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CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATIONS

Multiply By To obtain
acre-foot (acre-ft) 1,233 cubic meter
cubic foot per second (f31s) 0.02832 cubic meter per second
foot (ft) 0.3048 meter
inch (in.) 2.54 centimeter
inch per year (in./yr) 25.4 millimeter per year
mile (mi) 1.609 kilometer
milligrams per square foot per day [mg/(ft¥/d)] 0.09290 milligrams per square meter per day
million gallons per day (Mgal/d) 0.04381 cubic meter per second
square mile (mi?) 2.590 square kilometer
ton 907.2 kilogram
ton per year (ton/yr) 907.2 kilogram per year

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/18
Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929

(NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level
nets of both the United States and Canada, formerly called Sea Level Datum of 1929,

Concentrations of chemical constituents in water are given either in milligrams per
liter (mg/L) or micrograms per liter (ug/L).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (LS/cm at
25°C).

Water year: The 12-month period from October 1 through September 30. The water year is
designated by the calendar year in which it ends.
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Table 1. State-permitted discharge limits for specific sites located in the Dix River watershed, Kentucky,
and water-withdrawal or intake sites

[KDOW, Kentucky Division of Water; Mgal/d, million gallons per day; ---, no station number; MHP, Mobile Home Park;
DHR, Department for Human Resources]

Map KDOwW
number/letter station Permitted flow
(figure 2) Station name number (Mgal/d) Receiving stream
Permitted discharge sites
1 City of Brodhead 04033006 0.150 Dix River
2 City of Crab Orchard 04033008 .000 Dix River
3 City of Stanford 04033002 .800 Logan Creek
4 Baird Oil Company 04033001 001 Logan Creek
S City of Lancaster 04032003 1.000 White Oak Creek -
6 Hustonville Elementary School 04032001 .006 Hanging Fork Creek
7 Hustonville Apartments 04032012 .003 Hanging Fork Creek
8 Herrington Haven Subdivision 04032006 .008 Dix River
9 Whirlpool Corporation 04031008 .000 Clarks Run
10 Phillips Lighting 04031007 .300 Clarks Run
11 Texaco Bulk Plant 04031005 .000 Clarks Run
12 City of Danville 04031010 4.800 Clarks Run
13 Horse Shoe Bend Subdivision 04030000 .012 Herrington Lake
14 Private Residence 04030010 .001 Herrington Lake
15 Greenview MHP 04030008 .004 Mocks Branch
16 Northpoint Training Center 04030006 .300 Herrington Lake
(formerly known as Kentucky
DHR Youth Center)
17 Paradise Camp Condos 04030012 .026 Herrington Lake
18 Robinson Elementary School 04031002 .006 McKecknie Creek
19 Chimney Rock Resort 04030005 015 Herrington Lake
20 Village Inn Restaurant 04030004 .001 Cane Run
21 Burgin Elementary and High 04030003 .008 Cane Run
Schools
22 Keystone Brush Company 04030002 .006 Cane Run
23 Private residence 04030000 .001 Cane Run
24 Kentucky Utilities Brown Power 04030001 .000 Herrington Lake
Withdrawal/intake sites
A City of Stanford (reservoir 04033004 .000 Neals Creek (Stanford Reservoir)
intake)
B City of Lancaster (reservoir 04032002 .000 Unnamed tributary to White Oak
intake) Creek (Lancaster Reservoir)
C Danville Country Club - .000 Clarks Run

(withdrawal)
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This report describes the ambient physical,
chemical, and biological characteristics of
Herrington Lake and its major tributaries; the
procedures used in the construction and sensitivity
analysis of a numerical model of the reservoir; and
the simulation of potential management strategies for
the reservoir. The spatial and temporal distribution of
chlorophyll @ and phytoplankton are described in
Crain (1998).

Description of Study Area

Herrington Lake is a warm, monomictic
reservoir in the Inner Bluegrass physiographic region
of Kentucky and is located in parts of Mercer,
Garrard, and Boyle Counties (fig. 1). The reservoir
was formed in the mid-1920’s with the completion of
the Dix Dam, and at the time of construction was the
highest dam (270 ft) east of the Rocky Mountains.
The reservoir is maintained and operated by the
Kentucky Utilities Company for the primary purpose
of hydropower generation. The two largest towns
near the reservoir are Danville and Wilmore, Ky.
Danville has a population of 12,420; Wilmore has a
population of 4,215 (U.S. Bureau of the Census,
1991).

Herrington Lake has a surface area of 4.6 miz,
a volume of 254,000 acre-ft, a length of 35 mi (at full
pool), and mean and maximum depths of 78 ft and
250 ft, respectively (U.S. Environmental Protection

Agency, 1977). The Dix River watershed (318 mi?‘)
comprises various land-use types, including
approximately 70-percent agricultural, 25-percent
forest, and 3-percent urban areas. Land-use data were
compiled from 1:250,000-scale digital data

(U.S. Geological Survey, 1986a) (fig. 3). The
watershed is hilly in the headwaters, leading to
gently rolling hills at the dam.

Acknowledgments

The authors acknowledge the cooperation,
information, and assistance provided by Bradley C.
Young, Kentucky Utilities Company, for furnishing
discharge, pan evaporation, and precipitation data for
Herrington Lake, Ky., the National Weather Service
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COLLECTION AND ANALYSIS
OF DATA

Bathymetric, meteorologic, hydrologic,
physical, water-quality, and biological data were
collected and compiled from a variety of sources for
this investigation. Water samples for chemical
analysis were collected from selected tributaries, the
main stem of the Dix River, and from Herrington
Lake during 1995 and 1996 by the USGS. Biological
samples were collected from Herrington Lake during
1995 and 1996 by the University of Louisville. Five
inflow stations (Dix River, Clarks Run, Mocks
Branch, McKecknie Creek, and Cane Run) were
sampled (fig. 4) over a range of seasonal and
hydrologic conditions. Five reservoir-sampling
stations were selected to characterize the upstream
(riverine), middle (transition), and downstream
(lacustrine) sections of the reservoir. The reservoir-
sampling stations included Chenault Bridge [S1 (in
model segment 5)], the Water Tower [S2 (model
segment 11)], Kennedy Bridge [S3 (model
segment 16)}, Ashes Creek [S4 (model segment 18)],
and Dix River Dam [S5 (model segment 19)] (fig. 4).
Chenault Bridge (S1), Water Tower (S2), Kennedy
Bridge (S3), and Dix River Dam (S5) were within the
mainstem of the reservoir; however, Ashes
Creek (S4) was in an embayment. Detailed sampling
and analytical methods are described below.
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Bathymetric Data

The USGS conducted a bathymetric survey of
Herrington Lake in September 1994. Seventy
transects were evaluated using a differential global-
positioning system and a digital-recording acoustic
fathometer with an analog strip chart backup using
procedures recommended by the U.S. Army Corps of
Engineers (COE) (U.S. Army Corps of Engineers,
1994). The digital data were compared for
consistency with the analog strip chart and corrected
as necessary. These data were provided to
J.E. Edinger Associates, Inc., who prepared the file
of input data for the reservoir bathymetry required by
the CE-QUAL-W-2 model (Edward M. Buchak,

J.E. Edinger and Associates, Inc., written commun.,
1997).

Meteorologic Data

Regional meteorologic data were obtained
from the National Weather Service (NWS). The
University of Kentucky Spindletop Research Farm
(located approximately 75 mi from Herrington Lake)
provided hourly solar-radiation, air-temperature,
dew-point, wind-speed, and wind-direction data.
Hourly cloud-cover data were estimated by using a
regression model that relates hourly cloud cover to
hourly solar radiation collected by the NWS at
Louisville, Kentucky. Precipitation data (fig. 5) and
pan-evaporation data were collected at the Dix River
Dam by the Kentucky Utilities Company.

Hydrologic Data

Discharge data were collected at USGS
streamgaging stations on Clarks Run near Danville,
Ky., and Dix River near Danville, Ky. (figs. 6 and 7)
(McClain and others, 1996, 1997). Stream discharge
was measured at 4- to 8-week intervals from
February-November 1995 and
January-September 1996 on selected tributaries of
Herrington Lake, which include Cane Run, Mocks
Branch, and McKecknie Creek. Daily mean
discharge was estimated for these tributaries using
drainage-area ratios based on the streamflow records
at the Clarks Run station.

The amount of flow from subsurface-karst
conduits into the reservoir is unknown, but may be
significant. Thus, mass balance inputs may be over-
or under-estimated because the assessment of flow
from any such conduits was beyond the scope of this
project. Discharge measured in streams was assumed
to enter the reservoir with no losses or gains from the
karst system.

Outflows and water-level data for the Dix
River Dam were provided by Kentucky Utilities
Power Company (Bradley C. Young, Kentucky
Utilities Power Company, written commun., 1997).
Data for several short periods during which
measuring equipment malfunctioned were estimated.

Physical Water-Quality
Characteristics

Water temperature and specific conductance
were measured at 2- to 8-week intervals at the five
selected inflows to Herrington Lake during
February-November 1995 and
January-September 1996, using a YSI Model S-C-T
thermistor. For the five reservoir-sampling stations,
water temperature, DO, pH, and specific conductance
were measured at 1-ft depth intervals (surface to
bottom) using a YSI 6000 water-quality meter.
Light-attenuation profiles were measured using a
Protomatic photometer equipped with upward and
downward spherical sensors. Light profile readings
were taken at 1.5-ft intervals from the surface to the
lower boundary of the photic zone (1 percent of
subsurface irradiance) to estimate coefficients of
light attenuation. The attenuation coefficient (Kd)
was calculated from the slope of the natural
logarithm of down-welling irradiance against depth
(Kirk, 1983).

COLLECTION AND ANALYSIS OF DATA 9
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Figure 5. Precipitation at Dix Dam, Kentucky, 1995-96.
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Chemical and Biological
Water-Quality Characteristics

Water samples were collected at 1- to 4-week
intervals at five reservoir stations during
March-October 1995 and 1996. In addition, a total of
22 water samples were collected at five inflow
stations from February-November 1995 and
January-September 1996. The samples were
analyzed for chlorophyll a, total phosphorus (TP),
soluble reactive phosphorus (SRP), nitrate-nitrogen
(NO3-N), and ammonia-nitrogen (NH4-N). Samples
for chlorophyll a and light-attenuation profile data
were not collected at the tributaries.

Nutrients

Samples were collected at depths of 2, 15, and
30 ft below the reservoir surface and 10 ft above the
bottom at the reservoir-sampling stations using a
2.5-liter Kemmerer water sampler. Grab samples
were collected from the Dix River, Clarks Run,
Mocks Branch, Cane Run, and McKecknie Creek.
Samples for analysis of nutrients were sent to the
Kentucky State University laboratory. NH4-N and

NO;3-N concentrations were measured using an

Orion 920A pH/ISE (ion-selective electrode) meter
(American Public Health Association, 1992). SRP
concentrations were analyzed on unfiltered samples
using the manual ascorbic acid method (American
Public Health Association, 1992). TP concentrations
were analyzed by the digestion method followed by
the manual ascorbic acid method (American Public
Health Association, 1992).

