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Geologic Ages and Accumulation Rates of
Basalt-Flow Groups and Sedimentary Interbeds
in Selected Wells at the Idaho National
Engineering Laboratory, ldaho

by S.R. Anderson, Michael J. Liszewski, and L. DeWayne Cecil

Abstract

Geologic ages and accumulation rates, esti-
mated from regressions, were used to evaluate
measured ages and interpreted stratigraphic and
structural relations of basalt and sediment in the
unsaturated zone and the Snake River Plain
aquifer at the Idaho National Engineering Labor-
atory (INEL) in eastern Idaho. Geologic ages and
accumulation rates were estimated from standard
linear regressions of 21 mean potassium-argon
(K-Ar) ages, selected mean paleomagnetic ages,
and cumulative depths of a composite stratigraph-
ic section composed of complete intervals of
basalt and sediment that were deposited in areas
of past maximum subsidence. Accumulation rates
also were estimated from regressions of strati-
graphic intervals in three wells in and adjacent to
an area of interpreted uplift at and near the Idaho
Chemical Processing Plant (ICPP) and the Test
Reactor Area (TRA) to allow a comparison of
rates in areas of past uplift and subsidence.

Estimated geologic ages range from about 200
thousand to 1.8 million years before present and
are reasonable approximations for the interval of
basalt and sediment above the effective base of
the aquifer, based on reported uncertainties of
corresponding measured ages. Estimated ages
between 200 and 800 thousand years are within
the range of reported uncertainties for all 15 K-Ar
ages used in reégressions and two out of three
argon-argon (4 Ar/39Ar) ages of duplicate
samples. Two sets of estimated ages between 800
thousand and 1.8 million years are within the
range of reported uncertainties for all seven K-Ar
ages used in regressions, which include one
shared age of about 800 thousand years. Two sets
of ages were estimated for this interval because

K-Ar ages make up two populations that agree
with previous (1979) and revised (1995) ages of
three paleomagnetic subchrons. The youngest set
of ages is consistent with a K-Ar age from the
effective base of the aquifer that agrees with pre-
vious (1979) ages of the Olduvai Normal-Polarity
Subchron. The oldest set of ages is consistent with
an 0Ar/ P Ar age of the same basalt flow that
agrees with revised (1995) ages of the Olduvai
Subchron. Regressions indicate that measured
ages and stratigraphic interpretations are reason-
able for basalt and sediment between the ages of
200 and 800 thousand years, the youngest depos-
its that could be evaluated using regressions.
Regressions indicate potential errors in measured
ages or stratigraphic interpretations for basalt and
sediment between the ages of 800 thousand to 1.8
million years, the oldest deposits in the aquifer.
Ages of older basalt flows in the aquifer are diffi-
cuit to measure because many flows are altered.
Stratigraphic relations of older basait and sedi-
ment in the aquifer are difficult to determine
because there are few cored intervals of this age.

Accumulation rates, estimated from regres-
sions of stratigraphic intervals younger than 640
thousand years in three wells in and adjacent to an
area of interpreted uplift at and near the ICPP and
TRA, range from 59 to 282 feet/100,000 years
and average 163 feet/100,000 years, a rate that is
nearly identical to a previous (1994) estimate of
the subsidence rate between the INEL and the
Yellowstone Plateau during the past 4 million
years, about 164 feet/100,000 years. Accumula-
tion rates estimated from regressions of the com-
posite stratigraphic section, which is made up of
stratigraphic intervals deposited in many areas of
past subsidence for periods ranging from 200 to
700 thousand years during the past 1.8 million



years, range from 171 to 270 feet/100,000 years
and average 218 feet/100,000 years, a rate that is
33 percent greater than the previous (1994) esti-
mated subsidence rate. Although average accum-
ulation rates in wells at and near the ICPP and
TRA agree with the previous (1994) estimated
subsidence rate, these rates include two apparent
rates that are a relative measure of the difference
between past rates of contemporaneous subsid-
ence and uplift, based on deep drill-hole data. The
best estimates of past subsidence rates range from
about 160 to 280 feet/100,000 years and average
about 220 feet/100,000 years, based on the pre-
vious (1994) estimated subsidence rate and accum-
ulation rates unaffected by differential subsidence
or uplift. Estimated subsidence rates averaged
about 192 feet/100,000 years and were much
greater than accumulation rates during the past
200 thousand years, a period of greatly reduced
volcanism. This interruption in basalt accumula-
tion, which is unlike that of earlier periods and
continues to the present day, includes most areas
of the INEL.

INTRODUCTION

The Idaho National Engineering Laboratory
(INEL) is operated by the U.S. Department of
Energy (DOE) and covers about 890 mi? of the
eastern Snake River Plain in eastern Idaho (fig.
1). Facilities at the INEL are used in the develop-
ment of peacetime atomic-energy applications,
nuclear-safety research, defense programs, and
advanced energy concepts. Liquid radionuclide
and chemical wastes generated at these facilities
have been discharged to onsite infiltration ponds
and disposal wells since 1952. Liquid-waste dis-
posal has resulted in detectable concentrations of
several waste constituents in water from the
Snake River Plain aquifer underlying the INEL
(Bartholomay and others, 1995).

Concemn about the potential for migration of
radioactive and chemical wastes in the unsatu-
rated zone and aquifer has resulted in numerous
studies of the subsurface at the INEL. In 1988, the
U.S. Geological Survey (USGS) in cooperation
with the DOE, began a site-wide study of the
stratigraphy of basalt and sediment underlying the
INEL to determine stratigraphic relations that

might affect the movement of wastes. Three
earlier reports, Anderson and Lewis (1989),
Anderson (1991), and Anderson and Bowers
(1995), describe stratigraphic relations and their
implications regarding the movement of waste at
the Radioactive Waste Management Complex
(RWMCQ), the Idaho Chemical Processing Plant
(ICPP), the Test Reactor Area (TRA), and Test
Area North (TAN) (fig. 1). A fourth report, Ander-
son and others (1996a), describes stratigraphic
relations in 333 wells at and near the INEL that
include revised relations for the RWMC, ICPP,
TRA, and TAN. Each of these reports describes
measured and estimated ages of selected basalt-
flow groups and sedimentary interbeds in the
unsaturated zone and aquifer. Estimated ages
reported by Anderson and others (1996a) were
determined from linear accumulation rates in
selected wells, and were used to evaluate mea-
sured geologic ages with respect to their position
in a composite stratigraphic section.

Measured ages must be evaluated with respect
to estimated stratigraphic ages because ages have
been measured for relatively few stratigraphic
units, many of them have large associated uncer-
tainties, and some do not agree with ages suggest-
ed or required by paleomagnetic, petrographic,
chemical, or geophysical-log data. Comparisons
of measured ages to ages estimated from accumu-
lation rates are useful because they allow an inte-
grated evaluation of ages and stratigraphy. These
comparisons also allow an evaluation of structural
interpretations, which at the INEL include subsid-
ence (Anderson and Bowers, 1995; Smith and
others, 1994) and uplift (Anderson and Bowers,
1995; Anderson, 1991).

