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Depositional Environment, Stratigraphy, and Vertical
Hydraulic Conductivity of the St. Francois Confining Unit
in the Fristoe Unit of the Mark Twain National Forest,

Missouri

By Michael J. Kleeschulte! and Cheryl M. Seeger?

Abstract

The confining ability of the St. Francois
confining unit was assessed in six townships (T25-
27N and R03-04W) of the Fristoe Unit of the Mark
Twain National Forest in Oregon and Shannon
Counties of southeastern Missouri. This was
accomplished by describing the depositional envi-
ronment and stratigraphy of the confining unit, and
quantifying the vertical hydraulic conductivity of
rock core samples from the confining unit using
laboratory techniques. Stratigraphic data for this
study were obtained by analysis of 238 exploration
borehole core logs and rock core from exploration
boreholes that typically described a 600- to 800-
foot interval from near the bottom of the Potosi
Dolomite into the Lamotte Sandstone or Precam-
brian basement rock.

Faulting created a Precambrian highland
area (St. Francois Mountains) and basins; erosion
gave the Precambrian igneous knobs an irregular
shape. This erosion and a marine transgression
with continued deposition of clastic material led to
the accumulation of sediments that formed the
Lamotte Sandstone. Transgression caused shelf
drowning and gradual development of a large
intrashelf basin with a narrow, discontinuous rim
(lowermost Bonneterre Formation) which allowed
the carbonate-dominant facies to form. The transi-

'U.S. Geological Survey
Missouri Department of Natural Resources

tion from shaley deposits with a limited stromato-
lite zone to carbonate with more frequent
stromatolites suggest a general shallowing of the
sequence as the Bonneterre Formation was depos-
ited.

The Bonneterre Formation-Davis Forma-
tion contact denotes abrupt intrashelf basin devel-
opment that was filled during cycles of
transgression and shallowing. The intrashelf basin
likely had a wide, continuous shelf rim producing
the shale-dominant Davis Formation. The Derby-
Doerun Dolomite was formed during a pair of car-
bonate depositional cycles. The basal shaley
sequence represents a transition with the Davis
Formation.

Thirty-three exploration holes penetrated
Precambrian knobs that appear to intercept two
linear structures or ridges that trend northwest-
southeast. These knobs generally protrude less
than 200 feet above the surrounding Precambrian
basement rock; however, some knobs along both
of these ridges extend more than 500 feet above
the surrounding basement rock.

The greatest thicknesses of the Lamotte
Sandstone are 50 to 60 feet and it is present
throughout the study area, except where it pinches
out against some Precambrian knobs. The depth
from land surface to the top of the Lamotte Sand-
stone, where present, ranges from 1,552 to 2,450
feet with an altitude ranging from a high of 502
feet below sea level to a low of 1,600 feet below
sea level. Both of the Precambrian ridges can be
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identified as prominent structural high features or
domes. '

Algal reef zones in the upper part of the
lower Bonneterre Formation are common and are
well-defined digitate stromatolites; reef zones
reach thicknesses of 100 feet. The depth from land
surface to the top of the Bonneterre Formation
ranges from 1,358 to 2,002 feet, and the altitude of
the top of the formation ranges from 278 below sea
level to 1,152 feet below sea level. The formation
generally dips to the south or southeast. Evidence
for the two Precambrian ridges in the study area
can again be observed as domed features.

The Davis Formation is composed of inter-
bedded shales and carbonate, with both shale- and
carbonate-dominant sequences and ranges from
less than 50 to more than 300 feet thick. The Davis
Formation carbonates primarily are limestone,
with dolostone at the top and base of the forma-
tion. The shales restricted the flow of dolomitizing
fluids from reaching most Davis Formation lime-
stones. The depth from land surface to the top of
the Davis Formation ranges from 1,171 to 1,692
feet and the altitude of the top of the formation
ranges from 200 to 878 feet below sea level. The
structure map is similar to that of the top of the
Bonneterre Formation, with the presence of the
two linear highs in the study area and the dip of the
formation to the south.

The Derby-Doerun Dolomite is composed
of mudstones, grainstones, and mudstone-matrix
boundstones. Thin shales are present throughout

but shale content and bed thickness increases near

the contact with the Davis Formation. The depth
from land surface to the top of the Derby-Doerun
Dolomite ranges from 970 to 1,598 feet, and the
altitude of the top of the formation ranges from 18
feet above sea level to 788 feet below sea level.
The Derby-Doerun Dolomite structure map is sim-
ilar to that of the Davis Formation with the two
structural highs in the study area and the general
slope of the formation to the south.

The thickness of the St. Francois confining
unit generally ranges from 250 to 375 feet in the
study area. The net shale thickness of the St. Fran-
cois confining unit ranges from less than 50 feet in

the northeast part of the study area to more than
150 feet in the southwest.

Laboratory vertical hydraulic conductivity
and porosity analysis were performed on 88 core
samples primarily representing the various rock
types present in the St. Francois confining unit of
the Fristoe Unit and the Viburnum Trend. Vertical
hydraulic conductivity ranged from 8.70 x 108
foot fer second for one sample to less than 3.17 x
1071 foot per second (the reporting limit) for 39
samples. The porosity values ranged from a high
of 17.47 percent to a low of 0.36 percent. There did
not appear to be a strong correlation between the
vertical hydraulic conductivity and porosity.

There is no significant difference (p-value =
0.375) between the ranked vertical hydraulic con-
ductivity of samples collected from the Derby-
Doerun Dolomite and Davis Formation in the Fris-
toe Unit. The interquartile range of vertical
hydraulic conductivity shown for the Derby-
Doerun Dolomite samples has more than an order
of magnitude greater span than the interquartile
range shown for the Davis Formation samples.

In the Viburnum Trend, there is a statisti-
cally significant difference (p-value = 0.006)
between the ranked vertical hydraulic conductivity
of the Derby-Doerun Dolomite and Davis Forma-
tion. Although the vertical hydraulic conductivity
of both formations is small, the median vertical
hydraulic conductivity of the Derby-Doerun Dolo-
mite is more than an order of magnitude greater
than the median vertical hydraulic conductivity for
the Davis Formation.

There is no statistically significant vertical
hydraulic conductivity difference (p-value =
0.790) in ranked samples from the Fristoe Unit
containing carbonate or shale or both rock types.
This is also true when comparing ranked samples
containing carbonate or shale or both rock types
from the Viburnum Trend (p-value = 0.412), even
though carbonate rocks have more than an order of
magnitude greater median vertical hydraulic con-
ductivity than shales.

The net shale thickness is not the single con-
trolling factor that determines the effectiveness of
the confining unit. Because the vertical hydraulic
conductivity of the carbonate rocks and shales in
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the confining unit are similar, the entire carbonate-
shale thickness is important in determining the
effectiveness of the confining unit.

The estimated range of effective vertical
hydraulic conductivity for the St. Francois confin-
ing unit in the study area was calculated to be a
maximum of 1 x 10°'? foot per second and a min-
imum of 3.0 x 10" foot per second. These vertical
hydraulic conductivity values are small allowing
the St. Francois confining unit to effectively
impede the flow of ground water between the
Ozark aquifer and the St. Francois aquifer, unless
preferred-path secondary permeability has devel-
oped along faults and fractures.

INTRODUCTION

Lead and zinc exploration in the Fristoe Unit of
the Doniphan/Eleven Point Ranger District of the Mark
Twain National Forest (hereinafter referred to as the
Fristoe Unit) in southeastern Missouri has been ongo-
ing since the 1960s. In the late 1970s and early 1980s,
the search intensified, resulting in several hundred
exploration holes being drilled in the Fristoe Unit. This
exploration focused on a possible southern extension of
the Viburnum Trend (fig. 1) ore deposits located about
20 miles to the north. _

“In 1983, as a result of the exploratory drilling,
two Preference Right Leases were submitted for areas in
the Fristoe Unit. After the Preference Right Leases were
submitted, the U.S. Department of Agriculture, Forest
Service (Forest Service) and the U.S. Department of the
Interior, Bureau of Land Management (BLM) made the
decision to prepare an Environmental Impact Statement
(EIS). The EIS study area was enlarged to include
119,000 acres of the Fristoe Unit that had reasonable
potential for mineral leasing proposals (U.S. Depart-
ment of Agriculture, Forest Service and U.S. Depart-
ment of Interior, Bureau of Land Management, 1988).

After the EIS was completed, mining companies
focused their attention on a smaller area of the Fristoe
Unit (prospecting area; fig. 1), south of Winona. The
prospecting area lies within a larger region of well-
developed karst terrain with an extensive network of
solution-enlarged fractures ranging from small chan-
nels to large conduits. The two largest springs in Mis-
souri are in this area--Big Spring, which has an annual
mean discharge of 447 cubic feet per second [(ft3/s);
Hauck and others, 1997], and Greer Spring which has

an annual mean discharge of 346 ft3/s (Hauck and oth-
ers, 1999). Discharge from these springs helps sustain
flow in two nationally designated streams; Big Spring
flows into the Current River (Ozark National Scenic
Riverway) and Greer Spring flows into the Eleven
Point River (Eleven Point National Scenic River). The
potential for lead-zinc mining in this environmentally
sensitive karst area has concerned the Forest Service
and BLM in regard to possible impacts that mining
may have on the water resources of the area. The con-
cerns include but are not limited to the effects that mine
dewatering may have upon shallow water resources.

Predominantly carbonate rock sequences of the

~ Lower Ordovician and Upper Cambrian Series (Jeffer-

son City Dolomite to the base of the Lamotte Sandstone)
overlie the igneous granites and rhyolites of the Precam-
brian basement rock in the study area (fig. 2). The forma-
tions from the Jefferson City Dolomite to the Eminence
Dolomite are predominant at land surface; these rocks,
together with the Potosi Dolomite, form the Ozark aqui-
fer, which is a primary source of water for private and
public-water supplies and major springs (Imes and
Emmett, 1994). The St. Francois confining unit lies
beneath the Ozark aquifer and consists of the Derby-
Doerun Dolomite and the Davis Formation. This confin-
ing unit impedes the circulation of water between the
overlying Ozark aquifer and the underlying St. Francois
aquifer, which consists of the Bonneterre Formation (the
potential host formation for lead-zinc deposits; Wharton,
1975) and the Lamotte Sandstone. Little is known about
the hydrology of the St. Francois aquifer because the
shallower Ozark aquifer is a reliable source of ground
water for the area. The geologic names used in this report
follow the nomenclature used by the Missouri Depart-
ment of Natural Resources, Division of Geology and
Land Survey (DGLS).