Chlorophyll a

Samples for analysis of chlorophyll a were
collected at three equally spaced depths between the
surface and the 1-percent light level at the reservoir
sampling stations using a 2.5-liter Kemmerer water
sampler. Samples were stored on ice in 1-liter
polyethylene bottles and processed within 1 to
2 hours of collection by filtration through 0.45 pm

Gelman A/E glass fiber filters. The samples were
analyzed for chlorophyll a at the University of
Louisville Water Resources Laboratory. Crain (1998)
provides a detailed description of the analytical
procedure for determination of chlorophyll a
concentrations.

Chlorophyll a concentrations, in micrograms
per liter, were converted to milligrams per liter of
algal biomass for the Herrington Lake model by use
of two conversion factors. The first factor converts
chlorophyll a to carbon. Literature values for the first
factor range from 10 to 112 for total phytoplankton
and from 14 to 67 for blue-green algae (Bowie and
others, 1985). An average value of 19 was used based
on measurements made from Herrington Lake
phytoplankton samples. The second factor converts
carbon to biomass. A value of 0.47 was taken from
the literature for the second factor (Bowie and others,
1985).

Phytoplankton

Phytoplankton samples were collected at each
reservoir station from three depths corresponding to
those sampled for chlorophyll a analyses.
Phytoplankton samples were processed using
standard procedures (American Public Health
Association, 1992). Phytoplankton taxa
identifications were determined from Prescott
(1978), Whitford and Schumacher (1984), Smith
(1950), Desikachary (1959), and Dillard (1989).
Enumeration of phytoplankton species followed
standard procedures (American Public Health
Association, 1992). A detailed description of
phytoplankton identification and enumeration is
provided by Crain (1998).
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Carlson Trophic State Index

Chlorophyll a concentrations can be used to
determine a trophic state index (TSI) (Carlson,
1977). The Carlson TSI equation for chlorophyll a is:

TSI(chla) = 10(6_2.04—0.68(ln(chla)))’ @

In2
where
chla is chlorophyll a concentrations in
micrograms per liter, and
In(chla) is the natural logarithm of chlorophyll a

concentrations in micrograms per liter.

Carlson also developed an equation for
calculating a TSI using TP. The Carlson TSI equation
for TP is:

zn(ﬁ)
TP
TSI(TP) = 10| 6 - , 3)
in2
where
TP s the total phosphorus concentration in
micrograms per liter, and
ln(%%) is the natural logarithm of a constant

divided by the total phosphorus
concentration in micrograms per liter.

Trophic-state classifications based on the Carlson TSI
are oligotrophic (0-20), mesotrophic (31-50),
eutrophic (51-69), and hypereutrophic (>69)
(Carlson, 1977) for both the chlorophyll a and

TP indexes.

KDOW uses a modified Carlson TSI in which
log base 10 is used rather than the natural log to
calculate the TSI values for the state’s reservoirs. The
modified Carlson TSI equations used were:

TSI(chla) = 30.6 + 22.6 (log10 chla), )

where
chla is chlorophyll a concentrations in

micrograms per liter, and

log o chla is the log base 10 of chlorophyll a
concentrations in micrograms per liter;
and

TSI (TP)=4.2 + 33.2 (logl0 TP), 5)
where

TP is the total phosphorus concentration in
micrograms per liter, and

log;o TP is the log base 10 of the total
phosphorus concentration in

micrograms per liter.

Depth-composited samples collected by the
KDOW from the euphotic zone at three sampling
sites in Herrington Lake at the KDOW sampling sites
from March 1 through September 30 at
approximately 2-month intervals in 1973 and 1983
were analyzed for chlorophyll a and total
phosphorus. A seasonal TSI value was calculated for
each site and season, then averaged to determine a
single TSI value for the reservoir for that year. Using
the modified Carlson TSI, KDOW computed a TSI
chlorophyll a value of 52 for 1973, and 56 for 1983
(Kentucky Natural Resources and Environmental
Protection Cabinet, 1984).

AMBIENT CONDITIONS

Hydrology

Long-term average annual precipitation for the
Dix River watershed ranges from 48 to 52 in.
(U.S. Geological Survey, 1986b). Average annual
runoff ranges from 18 to 20 in. The summer of 1995
was dryer than the summer of 1996 (fig. 5). The total
cumulative rainfall for June-August 1995 was 12 in.
During the same period in 1996, the total cumulative
rainfall was about 15 in. The greatest total monthly
cumulative rainfall occurred in May 1995.
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The flow of Dix River and Clarks Run (figs. 6
and 7) were compared with the precipitation patterns.
Clarks Run and Dix River contribute approximately
94 percent of the total surface flow to the reservoir.
Mean annual discharge for Dix River in 1995 and

1996 was 442 and 591 ft3/s, respectively. These
results were compared to the historical data record
(56 years) for Dix River and showed 1995 to be

ranked 33" out of the 56 annual values and 1996 to

be ranked 11™. No-flow conditions were observed in
McKecknie Creek once in February and once in

April of 1996. Flow of less than | ft3/s was measured
at least once during 1995 at the other tributaries,
primarily in late summer. The selected minor
tributaries of Herrington Lake had a combined

average flow of about 40 ft/s.

Physical Characteristics

Water temperature in the reservoir varied both
spatially and seasonally (fig. 8). Temperature
distributions indicate that, as the inflow reached the
transitional zone of the reservoir, the cooler water
sank below the epilimnion. In April, temperature
differences at Chenault Bridge (S1), between the
surface and bottom, did not exceed 9°F indicating
water-column mixing; in June, however, the
epilimnetic and hypolimnetic temperatures differed
by more than 14°F (fig. 8). In contrast, temperature
differences at Kennedy Bridge (S3) were never less
than 17°F and were as much as 37°F. Temperature
distributions from mid-reservoir to the dam were
similar throughout 1995-96.

The water in Herrington Lake began to stratify
in early April 1996 and remained stratified
throughout the summer. Thermal stratification
gradually weakened, and the reservoir underwent
complete thermal mixing by mid-October 1996.
During stratification, epilimnion and hypolimnion
temperatures differed more than 30°F.

Water Quality

Marked seasonal and spatial patterns in
concentrations of DO were evident in 1996 (fig. 9).

Concentrations of DO less than 5 mg/L were typical
at Chenault Bridge (S1) in 1996. A metalimnetic-
oxygen minimum was measured in June 1996. A
metalimnetic-oxygen minimum is produced by
oxidizable material sinking into the metalimnion.
Also contributing to the metalimnetic-oxygen
minimum is the transport of allocthonous material
and the decomposition of the material in the
metalimnetic region. The potential origins of the
oxidizable material are deposition from the overlying
productive epilimnion and from watershed runoff
entering the metalimnetic region. The denser water in
the metalimnion reduces the sinking rate of the
oxidizable material and allows more time for
decomposition, thereby depleting oxygen levels in
the metalimnion (Wetzel, 1983). Concentrations of
DO near 0 mg/L were measured in the hypolimnion
at Water Tower (S2) and Kennedy Bridge (S3)
several times in 1996 (fig. 9). These low
concentrations could be the result of increased
demands from the hypolimnetic waters and bed
sediments.

As a result of phytoplankton production,
values of pH were elevated near the surface of
Herrington Lake (fig. 10). The lower values of pH
measured in the hypolimnion may be caused by the
respiration and decomposition processes. Vertical
differences in pH were associated with reservoir
stratification. After thermal turnover in late October,
the pH values remained uniform in the reservoir.

Specific conductance values in the upper
reservoir were controlled by inflow from the Dix
River and Clarks Run. Specific conductance in other
parts of the reservoir was affected by in-reservoir
processes such as stratification, algal productivity,
and decomposition of organic material. Specific-
conductance values were elevated in April and
October, but were low in June. The elevated specific-
conductance values were associated with minimal
precipitation and little runoff. During stratification, a
horizontal plume of high specific conductivity
extended from Chenault Bridge (S1) to Kennedy
Bridge (S3), indicating that this layer of water did
not mix with adjacent water layers.
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Nitrogen and Phosphorus

Mean concentrations of nitrogen in the
epilimnion show little spatial variability, but show
substantial seasonal variability in 1996 (table 2).
Concentrations of NO3-N were an order of

magnitude higher in March than in September.
Epilimnetic NH4-N concentrations ranged from

<10 to 290 ng/L at all stations (table 2, fig. 11).
However, the majority of NH4-N concentrations

were below the laboratory reporting level of 10 pg/L.
The increased NH,4-N concentrations coincided with

periods of low DO. Only small increased variations
in NH4-N were observed in June and August 1996.

Epilimnion and hypolimnion concentrations of
phosphorus were more variable than concentrations
of nitrogen in Herrington Lake (tables 2 and 3,
figs. 11 and 12). There were no pronounced spatial
patterns in the concentrations of phosphorus in the
epilimnion (table 2, fig. 12). In general,
concentrations of phosphorus tended to be higher in
the mid to late summer than in the spring.

Elevated concentrations of phosphorus were
associated with periods of heavy rainfall. The
variation in concentrations of phosphorus in the
tributaries associated with runoff were greater than
the variation in concentrations of nitrogen. Similar
spatial and seasonal patterns in the concentrations of
NO3-N were measured in the hypolimnion.

Chlorophyll a and Phytoplankton

Monthly average concentrations of
chlorophyll a ranged from 2 to 35 tg/L and exhibited
similar seasonal and spatial patterns in 1995 and
1996 (fig. 13). At the mid-reservoir station Kennedy
Bridge (S3) and at the Dix River Dam (S5), the
highest concentrations of chlorophyll a generally
occurred in April. The decrease in May may be
associated with spring runoff. Higher concentrations
of chlorophyll a during the summer could be related
to the decreased turbidity and adequate
concentrations of nitrogen and phosphorus. Low
concentrations of chlorophyll a in late summer could
be associated with lower concentrations of NO3-N.

Previous studies have shown at certain times
Herrington Lake is nitrogen limited

(U.S. Environmental Protection Agency, 1977). In
contrast to what was measured at the other reservoir
stations, the highest concentration of chlorophyll a at
Chenault Bridge (S1) were observed in late summer.
The reason that Chenault Bridge (S1) shows the
opposite pattern as downstream stations is unknown.

A total of 135 species of phytoplankton were
found in Herrington Lake (Crain, 1998). The most
abundant phytoplankton in Herrington Lake were
blue-green algae (Cyanophyta) (table 4). During
1995 and 1996, the most abundant blue-green genera
were Aphanocapsa and Oscillatoria. Both genera
represented a combined relative abundance of more
than 40 percent. The most widely distributed blue-
green algae was the genera Dactylococcopsis. The
genera Stephanodiscus represented the most
abundant diatom (Bacillariophyta). The Chlorophyta
was the most widely distributed taxa in the reservoir
(table 4).

The 1995 and 1996 phytoplankton community
included Cyanophytes, Chlorophytes, and
Bacillariophytes at each sampling location in the
reservoir (fig. 14). Distinct seasonal patterns in
phytoplankton composition were evident in both
sampling years. Bacillariophyte counts were
extremely low in the summer, after spring peaks.
Cyanophytes were abundant throughout the summer,
particularly the coccoid-shaped, colonial forms.

