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Stratigraphy and Hydrologic Conditions at the
Brookhaven National Laboratory and Vicinity,
Suffolk County, New York, 1994-97

by Michael P. Scorca', William R. Dorsch?, and Douglas E. Paquette®

Abstract

Brookhaven National Laboratory (BNL)
has installed many test borings as part of an effort
to delineate the extent of ground-water
contamination at the site. In 1994, the U.S.
Geological Survey began a study in cooperation
with BNL to define the stratigraphy in the
28-square-mile area encompassing BNL, and to
monitor ground-water levels in the 300 square-
mile area of central Suffolk County that
surrounds BNL.

The uppermost geologic units at BNL are
of Pleistocene age. These sediments are underlain
unconformably by the Matawan Group-Magothy
Formation, undifferentiated (referred to as the
Magothy Formation), of Cretaceous age, which
typically consists of light- to dark-gray, variably
sorted sand interbedded with light- to dark-gray
clay layers; it also contains beds of grayish-brown
to brownish-gray sand. Bed thicknesses differ
substantially within each boring and tend to be
laterally discontinuous as a result of their
terrestrial deltaic depositional environment,
although a prominent clay unit, referred to as the
“grayish-brown clay” in this report, was
encountered at many borings. Pollen-sample
analyses confirm that this unit is of Cretaceous
age and is the uppermost unit of Cretaceous
sediments in several parts of the study area.

The upper surface of the Cretaceous
deposits is irregular within the 28-square-mile

lus. Geological Survey, Coram, N.Y.
2 Brookhaven National Laboaatory

study area and has relief of about 120 feet.
Several prominent channels and ridges in the
surface are aligned generally northwest-southeast.
The Cretaceous surface beneath BNL is
characterized more by local erosional features
than by the regional cuesta shape that was
suggested by previous authors.

The overlying Pleistocene-aged units
include (1) a sand layer overlain by the Gardiners
Clay, (2) the Gardiners Clay, and (3) upper
Pleistocene deposits, which include the Upton
unit, glacial outwash, glaciolacustrine deposits,
and terminal moraine deposits. The sand unit
below the Gardiners Clay was the first Pleistocene
unit to be deposited atop the irregular surface of
the Cretaceous deposits in this area. The
Gardiners Clay was deposited during a major rise
in sea level as the sea encroached into parts of the
present-day BNL study area. The shallow part of
the upper Pleistocene deposits generally consists
of light-brown sand and gravel but overlies green
to grayish-green, variably sorted sand, silt, and
clay at altitudes of 50 to 70 feet below sea level in
some parts of the study area. This lower part of
the upper Pleistocene deposits in the study area
was referred to by previous investigators as the
unidentified unit and has been designated as the
Upton unit in this report.

The discharge of ground water to the
Peconic and Carmans Rivers locally affects the
water-table configuration. The main ground-water
divide on Long Island is about 0.5 miles north of
the site; a secondary divide originates near the
start of flow of the Peconic River and extends
east-southeastward toward the South Fork. The
water-table configuration on the BNL site is

Abstract 1



affected by pumping from supply wells and
remediation wells, by infiltration of the water
through recharge basins, by discharge from the
sewage-treatment plant, and by local near-surface
clay units.

The horizontal hydraulic gradient at BNL
typically is 0.001 foot per foot but can steepen
near recharge basins and pumping wells. Vertical
flow gradients within the upper Pleistocene
deposits (upper glacial aquifer) were as large as
0.007 foot per foot (downward) in the northern
part of BNL and were negligible in the southern
part. Downward vertical gradients between the
lower part of the upper glacial aquifer and the
upper part of the Magothy Formation (Magothy
aquifer) were about 0.018 foot per foot
throughout the site.

INTRODUCTION

Brookhaven National Laboratory (BNL) is a
multidisciplinary scientific research facility in
central Suffolk County, Long Island, N.Y., that is
owned by the U.S. Department of Energy (DOE) and
was managed by Associated Universities, Inc., until
1997; it is currently managed by Brookhaven
Science Associates LLC. BNL is on a 5,300-acre
(8.3 mi?) site in the western part of the area known
locally as the Pine Barrens (fig. 1). Much of this part
of Suffolk County is relatively undisturbed woodland
and is the least industrialized part of Long Island
(Krulikas, 1986).

Ground water is the sole source of freshwater
supply for the 1.3 million residents of Suffolk County
(Long Island Lighting Company, 1991). Development
of this resource, and protection of its chemical quality,
are major concerns of water-management agencies.
The New York State Department of Environmental
Conservation has designated the Pine Barrens as a
“special ground-water protection area” (SPGA)
because it is a sparsely developed region in which
precipitation recharges the deep part of the aquifer
system (Stackelberg and Siwiec, 1993). Ground-water
protection in the Pine Barrens is important for
maintaining the water quality in this part of Long
Island’s designated sole-source aquifer system.

Past waste-handling and disposal practices,
which were previously accepted, and accidental spills

have resulted in contamination of soils and ground
water in some parts of the BNL site. In 1992, DOE
entered into an interagency agreement with the U.S.
Environmental Protection Agency and the New York
State Department of Environmental Conservation
(NYSDEC) to delineate and remediate the
contamination under the Comprehensive
Environmental Response Compensation and Liability
Act (CERCLA), also known as the Superfund Act.
BNL established seven Operable Units that represent
separate geéographic parts of the site and related areas
of contamination, and conducted extensive drilling
programs to define the extent of contamination.
Subsurface investigations conducted at the BNL site
during 1993-97 provided detailed hydrogeologic
information on the site and surrounding areas. The
BNL Environmental Restoration Division (ERD),
formerly known as the Office of Environmental
Restoration (OER), conducted a four-phase
hydrogeologic characterization project during
1993-97, which included installation of monitoring
wells, piezometers, and geologic borings into the
upper Pleistocene deposits and into the shallow part
of the Magothy Formation within and near the BNL
site. Data from this project were used to supplement
data obtained as part of CERCLA remedial
investigations and to refine the stratigraphy and
ground-water flow patterns.

In 1994, the U.S. Geological Survey (USGS)
began a cooperative study with BNL to examine
ground-water flow patterns in the 300-mi? area (fig. 1A)
surrounding and including the site, hereafter referred to
as the 300-mi° study area, and to examine the
stratigraphy in the 28-mi? area around BNL, referred to
here as the local study site, or BNL site. (fig. 1B.)

The stratigraphy beneath the site had been
evaluated as part of several earlier regional
investigations (deLaguna, 1963; Jensen and Soren,
1974; Krulikas and others, 1983; Smolensky and
others, 1989), but only a few deep borings (more than
100 ft below land surface) were on or near the BNL
site at the time of those studies. The recent deep
drilling provided detailed geologic information that
allows refinements of the geologic history of the Pine
Barrens and of regional ground-water flow, and can be
used for management and protection of ground water
within central Suffolk County.

Factors that affect ground-water flow at the site
include (1) the extent of hydrogeologic units, (2) the
location of the regional and the secondary ground-
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water divides, (3) ground-water discharge to the
Peconic and Carmans Rivers, (4) fluctuations in
precipitation volume, and (5) onsite pumping,
operation of recharge basins, and discharge from the
site’s sewage-treatment-plant. The interaction of these
factors affects hydraulic gradients in the ground-water
system and increases the complexity of flow paths,
thereby complicating contaminant movement within
the aquifer system.

Purpose and Scope

This report refines the stratigraphy of the
Pleistocene and uppermost Cretaceous deposits in the
vicinity of BNL on the basis of (1) data collected
during the BNL test-boring programs of 1993-97, and
(2) data from previous investigations. It includes maps
and vertical sections depicting stratigraphic relations
at the site, and maps showing water-table altitudes and
vertical and horizontal flow gradients in March and
August 1997.

Previous Studies

The USGS issued a series of reports during the
1960’s that described the geology, hydrology, and
ground-water quality at the BNL site and vicinity for
the U.S. Atomic Energy Commission. deLaguna
(1963) described the geology of central Long Island,
including the BNL site, and Faust (1963) discussed the
physical properties and mineralogy of selected core
samples from seven deep borings on or near the site.
Warren and others (1968) appraised the hydrology in
the BNL vicinity. deLaguna (1964) examined ground-
water quality in the area and also gave a hydrologic
analysis of postulated liquid-waste releases (1966).

Other studies by the USGS in the BNL vicinity
include hydrogeologic mapping of Long Island by
Suter and others (1949), and the hydrogeology of
Suffolk County by Jensen and Soren (1971, 1974).
Krulikas (1981) updated hydrogeologic data previously
presented in Jensen and Soren (1971); Krulikas and
others (1983) mapped the top of the Matawan Group-
Magothy Formation in Suffolk County; Krulikas
(1986) examined the geohydrology of the Pine Barrens
region; and Koszalka (1980, 1984) investigated the
geohydrology of the northern part of the Town of
Brookhaven. Buxton and others (1989) and Smolensky
and others (1989) described the hydrogeologic

framework of Long Island. Weiss (1954) examined
geologic samples from eastern Long Island, including
BNL, for microfossils in Pleistocene clay and
correlated sedimentary units beneath BNL. Wexler
(1988a) and Scorca (1990) evaluated geochemistry at
two waste-disposal facilities near BNL. Wexler
(1988b) and Wexler and Maus (1988) developed a flow
model of an 26-mi? area southwest of BNL.

Geographic Setting

Most previous investigators concluded that the
Laurentide continental ice sheet deposited two major
terminal moraines on Long Island during the
Wisconsinan stage of the Pleistocene Epoch (Cadwell,
1989). These moraines form two lines of hills that trend
generally east-west along the island. BNL lies in the
intermorainal area north of the Ronkonkoma moraine
and south of the Harbor Hill moraine (fig. 1A).
deLaguna (1963) identified some hills on the BNL site
as kames (short, irregular ridges composed of stratified
sand and gravel deposited by a glacial stream at the
margin of or on the surface of a glacier). The present-
day surface topography includes short linear
depressions that probably are dry relict channels of
streams that flowed northward from the Ronkonkoma _
moraine. Clay layers were observed in the shallow
subsurface beneath the relict channels during the recent
drilling operations. The clays affect ground-water
levels locally, as discussed in a later section.

The BNL site is within the topographic drainage
area of the Peconic River and contains the uppermost
headwaters reach of the Peconic River channel. The
start of flow (location at which flow begins) shifts
position, however, in response to the rise or fall of the
water table, as discussed further on. A second major
stream, Carmans River, is about 2 mi west of the site
and flows generally southward to Great South Bay
along the western side of the Mastic Peninsula
(fig. 1B). The Forge River flows along the eastern edge
of the Mastic Peninsula.

