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Measurement of Hydraulic Properties of the B-C Interbed
and their Influence on Contaminant Transport in the
Unsaturated Zone at the Idaho National Engineering and
Environmental Laboratory, Idaho

by Kim S. Perkins and John R. Nimmo

Abstract

The intensely layered character of the 200-m
thick unsaturated zone near the Radioactive Waste
Management Complex (RWMC) Subsurface Dis-
posal Area (SDA) at the Idaho National
Engineering and Environmental Laboratory
(INEEL) critically affects both vertical and hori-
zontal water fluxes. Because of the potential for
radionuclide migration from the SDA to the Snake
River Plain aquifer, it is important to investigate
the role of the unsaturated zone in contaminant
transport processes. The unsaturated zone consists
of thick layers of fractured basalts interbedded
with thinner layers of sediment. These interbeds
.and basalts were deposited approximately 50,000
to 450,000 years ago during the late Pleistocene.
As a part of a drilling program to develop a stan-
dard methodology for subsurface characterization
and risk assessment at INEEL, hydraulic proper-
ties of the 34-m deep sedimentary interbed (known
as the B-C interbed (Anderson and Lewis, 1989))
have been measured at one location in the vicinity
of the SDA, including particle size distributions,
water retention functions, saturated and unsatur-
ated hydraulic conductivity, and related properties.
In porous media, water flux is usually modeled in
terms of Darcy’s law for steady flow and Rich-
ards’ equation for transient flow. Both of these
formulations require knowledge of the unsatur-
ated hydraulic conductivity (K) of the media, a
property that is difficult to measure and highly
sensitive to variations in water content. The tran-
sient case additionally requires knowledge of the
water retention relation, which similarly varies to a
high degree within the medium. The interbeds may
play several critical roles in long-range transport
processes: (a) retardation of downward-moving
water as it encounters layer boundaries, (b) gener-

ation of perched water, (c) homogenization of
preferential flow that has been focused by basalt
fractures, and (d) the formation of long-range,
highly conductive horizontal flow paths for con-
taminants. Within these sedimentary layers, there
may be little or no impediment to lateral flow.
Drastic differences in hydraulic properties between
the basalt and interbeds, and within the interbeds
themselves, are likely to promote such flow.

INTRODUCTION

The Radioactive Waste Management Com-
plex (RWMC) occupies about 0.75 km? of the
Idaho National Engineering and Environmental
Laboratory (INEEL) in southeastern Idaho (fig. 1).
From 1952 to 1970, chemical, low-level radioac-
tive, and transuranic wastes were buried in
trenches and pits excavated into the surficial sedi-
ments of the Subsurface Disposal Area (SDA) of
the RWMC. Since 1970, transuranic waste has
been stored on above-ground asphalt pads in
retrievable containers. Low-level radioactive and
mixed chemical wastes were buried through 1983.
Since that time, only low-level radioactive waste
has been buried in the SDA (Maheras and others,
1994). Radionuclides have been detected in core
and drill cuttings from several boreholes drilled
into the surficial sediments and underlying rock
units at the RWMC (Barraclough and others,
1976; Laney and others, 1988).

The unsaturated zone at the RWMC consists
of thick layers of fractured basalts interbedded
with thinner, unconsolidated layers of sediment.
Perched water has been detected in and above
these sedimentary interbeds at the RWMC. This
perched water, attributed either to flooding from
localized runoff or to lateral unsaturated-zone flow
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Figure 1. Location of the Idaho National Engineering and Environmental Laboratory and Radioactive
Waste Management Complex.



from nearby flood-control structures associated
with the Big Lost River, may influence the trans-
port of contaminants in the unsaturated zone
beneath the RWMC. The occurrence of perched
water is controlled by the hydraulic properties of
the interbeds. However, little is known about the
distribution and character of those properties and
their role in contaminant transport.

