDIS < 1.0). 

FZERO If the fraction of active cells having no particles exceeds FZERO, the program will
automatically regenerate an initial particle distribution before continuing the simulation
(typically, 0.01 < FZERO < 0.05). 

INTRPL Flag for interpolation scheme used to estimate velocity of particles. The default
(INTRPL=1) will use a linear interpolation routine; if INTRPL=2, a scheme will be
implemented that uses bilinear interpolation in the row and column (/' and i)
directions only (linear interpolation will still be applied in the k, or layer, direction).
(See section "Discussion Choosing appropriate interpolation scheme.")
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FOR EACH SIMULATION:

8. Data: NPNTCL ICONFM NPNTVL IVELFM NPNTDL IDSPFM NPNTPL

NPNTCL Flag for printing concentration data. If NPNTCL=-2, concentration data will be
printed at the end of every stress period; if NPNTCL=-1, data will be printed at the 
end of every flow time step; if NPNTCL=0, data will be printed at the end of the 
simulation; if NPNTCL=N>0, data will be printed every Nth particle moves, and at 
the end of the simulation. Initial concentrations are always printed.

ICONFM Specification for format of concentration data in main output file (see Table 17 and 
MODFLOW documentation on array-reading utility modules).

NPNTVL Flag for printing velocity data. If NPNTVL=-1, velocity data will be printed at the end 
of every stress period; if NPNTVL=0, data will be printed at the end of the 
simulation; if NPNTVL=N>0, data will be printed every Nth flow time steps, and 
at the end of the simulation.

IVELFM Specification for format of velocity data, if being printed in main output file (see Table 
17).

NPNTDL Flag for printing dispersion equation coefficients that include cell dimension factors 
(see section "Program Segments"). If NPNTDL=-2, coefficients will be printed at 
the end of every stress period; if NPNTDL=-1, coefficients will be printed at the 
end of the simulation; if NPNTDL=0, coefficients will not be printed; if 
NPNTDL=N>0, coefficients will be printed every Nth flow time step.

IDSPFM Specification for format of dispersion equation coefficients (see Table 17).
NPNTPL Flag for printing particle locations in a separate output file (only used if file types 

"PRTA" or "PRTB" appear in the MOC3D name file). If neither "PRTA" or 
"PRTB" is entered in the name file, NPNTPL will be read but ignored (so you must 
always have some value specified here). If either "PRTA" or "PRTB" is entered in 
the name file, initial particle locations will be printed to the separate file first, 
followed by particle data at intervals determined by the value of NPNTPL. If 
NPNTPL=-2, particle data will be printed at the end of every stress period; if 
NPNTPL=-1, data will be printed at the end of every flow time step; if 
NPNTPL=0, data will be printed at the end of the simulation; if NPNTPL=N>0, 
data will be printed every Nth particle moves, and at the end of the simulation.

Table 17. Formats associated with MOC3D print flags

Print flag

0

i
2

3

4

5

6

Format

10G11.4

11G10.3

9G13.6

15F7.1

15F7.2

15F7.3

15F7.4

Print flag

7

8

9

10

11

12

13

Format

20F5.0

20F5.1

20F5.2

20F5.3

20F5.4

10G11.4

10F6.0

Print flag

14

15

16

17

18

Format

10F6.1

10F6.2

10F6.3

10F6.4

10F6.5
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FOR EACH SIMULATION:

9. Data: CNOFLO Concentration associated with inactive cells of subgrid (used for
output purposes only).

FOR EACH LAYER OF THE TRANSPORT SUBGRID:

10. Data: CINT(NSCOL,NSROW) Initial concentration.
Module: U2DREL*

FOR EACH SIMULATION, ONLY IF TRANSPORT SUBGRID DIMENSIONS ARE 
SMALLER THAN FLOW GRID DIMENSIONS:

11. Data: CINFL (ICINFL) C to be associated with fluid inflow across the
boundary of the subgrid.

Module: UlDREL*

Notes:
The model assumes that the concentration outside of the subgrid is the same within each 

layer, so only one value of CINFL is specified for each layer within and adjacent to the subgrid. That 
is, the size of the array (ICINFL) is determined by the position of the subgrid with respect to the 
entire (primary) MODFLOW grid. If the transport subgrid has the same dimensions as the flow grid, 
this parameter should not be included in the input data set. If the subgrid and flow grid have the 
same number of layers, but the subgrid has fewer rows or fewer columns, ICINFL=NSLAY. Values 
are also required if there is a flow layer above the subgrid and/or below the subgrid. The order of 
input is: C" for first (uppermost) transport layer (if required); C' for each successive (deeper) 
transport layer (if required); C" for layer above subgrid (if required); and C" for layer below 
subgrid (if required).