The Bonneterre Formation is the potential host
formation for lead-zinc deposits in the prospecting
area. This formation is part of the St. Francois aquifer
and the top of this formation is at depths greater than
1,300 feet in the prospecting area. Before potential
lead-zinc deposits can be extracted, the mine area will
have to be dewatered. If the overlying St. Francois con-
fining unit is leaky, mine dewatering could result in
lowering water levels in the shallow Ozark aquifer.
Because the prospecting area is a possible extension of
the Viburnum Tend, where lead-zinc mining is cur-
rently (2000) active, the geology and depositional envi-
ronment in these two areas during Late Cambrian time
when these formations were deposited may be similar.

Introduction 3
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Extensive studies performed in the Viburnum Trend by
Palmer (1991) and Thacker and Anderson (1979) indi-
cate the environment that existed when the St. Francois
confining unit was deposited affects the mud content of
deposited sediments, which in turn affects the confin-
ing ability of the formations.

In 1990, the first of several consecutive geohy-
drologic studies was started in and adjacent to the Fris-
toe Unit. As a result of these studies, baseline
hydrologic information was collected (Kleeschulte and
Sutley, 1995) to help understand the natural flow rates
of streams, water quality in surface and ground water,
ground-water level fluctuations, and ground-water
flow in the aquifers. Ground-water-level mapping and
dye-trace studies have shown the presence of a ground-
water trough between Hurricane Creek, which is adja-
cent to the prospecting area, and Big Spring. This indi-
cates the possible presence of a large-permeability
conduit system in the area that supplies water to Big
Spring from the Hurricane Creek Basin (Imes and
Kleeschulte, 1995).

In 1995, the U.S. Geological Survey (USGS) and
the DGLS began a study in the prospecting area that
supplements the geohydrologic studies that have
already been completed in the Fristoe Unit. This study
was preformed in cooperation with the Forest Service,
BLM, U.S. Environmental Protection Agency, and the
Missouri Department of Conservation.

The purpose of this study was to determine the
depositional environment, stratigraphy, and vertical
hydraulic conductivity of the St. Francois confining

unit to assess the confining ability of the confining unit -

in an area centered on the prospecting area. However,
the scope of the project was expanded to include the

formations of the St. Francois aquifer. The Bonneterre
Formation (part of the St. Francois aquifer) has a tran-
sitional contact with the overlying Davis Formation of

the St. Francois confining unit. By including a descrip- -

tion of the formations of the St. Francois aquifer, the
entire interval from the Precambrian basement rock to
the Davis Formation was considered. A better under-
standing of the effectiveness of the confining unitin the
area was obtained by also analyzing the vertical
hydraulic conductivity of rock core from five boreholes
(VB1-VBS; fig. 1) in the Viburnum Trend. The results
of these analysis were used for comparison purposes
with the results of the core analysis from the study area.
The overall confining ability of the confining

unit could have been obtained by performing aquifer
tests. However, because of the expected small hydrau-

lic conductivity of the confining unit, the excessive
depth of the confining unit, and the resulting installa-
tion costs for pumping and observation wells, this was
economically prohibitive. Therefore, the alternative
laboratory hydraulic conductivity analysis method was
selected. It is understood that there are inherent restric-
tions associated with the results of the laboratory
hydraulic conductivity analysis, such as the inability to
account for the effects of secondary permeability fea-
tures (faults and fractures) that may be present in the
subsurface of the study area.

Purpose and Scope

This report assesses the confining ability of the
St. Francois confining unit in six townships (T25-27N
and R03-04W) of the Fristoe Unit of the Mark Twain
National Forest in Oregon and Shannon Counties of
southeastern Missouri. The first objective of this report
was to describe the depositional environment of the St.
Francois confining unit. This information was inter-
preted from descriptions on mining company borehole
and water well logs, and from detailed logging of five
borehole cores from the study area on file at the DGLS
McCracken Core Facility in Rolla, Missouri. This dis-
cussion was expanded to include the St. Francois aqui-
fer.

The second objective of the report was to
describe the stratigraphy of the St. Francois confining
unit. This not only included describing physical rock
characteristics but also geologic structure and forma-
tion thickness. After the stratigraphic data were com-
piled, structure maps were prepared depicting the
altitude of the top of formations in the St. Francois
aquifer and confining unit. Other maps show the thick-
ness of the St. Francois confining unit and the areal dis-
tribution of cumulative shale thicknesses (net shale
thickness) in the confining unit.

The third objective of this report was to quantify
the vertical hydraulic conductivity of rock core sam-
ples from the St. Francois confining unit in the study
area. This was achieved by performing laboratory ver-
tical permeability analyses on rock cores from explora-
tion holes. Ground water obtained from the Bonneterre
Formation was used as the transmitting fluid during the
analysis, allowing the vertical permeability to be con-
verted to vertical hydraulic conductivity.

Purpose and Scope 7



Study Area

Data for this report were collected from a four-
county area of southeastern Missouri. However, the
area of intense data collection (study area) for the core
log and laboratory vertical hydraulic conductivity anal-
ysis consists of six townships (T25-27N and R03-04W)
in the Fristoe Unit of Shannon and Oregon Counties.
Core log data also were collected beyond the study area
perimeter to aid in contouring formation structure; this
expanded area included part of western Carter County
(fig. 1). For comparison purposes, laboratory vertical
hydraulic conductivity analysis also were performed on
rock core samples from boreholes in the Viburnum
Trend area in Shannon and Reynolds Counties.

Exploration Borehole Data

Several hundred exploration holes have been
drilled by numerous mining companies during the
decades of exploration for lead-zinc ore in and near the
Fristoe Unit. Two hundred thirty eight exploration
borehole core logs from in and near the study area were
made available for study (table 1, at the back of this
report) by the BLM, DGLS, and the Doe Run Com-
pany. The BLM receives copies of core logs from all
exploration holes drilled on Federal lands, DGLS was
donated copies of logs from several mining companies,
and currently the Doe Run Company owns and oper-
ates all of the active mines in the Viburnum Trend.
These sources have obtained copies of many of the
exploration core logs from the various mining compa-
nies that have performed exploratory drilling in the
study area. These logs provide general information
such as location of the borehole, land surface altitudes
at the borehole, depths to formation tops, and total
depth of the hole. In some cases, the logs also provide
detailed lithologic descriptions of the formations
encountered from near the bottom of the Potosi Dolo-
mite into the Lamotte Sandstone or Precambrian base-
ment, typically an interval of 600 to 800 feet. These
core logs along with a detailed study of core samples
from five Amax Exploration, Inc. boreholes drilled in
the study area (801-002, 801-009, 801-010, 801-016,
and 801-031; table 1) provided the primary source of
the detailed stratigraphic data contained in this report.
Considerable interpretation was necessary in defining
stratigraphy in some of the logs because of transitional
lithologies and variable stratigraphic nomenclature that
has been applied in the area.

In this report, the location of exploration bore-
holes is shown as the local well number (table 1) and
follows the General Land Office coordinate system
(fig. 3). According to this system, the first three sets of
numbers of a hole location designate township, range,
and section. The letters that follow indicate quarter sec-
tion, quarter-quarter section, and quarter-quarter-quar-
ter section. The quarter sections are represented by
letters A, B, C, and D, in counterclockwise order, start-
ing in the northeastern quadrant. Two or more explora-
tion holes in the same division are numbered serially in
the order they were inventoried.

Rock Classification According to
Depositional Texture

Carbonate mud constitutes the bulk of rﬁany car-
bonate rock sequences. Sediment type and depositional
environment (sediment deposited in calm water versus
sediment deposited in agitated water) are two factors
that influence the confining ability of rocks that are
formed from these sediments. According to Larsen
(1975), one way of classifying depositional environ-
ments is to focus on fine material that remained at the
deposition site. In calm water, mud (particle size less
than 20 microns) settles to the bottom and remains
there, so mud-rich rocks are categorized differently
than mud-free rocks, regardless of the amount and size
of coarse-grained material in the rock.

Dunham (1962) defined five textural classes of
carbonate rocks (fig. 4). These classes distinguish
between mud-support, grain-support, and components
that were bound together during deposition of the car-
bonate rock. These classes include: ,

Mudstone—Mud-supported carbonate rocks pri-
marily composed of fine-grained carbonate mud and
containing less than 10 percent grain-sized particles
(quantity at which the grains become noticeable). The
significance of mudstone is that it implies a calm-water
or low-energy environment.

Wackestone—Mud-supported carbonate rocks
in which grain-size particles are in excess of 10 per-
cent, but are not so abundant as to support one another.

Packstone—Mud-rich carbonate rocks with
grains so abundant they support one another (generally
more than 65 percent grain-size particles). Grain sup-
port generally is a property of rocks deposited in an agi-
tated-water or high-energy environment. Rocks
exhibiting properties of both high- and low-energy
depositional environments are peculiar. The unusual

8 Depositional Environment, Stratigraphy, and Vertical Hydraulic Conductivity of the Mark Twain National Forest, Missouri
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properties may simply be a result of compaction of
wackestone (especially where interstices are com-
pletely filled with mud), may indicate the introduction
of mud-rich sediments into an area occupied by previ-
ously mud-free sediment, or may indicate the abundant
production of grains in calm water.
Grainstone—Mud-free carbonate rocks that are
grain-supported. Some grainstones are current laid, some
are the result of mud being bypassed while locally pro-
duced grains accumulate, and some are the result of mud
being winnowed from previously deposited mud-rich
sediment. The class name merely denotes the absence of
mud and that the grains are supported by each other.
Boundstone—Carbonate rocks that exhibit signs
that the original components were bound together during
deposition. These components exhibit intergrown skele-
tal matter (corals), lamination contrary to gravity (lami-
nations of algal stromatolites), and cavities present on
sediment floors that are too large to be interstices.
"Whiterock" is an additional term used in the
lithologic descriptions and facies discussions in this
report. The term originated during lead mining in
southeastern Missouri and denotes back-reef (area
between barrier reef structure and the exposed land
mass) facies composed of planar algal stromatolites
interbedded with burrowed carbonate sands and muds,

with localized soft green clay (Howe, 1968). Both algal
stromatolites and carbonates are bleached, dolo-
mitized, and recrystallized to varying degrees. The
back-reef facies is interpreted as representing a low-
energy zone above wave base in shallow water with
restricted tides and circulation (Lyle, 1977). Whiterock
horizons are present in much of the Upper Cambrian
Series (Eminence Dolomite through the Lamotte Sand-
stone) of southern Missouri.