Purpose and Scope

Two geotechnical coreholes, UZ98-1 and
UZ98-2, were drilled in 1998 through the B-C
interbed at a site approximately 1.2 km southwest
of the RWMC and adjacent to spreading area B,
one of the flood-control structures (fig. 2). The
purpose of these coreholes was to obtain cores of
unconsolidated sediments to evaluate laboratory
hydraulic properties of these sediments. This
report describes the hydraulic characteristics of the
minimally disturbed core samples recovered in
September, 1998 from the B-C interbed in core-
hole UZ98-2. These samples were carefully re-
cored in the laboratory into the appropriate retain-
ers for measurement of hydraulic conductivity
using the steady-state centrifuge (SSC) method
(Nimmo and Mello, 1991; Conca and Wright,
1998). Hydraulic conductivity (K) and matric
potential () measurements were carried out on 18
samples from various depths in the B-C interbed.
Trimmings from the re-coring process along with
bulk samples recovered in drilling were used in
measuring 40 particle-size distributions along the
10.4 m profile. This study was conducted in coop-
eration with the U.S. Department of Energy.

Previous Interbed Observations and
Characterization

Perched water, detected in association with
the B-C and deeper interbeds beneath the RWMC
and surrounding area (fig. 3) occurs both season-
ally and permanently, and may be due, in part, to
lateral flow from spreading area infiltration
(Rightmire and Lewis, 1987; Hubbell, 1990). Hub-
bell (1990) presented water-level records from two
SDA boreholes as evidence suggesting that
perched water-level recovery rates are correlated
with the historic record of inflows into the spread-
ing areas. Anderson and Lewis (1989) suggested

that sedimentary layers may control vertical flow
depending on grain size and sorting characteris-
tics. They noted that lateral flow and perching of
water may take place along some clay and silt lay-
ers, and that discontinuous layers may divert flow
toward underlying or adjacent basalt flows. Sedi-
mentary interbeds beneath the RWMC are
characterized by abrupt lateral changes in thick-
ness related to the topography of underlying basalt
flows (Anderson and Lewis, 1989). Anderson and
Lewis (1989) describe one structure on the top of
basalt-flow group C in the western part of the
SDA, where the thickness of the B-C interbed
changes abruptly from 0 m on a basalt ridge to
more than 6 m in an adjacent depression. Infiltrat-
ing water may migrate towards such depressions at
some sediment-basalt interfaces, resulting in areas
of localized perched water or preferential flow.

Burgess (1995) noted that, during a 1994
large-scale infiltration experiment, perched water
associated with the B-C interbed was observed
within and outside of the infiltration basin. Data
obtained during this test show that the B-C inter-
bed may act as a semi-permeable barrier to vertical
flow and that interbed topography is the predomi-
nant control on lateral movement of perched
water.

Rightmire and Lewis (1987) used isotopic
analysis of 8'0 (oxygen) and 8%H (deuterium) to
show that perched water might be derived, in part,
from lateral flow of spreading area water in the
unsaturated zone. They found that the isotopic
content in perched water samples from beneath the
RWMC could be attributed to a water source at a
higher altitude than the surface of the Snake River
Plain, meaning that the water may have come from
the spreading areas. They hypothesized that water
accumulates as a perched mound and then moves
laterally to the RWMC, 1.5 km to the northeast.

Anderson and Lewis (1989) used sediment
cores and geophysical logs to determine the areal
extent and thickness of basalt flows and sedimen-
tary interbeds. They estimated an average interbed
thickness of 1.5 m for the A-B, 4.0 m for the B-C,
and 5.2 m for the C-D. It has also been estimated
that the B-C interbed slopes approximately
3.8 m/km from west to east (Anderson and Lewis,
1989; Barraclough and others, 1976).
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McElroy and Hubbell (1990) present results
of hydraulic property measurements from inter-
beds beneath the RWMC. They selected a total of
35 subcores from various locations and depths for
hydraulic property analysis, including 1 sample
from the B-C interbed. The results indicate a range
in saturated hydraulic conductivity for all samples
from 1x10°8 to 7x103 cm/s, the B-C interbed sam-
ple having the lowest value. Within the C-D
interbed, they noted decreasing permeability with
depth in three of five boreholes, while the other
two showed low-permeability clays at the top of
the interbed. Burgess (1995) observed similar low-
permeability clay layers at the top of the B-C inter-
bed during well and corehole installation
associated with the large-scale infiltration test of
1994.

Hughes (1993) used cores from 9 wells and
gamma logs from 24 wells within and around the
RWMC to describe the sedimentary interbeds.
According to this investigation, the B-C interbed
ranges from 0.6 to 9.8 m thick where present. The
absence of the B-C interbed in four of the wells
used in the analysis was associated with topo-
graphic highs in the underlying basalt. Hughes
(1993) also noted that lateral variations in grain
size and thickness are very evident in this inter-
bed, and that the material is generally coarse,
ranging from silty sand to gravel.