FOR EACH SIMULATION

12 . Data: NZONES Number of zone codes among fixed-head nodes in transport subgrid. 

IF NZONES > 0:

Data: IZONE ZONCON

I ZONE Value identifying a particular zone.
ZONCON Source concentration associated with nodes in the zone defined by IZONE above.

Notes:
Zones are defined within the IBOUND array in the BAS Package of MODFLOW by 

specifying unique negative values for fixed-head nodes to be associated with separate fluid source 
concentrations. Each zone is defined by a unique value of IZONE and a concentration associated 
with it (ZONCON). There must be NZONES lines of data, one for each zone. Note that values of 
IZONE in this list must be negative for consistency with the definitions of fixed-head nodes in the 
IBOUND array in the BAS Package. If a negative value of IBOUND is defined in the BAS package 
but is not assigned a concentration value here, MOC3D will assume that the source concentrations 
associated with those nodes equal 0.0.

Module is a standard MODFLOW input/output module.
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FOR EACH LAYER OF THE TRANSPORT SUBGRID:

13. Data: IGENPT (NSCOL,NSROW) Flag to treat fluid sources and sinks as
either "strong" or "weak."

Module: U2DINT*

Notes:
Where fluid source is "strong," new particles are added to replace old particles as they are 

advected out of that cell. Where a fluid sink is "strong," particles are removed after they enter that 
cell and their effect accounted for. Where sources or sinks are weak, particles are neither added nor 
removed, and the source/sink effects are incorporated directly into appropriate changes in particle 
positions and concentrations. If IGENPT=0, the node will be considered a weak source or sink; if 
IGENPT=1, it will be a strong source or sink. See section on "Special Problems" and discussion by 
Konikow and Bredehoeft (1978).

IF NODISP * I (If dispersion is included in simulation):

14. Data: ALONG (NSLAY) Longitudinal dispersivity.
Module: UlDREL*

15 . Data: ATRANH (NSLAY) Horizontal transverse dispersivity.
Module: UlDREL*

16 . Data: ATRANV (NSLAY) Vertical transverse dispersivity.
Module: UlDREL*

FOR EACH SIMULATION:

17 . Data: RF (NSLAY) Retardation factor (RF=1 indicates no retardation).
Module: UlDREL*

Notes:
If RF=0.0 in input, the code automatically resets it as RF=1.0 to indicate no retardation.

FOR EACH LAYER OF TRANSPORT SUBGRID:

18a. Data: THCK (NSCOL,NSROW) Cell thickness.
Module: U2DREL*

18b. Data: FOR (NSCOL, NSROW) Cell porosity.
Module: U2DREL*

Notes:
The thickness and porosity are input as separate arrays for each layer of the transport 

subgrid. The sequence used in data set 18 is to first define the thickness of the first layer of the 
transport subgrid, and then define the porosity of that same layer. Next, that sequence is repeated for 
all succeeding layers. The product of thickness and porosity should not be allowed to vary greatly 
among cells in the transport subgrid.

Module is a standard MODFLOW input/output module.
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Source Concentration in Recharge File (CRCH)

Concentrations in recharge, if the recharge package is used, are read from a separate unit 
specified in the MOC3D name file. This is defined using the file type (Ftype) "CRCH."

FOR EACH STRESS PERIOD, IF RECHARGE PACKAGE USED:

1. Data: INCRCH Flag to reuse or read new recharge concentrations.

Notes:
Read new recharge concentrations if INCRCH > 0. Reuse recharge concentrations from the 

last stress period if INCRCH < 0.

2 . Dat a: CRECH (NSCOL, NSROW) Source concentration associated with fluid
entering the aquifer in recharge.

