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NOTATION

a Angle for directional variogram.

c Generic constant used for cutoff value in probability 
distribution or indicator transformation.

e Kriging error. 

e Reduced kriging error. 

fj Explanatory variables used in drift equations. 

g Nugget of variogram. 

h Lag or distance between two data points. 

n Number of data points. 

m Number of locations in a given block. 

r Range of variogram. 

s Sill of variogram. 

w Weight.

x = (u, v) Location based on coordinates u and v. 

Z (x) Measurement of Z at location x. 

Z (x) Kriging estimate using measured data. 

A Area of triangle. 

B Area designation in block kriging. 

C Population covariance function. 

C Sample covariance function.

C(x\, #2) Covariance of data values at locations x\ 
and #2-

Dfj Difference in values between data points i and/

E Expectation.

/(.) Indicator function.

K Number of variogram bins.

N(.) Number of squared differences in variogram bin.

P Probability.
2 

Sn Sample variance of n measurements.

T Transformation.

V Voronoi polygon.

Var Population variance.

W(x) Co-kriging random variable at location x.

7 (#) Transformed variable at location £.

Y (x) Predictor or estimate of Fat location x, obtained 
from kriging.

Z Regionalized random variable. 

Z(#) Potential value of Z at location x.

Z(x) Predictor or estimate of Z at location x, obtained 
from kriging.

Z*(*) The residuals of Z(x).

Z (x) Arbitrary predictor of Z at location x.

Zn Sample mean of Z from n observations.

P Regression coefficient used in polynomial representa­ 
tion for drift.

Y Sample variogram.

y Theoretical variogram.

Y(/0 Theoretical variogram for lag h.

X Optimization coefficient.

T| Parameter used in spline analysis.

p(/z) Correlation function as function ofh.

a (x) Spatial population standard deviation at 
location x.

2 o (x) Spatial population variance at location x.

6K (x) Kriging standard deviation at location x.
2

GK &) Kriging variance at location x.

\i(x) Spatial population mean of Z at location x.
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Overview and Technical and Practical Aspects 
for Use of Geostatistics in Hazardous-, Toxic-, 
and Radioactive-Waste-Site Investigations
ByC.R. Bossong, M.R. Karlinger, B.M. Troutman, and A.V. Vecchia

Abstract

Technical and practical aspects of 
applying geostatistics are developed for individ­ 
uals involved in investigations at hazardous-, 
toxic-, and radioactive-waste sites. Important 
geostatistical concepts, such as variograms 
and ordinary, universal, and indicator kriging, 
are described in general terms for introductory 
purposes and in more detail for practical 
applications.

Variogram modeling using measured 
ground-water elevation data is described in detail 
to illustrate principles of stationarity, anisotropy, 
transformations, and cross validation. Several 
examples of kriging applications are described 
using ground-water-level elevations, bedrock 
elevations, and ground-water-quality data.

A review of contemporary literature 
and selected public domain software associated 
with geostatistics also is provided, as is a discus­ 
sion of alternative methods for spatial modeling, 
including inverse distance weighting, triangula- 
tion, splines, trend-surface analysis, and 
simulation.

1.0 INTRODUCTION

This report addresses the use of geostatistics at 
hazardous-, toxic-, and radioactive-waste (HTRW) site 
investigations. The report was prepared in cooperation 
with the U.S. Army Corps of Engineers (USAGE) for 
use as a guidance document within the USAGE. The

USAGE has distributed the report as an Engineer 
Technical Letter within their agency (USAGE, 1997). 
One very fundamental aspect of perhaps all HTRW- 
site investigations that deal with environmental 
contamination is the need to characterize the extent 
and spatial distribution of contamination. Such a char­ 
acterization usually includes describing and evaluating 
the spatial trends and variability of the contamination, 
using a variety of statistical or analytical tools. A prin­ 
cipal difficulty in characterizing the contamination is 
the fact that measurements might be few or might 
be sparsely scattered over large regions. Another 
difficulty that arises naturally is how to interpolate 
between measured data in order to make predictions 
(or estimates) at points where measurements of 
contaminant concentration are not available. Such 
interpolation is referred to as point, or punctual, 
estimation in this report. Additionally, an investigator 
might need to determine a single representative value 
for an area that has several measured or estimated 
values, or both; this determination is referred to in 
this report as block estimation. Geostatistics is a set 
of statistical procedures designed to address these 
difficulties and needs. Geostatistics can be applied 
to many other problems, besides contamination, 
that occur at HTRW sites. Even though this report 
addresses only two-dimensional applications, geosta­ 
tistics can be used in three dimensions as well. Indeed, 
there are many cases in which the third dimension, 
usually stratification, is desirable to address.

Kriging is the principal geostatistical technique 
described in this report. For introductory purposes, 
kriging can be defined as a technique for determining 
the optimal weighting of measurements at measured 
or sampled locations for obtaining predictions, or
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estimates, at unmeasured or unsampled locations; 
additional definition of kriging is provided throughout 
this report. Kriging is well suited for making point 
and block estimates; however, much of the advantage 
of using geostatistical techniques, such as kriging, 
is not just in the point and block estimates but in 
the information provided concerning the uncertainty 
associated with the estimates. The uncertainty infor­ 
mation is usually quantified by a kriging variance that 
is associated with a kriging estimate. The uncertainty 
also is sometimes referred to as the kriging standard 
deviation, which is simply the square root of the 
kriging variance.

Original geostatistical work involved making 
estimates for the areal extent and concentrations of 
economic mineral deposits in relation to mining. 
Today (1998), geostatistical techniques continue 
to have a function in mining. However, a well- 
developed method that is capable of interpolating a 
given set of measured values at discrete locations into 
estimates for new locations or developing an indi­ 
vidual estimate for an area including many locations, 
or both, has attracted users from many disciplines, and 
there is a trend toward incorporating geostatistics as 
standard curriculum for most geoscience educational 
programs. The use of geostatistical techniques as part 
of HTRW-site investigations is becoming common 
because of the almost routine need for data interpola­ 
tion as part of these investigations.

Once investigators have established that the 
data are adequate as to quality and quantity, geostatis­ 
tics can be a powerful analytical tool that results in 
quantitative characterization of areas of special 
interest within the study area or the entire study area. 
These characterizations could be used to determine 
spatial variation; for example, where concentrations 
of contaminants in soils are relatively high or low, 
are less than or greater than a specified concentration, 
or even have a high or low probability of exceeding 
a certain concentration.

1.1 Purpose and Scope

The purpose of this report is to address the 
use of geostatistics in HTRW-site investigations by 
presenting an overview of geostatistical methods and 
discussing their technical and practical aspects. The

report also includes a brief literature and software 
review, a presentation of kriging applications, a 
discussion of the review of kriging applications, and a 
discussion of more advanced geostatistical techniques, 
such as conditional simulation.

The scope of this report is limited to discussions 
and examples of two-dimensional point and block 
estimations using a geostatistical method known 
as kriging. The technical aspects of geostatistics are 
presented through discussion of the assumptions 
about, and the mechanics of, several types of kriging, 
including ordinary kriging, which is applicable when 
the mean for the variable of interest is constant over 
the region of interest, and universal kriging, which is 
applicable when the mean for the variable of interest 
changes gradually over the region. A specialized form 
of kriging known as indicator kriging and the use of 
information concerning uncertainty associated with 
kriging estimates also are discussed. The fundamental 
concepts of geostatistical kriging theory are discussed, 
but various references are provided for more detailed 
information.

1.2 Organization

This report is divided into eight sections 
described here.
  Section 1.0 presents introductory material and 

includes an overview of the use of geostatistics 
at HTRW-sites.

  Section 2.0 presents an overview of some important 
technical aspects of geostatistics with a minimum 
of theory and equations.

  Section 3.0 discusses the assumptions and theory 
behind kriging, including equations and concepts 
that are useful for obtaining a better under­ 
standing of the technical aspects, or mathematics, 
of kriging interpolation. Many of the concepts 
developed in section 3.0 are discussed in general 
terms in section 2.0, so those readers desiring 
only an overview of kriging concepts may wish to 
read only section 2.0 and bypass section 3.0.

  Section 4.0 reviews texts that contain much more 
detailed information regarding kriging theory 
than material included in section 3.0. Section 4.0 
also provides a brief generic discussion of kriging 
software.
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Section 5.0 discusses detailed step-by-step vario- 
gram construction and demonstrates some pitfalls 
and solutions to this crucial process. Section 5.0 
also discusses techniques that investigators may 
use to evaluate their variograms.

Section 6.0 discusses practical aspects of geostatis- 
tics by presenting several examples of kriging 
applications using data from the HTRW field. The 
examples illustrate a few of the many different 
ways kriging can be used in HTRW-site investiga­ 
tions and are not presented with the same level of 
detail used in section 5.0.

Section 7.0 provides additional detail on some 
crucial aspects of kriging applications and 
includes considerations that may be helpful to 
determine if kriging is feasible for the intended 
use.

Section 8.0 briefly discusses other methods for 
spatial modeling and also includes discussion of 
advanced stochastic methods, such as simulation.

1.3 Overview of the Use of
Geostatistics in Hazardous-, 
Toxic-, and Radioactive- 
Waste-Site Investigations

Investigations of HTRW sites involve complex 
administrative, scientific, and engineering functions 
and are truly interdisciplinary. For instance, adminis­ 
trative functions that are associated with fiscal, 
managerial, or regulatory input can guide or constrain 
scientific or engineering work. Similarly, scientific 
or engineering findings may define the scope of the 
administrative effort.

Scientists and engineers involved in HTRW- 
site investigations have found that they have an 
implicit need for many disciplines to fulfill the 
objectives of each particular investigation. Frequently, 
an HTRW-site investigation will benefit from special­ 
ized information available from earth-science 
disciplines such as geology, hydrogeology, and 
geochemistry, among others. Some HTRW-site inves­ 
tigations are large enough to use several individuals 
from each of these disciplines, as well as many others, 
for the duration of multi-year investigations. Most 
disciplines associated with HTRW-site investigations 
will benefit from knowledge or input from specialized

or interdisciplinary branches, or both; the geologist, 
for example, will occasionally benefit from knowl­ 
edge of geophysics. Interdisciplinary input also can 
be very helpful, especially in geostatistics, where 
earth-science disciplines rely on assistance from 
statisticians.

1.4 Acknowledgments

Several individuals have provided valuable 
technical review of this report. Dave Becker, 
USAGE, HTRW Center for Expertise, not only 
provided a consistent and thorough technical review, 
but also coordinated additional technical reviews. 
Additional technical review from the USAGE were 
provided by Terry Walker and Tom Georgian, both 
from the HTRW Center for Expertise; Brad Call, 
Earl Edris, Dave Kachek, Doug Mullendore, and 
Kerry Walker, all from USAGE field offices; and 
Tommiann McDaniel from USAGE headquarters. 
Additional technical reviews from outside the USAGE 
were provided by Evan Englund, U.S. Environmental 
Protection Agency National Exposure Research 
Laboratory; Ed Gilroy, U.S. Geological Survey 
(USGS); Mohan Srivastava, Froidevaux, Srivastiva, 
and Schofield; and Wayne Woldt, University of 
Nebraska.

2.0 OVERVIEW OF SOME TECHNICAL 
ASPECTS OF GEOSTATISTICS

This section provides an overview of some of 
the procedures and concepts discussed in detail in this 
report. Some of the technical ideas and terminology 
are introduced in very general terms to familiarize the 
reader with geostatistics.

2.1 General Considerations in 
Spatial Prediction

The principal consideration in this report is 
spatial prediction or modeling values of a spatial 
process; in particular, to make best use of measure­ 
ments of a variable (such as pollutant concentration) at 
sampled locations so as to make inferences (or predic­ 
tions) about that variable at unsampled locations or for 
the region as a whole.
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A spatial process can have a large-scale or 
a regional component and a small-scale or a local 
component; both these components need to be 
accounted for when modeling a spatial process. The 
large-scale component is referred to as the mean field 
and is most often modeled by a spatial trend that may 
or may not be constant over the region. The small- 
scale component is a random fluctuation that is mathe­ 
matically combined with the trend to make up the 
sample at a point. On the average, the random fluctua­ 
tion is assumed to be zero, but can be either positive or 
negative in individual samples. The separation of the 
trend from the random fluctuation is problem- and 
scale-dependent and needs to be determined carefully. 
There can be several solutions to the problem of sepa­ 
rating the trend and the random fluctuation that may 
be useful for various geostatistical purposes when 
using a single set of data.

The small-scale fluctuation of the variable of 
interest (for example, water levels or contaminant 
concentrations at a sample point), although random, 
can indicate some association with the random fluctua­ 
tions at nearby points. This association is referred to as 
spatial correlation. Positive spatial correlation between 
measurements indicates that the random fluctuation at 
both points tends to have the same sign, whereas nega­ 
tive correlation indicates that the random components 
tend to have the opposite sign. The large-scale trend 
and the positive spatial correlation of the small-scale 
fluctuations contribute to measurements at locations 
that are close together being more closely related than 
are measurements at locations that are farther apart.

The most obvious procedure to determine 
spatial prediction at unsampled locations is simply 
to take an average of the measured sample values and 
to assume that this average value gives a reasonable 
prediction at all locations in the region of interest. 
This procedure may work adequately in some cases, 
but there also are pitfalls. Using a single value for an 
entire region implicitly assumes spatial homogeneity. 
This assumption ignores any spatial trends that might 
exist in the data and also ignores spatial continuity. 
If the variable of interest does have a tendency to 
be spatially correlated, then a weighted average 
rather than a simple average could be used to make a 
spatial prediction by giving measurements at sampled 
locations that are nearer to the unsampled location 
more weight. This motivation is the basis for the 
geostatistical techniques discussed in this report. 
The technique known as kriging is a technique for 
determining the optimal weighting of measurements

at sampled locations for obtaining predictions at 
unsampled locations. These optimal weights depend 
on spatial trends and correlations that may be present.

There are a number of ways to perform spatial 
prediction. The geostatistical technique of kriging 
belongs to a class of techniques known as stochastic 
techniques. In these techniques, the measurements, 
actual and potential, are considered to constitute a 
single realization of a random (or stochastic) process. 
One advantage of assuming the existence of such a 
random process is that measures of uncertainty, such 
as the variance used in kriging, can be defined. These 
measures of uncertainty permit the objective assess­ 
ment of a spatial-prediction technique on the basis 
of how small such measures are. Once a measure of 
uncertainty has been selected, the weights to be used 
in spatial prediction may be determined to minimize 
the measure of uncertainty. In short, the use of 
stochastic techniques provides a way of objectively 
quantifying errors and determining weights. In prac­ 
tice, spatial predictions obtained using kriging are 
almost always accompanied by a measure of the asso­ 
ciated error. Such an error evaluation is an integral part 
of a kriging analysis and is one of the principal advan­ 
tages of using kriging (or stochastic techniques in 
general).

Nonstochastic techniques are generally applied 
strictly empirically; no assumptions concerning the 
existence of an underlying random process are made, 
and no theoretical framework is used to evaluate 
statistically the performance or optimality of the 
nonstochastic techniques. When applied in such a 
manner, whether such techniques would be expected 
to yield results that are satisfactory cannot be evalu­ 
ated in advance. Two techniques that are commonly 
applied nonstochastically are simple averaging and 
trend analysis, which is a least-squares method for 
fitting a smooth surface to the data. Even though 
these two techniques are usually applied nonstochasti­ 
cally, performance can still be assessed if a stochastic 
setting is assumed. Generally, simple averaging would 
perform well if there were no trend and no spatial 
correlation, and trend analysis would perform well if 
there was a trend that can be modeled, but no spatial 
correlation. Lack of correlation in the measurements 
is one assumption that is made in ordinary statistical 
regression analysis, and trend analysis, if it is placed in 
a stochastic setting, is actually a special type of regres­ 
sion. The stochastic technique of kriging explicitly 
incorporates the spatial correlations that are ignored 
in trend analysis. In section 8.0, a few other common
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techniques that are usually applied nonstochastically 
are discussed briefly. Most of these techniques are 
designed to incorporate spatial continuity, but the 
way it is incorporated may be subjective. Use of 
kriging provides an objective means of incorporating 
partial correlation and makes the background assump­ 
tions explicit.

2.2 Important Geostatistical Concepts

This section presents some of the key 
concepts in geostatistics that are discussed in 
detail in section 3.0. The concepts are presented 
in about the same order as they are discussed in 
section 3.0.

2.2.1 Variograms

A central concept in geostatistics is the use of 
spatial correlation to improve spatial predictions or 
interpolations. The variogram is the principal tool used 
to characterize the degree of spatial correlation present 
in the data and is fundamental to kriging. The correla­ 
tion between measurements at two points is usually 
assumed to depend on the separation between the two 
points. This dependence can be examined by squaring 
the difference between the measured values at each 
pair of locations and then categorizing the squared 
differences according to the separating distance 
between the paired locations. For small separations, 
or lags, the squared differences are usually small and 
increase as the lag increases. A plot of the squared 
differences per sample pair as a function of lag is 
referred to as the sample variogram.

The general behavior of the points in the 
sample variogram is affected by the spatial correlation 
between sample sites and can provide investigators 
with qualitative information about the spatial process, 
but to use this information rigorously as a basis for 
interpolation, a function, that has specific properties, 
needs to be fit to the sample variogram points. The 
fitting passes a smooth curve through the scattered 
points. The curve, which can be represented by a 
mathematical expression or function, is called a 
model. There are several models introduced in 
section 3.0 that have characteristic features that 
are commonly used in geostatistics. The variogram 
model is used to determine kriging weights for use 
in interpolation.

2.2.2 Directional Variogram and Anisotropy

Spatial correlation often depends not only on 
the distance between points, but also on the direction 
along which the points plot. For example, measure­ 
ments at pairs of points that are 100 meters apart 
and are oriented north-south may have a different 
correlation than measurements at points that are the 
same distance apart, but that are oriented east-west. 
Correlations dependent on direction indicate anisot- 
ropy, and when anisotropy is present, a directional 
variogram needs to be used for the geostatistical 
analysis.

2.2.3 Kriging and Kriging Variance

Kriging yields optimal spatial estimates at 
points where no measurements exist using measure­ 
ments at points where there are data. As discussed 
in section 2.1, placing an analysis in a stochastic 
framework enables precision in defining optimality. 
In kriging, a restriction that the predicted value at 
any point is a linear combination of the measured 
values is imposed first; that is, the kriging estimate 
is a linear predictor. Given this restriction, the values 
of the coefficients in this linear function are chosen 
to ensure the predictor to be optimal.

The first optimality criterion imposed is that the 
estimate be unbiased, or that on average, the difference 
between the predicted value and the actual value is 
zero. The second optimality criterion is that the vari­ 
ance of the predictions be minimized. The variance in 
the predictions is a statistical error measure defined to 
be the average squared difference between predicted 
and actual values. Because the kriging estimate mini­ 
mizes this variance, the estimate, or prediction, is 
known as the best (minimum variance) unbiased linear 
predictor. This minimization is performed algebra­ 
ically and results in equations known as the kriging 
equations, which are explicit representations of the 
optimal coefficients (weights) in terms of the vario­ 
gram. These equations are presented in section 3.0.

An expression for the kriging variance also is 
discussed in section 3.0. This variance depends on 
the geometry of the data sites, with the variance 
at locations near measured points tending to be small. 
A variance then can be associated with any spatial 
prediction, which gives an indication of the uncer­ 
tainty about that predicted value. The fact that kriging 
provides this measure of uncertainty is one of its prin­ 
cipal advantages over many other techniques.
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2.2.4 Trends and Universal Kriging

In kriging, special attention must be given to 
the question of whether there are spatial trends in 
the data. A trend is usually any detectable tendency 
for the measurements to change as a function of the 
coordinate variables, but also can be a function of 
other explanatory variables. For example, aside 
from random fluctuations, measurements of ground- 
water elevations may have a tendency to consistently 
increase in a certain direction. A kriging analysis 
in which there is no spatial trend is known as ordinary 
kriging; when a trend does exist, universal kriging 
should be considered. In universal kriging, the trends 
present are accounted for. For example, the trend 
might be represented as a linear function of coordinate 
variables. The form of the trend model then is incorpo­ 
rated into the universal kriging equations to obtain the 
optimal weights and account for the trend.

2.2.5 Block Kriging

The kriging discussed in sections 2.2.3 and 
2.3.4 is usually known as point, or punctual, kriging. 
In point kriging, the goal is to predict the value of a 
variable at discrete locations. By contrast, in block 
kriging, the goal is to predict the average value of a 
variable for a specified region. As in point kriging, 
the optimal predictor is a linear combination of the 
measured values, and the degree of uncertainty is indi­ 
cated by a block kriging variance. Block kriging vari­ 
ances tend to be smaller than point kriging variances 
because averages tend to be less variable than indi­ 
vidual point values.

2.2.6 Prediction Intervals and Normality

A standard kriging analysis gives two values 
for any location: the optimal kriging estimate and the 
kriging variance. The variance provides a measure of 
uncertainty about the prediction. In some studies, the 
nature of the uncertainty needs to be specified beyond 
just giving the variance. One way to further specify the 
uncertainty is to obtain a prediction interval, which is 
an interval where there is a certain probability, gener­ 
ally 95 percent, that the actual value is within the 
interval. Finding such an interval often hinges on 
the probability distribution of the variables being 
sampled. An ideal situation is when the variable of 
interest, such as contaminant concentration, can be

assumed to have a normal distribution. In this situa­ 
tion, and given the set of measured values, a potential 
value at an unsampled location has a normal distribu­ 
tion, with the average given by the kriging estimate 
and the variance given by the kriging variance. Thus, 
on the basis of classical statistics, the straightforward 
use of this normal distribution can be used to obtain a 
95-percent prediction interval for a concentration at 
an unsampled location.