DEPOSITIONAL TEXTURE RECOGNIZABLE

Original components not bound
together during deposition

Contains mud (particles
of clay and fine silt size)

Mud-supported

Grain-supported

Lacks mud and is grain-supported
Original components were bound
together during deposition

Less than 10
percent grains
More than 10
percent grains

Mudstone ~ Wackestone = Packstone Grainstone ' Boundstone
(Dunham, 1962)

Figure 4. Dunham rock classification.
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Geohydrologic Units

Delineation of geohydrologic units is based on
hydraulic properties and the hydrologic relation of each
unit to adjacent geohydrologic units at a regional scale.
The terms aquifer and confining unit, as defined
regionally, may not adequately describe the hydraulic
properties of a sequence of rocks locally because of the
variation in water-yielding capability of the same
sequence from one area to another.

The lowermost geohydrologic unit is the Base-
ment confining unit which is dominantly granite and
rhyolite. Imes (1989) states that this confining unit is
virtually impermeable. In areas where extensive fault-
ing and fracturing has occurred Imes reports the base-
ment confining unit can yield small quantities of water.
In areas where the unit crops out, well yields are less
than 10 gallons per minute.

The St. Francois aquifer (Imes, 1990c) overlies
the Basement confining unit and consists of the Bon-
neterre Formation and the Lamotte Sandstone. In areas
of southeastern Missouri near the St. Francois Moun-
tains where this aquifer is close to land surface, it yields
adequate supplies of water for domestic and small
capacity public-supply wells. The thickness of the St.
Francois aquifer can vary considerably because of the
rugged surface of the underlying Precambrian base-
ment rocks. _

The Derby-Doerun Dolomite and the Davis For-
mation form the St. Francois confining unit (Imes,
1990b) that overlies the St. Francois aquifer. Imes and
Emmett (1994) state in their regional study of the
Ozark Plateaus aquifer system that substantial second-
ary porosity and permeability have not developed
regionally in the St. Francois confining unit. The fine-
grained nature of the formations indicates they have
minimal permeability, even in areas containing little or
no shale. The physical and hydraulic characteristics of
the unit generally impede the circulation of ground
water between the overlying Ozark aquifer and the
underlying St. Francois aquifer (Imes and Emmett,
1994).

Common indicators of the effectiveness of a con-
fining unit are the thickness and the shale content (usu-
ally a minimally permeable material) of the unit.
Whereas these normally are good measures of the con-
fining ability of a unit, other physical properties of the
unit may alter the confining ability, including the
degree of cementation of the rock and secondary per-
meability features that development in the rock such as
solution channels, fractures, and faults (Imes, 1990b).

Because of the depths at which these units are found in
the study area, the presence of the secondary perme-
ability features in the units could not be assessed.

Although the characterization of the Ozark aqui-
fer is not within the scope of this report, a general
description of the unit is provided to show the signifi-
cance of the unit in regard to the underlying confining
unit. Being the uppermost geohydrologic unit in the
study area, the Ozark aquifer (Imes, 1990a) consists of
rocks from the top of the Jefferson City Dolomite to the
base of the Potosi Dolomite (fig. 2). This predomi-
nantly carbonate aquifer is made up of dolostone and
limestone with some sandstone and is the most widely
used aquifer in southern Missouri. Ground water in the
aquifer generally occurs under water-table conditions,
which means the upper surface of the aquifer is at
atmospheric pressure, and the water is not confined by
less permeable rocks.

Lead-Zinc Deposit Exploratory History

The Bonneterre Formation is the prominent host
formation for the major lead-zinc deposits located in
southeastern Missouri. During the prospecting and
mining of lead in eastern Missouri, the close correla-
tion that exists between the ore deposits and strati-
graphic traps, structural highs, and “reef” structures
was discovered (Wharton, 1975). This relation pro-
vided the rationale used during the exploration for new
ore bodies in the Viburnum Trend. As the ore deposits
in the Viburnum Trend were being discovered and
mined, the data gathered from extensive drilling and
mapping provided new information about the deposi-
tional history and regional facies relation of the forma-
tions. Exploration in the Fristoe Unit in Shannon and
Oregon Counties was directed at a potential extension
of the Viburnum Trend (fig. 1). Much of the extensive
geologic information that has been collected in the
Viburnum Trend probably is transferable to the Fristoe
Unit, especially information concerning the general
description of the regional geologic setting and the dep-
ositional environment of the formations. A basic under-
standing of these factors gives insight as to the
hydrologic characteristics of subsurface structural fea-
tures and facies, which influence the confining ability
of geohydrologic units.
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DEPOSITIONAL ENVIRONMENT

The Late Cambrian depositional environments
can be described only in general because of the extreme
variability in the core descriptions and unequal core
distribution (fewer data are available for the western
one-third of the study area). For example, descriptions
of the Bonneterre Formation (the target formation for
mineral exploration) by different core loggers vary
from brief one line descriptions to detailed descriptions
several pages in length. Formations other than the Bon-
neterre Formation are typically described by no more
than a few lines per formation. Also, various carbonate-
rock classification systems such as Dunham (1962) and
Folk (1959) were used. Classification of carbonates as
either packstone or grainstone often is difficult without
extensive petrographic work in even slightly altered
limestones. Often the limestone and dolostone were not
differentiated within individual cores because these
data were not necessary for the mining geologist. Re-
logging of cores with consistent terminology would be
required for a thorough characterization of depositional
environments and confirmation of the interpretations
provided herein.

Faulting created a Precambrian highland area
(St. Francois Mountains; fig. 1) and basins, and parts of
this terrane underwent extreme erosion before deposi-
tion of Upper Cambrian alluvial and marine sediments.
This erosion gave the more resistant Precambrian igne-
ous knobs an irregular shape. They typically have steep
sides, but are separated by broad flat valleys and where
these Precambrian knobs are present, overlying forma-
tions can be thin or missing.

The overlying Upper Cambrian sediments are
composed of alluvial and fluvial clastics that grade
upward into marine sandstones and carbonates and are
characteristic of intershelf basin areas. These sedi-
ments were deposited during repeated cycles of marine
transgressions (spreading of the sea over land areas)
and subsequent shallowing. The intershelf basin was a
large basinal feature that formed on the regional shelf.

The intershelf basin covered much of southeastern
Missouri, including the study area and the Viburnum
Trend (Palmer, 1989). The deposited rock sequence in
this intershelf basin area includes the following forma-
tions (in ascending order): Lamotte Sandstone, Bon-
neterre Formation (including the Sullivan Siltstone and
Whetstone Creek Members), Davis Formation, Derby-
Doerun Dolomite, Potosi Dolomite, and Eminence
Dolomite. This sedimentation in southeastern Missouri
was controlled by pre-Late Cambrian uplift and erosion
of the igneous basement rock, and by faulting during
the Late Cambrian Epoch. Most of southern Missouri
was uplifted repeatedly throughout the Paleozoic Era,
which includes the Cambrian and Ordovician Systems.
This is evidenced by unconformity-bounded sequences
between and within nearly every system in the Paleo-
zoic Erathem (Palmer and Seeger, 1998).

The St. Francois Mountains (located about 45
miles to the northeast of the study area; fig. 1) and Pre-
cambrian knobs affected mineralization in the Vibur-
num Trend. During the Late Cambrian, the
Precambrian highland area was east of the Viburnum
Trend and a shallow water basin was to the north and
west (fig. 5). The exposed Precambrian knobs in the
basin were a major influence on the marine deposi-
tional environment in the area and affected the forma-
tion of island complexes. These island complexes were
conducive for the development of algal reefs which
were covered by sediments that later formed the Bon-
neterre Formation. A simplified schematic section of a
typical buried reef structure (fig. 5) in the Viburnum
Trend area, shows features that probably are common
to the prospecting area.

Erosion of the Precambrian highlands and a
marine transgression with-continued deposition of clas-
tic material led to the accumulation of sediments that
formed the Lamotte Sandstone. The Lamotte Sand-
stone basal conglomerate is associated with fan depos-
its (alluvium deposited where streams flowed onto a
lowland from the Precambrian knobs) (Houseknecht
and Ethridge, 1978; Yesberger, 1982). These deposits
can be divided into debris flows (sandstone matrix con-
glomerates) and mudflows (clay matrix conglomer-
ates). Both types of fan deposits are described in the
borehole logs. Coarseness of the alluvial deposits gen-
erally decreases with distance from the Precambrian
highland area. Palmer (1991a) interpreted arkosic sec-
tions as gravel-based channel deposits, sandbars, lami-
nated sheet-flood deposits, and overbank deposits
(from bottom to top through each fining-upward
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sequence). Arkosic deposits are also present near Pre-

cambrian knobs and generally these deposits thin with

increased distance from knobs.

Conglomerate and arkose facies are conformably
overlain by well-sorted, well-indurated (hard), fine- to
medium-grained quartzose sandstone. Some cross-bed-
ding and burrows are present in these facies. These
facies are interpreted as normal marine sandstone, and
may have been a near shore barrier and shallow tidal
flat complex (Palmer, 1989, 1991a, 1991b).

Transgression caused shelf drowning and grad-
ual development of a large intrashelf basin (Central
Missouri Intershelf Basin) (Palmer, 1989). Interbedded
sandstones and marine carbonates of the Lamotte
Sandstone and Bonneterre Formation are included in
sediments deposited in the transition zone where fan
deltas were still active and discharged into tidal flats or
shallow marine areas (Hayes and Knight, 1961; Yes-
berger, 1982). Differences between sandstone- and car-
bonate-dominated facies probably indicate distance
from the clastic source (Precambrian highland area),
with carbonate-dominant facies likely deposited farther
from the source of the clastic material.