Module: U2DREL*

Observation Well File (OBS)

Nodes of the transport subgrid can be designated as "observation wells." At each such 
node, the time, head, and concentration after each move increment will be written to a separate 
output file to facilitate graphical postprocessing of the calculated data. The input file for specifying 
observation wells is read if the file type (Ftype) "OBS" is included in the MOC3D name file.

FOR EACH SIMULATION, IF OBS PACKAGE USED:

1. Data: NUMOBS IOBSFL

NUMOBS Number of observation wells.

IOBSFL If IOBSFL = 0, well data are saved in NUMOBS separate files. If IOBSFL>0, all 
observation well data will be written to one file, and the file name and unit 
number used for this file will be that of the first observation well in the list.

FOR EACH OBSERVATION WELL:

2. Data: LAYER ROW COLUMN UNIT

LAYER Layer of observation well node.
ROW Row of observation well node.
COLUMN Column of observation well node.
UNIT Unit number for output file.

Notes:
If NUMOBS>1 and IOBSFL = 0, you must specify a unique unit number for each observa 

tion well and match those unit numbers to DATA file types and file names in the MOC3D name file. 
If IOBSFL>0, you must specify a unique unit number for the first observation well and match that 
unit number to a DATA file type and file name in the MOC3D name file.

Module is a standard MODFLOW input/output module.
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APPENDIX C: ANNOTATED EXAMPLE INPUT DATA SET FOR 
SAMPLE PROBLEM

This example input data set is the one used to generate the solution for the base case in the 
one-dimensional steady-state flow problem. Parameter values are indicated in Table 11 and 
selected results are shown in fig. 18. Several of the following data files (mod/low.nam, 
bas95.dat, bcfll.dat, and sipl9.dat) are those required for MODFLOW-96, and their formats are 
described by Harbaugh and McDonald (1996a).

In several of the data files shown below, the right side of some data lines includes a semi 
colon followed by text that describes the parameters for which values are given. These comments 
(including the semi-colon) are not read by the program because in free format the code will only 
read the proper number of variables and ignore any subsequent information on that line. This style 
of commenting data files is optional, but users may find it helpful when viewing the content of data 
files.

Following (enclosed in a border) are the contents of the MODFLOW name file for the 
sample problem; explanations are noted outside of border:

Filename: mod flow, nam

list

bas

bcf

sip

cone

T
i

16

95

11

19

33

T
2

flow. out

bas95.dat

bcfll.dat

sipl9.dat

moc .nam

t
3

4  Designates main output file for MODFLOW

4- Basic input data for MODFLOW

4  Block-centered flow package

4  Input for numerical solution of flow equation

4  Transport name file (turns transport "on")

1 Ftype (that is, the type of file)
2 Unit number
* File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the 
MODFLOW simulation of the sample problem; explanations are noted outside of border:

File name: bas95. dat
Finite: Compare

NLAY

FREE

-1 1

1 1
1 1
1 1
1 1

0

12.1
120.0

end

1

0
95
1 1
1 1
1 1
1 1
1 1
00
95

to Wexler program and MOC3D
NROW

1

1

NCOL

122
NPER

1

BAS Input
ITMUNI

1

; IAPART, ISTRT

1(2513)
1
1
1
1
1

1 1
1 1
1 1
1 1
1 1

111

111
111
111
111

111
111
111
111
111

1 1

1 1
1 1
1 1
1 1

1

1
1
1
1

1.0(122F5.0)

1 1. ; PERLEN, NSTP,

1 1
1 1
1 1
1 1
1 1

;
1

3
1 1
1 1
1 1
1 1
1 1
HNOFLO
HEAD

; IBOUND
11111

11111
11111
11111
1 -2

TSMULT

<- 1
<- 1
^- 2
<- 3
<- 4
<r- 5
<- 5
<- 5
<- 5
<- 5
<- 5
^6
<- 7
<- 7
^- 8
<- 9

Two header lines of comments. For convenience and clarity, the second line is used to label names of 
parameters on subsequent line of file.

