Hydrology of the Black Hills Area, South Dakota

By Daniel G. Driscoll, Janet M. Carter, Joyce E. Williamson, and Larry D. Putnam

Water-Resources Investigations Report 02-4094

Prepared in cooperation with the
South Dakota Department of Environment and Natural Resources
and the West Dakota Water Development District
CONTENTS

Abstract 1
Introduction .. 1
 Purpose and Scope .. 2
 Description of Study Area ... 2
 Acknowledgments .. 4
Hydrogeologic Framework ... 4
 Geologic Framework ... 5
 Regional Geologic Setting ... 10
 Paleostucture .. 10
 Stratigraphy ... 13
 Local Geologic Setting .. 13
 Ground-Water Framework .. 20
 Regional Aquifers ... 20
 Local Aquifers ... 23
 Characteristics and Properties of Major Aquifers .. 24
 Overview of Other Aquifers .. 31
Surface-Water Framework .. 31
 Hydrogeologic Settings .. 34
 Streamflow Losses ... 34
 Streamflow Regulation .. 36
Hydrologic Processes and Characteristics .. 37
 Hydrologic Processes .. 37
 Ground-Water Characteristics ... 38
 Water-Level Trends and Comparisons ... 38
 Temporal Trends .. 38
 Comparisons Between Madison and Minnelusa Aquifers ... 38
 Comparisons for Other Aquifers .. 43
 Responses to Climatic Conditions .. 43
 Water Quality ... 45
 General Characteristics for Major Aquifers ... 50
 General Characteristics for Minor Aquifers .. 56
 Susceptibility to Contamination ... 59
 Summary Relative to Water Use .. 60
Surface-Water Characteristics .. 62
 Streamflow Characteristics .. 62
 Streamflow Variability ... 62
 Response to Precipitation .. 70
 Annual Yield ... 77
 Water Quality .. 82
 Standards and Criteria .. 87
 Common-ion Chemistry ... 87
 Anthropogenic Effects ... 95
 Additional Factors Relative to In-Stream Standards ... 103
CONTENTS—Continued

Hydrologic Budgets
- Methods for Estimating Basin Yield and Recharge ... 105
- Ground-Water Budgets ... 106
 - Budgets for Madison and Minnelusa Aquifers .. 107
 - Budgets for Other Bedrock Aquifers ... 118
- Surface-Water Budgets .. 120
- Combined Ground-Water and Surface-Water Budgets ... 120
- Evaluation of Hydrologic Budgets .. 122

Madison and Minnelusa Flow System
- Isotope Information ... 123
 - Background Information and Composition of Recharge Water 123
 - Isotope Distributions and General Considerations ... 131
- Flowpaths, Ages, and Mixing Conditions ... 135
 - Rapid City Area ... 135
 - Northern Black Hills ... 137
 - Southern Black Hills .. 139
- Interactions Between Aquifers .. 140
- Influence on Overall Hydrology of Black Hills Area .. 143