The BNL site lies in the western part of the area
of Long Island that is known locally as the Pine
Barrens (fig. 1A). This area has relatively little
urbanization and contains principally vacant land,
open space and recreational land, agricultural land,
and residential development (Stackelberg and Siwiec,
1993). Land uses in the areas to the west, north, and
east of BNL are described by Stackelberg and Siwiec
(1993). Additional land-use information can be
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obtained from the BNL Future Landuse Plan
(Brookhaven National Laboratory, 1995). Other
descriptions of the area are presented in deLaguna
(1963) and Naidu and others (1996).
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METHODS OF INVESTIGATION

Geologic information was collected from 20 deep
borings drilled for this study and from more than 200
borings that were drilled during 1994-97 as part of
water-quality investigations at BNL. Locations of
selected borings used in this study are shown in
figure 2. Geologic logs of borings are archived at
BNL’s Environmental Restoration Division.

Local geology was evaluated from available
information, which included (1) BNL contractors’
field log descriptions and reference to Munsell color
charts, (2) USGS field log descriptions, (3) gamma-ray
logs, (4) microscopic examination of selected samples,
and (5) results of palynologic analysis.

Sediment-Sample Collection and Analysis

Geologic core samples were obtained with
split-spoon samplers at selected depth intervals from
many borings by consulting geologists contracted by
BNL. A few selected core samples were rinsed to
remove silt and clay and were viewed with a
reflected-light microscope by the USGS in Coram,
N.Y,, to identify mineral grains.

Gamma-Ray Logs

Gamma-ray logs were collected by BNL
contractors from more than 200 deep borings to help
characterize the lithology and to interpret the local
stratigraphy. Gamma logs are especially effective for
indicating the amount of clay in Long Island’s
sediments because the natural gamma radiation of the
quartz-rich sand and gravel is relatively low, and that
of clay minerals is relatively high; therefore, the
relative intensity of gamma radiation indicated on the
gamma logs generally reflects the proportion of clay.

Palynologic Analysis

About 60 core samples were selected and sent to
Dr. Leslie A. Sirkin of Adelphi University, Garden
City, N.Y., who was contracted by BNL to analyze the
samples for pollen and other microfossils. The outside
of each core, which could contain sediment displaced
in depth during coring, was trimmed off, and selected
fine-grained sediment was removed from the inside of
the core. Standard methods of pollen analysis were
followed as described by Faegri and Iversen (1965).
Pollen was extracted by the flotation method, placed
on a gelatin medium, stained with gentian violet, and
viewed with a transmitted-light microscope.
Identification of Cretaceous pollen focused on index
fossils, and age was based on zonation detailed in
reports by Christopher (1978, 1979), Doyle and
Robbins (1977), Wolfe (1976), and Sirkin (1986).
Results of these analyzes were used to assist in
identification of geologic units.

Ground-Water-Level Measurements

Water levels in all observation wells were
measured by the wetted-steel-tape and electric-tape
methods, which are accurate to 1/100 of a foot. The
water table in this part of Long Island is within the
upper glacial aquifer. Most of the observation wells
used in this study are screened in the upper glacial
aquifer, but some are screened in the upper part of the
Magothy aquifer. Some sites contain clustered wells
completed at differing depths, either within the same
aquifer or in two aquifers. These were used to
determine the vertical hydraulic gradient. Water-level
data from wells in the USGS regional network are
stored at the USGS office in Coram, N.Y., and are
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available upon request; data from wells owned by
BNL are available from BNL through DOE.

Boring-Numbering System

Borings are referred to herein and on figure 2 by
numbers that correspond to the BNL grid system.
The first three digits of the BNL numbers (see table
4, at end of report) refer to the blocks within the
grid, which includes 131 blocks onsite and several
blocks offsite; the last three digits are the boring
number assigned sequentially within each grid
block. Well-permit numbers are assigned by
NYSDEC and are also included in table 4; the prefix
S indicates Suffolk County.

Start of Flow of Streams

The start of flow of a stream in its channel
changes position in response to the water-table
altitude, as discussed in a later section. The position of
the start of flow in the Peconic River channel was
determined from field observations. Sometimes the
start of flow was observed directly; at other times it
was estimated from relative magnitude of flow at road
crossings of the stream channel.

Precipitation

Daily records of precipitation have been collected
by BNL at the Upton station (fig. 1B), in the western
part of BNL, since 1949. Precipitation data from the
Upton station were used to evaluate trends in
hydrologic conditions.

Data Presentation (Water Year or
Calendar Year)

Hydrologic data commonly are presented by
water year rather than calendar year. (A water year
extends from October 1 of the preceding year through
September 30 of the named year.) In this report,
annual values for streamflow, base flow, and direct
runoff are given by water year, but values for ground-
water levels, sewage- and treatment-plant outflows,
precipitation, and water-table altitudes are given by
calendar year.

HYDROGEOLOGIC FRAMEWORK AND
STRATIGRAPHY

Long Island is underlain by unconsolidated
sediments of Late Cretaceous and upper Pleistocene
age deposited on a southeastward-dipping bedrock
surface. Suffolk County’s hydrogeologic setting has
been described in detail by Suter and others (1949),
Jensen and Soren (1971; 1974), and Smolensky and
others (1989). A summary of principal geologic units
is given in table 1. A generalized hydrogeologic
section through Suffolk County is presented in figure
3A; gamma-ray logs for borings 130-004 and 122-
005 are presented in figures 3B and 3C, respectively.
The uppermost major geologic unit on Long Island
consists of glacial drift deposited during the
Pleistocene Epoch. The area occupied by the BNL
contains morainal, outwash, and probably
interstadial sediments that together range from 100 ft
to 250 ft in thickness.

Reexamination of geologic information obtained
by previous investigators has resulted in
reinterpretation of the geologic units. The reason for
the differences among interpretations by previous
investigators probably is the local variability of
sediments within geologic units and the sparsity of
geologic data; certain beds in one unit resemble those
in other units. The glacial environment associated with
the Pleistocene deposits, and the deltaic depositional
environments associated with the Cretaceous deposits,
are the cause of this variation in sediments;
furthermore, some Cretaceous sediments could have
been eroded and incorporated as grains within
Pleistocene deposits. In some localities on Long
Island, large masses of Cretaceous or older Pleistocene
sediment were detached and thrust as blocks by the ice
sheet into positions within younger Pleistocene
deposits (Sirkin, 1995)

Identification of geologic contacts at some
borings is difficult because many samples lack
distinctive characteristics. Most Pleistocene-aged
deposits contain more chemically unstable minerals,
such as biotite, amphibole, and garnet, than
Cretaceous sands, which consist predominantly of
chemically stable minerals, such as quartz and
muscovite. Several types of evidence, such as gamma-
ray logs and pollen analysis, were used to distinguish
these units. ‘

A gamma-ray log from boring 130-004, in the
southwestern corner of the BNL site (fig. 3B), depicts
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a representative sequence of Pleistocene and
uppermost Magothy sediments, and a gamma-ray log
from boring 122-005, about 1 mi east of boring 130-
004, in the south-central part of the BNL site (fig. 3C)
depicts a boring without significant clay units through
most of its depth. The lithology of core samples from
boring 122-005 is discussed in a later section.

Cretaceous Deposits

Long Island’s Cretaceous units are correlated
with sediments in the coastal plain of New Jersey
(Suter and others, 1949). Cretaceous deposits on Long
Island are the Raritan Formation and the Matawan-
Magothy Formation (Magothy aquifer), which are
thicker than their counterparts in New Jersey, and the
Monmouth Group (fig. 3A). The Raritan Formation,
which includes the Lloyd Sand Member and an
unnamed clay member, overlies bedrock; it was
penetrated by two borings installed in the late 1940’s
on the BNL site (deLaguna, 1963). The Raritan
Formation is not discussed in this report but is
discussed by deLaguna (1963). Borings that were
installed during this study penetrated only as deep as
the shallow part of the Matawan-Magothy Formation;
the stratigraphy of the Matawan-Magothy Formation
and the Monmouth Group is described below.

Matawan Group-Magothy Formation,
Undifferentiated

The Matawan Group and Magothy Formation are
undifferentiated on Long Island and are generally
treated as one unit (Perlmutter and Todd, 1965). In
New Jersey, Matawan Group deposits vary in
lithology, and some of those units are briefly described
by Olsson (1987). In this report, the term Magothy
Formation refers to the undifferentiated Matawan
Group and Magothy Formation. Lonnie (1982) noted
that clay beds in the Magothy Formation were rich in
kaolinite with minor amounts of illite and concluded
that the Magothy Formation was probably deposited in
a terrestrial (nonmarine) environment or a transitional
environment (between marine and terrestrial).

Lithology

The Magothy Formation consists mainly of
continental deltaic sand and clay and ranges from 820
to 885 ft in thickness, as indicated by two borings at
BNL (065-013 and 109-001, fig. 2) that penetrated the

entire unit (deLaguna, 1963). The sand layers are
interbedded with clay layers, and beds tend to be
laterally discontinuous and vary in thickness.
deLaguna (1963) observed that clay beds are difficult
to trace between borings, even in the western part of
Long Island, where borings are relatively close
together, and therefore inferred that the clay layers are
probably lenticular.

The upper part of the Magothy Formation at BNL
ranges from solid clay to very well sorted sand. Units
of sand and clay are interbedded and differ
substantially in thickness within each boring and even
between some nearby borings; the degree of sorting in
the units also varies widely.

Minerals in the Magothy Formation tend to be
chemically stable, and some muscovite grains, rock
fragments, and the few less stable minerals, including
feldspar and amphibole, commonly show evidence of
having weathered to clay minerals such as kaolinite
(Suter and others, 1949; Faust, 1963). The top of the
Magothy Formation typically is distinguished on many
gamma-ray logs by a higher response (owing to a
greater amount of clay) than overlying Pleistocene
outwash deposits. Bedding structure is prominent in
most cores, and some cores contain beds that are
composed mostly of lignite fragments. Although most
of the Magothy Formation consists of gray sand
interbedded with gray to black clay, two other
lithologic units within the upper Magothy were
observed in the study area—grayish-brown to
brownish-gray sand, and the grayish-brown clay.
These three units are described in turn below.

Gray sand interbedded with clay.—Sand layers in
the Magothy Formation generally range from fine
grained to coarse grained and from clayey or silty to
very well sorted. Sand color generally ranges from
light gray to dark gray but is grayish brown in some
borings. Sediments are generally quartz-rich and
contain trace to abundant amounts of muscovite,
lignite, and pyrite. Sand layers are interbedded with
light- to dark-gray clay layers that vary in thickness
and have limited lateral extent. Where the uppermost
Magothy sediments include gray clay or gray silty
sand, their greater gamma-ray response relative to
overlying sediments marks the top of the Formation.