Flow grid dimensions, number of periods, and time units.
Options line (new in MODFLOW-96)
Flags for buffer array and drawdown calculations.
IBOUND identifiers (first line) and array
Head value assigned to inactive cells
Initial head information
MODFLOW time-step information
Final comment line

Following (enclosed in a border) are the contents of the block-centered flow package input data 
file; explanations are noted outside of border:

File name: bcf 11 . dat

1 0 0.0

0

0

0

0

0

0 0.0 0 0

1.0

0.1

0.1

0.01

; ISS, flags

; LAYCON

; TRPY

; DELR

; DELC

; TRAN

BCF Input <- 1

<-3

1 Flag for steady-state flow, flag for cell-by-cell flow terms, five flags related to wetting
2 Layer type
3 Anisotropy factor
4 Grid spacing information
^ Transmissivity data
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Following (enclosed in a border) are the contents of the strongly implicit procedure package input 
data file; explanations are noted outside of border:

File name: sipl 9. da t

500 5

1. 0.0000001

; MXITER,NPARM SIP Input 

0 0.001 ; ACCL,ERR,IPCALC,WSEED

<- 1

Maximum iterations, number of iteration parameters 
Acceleration parameter, head change criterion, flag for seed, seed

Following (enclosed in a border) are the contents of the MOC3D name file for the sample problem; 
explanations are noted outside of border:

File name: moc. nam

cist

moc

obs

data

cnca

cncb

T
i

97

96

44

45

22

23

T
2

moc . out

moc96 . dat

obs 4 4 .dat

obs . out

cone . txt

cone .bin

t
3

1 Ftype
2 Unit number
3 File name

<  Designates main output file for MOC3D 

<  Main input data file for MOC3D 

<  Input data file for observation wells 

<  Output file for observation well data 

<  Separate output file for cone, data (ASCII) 

<  Separate output file for cone, data (binary)
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Following (enclosed in a border) are the contents of the main input data file for the MOC3D 
simulation for the sample problem; selected explanations are noted outside of border:

File name: moc9 6. da t
One-dimensional , Steady Flow, No

ISLAY1 ISLAY2 ISROWl
1
0

2000
0.5 0

000-1000
0.0

0
0
2

-1
-2
0
0
0
0
0
0
0

1 1
0.0 0.0 ;

3
.05 2 ;

Decay, Low Dispersion: BASE CASE MOC3D Input
ISROW2 ISCOL1 ISCOL2

1 2 121
NODISP, DECAY, DIFFUS
NPMAX, NPTPND
CELDIS, FZERO, INTRPL

; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL
; CNOFLO
0.0 (122F3.0)
1.

1.0
0.0

0
0.1
0.1
0.1
1.0
1.0
0.1

; initial concentration
; C ' inflow
; NZONES to follow
; I ZONE, ZONCON
; I ZONE, ZONCON
; IGENPT
; longitudinal disp.
; transverse disp. horiz.
; transverse disp. vert.
; retardation factor
; thickness
; porosity

<- 1
<- 1
<- 2
<- 3
^ _ A

A __ A

<- 5
<  6

<- 7
<- 7
<- 7
<- 8

Two header lines of comments. For convenience and clarity, the second line is used to label names of 
parameters on subsequent line of file.

Indices for transport subgrid
Flag for no dispersion, decay rate, diffusion coefficient 
Particle information for advective transport 
Print flags 

" Value of concentration associated with inactive cells
' Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the 

MODFLOWBAS package)
8 Flag for "strong" sources or sinks

Following (enclosed in a border) are the contents of the observation well input data file for the 
sample problem; explanations are noted outside of border:

File name: obs 4 4 . da t

3 1

112

1 1 42

1 1 112

45

;NUMOBS IOBSFL Observation well data

;layer, row, column, unit number

;layer, row, column

;layer, row, column

<- 1

Number of observation wells, flag to print to one file or separate files
Node location and unit number for output file (linked to the Ftype DATA in MOC3D name file)
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APPENDIX D: SELECTED OUTPUT FOR SAMPLE PROBLEM

This example output was generated from the input data sets listed in Appendix C for the 
base case of the one-dimensional steady-state flow problem. The line spacing and font sizes of the 
output files have been modified in places to enhance the clarity of reproduction in this report. 
Some repetitive lines of output have been deleted where indicated by an ellipsis (...).

Some brief annotations were added in a few places in this sample output listing to help the 
reader understand the purpose of various sections of output. These annotations are written in bold 
italics to clarify that they are not part of the output file.

Following are the contents of the MOC3D main output file for the sample problem.