Geohydrologic Setting

The eastern Snake River Plain is a structural
basin about 325 km long and 80 to 110 km wide,
bounded by mountain ranges and high plateaus.
Streams within alluvial valleys separating the
mountain ranges to the north and northwest flow
onto the plain and the INEEL in response to rain-
fall and snowmelt. The eastern Snake River Plain
is underlain by a sequence of basaltic lava flows
interbedded with sedimentary deposits. The sedi-
ments consist of fluvial, lacustrine, and eolian
deposits of clay, silt, sand, and gravel. Rhyolitic
lava flows and tuffs crop out locally at the surface
and occur at depth below the basalt-sediment
sequence (Mann, 1986). The INEEL occupies
about 2,300 km? of semi-arid, sagebrush-covered
terrain on the northwestern side of the plain. The
RWMC is in the southwestern part of the INEEL

in a shallow topographic depression. The surficial
sediments at the RWMC consist of about 0.6 to 7.0
m of clay, silt, sand, and gravel. Substantial sedi-
mentary interbeds occur at depths of
approximately 9 m (known as the A-B interbed),
34 m (known as the B-C interbed), and 73 m
(known as the C-D interbed) below land surface
(Fig. 3). Because the C-D interbed has been
detected in all wells drilled within the SDA it has
been considered the most continuous barrier to
vertical flow beneath the SDA, though recent drill-
ing has shown that the interbed may be absent to
the east and northeast of the SDA (Magnuson,
2000, written communication). The A-B and B-C
interbeds are discontinuous, although the B-C
underlies a large part of the RWMC (Anderson
and Lewis, 1989). Other sedimentary deposits of
lesser areal extent occur at various depths. Bore-
holes and wells at the RWMC penetrate about 215
m of basaltic lava flows and sedimentary deposits.
Most boreholes are completed in the upper 90 m of
the unsaturated zone; thus, the extent of the A-B,
B-C, and C-D deposits is better known than that of
the deeper interbeds. The stratigraphic sequence at
the unsaturated zone test site is similar to the
stratigraphic sequence beneath the RWMC.

Methods

During the drilling of borehole UZ98-2, B-C
interbed sediment was cored into polycarbonate
liners (roughly 8.6 cm inner diameter) and capped
off at the ends. Within a few hours of sampling,
these cores were taken to a nearby lab and
weighed for later estimation of field water con-
tent. Small holes (0.95 cm) were carefully drilled
through the liners of four sections of core to allow
the temporary insertion of a tensiometer. A hole
(slightly < 0.95 cm) was cored into the sediment
using a handmade stainless steel coring device to
allow the tensiometer to be inserted into the center
of the core. The tensiometer consisted of a 0.953
cm, 1-bar high-flow ceramic cup (Soilmoisture
Equipment Corp., Goleta, cA)! epoxied to a brass
tube connected to a solid state pressure trans-
ducer. The transducer was calibrated and matric

1. The use of brand names does not constitute
endorsement by the USGS.



potential values calculated to correspond to field
water contents.

Samples were then transported to the USGS
Menlo Park Unsaturated Zone Flow Laboratory
for further analysis. The intact cores were weighed
prior to recoring to estimate any weight loss since
the time of drilling. Samples were then cut into
sections approximately 10.2 cm long using a den-
tal-type tool with a circular blade. Each section,
unless there was obvious disturbance, was then
recored using a mechanical recoring device. Lin-
ers were secured by clamps as the material was
slowly extruded upward into a 5.2 cm long, 3.3 cm
diameter retainer with a sharp-edged custom-made
stainless-steel coring attachment. The retainers
used are designed specifically to fit into the buck-
ets of the UFA! centrifugal rotor, which was used
in the unsaturated hydraulic conductivity measure-
ments (Conca and Wright, 1998). This process was
done as rapidly as possible to minimize any fur-
ther water loss due to evaporation. Once in the
retainers, the samples were weighed again to later
calculate estimates of field water content.