The upper sediments of the Magothy Formation
at boring 093-006 (fig. 2) are light gray, very well
sorted sand with trace lignite and no visible bedding.
The upper surface of the Magothy is 116 ft below sea
level at this boring, and this sand unit is more than
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Table 1. Generalized description of geologic units underlying Brookhaven National Laboratory and vicinity,

Suffolk County, N.Y.

[Modified from Jensen and Soren, 1971, table 1, and Smolensky and others, 1989, table 1. Ft, feet; ft/d, feet per day; in., inch]

Description and water-bearing character

Mainly brown and gray sand and gravel deposits of moderately
high horizontal hydraulic conductivity (270 ft/d average for
Long Island; about 180 ft/d measured at Brookhaven National
Laboratory); may also include deposits of clayey till and lacus-
trine clay of low hydraulic conductivity. A major aquifer.

Mainly greenish, with shades of yellow-green, greenish-gray,
olive-brown, and gray, poorly to well sorted sand, with some silt
and clay. Upper surface in some borings is marked by a clay or
silty layer, generally less than 10 ft thick, that produces a notice-
able response on a gamma-ray log. Horizontal hydraulic con-
ductivity is estimated to be similar to or slightly less than that of
the shallow part of the upper glacial aquifer.

Green and gray clay, silt, clayey and silty sand, and some inter-
bedded clayey and silty gravel. Unit has low vertical hydraulic
conductivity (0.001 ft/d) and tends to confine water in underly-
ing aquifer.

Mainly light brown, olive-brown, and grayish-brown, poorly to
well sorted sand. Hydrologically, unit could also be considered
part of Magothy aquifer because of confinement by Gardiners
Clay.

Hydrogeologic
Series Geologic unit unit
Upper Pleistocene Upper glacial aquifer
deposits
Upton unit Upper glacial aquifer
g
Q
]
=
2
-
~~ Gardiners Clay Gardiners Clay
Sand below Gardiners Clay Upper glacial aquifer
Monmouth Group Monmouth greensand
Matawan Group and Magothy aquifer
Magothy Formation,
undifferentiated
w
=]
Q
m
2
E grayish-brown clay
@)

Unnamed clay member of
the Raritan Formation

Raritan confining unit

Interbedded marine deposits of green, dark-greenish gray, green-
ish-black, dark gray, and black clay, silt, and sand, containing
much glauconite. Unit has low hydraulic conductivity (0.001 ft/
d) and tends to confine water in underlying aquifer.

Gray, white, and brownish-gray, poorly to well sorted, fine to
coarse sand of moderate horizontal hydraulic conductivity (50
ft/d). Contains much interstitial clay and silt, and lenses of clay
of low hydraulic conductivity. Generally contains sand and
gravel beds of low to high conductivity in basal 100 to 200 ft. A
major aquifer.

Dark grayish-brown to yellow-brown, solid to silty clay, in some
layers laminated with beds of very fine sand up to 1 in. thick.
Unit is encountered in upper part of Magothy Formation. Has
low hydraulic conductivity and tends to confine water.

Gray, black, and multicolored clay and some silt and fine sand.
Unit has low vertical hydraulic conductivity (0.001 ft/d) and
confines water in underlying aquifer.

Lloyd Sand Member Lloyd aquifer White and gray fine-to-coarse sand and gravel of moderate hori-
of the Raritan Formation zontal hydraulic conductivity (40 ft/d) and some clayey beds of
low hydraulic conductivity.
Undifferentiated crys- Mainly metamorphic rocks of low hydraulic conductivity; con-

Bedrock talline bedrock

PALEOZOIC and
PRECAMBRIAN

sidered to be the base of the ground-water flow system.
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A. Generalized Geologic Section
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Figure 3. Stratigraphy at Brookhaven National Laboratory site, Suffolk County, N.Y.:A. Generalized geologic section showing
relative positions of hydrogeologic units. (Modified from Jensen and Soren, 1974, sheet 1.) B. Gamma-ray log from boring
130-004 and corresponding sediment description. (Location is shown in fig. 2.) C. Gamma-ray log from boring 122-005 and
corresponding sediment description. (Location is shown in fig. 2.}
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50 ft thick (bottom of sand unit was not reached).
Unlike most Cretaceous sediments, this unit produced
a smaller response on the gamma-ray log than the
overlying Pleistocene deposits. A similar unit was
observed in boring 130-004 along the southern
boundary of the site, below the grayish-brown clay
layer (fig. 3B). Microscopic examination of rinsed
core samples of the well-sorted gray sand at the
bottom of boring 130-004 contained trace amounts of
amphibole without visible weathering. Although the
presence of chemically unstable minerals is not
common in the Magothy Formation and could
indicate some degree of later reworking of sediments,
the sediments are considered of Cretaceous age in
this report.

Layers of stiff, very dark-gray to black silty clay
with lignite were penetrated in borings 000-059, south
of the site, and 085-013, in the west-central part of the
site. Pollen analysis of samples from this unit
confirmed its Cretaceous age (table 2). Similar
samples from the Magothy Formation in other parts of
Suffolk County contained large amounts of organic
carbon and some microscopic pyrite (C.J. Brown, U.S.
Geological Survey, written commun., 1997).

A sample of stiff, black, sandy clay from boring
115-027, in the southeastern part of the site, was
rinsed to remove clay and silt and was found to contain
quartz, mica, and trace amounts of lignite and broken
glauconite grains. Other borings in the same vicinity
did not encounter this black clay unit, indicating that it
is of extremely local extent. Pollen analysis confirmed
the Cretaceous age of this layer. The uppermost part of
the Magothy Formation in most of the rest of the
southeast part of BNL consists of mostly gray to
brownish-gray silty sand.

The uppermost Cretaceous sediments at borings
104-006 and 104-008, along Princeton Avenue, and
119-002 and 112-001, in the southwest part of BNL,
contained gray, silty sand with lignite. These layers
produced a larger gamma-ray response than
overlying sediments.

Grayish-brown to brownish-gray sand.—The
uppermost Cretaceous sediments in some borings
were grayish-brown to brownish-gray, quartz-rich,
poorly sorted sand. As discussed earlier, the upper
surface of the Cretaceous sediment in many borings
was difficult to distinguish from Pleistocene sediment.
The color of the sediment at boring 122-005 (fig. 3C),
along the southern boundary of the site, shifted
slightly with depth from light yellowish brown to

grayish brown, and samples contained slightly more
silt at 171 ft below sea level than at shallower depths.
A subtle inflection on the gamma-ray log at that depth
probably resulted from slightly increased amounts of
silt or clay particles, but the samples contained no
prominent mica, lignite, or pyrite that could indicate a
distinct contact. Samples from below 182 ft below sea
level contained light-gray sand with interstitial clay
and were similar to the Magothy sediments observed
in cores from other borings.

Sediment between depths of 155 and 171 ft below
sea level in boring 106-019, on Princeton Avenue, is
generally a brownish-gray, visibly bedded, poorly
sorted sand that is more than 95 percent quartz,
although some of the trace-mineral grains and rock
fragments are chemically unstable and indicate post-
Cretaceous (Pleistocene) deposition. As at boring
122-005, deep sediments typically display the
characteristics associated with the Cretaceous-aged
Magothy deposits, including light- to dark-gray sand
with interstitial clay and laminated bedding. Similarly,
many of the core samples from boring 600-015, east of
the site, contained moderately to well-sorted sand in
shades of olive-, orange-, gray-, and yellow-brown. In
this boring, the Cretaceous surface is probably marked
by a large response on the gamma-ray log at 120 ft
below sea level.

Grayish-brown clay.—An extensive clay unit of
variable thickness, referred to as the grayish-brown
clay in this report, was encountered at more than 50
borings within, and in the vicinity of, the BNL site.
The presence of exclusively Cretaceous pollen
identified in 11 samples from this unit is the primary
evidence for determining the stratigraphic age of this
unit (table 2). Microscopic examination of rinsed core
samples of sandy beds of the grayish-brown clay in
boring 063-009 show that the samples contain
abundant mica. Most of the mica is muscovite, but
some biotite is also present. As with the previously
described well-sorted gray sand, the presence of
chemically unstable minerals is not common in the
Magothy Formation and could indicate some degree of
later reworking of sediments, but the sediments are
considered of Cretaceous age in this report. The
grayish-brown clay is the uppermost unit of the
Cretaceous sediments in parts of the study area.

The grayish-brown clay unit ranges from dark
grayish-brown to yellowish-brown. Its texture is
generally solid to silty clay, but in some cores the clay
was laminated with bands of well sorted, very fine
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Table 2. Microfossils observed in samples from geologic units in Brookhaven National Laboratory study area, Suffolk

County, N.Y.

[Modified from L.A. Sirkin, Adelphi University, written commun., 1996. Age correlations of Cretaceous pollen from Sirkin (1986)]

Microfossils observed during this study, including genus and species,

Series Sediment description where available
Clay at 75 feet below sea level Hickory, pine, compositae, alder
Upton unit Conifer and hardwood pollen including: pine, birch, oak, grass, and beech;
also grass, compositae, common fern, chenopod, lily
Urtica, Ericaceae, Sphagnum
2 Brown sand near base of the Upper Pine, shells
8 Pleistocene deposits
]
& Gardiners Clay Pine, spruce, birch, oak, and Sphagnum spores, mixed conifer and hard-
oy wood, and lycopod, alder with oak
Ericaceae, Sphagnum, foraminifera, and shell fragments
Pleistocene sand below Gardiners Clay =~ Foraminifera and ostracod-Candona
Brown clay interbedded with sand near Pine, birch, chestnut and two samples with no microfossils
base of the Upper Pleistocene deposits
Matawan Group and Magothy formation, Two samples with no microfossils
undifferentiated:
(gray sand)
Matawan Group and Magothy Formation, Betulaceoipollenites
undifferentiated: Brevicolporites sp B
(grayish-brown clay) Brevicolporites sp. A
Brevicolporites
multiporate form: Periporites
Holkopollenites
Momipites
Proteacidites
Pseudoplicapollis
“ Tricoloporites sp. A, B, C cf. CP3B-7
§ tricolporate angiosperm taxa
8 Tricolporate types 5 and sp. A
5 Tricolporate types (1,3,5, &6)
5 Tricolpopollenites spp. and Porocolporopollenites sp. and cf. triangulus
§: Trudopollis sp. E and Momipites spp. L and F.

