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CONVERSION FACTORS, TEMPERATURE, AND VERTICAL DATUM

Multiply By To obtain
Length
inch (in.) 25.4 millimeter
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
Area
acre 4,047 square meter
square mile (mi2) 2.590 square kilometer
Volume
cubsic foot (ft) 0.02832 cubic meter
gallon 3.785 liter
acre-foot (acre-ft) 1.233x 10>  cubic meter
Flow Rate
million gallons per day (Mgal/d) 1.547 cubic foot per second
cubic foot per second (ft3/s) 0.02832 cubic meter per second

TEMPERATURE:

Equations for temperature conversion between degrees Celsius (°C) and degrees Fahrenheit (°F):

°C=5/9 (°F-32)
°F=(1.8x °C) + 32

SEA LEVEL:

In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of
1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the
United States and Canada, formerly called Sea Level Datum of 1929.
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Characterization of Water Quality and Simulation of
Temperature, Nutrients, Biochemical Oxygen Demand,
and Dissolved Oxygen in the Wateree River,

South Carolina, 1996-98

By Toby D. Feaster and Paul A. Conrads

ABSTRACT

In May 1996, the U.S. Geological Survey
entered into a cooperative agreement with the
Kershaw County Water and Sewer Authority to
characterize and simulate the water quality in the
Wateree River, South Carolina. Longitudinal
profiling of dissolved-oxygen concentrations
during the spring and summer of 1996 revealed
dissolved-oxygen minimums occurring upstream
from the point-source discharges. The mean
dissolved-oxygen decrease upstream from the
effluent discharges was 2.0 milligrams per liter, and
the decrease downstream from the effluent
discharges was 0.2 milligram per liter. Several
theories were investigated to obtain an improved
understanding of the dissolved-oxygen dynamics in
the upper Wateree River. Data suggest that the
dissolved-oxygen concentration decrease is
associated with elevated levels of oxygen-
consuming nutrients and metals that are flowing
into the Wateree River from Lake Wateree.

Analysis of long-term streamflow and water-
quality data collected at two U.S. Geological
Survey gaging stations suggests that no strong
correlation exists between streamflow and
dissolved-oxygen concentrations in the Wateree
River. However, a strong negative correlation does
exist between dissolved-oxygen concentrations and
water temperature. Analysis of data from six South

Carolina Department of Health and Environmental
Control monitoring stations for 1980-95 revealed
decreasing trends in ammonia nitrogen at all
stations where data were available and decreasing
trends in 5-day biochemical oxygen demand at
three river stations.

The influence of various hydrologic and
point-source loading conditions on dissolved-
oxygen concentrations in the Wateree River were
determined by using results from water-quality
simulations by the Branched Lagrangian Transport
Model. The effects of five tributaries and four point-
source discharges were included in the model. Data
collected during two synoptic water-quality
samplings on June 23-25 and August 11-13, 1997,
were used to calibrate and validate the Branched
Lagrangian Transport Model. The data include dye-
tracer concentrations collected at six locations,
stream-reaeration data collected at four locations,
and water-quality and water-temperature data
collected at nine locations. Hydraulic data for the
Branched Lagrangian Transport Model were
simulated by using the U.S. Geological Survey
BRANCH one-dimensional, unsteady-flow model.
Data that were used to calibrate and validate the
BRANCH model included time-series of water-
level and streamflow data at three locations. The
domain of the hydraulic model and the transport
model was a 57.3- and 43.5-mile reach of the river,
respectively.

Abstract 1



A sensitivity analysis of the simulated
dissolved-oxygen concentrations to model
coefficients and data inputs indicated that the
simulated dissolved-oxygen concentrations were
most sensitive to changes in the boundary
concentration inputs of water temperature and
dissolved oxygen followed by sensitivity to the
change in streamflow. A 35-percent increase in
streamflow resulted in a negative normalized
sensitivity index, indicating a decrease in dissolved-
oxygen concentrations. The simulated dissolved-
oxygen concentrations showed no significant
sensitivity to changes in model input rate kinetics.