Trimmings from the recoring process and
bulk samples were used to determine particle size
"distributions and color for each section. A Coulter
LS-230 Particle Size Analyzc—:r1 was used to char-
acterize particle size distributions by optical
diffraction. The range of measurement is
0.04-2000 microns which is composed of 116 sep-
erate size bins. Any particles above 2000 microns
were sieved out and later integrated into the size-
distribution results. The fraction below 2000
microns was carefully disaggregated using a mor-
tar and rubber-tipped pestle, then split with a riffle
splitter to obtain appropriate random samples for
analysis. The material was sonicated for 60 sec-
onds prior to each run.

The standard falling head method for obtain-
ing saturated hydraulic conductivity (K,,) was
modified to be performed in a centrifuge by
Nimmo and Mello (1991). This method, with cal-
culations adapted specifically for the UFA
centrifuge, was performed at a speed of 300 rpm.
Saturated hydraulic conductivity was calculated
with the following modified equation

K = [(-2la)/(ApAtg)] ln(ng+ mzri)/(gzi + o.)zri)

where 1 is sample length, a is the cross sectional
area of the inflow reservoir, A is the cross
sectional area of the sample, p is the density of the
fluid (water in this case), t is time, g is gravita-
tional force, z is the height of water in the
reservoir (initial and final), r is the radius of
rotation at the sample bottom, and  is angular
speed in radians per second. This technique allows
for rapid measurement on samples that are fine
textured with very low K, values. The lab-
saturated moisture content was determined by
weight at the end of the saturated conductivity
measurement.

The steady state centrifuge (SSC) method
used for obtaining unsaturated hydraulic conduc-
tivity is the “UFA” version (Conca and Wright,
1998) of the method originally developed by
Nimmo and others (1987). Steady-state unsatur-
ated flow through a core sample is achieved
relatively quickly using centrifugal force to drive
the liquid flow, with flux through the sample
maintained precisely by a metering pump. A rotat-
ing seal assembly conducts the water from the
pump to the spinning sample. K can be deter-
mined over a range of water contents by choosing
appropriate flow rates and centrifuge speeds. The
procedure starts with a K, measurement, which
saturates the sample and indicates the maximum
flux to apply during a sequence of unsaturated
runs. After the start from saturation, each step in
the unsaturated sequence produces data for a point
on the drying curve with a unique K, 6, and y. The
steps must proceed through progressively drier
conditions and lower K values. The driving force
and the flow rate at the wettest run in the sequence
must be selected so as not to exceed the flow at
saturation. Each run continues until the steadiness
of flow can be verified. This occurs when the sam-
ple water content and the flux through the sample
become constant. The water content is determined
by weighing the sample between runs. The flux
into the sample has a known value determined by
the pump. The flux out of the sample is measured
by repeated weighing of the outflow reservoir, or
by use of a centrifuge strobe light assembly and
viewing port to monitor the volumetrically cali-
brated outflow reservoir as the rotor is spinning.
For the samples in this study, the required time to
achieve steady conditions varied from one hour for



high K values, to one or more days for low K val-
ues. The oven-dry weight of the soil, determined
later, allows the calculation of the water content
for each steady-state run. When desired to supple-
ment the water content value associated with K,
the matric potential is measured at the end of a
steady-state run. Thisis done with a nonintrusive
touch tensiometer for relatively wet conditions, or
with the “filter paper” method (Campbell and Gee,
1986) in cases where suctions exceed 800 cm.

The SSC method as described above was
used in this analysis with K and 6 measured in
each run, and y measured in most. There was no
observable compaction of these samples due to
centrifugal force, so the effect of such compaction
on the hydraulic properties was taken to be
negligible.

Particle-density measurements were per-
formed with the pycnometer method (Blake and
Hartge, 1986) on four representative samples cho-
sen from various depths. Porosity was then
calculated using the measured bulk and particle
density values (Danielson and Sutherland, 1986).

RESULTS AND DISCUSSION

The physical and hydraulic property measure-
ments provided through this study will enhance the
understanding of hydrologic processes taking
place in the B-C sedimentary interbed. The mea-
sured properties include: bulk density, particle
density, particle-size distributions, soil-moisture
retention, saturated hydraulic conductivity, and
hydraulic conductivity as a function of water
content.

A summary of the 18 interbed core sample
properties is provided in Table 1, including
calculated porosity, field moisture content, lab-
saturated moisture content, percent field saturation
(calculated using lab saturation data), saturated
conductivity, and USDA textural classification.
The lab-saturated moisture content may be higher
than a field-saturated moisture content due to the
compression of trapped air under the applied cen-
trifugal force. Particle density was measured on
four representative samples from depths of 41.76,
4481, 48.16, and 49.68 m (Blake and Hartge,
1986). The results were 2.66, 2.64, 2.64, and

2.65 g/cm3 , respectively. A value of 2.65 g/cm3
was used in the calculation of porosity.