The lowermost shaley carbonate sequence of the
Bonneterre Formation also suggests intrashelf basin
deposition, when the basin margin was likely a narrow,
discontinuous rim, allowing the carbonate-dominant
facies to form. Interbedded shales are indicative of
increased clastics coming into the basin, which period-
ically suppressed algal stromatolite growth. Stroma-
tolitic zones indicate periods of limited clastic
depdsition and possible limited sedimentation.
Between the lower shale-rich carbonates and the upper
coarse crystalline dolostones, Bonneterre Formation
rocks are mostly non-argillaceous (lacking clays and
shales) and oolitic. The texture and alterations to the
rock make identifying algal constituents in this
sequence difficult and the rock is described as crypt-
algal "reef” dolostones and grainstones. The transition
from shaley deposits with a limited stromatolite zone to
carbonate with more frequent stromatolites suggests a
general shallowing of the sequence, with possible
channel development. Oolitic horizons (indicative of
near-shore, high-energy wave-action environment)
with possible shoaling.
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Arkosic zones (up to 4 feet thick) may be inter-
preted in several ways. If the zones are interbedded
with whiterock (indicative of shallow or subaerially
exposed rock) or oolitic rocks, they may be a near shore
facies and suggest proximity to a Precambrian knob.
Alternately, if interbedded with only white- rock, the
environment may have been alluvial channels. Finally,
if they are interbedded with dark-colored mud-rich
dolostones, they are more likely to be grain flows
(small debris flows that moved farther offshore during
storm events). Most core descriptions are not in suffi-
cient detail to determine which depositional environ-
ment was present.

Several rock sequences show a cyclic pattern of
deepening, then becoming shallow with whiterock
present at the top of the shallowing-upward cycles. The
whiterock thins toward the basin area. Reddened hema-
titic (iron oxide) patches remain in many whiterock
sequences and grade outward to pale olive-green clay-
rich coarse-crystalline dolostone, suggesting that red-
dened limestones were the precursor to whiterock dolo-
stone (Palmer, 1991a). Dissolution of the precursor
limestones suggests that these areas were subaerially
exposed. The Sullivan Siltstone Member is a transgres-
sive clastic-dominated facies that occurs where the
shelf surface was inclined at steeper angles. This may
have been accompanied by southeastward-directed
shelf subsidence that was filled with sediments that
lessened the steeper angle shelf area (Larsen, 1977;
Palmer, 1991a). Intraclast refers to sediments that were
“torn up” by erosion, reworked, and then redeposited in
the same basin to form a new sediment. Intraclast con-
glomerate beds are interpreted as possible storm-gener-
ated debris flow deposits that moved down slopes of
only a few degrees (Palmer, 1991a). One core descrip-
tion in the northern part of the study area notes siltstone
intraclasts, interpreted to have been formed where they
were found; carbonate clasts in cores to the south are
considered to have moved down slope from the source
area and deposited.

. The Bonneterre Formation sequence may change
to nearly all limestone or all coarse crystalline dolos-
tone in short distances. Retention of limestone in the
basal part suggests that the southern and extreme north-
western parts of the study area were deeper offshore
environments because generally near-shore carbonates
are dominated by vuggy coarse-crystalline dolostone.

The Bonneterre Formation-Davis Formation
contact denotes abrupt intrashelf basin development.
The intrashelf basin continued to be filled during cycles

of transgression and shallowing. The facies is a clastic
sequence deposited within a.regional carbonate shelf.
The intrashelf basin likely had a wide, continuous shelf
rim, as is suggested by the shale-dominant Davis For-
mation, unlike that of the basal Bonneterre Formation
basin which had a narrow, discontinuous rim and car-
bonate-dominant facies. Horizontal burrows in the
Davis Formation are suggestive of slow periodic depo-
sition in a marine subtidal setting, where the shelf
underwent gradual drowning during a slow transgres-
sion. Intraclast conglomerate beds can be interpreted as
storm-generated flow deposits that presumably moved
down slopes of only a few degrees or less. Individual
cores with more abundant intraclast conglomerate lay-
ers suggest that those locations are near the intrashelf
basin margin and consequently nearer to the source of
the conglomerate. These facies tends to thin towards
the geographic center of the shale depositional basins
where there was less deposition.

The Derby-Doerun Dolomite was formed during
a pair of carbonate depositional cycles. The formation
includes sequences of thinly layered carbonate rock of
differing composition (ribbon rock) that change up-
slope to sequences with thinner mudstone beds and
thicker grainstone or packstone beds. Intraclast con-
glomerate beds (storm-generated debris flow deposits)
presumably moved down slopes of only a few degrees.
Abundant intraclast beds in individual cores may sug-
gest that those locations were near the basin margin.
The basal shaley sequence represents a transition with
the Davis Formation.

Arkosic and porphyry conglomeratic material
throughout the section indicates Precambrian high-
lands remained exposed during the Upper Cambrian
carbonate deposition. Continued exposure of the Pre-
cambrian highlands may have been caused by the orig-
inal height of the highlands, or be the result of
continued uplift on fault-related structures.

STRATIGRAPHY

The 238 exploration boreholes from which the
stratigraphic data were obtained (fig. 6) ranged from
1,478 to 2,590 feet deep. The borehole location
recorded on the core log was determined either to the
nearest quarter-quarter-quarter section or in feet from
the north/south and east/west section line. Land surface
altitudes were determined at the time of drilling using
altimeters or topographic maps. The reported altitudes
were verified during this study using USGS 7.5-minute
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topographic maps that generally had contour intervals
of 20 feet, making the land surface altitude accurate to
about 10 feet (one-half the contour interval). In a few
instances, the reported land surface altitudes on the
core log did not agree with the land surface altitudes
shown on the topographic maps for the given location.
When this situation occurred, the altitude shown on the
topographic map at the borehole location was used.
The altitudes used in contouring the formation tops of
the Lamotte Sandstone, Bonneterre Formation, Davis
Formation, and Derby-Doerun Dolomite were deter-
mined by subtracting the depth of the formation top
reported on the core log from the land surface altitude.
The thickness of the St. Francois confining unit also
was mapped.

Because shale content usually is a good indicator
of the effectiveness of a confining unit, core logs with
detailed descriptions of lithologies were used to deter-
mine the net shale thickness of the Derby-Doerun
Dolomite and the Davis Formation. These logs typi-
cally divided the cored section into small intervals in
which the lithology had similar characteristics. The
rock was described as to color, texture (mudstone,
wackestone, packstone, grainstone, or boundstone),
grain size, physical features present in the rock (algal
stromatolites, vugs, and staining), and the percentage
of each rock type (shale, dolostone, and limestone). Net
shale thickness was calculated by multiplying the
reported percent shale in an interval by the thickness of
the described interval. The net shale thicknesses of all
intervals were then summed to determine the total net
shale thickness at that borehole location. Because most
of the cores were not logged in sufficient detail to
extract all the needed information to make a net shale
thickness determination, these data are not as extensive
as the data describing the altitude of the formation tops.

The Upper Cambrian sequence in the study area
is a complex series of dolostones, limestones, shales,
sandstones, and siltstones, with minor arkosic and con-
glomeratic layers. The lithologic summaries presented
below are necessarily brief and focused on lithologic-
features that potentially affect hydraulic properties.
Palmer (1989) contains a detailed discussion of the
lithologic framework of the Upper Cambrian strata in
southeastern Missouri. The Dunham classification sys-
tem for carbonate rocks (Dunham, 1962) was used in
this report where the Dunham system was applied by
the core logger. Many dolostone "grainstone” may be

“packstone”, or should be termed "packstone-grain-
stone". Logs reported using other classification sys-
tems are described using Dunham classification terms.

Precambrian Rocks

Thirty-three core logs analyzed as part of this
study described exploration boreholes that penetrated
Precambrian knobs (fig. 6). The locations of these
boreholes define two linear structures or ridges that
trend northwest-southeast. One ridge is located along
Sycamore Creek in the northeastern part of the study
area and the other extends through the central part of
the study area. The knobs generally protrude less than
200 feet above the surrounding Precambrian basement
rock; however, some knobs along both of these ridges
extend more than 500 feet above the surrounding base-
ment rock.

Structural evidence of the Precambrian knobs or
ridge in the central part of the study area appears to
extend as high as the Roubidoux Formation. Based on
altitudes of the contact between the Roubidoux Forma-
tion and Gasconade Dolomite, a structural dome was
identified during geologic mapping of the area con-
ducted in 1996 by the USGS (R.W. Harrison, U.S. Geo-
logical Survey, oral commun., 1996). In other areas
where buried Precambrian knobs occur, structural
domes have been mapped in overlying strata as high as
1,000 feet above the buried knobs. One explanation as
to why the existence of Precambrian knobs can be indi-
cated so far up in the geologic section is that younger
horizontal sediment layers originally buried the Pre-
cambrian basement rocks in southeastern Missouri.
Over time, loading on the buried sediments caused
compaction and subsidence. Thick sediments depos-
ited away from and on the flanks of the buried knobs
subsided more than the much thinner sediments depos-
ited directly over the knobs, creating the mappable
structural domes (R.W. Harrison, oral commun., 1996).

Lamotte Sandstone

The Lamotte Sandstone is present throughout the
study area, except where it pinches out against some
Precambrian knobs. The greatest thicknesses of this
formation indicated by borehole data are 50 to 60 feet.
Most cores penetrated the Lamotte Sandstone (if
present), but were terminated before the complete sec-
tion was drilled.
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The Lamotte Sandstone is a white to light tan or
gray, well-sorted, well-indurated mature quartzose
sandstone. It generally varies from fine- to medium-
grained, but can be very coarse-grained. The sandstone
has locally abundant burrows and small fossils (type
not identified). Sandstones are dolomite-cemented in
the upper part of the formation. Some dolostone is
bleached, recrystallized, porous, and vuggy. Minor sec-
ondary calcite fracture fill and calcite- and dolomite-
lined vugs are reported.

Several cores contain Lamotte Sandstone that is
all or partially arkosic or conglomeratic. Clasts are
detrital porphyry fragments, and are supported by
poorly sorted and angular feldspathic quartzose sand-
stone; clast size is up to 1 foot in diameter. The thickest
conglomerate section is 33 feet; the thickest arkose sec-
tion is 31 feet. Some clasts are scattered in thin beds
throughout the sandstone, suggesting continual shed-
ding of moderately worked material by erosion and/or
continued uplift of the Precambrian highland area.