Spatial variability in phytoplankton
community composition was evident in both years.
In 1995, the abundance of Chlorophytes was greater
downstream [Kennedy Bridge (S3) and at the Dix
River Dam (SS5)] than at the upstream sampling
station [Chenault Bridge (S1)]. The reverse was true,
howeyver, for Chlorophyte abundance in 1996.
Chenault Bridge (S1) exhibited greater
Bacillariphyte abundance than Kennedy Bridge (S3)
or the Dix River Dam (S5) in 1995 and 1996.
Cyanophytes were abundant throughout the three
seasons at all three stations, particularly the coccoid-
shaped, colonial forms.
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Figure 13. Average monthly chlorophyll a concentrations (in micrograms per liter (ug/L)) at five reservoir-
sampling stations in Herrington Lake, Kentucky, April-October 1995-96.
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ESTIMATION OF NITROGEN AND
PHOSPHORUS LOADS TO
HERRINGTON LAKE

Daily NO5-N and SRP loads and

concentrations from the tributaries were estimated
using the FLUX program (Walker, 1987). These
estimates did not include air-shed input, ground-
water input, or consider sediment as potential sources
of NO3-N and SRP loads.

Daily mean discharge and instantaneous
concentrations of NO3;-N and SRP from each of the

inflow tributaries were input into the FLUX program.
The estimated mean daily discharge was used for
Cane Run, Mocks Branch, and McKecknie Creek.
One of three methods (International Joint
Commission, regression-1, or regression-2) available
in FLUX was used to estimate the load for each
constituent at each station. The International Joint
Commission method applies a flow-weighted mean
concentration to the mean flow with a bias
adjustment factor for situations where concentration
varies with flow. The regression-1 method regresses
the logarithm of concentration against the logarithm
of mean daily discharge. The regression-2 method is
similar except that it corrects for bias that can occur

when regression slopes are high. For each method,
the data can be stratified seasonally and by discharge
(for example, a method can be applied separately to
flows greater than or less than the average discharge)
and the results of the individual strata aggregated to
obtain the load. The method with the lowest
estimated coefficient of variation was used to obtain
estimates of mean daily NO3-N and SRP loads and

concentrations.

Annual loads of NO3-N and SRP were

estimated for five Herrington Lake tributaries by
summing the daily loads estimated by using the
FLUX program (table 5). The loads of NO5-N and

SRP from the Dix River accounted for 70 percent
and 78 percent, respectively, of the total loads of
those nutrients entering Herrington Lake. The second
largest contributor of nutrient loads is Clarks Run,
accounting for 18 percent of NO5-N and 14 percent

of SRP of the total loads of those nutrients entering
the reservoir. In general, most nonpoint-source
loading of water bodies occurs during periods of
elevated flow, which results from surface runoff
during storm events; nonpoint-source contributions
are less during low-flow periods. Consequently
during low-flow periods, point sources contribute
more nutrient load, relative to the nonpoint source
nutrient load (FTN Associates Limited, 1998).

Table 5. Estimated water year 1996 loads of nitrate-nitrogen and soluble reactive phosphorus contributed to

Herrington Lake, Kentucky, by selected tributaries

[reg. 1, regression method 1; reg. 2, regression method 2; S, stratified flows; IJC, International Joint Commission]

FLUX
FLUX method
method Nitrate used for Soluble
used for load estimating reactive
Dralnage estimating as Coefficient soiuble phosphorus Coefficient
area nitrate- nitrogen of reactive load of
(square nitrogen (tons variation phosphorus (tons variation
Station miles) loads' per year) (in percent) ioads’ per year) (in percent)
Cane Run 3.2 reg. | 22 9 reg. 1 2 17
Clarks Run 264 reg. 2, 8 215 5 reg. 2, S 21 11
Dix River 318 1C 824 9 reg. | 117 52
McKecknie 255 1C, S 13 15 reg. 1 1 31
Creek
Mocks 16.3 reg. 2, S 109 14 reg. | 10 21
Branch
'Walker, 1987.

ESTIMATION OF NITROGEN AND PHOSPHORUS LOADS TO HERRINGTON LAKE 27



SIMULATION OF
HYDRODYNAMICS,
CONSTITUENT TRANSPORT,
AND WATER QUALITY

The CE-QUAL-W2 model was used to
simulate physical and water-quality conditions for
Herrington Lake for the period January through
September 1996. CE-QUAL-W?2 is an unsteady-
state, two-dimensional, laterally averaged
hydrodynamic and water-quality model (Cole and
Buchak, 1995). The structure of the model allows the
simulation of up to 21 water-quality constituents, as
well as water temperature, water density, and
hydrodynamic properties. The model was used to
simulate constituent transport during stratified and
unstratified conditions, wind and temperature effects,
and effects of nutrients on DO and phytoplankton
production.

Model Description and Grid

The reservoir was divided into 20 longitudinal
segments (figs. 4 and 15) based on bathymetric data
collected for this study. Each segment was chosen to
represent and identify potential hydraulic and (or)
chemical/biological changes throughout the
reservoir; each individual layer in a segment is a cell.
All cells within a model segment have the same
thickness (6.6 ft) and length, but the length of a cell
varies by segment. Segment lengths range from a
minimum of 2,960 ft in segments 8, 9, and 14 to a
maximum of 15,420 ft in segment 6. Stream
segments 1 and 20 are the upstream and downstream
boundaries. Within each cell, conditions are
considered to be homogeneous.

Boundary and Initial Conditions

The boundaries of the Herrington Lake model
include the upstream boundary at the inflow of Dix
River, the bottom of the reservoir, the water surface,
the shoreline, the downstream boundary at Dix Dam,
and the tributaries. Hydraulic and chemical boundary
conditions are required by the CE-QUAL-W2 model.

Hydraulic Boundary Conditions

Daily inflow values for the Dix River were
computed from the streamgage record at the station.
The reservoir bottom was assumed to be an
impermeable boundary with no subsurface-karst
conduits discharging water into the reservoir within
the model. Bottom heat exchange was assumed to be
constant in space and time. Boundary conditions at
the water surface include wind energy and surface
heat exchange. The shoreline of the reservoir was
designated as a no-flow boundary. During model
simulation, the position of the shoreline changes
because of the fluctuation in the reservoir water level.
Outflow values from the dam were provided for two
different gate elevations. Both gate releases were
included as boundary conditions. The hydraulic
boundary condition includes water temperature.
Initial temperatures were assumed to be uniform at
the start of the model simulation.

Additional hydraulic boundary conditions
included selected permitted point-source inputs and
tributaries. The selected permitted point-source
inputs included Northpoint Training Center, formerly
known as Kentucky DHR Youth Center in
segment 10 and Chimney Rock Resort in
segment 18. The largest permitted discharge directly
into Herrington Lake was from the Northpoint
Training Center (0.3 Mgal/d) (table 1). Clarks Run,
Mocks Branch, McKecknie Creek, and Cane Run
were the selected tributary inflow stations. Smaller
tributaries into Herrington Lake (Clear Creek, Boone
Creek, and Spears Creek) were not included in the
model. The City of Danville’s WWTP discharges
into Clarks Run (4.8 Mgal/d) and, in turn, flows into
Herrington Lake. The sampling station on Clarks
Run is below the outfall of the City of Danville’s
WWTP and, therefore, includes the flow from the
facility.

Chemical Boundary Conditions

Time series for constituents to be simulated in
the CE-QUAL-W2 model are required at all inflow
boundaries. The chemical boundary conditions
included in the Herrington Lake model are
suspended sediment, total dissolved solids, dissolved
organic matter, algae, particulate organic matter
(detritus), PO4 (orthophosphorus), NH4-N, NOs-N,

28 Modeling Hydrodynamics and Water Quality in Herrington Lake, Kentucky
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Chlorophyll a

CE-QUAL-W2 does not simulate
chlorophyll a directly; rather, the model simulates
algal biomass. Algal biomass was converted to
chlorophyll a using the conversion factors discussed
in the section on chlorophyll @ under chemical and
biological water-quality characteristics. Observed
and simulated chlorophyll a data are shown for
selected dates in 1996 for three sampling stations in
the reservoir (fig. 21). During the spring at the
upstream stations, simulated chlorophyll a
concentrations were in good agreement. Beginning in
June, however, the model overestimates
concentrations of chlorophyll a at those stations.
Concentrations of chlorophyll a at the dam were
overestimated by the model from March through
September 1996. Overall, there was poor agreement
between the observed and simulated chlorophyll a
concentrations.

Simulating chlorophyll a concentrations is
very difficult for many reasons. Phytoplankton are
not uniformly distributed throughout the reservoir,
thus, obtaining a representative sample can be
difficult. Additionally, the CE-QUAL-W2 model
simulates phytoplankton as a single assemblage, so
that no distinctions are made between the different
species of phytoplankton present. As was previously
discussed in the section on chlorophyll 2 and
phytoplankton, there was considerable seasonal and
spatial variability in phytoplankton. An average
factor was used to convert algal biomass simulated
by CE-QUAL-W?2 to chlorophyll a for this study; in
actuality, however, the factor varies with the type of
phytoplankton and the season. This unknown
variability can potentially introduce a considerable
amount of error into the estimation of the
concentrations of chlorophyll a.

Sensitivity Analysis

A sensitivity analysis of a model allows one to
evaluate the response of the model to variations in
input values. If a change in an input value or model

parameter causes significant changes in output values
(i.e., constituent concentrations), the model is said to
be sensitive to that input. In practice, a sensitivity
analysis is conducted by changing (increasing or
decreasing) the magnitude of a specified input value
or parameter within reasonable limits while keeping
all other parameters unchanged. All input values and
model parameters used in the Herrington Lake model |
were not evaluated because of the large number of
inputs and parameters. Simulations to evaluate model
sensitivity were done for each of the model
parameter changes described below. The model
output for each of these simulations was compared to
the original model output.

Algal growth rate (AG), saturation light
intensity (ASAT), algal mortality rate (AM), algal
settling rate (AS), and the algal-half saturation
constant for phosphorus (AHSP) were varied by

£50 percent of the original value to determine the
sensitivity of the concentrations of chlorophyll a to
these parameters. Model simulations of chlorophyll a
concentrations were sensitive to AG, but were less
sensitive to ASAT and AHSP. Increasing AG resulted
in increases in chlorophyll a concentrations
throughout the epilimnion, especially during the
summer. The model was not sensitive to changes in
AM and AS. The wind-sheltering coefficient (WSC)
and the oxygen stoichiometric equivalent for algal

growth (O2AG) were varied by £50 percent of the
original value to determine the sensitivity of the
concentrations of DO to these parameters. Vertical
dissolved-oxygen concentrations were not sensitive
to the wind-sheltering coefficient (WSC), which
directly affects reaeration. Model simulations of
DO concentrations were most sensitive to AG and
O2AG. Simulated temperatures were not sensitive to
changes in the light extinction coefficient (EXH20),
the adsorption of solar radiation coefficient (BETA),
or WSC.
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Limitations of CE-QUAL-W2 Model
for Herrington Lake

It is important to note that models are not
reality, but are simply an approximation of what the
individual modeler believes is reality. Because
natural systems are complex, modelers must take into
account the assumptions and limitations of the model
and have the ability to understand the interactions
taking place in the system. Some of the model
limitations include the model representation for
various chemical and physical processes and the
quality of the data input into the model.