2.2.7 Transformations

A prediction interval generally is much more 
informative than the kriging estimate and kriging 
variance, so a common question is whether a 
normality assumption can be made for the data. When 
a normality assumption cannot be made, a transforma­ 
tion can be identified that will make the data normal, 
or almost normal. For example, for data that have 
values greater than 0, a logarithmic transformation 
is often tried; that is, a geostatistical analysis is 
performed on logarithmically transformed values 
rather than on the original data. Prediction intervals 
obtained using the transformed values can be readily 
converted to corresponding intervals on untransformed 
variables. However, there are subtleties that need to be 
considered in back-transforming the kriging estimate 
and the kriging variance; these subtleties are discussed 
in more detail in section 3.0.

2.2.8 Indicator Kriging

In indicator kriging, analysis is performed using 
indicator variables of the measured data rather than the 
measured data. An indicator variable is a special kind 
of transform of the measured data and can have one 
of two possible values: 0 or 1. To obtain the indicator 
variables to be analyzed, a threshold value is specified 
(c), which, for example, may represent a contaminant 
concentration level of particular importance. At each 
measurement location, the indicator variable then is 
assigned a value of 1 if the measured value is less 
than or equal to c and is assigned a value of 0 if the 
measured valued is greater than c. This kind of trans­ 
form allows censored data, or data reported as less 
than some reporting limit, to be included in the anal­ 
ysis if the reporting limit is less than or equal to the 
threshold, or cutoff, value of c. After the indicator 
transform has been determined, the kriging analysis 
then is done using these indicator variables in the
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usual manner; first, a variogram is obtained, and then 
the kriging equations yield the optimal linear predictor 
and the kriging variance for the indicators.

Although the indicator kriging analysis uses 
only O's and 1 's, the interpolated estimates are not 
restricted to these two values. In most analyses, the 
estimates are between 0 and 1, which is interpreted 
to be the probability that the actual value is less than 
or equal to the threshold c. Use of this analysis for 
a number of different threshold values can provide 
information about the probability distribution of 
contaminant values at a location, which may be used 
to obtain prediction intervals. Such prediction inter­ 
vals may even be more valuable than having only 
the optimal predictor and variance provided by the 
usual kriging analysis, particularly if the behavior 
of extremes may be of interest. An advantage of using 
indicator kriging to obtain prediction intervals is that 
there is no need to assume a normal distribution for 
the data.

3.0 TECHNICAL ASPECTS OF 
GEOSTATISTICS

This section provides the technical aspects 
or the necessary theoretical background for under­ 
standing kriging applications. Emphasis is placed 
on presentation of the basic ideas; long formulae or 
derivations are minimized. Statistical terms that are 
commonly used in geostatistical applications are in 
bold text and are briefly defined as they are intro­ 
duced; notation used in this report also is listed in 
the "Notation" section. More thorough discussions 
of these fundamental concepts are indicated by refer­ 
ences cited in section 4.0. A knowledge of engineering 
statistics at the level of Devore (1987) and Ross (1987) 
would help in understanding some parts of this 
section. Readers who have limited statistical experi­ 
ence may wish to briefly scan this section and refer 
back to it after reading the remaining sections.

In section 3.1, regionalized random variables 
are discussed. Regionalized random variables consti­ 
tute the random process that is sampled to obtain 
the observed data that are available for analysis. 
Basic ideas related to probability distributions, aver­ 
ages, variances, and correlation are introduced. In 
section 3.2, the variogram, which is the fundamental 
tool used in geostatistics to analyze spatial correlation, 
is introduced. In section 3.3, the use of kriging to

obtain the best weights for spatial prediction is 
discussed, and the computation of the average-, or 
mean-, squared prediction error for these predictions 
also is discussed. In section 3.4, co-kriging, which is 
prediction of one variable based on measurements of 
that variable and other variables, is discussed. Finally, 
in section 3.5, the application of kriging to determine 
not just optimal spatial predictions, but also probabili­ 
ties associated with various events, such as extreme 
events that may be of importance in risk-based anal­ 
yses, is discussed.

3.1 Regionalized Random Variables

Suppose the extent of ground-water contamina­ 
tion by a particular pollutant in a given study area 
is being determined. To simplify the presentation, 
all data are assumed to be distributed over a two- 
dimensional region. In three-dimensional ground- 
water flow systems, one could study the depth- 
averaged concentration of a pollutant or the concentra­ 
tion of the pollutant in a particular horizontal stratum 
of the flow system. Let a vector x = (u, v) denote an 
arbitrary spatial location in the study area. Unless 
otherwise stated, u is assumed to be the east-west 
coordinate and v the north-south coordinate (fig. I A). 
Use z(x) to denote a measurement at location x, such 
as the concentration of a pollutant. The ultimate goal 
is to determine z(x) for all locations in the study 
area. However, without explicit knowledge of the 
ground-water flow and transport field, this goal 
cannot be achieved. Therefore, suppose that the 
goal is to estimate the values of z(x) with a given 
error tolerance. For some studies, a small estimation 
error for some parts of the study area (for instance, 
near a domestic water supply) may need to be 
obtained, while allowing larger estimation errors in 
other parts of the study area. The theory of regional­ 
ized random variables is designed to accomplish 
these goals.

In the regionalized random-variable theory, 
the true measurement, z(x), is assumed to be the value 
of a random variable, Z(x). A random variable Z(x) 
is associated with a true measurement z(x) to charac­ 
terize the degree of uncertainty in the quantity of 
interest at point x. If there is no measurement obtained 
at x, then the values acquired by Z(x) represent poten­ 
tial measurements at x\ that is, Z(x) represents possible 
values that might be expected if a measurement were
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Hypothetical study area with two sampling locations. The coordinate 
axes are in the east-west (u) and north-south (v) directions.

u (east)

Covariance function (variogram) is stationary if all pairs of observations 
that are separated by the same lag (h) and angle (a) have identical co- 
variance (variogram) values.

B

Covariance function (variogram) is isotropic if all pairs of observations 
that are separated by the same lag have identical covariance (vario­ 
gram) values.

Figure 1 . Covariance function properties A, hypothetical 
study area; B, stationary covariance functions; and 
C, isotropic covariance function.

obtained at x. Because there is uncertainty associated 
with Z(x), the random variable needs to be character­ 
ized by a probability distribution, defined by 
P[Z(x) < c], where P denotes probability and c is 
any constant. This distribution is a function of c 
and, to be completely defined, needs to be known

for all values of c. The distribution is used to make 
certain evaluations. For example, suppose there is no 
measurement of the concentration of a certain contam­ 
inant at x, but the distribution is known and a threshold 
value of c - 8 milligrams per liter is of interest. If 
P[Z(x) < 8] = 0.60, and if a measurement were made at 
x, there is a 60-percent chance of obtaining a value less 
than or equal to 8 milligrams per liter. The distribution 
also may be used to calculate other probabilities, such 
as the probability of obtaining a value in some speci­ 
fied interval.

An important concept in all geostatistical appli­ 
cations is the support of the regionalized random vari­ 
able. The support of Z(x) is the in-situ geometric unit 
represented by an individual sample. For example, in 
a soil-contamination study, Z(x) might represent the 
concentration of a contaminant in a vertical soil core 
0.1 meter in diameter and 1 meter in length and 
centered at location x. Thus, although Z(x) is defined 
at a particular point, it represents a volume of soil. 
Changing the support of Z(x) usually changes its prob­ 
ability distribution. Therefore, all the measurements in 
a geostatistical analysis need to have the same support. 
The technique called point, or punctual, kriging, 
described in section 3.3, is designed to predict values 
of Z(x) with the same support as the sample data.

A concept closely related to support is that of 
estimation block, which is a geometric unit larger 
than the support of a single measurement, for which a 
single representative value is desired. For example, in 
the example soil-contamination study, an estimate of 
the average concentration of a contaminant in a truck- 
load of soil excavated from a block 6 meters long, 
6 meters wide, and 0.3 meter thick may be necessary. 
Using a method called block kriging, also described 
in section 3.3, the block average can be predicted 
based on individual measurements.

Although the distribution of Z(x) completely 
characterizes ZQt) at any particular location, the 
distribution indicates nothing about the relations 
among the values of Z(x) at different locations, 
which is very important because geostatistics is 
based on using a measured value of a regionalized 
variable at one location to gain information about 
values of the variable at another location. The distribu­ 
tion of Z(x) at a single location can be readily general­ 
ized to two or more locations. For two locations, 
if *i and x_2 are two distinct locations, then the
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joint probability distribution is defined to be the 
probability P[Z(x{) < q, Z(*2) ^ c2] for any constants 
GI and c2 . This latter probability means the probability 
that both Z(xl ) < c l and Z(*2) < c2 . If the variables 
Z(x_i) and Z(*2) are statistically independent of one 
another, then the joint probability distribution can be 
obtained as the product of the individual probability 
distributions,

P[Z(x l )<c l ,Z(x2)<c2 ]

= P[Z(x l )<c l ] P[ZU2 )<c2 ].
(3-1)

However, in most applications, Z(x{) and Z(*2) are 
not statistically independent, and their joint distribu­ 
tion cannot be obtained from the individual distribu­ 
tions. When this joint description is applied to more 
than two locations, specification of the full spatial 
distribution of Z would need the joint distribution of 
Z(x{), ..., Z(xn) for any set of n spatial locations and for 
any n; however, except in very special cases, working 
with the full set of distribution functions of Z(x) is not 
feasible and is not done.

To simplify the problem even further, various 
parameters of the distributions are used rather than 
using the entire distributions. The parameter most 
commonly used to characterize a distribution is the 
mean; because the mean in geostatistical applications 
depends on the spatial variable x, the mean may be 
called the spatial mean, or the drift. In statistics, 
the mean is referred to as the expectation (E) of the 
random variable Z(jt), and the symbol |i is used in this 
report to denote this expectation. Thus,

*) = E[Z(x)} (3-2)

is used to denote the mean, or expected value, of 
the bracketed term, in this case Z(x). Thinking of the 
expectation as an average can be helpful. In fact, if 
the distribution of Z(x) assigned equal probability to 
a finite number of values, then the expectation of Z(x) 
would indeed be the simple average of these numbers. 
However, in geostatistics, Z(x) is usually assumed to 
take on any value in a continuous range of possible 
values rather than being limited to a discrete set of 
values. Therefore, calculus needs to be used to define 
the expectation. The following example illustrates the 
difference between averages and expectations.

3.1.1 Example 3.1.1

An experiment consists of injecting a conserva­ 
tive tracer at a particular well in a steady-state ground- 
water flow system and measuring the concentration, 
Zi(x), of the tracer in a neighboring well 24 hours 
later. The tracer then is allowed to flush from the 
system, and the experiment is repeated a second time 
to obtain another concentration measurement, Z2(x), 
at the same location. If this process is repeated n times, 
n concentration measurements Zi(x), Z2(x), ..., Zn(x) 
would be obtained, all at locations x. The average 
concentration at location x is

Z2 (x) n (*)], (3-3)

which would change depending on n and on the actual 
values obtained for ZjQc), Z2(x), ..., Zn(x). However, 
in the limit as n increases, Zn(x) becomes closer and 
closer to the true mean, or expected, concentration

Zn (x)   > as n increases. (3-4)

This theoretical limit is a constant value, or 
population parameter, as opposed to Zn (x), 
which is a random variable, or a property of 
the particular sample that is obtained.

In example 3.1.1, no assumptions were 
needed concerning whether the mean changed with 
spatial location because all sampling was done at 
one sampling location, x. In most HTRW-site applica­ 
tions, the mean probably changes, depending on 
the sampling location. In addition, usually only one 
measurement is available at any particular location. 
Therefore, some assumptions regarding the structure 
of (!(*) must be made. For example, to assume that 
|i(jt) = (i, is constant for all x sometimes is appropriate, 
in which case, Z(x) has a stationary mean. For 
example, data that have no underlying trend, such 
as hydraulic conductivity in a homogeneous aquifer, 
might be assumed to have a constant mean. If the 
mean is constant, estimating it with the sample 
average of n measurements obtained at different 
spatial locations x_i, x2 , ..., x^ is reasonable; therefore,
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(3-5)

However, in contrast to example 3.1.1, Zn may not get 
closer to \JL as n increases, as defined in equation 3-4. 
Because of the possible spatial correlation in the 
data, the size of the sampling region needs to be large, 
compared to the correlation length for Zn , to accu­ 
rately estimate u..

In addition to the mean of Z(x), its variability 
or dispersion also is of interest, and this variability is 
most commonly measured by the spatial variance, 
defined to be the mean of squared deviations of Z(x) 
from (!(%) and denoted by O2(x),

(3-6)

The spatial standard deviation oQt) is the square root 
of the variance. The following example illustrates the 
difference between the population variance, which has 
been defined in equation 3-6, and a sample variance.

3.1.2 Example 3.1.2

If the scenario presented in example 3.1.1 
is used again, the sample variance Sn (x) of the 
n measurements could be computed as follows:

(3-v)
i= 1

This equation gives a measure of dispersion of the 
Z/(x) values from their sample mean. The sample 
variance depends on n and on the particular values 
measured for Zjfe), Z2(*), ..., Zn(x). However, in 
the limit as n increases, Sn (x) gets closer and closer
to a constant value, which is denoted by a^)- Thus, 
G (x) is a population parameter, and Sn (x) is a random 
variable.

The mean and the variance both can be calcu­ 
lated from the probability distribution of Z(x). Again, 
in geostatistics, the relations among regionalized 
variables at different locations are of interest. From 
the joint distribution of Z(x{) and Z(x2\ the spatial 
covariance function,

(3-8)

may be obtained. This function is key in geostatistical 
analyses. It is a measure of the association between 
values obtained at point *i and the values obtained 
at point x_2- If values at these two spatial locations 
tend to be greater than average or less than average 
at the same time, then the covariance is positive. 
However, if the values vary in the opposite direction 
(that is, one value tends to be larger than average when 
the other value is less than average, or vice versa), the 
covariance is negative.

Because C(&\, *2) is an unknown population 
parameter, it too needs to be estimated using a statistic 
computed from sample data. To make this estimate 
possible, the covariance function is sometimes 
assumed to depend only on the distance between 
points, which is the lag h, and not on the relative 
location or orientation of the points:

(3-9)
(v 1 -v2 )

Under this assumption, C(h) can be estimated by 
pooling all pairs of measurements that are approxi­ 
mately h units apart and computing a sample 
covariance function

C(/i) = average

h-Ah<hfj <h
(3-10)

where hy is the distance between *,- and Xj and 
the average is from all pairs of points so that h^ 
is between h   Ah and h + Ah. The quantity Ah is 
called the lag tolerance. There are more effective 
ways to estimate C(h) besides using equation 3-10; 
for example, see Isaaks and Srivastava (1989). 
However, because the emphasis in this report is 
on the variogram (to be defined below) rather 
than on the covariance function, this method of 
estimating the covariance function does not need 
to be used.
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A covariance function is called stationary 
if it does not depend on the origin of the coordinate 
system; that is,

C(x l b) = C(xv x (3-11)

for any given vector, h (fig. IB). The covariance func­ 
tion (eq. 3-9) is stationary because changing the origin 
does not change the distance between the points. 
Substituting x^ = *2 = * in equation 3-9 yields

C(x, *) = C(0) , (3-12)

which, when combined with the definitions in 
equations 3-6 and 3-8, becomes

a2 (x) = C(0)forall*. (3-13)

Therefore, when Z(x) has a stationary covariance 
function, the variance of Z(x) is constant for all x. 
The covariance function then can be standardized by 
dividing it by the variance. The resulting dimension- 
less function of h is called the spatial correlation 
function,

2 ) = C(h,a), 

h = J(u,-u
(3-15)

a - atan

In this example, a is the angle measured counter­ 
clockwise from the east (fig. IB and Q. In many 
geostatistical publications or computer software, 
the angle may be defined as clockwise from the north, 
so the appropriate angle in any application needs to be 
carefully defined. A covariance function that satisfies 
equation 3-15 is called anisotropic, or directional.

To summarize, the basic model framework that 
is used throughout this report is the following: the 
value of a measurement z(x) (concentration, porosity, 
hydraulic head, and so on) at location x in a two- 
dimensional region is the value of a regionalized 
random variable, Z(x), with mean |i(x) and stationary 
covariance function C(h,a). Other assumptions may 
be added in the applications sections of this report to 
analyze specific data sets, but this framework is the 
basic framework from which many of the results are 
derived. In some situations, the covariance-stationarity 
assumption may be relaxed; for instance, when using 
the linear variogram described in the next section.

(3-14) 3<2 Variograms

The correlation function is a scale-independent measure 
of linear association between values of Z at different 
locations. The spatial correlation is always between 
-1 and +1, with zero indicating no linear association. 

In addition to being stationary, the covariance 
function in equation 3-9 has another important prop­ 
erty. It also is isotropic, or omnidirectional, because 
the function does not depend on the direction between 
the two locations. In many HTRW applications, the 
correlation between values of Z at two locations is 
affected by direction as well as lag. For example, 
contaminant concentrations in a ground-water flow 
system might be more highly correlated along a 
transect in the direction of flow than along a transect 
perpendicular to the flow. Therefore, the covariance 
function depends on the lag, h, and on the angle, a, 
between locations,

Regionalized random variables differ from clas­ 
sical (ordinary least-squares) regression models in that 
the residuals, defined as the deviations of the region­ 
alized random variable from its mean and denoted by

Z*U)= (3-16)

are related to one another, whereas the residuals in a 
regression model are generally assumed to be indepen­ 
dent. Thus, in the regionalized random-variable 
model, measured values of the residuals at measure­ 
ment locations contain valuable information when 
predicting the value of Z(x) at unsampled locations. 
The relation between the residuals can be understood 
by examining the variogram, which is a tool that is 
widely used in geostatistics for modeling the degree of 
spatial dependence in a regionalized random variable.
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Although the variogram is closely related to the cova- 
riance function, there are some important differences 
between the variogram and the covariance function 
that are described in this section. The covariance 
function and the related correlation function are 
more commonly used in basic statistics courses than 
the variogram, so many readers may be more familiar 
with the former concepts. However, the variogram is 
more widely used in geostatistics and is used as the 
primary tool for analyzing spatial dependence in the 
remainder of this report.

As with the covariance function, it is necessary 
to distinguish between the theoretical variogram, 
which is based on population parameters, and the 
sample variogram, which is an estimator of the theo­ 
retical variogram obtained from measured data. The 
theoretical variogram of a regionalized random 
variable, y(*i, £2)' *s defined as one-half the variance 
of the difference between residuals at locations x^

. (3-17)

Because the residuals have been mean-centered, as 
shown in (3-16), they have a mean of zero. Therefore, 
using the well-known formula for the variance of a 
random variable, X,

Var(X) = E(X )-(EX)2 , (3-18)

equation 3-17 is equal to

The theoretical variogram is always nonnegative; a 
small value of y indicates that the residuals at locations 
X} and x_2 tend to be similar and a large value of y indi­ 
cates that the residuals tend to be different. Although 
equation 3-19 is sometimes called a semi-variogram 
because of the multiplication by 1/2, it is referred 
to in this report as a variogram.

Knowing the theoretical variogram before 
taking measurements would be ideal, but the 
theoretical variogram is typically estimated using

sample data. To facilitate variogram estimation, it is 
usually assumed that, as with the covariance function, 
Y depends only on the lag,

(3-20)

or possibly, on the lag and angle between locations,

a = atan
( V2~ v \\
     -

\U2-UJ

(3-21)

(fig. 1). Equation 3-20 is called an isotropic 
variogram, and equation 3-21 is a directional 
variogram at angle a.

For the isotropic variogram, the sample, 
or empirical, variogram is obtained by averaging 
the square of all computed differences between 
residuals separated by a given lag:

(3-22)
h-Ah<hij <h

where

hy is the distance between */ and *,-.

For a given h, as more and more points that are 
separated by distance h±Ah are sampled and as Ah 
decreases, y(/z) approaches the theoretical variogram. 
More detail on variogram estimation is presented in 
section 5.0, including the directional case. In this 
present section, some general properties of isotropic 
variograms are described that are referred to. numerous 
times in section 5.0.