Purpose and Scope

This report describes a range of estimated geo-
logic ages and accumulation rates that are used to
evaluate reported measured geologic ages and
interpreted stratigraphic and structural relations of
basalt and sediment in the unsaturated zone and
the Snake River Plain aquifer at the INEL. Ages
and maximum accumulation rates are estimated
from standard linear regressions of selected mean
potassium-argon (K-Ar) ages, selected mean
paleomagnetic ages, and cumulative depths of a





















of thousands of years are referred to as apparent
rates. Accumulation rates in wells USGS 80 and
NPR TEST (figs. 4 and 5), which are apparent
rates affected only by hiatuses and prolonged
hiatuses attributed to past uplift at and near the
ICPP and TRA (figs. 2 and 3), range from 59 to
149 /100,000 years for stratigraphic intervals
younger than 640 thousand years. By contrast,
accumulation rates in well PBF #2 (fig. 6), which
is in an area of past maximum subsidence adja-
cent to uplift where stratigraphic intervals of this
age generally are thicker and free of hiatuses
(figs. 2 and 3), are as great as 282 ft/100,000
years. The average of these rates, 163 fi/100,000
years, is nearly identical to the previous (1994)
estimated rate of subsidence between the INEL
and the Yellowstone Plateau during the past 4
million years, about 164 ft/100,000 years. The
similarity of these rates suggest, as do interpreted
stratigraphic relations (fig. 2), that accumulation
rates are reasonable approximations of past
subsidence rates and apparent subsidence rates for
a given location and time at the INEL. However,
without deep drill-hole data, apparent subsidence
rates can be misleading. Apparent rates are a
reasonable approximation of past subsidence rates
if they represent motion with respect to a stable
datum; however, some rates may violate this
condition and, thus, may be a relative measure of
the difference between two higher rates of sub-
sidence or a rate of uplift superimposed on a rate
of subsidence higher than that indicated by the
apparent rate. All accumulation rates, if averaged
over long enough periods of time, are apparent
rates because all areas of the INEL, based on data
from deep wells and cores (tables 1 and 2), are
underlain by one or more prolonged hiatuses
(table 3) caused by past differential subsidence or
uplift. The youngest known hiatuses in the
subsurface are attributed to uplift during the past
460 to 800 thousand years and underlie the areas
at and near the ICPP, TRA, RWMC, and TAN
(figs. 2 and 3). The best estimates of past
subsidence rates at the INEL are obtained from
linear accumulation rates that account {or these
hiatuses.

COMPOSITE STRATIGRAPHIC
SECTION

A composite stratigraphic section was con-
structed to estimate ages and maximum accum-
ulation rates of basalt and sediment in the unsat-
urated zone and the Snake River Plain aquifer at
the INEL. The section, except for the uppermost
part, was constructed using stratigraphic intervals
in selected wells, such as the interval from 323 to
800 ft in well PBF #2 (fig. 3; table 4, back of
report), that are in areas of past maximum subsid-
ence and do not contain prolonged hiatuses, based
on the stratigraphic data reported by Anderson
and others (1996a). Sites D through I, which
include wells AREA 11, PBF #2, QAB, NPR
WO-2, C-1A, and TCH #2 (fig. 3; table 4), were
selected because each well contains a representa-
tive interval of basalt and sediment of a given age
that meet these criteria. Site J, well NPR WO-2,
was selected to evaluate the youngest known
interval of basalt and sediment below the effective
base of the aquifer. Sites A, B, and C were
selected to evaluate a period of subsidence and
greatly reduced basalt accumulation throughout
most areas of the INEL during the past 200
thousand years. Sites A and C, wells Butte City
#2 and NPR TEST (fig. 3), are referred to as the
subsidence and accumulation datums, respectively
(table 4). Site C subsided 380 ft with respect to
site A during the past 200 thousand years (Ander-
son and Bowers, 1995). This difference, which for
illustrative purposes is referred to as site B (table
4), represents the hypothetical approximate thick-
ness of basalt that might have accumulated, given
past accumulation/subsidence relations, were it
not for a significant reduction in volcanism during
the past 200 thousand years.

The composite stratigraphic section was con-
structed using depth and cumulative depth inter-
vals from sites A through J (table 4). Geologic
ages of deposits younger than about 800 thousand
years generally agree with reported ages of paleo-
magnetic chrons and subchrons interpreted in this
interval (Mankinen and Dalrymple, 1979;
Champion and others, 1988; Berggren and others,
1995). Geologic ages of deposits older than about
800 thousand years generally range between
previous (1979) and revised (1995) ages of three
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paleomagnetic subchrons interpreted in this inter-
val. The composite stratigraphic section includes
50 of the 230 stratigraphic units identified by
Anderson and others (1996a) and does not contain
prolonged hiatuses in deposits older than about
200 thousand years. The remaining 180 units
excluded from the section were deposited at other
sites at and near the INEL and have ages similar
to those of units included in the section. Thick-
ness of the composite stratigraphic section is
about twice that of measured sections of a similar
age in wells C-1A and NPR WO-2 (fig. 3; table
2). Reduced thicknesses in these and other wells
are attributed, in part, to structural movements
and their related hiatuses (table 3).

REGRESSION ANALYSIS

Measured geologic ages and interpreted strati-
graphic and structural relations of basalt-flow
groups and sedimentary interbeds underlying the
INEL were evaluated using ages and maximum
accumulation rates estimated from standard linear
regressions (Iman and Conover, 1983) of 21 mean
K-Ar ages, selected mean paleomagnetic ages,
and cumulative depths of units in the composite
stratigraphic section (figs. 7 and 8; tables 5 and 6,
back of report). Each K-Ar age is identified as a
primary or a secondary age (figs. 7 and 8) depend-
ing on whether it was determined for a basalt-
flow group in the composite stratigraphic section
or for a group of similar stratigraphic position not
in the composite section. Paleomagnetic ages
(figs. 7 and 8; table 6) include previous (1979)
and revised (1995) ages of the boundary between
the Brunhes Normal-Polarity Chron and the Mat-
uyama Reversed-Polarity Chron and the inter-
preted boundaries of the Jaramillo, Cobb Moun-
tain, and Olduvai Normal-Polarity Subchrons
(Mankinen and Dalrymple, 1979; Berggren and
others, 1995); ages also include the top of the Big
Lost Reversed-Polarity Subchron (Champion and
others, 1988). All ages were determined from
basalt outcrops and cores distributed throughout
the INEL and were correlated with the composite
section using stratigraphic methods (Anderson
and Bartholomay, 1995; Anderson and others,
1996a).

13

Primary and secondary K-Ar ages (figs. 7 and
8; table 6) are weighted mean ages reported by
Champion and others (1988), Lanphere and others
(1993), Lanphere and others (1994), and Kuntz
and others (1994). Associated uncertainties of
these ages are reported as one standard deviation;
associated uncertainties of paleomagnetic ages
were not reported. Additional published and
unpublished K-Ar and argon-argon ®ArPAn
ages for units in the composite stratigraphic
section, identified in tables 1 and 6, were used to
evaluate regressions but were not included in
regressions. Some K-Ar ages reported by Lan-
phere and others (1993), Lanphere and others
(1994), and Kuntz and others (1994) were not
included in regressions because they were deter-
mined for units of uncertain or disputed strati-
graphic position (Anderson and others, 1996a;
Anderson and Bowers, 1995). Primary, second-
ary, and paleomagnetic ages were given equal
weight in regressions; however, ages and accumu-
lation rates estimated from regressions are greatly
influenced by the large number and range of
reported ages of basalt cores from well NPR
TEST for units younger than about 800 thousand
years and by ages of paleomagnetic subchrons
interpreted in basalt and sediment cores from
wells C-1A, Corehole 2A, and NPR WO-2 (fig. 3)
for units older than about 800 thousand years
(figs. 7 and 8; tables 5 and 6). Linear rather than
nonlinear regressions of mean ages and cumula-
tive depths were used to estimate ages and accum-
ulation rates of stratigraphic units because measur-
ed ages and stratigraphic relations are not yet
known with sufficient precision to justify more
rigorous methods. Although other regressions are
possible (table 5), those used to construct accumu-
lation graphs of the composite stratigraphic sec-
tion (figs. 7 and 8) provide the most reasonable
estimates of ages and accumulation rates based on
available age and stratigraphic control and
geologic reasoning.