The scope and cost considerations of the study
prevented data being collected at optimal intervals
(weekly) for the model or all needed data being
measured. This limitation was addressed by using the
FLUX program to estimate selected constituent
concentrations and loads between the 4- to 8-week
sampling intervals and estimating other data from
available data in other watersheds. The large amount
of estimated data used for this study affect the
model’s predictive capabilities. Collection of
additional data at a more frequent sampling interval
would enable refinement of the model, and,
consequently, should result in better model
predictions. In addition, because of several problems
apparent in the nutrient data, the quality of the
nutrient analyses for this study were poor. Results of
a blind sample program for NO3-N indicated

unacceptable results for the two samples analyzed as
part of the program. Results of the blind samples for
SRP were satisfactory; however, it was not
uncommon for concentrations of SRP to exceed
those of TP in 1995. Results in 1996 were better.

The CE-QUAL-W?2 model water-quality
algorithms include several important processes that
control phytoplankton production and nutrient
cycling; however, these algorithms contain many
generalizations and assumptions. For example, only a
single compartment is available to represent all
phytoplankton species. All phytoplankton species are
combined and simulated with one set of growth and
mortality parameters and one carbon to chlorophyll a
ratio. Most of the kinetic-rate coefficients and
phytoplankton growth parameters used in the model
are assumed to be constant. Variations in the

simulation of phytoplankton growth, such as
phytoplankton growth in response to seasonal
changes in light or fluctuations in nutrient
concentrations are not incorporated into the
Herrington Lake model, which makes it difficult to
model the seasonal growth of phytoplankton.

The Herrington Lake model does not simulate
algal biomass, and, consequently, chlorophyll a
concentrations very well. The model consistently
overestimates the amount of algal biomass present in
the reservoir. This is a major limitation of the model.
The poor simulation of algal biomass could be the
result of the poor quality of the nutrient data being
input to the model, or the result of so much of the
daily input being estimated, or the limitations in
model algorithms previously described.

The model does not rigorously simulate
sediment oxygen demand. As a result, DO
concentrations in the reservoir after turnover may be
overestimated. This is because the model does not
account for DO depletion resulting from oxidation
and reduction reactions.

According to Cole and Buchak (1995), in some
situations no amount of model parameter adjustment
will result in an adequately calibrated model; they
conclude, however, such a model can still be useful.
Despite the limitations of this version of the
Herrington Lake model, it is able to simulate the
general characteristics and dynamics of water quality
in the reservoir. Consequently, the model can be used
to show how different management options can affect
water quality.

PHOSPHORUS REDUCTIONS
NEEDED TO ATTAIN SELECTED
TROPHIC STATE INDEXES

The Herrington Lake model was used to
evaluate the effectiveness of several potential
management strategies for achieving the TMDL of
phosphorus for the reservoir. These strategies
included various reductions in the concentration of
SRP inputs to the reservoir from the Dix River, four
tributaries, and two point sources included in the
model. KDOW defined the period June 1-August 15
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to be critical since this is when concentrations of DO
of less than 5 mg/L are most likely to occur; when
DO drops below 5 mg/L, fish kills can occur. The
effects of SRP reduction on this critical period were
emphasized in the simulations. Results of the
simulations for the periods immediately prior to and
following the critical period also were evaluated. The
results of the simulation of the potential management
strategies are presented in this section.

Partitioning Loads

Daily mean discharge and concentrations of
SRP for the Dix River and four tributaries included in
the model are shown in table 6 for selected periods.
Multiplying the average concentration times the
average discharge for a period does not yield the
average load of a constituent for that period unless
the concentration is constant. If concentrations tend
to increase with streamflow, an average load
computed in this fashion will underestimate the true
load. If concentrations tend to decrease with
streamflow, an average load computed in this fashion
will overestimate the true load. For this study, daily
loads were computed with the FLUX program. The
daily loads for the period of interest were then
averaged to obtain the load for a period (table 7).

A TMDL (for a specified constituent) is
calculated from the equation provided by the
USEPA, equation 1. This equation requires that a
determination be made of the sources and relative
contribution of the sources of the contaminant. There
is one primary point source of nutrients near
Herrington Lake, the Danville WWTP on Clarks
Run. Records for the point-source-discharge
contributions were available from reporting and
permitting data provided by KDOW. Average
concentrations of SRP and discharge for the Danville
WWTP and the two point sources discharging
directly to Herrington Lake are presented in table 8.
For the TMDL calculation, the point-source loads for
a period of interest were calculated by averaging the
individual loads computed for that period from the
reported concentrations of phosphorus measured in
the effluent and the discharge measurements for
Northpoint Training Center, Chimney Rock Resort,

and Danville WWTP. SRP loads from the Danville
WWTP ranged from 0.3 to 2 tons per period of
interest (table 9).

During low-flow conditions, Clarks Run
contributes one-third of the total surface flow and
about one-third of the total SRP load to the reservoir.
The sampling station on Clarks Run was below the
Danville WWTP; therefore, the Clarks Run load
includes that from both the Danville WWTP load and
the nonpoint-source contributed load upstream from
the plant. Two additional minor point sources into the
reservoir included in the load determinations are the
Northpoint Training Center and the Chimney Rock
Resort. Both of these sources discharge directly into
the reservoir.

For the purpose of the TMDL calculation, the
total SRP loads obtained from the FLUX program
included total nonpoint-source loads, plus known
point-source loads, plus estimated background loads.
Background loads were estimated with data from a
watershed of similar size with little or no
anthropogenic effects. Tributary nonpoint-source
loads can be estimated by subtracting the estimated
background load and any point-source load from the
total SRP load. For example, the load estimate at
Clarks Run include contributions from the Danville
WWTP, nonpoint sources, and background sources.
To estimate the nonpoint-source contribution, the
Danville WWTP load and the background load were -
subtracted from the load calculated by the FLUX
program for Clarks Run. Total nonpoint-source loads
are defined to be the sum of nonpoint-source loads
and background loads.

Dix River, the major inflow to Herrington
Lake, is affected by nonpoint sources of nutrients but
also has point sources located along its length
(fig. 2). However, the sampling location in the Dix
River is below all of the point sources. The upstream
point sources were not considered individually in the
determination of point-source loads. No attempt was
made to separate the point- and nonpoint-source
contributions upstream of the sampling point in the
Dix River. In determining the other point-source and
nonpoint-source contributions to Herrington Lake,
the Dix River is treated as a separate case and both
types of load contributions are considered together.
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Table 7. Average loads of soluble reactive phosphorus input to the Herrington Lake model for selected tributaries

and selected periods in 1996

[Daily loads from the FLUX program were averaged to obtain the loads of soluble reactive phosphorus]

Tons per period
Dix Clarks Mocks McKecknie Cane
Period River Run Branch Creek Run Background
January 1 - February 29 17 4 2 0.2 0.5 0.01
March 1 - May 31 13 4 2 2 5 .01
June 1 - August 15 24 2 2 1 2 .01
August 16 - September 28 7 2 ) 1 2 02

Table 8. Daily mean discharge and concentration of soluble reactive phosphorus input to the Herrington Lake
model for Northpoint Training Center, Chimney Rock Resort, and Danville Wastewater-Treatment Plant during

selected periods in 1996

{ft3/s, cubic foot per second; SRP, soluble reactive phosphorus; pg/L, micrograms per liter; WWTP, wastewater-treatment plant; *, 1995-97

data; soluble reactive phosphorus concentrations were obtained

by multiplying the measured total phosphorus concentrations by 0.7}

Northpoint Northpoint Chimney Chimney

Training Training Rock Rock Danviiie Danviiie

Center Center Resort Resort WWTP WWTP
discharge SRP discharge SRP discharge* SRP*

Period (fts) (ngl) (fs) (ng/L) D) (nglL)
January 1 - February 29 03 15 0.004 150 4.0 469
March 1 - May 31 3 20 .004 200 7.6 1,050
June 1 - August 15 3 10 004 100 4.9 1,190
August 16 - September 28 3 15 .004 150 1.9 2,060

Table 9. Average loads of soluble reactive phosphorus input to the Herrington Lake model for Northpoint Training
Center, Chimney Rock Resort, and the Danville Wastewater-Treatment Plant during selected periods in 1996

Tons per period
Danville
Northpoint Chimney Wastewater-
Training Rock Treatment

Period Center Resort Plant
January 1 - February 29 0.001 0.0001 0.3
March 1 - May 31 .0006 .0002 2
June 1 - August 15 .0005 .0001 1
August 16 - September 28 .0007 .0001 S
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Current background phosphorus
concentrations would ideally be determined by
sampling a pristine watershed in an environmental
setting similar to that of Herrington Lake. No pristine
watersheds exist in the area surrounding Herrington
Lake. An alternative is to sample a watershed with
minimal human disturbance; such a watershed can be
described as least affected. As a part of the Kentucky
Watershed Management Plan (Kentucky Natural
Resources and Environmental Cabinet, 1997), the
Commonwealth of Kentucky assessed reference-
reach site data. The results of the reference-reach
assessment provided an indication of the possible
background nutrient load to Herrington Lake for the
period simulated by the CE-QUAL-W2 model.
Background SRP loads for the Herrington Lake
Basin were estimated using available data from a
representative least-affected watershed, that of
Crooked Creek in the adjacent Salt River Basin. In an
intensive study conducted from 1991 through 1993,
the background TP concentration for Crooked Creek
was determined to be 0.11 mg/L (FTN Associates
Limited, 1998). For this study, a background SRP

concentration of 0.077 mg/L was obtained by
multiplying the background TP concentration from
Crooked Creek by 0.70 because this factor typically
represents that portion of TP that is SRP. The
background loading from each inflow was obtained
by summing the product of the background
concentration times the daily discharge for each
tributary times a unit conversion factor. The
background load for each tributary and the Dix River
were summed to compute the total background load
for the reservoir.

Estimated point source, nonpoint source, and
background loads for Herrington Lake are given in
table 10. Loads from Dix River are listed separately
in table 10. The largest contributor of phosphorus to
Herrington Lake is the Dix River. Background loads
were estimated to be less than 1 percent of the load
into Herrington Lake. Estimated point source loads
(excluding those on Dix River) ranged from 1 to
9 percent.

Table 10. Average loads of soluble reactive phosphorus and percent total loads for nonpoint and point sources of

Herrington Lake, Kentucky, in 1996

[<, less than; Dix River, total inflow into Herrington Lake including input from point and nonpoint sources; Total nonpoint sources, sum of soluble
reactive phosphorus loads from Clarks Run, Mocks, McKecknie, Cane Run, and background; Nonpoint sources, sum of soluble reactive phosphorus
loads from Clarks Run, Mocks, McKecknie, and Cane Run; Point sources, sum of soluble phosphorus loads from Danville Wastewater-Treatment Plant,
Chimney Rock Resort, and Northpoint Training Center; Background, based on average phosphorus measurements in Crooked Creek located in Salt

River Basin (least disturbed))
Loads of soluble reactive phosphorus, Total loads,
in tons per period in percent
Total
Point Dix Nonpoint nonpoint Point Dix Nonpoint
Period sources River sources Background sources sources River sources Background
January 1 - 0.3 17 6 0.01 6 1 73 26 <l
February 29
March 1 - May 31 2 13. 6 01 6 9 62 29 <1
June 1 - August 15 1 24 3 .01 3 3 86 11 <1
August 16 - 5 7 3 002 3 5 67 28 <1
September 28
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Reservoir Response to
Phosphorus Reductions

The effects of phosphorus reductions in the
reservoir were determined by changes in the Carlson
TSI values for chlorophyll a and SRP. The KDOW
calculated a Carlson TSI for chlorophyll a for
Herrington Lake of 56 in 1983. Simulated
concentrations of chlorophyll a and SRP obtained
from the model for 1996 were used to calculate an
average reservoir TSI for chlorophyll a of 77 and a
TSI for phosphorus of 70.