A plot of the sample variogram versus h 
often has a considerable degree of scatter (fig. 2), 
which is especially evident if the sample size,«, is 
small. However, the points can usually be fitted by a 
smooth curve that represents a theoretical variogram 
selected from a suite of possible choices. Usually, the
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theoretical variogram is monotonically increasing, 
signifying that the farther two measurements are 
apart, the more their residuals tend to differ, on 
average, from one another. Several properties common 
to many theoretical variograms are shown in figure 2. 
If the variogram either reaches or becomes asymptotic 
to a constant value as h increases, that value is called 
the sill (fig. 2). The distance (value of K) after which 
the variogram remains at or close to the sill is called 
the range. Measurements whose locations are farther 
apart than the range have the same, or even no, degree 
of association and are assumed to be uncorrelated. 
Often, a variogram has a discontinuity at the origin, 
signifying that even measurements obtained very 
close together are not identical. Such variation in the 
measurements at small scales is called the nugget 
effect. The size of the discontinuity is called the 
nugget. Although the nugget effect is sometimes 
confused with the measurement error, there is a 
subtle difference between these two concepts that 
is explained in section 3.3. A simple monotonic func­ 
tion is usually selected to approximate the variogram. 
Four such functions that are often used in practice are:

The exponential variogram (parameters: sill, s > 0;
nugget, 0 < g < s; range, r > 0),

the spherical variogram (parameters: sill, s > 0; 
nugget, 0 < g < s; range, r > 0),

h>r

sr

0, h=Q

(3-24)

the Gaussian variogram (parameters: sill, s > 0; 
nugget, 0 < g < s; range, r > 0),

(3-25)
0, h=0\

the linear variogram (parameters: nugget, g > 0; 
slope, b > 0),

/i=0
(3-26)

8 + (s - 5 - exp-3-, h > 0 * '
(3-23)

0,

i

Nugget

- Range

Lag (/i) +

NOTE: The x's denote hypothetical sample variogram 
points computed from observed data. The smooth 
curve represents a theoretical variogram fitted to the 
sample variogram points.

Figure 2. Variogram and features.

Although there are many other functions, these 
four describe the variogram models most commonly 
used (Journel and Huijbregts, 1978); the four models 
are shown in figure 3. The exponential, spherical, and 
Gaussian models are similar in that they all have a sill 
and a range. However, they have different shapes near 
zero lag (h = 0) that result in substantial differences 
in the prediction results using the three models as 
discussed in section 5.0. The linear model is quite 
different from the other three, in that it does not reach 
a sill, but increases linearly without bound. This fact 
has important implications on the prediction results 
using a linear variogram. Because the squared differ­ 
ences between residuals increase without bound as the 
lag increases, a regionalized random variable based on 
a linear variogram has ever increasing variability about 
its mean as the size of the sampling region increases. 
In applications involving the linear variogram, the 
variogram is usually truncated at a sill corresponding 
to the value of the variogram at maximum lag, hmax. 
This is illustrated in figure 3 where a linear variogram 
is shown with a sill and range.
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Figure 3. Theoretical variograms indicating A, exponential; B, spherical; C, Gaussian; and D, linear models.

Although the variogram is commonly used in 
a geostatistical analysis, an intuitive understanding 
of geostatistical techniques may be more easily 
obtained by using the covariance function, or equiva- 
lently, the spatial variance and the correlation function. 
When Z(x) has a stationary, isotropic covariance 
function (eq. 3-9), there is a one-to-one correspon­ 
dence between the variogram and the covariance 
function:

From equation 3-28, high values of y(h) (that is, close 
to s) signify low values of p(fc). In fact, p(/z) = 0 when­ 
ever y(/0 = j, indicating that measurements whose 
locations are farther apart than the range are uncorre- 
lated. As h decreases, a nugget in y(/i) is reflected in 
a correlation that is less than 1,

- £ as h -> 0. 
s

(3-29)

(3-27)

As long as C(h) approaches zero as h increases 
(a minor technicality that can always be assumed 
in practice), then, the variogram reaches a sill and 
the sill equals C(0) as indicated by equation 3-27. 
Therefore, using a regionalized random variable that 
is covariance stationary, the variogram and the spatial 
covariance function contain the same information. By 
factoring out C(0) = s from equation 3-27 and using 
equation 3-14, the relation between the spatial correla­ 
tion function and the variogram can be obtained,

P(/0 = l- Y(/0 (3-28)

Therefore, the larger g is in relation to s, the less 
correlated nearby observations are. The case when 
g = 5, called a pure nugget variogram, results in 
p(/i) = 0 for all h > 0. In that case, neighboring 
measurements are uncorrelated no matter how 
closely they are spaced.

Occasionally, y(/i) may not reach a finite sill, as 
in the linear variogram (eq. 3-26). In that case, it is not 
possible to define a correlation function as in (3-28). 
The corresponding regionalized random variable 
is said to be intrinsically stationary (Journal and 
Huijbregts, 1978), which is more general than 
covariance stationary. The theory behind intrinsically 
stationary variograms is not discussed in this report. 
As long as a pseudo-range, hmax, is defined, all of 
the computations described below can be used for the 
linear variogram model.
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3.3 Kriging

Given a regionalized random variable Z(x) 
that has a known theoretical variogram, how can the 
value of Z(x) be predicted at an arbitrary location, 
based on measurements taken at other locations? 
To answer that question, suppose that Z is measured 
at n specified locations: Z(x{), ..., Z(x^). For example, 
Z could represent hydraulic conductivity and the 
locations might correspond to n preexisting wells in 
an aquifer. Let a new location be given by XQ = (MO»VO) 
and denote the ith measurement location by xt = (uit v/). 
Suppose that, based on prior knowledge of the geology 
in the study area, there are no prevailing trends 
in hydraulic conductivity, so the mean of Z(x) is 
assumed to be constant over the entire study 
area:

Var[Z(*0)-Z(*0)]

= {E(2(xQ)-Z(xQ)] 2 }.
(3-33)

The smaller the prediction variance, the closer Z(*0 ) 
is (on average) to the true value Z(XQ). The geostatis- 
tical technique of kriging computes the best linear 
unbiased predictor of Z(*Q), which is the linear 
unbiased predictor (eqs. 3-31 and 3-32) that has 
the smallest possible prediction variance (eq. 3-33).

The best linear unbiased predictor depends 
on the mean of Z(x). For example, if Z(x) has a 
constant mean (eq. 3-30) and a pure nugget vario­ 
gram [y(/0 = s for all h > 0], the best linear unbiased 
predictor of Z(XQ) is the average of the measured 
data,

*)= H (constant). (3-30)
(3-34)

Suppose the value of Z(XQ) is to be predicted 
by using a linear predictor, 2(*o), which is defined as 
a weighted linear combination of the measured data,

(3-31)
= i

where

is the weight assigned to

To determine specific values for the weights, some 
criteria need to be specified for Z(*Q) to be a good 
predictor of Z(XQ). The first criterion is that Z(XQ) 
needs to be an unbiased predictor of Z(*Q), which 
is expressed as

£[Z(*0)-Z(*0)] = 0. (3-32)

An unbiased predictor neither consistently over- 
predicts nor underpredicts Z(XQ) because the statistical 
expectation of the prediction errors is zero. The second 
criterion for a good predictor is that it have small 
prediction variance as defined by

= i

Because the variogram is the same for all h > 0 and 
there is no trend in the data, there is no reason to 
favor any of the measurements over any of the other 
measurements. Therefore, the weights are all the same. 
Ordinary kriging, which is discussed in section 3.3.1, 
deals with the constant-mean model (the assumption in 
eq. 3-30) in which the variogram is not a pure nugget 
variogram. The weights of the best linear unbiased 
predictor reflects the information in the variogram and 
results in an improved predictor over the sample mean. 
In section 3.3.2, universal kriging, which is the exten­ 
sion of ordinary kriging to a nonconstant mean, is 
discussed. Universal kriging is a very powerful tool 
that can be used to combine regression models and 
spatial prediction into one unifying theory. Other, more 
specialized types of kriging that are discussed in this 
section are block kriging (section 3.3.3), co-kriging 
(section 3.4), and indicator kriging (section 3.5.2).

There also is a prediction technique in geostatis- 
tics known as simple kriging, which uses the best 
linear unbiased prediction in the case when the 
mean of Z(x) is fixed and known. Simple kriging 
is not discussed in this report because, in most 
applications, the mean is not known and has to be 
estimated.
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3.3.1 Ordinary Kriging

Let Z(x) be a regionalized random variable with 
a constant mean (eq. 3-30) and an isotropic variogram 
(eq. 3-20). Also, assume that the variogram reaches a 
sill so the variance of Z(x) is C(0) = s, and the correla­ 
tion function is given by equation 3-28. Although 
the prediction equations can be expressed in terms of 
a variogram, they are defined in this report in terms of 
the sill (variance) and the correlation function.

Consider linear unbiased predictors from 
equation 3-31 with the condition in equation 3-32 
holding. The unbiased condition is equivalent to

/ = i

for any (i, which holds if, and only if,

i = 1

Therefore, all linear unbiased predictors need to have 
weights that sum to 1. There are many sets of weights 
that satisfy this condition, including the set in which 
all the weights equal 1/n, as in the sample mean 
(eq. 3-34). However, the unique set of weights that 
minimize the prediction variance (eq. 3-33) can be 
shown to satisfy the following set of n + 1 ordinary 
kriging equations (Isaaks and Srivastava, 1989, 
chap. 12):

V Wj fly + - = p /0, i = 1, 2,..., n, (3-35a)
»j

7=1

Furthermore, the resulting ordinary kriging 
variance is

(3-36)

j=i

The system of equations 3-35a and 3-35b can 
easily be solved for the wfs and A, after which the 
kriging variance can be obtained from equation 3-36. 
The ordinary kriging variance changes depending on 
the prediction location, XQ, even though the variance of 
Z(*o) itself (eq. 3-6) is constant for all XQ.

3.3.1.1 Example 3.3.1.1

Let the mean of Z(x) satisfy equation 3-30, 
and suppose that the residual Z*(x) (eq. 3-16) has an 
isotropic exponential variogram (eq. 3-23). Consider 
predicting Z(XQ) based on n = 2 measurements, Z(x{) 
and Z(xz), where the three locations (XQ, x^, and £2) are 
distinct. Using equations 3-23 and 3-28, the correla­ 
tion function is

(3-37)

Suppose that

= p,Q<p<l, 
s

(3-38)

where

I"J =
/= 1

(3-35b)

py = p(/iy) is the correlation between measurements,

/ and7, h^ is the distance between locations / and 
7, and

A, is a coefficient resulting from the con­ 
strained optimization.

where

p is a fixed proportion.

The quantity p is sometimes referred to as a relative 
nugget.

The ordinary kriging equations 3-35a and 
3-35b are given by

X   - = Pio (3-39a)

16 Overview and Technical and Practical Aspects for Use of Geostatistics in Hazardous-, Toxic-, 
and Radioactive-Waste-Site Investigations



7 = P20 (3-39b)

(3-39c)

These three equations have three unknowns vvj, W2, 
and A,; the solution is

lPio-P20

= 1 !PlQ-P20

/2 2 2 l-p 12

(3-40a)

(3-40b)

and

(3-41)

The resulting kriging variance is

^20

(3-42)

Although there are only three sample locations in this 
example (two actual and one potential), the example 
indicates several properties of best linear unbiased 
prediction that generally hold. For example,

Effect of sill: The kriging weights depend on 
s only through the relative nugget, p. However, the 
kriging variance is directly proportional to s. The 
sill is called a scaling parameter because scaling each 
measurement by a constant, c, has the effect of scaling 
s by c . When the relative nugget is allowed to vary so 
that s and g can change independently, the effect of s is 
somewhat more complicated.

Effect of nugget: Increasing p has the effect 
of drawing each of the weights closer to 1/2. Asp 
approaches 1, both weights equal 1/2. The larger g 
is compared to s, the more small-scale variability 
there is in the data, and the less important the correla­ 
tion between neighboring locations becomes. The 
increased small-scale variability also causes an 
increase in the kriging variance.

Effect of correlations: If Z(XQ) is more highly 
correlated with Z(x{) than with Z(^2), then wj is 
larger than ^2, indicating that the measurement at 
the first location has more predictive information 
than the measurement at the second location. Also, 
correlation in the data always decreases the kriging 
variance compared to the variance using uncorrelated 
data.

Effect of data clumping: If ZQcj) and Z(^2) 
are highly correlated, as indicated by pj 2 being close 
to 1, then the two measurements contain much of the 
same information. Two situations then can occur: 
PlO = P20» where the weights are both equal, or 
PlO > P20 [PlO < P2ol' where wj is much larger [or 
smaller] than w2. In either case, the kriging variance 
increases to reflect the same information in the two 
measurements. The automatic adjustment of the 
kriging weights and kriging variance to account for 
data clumping is an important property of the kriging 
predictor.

3.3.1.2 Example 3.3.1.2 
(Nugget Effect Versus Measurement Error)

In example 3.3.1.1, all three locations XQ, *i> 
and x_2, were assumed to be distinct. When a prediction 
location coincides with a measurement location, an 
important distinction needs to be made between a true 
nugget effect and a measurement error. Suppose that, 
in example 3.3.1.1, XQ and x_i are the same. If there is 
only small-scale variability and no measurement error, 
then repeated measurements at the same location 
would be identical, that is, pj 0 = 1. In this situation, 
the kriging equations result in vvj = 1, in w2 = 0, 
in A, = 0, and in a kriging variance of zero. That is, 
Z(x_i) is a perfect predictor of Z(XQ). This property, 
called exact interpolation, is a property of kriging 
when the data are assumed to contain no measurement 
errors. However, suppose that the nugget is interpreted 
as a measurement error rather than a small-scale 
variability. Repeated measurements at the same loca­ 
tion would not be perfectly correlated, but rather, 
PlO = l gls. Substituting this correlation into the 
kriging equations and solving the equations results 
in a predictor that does not exactly interpolate the 
data, but smooths the measured data to account for 
the measurement error. In this report, prediction 
locations are assumed not to coincide with measure­ 
ment locations, in which case no distinction needs 
to be made between the nugget and the measurement 
error.
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3.3.2 Universal Kriging

Universal kriging is an extension of ordinary 
kriging and can be important in HTRW-site investiga­ 
tions because environmental data often contain drift. 
Universal kriging addresses the nonconstant mean 
\i(x). Generally, the mean is assumed to have a func­ 
tional dependence on spatial location of the form

and a residual correlation function as in equation 3-28, 
the best linear unbiased predictor can be obtained from 
the following n + p equations, called the universal 
kriging equations (Journel and Huijbregts, 1978):

*, ) = P/o

(3-43) (3-46a)
7 =

where the^- (w,v)'s are known deterministic functions 
of jc = (u,v) (that is, these functions serve as indepen­ 
dent variables) and the P-'S are regression coeffi­ 
cients to be estimated from the data. Suppose Z(x) is 
hydraulic head in an aquifer. If the flow is in a steady 
state, the mean of Z(x) could be assumed, in a given 
study, to have a unidirectional ground-water gradient 
that is expressed by

\L(U, v) = Pj + P 2 « . (3-44) 

In this example, there are two independent variables,

/i(",v) = 1

and

/2 (w, v) = M,

(3-45)

and two regression coefficients (Pi and P2). The mean 
can include other independent variables besides the 
simple algebraic functions of u and v. For example, if 
the aquifer is not of uniform thickness, an independent 
variable that involves the aquifer thickness at location 
(w,v) could be included.

The form of the mean in equation 3-43 also is 
generally used in standard linear-regression analysis. 
In regression, ordinary least squares is used to solve 
for the coefficients; when this is done, the residuals 
are assumed to be independent and identically distrib­ 
uted. Universal kriging is an extension of ordinary 
least-squares regression that allows for spatially corre­ 
lated residuals. Assuming that Z(x) is a regionalized 
random variable with a mean as in equation 3-43

7 = 1

£=1,2,...,/?

where, in contrast to the ordinary kriging equations 
(eqs. 3-35a and 3-35b), there are now p coefficients 
A,],.... Ap resulting from the unbiased condition on 
the predictor. The first term in the mean (eq. 3-43) is 
usually a constant, or an intercept, for which fi(x) = 1. 
Therefore, the universal kriging model includes ordi­ 
nary kriging as a special case. The universal kriging 
variance is given by

= s l ~
i = 1 (3-47)

Equations 3-46a and 3-46b and equation 3-47 can be 
easily solved to obtain universal kriging predictors and 
kriging variances for any location. The estimated trend 
surface does not need to be computed to obtain the 
universal kriging predictor. If a particular application 
needs an estimate of the trend surface, then general­ 
ized least-squares regression can be used to estimate 
the coefficients (p^-'s) in the regression equation.

3.3.3 Block Kriging

In the previous sections, the problem of 
predicting the value of a regionalized random vari­ 
able at a specified location in the region for which
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the variable is defined has been discussed. Implicit 
in this discussion is the assumption that the support 
of the variable being predicted is defined in the same 
way as the variables that make up the measurements. 
However, there may be applications where estimating 
the average value of Z for an estimation block of much 
larger area than is represented by an individual sample 
is necessary. For example, an estimate of the average 
concentration of a contaminant in an entire aquifer that 
is based on point measurements at various locations 
might be needed. In other applications, an estimate of 
the average concentration of soil contaminant, in daily 
excavation volumes that are much larger than the 
volume of an individual sample, may be needed. 
Let ZB be the average value of Z(x) for a particular 
block B,

(3-48)

where *o/» i = !,.  ,«, denotes m prediction locations 
in block B. The object is to predict this average 
rather than the regionalized random variable at a 
single location. In many applications, the locations *o/ 
might correspond to nodes of a regular grid or finite- 
element nodes in a ground-water model. The results 
of the block kriging are dependent on m and on the 
prediction locations. Selecting a large number of loca­ 
tions in block B, where each location has approxi­ 
mately the same representative area, probably is the 
best approach to block kriging (Isaaks and Srivastava, 
1989, chap. 13).

The objective of block kriging is to obtain the 
best linear unbiased predictor of Z# and an estimate of 
the block kriging variance based on the measurements. 
The model for Z(x) can be the constant-mean model 
(eq. 3-30) assumed for ordinary kriging or the more 
general linear-regression model (eq. 3-43) assumed 
for universal kriging. For either, the predicted value 
of ZB coincides with the average of the predicted 
values of the individual measurements in the block; 
that is,

(3-49)
i = 1

In this model, the individual predicted values are 
obtained from either the ordinary or the universal 
kriging equations. However, computation of the block 
kriging variance is not as simple as computation of the 
point kriging variance because the individual kriging 
estimates are not independent of one another. There 
are simple modifications to the kriging equations, 
discussed in sections 3.3.1 and 3.3.2, that can be 
used to directly compute the kriging estimate of ZB 
and its kriging variance (Isaaks and Srivastava, 1989, 
chap. 13). The equations are not presented in this 
report. The computer packages described in the 
next section can be used to compute block kriging 
estimates. In general, kriged values of block averages 
are less variable than kriged values at single locations. 
Consequently, the blocked kriging variance tends to 
be smaller than the kriging variance at a single 
location.

3.4 Co-Kriging

Kriging as discussed so far provides a way of 
predicting values of a regionalized variable ZQt) at a 
location XQ based on measurements of the same vari­ 
able at locations *i, *2»    » %n- ^n some situations, 
however, measurements could be available not only 
of ZQt), but also of one or more other variables that 
can be used to improve predictions of Z(XQ). The vari­ 
able Z(x) is called the primary variable because it is 
the one to be predicted, and the other variables are 
called secondary variables. Co-kriging is a technique 
that uses the information contained in secondary vari­ 
ables to predict a primary variable. For example, 
suppose that Z(x) is a regionalized variable repre­ 
senting the hexavalent chromium concentration, a 
relatively difficult determination, and suppose that 
the hexavalent chromium concentration needs to be 
predicted at a location XQ based on measurements of 
hexavalent chromium at other locations. However, 
there also are measurements of a second, relatively 
easily determined contaminant, such as lead, that, for 
the purposes of this example, tend to be correlated 
with hexavalent chromium concentration, and these 
data are to be used as well. Denote the second vari­ 
able, lead, by a regionalized variable W(x), and assume 
that measurements have been made on W at m loca­ 
tions *'i, *'2, ..-,x m . The co-kriging predictor of Z(XQ) 
then is
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This extension of the kriging predictor in 
equation 3-31 is straightforward. Analogous to
krig
so tl iat the resulting predictor is the best linear un­ 
biased predictor. Also, as with kriging, co-kriging 
uses modeling of the variogram for Z, but co-kriging 
presents an additional necessity of modeling the vario­ 
gram for W and the cross variogram for Z and W.
The 
thes 
variable may be included in the co-kriging predictor,

theory has been developed for co-kriging in the 
snce of drift (universal co-kriging) and block

of o

astc

Alsc

i = i
m

(3-50)

j=

ng, co-kriging produces the weights w{ and

optimal weights then are expressed in terms of all 
variogram properties. More than one secondary

and
pres
co-kriging. Details are not included in this report,
but ] saaks and Srivastava (1989) and Deutsch and
Journel (1992) have more discussion and citations

her references.
One situation for which co-kriging might be 

useful is when the primary variable is undersampled, 
so any additional information, such as that given 
by secondary variables, would be helpful. However, 
although co-kriging can be a useful tool, joint 
moc eling of several variables tends to be demanding

data and computational requirements. Thus,
undersampling of the primary variable may present 
problems for co-kriging and for one-variable kriging.

, unless the primary variable of interest is
highly correlated with the secondary variable(s), 
the weights assigned to the secondary variable(s) 
are often small, and the effort needed to include the 
additional variable(s) may not be worthwhile. For 
theso reasons, co-kriging is not used extensively in 
practice.

Although co-kriging is similar to universal 
kriging in that both techniques use extra variables to 
predict Z(x), there is an important distinction between 
the two techniques. In universal kriging, the indepen­ 
dent variables in equation 3-43 need to be known with 
certainty at the prediction location XQ. For example, 
aquifer thickness might be an independent variable

in predicting aquifer head if the thickness can easily 
be determined at any location. However, aquifer 
thickness may need to be considered a secondary vari­ 
able in a co-kriging procedure if the thickness is only 
known at a few selected locations in the aquifer.