FILE INFORMATION

U.S. GEOLOGICAL SURVEY
METHOD-OF-CHARACTERISTICS SOLUTE TRANSPORT MODEL 

MOC3D (Version 1.0) 11/08/96

HOC BASIC INPUT READ FROM UNIT 
LISTING FILE: moc.out UNIT 97

OPENING moc96.dat
FILE TYPE: HOC UNIT 96

OPENING obs44.dat
FILE TYPE: OBS UNIT 44

OPENING obs.out
FILE TYPE: DATA UNIT 45

OPENING conc.txt
FILE TYPE: CNCA UNIT 22

OPENING cone.bin
FILE TYPE: CNCB UNIT 23

MOC BASIC INPUT READ FROM UNIT 96

2 TITLE LINES:
One-dimensional, Steady Flow, No Decay, Low Dispersion: BASE CASE MOC3D Input 

ISLAY1 ISLAY2 ISROWl ISROW2 ISCOLl ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:

FIRST LAYER FOR SOLUTE TRANSPORT = 1 LAST LAYER FOR SOLUTE TRANSPORT = 1 
FIRST ROW FOR SOLUTE TRANSPORT = 1 LAST ROW FOR SOLUTE TRANSPORT = 1 
FIRST COLUMN FOR SOLUTE TRANSPORT= 2 LAST COLUMN FOR SOLUTE TRANSPORT = 121

UNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT

NO. OF LAYERS = 1 NO. OF ROWS =
NO SOLUTE DECAY
NO MOLECULAR DIFFUSION
MAXIMUM NUMBER OF PARTICLES (NPMAX) =

NO. OF COLUMNS = 120

2000
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14006 ELEMENTS IN X ARRAY ARE USED BY MOC 
12 ELEMENTS IN X ARRAY ARE USED BY OBS

NUMBER OF PARTICLES INITIALLY IN EACH ACTIVE CELL (NPTPND) = 3 
PARTICLE MAP ("o" indicates particle location; shown as

fractions of cell distances relative to node location)

o    o    o

-1/3 0 1/3

INITIAL RELATIVE PARTICLE COORDINATES
1 0.00000 0.00000 -0.33333
2 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.33333

CELDIS= 
FZERO =

0.500
0.050

INTRPL= 2; BILINEAR INTERPOLATION SCHEME

NPNTCL= 0: CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION 
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM= 0

NPNTVL= 0: VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION 
MODFLOW FORMAT SPECIFIER FOR VELOCITY DATA: IVELFM= -1

NPNTDL= 0: DISP. COEFFICIENTS WILL NOT BE WRITTEN 

NPNTPL= 0: PARTICLE LOCATIONS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO O.OOOOOE+00 AT ALL NO-FLOW NODES (IBOUND=0). 

INITIAL CONCENTRATION = 0.OOOOOOOE+00 FOR LAYER 1

OUTPUT 

CONTROL

VALUES OF C 1 REQUIRED FOR SUBGRID BOUNDARY ARRAY = 1 
ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C 1 VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER, 
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

SUBGRID BOUNDARY ARRAY = 1.000000

NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS =

ZONE FLAG = -1 
ZONE FLAG = -2

INFLOW CONCENTRATION = l.OOOOE+00 
INFLOW CONCENTRATION = O.OOOOE+00

SINK-SOURCE FLAG = 0 FOR LAYER

LONGITUDNL. DISPERSIVITY = 0.1000000

HORIZ. TRANSVERSE DISP. = 0.1000000

VERT. TRANSVERSE DISP. = 0.1000000

RETARDATION FACTOR = 1.000000

INITIAL THICKNESS = 1.000000 FOR LAYER

INITIAL POROSITY = 0.1000000 FOR LAYER

INITIAL AND 

BOUNDARY 

CONDITIONS 

FOR SOLUTE
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COORDINATES FOR 3 OBSERVATION WELLS:

WELL # LAYER ROW COLUMN UNIT
1 1 1 2 45
2 1 1 42 45
3 1 1 112 45 

ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT 45

CONCENTRATION DATA WILL BE SAVED ON UNIT 22 IN ASCII FORMAT 
CONCENTRATION DATA WILL BE SAVED ON UNIT 23 IN BINARY FORMAT

TOTAL NUMBER OF PARTICLES GENERATED (GENPT) = 360 
TOTAL NUMBER OF ACTIVE NODES (NACTIV) = 120
MAX. NUMBER OF CELLS THAT CAN BE VOID OF PARTICLES (NZCRIT) = 6 

(IF NZCRIT EXCEEDED, PARTICLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
AT NODES

1
VELOCITY (COL) IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

123456789... 