The depth from land surface to the top of the
Lamotte Sandstone, where present, ranges from 1,552
to 2,450 feet, with an altitude ranging from a high of
502 feet below sea level (borehole 212, 1.5 mile north
of the stﬁdy area) to a low of 1,600 below sea level
(borehole 236; 0.7 mile south of the study area) (table
1, figs. S, 6,and 7). The general dip of the formation is
to the south or southeast. Both of the Precambrian
ridges can be identified as prominent structural high
features or domes. Along these ridges are several Pre-
cambrian knobs that protrude above the top of the sur-
rounding Lamotte Sandstone. Superimposed on the
dome structure in the central part of the study area are
several local highs. A smaller structural high evident in
the southeastern part of the study area (based on two
boreholes) is adjacent to a structural trough that trends
to the south. This trough is also a distinct feature on
structural maps of overlying formations.

Lamotte Sandstone-Bonneterre
Formation Transition Zone

The contact between the Lamotte Sandstone and
Bonneterre Formation is marked by a transition zone.
This transition zone is comprised of tan or light to
medium gray medium-grained quartz sandstones with
minor dolostone grainstone lenses. The sandstones
exhibit some cross-bedding and mottling, have locally
abundant glauconite that may be pelletal (fecal pellets),

and are cemented by fine-grained brown dolostone.
Several logs note scattered green to dark-green and

“dark-gray crepey (crinkled appearance) shale partings.

In several core intervals, the transition zone is
pale to medium gray or tan to grayish-brown dolostone
with localized sandstone lenses. The dolostone is sha-
ley to sandy, fine to medium crystalline and fine- to
medium-grained. Dolostones are grainstones, wacke-
stones, and mudstones; the sequence appears to coarsen
upward. Some mudstones are interbedded with grain-
stones, and scattered whiterock is reported. The dolos-
tone is sometimes mottled, burrowed and bioturbated
(sediment disturbed or agitated by organisms), and
nodular. Secondary calcite and dolomite vug fill and
calcite fracture fill is present. Irregular, wavy, dark
gray-green to greenish-gray or dark gray argillaceous
partings as much as 1-inch thick are present. Dolostone
porosity is noted, but no description of type or degree
is given. Both sandstone- and dolostone-dominant core
intervals contain detrital igneous lithic fragments.

Bonneterre Formation

Because of the importance of the Bonneterre
Formation as the host rock for potential ore deposits,
the formation is studied and described in much more
detail in logs than the other formations. The Bonneterre
Formation is dominantly carbonate, with several shaley
horizons and a siltstone (the Sullivan Siltstone Mem-
ber). The formation is missing from several cores
because it pinches out against Precambrian knobs. The
lower Bonneterre Formation is subdivided into a basal
part composed of carbonate with interbedded shale and
an upper part composed of dolostone with occasional
shale layers or partings. Several logs note a basal
sequence of the Taum Sauk Limestone Member (fig.
35).

The Taum Sauk Limestone Member is a light
gray-white to greenish gray-white and red-mottled
limestone with some dolostone. Where noted, the unit
is generally found in the vicinity of the reef structures
and is 20 to 40 feet thick. It is fine- to medium-grained
and moderately argillaceous with red and green shale,
and is locally burrowed.

The basal part of the lower Bonneterre Forma-
tion primarily is dolostone. Limestone is preserved in
the southern and extreme northwestern parts of the
study area. The basal unit ranges from 30 to more than
300 feet thick. The dolostones are comprised of mud-
stones to grainstones with mudstone-matrix bound-
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stones and vary in color from gray to gray-tan, and tan.
Argillaceous zones are pale green. Bleached zones sug-
gest that parts of the section are whiterock. The dolos-
tones are fine to medium crystalline, fine- to medium-
grained, and have interbedded quartzose-rich to arkosic
layers (as much as 4 feet thick), primarily near the base
(transition zone). Dark greenish-gray and gray to black
shale is present in beds as much as 21 feet thick, and as
wispy partings. Dolostones occasionally are mottled
and have common bioturbation and burrowing. Algal
structures are digitate (finger-like appearance) stroma-
tolites as much as 1 foot high, occasional crypt-algal
laminates, and minor hummocky algal forms. Grains
are oolites and fossil fragments (type not specified);
several logs note edgewise carbonate conglomerates.
Minor porphyry conglomerate layers are noted in some
core intervals. Structural features include infrequent
scattered subvertical fractures, locally disrupted bed-
ding, and, in one log, a 100-foot vertical slump struc-
ture. Solution features include scattered stylolites, and
vugs partially to completely occluded by calcite spar
and pink dolomite. Vugs are the most common form of
visible porosity and often are reported in algal zones.
Noted porosity generally is 5 percent or less.

Limestone core intervals range from 100 to 260
feet thick. They are more lithologically heterogeneous
than equivalent dolostones, being comprised of mud-
stones and grainstones, with interbedded wackestones
and mudstone-matrix boundstones. They are light gray,
tan and pale greenish-gray, and are fine crystalline and
fine- to medium-grained. The limestones commonly
are burrowed, mottled, sparsely to moderately glauco-
nitic, and contain carbonate intraclasts, fossil frag-
ments (type not noted), oolitic layers, and digitate
stromatolite zones. They have rare vugs and pores that
are partially to completely occluded by pink dolomite
and calcite spar. Occasional, thin dolostone layers are
reported. Dark greenish-gray thin wavy-bedded shales
are interbedded with the limestone. Shale percentages
are higher in the limestones than in the dolostones; the
shales probably restricted the movement of dolomitiz-
ing fluids. Dolostones similar to those described above
bound the top and base of the limestone core intervals,
and range from 20 to 70 feet thick.

The upper part of the lower Bonneterre Forma-
tion ranges in thickness from 40 to nearly 250 feet. It is
composed of interbedded dolostone grainstones, mud-
stones, and grainstone- and mudstone-matrix bound-
stones, with occasional wackestones. The top of the
unit generally is a grainstone underlain by whiterock.

The dolostones are fine- to medium-grained and fine
through coarse crystalline. The coarse crystalline dolo-
stones and reported bleached zones probably are white-
rock. Color ranges from light to medium gray, gray-tan,
pale greenish-gray, and brown. The dolostone often is
mottled and is sometimes irregularly banded. Algal
reef zones are common and are well-defined digitate
stromatolites with infrequent hummocky algal fea-
tures; reef zones reach thicknesses of 100 feet. Burrow-
ing is also common in the unit. Clastic material
includes occasional shale partings, and quartzose, arko-
sic, and porphyry conglomeratic layers. Solution struc-
tures include stylolites, possible solution breccias, and
vugs partially to completely occluded by calcite spar
and pink dolomite. Several descriptions note porosity,
but are not specific as to type and nature. Scattered sub-
vertical fractures sometimes are partially healed by cal-
cite and/or dolomite.

The whiterock is comprised of fine- to coarse-
grained dolostone with green to greenish-gray inter-
crystalline clay. It ranges in color from white to light
gray, pale brown-gray, light tan, and light blue gray.
Where clays have not entirely occluded intercrystalline
pores, the dolostone appears very porous or vuggy.
Matrix dolostone grains are sometimes visibly over-
grown by medium-grained pink or white dolomite.

The Sullivan Siltstone Member (fig.5) is in the
upper Bonneterre Formation, is 2.5 to 50 feet thick, and
is composed of light to dark gray or brown, finely lam-
inated, well indurated, fine- to medium-grained quart-
zose siltstone to sandstone. The unit thickens to the
west and south. Siltstone is interbedded with thin dolo-
stone lithoclast conglomerates, grainstone beds (prima-
rily in the southern part of the study area), and scattered
thin dark green to dark gray wavy shale partings. The
siltstones have varying amounts of siliceous and dolo-
mitic cement. Dolostones are tan, fine crystalline, and
sometimes mottled, glauconitic, fossiliferous (type not
noted), oolitic and/or porous. Solution vugs and brecci-
ation are common in some dolostones. Brecciation is
most commonly reported as soft-sediment deforma-
tion. Vugs have calcite, and contain trace sulfide min-
eralization which is most common in brecciated zones.
Cores suggest that an incipient facies change to dolo-
stone may be present in the north-central part of the
study area.

The Whetstone Creek Member (fig. 5) ranges
from 30 to 150 feet thick. The unit is dolostone with
some limestone and limey dolostone, especially in the
northwestern part of the study area. Color ranges from
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light to medium gray and grayish brown to tan, light
blue gray, and greenish gray. Carbonates are fine to
medium crystalline, fine- to medium-grained mud-
stones and grainstones, with wackestone-packstones
and mudstone-matrix boundstones. Grainstones and
wackestone-packstones are oolitic, fossiliferous (type
not specified), and contain intraclasts. All carbonates
are mottled, burrowed, and glauconitic. Mottled and
finely laminated dolostones alternate. Unlike most
Whetstone Creek Member sections in other areas of
southeastern Missouri, these logs do not show abun-
dant pelletal glauconite. Digitate stromatolites and
crypt-algal laminates are noted; digitate stromatolites
are more common to the north and laminate stromato-
lites to the south. Crypt-algal laminates are underlain
by mottled dolostone, which is underlain by laminated
dolostone. Solution features are stylolites and vugs
with dolomite. Fracturing is present, but not common.
Where reported, fractures generally are subvertical,
with rare medium-angle fractures. Some fractures are
healed by calcite. Porous zones are noted but extent and
type are not described. Some whiterock is noted and
reported bleached zones likely are also whiterock.
Arkosic and igneous-conglomeratic layers are noted
throughout the unit. Silt content is greater in the lower
Whetstone Creek Member, near the contact with the
Sullivan Siltstone Member.

Dark green shale partings are present throughout
the Whetstone Creek Member. A prominent shale (1 to
27 feet thick) at the base of the unit is informally known
as the False Davis (fig.5). Core descriptions are inade-
quate to determine if the False Davis is present
throughout the study area. The shale is often interbed-
ded with dolostone grainstones; the dolostones contain
fossil fragments (type not identified), oolites, and occa-
sional pyrite.