Simulations were also run in which the SRP
concentrations were reduced for only the Dix River
and Clarks Run. For these simulations,
concentrations of SRP in the Dix River and Clarks
Run were reduced simultaneously while all other
input concentrations were unchanged. The Carlson
TSI was computed for three locations along the main
stem of the reservoir: Chenault Bridge (S1), Water
Tower (S2), and Kennedy Bridge (S3) (fig. 4). Ina
series of simulations, the input concentrations of SRP
were reduced by a specified percentage—from 30 to
80 percent, in increments of 10 percent. The effects
on the reservoir of simulated reductions in SRP input
concentrations were determined by comparing TSI
values calculated from the concentrations of SRP and
chlorophyll a simulated by the model and the
concentrations simulated in the phosphorus-
reduction model runs. The Carlson TSI values in
tables 11-14 were not calculated from the single
average concentration for the period of interest,
rather individual Carlson TSI’s were calculated and
then averaged to obtain a Carlson TSI value for each
period of interest. Therefore, a Carlson TSI value
calculated from a seasonal mean concentration
estimated from figures 22-25 will not result in the
same Carlson TSI value as listed in tables 11-14.

Carlson Trophic State Index for
Phosphorus

Average simulated concentrations of SRP in
Herrington Lake are reduced as a result of reductions
in all SRP inputs (fig. 22). The greatest reductions

are indicated for Chenault Bridge (S1) during the
August 16-September 28 period. Chenault Bridge
(S1) is the station closest to the Dix River and Clarks
Run. Since these two inflows are the largest
contributors of phosphorus to the reservoir, it is
expected that the largest immediate reduction of
phosphorus would be observed at Chenault

Bridge (S1). Reductions are also indicated at stations
further downstream although the magnitude of the
predicted reduction is less. The Carlson TSI for SRP
resulting from the simulated alternative reductions in
SRP inputs from all sources is given in tables 11 and
12. There are reductions in the Carlson TSI for SRP
reflecting the decreased SRP concentrations
predicted to occur in the Herrington Lake as a result
of decreased inputs.

The magnitude of the reduction in simulated
concentrations of SRP in Herrington Lake when only
the SRP inputs for the Dix River and Clarks Run are
reduced is similar to that obtained when SRP from all
of the inputs is reduced (fig. 23). This is not
surprising since most of the SRP entering Herrington
Lake is from these two sources. The spatial and
seasonal patterns of simulated SRP concentrations
corresponding to reductions in SRP in only the Dix
River and Clarks Run are nearly identical to those
obtained from reductions in SRP from all sources.
SRP reductions in only the Dix River and Clarks Run
result in Carlson TSI for SRP values that differ little
from those obtained when the reductions were
applied to all inflows.

The Carlson TSI for SRP computed for all of
the management strategies considered in this study
would still result in Herrington Lake being
considered eutrophic. Reductions of SRP inputs of
30 percent or more, however, would result in a
classification of eutrophic rather than
hypereutrophic. The largest reductions in the Carlson
TSI for SRP were predicted to occur at Chenault
Bridge (S1).
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Figure 22. Distribution of simulated soluble reactive phosphorus concentrations at Kennedy Bridge (S3),
Water Tower (S2), and Chenault Bridge (S1) in the Herrington Lake model for input soluble reactive
phosphorus reductions from all sources for March 1-May 31, June 1-August 15, and

August 16-September 28, 1996.
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Figure 23. Distribution of simulated soluble reactive phosphorus concentrations at Kennedy Bridge (S3),
Water Tower (S2), and Chenautlt Bridge (S1) in the Herrington Lake model for input soluble reactive
phosphorus reductions from Dix River and Clarks Run for March 1-May 31, June 1-August 15,

and August 16—September 28, 1996.
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' Figure 24. Distribution of simulated chiorophyll a concentrations at Kennedy Bridge (S3), Water Tower (S2),
and Chenault Bridge (S1) in the Herrington Lake model for input soluble reactive phosphorus reductions from
all sources for March 1-May 31, June 1-August 15, and August 16-September 28, 1996.
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Figure 25. Distribution of simulated chlorophyll a concentrations at Kennedy Bridge (S3), Water Tower (S2),
and Chenault Bridge (S1) in the Herrington Lake model for input soluble reactive phosphorus reductions from
Dix River and Clarks Run for March 1-May 31, June 1-August 15, and August 16—-September 28, 1996.
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Carlson Trophic State Index for
Chlorophyll a

Average simulated concentrations of
chlorophyll @ in Herrington Lake are also reduced as
a result of reductions in all SRP inputs (fig. 24). The
greatest reductions are indicated for Chenault Bridge
(S1) during the August 16-September 28 period. As
previously mentioned, Chenault Bridge (S1) is the
station closest to the Dix River and Clarks Run and
reductions in SRP from these sources would be
expected to result in the most immediate reductions
in chlorophyll a concentrations at this station.
Reductions are also indicated at stations further
downstream although the magnitude of the predicted
reduction is less. The Carlson TSI for chlorophyll a
resulting from the simulated alternative reductions in
SRP inputs from all sources is given in tables 13 and
14.

The Carlson TSI for chlorophyll a computed
for all of the management strategies considered in
this study would result in Herrington Lake being
considered as hypereutrophic. On average though,
the Herrington Lake model greatly overestimates
chlorophyil a concentrations. Consequently, the
Carlson TSI for chlorophyll a values shown in tables
13 and 14 are probably greatly overestimated. The
Carlson TSI for chlorophyll a computed from data
collected during 1996 would result in the reservoir
being considered eutrophic but not hypereutrophic.
Unlike the Carlson TSI for SRP, there is little
reduction in the Carlson TSI for chlorophyll a, even
for simulations where SRP inputs were reduced by
80 percent. However, because simulation of
chlorophyll a in the Herrington Lake model is poor,
the reduction that would occur in the Carlson TSI
values if SRP inputs to Herrington Lake were
reduced is probably underestimated. Reductions in
the Carlson TSI for chlorophyll a may also be
underestimated because of the way the model
simulates phosphorus cycling. Phosphorus stored in
bed sediment serves as an available source of
phosphorus to the overlying water. Because of this
additional source and the short time period simulated
in the Herrington Lake model, limiting
concentrations of phosphorus may not be achieved.
Over time, however, as this stored phosphorus is
removed from the reservoir, phosphorus should
become limiting and the effects of the reduced SRP

loads to the reservoir on the Carlson TSI for
chlorophyll a should become apparent.

As with SRP, the magnitude of the reduction in
simulated concentrations of chlorophyll a in
Herrington Lake when only the SRP inputs for the
Dix River and Clarks Run are reduced is similar to
that obtained when SRP from all inputs is reduced
(fig. 25). Again, this is not surprising since most of
the SRP entering Herrington Lake is from these two
sources. The spatial and seasonal patterns of
simulated chlorophyll a concentrations
corresponding to reductions in SRP in only the Dix
River and Clarks Run are nearly identical to those
obtained from reductions in SRP from all sources.
SRP reductions in only the Dix River and Clarks Run
result in Carlson TSI for chlorophyll a values that
differ little from those obtained when the reductions
were applied to all inflows (tables 13 and 14).

SUMMARY AND CONCLUSIONS

Herrington Lake, Kentucky, which is
impounded from the Dix River by the Dix Dam,

covers a surface area of 4.6 miZ and is approximately
35 mi long. Major inflows to the reservoir are the Dix
River and Clarks Run. Stream-discharge and water-
quality data collected at these inflows and at the
minor tributaries (Mocks Branch, Cane Run, and
McKecknie Creek) and data from two permitted-
discharge sites were used as input to a water-quality
model for the reservoir. Samples collected from the
Dix River and the four tributaries were analyzed for
nutrients and physical properties. Samples collected
in the reservoir were analyzed for algae, nutrients,
chlorophyll a, and physical properties.

During a 2-year (1995-96) study of Herrington
Lake to assess nutrient loading, ambient water-
quality conditions varied both spatially and
seasonally. The spatial gradients in the reservoir
reflect the combined effect of reservoir morphology
and flow into it. Interannual variability in nutrient
concentrations and chlorophyll a were affected by
the hydrology of the reservoir. During July—
October 1995, tributary flow into the reservoir was
below average because of low precipitation levels,
which in turn resulted in lower concentrations of
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nutrients and chlorophyll a throughout the reservoir.
In July 1996, runoff from a rainstorm caused elevated
nutrient levels throughout the reservoir; the nutrient
concentrations remained elevated for the duration of
the summer. Although discharge affected nutrient
concentrations, chiorophyll a levels were not affected
during the summer of 1996. Chlorophyll a levels at
Chenault Bridge (S1) remained high in the summer
for both years despite the significant differences in
discharge and precipitation; however, this does not
eliminate the role discharge plays in phytoplankton
dynamics.

Loads of nitrate-nitrogen (NO3-N) and soluble

reactive phosphorus (SRP) were determined over a
range of seasonal and hydrologic conditions. Results
indicated that most of the nitrogen and phosphorus
entering the reservoir originated from the Dix River
and Clarks Run. Combined loads from both
tributaries were estimated to contribute about

92 percent of the SRP load into Herrington Lake. Dix
River, the major inflow, is affected not only by
nonpoint sources of nutrients but also by point
sources located along its length. When determining
point-source and nonpoint-source contributions of
the nutrients to Herrington Lake, the Dix River was
treated as a separate case and both types of load
contributions are grouped together. Point-source
total-load percentages other than those in the Dix
River ranged seasonally from 1 to 9 percent. Total-
load percentages from nonpoint sources ranged from
11 to 29 percent. A nutrient-mass balance indicated
that Herrington Lake has a retention rate of

67 percent per year for phosphorus and a nitrogen
retention rate of 31 percent per year.

A two-dimensional, laterally averaged water-
quality model (CE-QUAL-W?2) was used to simulate
physical and water-quality constituents for
Herrington Lake for the period January through
September 1996. The model was used to simulate
constituent transport during stratified and unstratified
conditions, wind and temperature effects, and effects
of nutrients on DO and phytoplankton production.
The model simulated temperature, DO, and nitrate-
nitrogen reasonably well (root mean square error
(RMSE) <20 percent). However, simulations of
soluble reactive phosphorus, ammonia-nitrogen, and
chlorophyll a were poor (RMSE >20 percent). The
Herrington Lake model was used to evaluate the

effect of alternative nutrient-loading reductions on
the water-quality of Herrington Lake. These
alternative nutrient loading reductions are
represented by simulations in which input SRP
concentrations were reduced at the Dix River, the
four tributaries, and two permitted wastewater-
treatment sites. The effects on phosphorus and
chlorophyll a concentrations in the reservoir as a
result were evaluated. Input SRP concentrations were
reduced from 30 and 80 percent (in 10-percent
increments).