Accumulation graphs showing the relations
between geologic ages and depths of units in the
composite stratigraphic section (figs. 7 and 8)
were constructed using seven principal line seg-
ments, 1a, 1b, 1c, 2a, 2b, 3a, and 3b, that were
determined from regressions (1a), (1by), (1¢),
(2a), (2b), (3a), and (3b) on table 5. Because the



e
KT "Bia T T T T T T T T T T
\\ !
\ EXPLANATION ]
[ \ Line segments 1a, 1b, and 1¢ from regressions
\ 77T intable 5; dashed line indicates period of no
\\ accumutation
200}~ \ 4
Number, 31a, corresponds to unit and age
\
\ ) 312 jisted in table 6
3 \\ @ Primary K-Ar age; direct measurement of unit b
\2a 2b B . ;
B Secondary K-Ar age: indirect measurement of unit
400 & D
- C’ 1 Paleomagnetic age; polarity chron or subchron
Estimated age; determined irom regressions
- 8 of primasy, secondary, and paleomagnetic ages 4
E. 1b Letters, E and F, indicate cumuiative depth
800 - d intervais for sites in table 4; numbers, 1b and
F, 1c 1¢. indicate cumutative depth intervais for
= 1a line segments in tabie 5
5 —_
> 1b Age commesponds with the top of a basakt-flow J
[a] ( group or sedimentary interbed; age and depth
tg axes inverted for illustrative purposes
F4
E 800 - —~
@
@
2
a L J
2
: L
@
1,000 .
i
w
w
z
= - 4
-
o
d
w 1,200 |- —
=
[
3
g r 4
© 1b
1,400 |- 1c ~
1,600 .
F
N G 4
31b ic
1,800 |- 2a, 3a =
i L N L n 1 s 1 R 1 "
2,000 0 200 400 600 800 1,000 1,200

AGE, IN THOUSANDS OF YEARS

Figure 7. Relation between cumulative depths and geologic ages of selected basalt-flow groups and
sedimentary interbeds in a composite stratigraphic section of the unsaturated zone and the
Snake River Plain aquifer at the Idaho National Enginecring Laboratory— present to about
800 thousand years before present. [Subsidence datum is the land surface at well Butte City
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end points of adjacent regressions differ by 3 to
12 thousand years (table 5), each line segment,
except the top of 1a and the bottoms of 2b and 3b,
was determined using average or selected end
points from two or more regressions. The top of
line segment 1a was forced through zero age and
depth without significantly changing regression
(1a); the bottom ages and depths of line segments
2b and 3b are the same as those of regressions
(2b) and (3b). Line segment 1b was determined
using regression (1b,), which excluded one con-
trol point, number 12a in figure 7 and on table S;
regression (1b;) includes this control point (table
5). Paleomagnetic ages, control points 29a and
29b (fig. 7), which are previous (1979) and
revised (1995) ages for the beginning of the
Brunhes Normal-Polarity Chron, were not used
for determining line segment 1c¢ because they
would have biased results. Previous (1979) paleo-
magnetic ages were used to supplement a small
number of measured ages for determining line seg-
ments 2a and 2b. Revised (1995) paleomagnetic
ages were used to supplement a small number of
measured ages for determining line segments 3a
and 3b. Although they biased results, previous
(1979) and revised (1995) paleomagnetic ages
were used to provide sufficient age control for
regressions and to bracket the range of measured
ages of basalt and sediment older than about 800
thousand years above the effective base of the
aquifer. Line segments 2c and 3¢ below the effec-
tive base of the aquifer were not determined using
regressions because age and stratigraphic data for
this interval are insufficient; segments 2¢ and 3¢
are projections of segments 2b and 3b and are
shown by dashed lines in figure 8. Additional
regressions, (1a, 1b, 1¢), (2a, 2b), (3a, 3b), and
(1a, 1b, Ic, 2a, 2b, 3a, 3b) (table 5) represent aver-
aged data used to estimate average rates of accum-
ulation in the composite stratigraphic section for
the age interval shown. These regressions, which
represent long intervals of time and disregard
most age control, are not shown in figures 7 and 8.

GEOLOGIC AGES AND
ACCUMULATION RATES

Geologic ages estimated from regressions
(table 6) agree with measured ages and interpreted

stratigraphic relations, within the range of
reported uncertainties of K-Ar ages, for basalt-
flow groups and sedimentary interbeds younger
than about 800 thousand years (fig. 7). The range
of ages estimated for flow groups and interbeds
older than about 800 thousand years (fig. 8) indi-
cate potential errors in measured ages or strati-
graphic interpretations for this interval. Estimated
ages for all intervals are constrained by previous
(1979) and revised (1995) paleomagnetic ages,
but do not agree precisely with either interpreta-
tion. Estimated geologic ages are reasonable
approximations of ages for basalt and sediment
younger than about 800 thousand years, based on
the regression analysis; geologic ages of deposits
older than about 800 thousand years probably
range between the ages estimated from duplicate
regressions (table 6). Accumulation rates estimat-
ed from regressions (table 5) are reasonable
approximations of maximum accumulation and
subsidence rates during the past 1.8 million years
for a given site and time, based on the stratigraph-
ic data reported by Anderson and others (1996a).

Geologic Ages

Geologic ages were estimated for 50 strati-
graphic units that include 47 basalt-flow groups
and 3 sedimentary interbeds. Mean estimated ages
range from 198 thousand to 1.790 million years
before present and are reasonable approximations
of the geologic ages of selected basalt-flow
groups and sedimentary interbeds in the unsatur-
ated zone and the Snake River Plain aquifer at the
INEL. Agreement between measured and estimat-
ed ages is greatest for ages ranging from about
200 to 800 thousand years, line segments 1a, 1b,
and 1c (fig. 7; table 6), and is least for ages rang-
ing from about 800 thousand to 1.8 million years,
line segments 2a, 2b, 2c, 3a, 3b, and 3c (fig. 8;
table 6). Ages of basalt and sediment younger
than about 200 thousand years could not be eval-
uated using this method and are described by
Forman and others (1993), Forman and others
(1994), and Kuntz and others (1994).