3.5 Using Kriging to Assess Risk

The kriging predictor of Z(XQ) has certain desir­ 
able properties based on how close it is to the actual 
value of Z(*Q); it is unbiased and has the smallest vari­ 
ance among all linear predictors. However, when 
possible, the relation between the predicted and 
observed values could be specified further, and ideally, 
probability statements could be made. For example, 
if Z(XQ) is the concentration of a contaminant, a 
95-percent certainty that the true concentration is 
within 0.05 microgram per liter of the predicted 
concentration might be desired. In other situations, 
the probability that the actual concentration exceeds a 
given target concentration might need to be estimated. 
Knowledge of the entire distribution function of Z(x), 
as opposed to knowledge of only the mean and vario­ 
gram of Z(x), can be used for risk-qualified inferences 
in situations when extremes might be of more interest 
than averages.

A discussion of the concept of a conditional 
probability-distribution function of the regionalized 
variable Z(x) is appropriate at this point. The concept 
also is applicable in section 8.0 when conditional 
simulation is discussed. The conditional probability- 
distribution function is defined much like the 
probability-distribution function in section 3.1, except 
the probability that Z(x) < c is computed conditional 
on, or given, information at other spatial locations. 
Geostatistics is used to make predictions at a location
*0 using information at measurement locations
*i» *2»    ' =£/i' therefore, in conditional distributions, 
the focus is on P[Z(XQ) < c\ Z(x{), Z(^2),.-, Z(xn)]. 
The vertical bar denotes the conditioning and is read 
"given." The conditional probability distribution needs 
to be determined to make probability statements 
about the regionalized variable at location XQ. Also, 
conditional mean and conditional variance can be 
defined in the same way that mean and variance for 
distribution functions were defined in section 3.1.
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Section 3.5.1 contains methods for using kriging 
output to obtain prediction intervals or quantiles when 
the regionalized random variable is either normally 
distributed or can be transformed to a near-normal 
distribution. Section 3.5.2 discusses indicator kriging, 
which is a nonparametric technique for obtaining 
quantiles when data cannot be adequately transformed 
to a normal distribution.

3.5.1 Normal Distributions and Transformations

For prediction at a location XQ, a kriging anal­ 
ysis produces the predictor Z(XQ) and the associated 
kriging variance c^(*o)- If more informative proba­ 
bility assessments are to be made, the ideal situation 
is when Z(x) is assumed to be a Gaussian, or normal, 
process, which means that [Z(*i),..., Z(xn)] has a joint 
normal probability distribution for any set of n loca­ 
tions and any value of n. Then the conditional proba­ 
bility distribution of Z(XQ), given the n measurements, 
is a normal distribution that has a conditional mean 
equal to the kriging predictor Z(XQ) and conditional 
variance equal to the kriging variance G%(XQ). 
This normal distribution can be used to obtain a 
prediction interval for Z(^Q) (conditional on the 
measured data). For example, from a table of the 
normal distribution, a value of 1 .96 corresponding 
to a 0.95 (two-sided) probability can be obtained. 
Then the assertion that there is a 95-percent chance 
that Z(XQ) is in the 95-percent prediction interval 
[Z(XQ) - \9.6aK(xQ), Z(XQ) + \.96aK (xQ)] can be 
made. Knowing this interval is much more useful than 
simply knowing the kriging predictor and variance.

To illustrate quantile estimation, suppose 
that contaminant concentrations are being studied, 
and a concentration that has only a 1 -percent 
chance of being exceeded at location *o needs to 
be determined. The appropriate (one-sided) value 
from a normal table is 2.33, so the desired estimate

Even if Z(x) is not Gaussian, a transformation, 
Y(x) = T[Z(x)], can often be found so that Y(x) is 
approximately Gaussian. When a transformation is 
made, the kriging analysis is performed using the 
transformed data Y(x), and the inverse transformation 
may be applied to obtain prediction intervals for the 
original data. For example, the most common transfor­ 
mation is the (natural) logarithmic transformation,

in which Y(x) = \n[Z(x)]. A 95-percent prediction 
interval for Z(x) then is (exp[T(*o) - l^a^feo)], 
espfTfeo) + 1-96 a^feo)]}. As long as the transforma­ 
tion is a one-to-one function, such as a logarithmic 
transform, prediction intervals for the original data can 
be obtained by simply back-transforming prediction 
intervals for the transformed data.

Although prediction intervals and probabili­ 
ties can be easily obtained using simple back- 
transformation, obtaining a predictor of the untrans- 
formed data that is unbiased and optimal in some 
sense is more difficult. For example, using a loga­ 
rithmic transformation, a kriging analysis using the 
transformed data yields a predictor Y(XQ), which is 
the best linear unbiased predictor of Y(XQ). However, 
the back-transformed value Z(XQ) = exp[T(*o)] 
does not possess the same optimality properties as a 
predictor of Z(XQ). The technique known as log-normal 
kriging, and more generally as trans-normal kriging, 
has been developed to obtain predictors when transfor­ 
mations are made (Journal and Huijbregts, 1978), but 
because of the complexity involved, the technique is 
not usually used by practitioners. For example, if a 
predicted value corresponding to Zfeo) needs to be 
obtained for contour plotting, the kriging predictions 
Y(XQ) may be back-transformed and plotted, as long 
as the investigator realizes that such values do not have 
the usual kriging optimality properties.

3.5.2 Indicator Kriging

There may be situations when a transforma­ 
tion that makes Z(x) approximately normal cannot 
be easily determined. In such situations, indicator 
kriging can be used to infer the probability distribu­ 
tion of Z(x). Because no distributional assumptions 
are made, this technique is known as a nonparametric 
statistical technique. An example of indicator kriging 
is included in section 6.0, and an article by Journel 
(1988) is a good reference for additional information 
about indicator kriging.

To perform indicator kriging, a special trans­ 
formation, known as an indicator transformation, is 
applied to Z(x):

I(x, c) =
'1, Z(x)<c 

0, Z(x)>c
(3-51)
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If, as in the usual kriging scenario, the data set at hand 
consists of measurements of the regionalized variable 
Z(x) at n locations, c needs to be fixed first, and then 
the indicator transformation is applied by replacing 
values that are less than or equal to c with 1 and values 
that are greater than c with 0. The variogram and 
kriging analysis then is performed using these O's 
and 1 's rather than the raw data.

Kriging predictors using the indicator data 
are equal to their measured values of 0 or 1 at the 
measurement locations *,-, i- !,...,«. However, at 
locations different from the measurement locations, 
predictions may be between 0 and 1. In interpreting 
these predictions, the power of indicator kriging 
becomes apparent. A predicted value at £Q is an 
estimate of the conditional probability distribution 
P[Z(*o) < c\ Z(*!), Z(*2),..., Z(xn)]. This analysis may 
be performed for a range of values of c\ therefore, 
the entire distribution function can be estimated. This 
estimate of the distribution function can be used to 
obtain prediction intervals or estimates of quantiles. 
For example, to estimate the value that has a 1-percent 
chance of being exceeded at location XQ, the value of c 
for which the kriged indicator prediction is 0.99 at that 
location is determined.

One advantage of indicator kriging is that the 
indicator variogram is robust with respect to extreme 
outliers in the data because no matter how large (or 
small) Z(x) is, the indicator variable is either 0 or 1. 
Indicator variables also may be used in block kriging. 
For example, a spatial average of I(x,c) over a block B 
equals the fraction of block B for which Z(x) is less 
than c. Another advantage of indicator kriging is that 
it can be used when some data are censored.

Despite the relative ease of implementation, 
there are several drawbacks to indicator kriging, and 
this technique might be used only when other tech­ 
niques, such as normality transformations, produce 
unacceptable results. For example, the kriged values 
of I(x,c) may be less than 0 or larger than 1. Also, 
the kriged prediction for I(x,ci) may be larger than 
the kriged prediction for I(x,C2) even if c\ < c^, which 
is not compatible with a valid probability distribution. 
There are several more advanced techniques for 
solving these problems (Isaaks and Srivastava, 1989, 
chap. 18); however, those techniques are beyond the 
scope of this report.

4.0 GEOSTATISTICAL RESOURCES 
AND TOOLS

Since the mid-1970's, there have been texts 
and articles published that are either totally dedicated 
to geostatistical methods or discuss geostatistics 
in detail. As well as being separately published, 
numerous computer programs and software packages 
on geostatistics and kriging are included in these texts 
and articles. Although only a few of these resources 
are briefly described in this report, their references can 
provide lists of other geostatistical topics or software 
not specifically covered in the resources.

4.1 Texts on Geostatistics

The geostatistical texts presented in this section 
can be classified into two broad categories: instruc­ 
tional texts or reference texts. For one who is delving 
into geostatistics for the first time, dark's (1979) book 
can be a starting point. Simple explanations of the 
basic kriging techniques are applied to an example 
data set. A more detailed treatment of the kriging tech­ 
niques is described by Isaaks and Srivastava (1989). 
This text book presents discussions of many of the 
background statistical tools and concepts needed in 
geostatistical applications, including histograms and 
distributions (univariate and bivariate), sampling, 
correlation, and spatial continuity. The text also 
discusses how to treat the subtleties of kriging using 
three example data sets. As well as being instructional, 
the book also can be used as a reference.

Texts by Cressie (1991) and Journel and 
Huijbregts (1978) describe the tools of geostatistics, 
but also include a comprehensive theoretical back­ 
ground on the techniques. Cressie's (1991) text is a 
treatment of spatial processes in general and reviews 
a wide range of statistical techniques in the analysis 
and stochastic modeling of spatial data. There is a 
four-chapter section on geostatistics, with a complete 
discussion of variogram estimation, kriging (including 
universal kriging), intrinsic random functions, and 
comparisons of kriging to other spatial prediction 
techniques. The text is written from a statistician's 
point of view and is, in places, written at a fairly 
high level mathematically. Nevertheless, it contains 
numerous examples and illustrations using real- 
world data. Journel and Huijbregts (1978) maintained 
a mining-geological perspective. Two other texts
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written by statisticians that present general treatments 
of spatial processes, but that lack detailed discussions 
of kriging, are by Cliff and Ord (1981) and by Ripley 
(1981).

David's (1977) text was the first extensive 
discussion of the practice of geostatistics and kriging 
in mining applications, and the discussion is presented 
from a practitioner's viewpoint. The text references 
many specific mining applications and results for 
geostatistics. A broad statistics text by Davis (1973) 
with a bent toward geological applications, serves 
as a reference for standard statistical procedures 
needed in geological applications of geostatistics. 
A book by Bras and Rodriguez-Iturbe (1985) that 
discusses a range of techniques for stochastic 
modeling in hydrology includes a chapter on 
applications of kriging. There is a fairly complete 
mathematical development of kriging with details 
of an application to predict mean areal precipitation. 
In an article prepared for the U.S. Environmental 
Protection Agency, Journel (1993) discussed geostatis­ 
tics as it relates to environmental science. Finally, Olea 
(1991) presented a useful glossary of geostatistical 
terms.

4.2 Journals

The journal Mathematical Geology by the 
International Association for Mathematical Geologists 
reports new developments in the theory and applica­ 
tion of kriging. Although many of the articles present 
new applications of kriging tools, many articles 
also are dedicated to the derivation of statistical 
properties of the variogram, to kriging estimation, 
and to cross-validation results. Journals such as 
Water Resources Research, published by the 
American Geophysical Union, and Groundwater, 
published by the Association of Ground Water 
Scientists and Engineers, contain articles describing 
special applications of kriging techniques in the envi­ 
ronmental arena. Water Resources Research includes 
many theoretical articles. Other journals that may 
contain information addressing geostatistics are the 
Journal of Environmental Engineering, published by 
the American Society of Civil Engineers; Stochastic 
Hydrology and Hydraulics, published by Springer 
International; and the North American Council on 
Geostatistics, published by the Colorado School of 
Mines.

4.3 Software

The geostatistics software described in this 
section is limited to a few readily available public- 
domain packages that are executable at least on 
the DOS and sometimes on the UNIX platforms. 
There are several commercial packages that are 
being marketed, but these packages are not reviewed 
in this report. Each of the software packages described 
in this report are listed in table 1, which may serve 
as a reference guide to other software packages.

One of the earliest interactive kriging software 
packages was developed by Grundy and Miesch 
(1987). Overall, this general statistics package, known 
as STATPAC, contains a series of programs that can 
handle two-dimensional kriging, including universal 
kriging. The package has capabilities for univariate 
statistics, transformations, variogram analysis, and 
cross validation (table 1). The graphics in the package 
are limited to simple line-printer plots of the sample 
variogram points and data maps. The menu-driven 
package includes a tutorial using all of the kriging 
routines. The package is distributed with not all, but 
most source codes, and, therefore, can be modified 
by the user if desired. All two-dimensional kriging 
routines can be executed from the command line, 
which provides users with the opportunity for batch 
processing.

The geostatistical environmental-assessment 
software, known as GEO-EAS (Englund and Sparks, 
1991), also is an interactive, menu-driven kriging 
software package for performing two-dimensional 
kriging. It has no direct provisions for universal 
kriging (table 1). GEO-EAS does have an advantage 
over STATPAC through its enhanced graphics capabil­ 
ities, which are useful in the interactive fitting of theo­ 
retical variograms to sample variogram points. In 
addition, in the computation of the sample variogram 
points, GEO-EAS allows for variable bin sizes, the 
use of which are further discussed in section 5.0.

STATPAC and GEO-EAS were originally devel­ 
oped for the personal computer. Since then, versions 
of GEO-EAS have been developed for some types of 
work stations. The kriging routines in STATPAC have 
not been adapted to workstations.

A third software package, the geostatistical 
software library known as GSLIB (Deutsch and 
Journel, 1992), is a suite of programs developed over 
the years at Stanford University, Stanford, California.
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Table 1 . Geostatistical software characteristics

[Note: STATPAC, statistical software package developed by Grundy and Miesch (1987); GEO-EAS geostatistical environmental-assessment software 
developed by Englund and Sparks (1991); GSLIB geostatistical software library developed by Deutsch and Journel (1992); CMS, ground-water modeling 
system developed for the U.S. Department of Defense]

Characteristic

Operating system

Menu driven

Batch processing

User modifications

Data-set constraints

ASCII output

Univariate statistics

Additional exploratory capabilities

Graphical support for analysis

Transformations

B ack- transformations

Variogram construction

Variogram analysis

Variogram graphics

Cross-validation operations

Ordinary kriging

Universal kriging

Block kriging

Indicator kriging

Conditional simulation

Three-dimensional kriging

Mapping

Contouring

Gray-scale maps

Line printer

High-resolution screen

High-resolution printer

Postscript

STATPAC

DOS

Yes

Yes

Yes, source
code provided

Yes, modifications
possible via 
source code

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Perhaps with 
batch processing

Perhaps with 
batch processing

Yes

Yes

Yes

Yes

No

No

No

GEO-EAS

DOS/UNIX

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

Yes

Yes

Yes

No

Yes

Yes

No

GSLIB

Independent (requires 
FORTRAN compiler)

No

Yes

Yes, source
code provided

Yes, modifications
possible via 
source code

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes, via
postscript

Yes

Yes

GMS2.0

WINDOWS 95 
UNIX

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
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It is presented as a collection of routines that are 
machine independent (table 1) and are intended to be 
used as a modular concept. The package is distributed 
as a suite of FORTRAN source codes that need to be 
compiled. To use GSLIB effectively, a relatively high 
level of familiarity with geostatistics is required. Like 
the other two software packages, GSLIB handles vari- 
ogram analysis and kriging techniques (table 1). Two 
of its primary advantages over the other two packages 
are its simulation techniques and its ability to analyze 
three-dimensional data sets. Such techniques are 
useful especially in estimating potential extreme 
outcomes in a geostatistical analysis.

The U.S. Department of Defense Groundwater 
Modeling System (GMS) is a fourth software package 
that has kriging capabilities. GMS is a windows-based 
integrated modeling environment for site characteriza­ 
tion, ground-water flow and transport modeling, and 
visualization of results. The GSLIB software has 
been implemented in GMS to facilitate two- and 
three-dimensional kriging and interactive variogram 
modeling. GMS also provides comprehensive visual­ 
ization techniques and other interpolation techniques 
that can be used as alternatives to kriging. The GMS 
system was developed for the U.S. Department 
of Defense by the Brigham Young University 
Engineering Computer Graphics Laboratory. GMS 
may be obtained from the U.S. Army Groundwater 
Modeling Technical Support Center, Waterways 
Experiment Station, Vicksburg, MS 39180.

In geostatistical software and literature, there 
can be differences in jargon or notation. These differ­ 
ences may cause some initial confusion if users or 
readers do not familiarize themselves with the jargon 
or notation. For example, some authors may use 
the term "semi-variogram" rather than "variogram"; 
others may express random variables as other than Z 
(which has been used in this report); and different soft­ 
ware often has different references for directional 
angles when discussing anisotropy.

5.0 PRACTICAL ASPECTS OF 
VARIOGRAM CONSTRUCTION 
AND INTERPRETATION

Section 3.0 presented the mathematical 
foundation for geostatistics and the kriging technique. 
One theme that pervades the technique is the impor­ 
tance of the theoretical variogram. The theoretical 
variogram, or what is often referred to simply as

the variogram, is a mathematical function or model 
that is fitted to sample variogram points obtained 
from data. Permissible models, which include those 
models discussed in section 3.0, belong to a family 
of smooth curves having particular mathematical 
properties and are each specified by a set of 
parameters. Section 5.0 describes a sequence of 
stages for estimating and investigating sample 
variogram points and a calibration procedure for 
specifying the parameters of the variogram model 
eventually to be fitted to the sample points. Although 
the calibration procedure is largely an objective way 
for evaluating theoretical variograms, the process of 
obtaining sample variogram points and finalizing a 
theoretical variogram remains an art as much as a 
science. An understanding of the material presented 
in section 3.0 and professional judgment achieved 
through experience in geostatistical studies are impor­ 
tant in effectively using the guidelines presented in 
section 5.0.

An accurate estimate of a variogram from a 
kriging perspective is needed because the correlation 
matrix used to obtain the kriging weights is developed 
from the variogram values. Even more directly, the 
variogram affects the computation of the kriging vari­ 
ance (eqs. 3-36 and 3-47) through the product of the 
kriging weights and the correlation values. An accu­ 
rate variogram also can be used outside the strict 
context of kriging. For example, in augmenting a 
spatial network with new data-collection sites, the 
range parameter of the variogram could be used as 
the minimum distance of separation between the new 
sites and between the new and the existing sites to 
maximize overall additional regional information. In 
another nonkriging-specific application, the variogram 
is used in dispersion variance computations in which 
the variance of areal or block values is estimated 
from the variance of point-data values (Isaaks and 
Srivastava, 1989, p. 480).

The stages of variogram construction are 
described based on an example data set of ground- 
water elevations measured near Saratoga, Wyoming 
(Lenfest, 1986). The data set is summarized in table 2 
and the relative locations of the data are shown in 
figure 4.

The sequence of steps in computing sample 
variogram points depends on the stationarity properties 
of the regional variable represented by the data. If 
the mean of the regional variable is the same for 
all locations, then the mean is said to be spatially 
stationary; if the mean changes with location, then
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Table 2. Univariate statistics for example data sets

[Note: Base unit for Saratoga, water level A and B and bedrock A and B is meters; base unit for water quality A is log concentration, concentration in 
micrograms per liter]

Example Number of T f . M '" imum M**imum JJean "^diari det^n fewness 
identifier measurements Transformation (base (base (base (base (dimension- 

units) units) units) units) n-*&\ less)

Saratoga 44 Drift 614 687 646 641 17.3 0.45
Water level A 83 Drift 7.80 20.0 12.9 11.7 3.09 1.03
Water level B 74 Drift 7.80 20.0 13.1 11.8 3.23 0.87
Bedrock A 107 None 6.91 24.5 13.5 13.1 3.28 0.89
BedrockB 90 None 7.75 21.1 13.3 13.2 2.62 0.26
Water quality A 66 Natural log 2.08 8.01 5.19 5.59 1.75 -0.42
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it is spatially nonstationary. If the data have a stationary
spatial mean, the discussions in sections 5.2 and 5.6,
which address nonstationarity and additional trend
considerations, can be skipped. If the spatial
mean is not stationary, as in this example data set,
then sections 5.2 and 5.6 become important, and the
sequence of stages for obtaining a variogram becomes
an iterative procedure. All variogram and kriging
computations for the Saratoga ground-water-level
example were performed using the interactive kriging
software STATPAC described by Grundy and Miesch
(1987).

