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around the wells (fig. 9). Gravity at each of the networks was referenced to three primary-reference
gravity stations—NREF, WREF, and EREF—on or near crystalline bedrock where changes in gravity
caused by aquifer-storage change were expected to be minimal (fig. 5). Two stations, NREF and WREF,
were on crystalline rock at the base of the Tortolita and Tucson Mountains, respectively. EREF was on
alluvium near the base of the Santa Catalina Mountains because exposures of crystalline rock were not
accessible.

The vertical and horizontal positions of all stations were surveyed relative to the primary-reference
stations with an accuracy of about 1 cm (0.39 in.) using differential GPS technology and geodetic GPS
receivers during March 1996. Two stations, MW6 and MW12, were selected for quarterly GPS surveys
of position relative to the three primary-reference stations for the purpose of monitoring changes in
position, primarily vertical changes, that can cause changes in gravity. A few other stations were resurveyed
as well during the study. Variations of more than 1 cm (0.39 in.) in the relative vertical or horizontal
position did not occur among the stations.

Differences in gravity between the primary-reference stations and stations in the regional and Cafiada
del Oro networks were surveyed on a quarterly basis from February 1996 to October 1998. Data were
not collected from October 1996 through June 1997 because the instrument was being repaired. A total
of eight surveys were made of the regional and Cafiada del Oro networks. Differences in gravity between
WREF and stations in the network near the withdrawal wells were surveyed frequently during June
through November 1998.

Local-reference stations were designated within the Cafiada del Oro network and the network near
the withdrawal well for the purpose of facilitating the speed of the surveys. Gravity at each network
station relative to gravity at the primary-reference stations was determined using two surveys. One
survey measured gravity at each network station relative to gravity at the local-reference station and
another survey measured gravity at the local-reference station relative to gravity at one or more primary-
reference stations. Four local-reference stations were designated within the Cafiada del Oro network.
One local-reference station was designated for the network near the withdrawal wells.

Each network survey comprised subsurveys of 5 to 8 stations that included at least 2 measurements
at each network station and at least 3 measurements at a primary-reference station or local-reference
station. Accuracies of subsurveys generally were determined by the linearity of drift rates during the
surveys. Accuracies of measured differences in gravity among stations in a subsurvey were generally
better than £0.004 mGal on the basis of the standard deviations of three or more measured differences
in gravity. Subsurveys that displayed nonlinear drift rates and high variations in repeated gravity
differences between stations were discarded and resurveyed. Subsurveys of the regional and Cafiada del
Oro networks included a reference station and one or more stations in common with another subsurvey.
Gravity at the local-reference stations within the the Cafiada del Oro network was measured relative to
the EREF and NREF stations during the regional-network survey. Most of the quarterly surveys also
included an additional subsurvey that directly measured the difference in gravity between the local
reference stations and the reference stations EREF and NREF. Gravity at the network near the withdrawal
wells was measured relative to gravity at WREF using a subsurvey that included three stations in common
with the regional network.
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Figure 5. Regional network of aquifer-storage monitor stations and rate of gravity change, July 1997 to October 1998.

RESULTS
Regional Network

Twenty-two gravity stations were established throughout the Lower Cafiada del Oro subbasin to monitor
regional changes in aquifer storage and estimate specific yield of the aquifer (fig. 5). The network
included 13 stations at monitor wells, MW1 through MW13, where water levels also were measured.
Obstructions in wells prevented water-level measurements at MW1 and MW13. Water levels at a nearby
well, MW 13b, were measured as a replacement for MW13. A well in which water levels could be measured
was not available near MW1. The network included nine stations at existing and newly constructed
vertical- and horizontal-control benchmarks—RSM1-RSM9. Two stations, MW8 and RSM4, were destroyed
by construction equipment during the investigation.

Losses in aquifer storage occurred from February 1996 to October 1998 throughout the Lower Cafiada
del Oro subbasin on the basis of 4 to 18 ft of water-level decline in the monitor wells (fig. 6). Water
levels generally declined 4 to 6 ft throughout the middle part of the study area; however, declines were
greater near the northeast margin of the study area at station MW3 and at the southwest margin of the
study area at stations MW7 and MW12. The greatest decline, 18 ft, occurred at MW3 near the Cafiada del
Oro Wash at First Avenue. Declines of about 14 and 16 ft occurred at MW12 and MW7, respectively, at
the southwestern boundary of the study area.

Rates of water-level decline during the study were nearly linear in most of the monitor wells, but
significant variations correlate with runoff. The greatest rate of water-level decline at most of the wells
occurred from July to November of 1997, which was a period of low runoff (fig. 3). Rates of water-level
decline generally were lowest during November 1997 to July 1998, which corresponds to a period of high
runoff during February and July 1998. Variation in the rate of water-level decline in relation to runoff
could be caused by variations in ground-water withdrawals by wells or recharge from infiltrated runoff.

Significant variations in gravity relative to gravity at the primary-reference stations occurred at most
of the regional aquifer-storage monitoring stations (fig. 6). Significant long-term variations occurred at
many stations; variations at other stations were dominated by quarterly changes. Apparent changes in
gravity that occurred between September 1996 and July 1997 (fig. 6), during the time of instrument
repair, were caused by a combination of instrument recalibration and variations in gravity. The greatest
change after instrument recalibration was observed at MW 10 where gravity increased by more than 0.080
mGal relative to gravity at NREF. Some or all of the increase in gravity may have been caused by
infiltration of streamflow in the adjacent wash, but the magnitude of increase is suspiciously large.
Changes at other stations after instrument recalibration are not as apparent, but observed changes during
the period September 1996 to July 1997 must not be interpreted as resulting only from changes in aquifer
storage. As a result, surveys before and after the instrument repair and recalibration must be considered
as separate data sets. Changes caused by instrument recalibration may be resolved in the future after
comparison of other surveys that were made before and after the recalibration.
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Figure 6. Gravity and water levels at regional aquifer-storage monitor stations and monitor wells and runoff at the streamflow-gaging station below Ina Road, February 1996 through October
1998. Note gap in gravity data during time of instrument repair, October 1996 to June 1997. Gravity data collected after June 1997 should be considered separate data set from data collected

prior to that time.