References .. 145

FIGURES

1. Map showing area of investigation for the Black Hills Hydrology Study 3
2. Map showing present-day structural and physiographic features in the northern Great Plains area .. 4
3. Map showing monthly precipitation distribution for October 1995 .. 6
4. Isohyetal map showing distribution of average annual precipitation for Black Hills area, water years 1950-98 ... 7
5. Boxplots showing distribution of annual precipitation for the study area and counties within the study area, water years 1931-98 ... 8
6. Boxplots showing distribution of monthly precipitation for the study area, water years 1931-98 ... 8
7. Graph showing mean monthly precipitation for study area and selected counties, water years 1931-98 ... 9
8. Graphs showing long-term trends in precipitation for the Black Hills area, water years 1931-98 ... 9
9. Stratigraphic section for the Black Hills ... 11
10. Map showing regional paleostructure during Jurassic and Cretaceous time in the western interior of the United States ... 12
11. Maps showing approximate extent of rocks in the northern Great Plains area for selected geologic periods ... 14
12. Generalized correlation chart for Paleozoic-age rocks in Montana, North Dakota, South Dakota, and Wyoming ... 15
13. Generalized correlation chart for Mesozoic- and Cenozoic-age rocks in Montana, North Dakota, South Dakota, and Wyoming ... 16
14. Map showing distribution of hydrogeologic units in the Black Hills area 17
15. Geologic cross section A-A’ .. 19
16. Schematic showing simplified hydrogeologic setting of the Black Hills area 21
17. Map showing general direction of ground-water flow in regional aquifer system within Paleozoic aquifer units ... 22
18. Boxplots showing distribution of well yields from selected aquifers 26
19-23. Maps showing:
 - Potentiometric surface of the Madison aquifer and locations of major artesian springs ... 29
 - Potentiometric surface of the Minnelusa aquifer and locations of major artesian springs ... 30
 - Saturated thickness of the Madison aquifer ... 32
 - Saturated thickness of the Minnelusa aquifer ... 33
 - Hydrogeologic settings for the Black Hills area ... 35
24. Schematic diagram illustrating hydrologic processes ... 37
25. Map showing location of observation wells for which hydrographs are presented 39
26-30. Hydrographs illustrating:
26. Temporal trends in ground-water levels .. 40
27. General similarities in water levels for some colocated Madison/Minnelusa wells with confined conditions ... 42
28. Distinct hydraulic separation for two Madison/Minnelusa well pairs with unconfined conditions 42
29. Generally separated water levels for some colocated Madison/Minnelusa wells 44
30. Colocated Minnelusa/Minnekahta and Deadwood/Madison wells ... 45
31. Graphs showing relations between dissolved solids and specific conductance for the major aquifers 51
32-36. Maps showing:
32. Distribution of specific conductance in the Madison aquifer .. 52
33. Distribution of hardness in the Inyan Kara aquifer .. 53
34. Stiff diagrams showing the distribution of common-ion chemistry in the Madison aquifer 54
35. Stiff diagrams showing the distribution of common-ion chemistry in the Minnelusa aquifer 55
36. Distribution of radon concentrations in the Deadwood aquifer .. 57
37. Graphs showing relations between dissolved solids and specific conductance for the minor aquifers 58
38. Boxplots of concentrations of nitrite plus nitrate for selected aquifers ... 59
39. South Dakota irrigation-water classification diagram for selected aquifers 61
40. Duration curves of daily mean streamflow for basins representative of hydrogeologic settings 65
41. Graphs showing mean monthly streamflow for basins representative of hydrogeologic settings 66
42. Boxplots showing distribution of annual yield for basins representative of hydrogeologic settings 68
43-48. Graphs showing:
43. Relations between annual streamflow and precipitation for crystalline core basins 72
44. Relations between annual runoff efficiency and precipitation for crystalline core basins 74
45. Relations between annual streamflow and precipitation for loss zone basins 74
46. Long-term trends in annual streamflow for station 06402000, relative to annual precipitation 75
47. Relations between annual streamflow and precipitation for exterior basins 76
48. Relations between annual runoff efficiency and precipitation for exterior basins 77
49. Map showing basin yields for selected streamflow-gaging stations ... 79
50. Map showing comparison between surface-drainage areas and contributing ground-water areas for streamflow-gaging stations in Limestone Plateau area ... 80
51. Schematic diagram illustrating recharge and streamflow characteristics for selected outcrop types 81
52. Map showing generalized average annual yield efficiency, water years 1950-98 83
53. Graphs showing relations between yield efficiency and precipitation for selected streamflow-gaging stations .. 84
54. Map showing estimated annual yield potential for the Black Hills area, water years 1950-98 86
55. Graphs showing relations between hardness and freshwater aquatic-life standards for acute and chronic toxicity of selected trace elements ... 89
56. Graph showing relations between dissolved solids and specific conductance by hydrogeologic settings .. 90
57. Graphs showing relations between specific conductance and streamflow for selected sampling sites by hydrogeologic setting .. 91
58. Trilinear diagrams showing proportional concentrations of common ions by hydrogeologic setting 92
59. Stiff diagrams showing median concentrations by hydrogeologic setting .. 93
60. Map showing spatial distribution of median sulfate concentrations in surface water 94
61. Map showing spatial distribution of maximum selenium concentrations in surface water 96
62. Maps showing locations of selected water-quality sampling sites used for analysis of anthropogenic effects in Lawrence County and Rapid Creek Basin .. 97
63. Graph showing downstream progression of pH for selected streams influenced by acid-mine drainage 98
64. Graph showing comparison of dissolved copper concentrations to hardness-dependent chronic and acute aquatic-life criteria for Bear Butte Creek near Deadwood ... 99
65. Map showing spatial distribution of maximum arsenic concentrations in surface water 101
TABLES

1. Summary of the characteristics of major and Precambrian aquifers in the study area... 25
2. Estimates of hydraulic conductivity, transmissivity, storage coefficient, and porosity from previous investigations ... 27
3. Summary of loss thresholds from Black Hills streams to bedrock aquifers .. 36
4. Water-quality criteria, standards, or recommended limits for selected properties and constituents 46
5. Summary of selected site information and flow characteristics for streamflow-gaging stations representative of hydrogeologic settings ... 63
6. Summary of regression information for limestone headwater basins ... 71
7. Summary of regression information for artesian spring basins .. 75
8. Summary of information used in analysis of yield characteristics ... 78
9. Surface-water-quality standards for selected physical properties and constituents .. 88
10. Summary of regression information (dissolved solids versus specific conductance), by hydrogeologic setting 90
11. Estimates of average precipitation, precipitation recharge, runoff, total yield, and evapotranspiration for the study area, water years 1950-98 ... 105
12. Recharge factors and outcrop areas for bedrock aquifers .. 105
13. Estimated annual hydrologic budget components for the Madison and Minnelusa aquifers, water years 1931-98, for the Black Hills of South Dakota and Wyoming .. 108
14. Average hydrologic budgets for the Madison and Minnelusa aquifers .. 110