1 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 ...

Ill 112 113 114 115 116 117 118 119 120 

1 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02 9.917E-02

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
AT NODES

1
VELOCITY (ROW) IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

123456789... 

1 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 ...

Ill 112 113 114 115 116 117 118 119 120 

1 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
AT NODES

1
VELOCITY (LAYER) IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

123456789... 

1 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 ...

Ill 112 113 114 115 116 117 118 119 120 

1 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
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STABILITY CRITERIA    M.O.C.

MAXIMUM FLUID VELOCITIES: C-VEL = 9.92E-02 R-VEL = l.OOE-20 L-VEL = l.OOE-18 
MINIMUM TIME TO TRAVEL THCK = l.OOE+18

TIMV = 5.04E-01 NTIMV = 239

MAX. C-VEL. IS CONSTRAINT AND OCCURS BETWEEN NODES ( 2, 1, 1) AND ( 1, 1, 1) 

TIMD = 5.04E-01 NTIMD = 239

THERE ARE NO FLUID SOURCES IN THE TRANSPORT SUBGRID

NUMBER OF MOVES FOR ALL STABILITY CRITERIA: 
CELDIS DISPERSION INJECTION 

239 239 1

CELDIS IS LIMITING 
DISPERSION IS LIMITING

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP = 239 
MOVE TIME STEP (TIMV)= 5.020920634270E-01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT THIS POINT)

NP 
NP 
NP 
NP 
NP 
NP

NP 
NP 
NP 
NP 
NP 
NP

360 AT START 
360 AT START 
360 AT START 
360 AT START 
360 AT START 
360 AT START

360 AT START 
360 AT START 
360 AT START 
360 AT START 
360 AT START 
360 AT START

OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE

OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE 
OF MOVE

IMOV 
IMOV 
IMOV 
IMOV 
IMOV 
IMOV

IMOV 
IMOV 
IMOV 
IMOV 
IMOV 
IMOV

234
235
236
237
238
239

ONE LINE PRINTED 

FOR EACH MOVE TO 

TRACK PROGRESS 

AND NUMBER OF 

ACTIVE PARTICLES
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SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID

VALUES CALCULATED AT END OF: 
STRESS PERIOD 1 

FLOW TIME STEP 1 
TRANSPORT TIME INCREMENT 239

ELAPSED TIME = 1.2000E+02

OUT OF 
OUT OF 
OUT OF

1
1

239

CHEMICAL MASS IN STORAGE:
INITIAL: MASS DISSOLVED = O.OOOOE+00 
PRESENT: MASS DISSOLVED = 1.1341E-01

CHANGE IN MASS STORED = -1.1341E-01

MASS SORBED 
MASS SORBED

O.OOOOE+00 
O.OOOOE+00

CUMULATIVE SOLUTE MASS (L**3) (M/VOL)

IN:

DECAY = O.OOOOE+00
CONSTANT HEAD = O.OOOOE+00

SUBGRID BOUNDARY = 1.190IE-01
RECHARGE = O.OOOOE+00

WELLS = O.OOOOE+00
RIVERS = O.OOOOE+00
DRAINS = O.OOOOE+00

GENL. HEAD-DEP. BDYS. = O.OOOOE+00
EVAPOTRANSPIRATION = O.OOOOE+00

TOTAL IN = 1.1901E-01

OUT:

DECAY = O.OOOOE+00
CONSTANT HEAD = O.OOOOE+00

SUBGRID BOUNDARY = -5.6659E-03
RECHARGE = O.OOOOE+00

WELLS = O.OOOOE+00
RIVERS = O.OOOOE+00
DRAINS = O.OOOOE+00

GENL. HEAD-DEP. BDYS. = O.OOOOE+00
EVAPOTRANSPIRATION = O.OOOOE+00

TOTAL OUT = -5.6659E-03

SOURCE-TERM DECAY = O.OOOOE+00

ITEMIZED 

BUDGETS FOR 

SOLUTE FLUXES

RESIDUAL 

PERCENT DISCREPANCY

-6.7927E-05

-0.5708E-01 RELATIVE TO MASS FLUX IN
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Following (enclosed in a border) are the abridged contents of the observation well output file for 
the sample problem. This output file was generated using the option to write all observation well 
data to a single file (IOBSFL = 1).