Ages estimated from line segments 1la, 1b, and
Ic, about 200 to 800 thousand years, are based on
14 K-Ar ages. Agreement between measured and
estimated ages among line segments 1a, 1b, and



Ic is greatest for ages ranging from about 350 to
620 thousand years, line segment 1b, and least for
ages ranging from about 620 to 800 thousand
years, line segment 1c. Agreement between K-Ar,
40Ar/2Ar, and estimated ages for control points
21 and 24 and between K-Ar and estimated ages
for control points 2, 7, 9, 10, 12, 14, 15, 16, 18,
19, 22, 25, and 31 in line segments 1a and 1b
indicate that K-Ar ages can reasonably measure
geologic ages of young basalt flows at the INEL
(fig. 7; table 6). However, estimated ages deter-
mined from line segment 1c do not agree with an
OarPAr age for control point 25 and the revised
(1995) age for the beginning of the Brunhes
Normal-Polarity Chron, control point 29b (fig. 7;
table 6). These discrepancies may be related to
potential errors in the geochronology, stratig-
raphy, or regression analysis.

Ages estimated from line segments 2a, 2b, and
2c, about 800 thousand to 1.685 million years, are
based on four K-Ar ages, control points 31b, 42b,
49b, and 51a (fig. 8; tables 5 and 6), that generally
agree with previous (1979) paleomagnetic ages. A
K-Ar age, control point 58a in line segment 2c
(fig. 8; table 6), determined from basalt that
cooled during the Olduvai Normal-Polarity Sub-
chron agrees with these ages but is considered
unreliable by the laboratory (M. A. Lanphere,
USGS, written commun., 1992). Ages estimated
from line segments 3a, 3b, and 3c, about 800
thousand to 1.790 million years, are based on four
K-Ar ages, control points 31b, 36c, 38b, and 51d
(fig. 8; tables 5 and 6), that generally agree with
revised (1995) paleomagnetic ages. An DOarPAr
age, control point 58d in line segment 3c (fig. 8;
table 6), although older than the estimated age pre-
dicted from line segment 3b, agrees with revised
ages for the Olduvai Normal-Polarity Subchron
(M.A. Lanphere, USGS, written commun., 1995);
because of this age, estimated ages determined
from line segments 3a, 3b, and 3c are more likely
than those of segments 2a, 2b, and 2c to approxi-
mate geologic ages of older stratigraphic units.
Neither set of estimated ages agrees with K-Ar
ages corresponding to points 52, 53, 54, and 55 in
table 6, ages that were considered too old by
Anderson and Bowers (1995) based on strati-
graphic arguments. Each set of estimated ages is
based, in part, on different K-Ar ages, control
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points 51a and 51d in line segments 2b and 3b
(fig. 8), determined from the same interval of
basalt in adjacent cores at TAN (fig. 1) that may
(Anderson and Bowers, 1995) or may not (Lan-
phere and others, 1994) be the same stratigraphic
unit. These discrepancies may be related to poten-
tial errors in the geochronology, stratigraphy, or
regression analysis. Ages of older basalt flows in
the aquifer are difficult to measure because many
flows are altered. Stratigraphic relations of older
basalt and sediment in the aquifer are difficult to
determine because there are few cored intervals of
this age (table 2).

The associated uncertainties for the estimated
ages in table 6 are calculated standard errors and
are a measure of the scatter about a given regres-
sion line. These errors were calculated using a
modification of the following equation from
Spiegel (1975) and Davis (1986):

F! y-y )2
S est
n

where,

€]

S is the standard error of the estimated geologic
age,

2 is the summation,

Yy is a measured geologic age used in the linear
regression,

Vest is the estimated geologic age for a given
depth, and

n is the number of observations; n equals 2 for
these calculations.

For this analysis, one measured geologic age was
used with one corresponding estimated geologic
age for the error calculations. Therefore, the sum
symbol, X, was dropped from equation 1 and n
was set equal to 2. Because there are more esti-
mated ages than corresponding measured ages in
table 6, two successive measured ages were aver-
aged and the resultant age was used as a guide for
selecting the corresponding estimated ages to be
used in equation 1. For example, for regression
line segment 1a in table 6, the first two measured
ages, 218,000 and 247,000 years, have an average
of 232,500 years. All estimated ages for line seg-



ment 1a less than 232,500 years were used with
the measured age of 218,000 years in equation 1
to calculate an associated standard error. All esti-
mated ages between 232,500 and 275,000 years,
the average of the next two successive measured
ages, 247,000 and 303,000 years, were used with
the measured age of 247,000 years in equation 1
to calculate an associated standard error. This
procedure was repeated for all estimated ages in
table 6.

These standard errors are an estimate of the
precision of the estimated ages in relation to mea-
sured ages used for each linear regression (table
6). Therefore, as the cumulative depth for an esti-
mated age approaches the corresponding cumula-
tive depth for a measured age, a control point for
a given regression line, the calculated uncertainty
for the estimated age becomes smaller. Because
the true uncertainties of estimated ages are prob-
ably larger than those of measured ages, the
standard errors in table 6 should only be used as a
guide to evaluate the precision of each estimated
age with respect to its associated measured age.

Accumulation Rates

Accumulation rates estimated from regressions
of selected stratigraphic intervals in wells AREA
I1, PBF #2, QAB, NPR WO-2, C-1A, and TCH #2
(table 4) range from 171 to 270 ft/100,000 years
(table 5) and are representative of rates that
occurred in areas of maximum subsidence for
periods ranging from about 200 to 700 thousand
years during the past 1.8 million years. Maximum
accumulation rates for basalt and sediment
younger than about 800 thousand years, line
segments la, 1b, and 1c (fig. 7; table 5), range
from 192 to 262 ft/thousand years. Maximum
rates for basalt and sediment older than about 800
thousand years range from 182 to 270 ft/100,000
years using line segments 2a and 2b and from 171
to 213 ft/100,000 years using line segments 3a
and 3b (fig. 8; table 5).

Maximum accumulation rates estimated from
regressions of the composite stratigraphic section,
171 to 270 1t/100,000 years (table 5), are about 15
to 358 percent greater than the apparent rates of
59 to 149 {t/100,000 years in wells USGS 80 and

N
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NPR TEST (figs. 4 and 5) attributed to uplift at
and near the ICPP and TRA during the past 640
thousand years (figs. 2 and 3). Maximum rates for
line segments 1b and 2a, 262 and 270 /100,000
years (table 5), are about 4 to 7 percent less than
the maximum rate of 282 {t/100,000 years in well
PBF #2 (fig. 6) in the area adjacent to uplift (figs.
2 and 3). If the apparent rates in wells USGS 80
and NPR TEST are an approximate measure of
past subsidence rates, these rates ranged from 59
to 282 {t/100,000 years and averaged 163 ft/
100,000 years during the past 640 thousand years
at and near the ICPP and TRA. However, if the
apparent rates in wells USGS 80 and NPR TEST
are, instead, a relative measure of the difference
between past rates of contemporaneous subsid-
ence and uplift, a relation that is suggested by
stratigraphic data from the deepest continuously-
cored well at the INEL, well NPR WO-2 (fig. 3;
table 1), subsidence rates in this area ranged from
more than 149 to 282 ft/100,000 years. On the
basis of the previous (1994) estimated subsidence
rate between the INEL and the Yellowstone
Plateau, 164 ft/100,000 years, the maximum
accumulation rate in well PBF #2, 282 {t/100,000
years (fig 6), and the maximum accumulation
rates estimated for the composite stratigraphic
section, 171 to 270 {t/100,000 years (table 5),
subsidence rates at and near the ICPP and TRA
and elsewhere at the INEL probably ranged from
about 160 to 280 £t/100,000 years and averaged
about 220 ft/100,000 years during the past 1.8
million years. Although accumulation rates were
similar to subsidence rates for periods ranging
from about 200 to 700 thousand years (table 5),
overall apparent accumulation rates must have
been less than these rates to account for prolonged
hiatuses in the stratigraphic section (table 3).
Prolonged hiatuses, which are attributed to
differential subsidence and uplift until the past
200 thousand years, averaged about 600 thousand
years and 38 percent of the total possible accumu-
lation time during the period from 200 thousand
to 1.8 million years in seven representative wells
at the INEL (table 3). On the basis of this relation,
apparent accumulation rates probably ranged from
about 99 to 174 t/100,000 years and averaged
about 136 f1/100,000 years, 38 percent less than
the probable subsidence rates during the past 1.8
million years. These rates disregard the prolonged



