ABSTRACT
Ground water from the Eutaw-McShan and the Coffee Sand aquifers is the major source of supply for residential, commercial, and industrial purposes in Union County, Mississippi. Unbiased, scientifically sound data and assessments are needed to assist agencies in better understanding and managing available water resources as continuing development and growth places more stress on available resources. The U.S. Geological Survey, in cooperation with the Tennessee Valley Authority, conducted an investigation using water-demand and ground-water models to evaluate the effect of future water demand on ground-water levels.
Data collected for the 12 public-supply facilities and the self-supplied commercial and industrial facilities in Union County were used to construct water-demand models. The estimates of water demand to year 2050 were then input to a ground-water model based on the U.S. Geological Survey finite-difference computer code, MODFLOW.
Total ground-water withdrawals for Union County in 1998 were estimated as 2.85 million gallons per day (Mgal/d). Of that amount, municipal withdrawals were 2.55 Mgal/d with about 1.50 Mgal/d (59 percent) delivered to residential users. Nonmunicipal withdrawals were 0.296 Mgal/d. About 80 percent (2.27 Mgal/d) of the total ground-water withdrawal is produced from the Eutaw-McShan aquifer and about 13 percent (0.371 Mgal/d) from the Coffee Sand aquifer. Between normal- and high-growth conditions, total water demand could increase from 72 to 131 percent (2.9 Mgal/d in 1998 to 6.7 Mgal/d in year 2050) with municipal demand increasing from 77 to 146 percent (2.6 to 6.4 Mgal/d).
Increased pumping to meet the demand for water was simulated to determine the effect on water levels in the Coffee Sand and Eutaw-McShan aquifers. Under baseline-growth conditions, increased water use by year 2050 could result in an additional 65 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 120 feet of maximum drawdown in the Eutaw-McShan aquifer. Under normal-growth conditions, increased water use could result in an additional 65 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 135 feet of maximum drawdown in the Eutaw-McShan aquifer. Under high-growth conditions, increased water use could result in 75 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 190 feet of maximum drawdown in the Eutaw-McShan aquifer. The resulting high-growth projected water level for the year 2050 at the center of the drawdown cone in the New Albany area is between 450 and 500 feet above the top of the Eutaw-McShan aquifer.