File name: obs. ou t

"OBSERVATION WELL DATA"
"TIME, THEN
"

5
1
1
2
2
3

1
1
1
1

TIME:
.0209E-01
.0042E+00
.5063E+00
.0084E+00
.5105E+00
.0126E+00

.1849E+02

.1900E+02

.1950E+02

.2000E+02

HEAD AND CONC.

1
1
1
1
1
1

1
1
1
1

H & C AT
.190E+01
.190E+01
.190E+01
.190E+01
.190E+01
.190E+01

.190E+01

.190E+01

.190E+01

.190E+01

1
2
6
5
7
7
8

1
1
1
1

FOR EACH
, 1, 2
.503E-01
.539E-01
.994E-01
.914E-01
.747E-01
.578E-01

.OOOE+00

.OOOE+00

.OOOE+00

.OOOE+00

OBS. WELL AT NODE (K,I,J)"
H & C AT
7.934E+00
7.934E+00
7.934E+00
7.934E+00
7.934E+00
7.934E+00

7.934E+00
7.934E+00
7.934E+00
7.934E+00

1,
0.
0.
0.
0.
0.
0.

1.
1.
1.
1.

1, 42
OOOE+00
OOOE+00
OOOE+00
OOOE+00
OOOE+00
OOOE+00

OOOE+00
OOOE+00
OOOE+00
OOOE+00

H
9.
9.
9.
9.
9.
9.

9.
9.
9.
9.

& C AT
917E-01
917E-01
917E-01
917E-01
917E-01
917E-01

917E-01
917E-01
917E-01
917E-01

1, 1,112 "
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00

6.835E-01
6.900E-01
7.045E-01
7.125E-01

Following (enclosed in a border) are the partial contents of the separate output file for concentration 
in ASCII format. Initial concentrations are abridged; complete set of final concentrations are 
shown.

File name: cone. txt

0, NSTP= 0, NPER= 1, SUMTCH=O.OOOOE+00CONCENTRATIONS AT NODES IN SUBGRID. IMOV= 
SUBGRID LAYER 1 
O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00

CONCENTRATIONS AT 
SUBGRID LAYER

NODES IN SUBGRID. IMOV= 239, NSTP= 1, NPER= 1, SUMTCH=1.2000E+02

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00

.9999E-01

.9990E-01
9.9904E-01
9.9330E-01
9.6710E-01 9

, OOOOE+00 
.OOOOE+00 
.OOOOE+00 
.OOOOE+00 
.OOOOE+00 
.9999E-01 
.9988E-01 
.9882E-01 
.9201E-01 
.6207E-01

8.8536E-01 8.7219E-01 
7.1254E-01 6.8920E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00

9.9999E-01
9.9984E-01
9.9854E-01
9.9050E-01
9.5647E-01
8.5826E-01
6.6520E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
9998E-01

9.9980E-01
9.9821E-01
9.8877E-01
9.5035E-01
8.4369E-01
6.4163E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
9998E-01
9975E-01

9.9782E-01
9.8678E-01
9.4358E-01
8.2811E-01
6.1868E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
9997E-01

9.9968E-01
9.9735E-01
9.8449E-01
9.3594E-01
8.1104E-01
5.9552E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00

9.9997E-01
9.9960E-01
9.9679E-01
9.8182E-01
9.2738E-01 
7.9266E-01 
5.7147E-01

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00
9.9996E-01
9.9950E-01
9.9611E-01
9.7876E-01
9.1810E-01
7.7364E-01
5.4711E-01

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00

.OOOOE+00
9.9994E-01
9.9938E-01
9.9532E-01
9.7534E-01
9.0818E-01
7.5433E-01
5.2527E-01

OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
9999E-01
9993E-01
9922E-01
9439E-01

9.7149E-01
8.9737E-01
7.3423E-01
5.1194E-01
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