Based on 234 data points, the depth from land
surface to the top of the Bonneterre Formation ranges
from 1,358 to 2,002 feet. The altitude of the top of the
formation ranges from 278 feet below sea level (bore-
hole 179) to 1,152 feet below sea level (borehole 236;
table 1, figs. 6 and 8) and generally dips to the south or
southeast. Evidence for the two Precambrian ridges in
the study area can again be observed as domed features.
Also, the previously mentioned trough structure in the
southern part of the study area is evident. The structure
map of the top of the Bonneterre Formation indicates
problems associated with using core logs from various
sources to map formation tops. The fingering effect of
the contours in the southern part of the prospecting area

may be caused by different criteria used during core
logging for identifying the top of the Bonneterre For-
mation, as opposed to the presence of structural fea-
tures.

Davis Formation

The Davis Formation is composed of interbed-
ded shales and carbonates, with both shale- and carbon-
ate-dominant sequences. It ranges from less than 50 to
more than 300 feet thick. The thinner core intervals are
over Precambrian knobs. Shales generally are light to
dark green, with some gray to dark gray beds. Individ-
ual shale layers range from partings to 5 feet thick.
Shale-dominant sequences can be as thick as 50 feet,
and contain as much as 90 percent shale. Limestone-
filled burrows comprise the only carbonate in some
shale layers. Carbonate layers in shale-dominant hori-
zons vary from less than 1 inch to several feet thick.
Carbonate-dominant zones may be 70 feet thick or
greater. Shale percentages in these zones can be as
much as 50 percent or less than 10 percent. Shale inter-
beds in carbonate-dominant zones vary from partings
to several feet thick.

Davis Formation carbonates primarily are lime-
stone, with dolostone at the top and base of the forma-
tion. The shales restricted the flow of dolomitizing
fluids from reaching most Davis Formation limestones.
The limestones are mudstone, grainstone, and mud-
stone-matrix boundstone, with some wackestone and
occasional packstone. They are light tan to brown or
gray to dark gray and light gray-tan in color. They are
fine- to medium-grained and fine to medium crystal-
line. The limestones contain pellets, fossil fragments
(type not specified), oolites, glauconite (some are pel-
letal), relict crypt-algal laminates and infrequent digi-
tate stromatolites. Mudstones are sometimes
bioturbated; burrows are horizontal and may be selec-
tively dolomitized. Some layers are composed of car-
bonate intraclast conglomerate. Scattered vertical
fracturing is present, but is less common than in forma-
tions above and below. Solution features include hori-
zontal and vertical stylolites, and local solution and
slump breccias. Scattered arkosic or porphyry con-
glomeratic layers are present.

The dolostones are similar to the limestones
described above. Coarse crystalline dolostone is
present, especially in the upper Davis Formation,
where it is sometimes medium to pale gray or green
whiterock. Some gray mottling is present. The dolo-
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stone has more vugs and is more porous than the lime-

stone; vugs are partially occluded by calcite and dolo- .

mite. Core descriptions report limonite coatings in vugs
in the upper part of the Davis Formation; this coating
probably is a very ferroan (containing ferrous iron)
dolomite. ‘ :

Based on 227 data points, the depth from land
surface to the top of the Davis Formation ranges from
1,171 to 1,692 feet and the altitude of the top of the for-
mation ranges from 200 feet below sea level (borehole
212) to 878 feet below sea level (borehole 229, 0.6 mile
south of the study area) (table 1, figs. 6 and 9). The
structure map is similar to that of the top of the Bon-
neterre Formation with the presence of the two struc-
tural highs in the study area and the general dip of the
formation to the south. -

Derby-Doerun Dolomite

The Derby-Doerun Dolomite is composed of
light gray to gray or light tan to brown mudstones,
grainstones, and mudstone-matrix boundstones, with
some wackestones and wackestone-matrix bound-
stones. Dolostones are fine to coarse crystalline and
fine- to medium-grained. Whiterock is scattered
throughout and some mottling was reported. Bedding is
thin to massive; thin disturbed beds may be burrowed.
The dolostones contain fossil fragments (type not spec-
ified), oolites, and carbonate lithic clasts. Digitate stro-
matolites and crypt-algal laminates are present.
Occasional scattered porphyry clasts are present. Thin
black to dark gray and green shales are scattered
throughout; shale content and bed thickness increases
near the contact with the Davis Formation.

Glauconite is present near the base, where dolo-
stones are interbedded with shales. Dolostones vary in
visible porosity from none to extremely vuggy. Unlike
the overlying Potosi Dolomite, the Derby-Doerun
Dolomite contains only minor chalcedony and quartz
vug linings. Highly fractured zones are present,
although not ubiquitous; some fractures are healed by
dolomite and calcite. Breccias are present, but are in
part healed by the same cements. Some fractures have
minor to abundant iron oxide staining on the fracture
surface. Many mining companies did not begin coring
until they had already penetrated the Derby-Doerun
Dolomite; consequently, complete core intervals of the
Derby-Doerun Dolomite are not equally distributed.

The Derby-Doerun Dolomite is the uppermost
formation mapped during this study. Based on the data
from 212 control points, the depth from land surface to
the top of this formation ranges from 970 to 1,598 feet,
and the altitude of the top of the formation ranges from
18 feet above sea level (borehole 221, 1.5 miles north

_of the study area) to 788 feet below sea level (borehole

229, table 1, figs. 6 and 10). The Derby-Déerun Dolo-
mite structure map is similar to that of the Davis For-

mation with the two structural highs in the study area

and the general slope of the formations to the south.

The St. Francois confining unit thickness as

- determined by core logs ranges from 173 to 656 feet

(table 1; fig. 11) in the study area. Most boreholes in
which the confining unit was logged at more than 400
feet thick had abnormally thick Derby-Doerun Dolo-
mite sequences. Eight boreholes [boreholes 162, 199,
216,218,219, and 230 (fig. 6) are shown on figure 11;
boreholes 221 and 236 (fig. 6) were slightly outside the
study area boundary] were logged with abnormally
thick confining unit sequences. This may have been a
result of different criteria being used to define the
Potosi and Derby-Doerun Dolomites and consequently
part of the Potosi Dolomite near the conformable con-
tact may have been logged as Derby-Doerun Dolomite.
Typically the confining unit has a thickness ranging
from 250 to 375 feet thick (table 1; fig. 11) in the study
area.

‘The net shale thickness of the St. Francois con-
fining unit also was mapped (table 1, fig. 12). The
thickness ranged from less than 50 feet in the northeast-

“ern part of the study area to more than 150 feet in the

southwest. This is consistent with the current under-
standing of the environment at the time these forma-
tions were deposited. The deeper part of the basin
would have been to the west of the prospecting area.
This would have been a low-energy setting allowing
the deposition of the silts and clays and the formation
of shale deposits.

These conclusions are consistent with Fletcher
(1974) who states that the clastic (includes sand and
shales)-to-carbonate ratio in the Davis Formation
increases westward from the presently exposed Pre-
cambrian highlands in the St. Francois Mountains east
of the Viburnum Trend (fig. 1). Thacker and Anderson
(1979) also show the clastic-to-carbonate ratio in the
Davis Formation increasing to the west of buried Pre-
cambrian knobs identified by Fletcher (1974) in the
Viburnum Trend. The decrease in thickness and clastic/
carbonate composition of the Davis Formation can
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reduce the ability of the confining unit to impede flow
between the Ozark and St. Francois aquifers near the
Precambrian knobs. '

VERTICAL HYDRAULIC CONDUCTIVITY

Laboratory testing was used to determine the
vertical hydraulic conductivity and porosity of various
rock types present in the St. Francois confining unit.
Shale typically has a smaller permeability than carbon-
ate rocks (Freeze and Cherry, 1979). By determining
the thickness of the confining unit, the net shale thick-
ness of the unit, and the vertical hydraulic conductivity
range of the various rock types present in the unit, the
data are available to quantitatively estimate the confin-
ing ability of the unit. Permeability is a function of the
medium (rock core) alone and is not dependent on the
fluid used or the force field causing the movement of
the liquid (Lohman and others, 1972). Hydraulic con-
ductivity is a measure of the ease with which a specific
fluid can be transmitted through a porous medium, and
is a function of the medium and of the density and vis-
cosity of the fluid being transmitted. The transmitted
fluid used during the permeability tests was similar to
water that flows through the confining unit in the study
area. This allowed representative vertical hydraulic
conductivities to be determined from laboratory core
permeability results.

Rock cores from both the study area and the
Viburnum Trend were sent to the Core Petrophysics,
Inc. laboratory in Houston, Texas, for vertical hydrau-
lic conductivity analysis. Samples from the Viburnum
Trend were collected and analyzed for comparison with
the results of the core analyzed from the study area. The
potential lead-zinc deposits in the prospecting area
probably have formed in a similar geologic deposi-
tional environment and by the same processes that
formed the deposits that are currently (2000) being
mined in the Viburnum Trend. The vertical hydraulic
conductivity of the confining unit in the Viburnum
Trend is minimal, allowing effective dewatering and
mining. A comparison of the vertical hydraulic conduc-
tivity of the confining units in the two areas can give
insight as to the potential of the confining unit in the
prospecting area to inhibit ground-water flow between
aquifers.

Rock core samples that represent the entire St.
Francois confining unit sequence were selected and
sent to the laboratory for analysis. Sixty-four core sam-
ples were selected from 11 boreholes in the Fristoe Unit

and 24 samples were selected from 5 boreholes in the
southern part of the Viburnum Trend (table 2, at the
back of this report). Twenty-six core samples were
from the Derby-Doerun Dolomite and 59 samples were
from the Davis Formation. One sample (sample num-
ber 35, table 2) was logged as the Derby-Doerun Dolo-
mite, but after further inspection, the core was
determined to probably be from the lower Potosi Dolo-
mite; two samples (sample numbers 6 and 29, table 2)
after further inspection were determined to be from the
upper Bonneterre Formation.

Methodology

Vertical permeability and porosity were deter-
mined in the laboratory for the rock core samples using
methods described by the American Petroleum Insti-
tute (1998). The test conditions simulated the in situ
conditions at the depth from which each core sample
was collected. The permeability of a medium is
inversely proportional to the net confining stresses to
which the medium is subjected. A net confining stress
[calculated using a pressure gradient of 0.758 pounds
per square inch (psi) per foot depth] was-applied to
each core sample during the permeability analysis (Jim
Seale, Core Petrophysics, Inc., written commun.,
1999). A water sample collected from the city of Vibur-
num public-water supply, which pumps water from an
abandoned lead mine in the Bonneterre Formation
about 50 miles north of the study area was sent with the

_ core samples to the laboratory. The transmitting fluid

used in the laboratory vertical permeability analysis
had similar density and viscosity properties as the
water sample from Viburnum; this allowed the labora-
tory-derived vertical permeability to be converted to
vertical hydraulic conductivity.