The simulated SRP concentrations and Carlson
Trophic State Index (TSI) values calculated from
those concentrations were compared to evaluate the
effectiveness of potential management strategies.
SRP input concentration reductions of 60 percent
resulted in a decrease of the annual TSI for
phosphorus from 70 to 64. Reductions of 60 percent
in only the Dix River and Clarks Run yielded similar
results. Model simulations indicate that water quality
in Herrington Lake may be improved through
reductions in input SRP concentrations. There was
little reduction in the Carlson TSI for chlorophyll a
as a result of even 80-percent reductions of input
concentrations of SRP; however, simulated
concentrations of chlorophyll a are poor and the
predicted reduction probably underestimated.
Refinements of the model so that it would better
simulate chlorophyll a more accurately would
improve the Carlson TSI values calculated for
chlorophyll a and phosphorus.
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Appendix 2, Chemical kinetic-rate coefficients and hydraulic and thermal parameters specified as model

input, Herrington Lake, Kentucky, 1996

[m, meter; m3(m/g), cubic meter per meter per gram; --, not applicable; *, dimensionless parameter, m/d, meter per day;
watts/m?, watts per square meter; °C, degrees Celsius; SOD, streambed oxygen demand; BOD, biological oxygen demand;
g/m, gram per meter; mg/L, milligram per liter; g02m2/d, grams of oxygen per square meter per day; >, greater than;
m®3/s, meter to the half power per second; m?/s, square meter per second]}

Value in Values from Values from
Parameter Parameter Computationai Herrington Coie and Giorgino
abbreviation purpose Lake Buchak, and Baies,
model 1995 1997

EXH20 Light-extinction Amount of solar radiation absorbed in 0.49 0.18-4.0 0.5
coefficient for pure the surface layer
water (m'!)

EXSS Light-extinction Amount of solar radiation absorbed by 10 10 -
coefficient for total suspended material
sus‘Pcnded solids
(m'(m/g))

EXOM Light-extinction Amount of solar radiation absorbed by 27 17 2
coefficient for organic organic material R
solids (m>(m/g))

BETA Fraction of incident solar ~ Amount of solar radiation absorbed in *45 *45 *3
radiation absorbed at the surface layer
water surface

SSS Suspended solids settling ~ Settling rates and sediment 1.30 .86 - 860 20
rate (m/d) accumulation on reservoir bottom

AG Algal growth rate ) Maximum gross algal-production rate, 1.56 1.1 19

uncorrected for respiration,
mortality, excretion, or settling;
temperature dependent

AM Algal mortality rate (d'!)  Maximum algal-mortality rate; .01 .01-.03 .09

temperature dependent

AE Algal excretion rate (')  Maximum algal-photorespiration rate, .005 014 - .44 .005

which becomes labile dissolved
organic matter

AR Algal dark-respiration Maximum algal dark-respiration rate .01 01-92 .005
rate (d°")

AS Algal settling rate (m/d) Representative settling velocity for 14 0-30 .10

algal assemblages

ASAT Saturation light intensity Saturation light intensity at maximum 150 150 150
(watts/m?) algal-photosynthesis rate

APOM Fraction of algal biomass ~ Detritus and dissolved organic-matter *8 *8 *3
lost by mortality to concentrations; remaining biomass
detritus becomes labile dissolved organic

matter

ATI Lower temperature for Algal-growth rate as a function of water 10 10 10
algal growth (°C) temperature

AKI Fraction of algal growth Algal-growth rate as a function of water *1 *1 *1

at lower temperature

temperature
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Appendix 2. Chemical kinetic-rate coefficients and hydraulic and thermal parameters specified as model

input, Herrington Lake, Kentucky, 1996—Continued

(m, meter; m*(m/g), cubic meter per meter per gram; --, not applicable; *, dimensionless parameter, m/d, meter per day;
watts/m?, watts per square meter; °C, degrees Celsius; SOD, streambed oxygen demand; BOD, biological oxygen demand;
g/m, gram per meter; mg/L, milligram per liter; g02m2/d. grams of oxygen per square meter per day; >, greater than;
m¥-5/s, meter to the half power per second; m?s, square meter per second]

Value in Values from Values from
Parameter Parameter Computationai Herrington 1Cole and Giorgino
abbreviation purpose Lake Buchak, and Bales,
model 1995 1997
AT2 Lower temperature for Algal-growth rate as a function of water 30 30 22
maximum algal temperature
growth (°C)
AK2 Fraction of maximum Algal-growth rate as a function of water *99 *99 *.99
growth at lower temperature
temperature
AT3 Upper temperature for Algal-growth rate as a function of water 35 35 225
maximum algal temperature
growth (°C)
AK3 Fraction of maximum Algal-growth rate as a function of water *99 *.99 *95
growth at upper temperature
temperature
AT4 Upper temperature for Algal-growth rate as a function of water 40 40 35
algal growth (°C) temperature
AK4 Fraction of algal growth Algal-growth rate as a function of water *1 *1 *1
at upper temperature temperature
LDOMDK Labile dissolved organic-  Dissolved-oxygen loss and production .02 .01-.63 04
matter-decay rate (d° h of inorganic carbon, ammonium, and
phosphate from algal decay;
temperature dependent
LRDDK Labile to refractory Transfer of labile to refractory .001 .001 .005
decay rate (d°!) dissolved organic matter
RDOMDK Maximum refractory Dissolved-oxygen loss and production .001 .001 .001
dissolved organic- of inorganic carbon, ammonium, and
matter-decay rate @?h phosphate from decay of refractory
dissolved organic matter;
temperature dependent
LPOMDK Detritus decay rate @?h Dissolved-oxygen loss and production .04 .001 - .111 .002
of inorganic carbon, ammonium, and
phosphate from decay particulate-
organic matter; temperature
dependent
POMS Detritus settling velocity ~ Loss of particulate organic matter to 35 .001 - 20.0 25
(m/d) bottom sediment
OMT1 Lower temperature for Organic-matter decay as a function of 4.0 4.0 5.0
organic matter temperature
decay (°C)
OMKI1 Fraction of organic Organic-matter decay as a function of *1 *1 *05
matter decay at lower temperature
temperature
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Appendix 2. Chemical kinetic-rate coefficients and hydraulic and thermal parameters specified as model
input, Herrington Lake, Kentucky, 1996— Continued

{m, meter; m*(m/g), cubic meter per meter per gram; --, not applicable; *, dimensionless parameter, m/d, meter per day;
watts/m?, watts per square meter; °C, degrees Celsius; SOD, streambed oxygen demand; BOD, biological oxygen demand;
g/m, gram per meter; mg/L, milligram per liter; g02m2/d, grams of oxygen per square meter per day; >, greater than;
m%3/s, meter to the half power per second; m%/s, square meter per second]

Value in Vaiues from Vaiues from
Parameter Parameter Computational Herrington 1Cole and Giorgino
abbreviation purpose Lake Buchak, and Baies,
modet 1995 1997
OMT2 Lower temperature for Organic-matter decay as a function of 20.0 20.0 25.0
maximum organic temperature
matter decay (°C)
OMK2 Fraction of maximum Organic-matter decay as a function of *.99 *99 *95
organic matter decay temperature
at lower temperature
SDK Sediment decay rate (d°'')  Decay rate of organic matter in bed .06 .06 .015
sediments
FSOD Fraction of SOD Sediment oxygen-demand function 8 9 -
SOD Sediment oxygen Factor for assessing sediment oxygen 1-6 1-58 .0
demand by 20 demand at various strata and
segments (g02m2/d) computational segments
KBOD S-day chemical oxygen- Effects of BOD loading on dissolved 25 25 A5
demand-decay rate oxygen
@h
TBOD BOD temperature-rate Adjusts 5-day BOD decay rate at 20°C *1.047 *1.047 *1.0147
coefficient to ambient temperature
RBOD Ratio of 5-day BOD to Effects of BOD loading on dissolved *1.85 *1.85 *1.20
ultimate BOD oxygen
PO4R Release rate of Phosphorus balance; computed as a *.015 *0-.30 *.005
phosphorus from fraction of the sediment oxygen
bottom sediments demand
PARTP Phosphorus partitioning Describes sorption of phosphorus onto .02 1.2 3.0
coefficient suspended solids
AHSP Algal half-saturation The phosphorus concentration at which .005 .001-1.520 .005
constant for the uptake rate is one-half the
phosphorus (g/m) maximum uptake rate; upper
concentration at which algal growth
is proportional to phosphorus
concentration
NH4R Release rate of ammonia  Nitrogen balance; computed as a *.08 *0-.4 * 003
from bottom fraction of the sediment oxygen
sediments demand
NH4DK Ammonia-decay Rate at which ammonia is oxidized to A2 09-1.30 20
rate (d") nitrate
AHSN Algal half-saturation Nitrogen concentration at which the *.044 *.006 - 4.34 *014

constant for ammonia

algal uptake rate is one-half the
maximum uptake rate
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Appendix 2. Chemical kinetic-rate coefficients and hydraulic and thermal parameters specified as model

input, Herrington Lake, Kentucky, 1996— Continued

[m, meter; m3(m/g), cubic meter per meter per gram; --, not applicable; *, dimensionless parameter, m/d, meter per day;
watts/m?, watts per square meter; °C, degrees Celsius; SOD, streambed oxygen demand; BOD, biological oxygen demand;
g/m, gram per meter; mg/L, milligram per liter; g02m2/d, grams of oxygen per square meter per day; >, greater than;
m%/s, meter to the half power per second; m?/s, square meter per second]

Value in Values from Values from
Parameter Parameter Computational Herrington 1cole and Giorgino
abbreviation purpose Lake Buchak, and Bales,
model 1995 1997
PARTN Ammonia partitioning A function of conversion of ammonia to 1.0 1.0 -
coefficient for sorption nitrate or sorption to suspended
onto suspended solids solids
NHA4T1 Lower temperature for Ammonia nitrification as a function of 5.0 5.0 5.0
ammonia decay (°C) temperature
NH4K1 Fraction of nitrificationat ~ Ammonia nitrification as a function of *1 *1 * 10
lower temperature temperature
NHA4T2 Lower temperature for Ammonia nitrification as a function of 20.0 20.0 25.0
maximum ammonia temperature
decay (°C)
NH4K2 Fraction of maximum Ammonia nitrification as a function of *.99 *99 *99
nitrification at lower temperature
temperature
NO3DK Nitrate decay rate (d') Rate at which nitrate is denitrified; 202 05-.15 15
temperature dependent
NO3T1 Lower temperature for Denitrification as a function of 50 5.0 50
nitrate decay (°C) temperature
NO3K1 Fraction of denitrification ~ Denitrification as a function of *1 *1 *10
at lower temperature temperature
NO3T2 Lower temperature for Denitrification as a function of 20.0 20.0 25.0
maximum nitrate temperature
decay (°C)
NO3K2 Fraction of maximum Denitrification as a function of *99 *.99 *99
denitrification at temperature
lower temperature
CO2R Sediment carbon- Rate at which CO, is released from 10 .10 -
dioxide-release rate; sediments
fraction of sediment
oxygen demand
FER Iron-release rate from Iron balance; computed as fraction of *5 *3-5 *1.0
bottom sediments sediment oxygen demand
FES Iron settling Particulate iron-settling velocity under 2.0 5-20 2.0
velocity (m/d) anoxic conditions
- O2NH4 Oxygen stoichiometric Relates oxygen consumption to *4.57 *4.57 *4.0
equivalent for ammonia decay
ammonia decay
020M Oxygen stoichiometric Relates oxygen consumption to decay *1.4 *1.4 *15

equivalent for organic-
matter decay
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Appendix 2. Chemical kinetic-rate coefficients and hydraulic and thermal parameters specified as model
input, Herrington Lake, Kentucky, 1996— Continued