hiatus during the past 200 thousand years above
basalt-flow group AB(10) in well NPR TEST
(table 3) because the hiatus is above the accumu-
lation datum of the composite stratigraphic
section (fig. 7, line segment 1a; table 4) and is not
representative of other past accumulation rates
and apparent accumulation rates at the INEL.

STRATIGRAPHIC AND STRUCTURAL
IMPLICATIONS

The stratigraphic section underlying the INEL
is made up of overlapping intervals of basalt and
sediment that accumulated in areas of past volcan-
ism and subsidence (Anderson and Bowers, 1995;
Anderson, 1991). These areas covered hundreds
of square miles, were active for periods ranging
from 200 to 700 thousand years, shifted across a
1,000 mi® area during the past 1.8 million years,
and were preceded and followed by periods of
reduced accumulation. Periods of maximum
accumulation in each area were accompanied by
an approximate volumetric equilibrium between
basaltic volcanism, accumulation, and subsidence.
Periods of reduced accumulation in each area
were accompanied by differential subsidence or
uplift. As a result, the stratigraphic section is
characterized by a succession of widespread strati-
graphic intervals bounded by local offsets and
hiatuses and differences in overall thickness as
great as 100 percent. The section also is character-
ized by maximum long-term apparent accumula-
tion rates that are about 38 percent less than past
subsidence rates in areas of greatest thickness, a
difference identical to that between the approxi-
mate average land-surface altitudes of the INEL
and the Yellowstone Plateau, about 5,000 and
8,000 ft above sea level, respectively. As used in
this report, offsets refer to abrupt changes in dip
of stratigraphic intervals that probably resulted
from past differential subsidence or uplift.
Although possible in some areas, past faulting is
not required to explain these offsets.

The complexity of the stratigraphic section at
any one place can be demonstrated by a 3,800-ft
thick section of basalt and sediment that overlies
rhyolite in nested cores obtained from wells NPR
WO-2 and NPR TEST (table 1) in the area of
interpreted uplift at and near the ICPP and TRA
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(fig. 3). Thickness of the section, which ranges in
age from about 200 thousand to 4 million years
(Smith and others, 1994), is only about 13 percent
greater than the composite stratigraphic section
below the accumulation datum (figs. 7 and 8;
table 4), a representation of the composite thick-
ness of all intervals deposited in areas of maxi-
mum subsidence during the past 1.8 million years.
Thickness of the equivalent interval above the
effective base of the aquifer in wells NPR WO-2
and NPR TEST, 1,660 ft (table 2), is about 51
percent less than the composite stratigraphic
section below the accumulation datum, a differ-
ence that is attributed to hiatuses in the interval
(table 3). Estimated accumulation/subsidence
rates for this interval, which contains several short
hiatuses near its top and a prolonged hiatus of
about 600 thousand years near its base (table 3),
range from 149 to 226 ft/100,000 years disregard-
ing the prolonged hiatus (fig. 5; table 5, line seg-
ments 1c, 3a, and 3b). The average accumulation/
subsidence rate for the interval, disregarding the
prolonged hiatus and using top and bottom ages
of about 200 thousand and 1.2 million years,
respectively (table 3), is 166 ft/100,000 years, a
rate that is nearly identical to the previous (1994)
estimated subsidence rate between the INEL and
the Yellowstone Plateau during the past 4 million
years. The average apparent accumulation rate for
this interval using top and bottom ages that en-
compass the prolonged hiatus, about 200 thousand
and 1.8 million years, respectively (table 3), is
about 104 ft/100,000 years, a rate that is 36 per-
cent less than the previous (1994) estimated subsi-
dence rate, 37 percent less than the rate above the
hiatus, and nearly identical to an apparent rate
estimated from the 38 percent difference between
the average prolonged hiatus and total accumula-
tion time during the past 1.8 million years at the
INEL. These rates, which probably are similar to
those of the interval below the effective base of
the aquifer based on its thickness (2,100 ft) and
age difference (2.2 million years), suggest a mech-
anism of continuous long-term subsidence accom-
panied by periodic uplift at this location. Hiatuses
attributed to uplift, which last occurred in this
area 460 to 640 thousand years ago (fig. 3), make
up about 38 percent of the total possible accumula-
tion time for the period from 200 thousand to

1.8 million years. The average accumulation/



subsidence rate for the period from 200 thousand
to 1.2 million years, 166 ft/100,000 years, is about
24 percent less than the average estimated maxi-
mum rate at the INEL for the past 1.8 million
years, 220 £t/100,000 years. The average apparent
accumulation rate for the period from 200 thou-
sand to 1.8 million years, 104 ft/100,000 years, is
about 53 percent less than the average maximum
accumulation rate. The interval above the effec-
tive base of the aquifer in well NPR WO-2 is
about the same thickness as that in well C-1A in
the area of interpreted uplift at and near the
RWMC (fig. 3; table 2). This relation suggests
that areas at and near the ICPP, TRA, and RWMC
shared a similar history of subsidence accompa-
nied by periodic uplift during the past 1.8 million
years.

Although the layering of the stratigraphic sec-
tion is relatively horizontal beneath most areas of
the INEL, the layers of some stratigraphic inter-
vals older than about 500 thousand years are off-
set by hundreds of feet as a result of past differen-
tial subsidence and uplift. Past uplift near the
ICPP, TRA, RWMC, and TAN (fig. 3) produced
offsets ranging from about 300 to 800 ft during
the past 800 thousand years (Anderson and
Bowers, 1995; Anderson, 1991). Past differential
subsidence in the area beneath the present-day
Big Lost River (fig. 3) produced offsets ranging
from about 700 to 1,500 ft in stratigraphic inter-
vals older than about 800 thousand years. The
greatest offset attributed to uplift is about 270 ft/
mi in intervals older than about 500 thousand
years between wells C-1A and EBR-1 just north
of the RWMC (figs. 2 and 3). The greatest offset
beneath the Big Lost River is about 330 ft/mi in
rhyolite older than about 4 million years in wells
NPR WO-2 and INEL #1 that are east and west of
the river, respectively (fig. 3). This offset is
attributed to past differential subsidence because
the thicknesses of basalt and sediment intervals
above and below the effective base of the aquifer
in well NPR WO-2 are each about 74 percent
greater than those of respective intervals in well
INEL #1. Furthermore, the cumulative difference
in thickness of these intervals, 1,600 ft, is about
the same as the difference between the altitudes of
the underlying rhyolite in each well, about 1,200
and 2,700 ft above sea level, respectively. There-

fore, the difference in altitudes of rhyolite in wells
NPR WO-2 and INEL #1 probably resulted from
past differential subsidence beneath the Big Lost
River (Anderson and Bowers, 1995) rather than
from original topographic relief as suggested by
Smith and others (1994). The river overlies an
area of interpreted uplift (fig. 3), attributed to a
concealed laccolith or dome (Anderson, 1991),
that is younger than the offset attributed to differ-
ential subsidence in this area. Possible faulting
related to past differential subsidence in this area
might explain the position and origin of this uplift
as well as the offset in older stratigraphic intervals
between wells NPR WO-2 and INEL #1.