The following procedure was used to prepare
each core sample at the laboratory. Upon receiving the
88 core samples, the cores were trimmed to right-angle
cylinders using air as the bit lubricant. The samples
then were extracted with methanol to remove any pre-
cipitated salt, then oven dried for 24 hours at a temper-
ature of 240 degrees Fahrenheit. The bulk volumes of
the cores were determined by fluid displacement
(Archimedes’ principle). Dry weights were recorded
and the grain densities calculated. Helium porosity of
the rock core at room conditions was obtained by mea-
suring a grain volume using Boyle’s Law (Jim Seale,
Core Petrophysics, Inc., written commun., 1999).
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The core samples were evacuated and pressure
saturated at 1,000 psi with the simulated Viburnum
water. Saturations were verified gravimetrically upon
removal from the saturation cell. The core samples
were then placed in individual coreholders and the cal-
culated net confining stress was applied. The differen-
tial flow pressure, time, and water volumes produced
were recorded. When the permeability was below the
reporting limit, the test was allowed to conclude after
48 hours. The effective vertical permeability of the
rock core was calculated using the following equation
(Jim Seale, Core Petrophysics, Inc., written commun.,

1999):
k= —9rL
A(Pu - Pd)

=
I

effective permeability, in darcies (1 darcy =
9.87 x 107 centimeters squared)
= flow rate, in cubic centimeters per second
fluid viscosity, in centipoise (1 centipoise =
0.01 gram per centimeter-second)
= length, in centimeters -
= area, in square centimeters
Pu = upgradient pressure, in atmospheres
Pd = downgradient pressure, in atmospheres
Hydraulic conductivity is related to permeability
by (American Petroleum Institute, 1998):

RO

>

K = kpg
n

K = hydraulic conductivity, in centimeters per
second
k = effective permeability, in darcies
p = mass density of the fluid, in grams per
cubic centimeters
g = acceleration of gravity, in centimeters per
second squared :
p = fluid viscosity, in centipoise
After substitution, the conversion of vertical per-
meability in darcies to vertical hydraulic conductivity
in foot per second (ft/s) becomes:

K= (3.17)x 10"k

Evaluation of Results

Vertical hydraulic conductivities ranged from 8.70
x 108 fu's for one sample to less than3.17 x 10 14 fus (the
reporting limit) for 39 samples (table 2). The porosity
values ranged from a high of 17.47 percent to a low of

0.36 percent. There did not appear to be a strong corre-
lation between the vertical hydraulic conductivity and
porosity.

With the outliers, the reported vertical hydraulic
conductivity values span six orders of magnitude; this,
compounded with the large number of values below the
reporting limit, cause the mean and standard deviation
statistic values for this data set to be strongly distorted.
Therefore, box plots (fig. 13) using logarithmic scales
are used to present the results.

Figure 13 shows the variation in vertical hydrau-
lic conductivity of different formations and different
rock types within the Fristoe Unit (A and C) and the
Viburnum Trend (B and D). The variation in vertical
hydraulic conductivity between similar formations and
rock types in the Fristoe Unit and the Viburnum Trend
is also shown on figure 13 (E-J).

The Lilliefors (two-tailed) test for normality
(Iman and Conover, 1983) showed the vertical hydrau-
lic conductivity data are not normally distributed.
Because these data are not normally distributed, the
data were ranked. All of the statistical analysis used to
evaluate the significant differences between data sets
were performed on the ranked data. The Wilcoxon-
Mann-Whitney rank sum test (two-tailed) was used
when comparing two data sets and an analysis of vari-
ance was used to perform multiple-comparisons when
more than two data sets were evaluated (Iman and
Conover, 1983).

In all of the statistical analysis, a level of signif-
icance (a-value) of 0.05 was used to test the null
hypothesis which states, the vertical hydraulic conduc-
tivity of the data sets being compared are equal. The
attained significance level (p-value) is a probability
value determined by the data (Iman and Conover,
1983). The null hypothesis was rejected for all analysis
with p-values for the pooled data that were less than
0.05.

No significant difference (p-value = 0.375)
exists between the ranked vertical hydraulic conductiv-
ity of samples collected from the Derby-Doerun Dolo-
mite and Davis Formation in the Fristoe Unit. The
similarity is also visually expressed (fig. 13A), by the
considerable overlap of the two boxplots and the simi-
larity of the median values of the two data sets. How-
ever, the interquartile range (the range between the
upper and lower quartiles) of vertical hydraulic con-
ductivity shown for the Derby-Doerun Dolomite sam-
ples has more than an order of magnitude greater span
than the interquartile range shown for the Davis Forma-
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tion samples. The samples collected from the Potosi
Dolomite and the Bonneterre Formation are shown for
comparison purposes, although they are of no impor-

tance in evaluating the St. Francois confining unit. The

samples from the upper Bonneterre Formation have a
low vertical hydraulic conductivity, possibly related to
the transitional nature of the contact between the Davis
Formation and the Bonneterre Formation.

In the Viburnum Trend, there is a statistically
significant difference (p-value = 0.006) between the
ranked vertical hydraulic conductivity of the Derby-
Doerun Dolomite and the Davis Formation. Although
the vertical hydraulic conductivity of both formations
is small, the median vertical hydraulic conductivity of
the Derby-Doerun Dolomite is more than an order of
magnitude greater than the median vertical hydraulic
conductivity of the Davis Formation (fig. 13B).

In the Fristoe Unit, there is no statistically signif-
icant (p-value = 0.790) vertical hydraulic conductivity
difference in ranked samples containing carbonate or
shale, or both rock types. This is shown visually (fig.
13C) by the interquartile range of the box plots having
considerable overlap and the median values being sim-
ilar.

In the Viburnum Trend, there is no statistically
stignificant (p-value = 0.412) vertical hydraulic conduc-
tivity difference in ranked samples containing carbon-
ate or shale, or both rock types. Visually (fig. 13D), the
carbonate rocks have more than an order of magnitude
greater median vertical hydraulic conductivity than
shales. The Derby-Doerun Dolomite contains prima-
rily carbonate rocks and the Davis Formation contains
primarily shale, this relation is also observed in the
Viburnum Trend formation vertical hydraulic conduc-
tivity comparisons (fig. 13B). Also, samples from the
Viburnum Trend that contain both carbonate and shale
have a larger vertical hydraulic conductivity variability
than samples from either individual rock type. Samples
containing both rock types span the same vertical
hydraulic conductivity range as the carbonate and shale
together.

The interquartile range of vertical hydraulic con-
ductivity for individual formations and rock types in
the Fristoe Unit was compared with those in the Vibur-
num Trend. A larger variability of some core samples
from the Fristoe Unit was observed (fig. 13, F-I). The
cause of this variability can be attributed to the carbon-
ate rock samples from the Derby-Doerun Dolomite,
which have more than two orders of magnitude greater
range in vertical hydraulic conductivity than the

" Derby-Doerun Dolomite in the Viburnum Trend. In
“spite of this variability, the vertical hydraulic conduc-

tivity of rock samples from the Fristoe Unit are similar
to those from the Viburnum Trend.

One conclusion that can be drawn from the ver-
tical hydraulic conductivity measurements on different

" rock types in the Fristoe Unit (fig. 13C) is that the net

shale thickness is not the single controlling factor that
determines the effectiveness of the St. Francois confin-
ing unit. Because the vertical hydraulic conductivity of
the carbonate rocks and shale in the confining unit are
similar, the entire carbonate-shale thickness is impor-

- tant in determining the effectiveness of the confining

unit.

Using the results of this study, the range of esti-
mated effective vertical hydraulic conductivity values
for the St. Francois confining unit in the Fristoe Unit
was calculated. A typical thickness of the confining
unit of 300 feet (fig. 11) was used in the calculations. A
net shale thickness of 50 feet was used for the mini-
mum effective vertical hydraulic conductivity of the
confining unit calculation and 150 feet was used for the
maximum (fig. 12). Vertical hydraulic conductivities as
represented by the upper and lower quartiles range from
about 1 x 10720 3 x 10" /s for the carbonate rocks
and 9 x 10™'® to 3 x 10" /s for shale in the Fristoe
Unit.

The effective vertical hydraulic conductivity of a
unit composed of several layers aligned in series, with
each layer having different vertical hydraulic conduc-
tivities can be calculated using the formula:

d d, dy dy d,

—_ 4 —

n

K

t

d; = total thickness of the confining unit
d, dy, ds, d,, = thickness of layer 1, layer 2, layer
3, and layer n
K, = effective vertical hydraulic
conductivity of unit
Ky, Ky, K3, K,, = vertical hydraulic conductivity of
layer 1, layer 2, layer 3, and layer n
By using appropriate extreme values of net shale
thickness and vertical hydraulic conductivity, the range
of effective vertical hydraulic conductivity for the con-
fining unit in the study area was estimated to be a max-
imum of 1 x 10'12ft/s_ and a minimum of 3 x 10°'4 fus.
These vertical hydraulic conductivity values are small,
allowing the confining unit to effectively impede the
flow of ground water between the Ozark aquifer and
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the St. Francois aquifer, unless preferred-path second-
ary permeability has developed along faults and frac-
tures.

SUMMARY AND CONCLUSIONS

This report assesses the confining ability of the
St. Francois confining unit in six townships (T25-27N
and R03-04W) of the Fristoe Unit of the Mark Twain
National Forest in Oregon and Shannon Counties of
southeastern Missouri. This was accomplished by
describing the depositional environment and stratigra-
phy of the St. Francois confining unit, and quantifying
the vertical hydraulic conductivity of rock core sam-
ples from the confining unit using laboratory tech-
niques. Stratigraphic data for this study were obtained
by analysis of 238 exploration borehole core logs and
rock core from exploration boreholes that typically
described a 600- to 800-foot interval from near the bot-
tom of the Potosi Dolomite into the Lamotte Sandstone
or Precambrian basement rock.