Unsaturated hydraulic conductivity and mois-
ture retention data for samples from corehole
UZ98-2 are presented in tabular form in Table 2.
These data were used to determine the commonly
used fitted parameters o and n of the van Genu-
chten equation (1980). The shape factors, o (an
empirical parameter whose inverse is often
referred to as the air entry value (van Genuchten
and others, 1991)) and n, are required input for
many of the available numerical simulation codes
describing variably saturated flow. These parame-
ter values were determined by optimization using
retention data alone, and by simultaneously opti-
mizing to retention and conductivity data with a
combination of the van Genuchten (1980) and
Mualem (1976) equations using the RETC pro-
gram (van Genuchten and others, 1991). This
program performs a nonlinear least squares fit to
the measured data. The results of this analysis are
included in Table 3.

The interbed at this location has three distinct
sections. The uppermost 0.3 m of the profile at this
location is a red (2.5YR 5/6 (Munsell Soil Color)),
highly oxidized "baked zone" of gravelly sand
which was directly overlain by basalt flows. The
underlying 4.6 m of material is dark grayish-
brown (10YR 4/2) and sandy in texture with inter-
mittent gravel layers present in the intervals of
40.23-40.54, 42.98-43.09, 43.21-43.31, and
44.81-45.11 m, suggesting a fluvial environment.
The lower 5.5 m of the profile is a relatively uni-
form pale yellow (2.5Y 7/3) silt loam with fine,
thin sand lenses throughout, possibly deposited in
a low energy fluvial environment. Particle-size
distributions are presented in condensed tabular
format in Table 4 and graphical format in the
Appendix. Silt loam particle-size distribution
curves that have a distinct secondary peak in the
sand range are likely due to the presence of sand
lenses.



Table 1: Summary of interbed core properties

. Lab Percent Saturate.d
Depth (meter) Calculz'lted mfil:::re sat,lfrated saturation c:::::tl:::lcty Texture
porosity content moisture (lab/field water (centimeter per (USDA)
content content) second)

42.98-43.09 5042 .2400 4381 55.8 3.90E-03 Sand
43.09-43.21 5131 .2565 4464 575 3.90E-03 Sand
43.21-43.31 5170 3576 4497 79.5 3.90E-03 Sand
43.31-43.43 4881 .2568 4230 60.7 3.90E-03 SandyLoam
45.21-45.31 3842 3331 .3625 91.8 6.08E-05 Silt Loam
48.16-48.26 4721 4201 4231 99.3 5.66E-07 Silt Loam
48.26-48.36 4519 4317 4326 - 99.8 3.44E-07 Silt Loam
48.44-48.55 4541 3524 .3644 96.4 1.25E-05 Silt Loam
48.92-49.02 4442 .3645 .3984 91.5 4.76E-07 Silt Loam
49.02-49.12 4397 3791 4130 91.8 1.09E-06 Silt Loam
49.23-49.30 4517 .3360 4067 82.6 1.48E-05 Silt Loam
49.30-49.38 4699 3113 4004 7117 2.78E-05 Silt Loam
49.79-49.89 4514 .2901 .3473 83.5 3.16E-06 Silt Loam
49.89-49.99 4598 3392 3775 89.9 1.70E-05 Silt Loam
49.99-50.06 4385 4082 4369 93.4 8.18E-06 Silt Loam
50.06-50.10 4558 3715 4268 87.0 1.64E-05 Silt Loam
50.10-50.30 4474 4290 4315 99.4 2.35E-07 Silt Loam
50.30-50.40 4551 4135 4344 95.2 4.75E-07 Silt Loam