REGIONAL AQUIFER-STORAGE MONITOR STATIONS
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Gravity at stations in the regional network generally varied about 0.030 mGal (fig. 6) relative to
gravity at the primary-reference stations. Most of the stations display long-term decreases in gravity,
which indicate decreases in aquifer storage; however, large quarterly variations were common at many
stations. The variations are most likely caused by increases in ground-water storage after precipitation,
runoff infiltration, and recharge. Increases in gravity that occurred at most monitor wells between
November 1997 and July 1998 correlate with runoff and decreases in the rate of water-level decline or
water-level recovery (fig. 6). The lack of significant water-level recovery associated with increases in
gravity may result from increases in ground-water storage in the unsaturated zone and water levels that
are not representative of the water table.

After November 1997, the greatest change in gravity—0.020 mGal or more—occurred at stations
MW6, MW9, MW10, MW11, MW12, MW13, RSM2, RSM5, RSM6, and RSM9. Most of these stations
are in the southeastern part of the study area near the Santa Catalina Mountains. Only one station
(RSMB8) southeast of the Cafiada del Oro Wash did not display large gravity variations; although moderate
variations of about 0.010 mGal at RSM7 display a pattern similar to that at the other southeast stations.
The proximity of the Santa Catalina Mountains to the southeast stations may have resulted in greater
precipitation and infiltration of runoff; however, gravity variation at many of the southeast stations may
have been biased by infiltration along major ephemeral streams near MW6, MW10, MW11, and along the
Cafiada del Oro Wash near MW 13.

Significant changes in gravity relative to gravity at NREF also were observed at EREF from November
1997 through September 1998 (fig. 6) on the basis of several subsurveys that directly measured the
difference in gravity between the two stations. Several indirect surveys that included one of the primary-
reference stations and a common network station indicated similar changes at EREF relative to WREF.
Most of the changes are assumed to have occurred at EREF and not at NREF and WREF because EREF
is not on crystalline rock. Gravity at EREF during late February to June 1998 was about 0.030 mGal
greater than during November 1997; however, gravity decreased about 0.008 mGal during June to October
1998. The measured changes are consistent with increases in aquifer storage near the mountains that
may have occurred after infiltration of runoff during February and July 1998. Observation of changes
in gravity at EREF indicate that changes in aquifer storage near the mountains can be significant and
may result in undetected changes in gravity at stations on crystalline rock near the aquifer. The
gravitational effect of changes in aquifer storage at WREF and NREF probably are small because the
edge of the aquifer is more than several hundred feet from the stations. Uncertainty of changes in
gravity at reference stations in areas of crystalline rock cannot be resolved without repeated measurements
of the absolute value of gravity at the stations. These measurements, however, were not within the
scope of this investigation. ’
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Small variations in gravity of about 0.010 mGal or less at regional aquifer-storage monitoring stations
MWI1, MW2, RSM1, RSM3, and RSM7 probably are indicative of areas where little recharge occurred
during the study. A lack of a long-term change in gravity at RSM3 and MW2 indicate that the local
ground-water system is in equilibrium with respect to inflow and outflow, the aquifer is not present in the
area, or the storage capacity of the aquifer is low. Declining water levels at MW2 probably occur in an
aquifer that has low storage capacity. Drillers' logs are not available for MW2. The well, however, is near
crystalline bedrock outcrops in the Tortolita Mountains.

Regional changes in aquifer storage can be estimated through integration of gravity change throughout
the subbasin and conversion to mass and volume of water using equation 9. Changes can be estimated for
the period between each quarterly survey; however, many quarterly changes are approximately equal to or
less than the accuracy of surveys, £0.004 mGal, and regional integration of the gravity change for such
changes in aquifer storage would not yield a meaningful value. A more accurate estimate of average rates
of aquifer-storage change can be derived from long-term trends in gravity.

Rates of change in aquifer storage from July 1997 to October 1998 were estimated by calculating a
best-fit linear trend through the quarterly gravity data at each station in the regional network and
integrating the change across the network. Rates of gravity change ranged from decreases of 0.018
mGal/yr at MWS5 to increases of 0.011 mGal/yr at MW9 (fig. 5). The average rate of change was a
decrease of about 0.003 mGal/yr. Rates of gravity change can be grouped into three areas—west, north,
and southeast. The greatest rates of decrease in gravity occurred at stations near the west margin of
the study area where decreases in gravity averaged about 0.011 mGal/yr. Rates of change at stations
north of the Cafiada del Oro Wash and east of La Cholla Boulevard had an average decrease of about
0.003 mGal/yr. Stations southeast of the Cafiada del Oro Wash had the lowest average rate of
decrease—about 0.001 mGal/yr. Trends of increasing gravity occurred at MW6, MW9, MW11, and EREF,
which are stations nearest the Santa Catalina Mountains. Integration of gravity change throughout the
study area results in an average loss in aquifer storage of about 9,500 acre-ft/yr. This value is similar
to the estimate of 12,500 acre-ft/yr minus incidental and artificial recharge that was derived using
water-budget methods. The estimate from this investigation does not include an increase in storage that
occurred along the Cafiada del Oro Wash during 1998.
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