[m, meter; m3(m/g). cubic meter per meter per gram; --, not applicable; *, dimensionless parameter, m/d, meter per day;
watts/m?, watts per square meter; °C, degrees Celsius; SOD, streambed oxygen demand; BOD, biological oxygen demand;
g/m, gram per meter; mg/L, milligram per liter; g02m2/d, grams of oxygen per square meter per day; >, greater than;
m%3/s, meter to the half power per second, m/s, square meter per second]

Value in Values from Values from
Parameter Parameter Computational Herrington 1Cole and Giorgino
abbreviation purpose Lake Buchak, and Baies,
model 1995 1997
02AR Oxygen stoichiometric Relates oxygen consumption to algae *1.4 *1.4 *0.9
equivalent for dark dark respiration
respiration
O2AG Oxygen stoichiometric Relates oxygen production to algal *14 *1.4 *3.0
equivalent for algal growth
growth
BIOP Stoichiometricequivalent ~ Relates phosphorus release to decay of * 011 *011 * 009
between organic organic matter
matter and phosphorus
BION Stoichiometricequivalent  Relates nitrogen release to decay of *.08 *.08 *08
between organic organic matter
matter and nitrogen
BIOC Stoichiometricequivalent  Relates carbon release to decay of * 45 *45 -
between organic organic matter
matter and carbon
O2LIM Dissolved-oxygen limit Dissolved-oxygen concentration below 2 >.0 .10
(mg/L) which anaerobic processes, such as
nitrification and sediment-nutrient
releases occur
CEHZY Chezy resistance Represents turbulent exchange of 72 70 70
coefficient (m°'5/s) energy at reservoir bottom
CBHE Coefficient of sediment- Computes heat exchange between 7.0x108 7.0x10°8 8x1077
water heat exchange reservoir bottom and overlying water
(watts/m?/°C)
WSC Wind sheltering Reduces measured wind speed to .85-.95 0-1.0 7-9
coefficient effective wind speed at water surface
AX Longitudinal eddy Represents laterally averaged 1.0 1.0 1.0
viscosity (m%s) longitudinal turbulent transport of
momentum
DX Longitudinal edd; Represents laterally averaged 1.0 1.0 1.0
diffusivity (m“/s) longitudinal turbulent transport of

mass and heat

"Defined appropriate initial start-up value.
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Appendix 3. Discharge and nutrient concentrations for selected tributaries entering Herrington Lake, Kentucky,

October 25, 1995-September 28, 1996

[NO;-N, nitrate-nitrogen; NH,4-N, ammonia-nitrogen; TP, total phosphorus; SRP, soluble reactive phosphorus; ft%/s, cubic foot per second;
micrograms per liter, ug/L; for NH4-N, the detection limit is less than 10 pg/L]

Tributary name Station number Date Di?;?,:;ge m‘;",ﬁ '(ﬂ;‘l:; (uZL) (ﬁ:l:)
Cane Run 03285550 10/25/1995 0.3 1,653.3 <10.0 361.1 296.6
Cane Run 03285550 11/01/1995 .6 1,626.7 <10.0 320.8 277.2
Cane Run 03285550 11/07/1995 14.6 3,663.3 <10.0 660.3 501.6
Cane Run 03285550 01/16/1996 20.0 3,946.7 113.3 311.1 270.3
Cane Run 03285550 01/19/1996 88.3 5,426.7 <10.0 718.8 331.3
Cane Run 03285550 02/09/1996 8.0 5,213.3 <10.0 323.7 258.9
Cane Run 03285550 02/28/1996 19.7 4,146.7 <10.0 393.6 .0
Cane Run 03285550 03/06/1996 108.0 4,000.0 <10.0 995.9 388.6
Cane Run 03285550 04/11/1996 6.4 4,773.3 <10.0 250.5 198.1
Cane Run 03285550 04/24/1996 35.2 4,390.0 <10.0 473.6 166.8
Cane Run 03285550 05/28/1996 91.0 5,456.7 <10.0 96.9 46.9
Cane Run 03285550 07/22/1996 22.5 6,426.7 <10.0 354.4 170.1
Cane Run 03285550 09/28/1996 155.0 2,760.0 <10.0 1,048 767.7
Clarks Run 03285200 10/25/1995 6.5 12,000.0 <10.0 1266.7 1123.3
Clarks Run 03285200 11/01/1995 19 9,556.7 <10.0 1,052.7 991.4
Clarks Run 03285200 11/07/1995 90.0 3,250.0 <10.0 854.1 395.6
Clarks Run 03285200 01/16/1996 187.0 3,100.0 296.0 324.1 222.2
Clarks Run 03285200 01/19/1996 3570 3,666.7 2473 482.1 282.9
Clarks Run 03285200 02/09/1996 35.0 5,220.0 <10.0 3163 216.2
Clarks Run 03285200 02/28/1996 101.0 3,476.7 <10.0 457 194.8
Clarks Run 03285200 03/06/1996 401.0 2,850.0 <10.0 755.8 586.5
Clarks Run 03285200 04/11/1996 27.0 6,296.7 <10.0 397.1 3484
Clarks Run 03285200 04/24/1996 85.0 3,820.0 <10.0 239.5 84.3
Clarks Run 03285200 05/28/1996 221.0 4,233.3 <10.0 375 305.9
Clarks Run 03285200 07/22/1996 64.0 7,706.7 301.3 274.6 252.7
Clarks Run 03285200 09/28/1996 505.0 29100 <10.0 982.5 596.9
Dix River 03285000 10/25/1995 28.0 1,413.3 <10.0 198.8 142.7
Dix River 03285000 11/01/1995 76.0 935.6 <10.0 169.8 120.0
Dix River 03285000 11/07/1995 1020.0 819.7 <10.0 109.7 86.7
Dix River 03285000 01/16/1996 1460.0 1,690.0 110.0 961.6 109.7
Dix River 03285000 01/19/1996 4,710.0 1,456.7 <10.0 173 156.6
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Appendix 3. Discharge and nutrient concentrations for selected tributaries entering Herrington Lake, Kentucky,
October 25, 1995-September 28, 1996—Continued

[NO;-N, nitrate-nitrogen; NH4-N, ammonia-nitrogen; TP, total phosphorus; SRP, soluble reactive phosphorus; ft3/s, cubic foot per second;
micrograms per liter, pg/L; for NH4-N, the detection limit is less than 10 pg/L]

Tributary name Station number Date D‘?;;',‘ las;ge ::g’,g :‘;;";;_’; (;SI)L) (3:{)
Dix River 03285000 02/09/1996 1,000.0 2,236.7 <10.0 229.8 85.9
Dix River 03285000 02/28/1996 1,290.0 1,830.0 <10.0 280.2 207.1
Dix River 03285000 03/06/1996 3,040.0 1,765.0 <10.0 1,182 179.0
Dix River 03285000 04/11/1996 223.0 1,416.7 <10.0 63.7 26.7
Dix River 03285000 04/24/1996 1,420.0 1,506.7 <10.0 111.4 12.5
Dix River 03285000 05/28/1996 5,670.0 1,920.0 <10.0 0 .0
Dix River 03285000 07/22/1996 1,060.0 4,106.7 <10.0 166.2 126.5
Dix River 03285000 09/28/1996 4,400.0 1,193.3 <10.0 1631 766.3
McKecknie Creck 03285400 11/07/1995 1.4 1,666.7 <10.0 1,004 670.5
McKecknie Creek 03285400 01/16/1996 8.6 2,250.0 156.3 224.6 167.9
McKecknie Creek 03285400 01/19/1996 11.3 4,240.0 <10.0 3385 298.4
McKecknie Creek 03285400 02/28/1996 1.2 1,833.3 <10.0 646.8 1269
McKecknie Creek 03285400 03/06/1996 10.4 2,100.0 <10.0 489.7 173.6
McKecknie Creek 03285400 04/11/1996 2.6 .0 .0 0 .0
McKecknie Creek 03285400 04/24/1996 1.9 2,260.0 <10.0 150.2 80.0
McKecknie Creek 03285400 05/28/1996 143 4,420.0 <10.0 338.2 40.7
McKecknie Creek 03285400 07/22/1996 7 8,013.3 <10.0 279.5 238.8
McKecknie Creek 03285400 09/28/1996 223 2,416.7 <10.0 650.6 389.2
Mocks Branch 03285350 10/25/1995 3 208.7 <10.0 339.3 240.7
Mocks Branch 03285350 11/01/1995 7 1,077.0 <10.0 262.6 196.3
Mocks Branch 03285350 11/07/1995 343 1,703.3 <10.0 408.3 261.8
Mocks Branch 03285350 01/16/1996 35.7 3,373.3 170.0 427.1 216.2
Mocks Branch 03285350 01/19/1996 148.0 4,373.3 <10.0 733.5 363.8
Mocks Branch 03285350 02/09/1996 12.0 3,506.7 <10.0 287.2 203.7
Mocks Branch 03285350 02/28/1996 319 2,376.7 <10.0 822.1 278.0
Mocks Branch 03285350 03/06/1996 158.0 2,670.0 <10.0 1,005.7 439.6
Mocks Branch 03285350 04/11/1996 74 2,923.3 <10.0 167 106.5
Mocks Branch 03285350 04/24/1996 54.6 4,103.3 <10.0 245.5 12.5
Mocks Branch 03285350 05/28/1996 127.0 4,580.0 <10.0 244.3 106.7
Mocks Branch 03285350 07/22/1996 52.0 5,926.7 <10.0 316 299.1
Mocks Branch 03285350 09/28/1996 175.0 2,733.3 <10.0 1,197.7 610.8
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam
[These data were input into CE-QUAL-W2; --, recording equipment malfunction]

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
01/01/1996 13.468 5.772 02/01/1996 27.405 11.745
01/02/1996 13.468 5772 02/02/1996 30.135 12.915
01/03/1996 18.529 7.941 02/03/1996 30.191 12.939
01/04/1996 18.375 7.875 02/04/1996 29.932 12.828
01/05/1996 10.423 4467 02/05/1996 29.624 12.696
(01/06/1996 203 .087 02/06/1996 29.624 12.696
01/07/1996 6.398 2.742 02/07/1996 29.155 12.495
01/08/1996 2.17 93 02/08/1996 28.952 12.408
01/09/1996 9.807 4.203 02/09/1996 28.742 12.318
01/10/1996 19.299 8.271 02/10/1996 28.28 12.12
01/11/1996 19.25 8.25 02/11/1996 8.26 3.54
01/12/1996 19.145 8.205 02/12/1996 19.145 8.205
01/13/1996 19.04 8.16 02/13/1996 28.231 12.099
01/14/1996 7.483 3.207 02/14/1996 28.434 12.186
01/15/1996 1.855 795 02/15/1996 28.385 12.165
01/16/1996 8.463 3.627 02/16/1996 27916 11.964
01/17/1996 13.111 5.619 02/17/1996 2.324 .996
01/18/1996 13.363 5.726 02/18/1996 1.19 51
01/19/1996 19.404 8.316 02/19/1996 8.099 347
01/20/1996 19.817 8.493 02/20/1996 8.568 3.672
01/21/1996 20.076 8.604 02/21/1996 2.268 972
01/22/1996 20.489 8.781 02/22/1996 6.244 2.676
01/23/1996 20.125 8.625 02/23/1996 8.463 3.627
01/24/1996 19.712 8.448 02/24/1996 10.22 4.38
01/25/1996 22.344 9.576 02/25/1996 - -
01/26/1996 28.952 12.408 02/26/1996 7.175 3.075
01/27/1996 29.155 12.495 02/27/1996 11.095 4.755
01/28/1996 29.211 12.519 02/28/1996 20.355 8.715
01/29/1996 29.155 12.495 02/29/1996 25.802 11.058
01/30/1996 29.106 12.474 03/01/1996 616 .264
01/31/1996 30.191 12.939 03/02/1996 - -
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam—Continued
[These data were input into CE-QUAL-W2; --, recording equipment malfunction]