Table 2: Conductivity and moisture retention data

Sample depth Volumetric water Conductivity Matric potential
(meter) content (centimeter per second) (centimeter water)
42.98-43.09 0.4381 3.90E-03 0.0
0.2907 1.85E-04 a
0.2008 4.80E-05 -32.1
0.143 1.81E-05 -49.2
0.1239 8.15E-06 -514
0.112 3.33E-06
0.1036 1.37E-06 -65.5
0.0969 4.17E-07
0.0872 9.13E-08 -112.6
0.0776 3.15E-08
0.0728 5.81E-09 -132.3
43.09-43.21 0.4464 3.90E-03 0.0
0.2669 1.85E-04
0.1799 4.89E-05 -36.4
0.1176 1.83E-05 -53.5
0.0991 7.41E-06
0.091 3.33E-06
0.0836 1.37E-06 -61.4
0.078 4.55E-07 -70.8
0.0681 8.34E-08 -94.4
0.0618 3.15E-08
0.0558 5.34E-09
43.21-43.31 0.4497 3.90E-03 0.0
0.1808 1.74E-05 -61.2
0.154 7.95E-06 -74.1
0.1326 3.62E-06 -88.4
0.1281 1.36E-06 -90.8
0.1192 4.54E-07 -103.0
0.1108 8.92E-08 -138.7
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Table 2: Conductivity and moisture retention data--Continued

Sample depth Volumetric water Conductivity Matric potential
(meter) content (centimeter per second) (centimeter water)
0.1041 3.44E-08 -154.8
0.0926 5.34E-09 -234.2
43.31-43.43 0.423 3.90E-03 0.0
0.1486 1.77E-05 -41.1
0.1302 7.41E-06 -46.9
0.1124 3.33E-06 -57.1
0.1075 1.25E-06 -71.1
0.096 4.17E-07 -83.3
0.091 8.34E-08 -142.1
45.21-45.31 4 0.3513 6.08E-05 0.0 |
0.3073 3.22E-06 -55.9
0.2927 1.23E-06 -88.6
0.2847 4.54E-07 -115.2
0.2755 8.93E-08 -138.3
0.2592 3.35E-08 -218.5
0.2429 5.70E-09 -302.2
48.16-48.26 0.4231 5.66E-07 0.0
0.406 4.17E-07 -163.7
0.3815 8.34E-08 -389.8
0.3588 3.15E-08 -776.5
0.3451 5.34E-09
48.26-48.36 0.4326 3.44E-07 0.0
0.4065 8.34E-08 -418.2
0.375 3.15E-08 -640.2
0.3505 5.34E-09 -4324.6
48.44-48.55 0.3644 1.25E-05 0.0
0.3347 3.24E-06 -70.6
0.3064 1.35E-06 -218.3

0.2783 3.98E-07 -324.9
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Table 2: Conductivity and moisture retention data--Continued

Sample depth Volumetric water Conductivity Matric potential
(meter) content (centimeter per second) (centimeter water)
0.2527 8.11E-08 -442.2
0.2327 3.14E-08 -504.7
0.2145 5.97E-09 -949.0
48.92-49.02 0.3725 4.76E-07 0.0
0.3608 4.17E-07 -96.7
0.337 8.34E-08 -2028.0
0.3188 3.15E-08
0.2983 5.34E-09 -3476.0
49.02-49.12 0.3876 1.09E-06 0.0
0.3435 4.17E-07
0.3141 8.34E-08 -1874.0
0.2891 3.15E-08
0.2684 5.34E-09 -2540.0
49.23-49.30 0.4067 1.48E-05 0.0
0.3177 4.27E-06 -145.3
0.3083 3.50E-06 -161.2
0.2836 1.28E-06 -2149
0.2608 4.08E-07 -284.5
0.2396 8.31E-08 -385.2
0.2198 3.20E-08 -531.2
0.1972 5.53E-09 -1320.8
49.30-49.38 0.4004 2.78E-05 0.0
0.3303 4.34E-06 -107.2
0.3251 3.53E-06 -119.0
0.3051 1.30E-06 -162.0
0.2875 4.28E-07 -189.0
0.2731 8.26E-08 -400.0
0.2522 3.19E-08 -559.0
0.2318 5.32E-09 -869.2
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Table 2: Conductivity and moisture retention data--Continued