Matawan Group and Magothy Formation,
undifferentiated:
(dark gray to black clay)

Betulaceoipollenites

Brevicolporites

Holkopollenites

Momipites sp. 1

Retitricoloporites spp.
Rugubivesiculites

Proteacidites and Retitricolpites sp. G
Tricolpites minutus

Tricolporites

Tricolporate types 1 and 5,

triporate angiosperm taxa: Trudopollis
bisaccate pollen

triaperaturate pollen

Hydrogeologic Framework and Stratigraphy
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sand, some of which were as much as 0.5 in. thick.
These closely spaced, alternating layers of clay and
sand, especially in samples from boring 063-009, can
result from (1) deposition from storms, (2) seasonal
deposition of sediment into lakes, or (3) slight facies
shifts of deltaic sediments.

The upper surface altitude of the grayish-brown
clay ranged from as shallow as 120 ft below sea level
to as deep as 190 ft below sea level at borings 034-
004, in the northwestern part of BNL, and 050-003,
east of BNL, respectively. Written field logs from
borings drilled before 1994 indicate that the unit’s
upper surface could be as shallow as 109 ft below sea
level (boring 074-001 in the western part of BNL). A
map showing the upper surface altitude of this unit is
presented in figure 4. Most deep borings in the study
area were completed upon contact with the top of the
grayish-brown clay, but some penetrated into or
through the unit; the bottom-surface altitude of the
unit as indicated by these borings also is presented in
figure 4.

The close spacing of the recent deep borings in
some parts of the BNL site allows the grayish-brown
clay unit to be traced between some borings. The unit
is laterally continuous in three main parts of the study
area. One is in the northwestern part of BNL, where it
reaches its maximum thickness (greater than 88 ft) at
boring 000-118 (fig. 5) and is more than 60 ft thick in
borings 018-005 and 034-004 (fig. 5). The second part
is near the central part of the eastern boundary of
BNL, where the unit’s thickness exceeds 70 ft.
(Borings 041-004, 050-003, and 061-005 did not
penetrate the bottom of this unit.) The upper surface of
the clay dips to the east from 148 ft below sea level at
boring 049-006 to 190 ft below sea level at boring
050-003, 0.5 mi away. This area could represent an
erosional channel in the Cretaceous surface, as
discussed in a later section, because the upper surface
altitude of the grayish-brown clay is relatively deep.
The extent of the clay unit in this area is delineated by
its absence in nearby borings in grid blocks 007 and
037, and east of blocks 061 and 081 (fig. 4).

The third area in which the grayish-brown clay is
continuous is in the southwestern part of the BNL site
and in the area just south of the site. The unit is 50 ft
thick at boring 109-001 (fig. 2). The top of this unit
was encountered in 15 borings drilled along the
southwestern site boundary (section E-E’, fig. 6). Its
thickness along section E-E” was determined only at
boring 130-004, where it was 39 ft.

The upper surface of the grayish-brown clay
generally slopes eastward, from about 140 ft below sea
level in the southwestern corner of the site (boring
129-001) to about 160 ft below sea level in boring
122-007 in the south-central part of the site, but it was
not encountered at boring 122-005, just 280 ft
northeast of the latter boring. The uppermost
Cretaceous deposits at boring 122-005 are grayish-
brown silty sand and were encountered at 171 ft below
sea level. The upper surface of the grayish-brown clay
also generally dips southward toward BNL’s
southwestern boundary from the north (onsite borings
109-001 and 119-002) and dips northward from the
south (offsite borings 000-064 and 000-065) to form a
depression in the clay unit’s upper surface at the
southwestern boundary.

The clay unit was not encountered south of the
site in a north-south line of borings (000-049,
000-107, 800-033) between two subcrops of the
grayish-brown clay but was encountered east of the
line of borings (borings 000-048, 000-050, and 800-
016) and at several borings west of the line of borings,
including 000-097, 800-021, 000-062, 000-064, and
000-105 (figs. 2 and 4). The grayish-brown clay is
absent in the west-central and the southeastern parts of
the BNL site. Although this unit was observed at
boring 115-011 in the southeastern part, it was not
encountered in other deep borings in that part of the
BNL site (107-027, 106-019, 056-007 and 088-108).

Sequences of thin, brown clay beds (less than 5 ft
thick) interbedded with brown sand were observed in
borings 113-001, 113-002, 113-003, 113-005, 085-
014, 096-038, 096-039, 085-013, and 088-108 in the
south-central part of BNL. These beds generally were
not traceable between borings. They produced a
significant response on gamma-ray logs. Some of the
interbedded sand layers at borings 113-001, 113-002,
and 113-003 contained shells. Samples of brown clay
beds from borings 113-003 and 088-108 were sent for
pollen analysis and were found to contain none.
Although these beds could be part of the grayish-
brown clay unit, the presence of shells indicates that
they are part of the base of the Pleistocene deposits
associated with the Upton unit, discussed later on.

The limited lateral extent and variable thickness
of the grayish-brown clay unit in parts of the site, and
the variability of its upper-surface altitude are
probably the result of facies changes commonly
observed in deltaic depositional environments. Areas
in which the clay is thick could represent areas of large
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river meanders or flood plains, or possibly lacustrine
deposition into oxbow lakes.

Monmouth Group

The Monmouth Group, first identified on Long
Island by Perlmutter and Crandell (1959), consists of
dark-green, dark-gray, or black glauconitic and lignitic
clay, silt, and silty sand. Perlmutter and Todd (1965)
found fossil evidence of a shallow marine depositional
environment for these sediments. The Monmouth
Group overlies the Magothy Formation along the
southern shore of Long Island, and its upper surface
dips gently southward. It extends beneath the barrier
islands and parts of the southern shore, but its northern
extent in the BNL study area has not been defined.
Previous investigators did not identify Monmouth
Group sediment in any wells on the BNL site. Only
one boring drilled during this study contained
sediment that resembled Monmouth Group deposits
(boring 800-024, discussed in a later section).

Surface Configuration of Cretaceous
Sediment

The upper surface of the Magothy Formation dips
gently to the south in the southern half of central
Suffolk County and generally dips more steeply to the
north in the northern part of the county. This
configuration, which forms a cuesta (a ridge with a
gentle slope on one side and a steep slope on the
other), is a result of erosion of the upper surface of the
Cretaceous sediments during the Tertiary and
Quaternary Eras (deLaguna, 1963). Erosion by
streams during these periods give the upper
Cretaceous deposits an irregular surface configuration;
erosion during the Pleistocene could also have
included glacial scouring or ice shoving of Cretaceous
sediments in some parts of Long Island (Stumm and
Lange, 1996).

The upper-surface altitude of the Cretaceous
deposits at the BNL site and vicinity is depicted in
figure 7. The surface is irregular and has a relief of
about 120 ft, with several prominent channels and
ridges that trend generally northwest-southeast, the
~ direction of glacial scour. The Cretaceous surface
beneath BNL is characterized more by local erosional
features than by the regional cuesta shape.

The Cretaceous surface is deepest along the
eastern boundary of the BNL site, where it is 175 to

190 ft below sea level (fig 8). The sediment that
overlies the Cretaceous deposits is brown, well-sorted
fine to coarse sand that is interpreted to be of
Pleistocene age. Some core samples from about 10 ft
above the Cretaceous surface contained pelecypod and
gastropod shells. The Cretaceous surface is
encountered at deep altitudes in several borings
southeast of BNL (000-090, S49477, Sparrow 5;

fig. 2) indicating that it forms an elongated depression
oriented north-northwest to south-southeast and is
probably the result of an erosional channel that formed
during the Pleistocene. The depth of the Cretaceous
surface at 120 ft below sea level at boring 600-015 on
Wading River Road suggests an eastern limit to the
erosional channel.

Cretaceous sediments were observed at depths as
shallow as 100 ft below sea level in the few deep
borings drilled in the southeastern part of BNL (such
as boring 100-004, fig. 8). The shallow part of the
Cretaceous surface extends northwestward to borings
037-004 and 017-004 and forms a northwest-
southeast-trending ridge.

The Cretaceous surface is as high as 103 ft below
sea level (boring 000-044) just west of BNL. Through
the southwestern part of BNL, it slopes to the south
and to the east, from altitudes of less than 120 ft below
sea level at borings 093-006 and 109-001 to more than
170 ft below sea level at borings 122-005 and 122-008.
The upper surface of the grayish-brown clay generally
slopes eastward along the southwestern boundary of
the site but is discontinuous further east and is absent
(or below depth of boring penetration) beneath a
northwest-southeast-trending ridge near grid block
100 (fig. 4).

The Cretaceous surface at the south-central part
of BNL is more than 150 ft below sea level. An
elongated trough oriented north-south extends from
about 0.7 mi north of the site’s southern boundary
(including boring 106-019) to 0.5 mi offsite (including
boring 000-048). The depth and slope of the
Cretaceous surface, and the absence of Pleistocene
green clay, in this area (as discussed in a later section),
are further evidence of glacial erosion in the
Cretaceous surface.

High and low features in the Cretaceous surface in
the area south of BNL are generally oriented
northwest-southeast. For example, the Cretaceous
surface is deeper along a northwest-southeast trending
line of borings (000-057, 000-102) than in neighboring
borings (000-059, 000-051, 000-107) (fig. 9).

Hydrogeologic Framework and Stratigraphy 15
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Boring locations are shown in figure 2.
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Figure 5. Stratigraphy along north-south section A-A” through Brookhaven National Laboratory site, Suffolk County, N.Y.

(Trace of section is shown in fig. 2.)

The Cretaceous surface is particularly shallow
(higher than 120 ft below sea level) at borings 800-016
and 800-020 along Middle Island Road (fig. 2) and
could be as shallow as 70 ft below sea level in boring
800-024, where three major clay units are present. The
upper clay unit was penetrated at 70 to 78 ft below sea
level and was described in the geologist’s log as a
hard, micaceous, dark grayish-green sandy clay with
dark-green laminations. The second clay unit is
indicated on the gamma log at 100 to 108 ft below sea
level; a sample of it contained dark-gray clay with silt
and fine sand laminations. The third clay unit was
encountered at 132 to 139 ft below sea level and
consists of hard, dark, greenish-gray, micaceous sandy
clay. Microscopic analysis of a rinsed core from the
third clay unit indicated clear quartz grains, traces of
dark-green, rounded grains of weathered and broken
glauconite, and little lignite. This third clay unit
resembled the Monmouth Group in hand sample.
Pollen analysis of samples from all three clay units
indicate them to be of Cretaceous age. The relatively
shallow depth of the Cretaceous surface at borings

800-016 and 800-020 supports the interpretation of a
shallow Cretaceous surface (70 ft below sea level) at
boring 800-024.

The configuration of the Cretaceous surface
shown in figure 7 has a more gradual northward dip
within BNL than indicated by previous authors
(Smolensky and others, 1989); that is, the steep
northward cuesta face lies north of BNL.