The total thickness of the basalt and sediment
section above the effective base of the aquifer is
not known in many areas but can be evaluated
using estimated accumulation and subsidence
rates and the thickness of the composite strati-
graphic section below the accumulation datum,
3,371 ft (figs. 7 and 8; tables 4 and 5). The thick-
ness of the section in five wells mountainward of
the Big Lost River, wells USGS 15, S5G TEST,
INEL #1, TRA #4, and TRA DISP (fig. 3),
averages about 900 ft (table 2) and includes only
basalt and sediment younger than about 800
thousand years (fig. 7). The thickness of the
section in three wells in the area of interpreted
uplift at and near TAN, wells TCH #2, USGS #7,
and Corehole 2A (fig. 3), averages about 875 ft
(table 2) and includes only basalt and sediment
older than about 800 thousand years (fig. 8).
Thickness of the section in two wells in the areas
of interpreted uplift at and near the ICPP, TRA,
and RWMC, wells NPR WO-2 and C-1A (fig. 3),
averages about 1,685 ft (table 2) and includes
basalt and sediment that are younger and older
than 800 thousand years (figs. 7 and 8). The aver-
age thickness of the section mountainward of the
Big Lost River and at and near TAN is about 73
percent less than that of the composite stratigraph-
ic section below the accumulation datum. The
average thickness of combined sections older and
younger than 800 thousand years, in these areas,
1,775 ft, is about 47 percent less than that of the
composite stratigraphic section below the accumu-
lation datum and about 5 percent greater than that
of the average section in wells NPR WO-2 and
C-1A, the thickest known section above the



effective base of the aquifer at the INEL. These
relations suggest that differential subsidence and
uplift reduced the apparent accumulation rates
and thicknesses of the stratigraphic section,
compared to those of the composite stratigraphic
section, by about 50 to 75 percent in the western
half of the INEL. The thickness of the stratigraph-
ic section in some areas between and east of the
ICPP, RWMC, and TAN may be greater than that
of the section in wells NPR WO-2 and C-1A,
based on interpreted stratigraphic relations and
estimates of maximum accumulation/subsidence
rates (figs. 2-6; table 5) However, the maximum
thickness of the section must be less than that of
the composite stratigraphic section below the
accumulation datum because maximum rates
occurred for relatively short periods of time, shift-
ed across the INEL during the past 1.8 million
years, and were preceded and followed by periods
of reduced accumulation and hiatuses.

Given the range of estimated maximum accum-
ulation/subsidence rates and the thickness of the
composite stratigraphic section (figs. 7 and 8;
table 5), hiatuses and apparent accumulation rates
related to differential subsidence and uplift are
required to explain the stratigraphic data reported
by Anderson and others (1996a) and the known
thicknesses of basalt and sediment younger than
about 1.8 million years at the INEL. Hiatuses and
apparent accumulation rates, such as those in well
NPR WO-2, also are required to explain why,
given that maximum accumulation and subsi-
dence rates were similar during the past 1.8
million years, the altitude of the land surface at
the INEL, about 5,000 ft, is about 3,000 ft below
that of the Yellowstone Plateau. The difference in
altitude between these areas, about 38 percent, is
nearly identical to the difference between the
apparent accumulation rate of 104 {t/100,000
years and the average subsidence rate of 166 ft/
100,000 years in well NPR WO-2. The lowest
rate, which disregards the prolonged hiatus attrib-
uted to uplift near the effective base of the aquifer
in this well (table 3), is about 36 percent less than
the previous (1994) estimated subsidence rate
between the INEL and the Yellowstone Plateau;
the highest rate, which accounts for the hiatus, is
nearly identical to this rate.
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The previous (1994) cstimated subsidence rate
is based on the assumption that differences
between the average altitudes of rhyolite in wells
NPR WO-2 and INEL #1 at the INEL (fig. 3) and
at the land surface on the Yellowstone Plateau are
the result of subsidence during the past 4 million
years (Smith and others, 1994). This assumption
and the estimated rate, about 164 £t/100,000
years, appear reasonable on the basis of the
younger subsidence rate of 166 t/100,000 years
estimated from accumulation rates in well NPR
WO-2, the difference of 37 to 38 percent between
apparent accumulation rates and subsidence rates
estimated for young stratigraphic intervals at the
INEL, and the difference of 38 percent between
the average tand-surface altitudes of the INEL and
the Yellowstone Plateau. However, the previous
(1994) estimated subsidence rate, which depends
on geologic data from wells NPR WO-2 and
INEL #1 located in areas of reduced stratigraphic
thickness related to past differential subsidence
and uplift (figs. 2 and 3), is about 25 to 41 percent
less than the average and maximum subsidence
rates estimated for the INEL during the past 1.8
million years, about 220 to 280 f1/100,000 years.
If these higher rates were sustained anywhere at
the INEL for the entire period, the resulting thick-
ness of the stratigraphic section might be about 31
to 68 percent greater than that of 1,660 ft in well
NPR WO-2. This estimate is based on an accumu-
lation time of 1.6 million years, the period of time
represented by basalt-flow groups AB(10) and
TU(1) (table 6), and apparent accumulation rates
of 136 to 174 ft/100,000 years that are 38 percent
less than the average and maximum estimated sub-
sidence rates. The greatest possible thickness of
the stratigraphic section, estimated from the maxi-
mum apparent rate, is about 17 percent less than
the thickness of the composite stratigraphic sec-
tion below the accumulation datum, 3,371 ft (figs.
7 and 8; table 4).

A slight reduction in the rate of subsidence
during the past 350 thousand years was accom-
panied by an equal reduction of volcanism from
about 200 to 350 thousand years ago and a near
cessation of volcanism during the past 200 thou-
sand years (fig. 7, line segment 1a). Basalt flows
ranging in age from about 5 to 165 thousand years
cover parts of the INEL and adjacent areas (Kuntz



and others, 1994), but accumulation rates of these
young rocks at the INEL were much less than the
subsidence rate of about 192 ft/100,000 yecars
estimated for this period. Surficial deposits at the
INEL mainly include young sediment (Anderson
and others, 1996b) and basalt flows that were
deposited more than 200 thousand years ago
(Kuntz and others, 1994). As a result, most of the
land surface at the INEL is part of a prolonged
hiatus of large areal extent (table 3) that is related
to a significant reduction in volcanism rather than
structural processes. Similar volcanic hiatuses of
such large areal extent and duration are not
known to exist in older intervals of basalt and
sediment at the INEL.