Sample depth Volumetric water Conductivity Matric potential
(meter) content (centimeter per second) (centimeter water)
49.79-49.89 0.3473 3.16E-06 0.0
0.2842 3.06E-06 -83.7
0.2624 1.28E-06 -109.4
0.2388 4.35E-07 -167.6
0.2133 8.26E-08 -228.8
0.1927 3.20E-08 -253.4
0.1682 5.41E-09 -1550.1
49.89-49.99 0.3775 1.70E-05 0.0
0.274 3.54E-06 -113.4
0.2666 1.32E-06 -121.8
0.2518 4 48E-07 -168.2
0.2421 8.51E-08 -200.6
0.2266 3.37E-08 -262.0
0.2145 5.18E-09 -608.8
49.99-50.06 0.4369 8.18E-06 0.0
0.3792 1.27E-06 -184.5
0.3621 4.02E-07 -259.4
0.3516 8.26E-08 -421.8
03174 3.16E-08 -632.9
0.2977 5.53E-09 -1074.4
50.06-50.10 0.4268 1.64E-05 0.0
0.3399 1.20E-06 -254.1
0.3152 4.11E-07 -373.7
0.286 8.42E-08 -497.0
0.2623 3.23E-08 . -933.3
0.2393 6.78E-09 -1335.1
50.10-50.30 0.4315 2.35E-07 0.0
0.4228 2.34E-07 -69.3
0.4078 5.31E-08 -580.9
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Table 2: Conductivity and moisture retention data--Continued

Sample depth Volumetric water Conductivity Matric potential
(meter) content (centimeter per second) (centimeter water)

0.4011 2.70E-08 -735.7
0.3979 5.42E-09 -1200.0

50.30-50.40 0.4344 4.75E-07 0.0
0.4337 2.36E-07 -60.1
0.4077 5.65E-08 -562.3
0.4031 4.28E-08 -608.3
0.3948 5.85E-09 -1268.0

a. Where blanks exist in table, measurements were not done.

Table 3: Fitted parameters

Depth van Genuchten-Mualem o van Genuchten- van Genuchten
) A van Genuchten o
(meter) (centimeter™) Mualem n n
42.98-43.09 .0671 .0822 1.907 1.783
43.09-43.21 .0521 .0507 2.297 2.309
43.21-43.31 .0585 .0946 1.691 1.546
43.31-43.43 .0739 3136 - 1.823 1.430
45.21-45.31 .0087 .0331 1.435 1.166
48.16-48.26 .0003 .0163 1.203 1.044
48.26-48.36 .0004 .0042 1.273 1.075
48.44-48.55 .0043 .0059 1.408 1.312
48.92-49.02 .0005 .0004 1.749 2.260
49.02-49.12 .0007 .0061 1.851 1.421
49.23-49.30 .0056 .0157 1.509 1.261
49.30-49.38 .0069 .0232 1.358 1.178
49.79-49.89 .0072 0351 1.493 1.205
49.89-49.99 .0101 0737 1.437 1.157
49.99-50.06 .0033 .0079 1.316 1.175
50.06-50.10 .0038 .0055 1.382 1.284
50.10-50.30 .0005 0148 1.352 1.028
50.30-50.40 .0006 .0041 1.276 1.056

14



Table 4: Condensed texture data (USDA classification)

15

Percent
Percent Percent Percent very Percent
Percent Percent .
Samole denth clay less Percent very fine fine sand medium course coarse gravel
P ¢ p than 2 silt 2-50 sand 100-250 sand sand sand less than
(meter) nan microns | 50-100 . 250-500 | 500-1000 [  1000- 2000
microns . microns . . .
microns microns microns 2000 microns
microns
40.23-40.54 1 6 7 21 25 17 7 16
41.76-42.06 4 40 26 15 7 6 2 0
42.98-43.09 0 3 2 14 46 26 3 7
43.09-43.21 0 2 3 19 52 23 1 0
43.21-43.31 0 5 7 31 39 12 2 3
43.31-43.43 0 4 4 23 51 18 0 0
43.42 (transi- 2 22 29 46 0 0 0 0
tion)
44.81-45.11 0 3 1 5 16 33 15 27
45.21-45.31 4 28 10 25 12 12 7 4
45.11-45.42 10 62 13 6 4 5 0 0
46.33-46.48 13 61 11 15 0 0 0 0
© 48.16-48.26 15 74 11 1 0 0 0 0
48.26-48.36 14 71 9 6 0 0 0 0
48.36-48.55 12 66 12 10 0 0 0
48.44-48.55 8 56 10 16 0 0 0 0
48.55-48.67 10 67 20 3 0 0 0 0
48.67-48.76 9 65 18 8 0 0 0 0
48.76-48.84 16 78 3 3 0 0 0 0
48.84-48.90 16 71 5 8 0 0 0 0
48.92 (transi- 7 46 18 29 0 0 0 0
tion)
48.92-49.02 14 82 4 0 0 0 0 0
49.02-49.12 12 75 13 0 0 0 0 0
49.12 9 49 14 12 13 3 0 0
48.92-49.07 15 80 5 0 0 0 0 0
49.23-49.30 10 58 15 16 1 0 0 0