Pleistocene Deposits

Two major glacial advances during the
Pleistocene Epoch deposited the terminal moraines
and extensive outwash sediments across Long Island
(Suter and others, 1949). The BNL site lies in an
intermorainal area (north of the Ronkonkoma moraine
and south of the Harbor Hill moraine, fig. 1), where
sediments also were deposited in glaciolacustrine and
shallow marine environments. The lowermost
Pleistocene sediments vary lithologically and are
laterally discontinuous.

18  Stratigraphy and Hydrologic Conditions at Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97
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Figure 6. Stratigraphy of west-east section E-E’, along southern boundary of Brookhaven National Laboratory, Suffolk

County, N.Y. (Trace of section is shown in fig. 2.)

Prominent units observed during the 1993-96
drilling programs were (1) a sand layer below the
Gardiners Clay, (2) the Gardiners Clay, (3) sediments
identified as the “unidentified unit” by de Laguna
(1963) and associated layers, collectively referred to
as the Upton unit in this report, and (4) glacial
outwash deposits. Each is discussed in turn below.

Sand below Gardiners Clay

A layer of sand overlying the Magothy Formation

and beneath the Gardiners Clay was encountered in
several borings in the northwestern part of BNL
(borings 018-005 and 034-004, section A-A”, fig. 5)
and also is traceable along the southern boundary of
the BNL site (section E-E”). This unit is composed of
poorly sorted sand but some zones contained well-
sorted fine to coarse sand; it ranged from light brown
to light olive brown and grayish brown. Most samples

were rich in quartz and also contained less stable
minerals or rock fragments. The unit is 20 to 30 ft
thick dat most borings in which it was encountered, and
its upper surface is generally between 105 and 120 ft
below sea level. Rinsed core samples from this layer
(boring 130-004, on the southwestern boundary of the
site) were examined with a reflected-light microscope
and were found to contain quartz, muscovite, rock
fragments, traces of biotite and lignite, and fibrous
plant material. Pollen analysis of a sample from this
layer in boring 130-004 indicated Pleistocene age. The
sand unit also contains peat at borings 130-004, 088-
108, 063-009, 106-019, 107-015, and 087-017.
de Laguna (1963) also noted the presence of a peat
layer beneath the Gardiners Clay.

Although previous investigators could have
considered this unit to be Cretaceous because it is below
the Gardiners Clay, the mineral content, the presence of

Hydrogeologic Framework and Stratigraphy 19
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County, N.Y. (Trace of section is shown in fig. 2.)
fibrous plant material, and results of the pollen analysis greenish-gray clay layer beneath the BNL site, and
indicate that this unit is of Pleistocene age. clay layers found in Riverhead and Mount Sinai. As
Stone and Borns (1986) explain, most current
Gardiners Clay res-earchers do not accept correlation of all three clay
units (Upson, 1970; Gustavson, 1976). Smolensky and
The term Gardiners Clay has been assigned to others (1989) considered the Gardiners Clay to be the
several clay units throughout Long Island. For unit of clay that is found along most of the southern
example, deLaguna (1963) used the term Gardiners shore of Long Island. Stone and Borns (1986) cited

Clay to refer to three different bodies of sediment—the  biostratigraphic evidence that the unit was deposited
thick clay along the southern shore of Long Island, the =~ during the Sangamon interglaciation.
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N.Y. (Trace of section is shown in fig. 2.)

The northern extent of the Gardiners Clay in the
BNL area had not been fully defined by previous
investigators. Weiss (1954) and deLaguna (1963)
concluded that the greenish-gray clay beneath the
BNL site is contiguous with the south-shore Gardiners
Clay, however, Smolensky and others (1989) depict
the Gardiners Clay as extending only slightly north of
Sunrise Highway (fig. 1).

Lithology

Core samples collected during this investigation
indicate that the Gardiners Clay in the study area,
although greenish-gray in most places, varies locally
from dark green to light gray. The texture also is
variable and ranges from sandy to silty clay. Sand-
sized grains in rinsed samples of the unit included
quartz, mica, chlorite, lignite, glauconite, and rock
fragments. Muscovite was the most common mica, but

nty,

grains of biotite also were present in some
samples. Many samples contained shell
fragments that included clams, snails,
scapopods, and foraminifera.

Weiss (1954) suggested that the Gardiners
Clay was deposited in a shallow, brackish-water
environment similar to the present-day bays
along the southern shore of Long Island.
deLaguna (1963) noted similarly that the clay
was deposited in this type of protected
environment in a climate that was similar to, or a
little colder than, present-day conditions. Pollen
analyses (table 2) confirm the unit’s Pleistocene
age and indicate that the climate during
deposition of the unit was moist and probably
temperate, and that the depositional environment
was near a wetland.

Core samples from a layer above the
Gardiners Clay at several borings in the
southeastern part of the BNL site (088-108,
HP107-19, 088-017, 105-019) contained shell
hash, which includes well-sorted fine sand and
large amounts of shells. The high percentage of
shells, and the high degree of sorting in these
samples, indicate a shallow, near-shore, high-
energy depositional environment such as a
beach. The shell-hash deposits formed in
shallower water than the underlying clayey

deposits, which indicates a shallowing upward
(regressive) sequence (indicative of a relative
decline in sea level) and implies that the shoreline
in this area shifted its position through time, as
would be expected with the advent of renewed
glaciation following an interglacial interval.

Configuration of Unit

Data obtained from the recent drilling have

helped to refine the delineation of the Gardiners Clay
unit at the BNL site. Its extent in the study area is
depicted in figure 10; its absence in some areas
probably resulted from erosion. The unit’s extent is
especially well defined in the southern half of BNL,
where borings are most closely spaced.

The upper surface of the Gardiners Clay is

traceable between borings along a northwest-
southeast-trending line in the southeastern part of the
site, where it generally slopes northwestward from
70 ft below sea level at boring 000-047 to 84 ft below
sea level at 088-017. The northeastern and
southwestern extents of the unit are well defined in
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this area because the borings are numerous, but its
thickness at those borings could not be defined
because most borings were terminated as they entered
the top of the unit. This area is bordered on the
northeast and southwest by glacial stream channels
that incised into the Magothy Formation. The unit is
absent in the eastern part of the BNL site, except at
boring 061-005, and is also absent near the central part
of the southern boundary. Pleistocene sand extends
from land surface down to a depth appreciably below
the altitude of the Gardiners Clay in these two areas
(figs. 6, 8, and 9), suggesting localized erosion of the
Gardiners Clay by meltwater streams prior to
deposition of sandy outwash. The unit is also absent in
a small, narrow, elongate, northwest-southeast-
trending area in parts of grid blocks 75, 85, and 86.

The Gardiners Clay can be traced along the
southern boundary of the site from boring 130-005 to
121-001 (Section E-E, fig. 6). It is absent at 129-001
and 129-002 but was encountered offsite to the
southwest; it also was encountered north of the site
boundary in the southwestern part of the BNL site
(borings 119-002, 120-001, 112-001). A green clay
was pulled from the lower part of the augers at the
well boring for 103-004 on Princeton Avenue. The
upper surface of the unit is deeper in the southwestern
part of the BNL site than in the southeastern part; it
was penetrated at altitudes of 92 to 109 ft below sea
level (borings 119-002 and 126-002, respectively) in
the southwestern part of the BNL site. The unit’s
greater depth in this area than in the southeastern part
of BNL could indicate that its upper surface generally
dips to the west, or that it does not directly correlate to
the unit observed in the southeastern part of the site.
Although notable gamma-ray responses were recorded
at about 80 ft below sea level in borings 102-004 to
104-007 along Princeton Avenue, samples from this
zone typically were greenish-, brownish-, and olive-
gray fine to medium sand with little silt and, therefore,
are interpreted as the Upton unit, discussed further on
(fig. 11).

Green or gray clays also were encountered in the
central, western, and northern part of the site at
altitudes that range from 73 to 122 ft below sea level.
The differing altitudes indicate that the unit could not
be directly traced between borings in this area; clays at
shallower depths also could be related to the Upton
unit, discussed further on.

The extent of the clay unit is less well defined in
the northeastern part of the site than in the southern

part as a result of a lack of closely spaced, deep
borings. Although this unit was encountered in
borings north of the site, it was absent at three onsite
borings (007-002, 037-004, and 049-006) in the
northeastern part.

Green clay also was encountered in three offsite
borings north of BNL. At 000-045, the greenish-gray
clay unit was encountered at 94 ft below sea level and
was separated from the grayish-brown clay by 65 ft of
Pleistocene and Cretaceous sand and clay layers. At
boring 000-118, about 0.5 mi farther north, the
greenish-gray clay unit directly overlies the
Cretaceous grayish-brown clay whose upper surface is
about 40 ft shallower than at 000-045. The written log
and the gamma-ray log from boring S96481, nearly
2 mi to the northeast, indicates that 46 ft of gray,
medium to coarse sand separates the bottom of the
green clay unit from the top of the grayish-brown clay.
Cuttings from boring S100608, which was drilled
within the same well field as S96481, contained green
clay with abundant shells.

Upper Pleistocene Deposits

Upper Pleistocene deposits form the uppermost
geologic unit on Long Island; these deposits include
morainal sediments, till, outwash, and glaciolacustrine
sediments that were deposited during the Wisconsinan
glaciation. Morainal sediments on Long Island are a
poorly to moderately sorted mixture of sand, gravel,
boulders, silt, and clay. Outwash sediments form the
bulk of the upper Pleistocene deposits; they consist
mostly of well to poorly sorted sand and gravel but
locally contain fine-grained layers of silt or clay. The
upper Pleistocene deposits directly overlie the
Magothy Formation in areas where both the Gardiners
Clay and the Monmouth Greensand are absent. In
some parts of Long Island, the upper Pleistocene
deposits contain extensive clay-rich units such as the
Smithtown clay (Krulikas and Koszalka, 1983) and the
“20-foot” clay (Perlmutter and Geraghty, 1963;
Doriski and Wilde-Katz, 1983). Soren and Stelz
(1984) observed a clay layer overlain by sand and a
second clay layer within upper Pleistocene deposits
near Jamesport, and suggested that this sequence of
units (which resembles the Gardiners Clay and the and
the overlying Upton unit at the BNL site) was
deposited during the interstadial period between the
Ronkonkoma and Harbor Hill glacial advances of the
Wisconsinan glaciation.
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Figure 11. Stratigraphy of west-east section D-D" along Princeton Avenue, Brookhaven National
Laboratory, Suffolk County, N.Y. (Trace of section is shown in fig. 2.)

The upper Pleistocene deposits in the BNL site
are 115 to 250 ft thick. Through most of the study
area, deposits less than 100 to 150 ft below land
surface are outwash, generally light-brown to yellow-
brown fine to coarse sand that is poorly to well sorted;
some shallow, near-surface clayey units are present
within the outwash in areas close to stream channels,
including the Peconic River. The lower part of the
upper Pleistocene sequence has a more varied
lithology, as described in the next section.