On the basis of accumulation rates. as much as
62 percent of the cumulative subsidence volume
during the past 1.8 million years may have result-
ed from the mechanisms that controlled the with-
drawal of basaltic magmas. This estimate is based
on the short-term similarity of accumulation and
subsidence rates in many areas of past volcanism
and the long-term difference between these rates
and maximum apparent accumulation rates at the
INEL. At least 38 percent of the cumulative sub-
sidence volume, now represented by the differ-
ence between the land-surface altitudes of the
INEL and the Yellowstone Plateau, must have
resulted from other mechanisms. Most of this
volume probably resulted from isostatic adjust-
ments related to the high-density mafic intrusion
in the upper crust (Sparlin and others, 1982) and
the added weight of accumulated basalt and
sediment.

SUMMARY

Geologic ages and accumulation rates, esti-
mated from regressions, were used to evaluate
measured ages and interpreted stratigraphic and
structural relations of basalt and sediment in the
unsaturated zone and the Snake River Plain
aquifer at the INEL in eastern Idaho. Geologic
ages and accumulation rates were estimated from
standard linear regressions of 21 mean K-Ar ages,
selected mean paleomagnetic ages, and cumula-
tive depths of a composite stratigraphic section
composed of complete intervals of basalt and
sediment that were deposited in areas of pasl
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maximum subsidence. Accumulation rates also
were estimated {rom regressions of stratigraphic
intervals in wells USGS 80, NPR TEST, and PBF
#2 in and adjacent to an area of interpreted uplift
at and near the ICPP and the TRA to allow a
comparison of rates in areas of past uplift and
subsidence.

Estimated geologic ages range from about 200
thousand (o 1.8 million years before present and
are reasonable approximations for the interval of
basalt and scdiment above the effective base of
the aquifer, based on reported uncertainties of
corresponding measured ages. Estimated ages
between 200) and 800 thousand years are within
the range of reported uncertainties for all 15 K-Ar
a§es used in regressions and two out of three
OArP9Ar ages of duplicate samples. Two sets of
estimated ages between 800 thousand and 1.8 mil-
lion years are within the range of reported uncer-
tainties for all seven K-Ar ages used in regres-
sions, which include one shared age of about 800
thousand years. Two sets of ages were estimated
for this interval because K-Ar ages make up two
populations that agree with previous (1979) and
revised (1995) ages of three paleomagnetic sub-
chrons. The youngest set of ages is consistent
with a K-Ar age from the effective base of the
aquifer that agrees with previous (1979) ages of
the Olduvai Normal-Polarity Subchron. The old-
est set of ages is consistent with an 0 Ar age
of the same basalt {low that agrees with revised
(1995) ages of the Olduvai Subchron. Regressions
indicate that measured ages and stratigraphic inter-
pretations are reasonable for basalt and sediment
between the ages of 200 and 800 thousand years,
the youngest deposits that could be evaluated
using regressions. Regressions indicate potential
errors in measured ages or stratigraphic interpreta-
tions for basalt and sediment between the ages of
800 thousand to 1.8 million years, the oldest
deposits in the aquifer. Ages of older basalt flows
in the aquifer are difficult to measure because
many {lows are altered. Stratigraphic relations of
older basalt and sediment in (he aquifer are diffi-
cult to detennine because there are few cored
intervals of this age.

The stratigraphic section underlying the INEL
is made up of overlapping intervals of basalt and



sediment that accumulated in areas of past vol-
canism and subsidence. These areas covered
hundreds of square miles, were active for periods
ranging from 200 to 700 thousand years, shifted
across a 1,000 mi area during the past 1.8 million
years, and were preceded and followed by periods
of reduced accumulation. Periods of maximum
accumulation in each area were accompanied by
an approximate volumetric equilibrium between
basaltic volcanism, accumulation, and subsidence.
Periods of reduced accumulation in each area
were accompanied by differential subsidence or
uplift. As a result, the stratigraphic section is
characterized by a succession of widespread strati-
graphic intervals bounded by local offsets and
hiatuses and differences in overall thickness as
great as 100 percent. The section also is character-
ized by maximum long-term apparent accumula-
tion rates that are about 38 percent less than past
subsidence rates in arcas of greatest thickness, a
difference identicat to that between the approxi-
mate average land-surface altitudes of the INEL
and the Yellowstone Plateau, about 5,000 and
8,000 ft above sea level, respectively.

Accumulation rates, estimated from regres-
sions of stratigraphic intervals younger than 640
thousand years in wells USGS 80, NPR TEST,
and PBF #2 in and adjacent to the area of interpre-
ted uplift at and near the ICPP and TRA, range
from 59 to 282 {1/100,000 years and average 163
ft/100,000 years, a rate that is nearly identical to
the previous (1994) estimated subsidence rate
between the INEL and the Yellowstone Plateau
during the past 4 million years, about 164 ft/
100,000 years. Accumulation rates estimated from
regressions of the composite stratigraphic section,
which is made up of stratigraphic intervals de-
posited in many areas of past subsidence for
periods ranging from 200 to 700 thousand years
during the past 1.8 million years, range from 171
to 270 {t/100,000 years and average 218 {t/
100,000 years, a rate that is 33 percent greater
than the previous (1994) estimated subsidence
rate. Although average accumulation rates in
wells USGS 80, NPR TEST, and PBF #2 agree
with the previous (1994) estimated subsidence
rate, the rates in wells USGS 80 and NPR TEST
are apparent rates that arc a relative measure ol
the difference between past rates of contemporan-
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eous subsidence and uplift, based on deep drill-
hole data. The best estimates of past subsidence
rates range from about 160 to 280 ft/100,000
years and average about 220 {t/100,000 years,
based on the previous (1994) estimated subsi-
dence rate and accumulation rates unaffected by
differential subsidence or uplift. Estimated subsi-
dence rates averaged about 192 {t/100,000 years
and were much greater than accumulation rates
during the past 200 thousand years, a period of
greatly reduced volcanism. This interruption in
basalt accumutation, which is unlike that of
earlier periods and continues to the present day,
includes most areas of the INEL.

On the basis of accumulation rates, subsidence
probably resulted from the cumulative effects of
several mechanisms that may have included crust-
al extension, thermal contraction, withdrawat of
basaltic magmas, isostatic adjustments, and com-
paction of sediment and catdera deposits. Uplift
proably resulted from the emplacement of laco-
liths and domes within or beneath the subsiding
stratigraphic section. As much as 62 percent of
the cumulative subsidence volume during the past
1.8 million years may have resulted from the
mechanisms that controlled the withdrawat of
basaltic magmas. This estimate is based on the
short-term similarity of accumulation and subsi-
dence rates in many areas of past volcanism and
the long-term difference between these rates and
maximum apparent accumulation rates at the
INEL. At least 38 percent of the cumulative sub-
sidence volume, now represented by the differ-
ence between the land-surface altitudes of the
INEL and the Yellowstone Plateau, must have
resulted from other mechanisms. Most of this
volume probably resulted from isostatic adjust-
ments related to the high-density mafic intrusion
in the upper crust and the added weight of
accumulated basalt and sediment.
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Table 1. Selected cores and sources of data used to evaluate stratigraphic units underlying the Idaho National
Engineering Laboratory