To demonstrate the utility of the Branched
Lagrangian Transport Model of the Wateree River,
the model was used to simulate several hydrologic
and water-quality scenarios to evaluate the effects
on simulated dissolved-oxygen concentrations. The
first scenario compared the 24-hour mean
dissolved-oxygen concentrations for August 13,
1997, as simulated during the model validation,
with simulations using two different streamflow
patterns. The mean streamflow for August 13, 1997,
was 2,000 cubic feet per second. Simulations were
run using mean streamflows of 1,000 and 1,400
cubic feet per second while keeping the water-
quality boundary conditions the same as were used
during the validation simulations. When compared
to the validation simulation using the mean
streamflow for August 13, 1997, simulations
indicated an increase in 24-hour mean dissolved-
oxygen concentrations ranging from 0.26 to
0.47 milligram per liter and 0.12 to 0.30 milligram
per liter, respectively. A dissolved-oxygen budget
was computed at branch 1 grid 9 (river mile 57.4)
for the three simulations. The budgets indicated that
the increase in simulated dissolved-oxygen
concentrations was a result of increased reaeration
from the changing hydraulic conditions at the
different flows.

A second scenario simulation was used to
evaluate two point-source loading conditions to the
system by comparing simulated dissolved-oxygen
concentrations with a condition where there is no
point-source discharge into the system. The
changes in the 24-hour minimum and mean
dissolved-oxygen concentrations for August 13,
1997, using the August 1997 validation flow

conditions ranged from -0.08 to 0.05 milligram per
liter. Setting all the point-source loadings to the
current National Pollutant Discharge Elimination
System permit ultimate oxygen demand levels
changed the 24-hour minimum and mean dissolved-
oxygen concentrations by a range of -0.26 to

0.01 milligram per liter.

A third scenario was run using the three
different streamflow conditions from scenario one
and setting point-source loadings to the current
National Pollutant Discharge Elimination System
permit ultimate oxygen demand levels. The results
indicated increases in the 24-hour mean dissolved-
oxygen concentrations ranging from 0.03 to
0.59 milligram per liter. Once again, the influence
of the atmospheric reaeration as the flows were
reduced resulted in increased 24-hour mean
dissolved-oxygen concentrations.

INTRODUCTION

In recent years, South Carolina has experienced
a significant increase in industrial and residential
development. Along with the economic benefits that
accompany such development, it is important to
ascertain the effects of increased development on the
State’s natural resources and, in particular, its water
resources. Although many factors must be examined
for proper management of the State’s water resources,
the capacity of a stream to assimilate wastewater
effluent without degrading overall water quality is one
of the most important characteristics to be examined.

The headwaters of the Catawba-Wateree River
Basin begin in western North Carolina at the foot of the
Blue Ridge Mountains (fig. 1). The Catawba River
flows into central South Carolina and becomes the
Wateree River at Lake Wateree Dam located in
Kershaw County.

Presently (1999), treated industrial and
municipal wastewater is discharged into the upper
Wateree River at four locations (fig. 2). Most
wastewater discharges, although treated, still cause an
increase in the demand for dissolved oxygen (DO) and
a corresponding decrease in DO concentrations. If the
release of treated wastewater is unregulated, DO
concentrations may be reduced to levels that are
unhealthy for aquatic life. To safeguard ecological
health, point-source discharges are regulated in South
Carolina by the Department of Health and
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water temperature, DO, BOD, and nutrients in a
network of open channels (Jobson and Schoelhamer,
1987).

The originally proposed domain for the
BRANCH model was from the Lake Wateree Dam
tailrace to USGS station 02148315 (fig. 3). Streamflow
data provided by Duke Energy were to be used as the
upstream boundary of the low model. Duke Energy
estimates flows from the dam based on megawatt
output. A series of streamflow measurements were
made in the tailrace to verify the estimates. The
estimated flows ranged from 1 to 13 percent greater
than the USGS measured flows with a mean deviation
of 4 percent. Station 02148315 was chosen as the
downstream boundary of the flow model because
continuous hydrologic data have been collected at this
site since 1968. Continuous streamflow data have been
collected since 1942 at USGS station 02148000,
located approximately 7 mi downstream from the dam.