5.1 General Computation of an
Empirical Variogram

NORTH

As described in section 3.2, the variogram,
j(h), characterizes the spatial continuity of a regional
variable for pairs of locations as a function of distance
or lag, h, between the locations. This variogram is
sometimes called the theoretical variogram because
it is assigned a continuous functional form that
expresses the spatial correlation for any lag in the
region of analysis. The function is estimated by
fitting one of the equations in section 3.2 to empirical
or sample variogram points, y(h), using data whose

° MAP DISTANCE, IN KILOMETERS locations contribute only a finite number of lags.
Although j(h) characterizes the spatial correlation of

EXPLANATION the data, it is computed from residuals of the data from

1 1 1 1
i the spatial mean. Therefore, without prior knowledge

614 636 65g 679 of nonstationarity in the underlying spatial process,
the first step in computing the sample variogram is

INDEX TO PLOTTED VALUES, IN METERS ^ V . . . .. , r
to identify existing nonstationarity indicated lor the

Figure 4. Measured water levels from Saratoga data. spatial mean.
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The approximation to equation 3-19 begins 
by computing squared differences, £>y , from the 
data values z(x{), z(x,2),...z(xn) collected at locations 
*1, x2 ... XH

(5-1)

If the spatial mean is stationary, then the squared 
differences of the data are equal to the squared differ­ 
ences of the residuals, and sample variogram computa­ 
tions can be continued using the data themselves. If 
the spatial mean is strongly nonstationary, the plot of 
equation 5-1 versus the distance between associated 
points may indicate a trend or drift that needs to be 
removed before further variogram computations can 
be made. Drift needs to be considered in HTRW 
studies such as determining contaminant concentra­ 
tions areally dispersed from localized sources or 
determining ground-water elevations that follow a

local or regional gradient. In such studies, sample 
variogram computations need to be made using resid­ 
uals obtained by subtracting the estimated drift value 
at each location from the value of the datum at the 
location.

The differencing of the data in equation 5-1 
is done without considering the relative direction 
between the locations; that is, D/; is isotropically 
computed. A plot of D/; versus h^ for all i,j (i >j), 
where h^ = \£f- Xj I, produces a cloud of points 
whose properties govern the behavior of y. The 
central tendency of the cloud generally increases 
with h. A substantial increase in the central tendency 
that persists for large h can indicate a nonstationary 
spatial mean. The cloud computed for the Saratoga 
data, with ground-water levels (z) in meters and 
lag (h) in kilometers, is shown in figure 5 and does

^show increasing D (meters squared) with increasing 
h, indicating potential nonstationarity.
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Dashed line is ordinary least squares fit indicating slight parabolic shape
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Figure 5. Squared differences of values for all possible pairs of points for Saratoga data.
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Generally, there is a large amount of scatter in 
these plots, as seen in figure 5, and this scatter can 
conceal the central tendency of D2 with h. One way 
to estimate the central tendency and to minimize the 
effect of aberrant data is to collect the D2 into K bins 
or lag intervals of width (Ah)k, k=l,...K and assign 
to y the average of the values of D2 in each bin. This 
process is similar to the way data are placed in bins 
for obtaining histograms. The expression for the &th 
average bin value is

where

N(hk) is the number of squared differences that 
fall into bin k, and

hk is the lag distance associated with bin k.

Ik(.) is an indicator function that has a value of 1 
if hy falls into bin k and 0 otherwise [Ik(.) 
only allows values of D^ in the calculation 
that have an h^ that falls into the bin]. 

The lag value hk can be the midpoint of the bin or it 
can be the average of the actual lag values for the 
points that fall in the bin.

To establish bins, equal bin widths are specified 
and the distance between the two most separated data 
points, hmax, is subdivided according to these equal 
increments, or a K is chosen that defines the bin 
width. For the Saratoga data, a bin width of about 
8 kilometers established K = 12 bins for y. The y 
points computed from the binned D^ values in 
figure 5 are shown in figure 6. The lag plotting 
positions are the average h values in the bin. The 
symbol x indicates that N(fi) is less than 30 pairs 
for the particular bin, and this differentiation is 
discussed in section 5.3. Although the sample vario- 
gram is still preliminary, its general behavior at this
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Figure 6. Initial sample variogram points for Saratoga data.
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stage is adequate to indicate if nonstationarity needs 
to be addressed before sample variogram refinement 
is done.

5.2 Nonstationarity

An indication of substantial nonstationarity or 
drift in the spatial mean would be a parabolic shape 
through all lags in a plot of y. This shape occurs 
because differences between data contain differences 
in the drift component that increase as h increases. If 
equation 3-16 is inserted into equation 3-17, squaring 
the differences in jo, greatly amplifies the increase with 
h. In this case, drift, generally a low-order (less than 
three) polynomial drift in (M,V), is fitted to the data and 
subsequently subtracted from the data to obtain resid­ 
uals. Trend surfaces are not necessarily limited to 
polynomial forms. For example, a numerical model of 
ground-water flow may be used to obtain residuals of 
ground-water head data.

In theory, the polynomial trend indicates a 
slowly varying drift in the spatial mean and, as 
such, one regional trend surface should be fitted to 
all the data. However, often the drift and residuals are 
obtained locally; that is, using moving neighborhoods 
of locations. Therefore, estimates of these values at 
any point are made using a decreased number (usually 
between 8 and 16) of surrounding locations, which is 
done because, ultimately, the kriging estimates are 
made using only the data values in the given neighbor­ 
hood. Manipulating the kriging matrices takes less 
time when a small number of data are used to make 
estimates, and these efficiencies can be substantial 
for dealing with large data sets. Little accuracy is lost 
because the nearest neighbors have the most effect in 
the kriging weighting scheme.

A parabolic shape for y in the Saratoga data 
is shown in figure 6 for the sample variogram points 
plotted for lags up to about 32 kilometers (the first four 
points) and for lags greater than about 56 kilometers. 
A parabolic shape in the sample variogram points was 
not surprising because analysis of the data indicates a 
north-south gradient in the ground-water levels. The 
simplest polynomial trend, linear in u and v, was fitted 
to all the data using ordinary least-squares estimation. 
Residuals obtained by subtracting this regional trend 
surface from the data were used to reestimate y in 
equation 5-2, and the sample variogram for the resid­ 
uals is shown in figure 7.

5.3 Variogram Refinement

In section 5.1, an initial y was specified by 
points computed from equation 5-2. In general, the 
larger N(hk) is for any bin k, the more reliable are the 
points defining y (h^. Also, the larger K is, the greater 
the number of sample variogram points shaping y. 
However, N(h^) and K are competing elements of y. 
Journel and Huijbregts (1978) suggested that each 
bin k could have N(hk) equal to at least 30 pairs. 
The American Society for Testing Materials (1996) 
suggested 20 pairs for each lag interval. For small 
data sets, the number of intervals may have to be 
small to guarantee either number of suggested pairs 
in all bins.

The minimum number of data, n, needed 
to satisfy the N(hk) requirements for all bins of a 
sample variogram is difficult to determine. Simple 
combinatorial analysis can establish a sample size 
needed for a given total number of distinct pairs 
obtained from the sample, but the analysis does not 
address the spatial considerations needed for proper 
lagging. For example, for data collected on a uniform 
grid and equal-sized bins, fixing an n to just satisfy 
the minimum N(hk) for the small lags would yield 
insufficient data pairs to meet the minimum Nty^ 
for the larger lags. Fixing an n to ensure the minimum 
N(hk) for the large lags would generally have N(hk) 
much greater than the minimum for the small lags. 
Therefore, the question of how much data are needed 
to adequately compute a variogram also needs to 
address the relative locations of the data-collection 
sites.

The first 10 of the 12 bins for y for the Saratoga 
data contained more than 30 data pairs. Therefore, the 
bin width was decreased to have more points define 
the early part of y. These bin-width adjustments were 
made to refine y whether it was computed from the 
data or from the residuals. A plot of y for the residuals 
for the Saratoga ground-water elevations with the bin 
width narrowed to about 6.5 kilometers is shown in 
figure 8.

Spatial data usually are not collected on a 
uniform grid, but occur in a pattern that reflects 
problem areas, accessibility, and general spatial 
coverage. In the Saratoga data set, nonuniform data 
spacing resulted in the number of data pairs in each 
bin being highly variable among the bins, although 
there were still greater than 30 data pairs. This vari­ 
ability yields different reliabilities for the points
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defining y. To establish a balance for N(hk) among 
the bins, variable bin sizes can be used so that each 
bin contains approximately the same (large) number 
of points. A bin having few points can be coalesced 
with an adjacent bin to form a wider bin having a large 
number of points. Conversely, a bin having an exces­ 
sive number of points can be subdivided into adjacent, 
narrower bins. The coalescing and subdividing proce­ 
dure is largely trial and error until the distribution of 
the pairs of points is satisfactory.

The values of y at the small lag values are 
the most critical in defining the appropriate y. There­ 
fore, the trade-off between the number of bins and 
the number of data pairs within each bin can be varied 
for different regions of the sample variogram. At small 
lags, the numbers of data pairs per bin can be closer to 
the minimum N(hk) so more bins can be defined. At 
larger lags, a smaller number of wider bins may be

adequate. Knowing that the variogram is a smooth 
function, the analyst visually decides when the 
sample variogram is sufficiently defined at all lags 
to adequately approximate a theoretical variogram.

5.4 Transformations and Anisotropy

5.4.1 Transformations

A transformation is applied to a data set gener­ 
ally for one of two interrelated purposes. First, a 
transformation can decrease the variability of highly 
fluctuating data. This variability especially occurs with 
contaminant concentrations where order-of-magnitude 
changes in data at proximate sites are not uncommon. 
The effects of such data would be erratic sample vario­ 
gram points indicated by a large amplitude, ill-defined 
sawtooth pattern of the lines connecting the points.
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Figure 7. Sample variogram points for ordinary least-squares trend residuals for Saratoga data.
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Second, a proper transformation of data, 
whose probability distribution is highly skewed, 
often produces a set of values that can be approxi­ 
mately normally distributed by mitigating the effect 
of problematic extreme data. A data set having a 
normal distribution is important in kriging when confi­ 
dence levels of the estimates are desired. The use of 
confidence levels in a kriging analysis is discussed 
in section 6.0.

Among the more common transformations is 
the natural logarithmic (log) transform. For example, 
in this transformation, the y is the sample variogram 
of logarithms, and subsequent kriged estimates are 
logarithms. Another transformation that is often used, 
especially in spatial analyses of contaminant levels, is 
the indicator transformation described in section 3.5.2. 
Although a transformation might result in a better 
distribution of sample variogram points, there are

subtleties in interpreting the kriging results of the 
transformed data or in back-transforming kriging 
results into the untransformed (original) units, as 
discussed in section 3.5.1. If a satisfactory variogram 
of the original data cannot be achieved and a transfor­ 
mation is indicated, the computation of a sample vari­ 
ogram needs to begin again with equation 5.2. Even 
though no transformation was needed for the Saratoga 
data, an example using a logarithmic transformation 
and an example using the indicator transformation are 
presented in section 6.0.

5.4.2 Directional Variograms and Anisotropy

Anisotropy in the data can be investigated by 
computing sample variograms for specific directions. 
Locations included in a given direction from an orig­ 
inal location are contained in a sector of a circle of
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radius hmax centered on the original location. The 
sector is specified by two angular inputs. The first 
is a bearing defining the specific direction of interest 
[measured counterclockwise from east (= 0 degrees)] 
and the second is a window angle defining an arc in 
both directions from the bearing. Thus, in the termi­ 
nology used here, the total angle defining a direction 
is equal to twice the window angle. Differences in 
sample variograms computed using these angle 
windows specified for different directions can be 
an indication of anisotropy.

Anisotropy is generally either geometric or 
zonal. Geometric anisotropy is indicated by directional 
theoretical variograms that have a common sill value 
but different ranges. The treatment of geometric 
anisotropy is dependent on the software used. The lags 
of the directional variograms can be scaled by the ratio 
of their ranges to the range of a standard or common 
variogram. In some cases, the lags of all directional 
variograms are scaled by their respective ranges, and 
a common variogram that has a range parameter of 1 
is used. Ground-water contaminant plumes often have 
geometric anisotropy in which the prevailing plume 
direction has a greater range than the range of the 
transect of the plume.

Zonal anisotropy is indicated by directional 
variograms that have the same range but different 
sills. Pure zonal anisotropy is usually not seen 
in practice; generally, it is found combined with 
geometric anisotropy. Such mixed anisotropy may 
be present when evaluating the variograms of three- 
dimensional HTRW-sampling results. Variability of 
such data (as indicated by the sill of the variogram) 
may be substantially higher and the range substantially 
shorter in the vertical direction than in the horizontal 
direction. To model this mixture of anisotropic vario­ 
grams, the overall variogram is set to a weighted sum 
of individual models of the directional variograms and 
scaled by their ranges. This process is called nesting, 
in which the choice of weights uses a trial-and-error 
approach with a constraint that the sum of the weights 
equals the sill of the overall variogram. Isaaks and 
Srivastava (1989, p. 377-390) contains further infor­ 
mation on both types of anisotropy.

For a given number of data locations, directional 
sample variograms will have fewer points for any lag 
when compared to the points for the same lag in the 
omnidirectional variogram. Hence, point values in 
directional variograms are less reliable, which could 
be a critical constraining factor for small data sets or

for a data pattern that does not conform to a direction 
of anisotropy. To determine the adequacy of the data 
for determining anisotropy, the computations of aniso­ 
tropic sample variograms can be initially limited to 
two orthogonal directions with window angles of 
45 degrees.

Directional sample variograms also can be used 
to further delineate nonstationarity of the spatial mean. 
If the omnidirectional sample variogram indicates a 
drift in the data, the directional variograms may deter­ 
mine the dimension of the drift. That is, although the 
directional sample variograms may not establish the 
degree of the polynomial in the drift equation, they can 
indicate the relative strengths of the drift in the u and 
v directions.

The computed sample variograms for north- 
south and east-west directions and window angles of 
45 degrees for the Saratoga data are shown in figure 9. 
The north-south variogram is specified by a direction 
angle of 90 degrees and a window angle of 45 degrees. 
The north-south variogram shows the preferential 
north-south data alignment by mimicking the omni­ 
directional (direction angle = 0 degrees and window 
angle = 90 degrees) sample variogram in figure 6. 
The east-west variogram is specified by a direction 
angle of 0 degrees and a window angle of 45 degrees. 
The lack of pairs of locations for the east-west 
variogram precludes a good analysis for this direction, 
but the overlap of the few sufficiently defined vario­ 
gram points with the north-south variogram indicates 
a consistency of drift in the two directions. Because 
of this consistency, an isotropic variogram is assumed 
for the Saratoga residuals. An example of kriging 
using anisotropic variograms is described in 
section 6.0.

5.5 Fitting a Theoretical Variogram 
to the Sample Variogram Points

The importance of adequately defining the bin 
values of a sample variogram is substantiated by the 
need to accurately generalize the data-based behavior 
of the sample variogram by a theoretical variogram, y. 
The parameters controlling the specific behavior of 
theoretical variograms are the nugget value, the range, 
the sill, or for case of a linear variogram, a slope. Of 
these parameters, the nugget and the sill can be related 
to properties and statistics of the data.

32 Overview and Technical and Practical Aspects for Use of Geostatistics in Hazardous-, Toxic-, 
and Radioactive-Waste-Site Investigations



1.500

< 1.000
z> 
a c/o
C/O
a:

LJ

500

+ Lag with greater than or equal to 30 pairs 
x Lag with less than 30 pairs

+ +

e 1.500

a
LJ

< 1.000 

o
C/l 
C/la:
LJ

500
<o

  + Lag with greater than or equal to 30 pairs 
\ x Lag with less than 30 pairs

, , , rtr , . . . I

10 20 30 40 50 60

LAG, IN KILOMETERS
70 80 90

Figure 9. Initial directional sample variogram points for raw Saratoga data A, north-south and 
B, east-west.

10 20 30 40 50 60 70 80 90 100

LAG, IN KILOMETERS

100

5.0 PRACTICAL ASPECTS OF VARIOGRAM CONSTRUCTION AND INTERPRETATION 33



The nugget is essentially the extrapolation 
of the sample variogram to a lag of zero. It indi­ 
cates the uncertainty of the variogram at lags that 
are smaller than the minimum separation between 
any two data locations. The nugget can include 
measurement error variance, and an estimate of 
this variance approximates a minimum value of 
the extrapolation.

The sill determines the maximum value of a 
variogram and approximates the variance of the 
data. However, the points defining y take precedence 
over the sample variance in determining the sill. Some 
variograms are unbounded, and others may only 
reach a sill value asymptotically. A defined sill allows 
conversion of the variogram to a covariance function 
using equation 3-27, which is generally done because 
computations in the kriging algorithms are more 
efficiently performed using a covariance function.

Fitting a function to the sample variogram 
values can range from a visual fit to a sophisticated 
statistical fit. A statistical fit is an objective method 
as long as the choice of bins and the weighting of 
the sample variogram points remain fixed. However, 
because the inputs vary, inherent subjectivity persists 
as in a visual fit. A final calibration of the variogram 
parameters is based on the kriging algorithm; thus, 
either of the initial fitting methods at this stage would 
suffice.

Because the initial part of the variogram has 
the most effect on subsequent kriging output, a good 
estimate of the nugget value becomes a most impor­ 
tant first step. The range and the sill, in that order, 
complete the ranking of the effect of variogram 
parameters on the output of a geostatistical analysis. 
Whatever the fitting method used, the theoretical vari­ 
ogram needs to be supported by the sample variogram 
values. For variograms that have a range parameter, 
this support could extend to the range. Journel and 
Huijbregts (1978) suggested that this support would 
be through one-half the dimension of the field or 
essentially through one-half the maximum lag 
distance of the sample data.

Most geostatistical studies can be success­ 
fully completed using one of the following four 
singular theoretical variogram forms: exponential, 
spherical, Gaussian, and linear functions (fig. 3); 
however, positive linear combinations of these 
forms also are acceptable as theoretical variograms

(see section 5.4.2). Geometric relations for obtaining 
parameters for the four variogram forms are described 
in the following sections and are shown in figure 3.

5.5.1 Exponential Variogram

The exponential variogram (eq. 3-23) is speci­ 
fied by the nugget, g; sill, s; and a practical range, r. 
The range is qualified as practical because the sill is 
reached only asymptotically. From the nugget, the 
sample variogram points indicate a convex behavior 
that persists through all lags, although to a much 
lesser degree at larger lag values. A nugget and a sill 
are first specified based on the y points. The practical 
range is chosen so the value of the resulting exponen­ 
tial function at the practical range lag is 95 percent of 
the sill. The specified exponential function meshes 
with the sample variogram points at least through the 
practical range lag. An initial estimate of the practical 
range can be made if the intersection of the sill with a 
line tangent to the variogram at the nugget is at a lag 
value equal to one-third of the assumed practical range 
as shown in figure 3. Examples of the exponential vari­ 
ogram are included in spatial studies of sulfate and 
total alkalinity in ground-water systems (Myers and 
others, 1980).

5.5.2 Spherical Variogram

The spherical variogram parameters (eq. 3-24) 
are a nugget, g; a range, r; and a sill, s. At small lag 
values, the sample variogram points indicate linear 
behavior from the nugget that then becomes convex 
and reaches a sill at some finite lag (fig. 3). A sill is 
estimated, and a line drawn through the points of the 
initial linear part of the variogram intersects the sill 
at a lag value approximately equal to two-thirds of the 
range. With these estimates of the parameters, a spher­ 
ical variogram is defined that should be supported by 
the sample variogram points. If the spherical vario­ 
gram does not plot near the sample variogram points, 
adjustments need to be made to the parameter esti­ 
mates and the subsequent fit evaluated. Although the 
spherical variogram model is one of the most often 
used models for real-valued spatial studies, it also 
seems to be a predominant model for indicator values 
at various cutoff levels as, for example, in a study of 
lead contamination (Journel, 1993).
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5.5.3 Gaussian Variogram

The Gaussian variogram parameters (eq. 3-25) 
are a nugget value, g, and a sill, s; and this variogram 
also has a practical range, r. The Gaussian variogram 
is horizontal from the nugget, becomes a concave 
upward function at small lags, inflects to concave 
downward, and asymptotically approaches a sill 
(fig. 3). After a nugget and sill are specified based on 
the Y points, the variogram value at a lag of one-half 
the estimated practical range is two-thirds of the sill. 
Again, this fitted variogram needs to be supported by 
the Y points to a reasonable degree. As is described 
in the example using the Saratoga data, the Gaussian 
variogram often is used where the analyzed variable 
is spatially very continuous, such as a ground-water 
potentiometric surface.

5.5.4 Linear Variogram

Parameters for a linear variogram (eq. 3-26) 
are a nugget value, g, and a slope, b. Sample points 
that indicate a linear variogram increase linearly from 
the nugget and fail to reach a sill even for large lags 
(fig. 3). Using the nugget as the intercept, the slope is 
computed for the line passing through the Y points. A 
pseudosill can be defined as the value of the line at the 
greatest lag, hmax, between any two locations. This lag 
becomes the defacto range, r, for a linear variogram. 
Examples of the use of the linear variogram are in 
hydrogeochemical studies of specific conductance and 
in studies of trace elements, such as barium and boron 
(Myers and others, 1980).

5.6 Additional Trend Considerations

If a drift in the data is indicated as in section 5.2, 
the theoretical variogram of residuals that has been 
fitted thus far is used to update the drift equation. 
Although ordinary least squares often suffices for 
computing a polynomial drift equation, drift determi­ 
nation is a function of Y when the data are spatially 
correlated. But Y cannot be estimated until a drift 
equation is obtained to yield the residuals. Therefore, 
obtaining a sample variogram and a subsequent 
theoretical variogram from drift residuals of a speci­ 
fied drift form is an iterative process (David, 1977, 
p. 273-274) using the following steps:

1. An initial variogram is specified and drift coeffi­ 
cients are computed to obtain residuals. For this 
step, a pure nugget (that is, a constant) variogram 
can be used to compute the initial estimates of 
the drift coefficients. These initial coefficients 
yield an ordinary least-squares estimate of the 
drift and a first-iteration sample variogram of 
residuals.