Upton Unit

The new, informal name—Upton unit—is
proposed in this report for generally greenish sand, or
sand and clay sediments in the lower part of the
upper Pleistocene deposits at the BNL site and other

similar and related deposits. These sediments have
been referred to in previous reports as the
“unidentified unit” (deLaguna, 1963; Faust, 1963).
Although previous investigators were unable to
establish the depositional origin of this unit, they
considered the unit to be the basal part of the upper
Pleistocene deposits.

The Upton unit generally overlies the Gardiners
Clay and contains minor clay layers that are
lithologically similar to the Gardiners Clay. Pollen
analysis of samples from the fine-grained layers of the
Upton unit yielded Pleistocene pollen. Sediments
similar to those described by deLaguna (1963) were
observed in several parts of the BNL site, including
borings 086-068, 104-002, 119-002, and 129-001 in
the southwestern part. These sediments were yellow-
green to olive-brown, fine to medium sand.
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The deep part of the Pleistocene deposits contains
several lithologic layers that differ subtly or greatly
from one another, are laterally discontinuous, and that
may represent facies changes during deposition. The
altitudes of the upper surfaces of these lithologic
layers range from 50 to 70 ft below sea level in many
borings throughout the 28-mi? study area. These layers
include subtly to distinctly differing units of gray sand,
greenish-gray silt, and green to greenish-gray clay, and
show subtle differences in color (including shades of
brown, olive, green, and gray), grain size, sorting, and
relative gamma-ray responses. In several borings (for
example, 000-118, 034-004, 037-004, 066-029), the
shallow Pleistocene deposits are separated from the
deep Pleistocene deposits by a clay or silty unit that is
generally less than 10 ft thick and produces a
noticeable response on the gamma-ray log. The varied
layers at the base of the Pleistocene sequence are
generally at about the same altitude as the
aforementioned “unidentified unit” and could be
differing facies associated with that unit; hence, they
are included in the Upton unit.

Northwestern part of the site.—Logs from four
borings (000-118, 018-005, 034-004, 055-006) show
greater gamma-ray responses in the deep part (lower
60 ft) of the Pleistocene deposits than in the shallow
part (upper 120 ft). Core samples from these borings
consist of gray to light-green, poorly sorted,
micaceous sand, silt, and clay. Pollen analysis of
selected samples from these borings confirm a
Pleistocene age for these deposits. Although the
lithology of the sediments does not closely resemble
that of the unidentified unit described by delLaguna
(1963), this zone probably is of the same age and is
correlated with it.

Central part of the site.—Sediments from the
deep part of the upper Pleistocene deposits in the
central part of the site were coarser grained than those
from similar altitudes in the northwestern part (section
A-A%; fig. 5). These layers were mostly silty to well-
sorted sand with subtle variations in color, but
included some clayey units.

Southern part of the site.—Core samples from
deep upper Pleistocene deposits in this area contained
sediments typical of the unidentified unit as well as
light-brown, poorly to well-sorted sand. Deep
Pleistocene sediments in this area are generally
coarser grained and better sorted than those at similar
altitudes in the northern part.

The Upton unit overlies the Gardiners Clay in most
of the BNL site, except in the westernmost borings
along the south boundary (Section E-E”, borings 129-
001 and 129-002, fig. 6). Here the greenish-brown, fine-
to-coarse sand of the Upton unit overlies the grayish-
brown clay of the Magothy Formation.

In a few borings along Princeton Avenue (103-
008, 104-006) and in boring 093-006, in the western
part of the BNL site, the Upton unit includes a layer of
greenish-gray silt and clay that is underlain by
greenish-gray to olive-brown silty sand. The deeper
sand layer, which closely resembles the descriptions of
deLaguna’s unidentified unit, overlies dark-gray sand
of the Magothy Formation, except in a few borings
where layers of the Gardiners Clay remain (102-002,
103-004, 105-020, 106-009). The Upton unit laterally
truncates the Gardiners Clay along Princeton Avenue
and in the southwestern corner of the site (borings
129-001, 129-002); therefore, it was probably
deposited later than the Gardiners Clay after a period
of erosion.

Outwash and Morainal Deposits

The BNL site is in the intermorainal area (fig. 1)
and contains outwash deposits from both the
Ronkonkoma and Harbor Hill glacial advances.
de Laguna (1963) identified some of the hills in the
northern part of the study area north of the
Ronkonkoma moraine as kames and outwash
associated with Harbor Hill glacial advances.

Outwash sediments generally were found in the
upper 100 to 150 ft of borings and consist of light-
brown to yellowish-brown, quartz-rich sand and fine
gravel that is poorly to well sorted; 5 to 10 percent of
the grains may consist of feldspar, muscovite, biotite,
hornblende, garnets, and rock fragments (Faust, 1963).
Some shallow, near-surface clayey units were
observed in areas close to stream channels, including
the Peconic River. The hydraulic effect of these units
is discussed in a later section.

Although gravel, cobbles, and boulders are found
in the 28-mi? BNL study area, borings drilled into the
part of the Ronkonkoma moraine south of the BNL
site (000-097, 000-049, 000-107) did not encounter
the amounts of cobbles and boulders that are typically
observed in the terminal moraines of western Long
Island. The hills of the Ronkonkoma moraine in this
area contain mostly well-sorted sand and gravel that
resemble outwash deposits. Gustavson and Boothroyd
(1987) postulated a process of sediment transport and

28 Stratigraphy and Hydrologic Conditions at Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97



deposition that accounts for the large volumes of
stratified drift deposits in the moraine and the outwash
sediments. This hypothesis, which is based on
observations at a present-day glacier in Alaska that is a
partial analog of the Wisconsinan Laurentide Ice
Sheet, states that meltwater and precipitation drain
from the glacier’s surface into englacial and subglacial
passages, and transport sediment to discharge points
(fountains or tunnels at the ice margin).

Near-surface sediments in the 28-mi? study area
are somewhat coarser than the underlying outwash.
The shallow sediments contain some large boulder
erratics that are exposed at land surface or have been
unearthed during excavations. The tendency of
shallow deposits to be coarser grained than the
underlying sequence of outwash sediments suggests
that these sediments were deposited in facies nearer to
the glacier than the outwash deposits. Sirkin (1995)
describes the uppermost (Late Wisconsinan) drift in
eastern Long Island as consisting mostly of outwash,
commonly capped by thin, sandy, bouldery till, which
indicates that the outwash sediments were deposited
ahead of the advancing glacier.

Summary of Pleistocene Deposition and Erosion
at the BNL Site

Geologic units at the BNL site indicate a complex
history of deposition and erosion. The unit described in
this report as the sand below the Gardiners Clay is the
first Pleistocene unit above the irregular surface of the
Cretaceous deposits in this area. Because the sand does
not have distinct lithologic or mineralogic characteristics,
the interpretation of its age could be revised if additional
data are obtained. This sand could have been deposited
by an earlier glaciation than the Wisconsinan.

The Gardiners Clay was deposited between
glacial advances during the major rise in sea level as
the sea encroached over what is now the south shore of
Long Island and into parts of the BNL site. It probably
was formed in a shallow-bay environment near a
migrating shoreline. The abundant shell fragments
found in association with the Gardiners Clay in some
borings indicate that the shore was near the present
BNL site location.

The newly collected core data indicate that the
Upton unit consists of several facies of variably sorted
sand, silt, and clay. As noted earlier, the Upton unit
was probably deposited atop the Gardiners Clay after a
period of some erosion. Its upper surface is penetrated
from about 50 to 70 ft below sea level, and the

lithologic change from the overlying outwash deposits
is marked by a silt or clay layer in some parts of the
site. The deposition of outwash from the Ronkonkoma
and Harbor Hill advances occurred after the deposition
of the Upton unit. Erosion by stream channels,
probably associated with the Harbor Hill advance,
dissected the Upton unit and Gardiners Clay to form
the deeply channeled areas in the eastern and south-
central parts of the BNL site.

HYDROLOGY

Warren and others (1968) examined the
hydrology in the vicinity of BNL and included
quantitative assessments of the major components of
the hydrologic cycle. Hydrologic conditions during the
current project are discussed below.

Hydrogeologic Units

The saturated part of the upper Pleistocene
deposits forms the upper glacial aquifer, which
contains the water table throughout most of Long
Island. This unit consists mostly of moderately to
well-sorted sand and fine gravel and is highly
permeable in most places. The upper glacial aquifer
underlies the entire 300-mi? study area (fig. 1A) and is
the source of base flow to streams.

The average islandwide horizontal hydraulic
conductivity value for the upper glacial aquifer is
about 270 ft/d (Smolensky and others, 1989), but
aquifer tests conducted at BNL by Warren and others
(1968) indicated the value at the site to be one-third
lower—about 175 ft/d (based on an aquifer thickness
of 145 ft), and the specific yield (effective porosity) to
be 0.24. Subsequent tests at BNL have measured
similar hydraulic conductivities (Holzmacher,
McLendon and Murrell /Roux Associates, 1985). Total
porosity of the upper glacial aquifer is estimated to be
0.33 (Warren and others, 1968). A summary of aquifer
properties obtained from onsite pumping tests is
presented in table 3.

Data from aquifer tests and infiltration tests
conducted at BNL (Warren and others, 1968) indicate
that the anisotropy (ratio of vertical to horizontal
hydraulic conductivity) of the upper glacial aquifer is
between 1:4 and 1:18. The average value for the upper
glacial aquifer throughout Long Island has been
estimated to be 1:10 (Smolensky and others, 1989).
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Table 3. Hydraulic conductivity of upper glacial aquifer at
Brookhaven National Laboratory, Suffolk County, N.Y., as
indicated by aquifer tests

Hydraulic conductivity

Source of data (in feet per day)
Warren and others (1968) 180
Holzmacher, McLendon and 180
Murrell/Roux Associates(1985)
Camp Dresser and McKee (1995) 200
Grosser (1997) 60-160
Geraghty & Miller (1997) 150

The hydraulic properties of the basal Upton unit
cannot be defined with certainty from the current well
network, but the high clay and silt content of the
Upton unit, especially in the northwestern part of the
BNL site, indicate that these deposits are probably
less permeable than the overlying glacial outwash
sand and gravel.

The Gardiners Clay, where present, confines
water and affects ground-water flow, but its limited
extent, as defined in figure 10, indicates that the effects
are only local. Studies by Warren and others (1968)
indicate that the hydraulic conductivity of the
Gardiners Clay is about 0.040 ft/d, but the hydraulic
conductivity of sandy zones within the unit is higher.