The originally proposed domain of the BLTM
was from the tailrace of Lake Wateree Dam to USGS
station 02148306. During May 1996, station 02148306
was installed on the Wateree River just downstream
from U.S. 378 (fig. 3). Water level, DO concentrations,
pH, water temperature, and specific conductance were
collected at station 02148306 through September 30,
1997. During this period, a stage-streamflow relation
was developed so that the stage and flow data collected
at the gage could be used for flow model calibration
and validation.

During the first phase of the project, longitudinal
profiles of the DO concentrations in the river were
measured to define the DO concentration curve and
locate the DO concentration sag. The DO concentration
sag typically is defined as the lowest DO concentration
downstream from a point-source discharge and is
assumed to be the result of wastewater assimilation. As
previously discussed, the profiles for the Wateree River
indicated that the DO concentrations initially were
increasing through an approximately 2-mi reach of
shoals just downstream from the dam and then
decreasing with a sag occurring in the vicinity of the
first point-source discharge outfall pipe located at
RM 67.1 (fig. 9). Through further investigations and
review of the synoptic water-quality data collected
during June 23-25 and August 11-13, 1997 (figs. 12,
13), it was concluded that high nutrient levels from
Lake Wateree in addition to the river geometry and
aquatic plants in the upper reach were the predominant

factors causing the increase and sudden decrease in DO
concentrations.

The USGS operated a short-term water-quality
gage, station 02147930, at RM 67.4 from June 22
through September 30, 1997. A joint review of the
water-quality data collected in the summer of 1997 was
made by personnel from the KCWSA and the
SCDHEC. It was agreed that the upstream boundary of
the BLTM would be moved to USGS station 02147930
(RM 67.4) because of the dynamic nature of the upper
reach and the time constraints of the cooperator for
developing a calibrated model.

The initial flow model calibration for the
Wateree River was attempted between the tailrace and
USGS station 02148000. The upper and lower
boundary data for the BRANCH model were
streamflow from the tailrace and water level at station
02148000, respectively. Beyond the tailrace, the
Wateree River channel geometry is a wide, rocky
channel approximately 1,200 ft wide with a slope of
approximately 2.8 ft/mi. Below the shoal area, the
channel narrows to approximately 450 ft with a slope
of approximately 0.8 ft/mi. Initial calibration problems
occurred near this transition area. It was concluded that
the sudden change in channel geometry was acting as a
control (R. Schaffranek, U.S. Geological Survey, oral
commun., 1998). Consequently, modeling such a
transition by using the BRANCH model would
probably require the development of a stage-
streamflow relation at this transition area.

During attempts to calibrate the preliminary
model in the upper reach, a problem with the
streamflow data from the dam was discovered. From a
statistical analysis of the streamflow data at the tailrace
and at USGS station 02148000, the mean streamflow in
the tailrace for the calibration period was 3 to 6 percent
greater than the streamflow at station 02148000.
Consequently, the flow model did not conserve mass
and was storing the excess volume, causing a
continuous increase in simulated water level at station
02148000. As a result of this problem and the control
problem discussed previously, it was decided that the
upstream boundary of the BRANCH model also would
be moved to USGS station 02147930.

As previously mentioned, continuous
water-quality data were collected at station 02147930
during the summer of 1997. No water-level data were
available at this location. Station 02147930 is located
0.9 mi upstream from USGS station 02148000. It was
decided that the water-level and streamflow data at
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station 02148000 would be used at station 02147930.
This was considered acceptable because the distance
between the stations is relatively short, the channel
geometry is fairly uniform in this reach, and significant
historical flow records are available for station
02148000. An additional cross section was surveyed at
USGS station 02147930 and included in the geometry
file for the BRANCH model. Water-surface elevations
were measured at station 02147930 at selected
intervals during the cross-section survey. The measured
water-surface elevations were compared with
water-level readings collected at USGS station
02148000 at the same time to determine a datum
correction for shifting water-level elevations at station
02148000 upstream to station 02147930.