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
03/03/1996 3.304 1.416 04/04/1996 3.766 1.614
03/04/1996 20.279 8.691 04/05/1996 17.647 7.563
03/05/1996 12.593 5.397 04/06/1996 4.389 1.881
03/06/1996 19.922 8.538 04/07/1996 4.13 1.77
03/07/1996 28.588 12.252 04/08/1996 7.28 3.12
03/08/1996 27972 11.988 04/09/1996 21777 9.333
03/09/1996 27.818 11.922 04/10/1996 7.532 3.228
03/10/1996 28.077 12.033 04/11/1996 3.409 1.461
03/11/1996 28.28 12.12 04/12/1996 - -
03/12/1996 28.231 12.099 04/13/1996 -- -
03/13/1996 28.077 12.033 04/14/1996 .- -
03/14/1996 27916 11.964 04/15/1996 2.373 1.017
03/15/1996 27.762 11.898 04/16/1996 7.532 3.228
03/16/1996 27.559 11.811 04/17/1996 .105 .045
03/17/1996 27.503 11.787 04/18/1996 - -
03/18/1996 27.349 11.721 04/19/1996 - -
03/19/1996 27.195 11.655 04/20/1996 - -
03/20/1996 27.146 11.634 04/21/1996 - -
03/21/1996 27.195 11.655 04/22/1996 20.797 8.913
03/22/1996 27.195 11.655 04/23/1996 26.992 11.568
03/23/1996 20.594 8.826 04/24/1996 12.95 5.55
03/24/1996 - - 04/25/1996 7.791 3.339
03/25/1996 19.971 8.559 04/26/1996 20.334 8.736
03/26/1996 27.349 11.721 04/27/1996 10.066 4314
03/27/1996 14.35 6.15 04/28/1996 - --
03/28/1996 18.319 7.851 04/29/1996 8.309 3.561
03/29/1996 14.504 6.216 04/30/1996 -- -
03/30/1996 - - 05/01/1996 21.315 9.135
03/31/1996 - - 05/02/1996 13.573 5.817
04/01/1996 17.031 7.299 05/03/1996 19.817 8.493
04/02/1996 9.548 4.092 05/04/1996 - -
04/03/1996 7.175 3.075 05/05/1996 - -
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam—Continued

[These data were input into CE-QUAL-W2; --, recording equipment malfunction]

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
05/06/1996 11.718 5.022 06/07/1996 38.279 1.823
05/07/1996 10.164 4.356 06/08/1996 14.528 1.648
05/08/1996 21.105 9.045 06/09/1996 15.312 1.458
05/09/1996 28.952 12.408 06/10/1996 14.385 1.269
05/10/1996 11.305 4.845 06/11/1996 13.279 1.067
05/11/1996 -- -- 06/12/1996 31.059 1.513
05/12/1996 -- - 06/13/1996 21.007 9.003
05/13/1996 - - 06/14/1996 37.145 8.683
05/14/1996 -- - 06/15/1996 35.715 8.018
05/15/1996 -- - 06/16/1996 33.088 7.272
05/16/1996 -- - 06/17/1996 28.703 6.512
05/17/1996 13.986 5.994 06/18/1996 20.069 3.823
05/18/1996 19.349 3.015 06/19/1996 35.801 3.58
05/19/1996 22.562 3.377 06/20/1996 27.619 2.367
‘05/20/1996 18.72 2 06/21/1996 18.368 1.574
05/21/1996 6.12 1.08 06/22/1996 - -
05/22/1996 9.027 1.146 06/23/1996 6.762 2.898
05/23/1996 .882 706 06/24/1996 6.293 2.697
05/24/1996 558 382 06/25/1996 -- -
05/25/1996 12 .02 06/26/1996 10.066 4.314
05/26/1996 2 1 06/27/1996 -- --
05/27/1996 - .005 06/28/1996 8.673 3.717
05/28/1996 .01 .094 06/29/1996 7.329 3.141
05/29/1996 023 .198 06/30/1996 - -
05/30/1996 1.665 257 07/01/1996 875 375
05/31/1996 2.361 231 07/02/1996 -- -
06/01/1996 9.75 292 07/03/1996 -- -
06/02/1996 10.487 .18 07/04/1996 - -
06/03/1996 10.984 .168 07/05/1996 -- -
06/04/1996 12.285 5.265 07/06/1996 -- -
06/05/1996 28.123 2411 07/07/1996 -- -
06/06/1996 40.251 2433 07/08/1996 - -
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam—Continued
[These data were input into CE-QUAL-W?2; --, recording equipment malfunction]

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
07/09/1996 -- - 08/10/1996 0.045 0.01
07/10/1996 - - 08/11/1996 .05 .05
07/11/1996 - - 08/12/1996 .143 072
07/12/1996 -- - 08/13/1996 137 .066
07/13/1996 - -- 08/14/1996 24.08 4.885
07/14/1996 -~ -- 08/15/1996 12.887 2.699
07/15/1996 9.527 4.083 08/16/1996 30.188 5.308
07/16/1996 7.16 2.166 08/17/1996 111 .042
07/17/1996 15.942 3.854 08/18/1996 .104 .036
07/18/1996 27.404 5.593 08/19/1996 26.372 3.478
07/19/1996 162.562 57 08/20/1996 10.164 4.356
07/20/1996 610.566 62.489 08/21/1996 7.532 3.228
07/21/1996 262.303 43.717 08/22/1996 12.334 5.286
07/22/1996 1.56_ 134 08/23/1996 9.289 3.981
07/23/1996 1.114 2.387 08/24/1996 -- -
07/24/1996 18.788 8.052 08/25/1996 -- -
07/25/1996 26.608 7.653 08/26/1996 - --
07/26/1996 24.334 6.999 08/27/1996 - --
07/27/1996 27.609 6.317 08/28/1996 5.782 2478
07/28/1996 26.292 5.672 08/29/1996 7.637 3.273
07/29/1996 22.164 5.028 08/30/1996 - --
07/30/1996 11.605 2.124 08/31/1996 -- --
07/3171996 20.116 2.73 09/01/1996 - -
08/01/1996 27.823 3.112 09/02/1996 -- --
08/02/1996 20.692 8.868 09/03/1996 -- -
08/03/1996 51.897 4.236 09/04/1996 7.378 3.162
08/04/1996 47.33 3.864 09/05/1996 8.827 3.783
08/05/1996 53.684 3.486 09/06/1996 10.528 4512
08/06/1996 30.273 3.177 09/07/1996 6.916 2.964
08/07/1996 23.533 2.831 09/08/1996 7.378 3.162
08/08/1996 11.9 1.641 09/09/1996 10.423 4.467
08/09/1996 .033 012 09/10/1996 12.95 5.55
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam-~Continued

[These data were input into CE-QUAL-W2; --, recording equipment malfunction])

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
09/11/1996 7.483 3.207 10/13/1996 -- --
09/12/1996 15.582 6.678 10/14/1996 - --
09/13/1996 17.388 7.452 10/15/1996 8.512 3.648
09/14/1996 19.558 8.382 10/16/1996 7.637 3.273
09/15/1996 18.627 7.983 10/17/1996 -- --
09/16/1996 19.404 8.316 10/18/1996 - --
09/17/1996 17.962 7.698 10/19/1996 -- --
09/18/1996 18.683 8.007 10/20/1996 - --
09/19/1996 18.165 7.785 1072171996 - --
09/20/1996 17.444 7.476 10/22/1996 -- -~
09/21/1996 16.408 7.032 10/23/1996 - -
09/22/1996 -- -- 10/24/1996 -- --
09/23/1996 17.857 7.653 10/25/1996 5.215 2.235
09/24/1996 17.962 7.698 10/26/1996 -- --
09/25/1996 - -- 10/27/1996 - --
09/26/1996 4.9 2.1 10/28/1996 -- --
09/27/1996 3.507 1.503 10/29/1996 - --
09/28/1996 16.359 7.011 10/30/1996 -- --
09/29/1996 28.952 12.408 10/31/1996 -- --
09/30/1996 28.798 12.342 11/01/1996 11.718 5.022
10/01/1996 24.773 10.617 11/02/1996 18.375 7.875
10/02/1996 19.04 8.16 11/03/1996 18.375 7.875
10/03/1996 17.234 7.386 11/04/1996 16.772 7.188
10/04/1996 17.962 7.698 11/05/1996 6.706 2.874
10/05/1996 7.483 3.207 11/06/1996 - -
10/06/1996 -- -- 11/07/1996 5.215 2.235
10/07/1996 11.97 5.13 11/08/1996 - --
10/08/1996 12.334 5.286 11/09/1996 - --
10/09/1996 9.751 4.179 11/10/1996 -- --
10/10/1996 - - 11/11/1996 - -
10/11/1996 -- -- 11/12/1996 -- --
10/12/1996 -- -- 11/13/1996 -- --
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Appendix 4. Average discharge outflows in 1996 at two withdrawal structures at the Dix River Dam—Continued
[These data were input into CE-QUAL-W2; --, recording equipment malfunction]

Discharge Discharge Discharge Discharge
(gate elevations (gate elevations (gate elevations (gate elevations
Date at 532 feet at 584 feet Date at 532 feet at 584 feet
above sea above sea above sea above sea
level) level) level) level)
11/14/1996 - -- 12/08/1996 -- -
11/15/1996 - - 12/09/1996 18.27 7.83
11/16/1996 - -- 12/10/1996 -- -
1171711996 - - 12/11/1996 18.116 7.764
11/18/1996 -- -- 12/12/1996 18.473 7.917
11/19/1996 - -- 12/13/1996 18.837 8.073
11/20/1996 - - 12/14/1996 17.493 7.497
1172171996 - - 12/15/1996 - T
1112211996 -- - 12/16/1996 13.265 5.685
11/23/1996 - - 12/17/1996 20.748 8.892
11/24/1996 - -- 12/18/1996 - 29.211 12.519
11/25/1996 - -- 12/19/1996 29.316 12.564
11/26/1996 - -- 12/20/1996 29.155 12.495
11/27/1996 -- - 12/21/1996 29.001 12.429
11/28/1996 - - 12/22/1996 26.628 11412
11/29/1996 - - 12/23/1996 19.509 8.361
11/30/1996 - - 12/24/1996 20.02 8.58
12/01/1996 28.49 12.21 12/25/1996 29.155 12.495
12/02/1996 28.693 12.297 12/26/1996 24773 10.617
12/03/1996 28.539 12.231 12/27/1996 20.076 8.604
12/04/1996 28.798 12.342 12/28/1996 20.02 8.58
12/05/1996 28.952 12.408 12/29/1996 19.922 8.538
12/06/1996 27.454 11.766 12/30/1996 22.603 9.687
12/07/1996 18.578 7.962 12/31/1996 16.618 7.122
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