The Monmouth Group, which lies along the
southern shore of Long Island, forms the
hydrogeologic unit known as the Monmouth
greensand. Monmouth greensand and the Gardiners
Clay underlie the upper glacial aquifer and confine
water in the Magothy aquifer. The upper glacial
aquifer directly overlies the Magothy aquifer in areas
where both of these units are absent.

The deltaic sediments of the Matawan Group-
Magothy Formation, undifferentiated, make up the
Magothy aquifer. The hydraulic conductivity of this
unit is estimated to average 50 ft/d (Smolensky and
others, 1989) but varies widely as a result of local
differences in lithology, thickness, and lateral extent.
This hydraulic variation can affect local ground-water
flow patterns and contaminant transport. Warren and
others (1968) conducted an aquifer test in a coarse
sand zone of the Magothy aquifer and obtained a
hydraulic conductivity value of 57 ft/d.

Much of the Magothy aquifer consists of silty
sand with clayey layers. The upper Magothy sediment
at BNL is mostly a silty sand with clayey layers but
includes layers of well-sorted sand as well as locally
extensive clay layers, such as the grayish-brown clay

unit. Although the grayish-brown clay unit has a sandy
texture in some intervals, it is fairly solid in general
and forms a major local confining unit.

Hydrologic Cycle

The hydrologic cycle on Long Island was
summarized by Scorca (1997) and discussed at length
by Franke and McClymonds (1972), who evaluated
the relations among major hydrologic factors,
including precipitation, evapotranspiration, direct
runoff, ground-water recharge, ground-water
movement, and pumpage, to develop an islandwide
water budget. The hydrologic cycle can be thought of
as beginning with precipitation, which has averaged
48.29 in/yr at Upton station since 1949 (fig. 12).
Upon reaching the ground, precipitation either flows
as direct runoff into streams, infiltrates into the highly
permeable unsaturated zone, or evaporates. Part of the
water that infiltrates the soil evaporates or is
transpired by plants; the rest infiltrates downward to
the water table.

Ground-Water Recharge and Discharge

The rate of recharge to the water table varies from
year to year as a function of precipitation; it also
fluctuates seasonally because plants capture and
transpire most of the water that enters the unsaturated
zone during the growing season (May through
October). Thus, in most years, virtually all recharge
occurs during the nongrowing season (November
through April) (Warren and others, 1968). The water
table rises in response to recharge and typically
undergoes a net rise in years when precipitation is
notably higher than in the preceding year. This rise, in
turn, results in increased ground-water discharge to
streams, bays, and the ocean. Under long-term
conditions in undeveloped areas of Long Island, about
50 percent of precipitation is lost through
evapotranspiration and direct runoff to streams; the
other 50 percent infiltrates the soils and recharges the
ground-water system (Aronson and Seaburn, 1974;
Franke and McClymonds, 1972).
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A. ANNUAL PRECIPITATION AT UPTON, NY
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Figure 12. Precipitation and water-table altitude at Brookhaven National Laboratory, Suffolk County, N.Y.,
1970-97. A. Annual precipitation at Upton. B. Water levels in wells S5517 and S6431. (Well locations are

shown in fig. 2.)
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Regional Ground-Water Flow

The Long Island ground-water system consists
of two major components—the regional (deep) flow
system and the shallow flow system associated with
streams. Ground water enters the regional flow
system of Long Island in the area bordering the main
ground-water divide (fig. 13), where it moves
downward through the upper glacial aquifer into the
underlying aquifers and eventually moves seaward.
Water that enters the regional flow system south of
the main divide flows southward, and water that
infiltrates north of the divide flows northward. All
precipitation that infiltrates upgradient of each
stream’s shallow-flow system becomes part of the
regional flow system, and precipitation that infiltrates
within the ground-water contributing area of a stream
becomes part of that stream’s shallow-flow system
(Prince and others, 1988). '

Ground-Water-Contributing Area of Streams

The topographic drainage areas of the Peconic
and Carmans Rivers encompass 75 and 71 mi?,
respectively. As at other Long Island streams, the
surface-water and ground-water divides are not
necessarily coincident; the topographic drainage area
is not closely related to present-day streamflow
because it is a relict of streams that drained meltwater
from the glaciers at the end of the Pleistocene Epoch.
Rather, the area that contributes ground water to a
stream (“ground-water-contributing area”) constitutes
the effective drainage area of that stream.

The area from which ground water discharges
into a stream forms a shallow-flow system, generally
referred to as the ground-water-contributing area for
that stream. The thickness of the shallow flow system
and the positions of ground-water divides (especially
the upstream boundary of the shallow-flow system) are
dependent on hydrologic conditions and can shift over
time (Prince and others, 1988). The boundaries of a
ground-water-contributing area are estimated from
water-table maps and the inferred positions of
interstream divides, but the thickness of the shallow-
flow system and the position of the start of flow shift
constantly with water-table fluctuations. The shallow-
flow system of Connetquot River (fig. 1), for example,
has been estimated to be 30 ft thick (Prince and others,
1988), and that of East Meadow Brook in Nassau
County, to the west, has been estimated to be 50 to

75 ft thick (Franke and Cohen, 1972). Scorca and Ku
(1997) estimated that the shallow-flow system near the
headwaters of East Meadow Brook was 30 ft thick in a
sandy part of the aquifer.

Streamflow Components

The water-table aquifer provides base flow to
Long Island’s streams where it intersects a
streambed, and fluctuations in ground-water levels
near the stream alter the stream length. Stream
discharge on Long Island is derived from two
sources—base flow (ground-water discharge) and
direct runoff of stormwater.

Under natural (predevelopment) conditions,
Long Island streams derived 95 percent of their total
flow from ground-water discharge (Franke and
McClymonds, 1972), and only about 5 percent from
direct runoff, which consisted of precipitation falling
directly on the streams’ surface and overland runoff
flowing into the stream channel. Direct runoff
represented only about 2 percent of the total
precipitation (Cohen and others, 1968) because Long
Island’s soils and surficial sediments allow rapid
infiltration. Currently, the Peconic and Carmans
Rivers derive more than 90 percent of their annual
flow from ground water, and less than 10 percent from
direct runoff because urban development in the
adjacent Pine Barrens is fairly sparse and has not
greatly affected infiltration and runoff in this part of
the hydrologic system.

Start of Flow of Streams

The flowing reach of a Long Island stream begins
where the water table intersects the stream channel,
causing ground water to discharge to the stream as
base flow. This point (the start of flow) represents the
altitude of the surrounding water table and moves
upstream or downstream in response to water-table
fluctuations. The flowing reach of a Long Island
stream channel (except during storms) generally is a
ground-water-discharge area and is considered to be
under “gaining” conditions.

The first measurement of start of flow in the
Peconic River was made in October 1966, at the end of
the 1962-66 drought; the observed start of flow was
about 2 mi east of the BNL site boundary. In August
1995, also a dry period, the start of flow was estimated
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Figure 13. Water-table altitude in 300-mi? study area surrounding Brookhaven National Laboratory, Suffolk
County, N.Y., August 1995. (Location is shown in fig. 1. From Scorca and others, 1997)

to be about 1.2 mi east of the BNL site boundary. The water divide on Long Island is aligned generally

start-of-flow positions that have been observed by the east-west and lies about 0.5 mi north of BNL’s

USGS are plotted in figure 1B. northern boundary (fig. 13). Ground water north of
the divide flows northward and ultimately discharges
to Long Island Sound; ground water south of the

Ground-Water Divide divide flows southward and discharges to south-shore
streams, the Peconic River, Great South Bay, Peconic
The position of a ground-water divide depends Bay, and the Atlantic Ocean. Ground water near the
on the water-table configuration. The main ground- divide has a large downward vertical-flow
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component and recharges the deep aquifers of the
ground-water system.

A secondary ground-water divide originates near
the start of flow in the Peconic River; this divide
(fig. 13) trends east-southeastward toward the South
Fork. The position of the secondary ground-water
divide was estimated from the water-table altitude,
topography, and position of the start of flow in the
Peconic River. Ground water north of this divide enters
the Peconic River contributing area, whereas ground

water south of the divide flows generally southward to -

bays and the Atlantic Ocean. Near the headwaters of
the Peconic River, this divide forms the lateral limit of
the river’s ground-water-contributing area.

Hydrologic Conditions and Regional Water-
Table Configuration during August 1995

The configuration of the water table in central
Suffolk County during March 1995 and August 1995
was presented by Scorca and others (1996, 1997).
Precipitation during 1995 totaled 39.40 in., the lowest
since 1985; ground-water levels during both of these
years were below average. The water-table
configuration during August 1995 is illustrated in-
figure 13. Precipitation for August 1995 (0.54 in.) was
the lowest ever recorded for August at the Upton
station. This extremely dry weather was a factor in
several major brush fires in the region.

The sparse rainfall during August 1995 produced
almost no runoff; thus, Long Island streamflow at this
time consisted almost entirely of base flow. The USGS
has monitored the flow of the two major streams in the
study area (Peconic and Carmans Rivers, fig. 13) since
1942. Annual mean discharge during 1942-96 at the
main continuous streamflow-gaging station on the
Peconic River was 36.8 ft3/s, and that on the Carmans
River was 24.0 ft*/s. Mean discharges for August
during the period of record are 28.4 and 22.9 ft*/s,
respectively. Mean discharges of 12.8 and 11.8 ft¥/s at
the two streams for August 1995 were close to the
record low mean discharges for August (10.8 and
10.5 ft¥/s) (Spinello and others, 1998).

The water table is highest in the northwestern part
of the 300-mi? study area and generally slopes
downward toward the shores. The discharge of ground
water to the Peconic and Carmans Rivers locally
affects the water-table configuration and causes water-
level contours near streams to bend upstream (fig. 13).
The Peconic River did not affect the water-table

configuration directly beneath BNL during August
1995, however, because its start of flow at that time
was estimated to be about 1.2 mi east of the site.

Hydrologic Conditions and Regional Water-
Table Configuration during March 1997

In contrast to the below-average precipitation of
1995, precipitation during 1996 was about 12 in.
above average, and ground-water levels rose in
response. Ground-water levels during March 1997
were slightly above average.

Annual precipitation at the Upton precipitation
station in 1996 (60.22 in.) was above the 1949-96
mean (48.28 in.; fig. 12A) for the first time since 1990.
Precipitation in March 1997 (5.10 in.) was above the
1949-96 mean for March (4.69 in.), although the
monthly totals for January and February 1997 were
below their monthly means. Precipitation during all of
1997 totaled 40.04 in., about 8 in. below average.

The water table in March 1997 formed a mound
that crested slightly north of the BNL site (fig. 14). It
generally sloped downward more steeply toward the
northern shore of Long Island than toward the
southern shore. The discharge of ground water to
streams, especially Peconic and Carmans Rivers,
locally affected the water-table configuration, as
illustrated by the upstream bend of water-level
contours on water-table maps (fig. 14).