A statistical analysis was made to determine the
lag time between station 02147930 and 02148000.
Water-level and streamflow data were extracted from
the BRANCH model at specified branches and cross
sections. The lag time between station 02148000 and
the next downstream cross section in the BRANCH
model was determined by computing correlation
coefficients for several lag times. The lag time with the
highest correlation coefficient was selected. The
distance between the cross sections was then used to
estimate a lag time per mile. The lag time between
stations 02148000 and 02147930 was determined by
multiplying the distance between the stations by the lag
time per mile. The analysis indicated no significant lag
time during the June 1997 calibration period. A lag
time of 38 minutes was computed for the August 1997
validation period. Because the lag time between
stations 02148000 and 02147930 was relatively short,
and for the convenience of model users, it was decided
that the streamflow data from station 02148000 would
be used at station 02147930 without regard to lag time.

SIMULATION OF STREAMFLOW AND
MASS TRANSPORT

The BRANCH model is a one-dimensional,
unsteady-flow computer model for simulation of
streamflow in interconnected channels (Schaffrenek
and others, 1981). The model solves the one-
dimensional equations of continuity and motion:

B(0Z/0t)+(0Q/0dx)-q = 0 (1)

and

(00/31t) +d(BQ°/A)/dx + gA(JZ/dx)
+(gk/ARY*)010| - qu
—EB_ U coso. = 0, ()

where
B is the total channel top width, in feet;
Z is the stage, in feet;
t is the time, in seconds;

Q is the discharge, in cubic feet per second;

x is the longitudinal distance along the channel,
in feet;

g is the lateral side-channel flow, in cubic feet
per second per foot;

B is the dimensionless momentum coefficient;

A 1is the cross-sectional area, in square feet;

g is the gravitational acceleration constant, in
feet per second per second;

k is a function defining flow resistance;

R is the hydraulic radius, in feet;

u' is the x-component of the lateral side-channel
flow velocity, in feet per second;

€ is the dimensionless wind resistance
coefficient;

B, is the top width of the conveyance part of the
cross section, in feet; and
U, is the wind velocity in feet per second,

occurring at an angle o from the positive
X-axis.

The flow-resistance function is expressed as
k=Mm/ 1.486)2, where 1 is a flow-resistance coeffi-
cient similar to Manning’s n.

In the derivation of equations 1 and 2, it is
assumed that the flow is essentially homogeneous in
density. The channel is assumed to (1) be reasonably
straight, (2) have a simple cross-sectional geometry,
such as a rectangular or trapezoidal shape, and (3) have
a mild and reasonably constant bottom slope.
Approximate solutions for the nonlinear partial-
differential, unsteady-flow equations can be obtained
by using finite-difference techniques (Schaffranek and
others, 1981). A weighted four-point finite-difference
approximation is used in the BRANCH model.
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reach the equilibrium temperature and remain at this
temperature as long as the meteorologic conditions
(solar radiation, atmospheric radiation, wind speed, air
temperature, and relative humidity) remain constant,

Applying the principle of conservation of
thermal energy to a one-dimensional open channel, the
conservation of temperature equation, in its Lagrangian
form, is as follows:

dT/dt + Udt/dx - [D (d*T/dx")]
= (HW)/(C,pA), ©)

where
T is the cross-sectional average water
temperature;
t is time;
U is stream velocity;
x is the longitudinal coordinate;
D, is the longitudinal dispersion coefficient;
H, is the flux of thermal energy from the air
to the water;
W is the top width of the channel;
C,, is the specific heat of water at constant
pressure;
p is the density of water; and
A is cross-sectional area.