The Upper Cambrian sediments are composed of
alluvial and fluvial clastics that grade upward into
marine sandstones and carbonates and are characteris-
tic of intrashelf basin areas. These sediments were
deposited during repeated cycles of marine transgres-
sions and subsequent shallowing. This sedimentation
was controlled by pre-Late Cambrian uplift and erosion
of the igneous basement rock and by faulting during the
Late Cambrian Epoch. Faulting created a Precambrian
highland area (St. Francois Mountains) and basins; ero-
sion gave the Precambrian igneous knobs an irregular
shape. This erosion and a marine transgression with
continued deposition of clastic material led to the accu-
mulation of sediments that formed the Lamotte Sand-
stone, which is interpreted as a near shore barrier and
shallow tidal flat complex. Transgression caused shelf
drowning and gradual development of a large intrashelf
basin with a narrow, discontinuous rim (lowermost
Bonneterre Formation) which allowed the carbonate-
dominant facies to form. The transition from shaley
deposits with a limited stromatolite zone to carbonate
with more frequent stromatolites suggest a general
shallowing of the sequence as the Bonneterre Forma-
tion was deposited. Several rock sequences in the Bon-
neterre Formation show a cyclic pattern of deepening,
then becoming shallow. Retention of limestone in the
basal part of the Bonneterre Formation suggests that
the southern and extreme northwestern parts of the
study area were deeper offshore environments.

The Bonneterre Formation-Davis Formation
contact denotes abrupt intrashelf basin development
that was filled during cycles of transgression and shal-
lowing. The intrashelf basin likely had a wide, contin-
uous shelf rim producing the shale-dominant Davis
Formation. Horizontal burrows in the Davis Formation
suggest a slow periodic deposition in a marine subtidal
setting, where the shelf underwent gradual drowning
during a slow transgression. The Derby-Doerun Dolo-
mite was formed during a pair of carbonate deposi-
tional cycles. The basal shaley sequence represents a
transition with the Davis Formation.

Arkosic and porphyry conglomeratic material
throughout the section indicates Precambrian high-
lands remained exposed during Upper Cambrian car-
bonate deposition. Continued exposure of the
Precambrian highlands may have been caused by the
original height of the highlands, or be the result of con-
tinued uplift on fault-related structures.

Thirty-three exploration holes penetrated Pre-
cambrian knobs. These boreholes appear to intercept
two linear structures or ridges that trend northwest-
southeast. These knobs generally protrude less than
200 feet above the surrounding Precambrian basement
rock; however, some knobs along both of these ridges
extend more than 500 feet above the surrounding base-
ment rock. Structural evidence of the Precambrian
knobs or ridge in the central part of the study area
appears to extend as high as the Roubidoux Formation.

The Lamotte Sandstone is preséh‘t throughout the
study area, except where it pinches out against some
Precambrian knobs. The greatest thicknesses of this
formation indicated by borehole data are 50 to 60 feet.
The depth from land surface to the top of the Lamotte
Sandstone, where present, ranges from 1,552 to 2,450
feet with an altitude ranging from a high of 502 feet
below sea level to a low of 1,600 feet below sea level.
The general dip of the formation is to the south or
southeast. Both of the Precambrian ridges can be iden-
tified as prominent structural high features or domes. A
structural high is evident in the southeastern part of the
study area and is adjacent to a structural trough that
trends to the south. This trough is also a distinct feature
on structural maps of overlying formations.

The lower Bonneterre Formation is subdivided
into a basal part composed of carbonate with interbed-
ded shale and an upper part composed of dolostone
with occasional shale layers or partings. Algal struc-
tures present in the basal part are digitate stromatolites
as much as 1 foot high, occasional crypt-algal lami-
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nates, and minor hummocky algal forms. Grains are
oolites and fossil fragments (type not specified). The
upper part of the lower Bonneterre Formation is com-
posed of interbedded dolostone grainstones, mud-
stones, and grainstone- and mudstone-matrix
boundstones, with occasional wackestones. Algal reef
zones in this upper part are also common and are well-
defined digitate stromatolites with infrequent hum-
mocky algal features; reef zones reach thicknesses of
100 feet. Dark green shale partings are present through-
out the Whetstone Creek Member of the upper Bon-

neterre Formation and a prominent shale (1 to 27 feet .

thick) at the base of unit is informally known as the
False Davis.

The depth from land surface to the top of the
Bonneterre Formation ranges from 1,358 to 2,002 feet
and the altitude of the top of the formation ranges from
278 feet below sea level to 1,152 feet below sea level.
The formation generally dips to the south or southeast.
Evidence for the two Precambrian ridges in the study
area can again be observed as domed features. The
trough structure in the southern part of the study area is
also evident. The structure map of the top of the Bon-
neterre Formation indicates problems associated with
using core logs from various sources to map formation
tops. The fingering effect of the contours in the south-
ern part of the prospecting area may be caused by dif-
ferent criteria used during core logging for identifying
the top of the Bonneterre Formation, as opposed to the
presence of structural features.

The Davis Formation is composed of interbed-
ded shales and carbonates, with both shale- and carbon-
ate-dominant sequences and ranges from less than 50 to
more than 300 feet thick. Shale-dominant sequences
can be as thick as 50 feet, and contain as much as 90
percent shale. The Davis Formation carbonates prima-
rily are limestone, with dolostone at the top and base of
the formation. The shales restricted the flow of dolo-

- mitizing fluids from reaching most Davis Formation
limestones.

The depth from land surface to the top of the
Davis Formation ranges from 1,171 to 1,692 feet, and
the altitude of the top of the formation ranges from 200
feet below sea level to 878 feet below sea level. The
structure map is similar to that of the top of the Bon-
neterre Formation, with the presence of the two linear
highs in the study area and the general dip of the forma-
tion to the south.

1

The Derby-Doerun Dolomite is composed of
mudstones, grainstones, and mudstone-matrix bound-
stones. Digitate stromatolites and crypt-algal laminates
are present. Thin shales are present throughout but
shale content and bed thickness increases near the con-
tact with the Davis Formation.

The depth from land surface to the top of the
Derby-Doerun Dolomite (the uppermost formation
mapped) ranges from 970 to 1,598 feet and the altitude
of the top of the formation ranges from 18 feet above
sea level to 788 feet below sea level. The Derby -
Doerun Dolomite structure 'map is similar to that of the
Davis Formation with the two structural highs in the
study area and the general slope of the formation to the
south.

Typically the combined thickness of the Derby-
Doerun Dolomite and Davis Formation (St. Francois
confining unit) ranges from 250 to 375 feet thick in the
study area; however, the confining unit was logged at
more than 400 feet thick for several boreholes. Most of
these boreholes had abnormally thick Derby-Doerun
Dolomite sequences. This may have been a result of the
Potosi Dolomite near the conformable contact with the
Derby-Doerun Dolomite being logged as Derby-
Doerun Dolomite. The net shale thickness of the St.
Francois confining unit ranges from less than 50 feet in
the northeast part of the study area to more than 150
feet in the southwest.

Laboratory vertical hydraulic conductivity and
porosity analysis were performed on 88 core samples
primarily representing the various rock types present in
the St. Francois confining unit of the Fristoe Unit and
the Viburnum Trend area. The vertical permeability
values were converted to vertical hydraulic conductiv-
ity. Vertical hydraulic conductivity ranged from 8.70 x
108 foot per second for one sample to less than 3.17 x
10714 foot per second (the reporting limit) for 39 sam-
ples. The porosity values ranged from a high of 17.47
percent to a low of 0.36 percent. There did not appear
to be a strong correlation between vertical hydraulic
conductivity and porosity.

There is no significant difference (p-value =
0.375) between the ranked vertical hydraulic conduc-
tivity of samples collected from the Derby-Doerun
Dolomite and Davis Formation in the Fristoe Unit. The
interquartile range of vertical hydraulic conductivity
shown for the Derby-Doerun Dolomite samples has
more than an order of magnitude greater span than the
interquartile range shown for the Davis Formation
samples.
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In the Viburnum Trend, there is a statistically
significant difference (p-value = 0.006) between the
ranked vertical hydraulic conductivity of the Derby-
Doerun Dolomite and the Davis Formation. Although
the vertical hydraulic conductivity of both formations
is small, the median vertical hydraulic conductivity of
the Derby-Doerun Dolomite is more than an order of
magnitude greater than the median vertical hydraulic
conductivity for the Davis Formation.

In the Fristoe Unit, there is no statistically signif-
icant (p-value = 0.790) vertical hydraulic conductivity
difference in ranked samples containing carbonate or
shale or both rock types. This is also true when compar-
ing ranked samples containing carbonate or shale or
both rock types from the Viburnum Trend (p-value =
0.412), even though carbonate rocks have more than an
order of magnitude greater median vertical hydraulic
conductivity than shales. Also, samples from the
Viburnum Trend that contain both carbonate and shale
have a larger vertical hydraulic conductivity variability
than samples from either individual rock type. Samples
containing both rock types span the same vertical
hydraulic conductivity range as the carbonate and shale
together.

The net shale thickness is not the single control-
ling factor that determines the effectiveness of the con-
fining unit. Because the vertical hydraulic conductivity
of the carbonate rocks and shale in the confining unit
are similar, the entire carbonate-shale thickness is
important in determining the effectiveness of the con-
fining unit.

The range of estimated effective vertical hydrau-
lic conductivity for the St. Francois confining unit in
the study area was calculated using the results of this
study. The calculations used 300 feet as the typical
thickness of the confining unit; 50 and 150 feet as the
lower and upper net shale thickness ranges; 1 x 10712
to 3 x 1071 foot per second as the upper and lower ver-
tical hydraulic conductivity range (upper and lower
* quartiles) of the carbonate rock; and 9 x 10713 to 3 x
1071 foot per second as the upper and lower vertical
hydraulic conductivity range (upper and lower quar-
tiles) of the shale. Resulting estimates of effective ver-
tical hydraulic conductivity were calculated to be a
maximum of 1 x 10712 foot per second and a minimum
of 3 x1071 foot per second. These vertical hydraulic
conductivity values are small, allowing the confining
unit to effectively impede the flow of ground water

between the Ozark aquifer and the St. Francois aquifer,
unless preferred-path secondary permeability has
developed along faults and fractures.
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KLEESCHULTE AND SEEGER—Depositional Environment, Stratigraphy, and Vertical Hydraulic Conductivity—USGS WRIR 004037
v of the St. Francois Confining Unit in the Fristoe Unit of the Mark Twain National Forest, Missouri
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