2. A theoretical variogram is fitted to the sample 
variogram of the residuals and is used to obtain 
updated drift coefficients.

3. The residuals from the drift that were obtained in 
step 2 are used to compute an updated sample 
variogram.

4. The sample variogram computed at the end of
step 3 is compared to the sample variogram from 
step 2. If the two sample variograms compare 
favorably, then the theoretical variogram from 
step 2 is accepted as the variogram of residuals 
for subsequent kriging computations. If the 
sample variogram from step 3 differs markedly 
from the sample variogram from step 2, steps 2 
through 4 are repeated using the sample vario­ 
gram from the most recent step 3.

Generally, the plot of the points of Y from 
a set of residuals initially increases with h, reaches 
a maximum, and then decreases as shown in figure 7. 
This typical haystack-type behavior, discussed by 
David (1977, p. 272-273), is attributed to a bias 
resulting from the estimation error in the drift and its 
coefficients. This behavior in the variogram of the 
residuals generally would more readily occur with a 
high degree of drift polynomial and need not prohibit 
acceptable variogram determination because the initial 
points of the sample variogram of residuals are still 
indicative of the theoretical variogram. For example, 
the lag associated with the maximum of Y of the resid­ 
uals can be a good first approximation for the range of 
the theoretical variogram.

5.7 Outlier Detection

Outliers in a data set can have a substantial 
adverse effect on Y- However, divergent data can 
be screened for evaluation using a Hawkins statistic 
(Hawkins, 1980), which is described in the context of 
kriging by Krige and Magri (1982). A neighborhood

5.0 PRACTICAL ASPECTS OF VARIOGRAM CONSTRUCTION AND INTERPRETATION 35



containing 4 to 10 data points that are approximately 
normally distributed around each suspected outlier 
needs to be defined. Despite potential outliers in the 
data set, a best guess initial theoretical variogram 
also is needed.

The Hawkins statistic is obtained by 
comparing a suspect datum to the mean value of 
the 4 to 10 surrounding data, the smaller number being 
sufficient if the variability is low. The spacing between 
these surrounding points is accounted for by the prop­ 
erties of the chosen variogram. A statistic of 3.84 or 
higher would indicate an outlier on the basis of a 
95-percent confidence interval. A large number of 
surrounding points has the direct effect of increasing 
the magnitude of the statistic. Anomalous points 
are removed from the data set, and the procedure 
described for obtaining the sample variogram is 
repeated for the small data set. There were no 
outlier problems in the Saratoga data.

There is debate among geostatisticians 
regarding the merit of automated outlier-detection 
procedures. A procedure such as that described is 
presented as an investigative tool with the under­ 
standing that attendant justification and a Hawkins- 
type statistic need to be used to ultimately decide if 
a data value is discarded as a true outlier or retained 
as a valid measurement. In some situations, highly 
problematic data are removed for computation of 
the sample variogram points, but are reinstated for 
kriging.

5.8 Cross Validation for Model 
Verification

The parameters of the theoretical variogram 
obtained from the initial fitting and refinement of the 
sample variogram are calibrated using a kriging cross- 
validation technique. In this technique, the fitted theo­ 
retical variogram is used in a kriging analysis in which 
data are individually suppressed and estimates are 
made at the location using subsets of the remaining 
data. As described in section 5.2, these subsets are the 
data points in a moving neighborhood surrounding the 
location under consideration. The calibration estimate 
made at each data location needs a matrix inversion, 
which could be very time consuming if all the data 
locations were used to construct the matrices rather 
than just the data within a neighborhood of a limited 
search radius.

After kriged values at all data locations have 
been estimated in the above manner, the data are 
used with their kriged values and the kriging standard 
deviations to obtain cross-validation statistics. A 
successful calibration is based on criteria for these 
statistics, which are described in section 5.8.1. If the 
criteria cannot be reasonably met by adjusting the 
parameters in the given theoretical variogram function, 
then the calibration needs to be reinitialized using a 
different theoretical variogram model. In some data 
sets that have a nonstationary spatial mean, the drift 
polynomial and the variogram may have to be changed 
to achieve a satisfactory calibration.

5.8.1 Calibration Statistics

The kriging cross-validation error, e^ which 
corresponds to measurement z(*/), is defined as

= z(xi)-z(xi ) (5-3)

where
is the kriged estimate

The kriged estimate is obtained by ordinary kriging if 
the spatial mean is constant or by universal kriging if 
the spatial mean is not stationary. A reasonable crite­ 
rion for selecting a theoretical variogram is to mini­ 
mize the squared errors, Ze,- , with respect to the 
variogram parameters. However, unlike ordinary least- 
squares regression, which also minimizes the sum of 
squared errors, simply minimizing the squared errors 
is not sufficient for kriging because the resulting 
model can yield inconsistent estimates of the kriging 
variances, o^(*/) at location *,-. This simple minimiza­ 
tion would give unrealistic measures of the accuracy 
of the kriging estimates. To guard against such bias, 
an expression for the square of a reduced kriging error 
is defined:

(5-4)

where the kriging variances are computed using either 
equation 3-36 or equation 3-47. If the kriging vari­ 
ance is a consistent estimate of the true mean-squared 
error of estimate, then the reduced kriging errors have 
an average of about 1. Therefore, the standard cross- 
validation technique for evaluating a theoretical vario­ 
gram is:
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The expression to be minimized is called the 
kriging root-mean-squared error and the constraint 
is called the reduced root-mean-squared error. The 
reduced root-mean-squared error needs to be well 
within the interval having endpoints

1 + \T 
2 -

and

1-

(Delhomme, 1978). An additional check on the good­ 
ness of the cross-validation results is the unbiasedness 
condition where

As indicated in section 3.0, if probabilistic 
statements concerning an actual value of Z at an 
unmeasured location are to be made compared to 
the kriged estimate and the kriging variance at the 
location, the distribution of the cross-validation 
kriging errors needs to be analyzed. In particular, 
the reduced errors, ei , i = l,2,...,n, need to be approx­ 
imately normally distributed with mean 0 and vari­ 
ance 1. A histogram or normal probability plot of the 
reduced kriging errors can be used to assess the 
validity of assuming a standard normal distribution for 
the reduced kriging errors. Additionally, if the distri­ 
bution of reduced kriging errors can be assumed to be 
standard normal, outliers not detected using the tech­ 
nique discussed in section 5.6 may be detected by 
comparing the absolute values of the reduced kriging 
errors to quantiles of the standard normal distribution.

Using the Saratoga data, a spherical variogram 
was fitted to the refined sample variogram of the resid­ 
uals. The estimated nugget was about 1.49 meters 
squared, the sill was 133.8 meters squared, and the 
range was about 48 kilometers. Because of the diffi­ 
culty in determining an exact extrapolated value for 
the nugget, the value of 1.49 meters squared was 
selected based on an estimated measurement error 
related to obtaining water levels at the well depths 
in the Saratoga Valley.

After two iterations using drift residuals, as 
described in section 5.6, a final variogram was chosen 
that had a nugget of 1.49 meters squared, a sill of 
148.6 meters squared, and a range of 44.8 kilometers 
(fig. 10). These parameters defined the theoretical 
variogram used to obtain the cross-validation errors 
through universal kriging with an assumed linear 
drift. The best combination of statistics that could be 
obtained after several attempts at refining the model 
were a root-mean-squared error of 3.45 meters and 
a reduced root-mean-squared error of 0.5794. The 
reduced root-mean-squared error is too small, indi­ 
cating that the kriging variances produced by the 
model are relatively large compared to the actual 
squared errors. This fact, coupled with the rather 
large root-mean-squared error, warranted additional 
variogram refinements. In section 5.8.2, a Gaussian 
variogram was fitted to the data; the Guassian vario­ 
gram produces much better cross-validation results 
than the results from the spherical variogram.

5.8.2 Variogram-Parameter Adjustments

If any of the cross-validation statistics vary 
unacceptably from their suggested values, minor 
adjustments to the variogram parameters can be 
made to attempt to improve the statistics. Modifica­ 
tions made to the parameters should not have to be so 
severe that the variogram function drastically deviates 
from the sample variogram points. If the support of the 
sample variogram points is compromised to achieve 
acceptable cross-validation results with the given drift- 
variogram model, a different drift-variogram combina­ 
tion needs to be investigated.

A reduced root-mean-squared error that is 
unacceptable may be improved by adjusting the range 
parameter or the nugget value of the variogram. Modi­ 
fying the range parameter needs to be considered first, 
and any shifts in the nugget value need to be minimal 
and made only as a final recourse. The calibration 
errors are relatively insensitive to minor adjustments 
of the sill.
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If the reduced root-mean-squared error is too 
small, as in the Saratoga example, extending the range 
(equivalent to decreasing the slope for a linear vario­ 
gram) decreases the kriging variance and, thus, 
increases the reduced root-mean-squared error. If a 
shift in the nugget is needed, a decrease in the nugget 
decreases the kriging variance. If the reduced root- 
mean-squared error is too large, then a contraction of 
the range or a positive shift in the nugget can be made, 
based on the priority and the extent of the changes. 
Generally, changes in these parameters also have 
an effect on the mean-squared error. The larger the 
nugget is as a percentage of the sill, the larger the 
mean-squared error is. In general, improvements in 
one statistic are usually made at the expense of the 
other statistics. The optimization of the statistics as a 
set is, in effect, a trial-and-error procedure that is oper­ 
ationally convergent.

The reduced kriging errors may not approximate 
a standard normal distribution. If so, a transformation 
of the data may be needed to achieve a more normal 
distribution, and the variogram estimation procedure 
would be repeated.

Because no convergence could be reached for 
parameter values of a spherical variogram for the 
Saratoga data, a Gaussian theoretical variogram was 
fitted to the sample variogram of residuals in figure 8. 
This choice was made because the initial sample 
variogram points seemed to have a slight upward 
concavity, but eventually reached a sill. This behavior 
can be attributed to correlation rather than to further 
drift. After an iterated cross validation using the 
Gaussian parameters, a Gaussian variogram that had a 
nugget of 1.49 meters squared, a sill of 185.81 meters 
squared, and a range of 27.52 kilometers (fig. 11)
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yielded a root-mean-squared error of 2.33 meters and 
a reduced root-mean-squared error of 1.083 meters. 
The mean cross-validation error was 0.0195 meter. 
These values represented an improvement over the 
spherical variogram and were deemed acceptable for 
the Gaussian variogram.

A probability plot of the reduced kriging 
errors using the final Gaussian variogram is shown 
in figure 12. The plot is reasonably linear between 
two standard deviations and, thus, approximates a 
standard-normal-distribution function. A plot in 
figure 13 of the measured data versus their kriged 
estimates indicates that the linear drift/Gaussian 
variogram model selected for the Saratoga data 
would produce accurate estimates of ground-water 
elevations for interpolation or contour gridding in the 
region.

6.0 PRACTICAL ASPECTS OF
GEOSTATISTICS IN HAZARDOUS-, 
TOXIC-, AND RADIOACTIVE- 
WASTE-SITE INVESTIGATIONS

In this section, several example applications 
are described. The applications have been developed 
using hydrologic, geologic, and contaminant data 
from established and well-studied hazardous-waste 
sites. The real nature of the data enables discussion 
of some problems that can occur during HTRW-site 
investigations that originate, not only from natural 
field conditions, but also from typical problems that 
are associated with the types of data involved. In 
addition, the real nature of the example data provides 
an opportunity for comparison between kriging esti­ 
mates and the real data; these comparisons are brief
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and general. This report does not provide comprehen­ 
sive analyses of data that are available in other more 
elaborate studies.

The principal intent of the examples is to 
provide systematic descriptions for a few of the 
large number of possible applications that may be 
used during HTRW-site investigations. The examples 
are not intended to provide guidance for comprehen­ 
sive analysis of the included data. However, this report 
presents some fundamental problems that can occur 
in geostatistical applications and, in some examples, 
indicates some possible alternatives.

With each example, a purpose is established 
and a general environmental setting is described. 
Most aspects of variogram construction and calibra­ 
tion are briefly described and are shown in figures 
and listed in tables. A comprehensive treatment of 
variogram construction has been presented in 
section 5.0.

The GEO-EAS software has been used 
whenever the example data did not require universal 
kriging; for those examples, STATPAC was used. 
As indicated in section 4.0, both of these software 
packages run on the DOS platform (table 1), which 
is probably most convenient to readers. The results 
of kriging estimates are portrayed by gray-scale maps 
rather than by contours because of the objective nature 
of the gray-scale format. North is at the top of all maps 
presented although this orientation may represent 
some deviation from the real data.

6.1 Ground-Water-Level Examples

The principal purpose of the ground-water-level 
examples is to familiarize the reader with a kriging 
exercise using ground-water levels and to indicate 
simply how kriging standard deviations may be useful 
in evaluating monitoring networks. The data are from
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a water-table setting in unconsolidated sediments 
where the local relief for the land surface is about 
30 meters. The data involved in this example are 
considered virtually free of actual measurement error. 

The location of measured water levels is shown 
in figure 144, and the basic univariate statistics for this 
data set are listed in table 2 (water level A); modifica­ 
tions to the measured data, in the form of removal and 
addition of measured values, are shown in figures 145 
and C. The techniques described in section 5.0 were 
used to guide the following steps for variogram 
construction:
1. A raw variogram analysis and basic hydrologic 

knowledge of water-level behavior indicated 
that universal kriging would be needed for this 
analysis.

2. To obtain a stable variogram of residuals, an itera­ 
tive, generalized least-squares operation was 
initially used to remove prominent linear drift of

the form a + bu + cv, observed in the measured 
water levels, where #, b, and c are constants 
determined in the iterative process.

3. After drift was removed, residuals were determined 
to be stationary and universal kriging with a 
linear drift was appropriate.

4. A Gaussian model was used to fit the stabilized 
variogram of residuals (fig. ISA), which 
has a nugget of 0.09 meter squared, a 
sill of 2.69 meters squared, and a range of 
1,219 meters (table 3).

Cross validation was performed, and the results are 
shown in figures 15B and C and listed in table 3. 
The cross-validation statistics conform to the criteria 
discussed in section 5.0.

Linear drift is commonly observed in ground- 
water-elevation data where there are no major anthropo­ 
genic activities, such as large ground-water withdrawals.
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Figure 13. Scatterplot of measured versus kriging estimates from cross validation of Saratoga data.

6.0 PRACTICAL ASPECTS OF GEOSTATISTICS IN HAZARDOUS-, TOXIC-, 
AND RADIOACTIVE-WASTE-SITE INVESTIGATIONS

41



1,570

1,470

1,370

1,270

1,170

1,070

970

870

770

670

570

470

370

270

170

70

B

mm m m m m
-60 90 240 390 540 690 840 990 1,140 1,290 1,440 1,590

MAP DISTANCE, IN METERS
EXPLANATION

S SJiSl

10 15 17 20

INDEX TO PLOTTED VALUES, IN METERS

1.570

1,470

1,370

1,270

1,170

1,070

970

870

770

670

570

470

370

270

170

'tft" "' n '' n '' n

E

BUB
240 390 540 690 840 990 1,140 1,290 1,440 1,590

MAP DISTANCE, IN METERS
EXPLANATION

INDEX TO PLOTTED VALUES, IN METERS

Under these circumstances, there is usually a fairly 
uniform and general ground- water movement along a 
flow path. This uniform and general nature introduces 
a nonstationary element to the data that, in geostatistics, 
is referred to as drift. As indicated in section 5.0, the 
presence of drift is indicated by a parabolic variogram 
shape. In this example, the initial variogram in the raw 
variogram analysis had a characteristic parabolic shape, 
and a linear drift was identified. Once the drift was iden­ 
tified and characterized, universal kriging procedures 
were used.
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Figure 14. Location of measured data for ground-water- 
level examples A, original data; B, original data without 
dropped sites; and C, original data with added sites 
(added sites indicated with +).

A Gaussian model is usually appropriate 
for variograms of highly continuous variables, 
such as ground-water-elevation data, and this model 
is particularly appropriate in this example. The vario­ 
gram (fig. 15A) at small lags beyond the nugget has 
an upward concavity that cannot be fit with a linear, 
spherical, or exponential model. The observed shape 
was interpreted as a function of continuous small-scale 
variability. The Gaussian model fits the bowl shape of 
the small lag data and other data well to a lag of about 
610 meters, but it is not flexible enough to closely fit 
the points much beyond 610 meters, indicating that 
kriging estimates should be computed using neighbor­ 
hoods with a search radius less than 610 meters. In 
section 5.0, the initial part of the variogram was 
described as having the most effect on subsequent 
kriging estimates.

The established variogram then was used with 
the measured data to produce universal kriging esti­ 
mates for all points in a 26-by-26 grid that had a grid 
size of about 61-by-61 meters. A gray-scale map 
of the kriging water levels is shown in figure 16A and 
basic univariate kriging estimate statistics are listed in 
table 4 (water level A). The kriging results are a good 
representation of the results from other more elaborate 
studies.
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The kriging standard deviations for the kriging 
estimates are shown in figure \6B. The magnitude 
of kriging standard deviations can provide investiga­ 
tors with a direct indication of where the uncertainty 
associated with kriging estimates is relatively high 
or low. The areas of the greatest uncertainty for 
the kriged water levels are in the upper right and 
the lower left corners of figure 16B, where standard 
deviations are as high as about 1.4 and 0.8 meters. 
These areas are where the density of the measured 
data is relatively low. Throughout much of the 
remainder (about 70 percent) of figure 16B, the 
kriging standard deviation is almost constant at 
about 0.35 meter.

To use the kriging standard-deviation values 
more quantitatively, some assurance is needed that 
the measured data and the reduced kriging errors 
are approximately normally distributed and that the 
assumption of stationary residuals after drift removal 
is correct. If assumptions are valid, then the basic 
statistical principles involving confidence intervals can 
be applied. In this example, the kriging standard devia­ 
tion of 0.35 meter throughout most of the map indi­ 
cates that there is a 95-percent chance that the true 
value at a location where there is a kriging estimate 
is within 0.76 meter (twice the kriging standard devia­ 
tion) of the kriging estimate.

As an example of evaluating network density 
and the accuracy of kriging estimates, two new maps 
were developed. To compile the first map, a decrease 
in network density was effected by removing nine 
measured locations from the northwest part of the 
area (fig. 14#) where sampling density was high 
and kriging standard deviations were low. Kriging 
estimates were produced for the same grid and 
the basic univariate kriging estimate statistics are 
listed in table 4 (water level B). The map shown 
in figure 16C indicates that the ratio of the original 
kriging standard deviations and the kriging standard 
deviations with the nine measured locations removed 
is always very close to 1.00, which indicates that there 
is very little difference between the two sets of kriging 
standard deviations and that water levels are over- 
sampled in the area where the nine measured locations 
were removed.

To produce the third map (fig. 14Q, nine 
locations were added in the southwest corner where 
the sampling density was relatively low and the kriging 
standard deviation was relatively high. In section 3.3, 
equation 3-47 indicates that the universal kriging 
variance depends on the variogram, the type of trend, 
and the measurement locations; in this respect, the 
kriging standard deviation does not depend on the 
values at the measurement locations. Consequently, 
values of zero were used for the nine new measurement 
locations and only the resultant map of kriging standard 
deviations (fig. 16D) is of interest. The map shows that 
the kriging standard deviations in the lower left corner, 
which formerly had values of about 0.8, approximately 
have been decreased by a factor of about 0.25, which 
indicates that the kriging estimates, based on the 
geometry of the network, are more reliable.

6.2 Bedrock-Elevation Examples

The following examples are for bedrock eleva­ 
tions. The principal purposes of the examples are to 
familiarize the reader with a kriging exercise using 
bedrock elevations and to describe block kriging. The 
data are from an area where bedrock consists of a 
series of intercalated terrestrial deposits that have been 
weathered somewhat and then covered with alluvium. 
The opportunity for measurement error in these data 
is inevitable because the determination of just where 
bedrock begins is complicated and subjective.

The set of measured locations, set A, is shown 
in figure 11 A, and the basic univariate statistics are 
listed in table 2 (bedrock A); modifications to the 
measured data, such as removal of sites, are shown 
in figure \1B. The techniques described in section 5.0 
were used to guide the following steps for variogram 
construction:

1. The raw variogram indicated a stationary spatial 
mean. The data were assumed to be suitable 
for ordinary kriging.

2. An isotropic Gaussian model was used to fit the 
variogram, which had a nugget of 0.65 meter 
squared, a sill of 12.54 meters squared, and a 
range of 914 meters (table 3, bedrock A).

3. Cross validation was performed, and the results 
(table 3, bedrock A) were not acceptable.

6.0 PRACTICAL ASPECTS OF GEOSTATISTICS IN HAZARDOUS-, TOXIC-, 
AND RADIOACTIVE-WASTE-SITE INVESTIGATIONS

43



3.5

o

CO

S

1.5

0.5

+ Lag with greater than or equal to 30 pairs 
x Lag with less than 30 pairs 

l_ Gaussian model fitting parameters
Nugget = 0.09 meter squared 
Sill = 2.69 meters squared 
Range = 1.219 meters

Gaussian fit

300 600 900

LAG, IN METERS
1,200 1.500

25

20
CO

"< 15

CO
LJ

Oz 
o 
rr  ^

10

10 15 20

MEASURED VALUE, IN METERS
25

Figure 15. Variogram and variogram cross-validation plots for residuals in water-level examples 
A, theoretical variogram; B, cross-validation scatterplot; and C, cross-validation probability plot.