The term on the right side of equation 6 represents the
rate of change in water temperature caused by the
exchange of energy between the atmosphere and water.
The simulation of temperature can be simplified
by determining the equilibrium temperature. It is
easier, and often more acceptable, to estimate the
equilibrium temperature than to measure all the
necessary meteorologic inputs (solar radiation,
atmospheric radiation, wind speed, air temperature,
and relative humidity) necessary for a detailed heat
budget. Time-series estimates of equilibrium
temperature for the calibration and validation time
periods were computed by using the program
EQULTMP (Jobson, 1997). The program uses inputs of
daily extremes of air temperature (and their respective
times) and average daily wind speed to compute the
equilibrium temperatures for a specified time step.
The QUALZ2E subroutine in the BLTM simulates
the growth of phytoplankton, which are dependent on
solar radiation. Time series estimates of solar radiation
were computed by using the program SOLAR (Jobson,
1997). Inputs for the program include longitude and

latitude of the boundary location, longitude of the local
time meridian, altitude of sunrise and sunset,
atmospheric pressure, coefficients in empirical
equation to determine atmospheric precipitation, cloud
cover, and dewpoint temperature.

A modified version of QUALZ2E kinetics in the
BLTM was applied to the Ashley, the Cooper, and the
Wando Rivers (Conrads and Smith, 1997; Conrads,
1998). Modifications to the model include a loss factor
for the oxidation of nitrite to nitrate, source terms for
BOD and organic nitrogen, and a settling term for
orthophosphorus (fig. 26). An additional reaeration
algorithm for estuarine environments that estimates
reaeration as a function of channel depth and wind
speed was added to the BLTM (Thomann and
Fitzpatrick, 1982) and evaluated for the Ashley River
application. This same version of the QUAL2E kinetics
was applied to the Wateree River.

Calibration and Validation of Water
Temperature

Daily high and low air temperatures and wind
speed data from Columbia Airport were used to
estimate the necessary meteorologic input data for each
data set of wind speed, equilibrium temperature, and
solar radiation (W. Tyler, State Climatology Office,
South Carolina Department of Natural Resources,
written commun., 1998). Water-temperature
simulations were calibrated by adjusting the free
convection and mass-transfer coefficients in the wind
function of the BLTM. The calibration was refined and
improved by adjusting the equilibrium temperatures at
the upstream boundary by 5 percent. The simulated
water temperatures during the calibration and
validation periods are shown in figures 27 and 28,
respectively.

Calibration and Validation of Nutrients,
Biochemical Oxygen Demand, and
Dissolved Oxygen

The BLTM for the Wateree River was calibrated
and validated by using nutrient data collected during
June 23-25 and August 11-13, 1997, respectively. Ten
water-quality constituents were simulated—water
temperature, DO, algal biomass, organic nitrogen,
ammonia, nitrite, nitrate, organic phosphorus,
orthophosphorus, and ultimate carbonaceous
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SIMULATION OF TEMPERATURE,
NUTRIENTS, BIOCHEMICAL OXYGEN
DEMAND, AND DISSOLVED OXYGEN

The BLTM uses the water-quality reaction
kinetics used in the QUAL2E model to simulate the
fate and transport of nutrients, BOD, and DO (Brown
and Barnwell, 1987; Jobson and Schoelhamer, 1987).
The model can simulate the effect of as many as 10
water-quality constituents on DO concentration. The
model also can simulate multiple wastewater dis-
charges, withdrawals, tributary flows, and incremental

inflows and outflows. A conceptualization of the
constituents and their interactions in the QUAL2E
subroutine in the BLTM model is shown in figure 26.
The rates of most chemical and biological reactions in
the QUAL2E subroutine are temperature dependent;
therefore, it is necessary to accurately simulate the
water temperature of the system. The QUAL2E
subroutine uses an equilibrium temperature algorithm
to simulate water temperature (Jobson, 1977, 1981).
The equilibrium temperature is defined as the water
temperature at which the net surface heat exchange
becomes zero. For example, a pool of water would
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Figure 26. Major constituent interactions in the QUAL2E subroutine of the Branched

Lagrangian Transport Model (BLTM).
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