Table 4: Condensed texture data (USDA classification)--Continued

Percent Percent

Sample depth clay less ;le tr ;f;; ve:: nt;ne

(meter) han? | microns | 50-100

microns
49.30-49.38 10 62 13
49.38-49.45 13 76 11
49.45-49.56 14 84 2
49.56-49.7 12 81 7
49.68 17 81 2
49.68-49.78 15 69 10
49.78-49.89 10 76 13
49.89-49.99 13 52 9
49.99-50.06 15 75 9
50.06-50.10 13 73 10
50.10-50.30 16 84 0
50.30-50.40 18 81 1
50.40-50.50 23 77 0
50.50-50.60 21 71 7
50.60 22 77 1

Percent
Percent Percent Percent very Percent
finesand | Medivm course coarse gravel
10;-250 sand sand sand less than
. 250-500 500-1000 1000- 2000
microns A . 2
microns microns 2000 microns
microns

As is relatively common in drilling within
and around the RWMC (Barraclough and others,
1976; Rightmire and Lewis, 1987), standing water
was observed in the UZ98-2 borehole within a few
days of completion. The results from the determi-
nation of field-moisture content show that some of
the material was close to saturation when cored,
and some, especially the coarser textured material
of the upper profile, was not. This may be due, in
part, to the use of air in the drilling process which
would tend to dry the material, especially the
coarse sections. Though an attempt was made to
minimize water loss in the laboratory recoring pro-
cess, any losses during this process were not
quantified. Figure 4 shows a depth profile of field

moisture content and matric potential. In general,
the finer textured materials in the lower portion of
the profile have greater matric potential for a given
moisture content.

This study provides detailed vertical profil-
ing of B-C sedimentary interbed hydraulic
properties at one location. As earlier investiga-
tions indicate, the sedimentary interbeds are highly
complex with variable thickness, texture, and
hydraulic properties. The interbed at this location
is thicker than average as determined by Ander-
son and Lewis (1989), and may be in a
topographic low in the underlying basalt. It also
lacks an impeding clay layer at the top of the

16
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Figure 4. Field matric potential and moisture content profiles (dotted lines connect corresponding
potential and moisture content points). In general the finer layers exhibit greater matric
potential for a given water content.
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profile as was noted approximately 1.5 km from
UZ98-2 by Burgess (1995), though layers of rela-
tively low permeability exist in the bottom 6 m of
the profile. As noted in some locations investi-
gated by Hughes (1993), there is a general
coarsening of material upward in the profile with
fine, possibly low-energy alluvial deposits toward
the bottom of the profile.

CONCLUSIONS

The interbed at the location of UZ98-2,
approximately 1.2 km southwest of the SDA, is
relatively thick and was likely deposited in a flu-
vial environment. It consists of a 0.3-m thick,
highly oxidized gravelly sand layer, a 4.9-m thick
sand layer with intermittent gravel, and a 5.5-m
thick silt loam layer containing thin, fine sand
lenses. Saturated conductivity values range from
approximately 3.9x10°3 cm/sec for the sand to
2.4x10”7 cm/sec for the silt loam. These contrast-
ing layers likely cause perching as water
encounters low-permeability layers. The interbed
at this location may also contribute to lateral flow
through the upper more permeable layers and
overlying basalts during seasonal infiltration
events such as snowmelt and diversion of water
from the Big Lost River to the spreading areas
located near UZ98-2.

As has been found in previous interbed inves-
tigations, these interbeds are highly variable in
character over short distances. The results pre-
sented here along with those of past studies,
indicate the highly variable nature of the interbeds
and the need for further analysis on a large num-
ber of samples from various locations and
interbeds. Once further measurements are com-
pleted and the interbeds are better characterized,
correlations between hydraulic properties and
particle-size distributions may permit other areas
of the INEEL to be more easily assessed.
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APPENDIX A

Particle size distribution curves for selected interbed samples from corehole UZ98-2.
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