Ground-water levels at wells S5517 and S6431

(1 mi to the northeast) during 1970-97 are plotted in

figure 12B. Both wells are on the BNL site, and water
levels in both wells have been monitored regularly
since 1953. Water levels have fluctuated from
maximums of 46.93 ft above sea level in 1958 at
S5517 and 48.98 ft above sea level in 1979 at S6431,
to minimums of 33.34 ft above sea level in 1967 at
well S5517 and 38.93 ft above sea level in 1996 for
S6431. The long-term average water levels at these
wells are 40.7 and 44.0 ft above sea level, respectively.
Water levels in these wells during March 1997 were

. 42.10 and 44.97 ft above sea level, respectively.

The mean discharges of the Peconic and Carmans

Rivers (44.7 and 26.3 ft3/s) for March 1997 (Spinello

and others, 1998) were close to the mean discharges
for the month of March (47.8 and 25.8 ft¥/s,
respectively) for the 55-year period of record.

The start of flow in the Peconic River during
March 1997 was near the western boundary of the
BNL site, just east of William Floyd Parkway (fig. 1).
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This location, about 5 mi upstream of the estimated
position in August 1995, indicates that the Peconic
River was under gaining conditions (received base
flow) throughout its channel within the BNL site.

Hydrologic Conditions and Local Water-Table
Configuration during August 1997

Precipitation in August 1997 (3.33 in.) was
about 1 in. below the 1949-96 mean for the month of
August (4.40 in.). Ground-water levels peaked in
early summer and had begun to decline by August
1997. Water levels at this time in wells S5517 and
S6431 (fig. 12B) were 43.04 and 44.03 ft above sea
level, respectively. The mean monthly discharge of
the Peconic River for August 1997 was 20.7 ft¥/s,
about 27 percent lower than its mean historical
discharge for the month of August (28.4 ft%/s). The
mean monthly discharge of the Carmans River for
August 1997 (21.0 ft}/s) was close to its mean
historical discharge for the month of August
(22.9 ft3/s) (Spinello and others, 1998).

Local Ground-Water Flow Patterns near
Brookhaven National Laboratory

Ground-water flow at the BNL site is affected by
several factors that complicate the ground-water
flowpaths and the movement of contaminants in the
aquifer system. One factor is the pumping of ground
water for supply at the site; this lowers ground-water
levels and affects hydraulic gradients in the local
ground-water system. Another factor is discharge from
BNL’s sewage-treatment plant to Peconic River; this
can affect the position of the start of flow and the
discharge of Peconic River. Recharge basins and
pumping of onsite ground-water-remediation systems
also affect ground-water levels locally. The stream
channel of the Peconic River extends onto the site, but
the start of flow can be either east or west of the site
under extreme hydrologic conditions. The amount of
flow in Peconic River, and base-flow discharge to the
stream, affect the position of the secondary
(southeastward trending) ground-water divide. The
hydraulic properties of several hydrogeologic units,
including the upper glacial aquifer, Magothy aquifer,
grayish-brown clay, Gardiners Clay, and localized
near-surface clay units along the Peconic River
drainage system, also affect ground-water flow.

Water-table altitudes at the BNL site in
November 1994, a period of slightly below-average
water levels, are plotted in figure 15. Pumping of
onsite supply wells caused local depressions in the
water table. In addition, a ground-water mound
developed below the main recharge basin at the center
of the site. A localized near-surface clay layer near the
sewage-treatment plant impedes ground-water
movement and results in localized water-table
mounding. Water levels along the reach of the
Peconic River east of the sewage-treatment plant
indicate that the river is under losing-stream
conditions (the water-table gradient is away from the
stream channel); thus, ground water did not discharge
into the stream along this reach during this period,
and an unsaturated zone developed between the
streambed and the water table beneath the channel.
Much of the water that entered the channel during
storms or from the sewage-treatment plant could,
therefore, recharge the aquifer system.

Water-table altitudes at the site in March 1997 are
depicted in figure 16; this was before several ground-
water-remediation systems that were in use during
August 1997 affected the water-table configuration at
the site (fig. 17). Water levels declined not only near
supply wells, but near remediation (extraction) wells
along the southern boundary of the site. At the same
time, treated water from these systems was discharged
to recharge basins (grid blocks 066, 076, and 094,
fig. 16), and produced localized ground-water mounds
near the basins.

Flow Gradients in Brookhaven National
Laboratory Area

The horizontal hydraulic gradient at the BNL site
typically is 0.001 fv/ft, but in recharge areas and
pumping areas, it can steepen to 0.0024 ft/ft or greater
(W.R. Dorsch and Scott Wachino, Brookhaven
National Laboratory, written commun., 1999). The
natural ground-water flow velocity in most parts of the
site is estimated to be about 0.75 ft/d, but flow
velocities in recharge areas can be as high as 1.45 ft/d,
and those in areas near BNL supply wells have been
estimated to have velocities as great as 28 ft/d
(Woodward-Clyde Consultants, 1993).

Water-level measurements at paired water-table
wells and deep wells screened in the upper glacial
aquifer along the northern boundary of the site (near
the regional ground-water divide) indicate significant
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Figure 14. Water-table altitude in 300-mi? study area
surrounding Brookhaven National Laboratory, Suffolk
County, N.Y., March 1997. (Location is shown in fig. 1.)
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deep-flow recharge conditions, with downward
vertical hydraulic gradients of as much as 0.007 ft/ft.
Head differences at paired wells in the central and
southern areas of the site become negligible,
however, indicating that ground-water flow within the
upper glacial aquifer is predominantly horizontal in
these areas. Vertical gradients between the deep part
of the upper glacial aquifer and the shallow part of
the Magothy aquifer were about 0.018 ft/ft
throughout the site.

Vertical gradients in the shallow-flow system
along the Peconic River are measurable in clustered
wells. The change in direction and magnitude of
vertical gradients with changing hydrologic
conditions is evident at clustered wells S47228 and
S47229 (along the Peconic River, fig. 14). When
ground-water levels are low, the start of flow to the
Peconic River moves downstream, and vertical flow
gradients are downward, and when ground-water
levels are high, the start of flow moves upstream as
the stream channel receives base flow, and vertical
flow gradients are upward.

The distribution of water levels through the upper
glacial aquifer and the shallow part of the Magothy
aquifer along vertical section B-B’, which extends
along a north-south flowpath through the BNL site, is
depicted in figure 18. Generally, water levels decrease
slightly with depth through the upper glacial aquifer,
resulting in a slight natural downward vertical flow
gradient, but the main component of ground-water
flow through the upper glacial aquifer is horizontal.
The hydraulic properties of the sandier zones of the
Upton unit are similar to those of the rest of the upper
glacial aquifer in that differences in ground-water
levels are small or not observable within the few well
clusters screened between the Upton unit and the
overlying outwash deposits.

Larger head differences are observed where
ground water enters the Magothy aquifer than in the
upper glacial aquifer; these differences are reflected on
the section (fig. 18) by a bending (refraction) of the
potentiometric (water-level) contours. A larger vertical
component of flow is present along the contact
between the upper glacial and Magothy aquifers than
within the upper glacial aquifer. Vertical gradients
between the deep part of the upper glacial aquifer and
the shallow part of the Magothy aquifer were about
0.018 ft/ft throughout the site.

SUMMARY AND CONCLUSIONS

Brookhaven National Laboratory (BNL) has
installed many geologic test borings to gain detailed
geologic information and to delineate the extent of
ground-water contamination. In 1994, the U.S.
Geological Survey began a cooperative study with
BNL to examine the stratigraphy in the 28-mi? study
area near the site and to monitor ground-water levels
throughout a 300-mi? area of central Suffolk County
that surrounds BNL.

Sediments in the upper part of the Magothy
Formation are varied and include gray, silty to clayey
sand interbedded with (1) light- to dark-gray clay,

(2) gray, well-sorted sand, (3) grayish-brown clay,

(4) grayish-brown sand, (5) brown sand, and (6) hard,
black clay. An extensive clay unit of variable
thickness, referred to as the grayish-brown clay in this
report, was encountered in many borings in the study
area. Pollen analyses of samples from this unit
confirmed that it is of Cretaceous age. It is the
uppermost of the Cretaceous units in several parts of
the 28-mi study area.

The upper surface of the Cretaceous deposits has
a relief of about 120 ft in the 28-mi? study area.
Several prominent channel and ridge features in the
surface are aligned generally northwest-southeast and
may result from a glacial advance. The Cretaceous
surface beneath the BNL site is characterized more by
local erosional features than by the regional cuesta
shape that was suggested by previous authors.

The recent drilling at BNL indicated that the deep
upper Pleistocene deposits are more varied than the
shallow deposits. Distinct differences in lithology, and
subtle differences in color, grain size, sorting, and
gamma-ray responses, were observed at depths of 50
to 70 ft below sea level in several parts of the study
area. The base of the upper Pleistocene sequence
includes distinct units of gray, grayish-brown, and
greenish-gray sand, silt, poorly sorted sand, and
greenish-gray to gray clay; these units are laterally
discontinuous and are generally at about the same
altitude as deLaguna’s unidentified unit and are
probably facies associated with it. This report
informally refers to these sediments as the Upton unit.
The shallow part of the upper Pleistocene deposits
contains outwash sediments of light-brown sand and
gravel that generally are highly permeable.

Ground-water levels during March and August
1997 were slightly above or near average. The

44 Stratigraphy and Hydrologic Conditions at Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97
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discharge of ground water to the Peconic and Carmans
Rivers locally lowers the water table and results in an
upstream bending of water-level contours. The water-
table configuration beneath the BNL site is affected by
pumping of supply wells and remediation wells,
discharges of treated water to recharge basins,
discharge from the sewage-treatment plant, and
permeability of local near-surface clay units.

The main ground-water divide in the upper
glacial aquifer extends east-west along the island
through the northern part of Suffolk County. A
secondary ground-water divide originates near the
start of flow of the Peconic River and extends east-
southeastward toward the South Fork. The start of flow
in the Peconic River during March 1997 was within
the BNL site and near William Floyd Parkway, about
5 mi upstream (west) of its estimated position in
August 1995, which was about 1.2 mi east of the site.

The horizontal hydraulic gradient at BNL
typically is 0.001 ft/ft but can steepen near recharge
basins and pumping wells. Vertical ground-water flow
gradients within the upper glacial aquifer were as large
as 0.007 ft/ft in the northern part of BNL and were
negligible in the southern part. Vertical gradients
between the deep part of the upper glacial aquifer and
the shallow part of the underlying Magothy aquifer
were about 0.018 ft/ft throughout the site.
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