44 Overview and Technical and Practical Aspects for Use of Geostatistics in Hazardous-, Toxic-, 
and Radioactive-Waste-Site Investigations



or 
o

3.5

2.5

1.5

Oor °-5

CO

o
CO

< -1.5
z> 
o

-2.5

-3.5
-3.5 -2.5 -1.5 -0.5 0.5

REDUCED KRIGING ERRORS
1.5 2.5 3.5

Figure 15. Variogram and variogram cross-validation plots for residuals in water-level examples 
A, theoretical variogram; B, cross-validation scatterplot; and C, cross-validation probability plot Continued.

Table 3. Variogram characteristics and cross-validation statistics

[Note: NA, not applicable; base unit for water levels and bedrock is meters; base unit for water quality A is log concentration, concentration in micrograms 
per liter; base unit for water quality B is indicator units]

Variogram characteristic

Example 
identifier

Water levels

Bedrock A

Bedrock B

Water quality A

Water quality A

Water quality B

Water quality B

Transformation

Drift

None

None

Natural log

Natural log

Indicator

Indicator

Direction/ 
tolerance

0/NA

0/NA

0/NA

150/45

240/45

150/45

240/45

Model

Gaussian

Gaussian

Gaussian

Exponential

Exponential

Spherical

Spherical

Nugget 
(base 
units 

squared)

0.09

0.65

0.74

1.00

1.00

0.05

0.05

Sill 
(base 
units 

squared)

2.69

12.54

8.36

3.20

3.20

0.25

0.25

Range 
(meters)

1,219

914

732

1,295

228

610

213

Cross-validation statistics

Average 
kriging 
error 
(base 
units)

-0.0006

0.045

-0.010

0.105

0.105

NA

NA

Kriging 
root-mean- 

squared 
error 
(base 
units)

0.37

2.53

1.34

1.54

1.54

NA

NA

Reduced 
root-mean- 

squared 
error 

(dimension- 
less)

1.083

2.146

1.192

0.938

0.938

NA

NA
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Table 4. Univariate statistics for gridded kriging estimates in example applications

[Note: Base unit for water level A and B and bedrock B and C is meters; base unit for water quality A is log concentration, concentration in micrograms 
per liter]

Example 
identifier

Water level A

Water level B

Bedrock B

Bedrock C

Water quality A

Transformation

Drift

Drift

None

None

Natural log

Minimum 
(base 
units)

7.42

7.49

7.96

8.14

2.92

Maximum 
(base 
units)

19.8

19.8

19.8

19.8

7.07

Mean 
(base 
units)

14.0

14.0

12.6

12.6

5.17

Median 
(base 
units)

13.6

13.5

12.1

12.1

5.03

Standard 
deviation 

(base 
units)

3.09

3.09

2.35

2.33

0.72

Skewness 
(dimension- 

less)

0.11

0.11

0.82

0.82

-0.06

The cross-validation exercise produced a 
reduced root-mean-squared error of 2.146 (table 3, 
bedrock A), which indicates that the kriging variance 
is underestimated. Further attempts to fit the Gaussian 
model to the sample variogram points produced better 
cross-validation statistics; however, the Gaussian 
curve began to depart substantially from the sample 
variogram points at the low lag sample points. 
As a result, the distribution of the residuals was 
examined, and the eastern, and especially north­ 
eastern, parts of the area were determined to 
contain problematic data that rendered the distribu­ 
tion nonhomogeneous. The nonhomogeneous nature 
was related to an incised channel present on the 
bedrock surface. Therefore, the measured data 
were restricted to exclude the outlying measurements. 
Before the restriction, two alternative techniques for 
dealing with the outlying measurements were consid­ 
ered and deemed beyond the scope of this effort. 
However, a brief discussion of the alternatives is 
appropriate.

The first alternative was to fit a contrived 
and nongradual surface to the measured data to remove 
the outlier effect. A splined surface might be capable 
of producing the desired result. The decision whether 
or not to pursue such an alternative becomes some­ 
what philosophical. In a relatively simple example, 
as in this bedrock example, such an alternative may 
be entirely appropriate; however, this alternative 
may actually involve two unique and homogeneous 
domains. Therefore, the second alternative, distributing

the kriging process so that each homogeneous 
domain is addressed independently, becomes more 
attractive. In more complicated applications where 
a large number of domains are present, a distributed 
approach may be necessary to avoid an undue amount 
of compromise.

The restriction of measured data, set B, is shown 
in figure 17B, and the basic univariate statistics are 
listed in table 2 (bedrock B). The restriction exercise 
resulted in removing 18 measured locations and in 
the truncation of the northeastern part of the area 
so that the area became polygonal rather than rectan­ 
gular. The techniques described in section 5.0 were 
used to guide the following steps for variogram 
construction:

1. A Gaussian model was used to fit the variogram, 
which had a nugget of 0.65 meter squared, 
a sill of 8.36 meters squared, and a range of 
732 meters. The variogram indicated a station­ 
ary spatial mean.

2. Initial cross validation was performed, and the 
nugget was changed from 0.65 meter squared to 
0.74 meter squared to improve cross-validation 
statistics. The final variogram is shown in 
figure ISA, and the characteristics are listed in 
table 3.

3. Final cross validation was performed, and the 
results, shown in figures 18Z? and C and listed 
in table 3 (bedrock B), were acceptable.
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Figure 17. Location of measured data for bedrock-elevation examples A, original data and 
B, restricted data.
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Continued.

The large difference between the sill defined 
for the initial data set and the sill for the restricted 
data set [12.54 meters squared and 8.36 meters squared 
(table 3)] supports the hypothesis that the original data 
set is actually two different domains. The final vario­ 
gram then was used, along with the measured data, 
to produce ordinary kriging estimates for all points 
in a 52-by-52 grid that had a spacing of about 
30-by-30 meters, which was truncated along the 
northeastern border because of the restriction operation. 
For the kriging procedure, a search radius of about 
914 meters, with a maximum of 16 and a minimum 
of 8 surrounding locations, was specified. It is not 
uncommon to specify a search radius that is greater 
than the variogram range; this practice helps ensure 
that, in this case, between 8 and 16 points would be 
obtained to develop the kriging estimate. Gray-scale 
maps of the kriging estimates and kriging standard 
deviations are shown in figures 19A and B, respectively, 
and the univariate kriging estimate statistics are listed in

table 4 (bedrock B). The kriging results indicate 
channel-like features in the bedrock surface and a 
prominent bedrock high at the south border of the 
area; the results are a good representation of the 
results from other more elaborate studies.

For an example of block kriging, an investiga­ 
tive goal of establishing block values of bedrock eleva­ 
tion for a finite-difference ground-water-model grid 
having about 120-by- 120-meter cells was assumed. 
The same variogram and search criteria were used 
to estimate block values for a 13-by-13 grid that had 
about 120-by-120-meter spacing; a 4-by-4 block was 
specified. Each kriging value shown in figure 19C is 
an estimate of the average value of bedrock elevation 
throughout the about 120-by-120-meter block. The 
standard deviation for the block estimates is less than 
the standard deviation for the point estimates (table 4). 
Gray-scale maps of the kriging estimates and of the 
kriging standard deviations are shown in figures 19C 
and D, and the univariate kriging estimate statistics are 
listed in table 4 (bedrock C).
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6.3 Ground-Water-Quality Examples

The following examples are for ground-water- 
quality information consisting of concentrations deter­ 
mined for a contaminant. The principal purposes of 
the examples are to familiarize the reader with a 
kriging exercise using ground-water-quality informa­ 
tion and to illustrate indicator kriging. The examples 
also are to familiarize the reader with data that are 
strongly anisotropic and need transformation. The data 
are from a water-table aquifer developed in alluvial 
sediments where the depth to water was less than 
about 23 meters. Several analytical laboratories 
were involved in measuring the concentration of 
the contaminant in the water-quality examples. Each 
of the analytical laboratories had to follow rather 
comprehensive guidelines that specified tests of instru­ 
ment performance before sample determinations were 
made, as well as measurement of extraction efficien­ 
cies. Because of these performance guidelines, the 
opportunity for errors due to instrument error was 
considered to be either known or relatively low. In

addition to using performance guidelines, field 
quality-assurance samples also were collected. These 
samples can be used to evaluate other possible errors, 
such as cross contamination and representativeness of 
the sample. Duplicate samples for the contaminant in 
the water-quality examples indicate as much as about 
15-percent variability in reported results. This vari­ 
ability is not entirely unusual and is most likely related 
to the integrity of the analytical method or the method 
for aggregating the sample media during sample 
collection.

The set of measured locations is shown in 
figure 20 and the basic univariate statistics are listed 
in table 2 (water quality A). An initial review of the 
data indicated three important features:

1. The data seemed to have strong anisotropy at about 
150 counterclockwise degrees to the east-west 
base line.

2. The data required a natural logarithmic (log) trans­ 
formation so the distribution was approximated 
by a normal distribution.
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Figure 20. Location of measured data for ground-water-quality examples.
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3. No trends were indicated during preliminary explo­ 
ration, and ordinary kriging was tentatively 
selected as the appropriate technique.

Natural log transformations are routinely 
needed for concentration data that vary over several 
orders of magnitude, which is common in areas of 
contaminant plumes. The data were transformed to log 
space and fit acceptable criteria for normality. After 
transformation to log space, the techniques described 
in section 5.0 were used to guide the following steps 
for variogram construction:

1. An exponential model was used to fit a directional 
variogram at an angle of 150 counterclockwise 
degrees to the east-west base line. The variogram 
had a nugget of 1.00 log concentration squared, 
a sill of 3.20 log concentration squared, and a 
range of 1,295 meters [fig. 21A and table 3 (water 
quality A)].

2. An exponential model also was fit to a directional 
variogram at an angle of 240 counterclockwise 
degrees to the east-west base line. The variogram 
had a nugget of 1.00 log concentration squared, 
a sill of 3.20 log concentration squared, and a 
range of 228 meters [fig. 21B and table 3 (water 
quality A)].

3. Cross validation was performed using the geometric 
anisotropy of the two variograms and the results 
[figs. 21 C and D, and table 3 (water quality A)] 
were acceptable.

The residuals are symmetrically distributed 
(fig. 21D). However, the scatterplot (fig. 21Q indi­ 
cates that small concentrations were overestimated and 
that large concentrations were underestimated. This 
discrepancy in the estimates does not indicate an error 
in the model, but rather, indicates a consequence of 
data that have a large nugget compared to the sill; in 
this example, the nugget is approximately 30 percent 
of the sill. The large nugget decreases the predictive 
capacity of the model and increases the smoothing 
introduced by kriging.

The established variogram then was used, 
along with the measured locations, to produce ordinary 
kriging estimates for all points in a 40-by-20 grid using 
a grid spacing of about 91 -by-91 meters. For the kriging 
procedure, a search radius of about 1,524 meters with 
maximum of 16 and a minimum of 8 locations was 
specified. Gray-scale maps of kriging estimates, in

back-transformed and log-space concentrations, as 
well as the kriging standard deviations in log space, 
are shown in figures 22A, B, and C.

The back-transformation procedure was a 
simple exponentiation of the log-space kriging esti­ 
mates. Such a back-transformation does not use bias- 
correction factors to deal with moment bias; conse­ 
quently, the back-transformed values need to be inter­ 
preted as median values rather than average, or mean, 
values. A simple back-transformation, however, is 
convenient and was performed, principally, to enhance 
visual interpretation of the kriging estimates. Univariate 
statistics for the log-space kriging estimates are listed in 
table 4 (water quality A). The kriging results do have 
noticeable smoothing; however, they also indicate a 
plume emanating from a location just northwest of the 
center of the area and indicate movement and some 
dispersion to the southeast; the estimates are a very 
good representation of the results from other more elab­ 
orate studies.

Additionally, to indicate the effect of the log 
transform on probabilities in converting, or back- 
transforming, kriging estimates, the kriging estimates 
and the kriging standard deviations, in log space, 
were used to estimate the one-sided 95th percentile 
at each kriging-estimate location according to the 
formula:

Co.95 = exp[Z(*0 )

where

is the kriging estimate at location, £,, 
in log space; and

GK feo) is tne corresponding kriging standard 
deviation in log space.

The resulting map is shown in figure 22D and can 
be used to indicate areas where the true concentration 
has only a 5-percent chance of exceeding the value 
indicated.

To perform indicator kriging, the indicator 
transformation, as described in section 3.0, was 
applied. An indicator cutoff equal to the median 
value of 270 micrograms per liter for the untrans- 
formed measured data was selected. The model for 
indicator kriging estimates the probability that the 
concentration would be less than the indicator cutoff.
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The techniques described in section 5.0 were used to 
guide the following steps in variogram construction:

1. No trends were indicated during preliminary 
exploration, and ordinary kriging was tenta­ 
tively selected as the appropriate technique.

2. A spherical model was used to fit an anisotropic 
variogram at an angle of 150 counterclockwise 
degrees to the east-west base line. The variogram 
had a nugget of 0.05 indicator units squared, a 
sill of 0.25 indicator units squared, and a range 
of 610 meters [fig. 23A and table 3 (water 
quality B)].

3. A spherical model also was fit to an anisotropic 
variogram at an angle of 240 counterclockwise 
degrees to the east-west base line. The variogram 
had a nugget of 0.05 indicator units squared, a 
sill of 0.25 indicator units squared, and a range 
of 213 meters [fig. 235 and table 3 (water 
quality B].

The established variogram, and the indicator 
transform of the measured data were used to produce 
ordinary kriging estimates for the same grid and 
search criteria as the first ground-water-quality 
example. A gray-scale map of the kriging estimates 
is shown in figure 24. The kriging indicator map 
provides a gridded estimate for the probability of 
contaminant values being less than the indicator 
cutoff, which is a concentration of 270 micrograms 
per liter in this example.

The cutoff value selected for the preceding 
indicator kriging example is probably higher than 
many investigators involved in HTRW-site investiga­ 
tions would like to use. The number of measurements 
[66 in table 2 (water quality A)] used in this example 
is probably a high number of measurements for typical 
HTRW-site investigations; yet, even with this high 
number of measurements, it was not possible to 
construct a variogram for indicator values much lower 
than the median. An alternative to this problem would 
be to assume the log-transformed kriging model devel­ 
oped in the first water-quality example is correct and 
to rely on the kriging estimates from that model to 
determine areas greater than or lesser than some indi­ 
cator value. The same estimates also could be used to 
compute the probability that the concentration was 
less than some arbitrarily selected value.

7.0 REVIEW OF KRIGING 
APPLICATIONS

This section presents a brief discussion of three 
principal topics applicability of kriging techniques, 
important elements that need to be addressed in 
kriging applications, and errors in measured data. 
Much of the information presented in this section has 
been gathered from other sections of this report and 
is presented collectively here. The items identified 
as important to kriging applications may be helpful 
in assessing kriging applications that are under 
review.

7.1 Applicability of Kriging

In the preceding sections of this report, the 
theory of kriging techniques has been summarized, 
and examples have been given to indicate the use of 
kriging techniques in HTRW-site investigations. The 
examples presented were selected so that kriging 
would provide satisfactory results or be applicable. 
Additionally, the examples were designed so that, for 
the purposes of demonstration, some sort of adjust­ 
ment of the data was needed; that is, drift was removed 
or transformations were made.

Investigators are very likely to have data 
for which, in a strict sense, kriging may be applicable, 
but results may be unsatisfactory. Much of the funda­ 
mental information that might be used to establish 
how satisfactory the application of kriging techniques 
may be has been presented in the preceding sections. 
In particular, section 5.0 includes a detailed discussion 
on variogram construction, which is the preliminary 
step in any kriging application, and systematically 
describes many decisions in variogram construction 
that need attention. If a variogram that has structure, 
or some identifiable dependence on lag, cannot be 
obtained from the data or be obtained from other 
means such as institutional knowledge, the results 
of a kriging application may not be satisfactory. Some 
additional discussion that is designed to aid in evalu­ 
ating the amount of data that may be required for 
kriging applications is presented in this section. This 
discussion assumes that the measured data are correct; 
a separate and brief discussion of measurement errors 
also is presented in this section.
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Initially, many investigators have a tendency to 
focus on the amount of measured data that is available 
as an initial consideration; however, the applicability 
of kriging techniques cannot be based simply on the 
amount of measured data. Unless the investigator 
is presented with a reliable variogram, the amount 
and spatial distribution of measured data can be 
a constraint. If, for instance, there are fewer than 
25 measured values at optimal locations from the field, 
there may not be enough data to confidently estimate 
Gaussian variogram parameters; however, a small 
amount of measured data may be suitable for other 
variogram models.

How much data are needed to apply kriging 
techniques is not easy to determine, but information 
in this report, especially in section 5.0, and the litera­ 
ture cited can provide some guidance. Section 5.3 
points out that a good minimum for the number of 
pairs of locations in each variogram lag is 30, and 
the American Society for Testing and Materials 
(1996) has suggested that 20 may work well also. 
Most investigators would probably feel comfortable 
defining a Gaussian form, which has more inflection

and, consequently, is more difficult to fit compared 
to the other standard variogram models, with 8 to 
10 optimally located sample variogram points (enough 
points to define the nugget, two areas of curvature, and 
the sill). In this ideal case, about 25 measured values 
would be needed to fulfill the conservative minimum 
of 30 pairs per lag. In this case, the relatively few 
measured data points need to be systematically located 
so that the optimally located variogram points can 
be computed. If the measured data were not located 
systematically, as is usually the case, then more 
measured data would be needed.

Once sample variogram points meeting the 
required number of pairs can be defined, the resultant 
variogram still must have structure. The variogram, for 
instance, may simply exhibit noise about a horizontal 
line, a case that has no structure. If measured data are 
clustered and the number of lags has been minimized 
to meet the required number of pairs of locations, the 
variogram may seem horizontal because it is domi­ 
nated by small-scale effects in the clustered data. 
The investigator then has latitude to adjust the lags 
and attempt to balance the lag spacing and required
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number of pairs per lag interval, as described in 
section 5.3. However, the variogram also could seem 
horizontal because the actual sill is reached within a 
very small lag. If that lag is smaller than the minimum 
spacing of measured data, obtaining structure in the 
variogram would not be possible. In such cases, the 
measured data need to be considered independent, 
and kriging techniques, at the lag of the measured 
data, would be ineffective, or at least, offer little 
advantage over other interpolation techniques.

7.2 Important Elements of 
Kriging Applications

Many important elements of kriging applica­ 
tions have been discussed in this report. These 
discussions have been presented as a systematic and 
sequential method designed to provide guidance in 
kriging applications. Occasionally, an investigator is 
presented with the results of a previous kriging appli­ 
cation and needs to evaluate the application before 
deciding whether or not to use the results. This section 
presents a brief review of some important elements 
of kriging applications that can be used in that 
evaluation. For a more detailed discussion of impor­ 
tant elements of geostatistical applications, the reader 
is referred to the American Society for Testing 
and Materials (1994) for content of geostatistical 
investigations.

The presence of or lack of stationarity in the 
spatial mean needs to be demonstrated definitively. 
If the spatial mean is nonstationary, then drift is 
indicated and appropriate measures to address the 
nonstationarity, which are similar to the measures 
presented in section 5.2, need to be part of the 
application. In ideal situations, nonstationarity occurs 
as a gradual change. HTRW-site investigations may 
present cases, especially when using with ground- 
water-quality data in and around plumes, that have 
abrupt step-like changes at plume boundaries and do 
not appear as regional drift. In these cases, the investi­ 
gator needs to be aware that, without knowledge of the 
plume boundaries, points from within the plume will 
be grouped with points from outside the plume in 
computing the sample variogram. The effect of this 
problem is minimized as long as the investigator can 
define lags that allow data points within the plume to 
be grouped together.

The construction of the variogram needs to 
be described and included as part of the kriging 
application documentation. The description needs 
to address the number of pairs of locations in each 
variogram lag and to demonstrate that the variogram 
has structure. A plot of the variogram is helpful to 
demonstrate the presence or absence of structure. 
The variogram construction discussion also needs 
to establish the presence of or lack of isotropy. If 
anisotropy is present, its nature needs to be estab­ 
lished, and it needs to be addressed by variogram 
adjustments similar to the adjustments presented 
in section 5.4.2.

The variogram cross-validation statistics 
described in section 5.8 are useful and, if available, 
they can aid in the evaluation of a kriging application; 
authoritative and definitive kriging applications 
should include cross validation. Often, the most 
useful variograms have cross-validation statistics that 
conform to the guidelines discussed in section 5.8. 
Section 5.8.1 indicates that the cross-validation exer­ 
cise needs to balance minimizing the kriging cross- 
validation errors with efforts to guard against bias. 
Also, as discussed in section 5.8.1, if probabilistic 
statements are part of the kriging application, there 
needs to be some investigation of the normality of 
the reduced kriging error, such as the cross-validation 
probability plots included with the examples in 
section 6.0.