[Well is one from which continuous core was obtained (fig. 3). Depth is total depth of well and approximate total depth of core,
in feet below land surface. Data include paleomagnetic inclination and polarity, K-Ar (potassium-argon) and “°Ar/*Ar (argon-
argon) ages, petrographic descriptions, and major-oxide and trace element chemistry. Symbol: -- indicates no data. Numbers in
columns 3-6 indicate the following data references: 1 = Kuntz and others (1980); 2 = Champion and others (1988); 3 = Lanphere
and others (1993); 4 = Lanphere and others (1994); 5 = Knobel and others (1995); 6 = Reed and others (1996); 7 = Duane E.
Champion, USGS, written commun., 1989-95; 8 = Marvin A. Lanphere, USGS, written commun., 1989-95; 9 = Mel A. Kuntz,
USGS, written commun., 1989-95; and 10 = Roy C. Bartholomay, written commun., 1989-95. Additional data for deposits in
and underlying the Snake River Plain aquifer are indicated by the following references: 11 = Shervais and others, 1994; 12 =
Lawrence and Hackett, 1994; and 13 = Hackett and others, 1994]

Source of

M D e S So st
BG-76-1 228 1 1 1 --
BG-77-1 600 1 1,2 1 10
C-1A 1,805 7 8 - -
Corehole 1 2,002 7 -- - -
Corehole 2A 3,000 7 8 - -
DH-50 250 7 -—-- -- -
GIN #5 430 4 -- -- --
GIN #6 200 4 -- - -
NPR TEST 609 2 2 -- 5,10, 11
NPR WO-2 5,000 7.13 8,13 12 11
NRF #6P 500 7 -- - -
NRF #7P 500 7 8 -- -
NRF 89-04 248 3 3 - -
NRF 89-05 242 3 3 3 --
PW-13 148 7 -- -- -
TCH#1 600 4 4 4 5
TCH #2 1,114 4 4 5
TRA 05 297 7 8 -~ 5
USGS 80 204 3 3 3 --
USGS 81 108 7 - -- -
USGS 93A 233 -- -- 1 -
USGS 94 302 1 1 1 --
USGS 118 570 7 -- - 10
USGS 121 746 7 8 9 6
USGS 123 744 3 3 3 6
WWW #1 265 7 -- -- --
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Table 2. Wells that penetrate the effective base of the Snake River Plain aquifer at the Idaho National Engineering
Laboratory

[Depth 1s total depth of well, in feet below land surface. Base is the depth to the effective base of the Snake River Plain aquifer,

in feet below land surface. Lithology indicates the relative abundance of basalt (B) and sediment (S) below the base of the

aquifer 1o a depth of 500 feet; greatest abundance is listed first. Core indicates the availabilily of continuous core; see table 1]

Well identifier Depth (feet) Base (feet) Lithology Core
C-1A 1,805 1,710 B,S Yes
Corehole 2A 3,000 846 S.B Yes
INEL #1 10,365 965 S.B No
NPR WO-2 5,000 1,660 B,S Yes
S5G TEST 1.276 884 B,S No
TCH #2 1,114 883 B.S Yes
TRA #4 970 909 B.S No
TRA DISP 1,275 907 B,S No
USGS 7 1,200 895 B,S No
USGS 15 1,497 815 S,B No
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Table 3. Prolonged hiatuses between basalt {lows above the effective base of the Snake River Plain aquifer in
selected wells at the Idaho National Enginecring Laboratory
[Well, C-1A, is a well that penetrates one or more hiatuses of at least 200 thousand years duration (fig. 3; table 1). Unit, D(1), is
a basalt-flow group described by Anderson and others (1996a); single entry indicates that unit crops out or is overlain by
sediment near the land surface. Depth, 41 (single entry), is the depth, in feet below land surface, to the youngest basalt-flow
group 1n a well; depths, 279 and 287 (double entry), are depths to the base and top, respectively, of two basalt-flow groups that
differ in age by more than 200 thousand years. Measured age, 218, is the mean age of a unit, in thousands of years before present
from table 6; age in brackets, [230]. is mean age or pooled mean age reported by Kuntz and others (1980). Estimated age, 198, is
mean age that was estimated for a unit in the composite stratigraphic section (figs. 7 and 8; table 6); age in brackets, [290], is
mean age that was estimated for a unit not in the composite section. Line segments, 1a through 3c, correspond to line segments
in figures 7 and 8 and table 5. Hiatus, 198, is the length of elapsed time, in thousands of years, since the last basalt flow or
between two basalt flows in a well; time determined from [measured] and estimated nean ages. Symbol, --, indicates no data]

Measured Estimated

age age Line Hiatus
Well identifier Unit Depth (feet) (thousands (thousands segment (thousands Core
of years)
of years) of years)
NPR TEST AB(10) 0 218 198 la [218], 198 Yes
QAB () 194 [211] [270} la No
DE 6-7(1) 194 - [476] 1b 206
BG-77-1 D(1) 279 [230] [290] la Yes
E(1) 287 515 512 1b [285], 212

C-1A Q2) 1,710 - [1,480] 3b Yes
T(2) 1,710 -- 1,773 3b 293

USGS 80 DE4-5(3) 41 419 [430] 1b [419], 430 Yes

C-1A H) 698 619 619 lc Yes
LM(8) 703 -- 1,060 3a 441

NPR WO-2 N(4) 1,660 -- 1,205 3b Yes
TU(1) 1,696 1,865 1,790 3c 585

TRA DISP LMI1(1) 897 -- 800 3a No
TU() 907 1,865 1,790 3c 990

TCH#2 M(1) 40 - [1,080] 3b 1.080 Yes
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Table 4. Sites used to construct a composite stratigraphic section of selected basalt-flow groups and sedimentary
interbeds in the unsaturated zone and the Snake River Plain aquifer at the Idaho National Engineering
Laboratory

[Sites, A through J, indicate wells and datums used to construct line segments 1a through 3¢ in figures 7 and 8. Wells include

selected wells from the stratigraphic data base described by Anderson and others (1996a). Altitude is the land surface altitude at

each well, in feet above sea level. Depth indicates the depth or depth interval of a site, in feet below land surface. Cumulative
depth indicates the depth or depth interval of a site, in feet below the subsidence datum; interval for site B (fig. 7, line segment
1a) indicates the difference in land-surface altitude, 380 feet, between the subsidence datum, site A, and the accumulation datum,
site C. Units, AB(10) through TU(1), are selected basalt-flow groups and sedimentary interbeds from Anderson and others

(1996a). Altitude, depth, and cumulative depth are rounded to the nearest foot and are accurate 12 feet]

Site  Well identifier A(l;ie::;ie Depth (feet) Cumul(::ie\;;e depth Core  Datums and units
A Butte City #2 5,315 0 0 No Subsidence datum
B 0-380 No accumulation
C NPR TEST 4,935 0 380 Yes  Accumulation datum
D AREA I 5,130 6-524 380-898 No AB(10) through DE5(1)
E PBF #2 4,924 323-800 898-1,375 No DES5(1) through H(1)
F QAB 5,190 770-1,087 1,375-1,692 No H(1) through L(1)
G NPR WO-2 4,930 767-1,660 1,692-2,585 Yes  L(1) through NO(1)
H C-1A 5,029 1,074-1,477 2,585-2,988 Yes  NO(1) through P(3)
1 TCH #2 4,792 120-883 2,988-3,751 Yes  P(1) through S5(1)
J NPR WO-2 4,930 1,660-1,696 3,751-3,787 Yes  T(2) through TU(1), effective

base of aquifer
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