Maps of the kriging estimates and standard 
deviations need to be presented or discussed. 
The maps of kriging estimates need to conform to 
any qualitative information about the information 
portrayed on the maps that is available to the investi­ 
gator. The maps of kriged standard deviations can 
be used to delineate areas of large uncertainty in the 
kriging estimates.

Finally, the variogram and kriging algorithms 
are intended for interpolation rather than extrapolation 
tools. Once the application extends to areas beyond the 
geographic extremes of the measured data, or perhaps 
those extremes plus the range, there needs to be some 
qualification of the area of extrapolation. For instance, 
in universal kriging, the practitioner would need to 
have some assurance that the conditions of drift 
defined in the study area continue into the area of 
extrapolation.
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7.3 Errors in Measured Data

Data associated with HTRW-site investigations 
have the same possibilities for errors that most investi­ 
gations do. The errors may involve, among others, 
bias, inaccuracy, or lack of representativeness. The 
classical nature of these errors is described in a publi­ 
cation by the U.S. Army Corps of Engineers (1995), 
which describes HTRW data-quality design.

The presence of contamination may complicate 
the function of errors in HTRW-site investigations. 
Because these investigations often concern contamina­ 
tion, there can be large ranges of values for data 
involving contaminant concentrations, and these large 
ranges have a tendency to increase the incidence of 
data that may seem to be statistical outliers. Even more 
complicating is the presence of high concentrations of 
organic materials that may create challenging analyt­ 
ical problems in laboratory determinations that also 
may result in reported values that seem to be statistical 
outliers. In either case, the kriging practitioner is likely 
to find that the apparent outliers have a strong effect on 
the results of the kriging application.

When HTRW-site investigations find data that 
seem to be outliers, the data need to be very carefully 
evaluated before removal is seriously contemplated. 
Automated outlier detection tools, as suggested in 
section 5.7, may be best used to identify points that 
may be outliers and warrant further investigation. 
Often data that appear to be outliers may be the 
most important and meaningful data of all measure­ 
ments. For example, in the first case described in the 
preceding paragraph, apparent outliers often are repre­ 
sentative values. In the second case, the reported value 
may be an erroneous determination that has been 
affected by the extremely contaminated nature of the 
sample matrix. The investigator needs to either possess 
or have access to qualitative or institutional knowledge 
of the study area that aids in outlier interpretation.

8.0 OTHER SPATIAL PREDICTION 
TECHNIQUES

In this section, some alternative approaches to 
spatial prediction are discussed. At the beginning of 
section 3.0, the distinction between stochastic and 
nonstochastic techniques for spatial prediction was 
discussed. Kriging is a stochastic technique because of 
the structure that is imposed in terms of an underlying

random process (the regionalized variables) with 
joint probability distributions that obey certain 
assumptions. Kriging yields the predictor that is statis­ 
tically optimal in that it is the best linear unbiased 
predictor, given certain assumptions that are detailed 
in section 3.0. There are other stochastic techniques 
that are less well known, such as Markov-random-field 
prediction and Bayesian nonparametric smoothing 
(Cressie, 1991), but these techniques are not discussed 
here.

Several techniques that are often applied in 
a nonstochastic setting are discussed. Techniques 
applied in a nonstochastic setting are generally applied 
strictly empirically and are not evaluated by rigorous 
statistical criteria, such as mean-squared prediction 
error although, as discussed in section 3.0, such 
criteria may be applied in certain of the techniques, 
such as simple average and trend analysis. As indi­ 
cated in this report, there are some compelling advan­ 
tages for assuming some kind of stochastic setting. 
However, the simplicity of not postulating and 
justifying the structure and assumptions inherent in 
stochastic analyses might be considered one advantage 
of nonstochastic techniques, and a nonstochastic anal­ 
ysis may be perfectly adequate for certain problems. 
In addition to statistical optimality and simplicity, 
there are other considerations in selecting a spatial- 
prediction technique including properties such as 
ease of computation, sensitivity to data errors, and 
whether the predictors are exact interpolators; that is, 
the interpolators match the measurements exactly at 
the measurement locations x^ t *2»---» %n- The last prop­ 
erty is one that needs to be given careful consideration. 
Kriging, as usually applied, is an exact interpolator. 
Questions may be raised, however, about whether 
exact interpolation is a desirable property if the 
measurements are contaminated with a considerable 
measurement error. One advantage of stochastic tech­ 
niques is that, generally, the existence of measurement 
error may be incorporated objectively; in fact, some 
kriging software packages (including STATPAC) have 
incorporated this feature, resulting in a surface that is 
not an exact interpolator. Several of the nonstochastic 
techniques discussed in this section depend on a 
parameter that controls the deviation from exact inter­ 
polation. The ability to adjust such a parameter when 
using these techniques lends a degree of flexibility, but 
selecting the best value may not be straightforward 
and may involve considerable subjectivity.

64 Overview and Technical and Practical Aspects for Use of Geostatistics in Hazardous-, Toxic-, 
and Radioactive-Waste-Site Investigations



In most of the following techniques, the 
predictor of the process at location XQ is a linear 
combination of the measurements at locations x,-, 
i=l, 2,..., n. Using Z(XQ) to denote an arbitrary 
predictor [this notation distinguishes the predictors 
to be discussed in this section from the kriging 
predictor, which is denoted by Z(XQJ], the definition 
of Z (XQ) is

(8-1)
i= 1

Although this form is the same form that is taken by 
the kriging predictor, the difference is in the way the 
coefficients w,- are computed.

8.1 Global Measure of Central 
Tendency (Simple Averaging)

The predictor for the process at any location XQ 
is the simple average of the measurements; that is, the 
weights Wj are all equal and are given by (Cressie, 
1991)

w,- = -. 
n

(8-2)

This predictor represents the smoothest possible 
predictor surface. In using this predictor, a certain 
degree of spatial homogeneity is assumed. No attempt 
is made to incorporate any detectable patterns (or 
trends) in the mean or variance of the data as a func­ 
tion of location, and the fact that measurements made 
at points that are close together may be related is dis­ 
regarded. Such a predictor has the advantage of being 
very simple to compute; it needs no estimation of a 
variogram or other model parameters. The disadvan­ 
tage is that representing the spatial field by a single 
value ignores much of the relevant and interesting 
structure that may be very helpful in improving 
predictions. As discussed in section 3.3, if applied in 
a stochastic setting, this predictor would be optimal 
(best linear unbiased) if there is no drift and if resid­ 
uals are uncorrelated and have a common variance.

8.2 Simple Moving Average

Let hi0 be the distance of XQ from */, let h^ be 
the ordered (from smallest to largest) distances, and fix 
1 < k < n. Then the weights w, are (Cressie, 1991)

-,

(8-3)
hiO> h[kO]

Thus, this predictor is the average of the measure­ 
ments at the k nearest locations from XQ.

If k is equal to n, this predictor is identical to the 
simple average, with weights as given in equation 8-2. 
A choice of k smaller than n assumes that the predictor 
needs to incorporate more of the local fluctuation 
measured in the data, or, equivalently, that measure­ 
ments at locations near *o need be more informative 
than measurements at other locations in predicting 
z(*o); the smaller k is, the more variable the predictor. 
If k = 1, the predictor is an exact interpolator and is 
constant on the Voronoi polygons (see section 8.4) 
induced by the measurement locations.

There are several variations of this predictor. In 
one such variation, a distance r may be fixed (rather 
than fixing k) and averages over locations that are 
within distance r of XQ may be obtained. Additionally, 
a moving median may be used rather than a moving 
average. Sorting and testing distances can slow 
computations compared to obtaining the simple 
average, and use of medians rather than means results 
in a predictor that is more resistant to outliers.

8.3 Inverse-Distance Squared 
Weighted Average

1978)
The weights w, are (Journel and Huijbregts,

W =

h 2 niO

' n (8-4)

where again hfQ is the distance of XQ from Xj.
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In the simple moving average, weights are the 
same, provided the measurement locations are suffi­ 
ciently close to the prediction locations and are zero 
otherwise. For the inverse-distance squared method, 
weights are forced to decrease smoothly as distance 
from the prediction location increases. This predictor 
again has the advantage of being easy to compute. 
Another feature of this predictor is that it is an exact 
interpolator. In addition, the exponent 2 of hi0 may 
be changed to any positive number, providing some 
flexibility in determining the rate of decrease of 
weights as a function of distance from XQ. Isaaks and 
Srivastava (1989, p. 257-259) presented an example 
describing the effects on weights of changing the 
exponent.

defining the associated area Aj, A5 , A6 . For this 
example,./, k, and 1 in the general equation 8-5 are 1, 
5, and 6, so the weights assigned to points *i, x_5 , 
and x_£ are

A 1+ A5 +A6

and (8-6)

8.4 Triangulation

To compute this predictor, the region R is parti­ 
tioned into what are referred to as Voronoi polygons 
Vj, V2» > n̂, with Vj being the set of locations closer 
to measurement location */ than to any other measure­ 
ment location. If any two polygons, V^- and Vp share a 
common boundary, *,- and X: are joined with a straight 
line. The collection of all such lines defines what is 
known as the Delauney triangulation. One such 
triangle contains the prediction location XQ', the 
vertices of this triangle, which are measurement loca­ 
tions, are labeled x_j, x^, and x^. The spatial prediction 
at XQ is the planar interpolant through the coordinates 
[*p z(x_j)], [xfr zQcfc)], and [x^, z(x$\. By joining XQ and 
x_j, x_fc, and x±, three subtriangles are formed. The 
weights w,- are (Cressie, 1991)

W; =

o,

-, i = j, k, or 1
.

otherwise

(8-5)

where

A;l is the area of the subtriangle opposite 
vertex x; .

These definitions are shown in figure 25. In this 
figure, the dashed lines depict the Voronoi polygons 
associated with points x_i, x_2, ..., x^, and the solid lines 
define the Delauney triangulation. Vertices of the 
triangle containing the prediction point XQ are x±, x$, 
and X£, and dotted lines represent the subtriangles

The weight assigned to a point is proportional to the 
area of the triangle opposite the point.

Computation of this predictor is slower than 
computation of the predictors in sections 8.1, 8.2, and 
8.3. The predictor is an exact interpolator, and the 
surface produced is continuous but not differentiable 
at the edges of the triangulation.

EXPLANATION

  Delauney Triangulation

    Voronoi Polygons

  -*****  Subtriangles

Figure 25. Diagram showing Voronoi polygons.
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8.5 Splines

In spline modeling, the measurements are inter­ 
polated using combinations of certain so-called basis 
functions. These basis functions are usually piecewise 
polynomials of a certain degree that are determined by 
the user; let this degree be k. The coefficients of these 
polynomials are chosen so that the function values and 
the first k-\ derivatives agree at the locations where 
they join. The larger k is, the smoother the prediction 
surface is. Spline techniques are often applied in a 
nonstochastic framework; in such, they represent a 
way of fitting a surface that has certain smoothness 
properties to measurements at a set of locations with 
no explicit consideration of statistical optimality. 
There is, however, a considerable body of work 
in which this technique is applied in a stochastic 
setting. Splines may be used, for example, in non- 
parametric regression estimation problems (Wegman 
and Wright, 1983).

A typical approach to formulating a spline 
problem is to pose the problem as an optimization 
problem. In one special formulation, the first two 
derivatives of the prediction surface are assumed to 
exist, which imposes a certain degree of smoothness, 
and the spline function is assumed to minimize

(8-7)
i = l

where

Q is a term that depends on the first two deriva­ 
tives of the predictor surface.

The parameter r| is a nonnegative number that needs 
to be specified by the user; the value of this parameter 
indicates the trade-off between goodness of fit to the 
data, measured by the first term, and smoothness, as 
measured by Q. If r| is 0, the spline is an exact interpo­ 
lator and passes through all the data points. If rj > 0, 
the spline is not an exact interpolator. (Splines that 
are not exact interpolators are referred to as smoothing 
splines.) There are a number of numerical procedures 
that may be used for fitting splines, but allowing the 
smoothing parameter rj to be greater than 0 renders the 
computational problem more complex.

Under some conditions, a solution to the optimi­ 
zation problem (eq. 8-7) also may be obtained by a 
kriging algorithm, if the smoothing parameter T| is 
equal to the variance of the measurement error and if 
a special form is chosen for the covariance function. In 
this situation, spline approximation is a special type of 
kriging. However, the variogram that needs to be used 
in the kriging equations to make the kriging predictor 
equal to the spline predictor is determined by the basis 
functions selected for the spline. Because the basis 
functions selected are subjective on the part of the 
user, the resulting equivalent variogram may not 
be representative of the true variogram of the data. 
Because kriging uses the data to indicate reasonable 
variogram choices, kriging has an important advantage 
over splines. Another advantage of using the kriging 
framework is the interpretation of the smoothing 
parameter in terms of measurement errors. Many 
times, an objective estimate of the magnitude of the 
measurement error can be obtained. The connections 
between kriging and splines are discussed further by 
Wegman and Wright (1983), Watson (1984), and 
Cressie (1991).

8.6 Trend-Surface Analysis

Trend-surface analysis is the process of fitting 
a function, such as that in equation 3-43 to the data, 
using least squares to determine the coefficients that 
yield the best fit. Computationally, trend-surface 
analysis is equivalent to universal kriging, with an 
assumption that the Z*(^,)'s in equation 3-16 are 
uncorrelated. Thus, there is no need to estimate a vari­ 
ogram, and readily available regression packages may 
be used for estimating the coefficients. As in universal 
kriging, polynomial surfaces are the most commonly 
used. When trend surfaces are applied in a stochastic 
setting, the resulting predictor is optimal if deviations 
from the surface are uncorrelated and have a common 
variance.

8.7 Simulation

In this section, a regionalized random variable 
Z(x), where x is a location in a two-dimensional study 
region /?, is considered. Kriging is an interpolation 
algorithm that yields spatial predictions ZQc) that 
are optimal, as has been discussed in this report. The
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mean-squared prediction error is smallest among all 
predictors that are linear in the measurements. This 
optimality property is local, in that the mean-squared 
error of predictions at unsampled locations, when 
considered one at a time, is minimized without 
specific regard to preservation of global spatial 
features. If, however, the actual realization z(x) could 
be compared to the kriged prediction surface based on 
n measured values, the kriged surface would be much 
smoother than the actual surface, especially in areas 
of sparser sampling. Thus, the kriged surface is a 
good and realistic representation of reality in that the 
n measured values are honored, but the kriged surface 
is less realistic for global properties, such as overall 
variability.

The purpose of simulation is to produce one or 
more spatial surfaces (realizations) that are more real­ 
istic in preserving global properties than the surface 
produced by interpolation algorithms, such as kriging. 
These realizations are produced by using numbers that 
are drawn randomly (Monte Carlo) to impart vari­ 
ability to the simulated surface, making the simulated 
surface more representative of the overall appearance 
of the actual surface. Generally, simulation uses the 
idea that the true value of a random surface may be 
expressed as the sum of a predicted value (which is 
obtained by kriging) plus a random error, which varies 
spatially and depends on the random numbers drawn. 
A number of independent realizations are generated, 
and these realizations use equally probable representa­ 
tions of reality.

A simulation algorithm is said to be conditional 
if the resulting realizations agree with the measure­ 
ments at measurement locations x_i, x2,..., x^. If the 
underlying process Z(x) is assumed to be Gaussian 
(or if a transformation is found that makes the 
process Gaussian), the most common technique 
of conditional simulation is known as sequential 
Gaussian simulation (Deutsch and Journel, 1992, 
p. 141-143). Another, more complicated, Gaussian 
simulation technique that is particularly useful 
for three-dimensional simulations because of its 
computational efficiency is the turning-bands tech­ 
nique (Journel and Huijbregts, 1978; Deutsch and 
Journel, 1992).

In sequential Gaussian simulation, a set of 
grid points for which simulated values are desired 
is defined, and the points are addressed sequentially

from location to location along a predetermined 
path. At each location, a specified set of neighboring 
conditioning data are retained, including the original 
data and simulated grid-location values at previous 
traversed grid locations along the path. Then, a 
random number is generated from a Gaussian distribu­ 
tion in which the conditional mean and the variance 
are determined using a kriging algorithm. The value of 
the random number determines the simulated process 
at this location. The conditional Gaussian distribution 
used in the simulation is identical to the conditional 
distribution discussed in section 3.5.1. An idea of the 
computational requirements can be obtained from the 
fact that a kriging algorithm needs to be applied for 
each simulation location. For multiple realizations, if 
the path connecting the grid points remains the same, 
the kriging equations need to be solved for only the 
first simulation. However, implementation of this 
procedure needs to account for the assumptions 
concerning the existence of drift; the details of such 
an implementation are beyond the scope of this report.

A sequential Gaussian simulation also may 
be applied in indicator kriging (see section 3.5.2). At 
each grid point along the path, a (Bernoulli) random 
variable that has only two possible values, 0 or 1, is 
generated, with the relative probability of these two 
values being determined by indicator kriging applied, 
as in the previous paragraph, to the original observed 
indicator data and the previously simulated indicator 
values.

To get an idea of how simulation results might 
be used in a risk-assessment setting, assume again 
that the underlying process is Gaussian and that 
1,000 conditional realizations have been generated. 
If a single grid point XQ (which is not a measurement 
point) is used, then the simulation has produced 
1,000 values at XQ, which, when analyzed in histo­ 
gram form, approximate the probability distribution 
of potential measurements at that location. If an 
interval that has exactly 25 (2.5 percent) of the values 
less than its lower end and 25 of the values larger 
than its upper end were established, the interval 
would almost correspond to the 95-percent prediction 
interval Z(XQ) - \.96a K (XQ) to Z(*o) + 1.96a^(^o) 
discussed in section 3.5.1. For this single location, 
the simulation would not produce much more informa­ 
tion than kriging alone would have produced. The 
real value of simulation is that realizations, not just
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at a single location, but at all of the grid locations 
jointly, can be obtained. These realizations then 
can be used to calculate probabilities associated 
with any number of spatial locations together. For 
example, the probability that the largest (maximum) 
contaminant value over a certain subregion is greater 
than a particular concentration might be assessed. 
(If the word "largest" here were replaced with 
"average," then block kriging could be used to 
obtain the answer.)

A central point that needs to be emphasized is 
that simulation is especially useful when probabilities 
associated with complicated, usually nonlinear, func­ 
tions of the regionalized variables for a region need 
to be analyzed. The maximum function mentioned 
in the preceding paragraph is one simple example. 
Another example is the problem of determining place­ 
ment of ground-water monitoring wells to detect and 
monitor ground-water contamination emanating from 
a potential point source. Given an existing set of 
hydraulic-head data, kriging might be applied and 
flow paths determined from resulting hydraulic-head 
gradients. Intersection of the flow path from the point 
source with the regional boundary then might be used 
to determine monitoring-well placement. Conditional 
simulation would be useful to determine the uncer­ 
tainty associated with well placement or to give an 
indication of how many monitoring wells might be 
appropriate. In this example, the variable of interest, 
well location, is a complicated function of hydraulic 
heads so this is a problem for which simulation is 
well suited. The reader may refer to Easley and others 
(1991) for a more detailed discussion of this applica­ 
tion of kriging.

The complicated functions of interest in ground- 
water studies often involve physically based ground- 
water flow models. Conditional simulation may be 
used, for example, to generate a suite of hydraulic- 
conductivity realizations to be used as input to a 
model that produces as output a set of corresponding 
hydraulic-head realizations. Weber and others (1991) 
discussed how ground-water modeling might be used 
with conditional simulation to study the monitoring- 
well-placement problem discussed in the preceding 
paragraph.

9.0 SUMMARY

The geostatistical technique known as kriging 
can be used to determine optimal weighting of 
measurements at sampled locations for obtaining 
predictions, or kriging estimates, at unsampled loca­ 
tions. Kriging also provides information concerning 
the uncertainty associated with kriging estimates. 
The uncertainty information available from kriging, 
as well as the optimal weighting, distinguishes kriging 
from other techniques used for spatial modeling.

The theory of regionalized random variables 
is the basis for different forms of kriging. Ordinary 
kriging is used when the spatial mean is considered 
constant. Universal kriging is an extension of ordinary 
kriging that can be used to address a nonconstant 
spatial mean. Block kriging is used to obtain kriging 
estimates for a block of area that is larger than the area 
represented by an individual sample. Indicator kriging 
implements the kriging equations nonparametrically.

A fundamental step in kriging applications is 
development of a variogram. The variogram is usually 
developed from the results of measurements at many 
locations within the application area. The variogram 
describes spatial correlation within the application 
area and provides basic information required to deter­ 
mine optimal weights for measurements to be used in 
making kriging estimates. Information from the exer­ 
cise of variogram development can be used to cross 
validate the variogram and the cross-validation statis­ 
tics can, in turn, fine tune variogram development.

Example applications of kriging illustrate basic 
techniques and some constraints that apply to kriging. 
These applications also illustrate how different types 
of kriging, such as ordinary, universal, block, and indi­ 
cator, can be used.

Other spatial modeling techniques include 
nonstochastic techniques such as simple averaging, 
inverse-distance squared weighted averaging, triangu- 
lation, splines, and trend-surface analysis. These 
nonstochastic techniques can be simpler to apply 
than kriging and may be appropriate to use for 
some problems, especially when it is not necessary 
to evaluate results with respect to statistical criteria. 
Another extension to kriging, simulation, is intended 
to preserve overall variability and to compensate for 
the tendency of kriging to smooth results.
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