FIGURES—Continued

66. Boxplots of concentrations of dissolved nitrite plus nitrate by hydrogeologic setting ... 102
67. Boxplots of concentrations of dissolved nitrite plus nitrate within the Rapid Creek Basin ... 104
68. Graph showing annual recharge to the Madison and Minnelusa aquifers, water years 1931-98, in the Black Hills of South Dakota and Wyoming ... 107
69. Map showing subareas, generalized ground-water flow directions, and flow zones for the Madison aquifer 112
70. Map showing subareas, generalized ground-water flow directions, and flow zones for the Minnelusa aquifer ... 113
71. Schematic diagram showing average hydrologic budget components for study area, water years 1950-98 121
72. Schematic showing generalized average streamflow relative to surface geology and depletions .. 122
73. Graph showing relation between δ¹⁸O and δD in Black Hills samples in comparison to the Global Meteoric Water Line .. 124
74. Map showing generalized distribution of δ¹⁸O in surface water and ground water in near-recharge areas 126
75. Graphs showing temporal variation of δ¹⁸O for selected sites ... 127
76. Graph showing estimated tritium concentrations in precipitation for Black Hills area and decay curves for selected years ... 128
77. Graphs showing monthly tritium concentrations in precipitation at Ottawa, Canada .. 129
78. Schematic diagrams illustrating mixing models for age dating for various ground-water flow conditions .. 130
79. Decay-curve family for delayed-arrival mixing model for a 1995 sampling date .. 131
80. Map showing distribution of δ¹⁸O in samples from selected Madison and Minnelusa wells and springs in the Black Hills area ... 132
81. Map showing tritium occurrence for selected sample sites in Black Hills area ... 134
82. Boxplots of tritium concentrations for selected ground-water and surface-water samples collected during 1990-98 in the Black Hills area ... 135
83. Map showing concentrations of δ¹⁸O in Madison and Minnelusa aquifers in Rapid City area ... 136
84. Map showing distribution of δ¹⁸O in selected Madison wells and springs and generalized flowpaths in the Black Hills of South Dakota and Wyoming ... 138
85. Schematic showing breccia pipes and caves in relation to the hydrogeologic setting of the Black Hills area ... 143
TABLES—Continued

15. Hydrologic budgets, by subareas, for the Madison and Minnelusa aquifers in the Black Hills area, water years 1987-96 ... 114
16. Average ground-water budgets for bedrock aquifers, water years 1950-98 .. 119
17. Average surface-water budgets for study area, water years 1950-98 .. 120
18. Selected hydraulic and geochemical information for major artesian springs .. 141

CONVERSION FACTORS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>4,047</td>
<td>square meter</td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>hectare</td>
</tr>
<tr>
<td>acre-foot (acre-ft)</td>
<td>1,233</td>
<td>cubic meter</td>
</tr>
<tr>
<td>acre-foot (acre-ft)</td>
<td>0.001233</td>
<td>cubic hectometer</td>
</tr>
<tr>
<td>acre-foot per year (acre-ft/yr)</td>
<td>1,233</td>
<td>cubic meter per year</td>
</tr>
<tr>
<td>acre-foot per year (acre-ft/yr)</td>
<td>0.001233</td>
<td>cubic hectometer per year</td>
</tr>
<tr>
<td>cubic foot per second (ft³/s)</td>
<td>0.02832</td>
<td>cubic meter per second</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter</td>
</tr>
<tr>
<td>foot per day (ft/d)</td>
<td>0.3048</td>
<td>meter per day</td>
</tr>
<tr>
<td>foot squared per day (ft²/d)</td>
<td>0.09290</td>
<td>meter squared per day</td>
</tr>
<tr>
<td>inch</td>
<td>2.54</td>
<td>centimeter</td>
</tr>
<tr>
<td>inch</td>
<td>25.4</td>
<td>millimeter</td>
</tr>
<tr>
<td>inch per year (in/yr)</td>
<td>25.4</td>
<td>millimeter per year</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer</td>
</tr>
<tr>
<td>square foot (ft²)</td>
<td>929.0</td>
<td>square centimeter</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>259.0</td>
<td>hectare</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.590</td>
<td>square kilometer</td>
</tr>
</tbody>
</table>

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

\[°F = (1.8 \times °C) + 32 \]

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

\[°C = (°F - 32) / 1.8 \]

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Water year (WY): Water year is the 12-month period, October 1 through September 30, and is designated by the calendar year in which it ends. Thus, the water year ending September 30, 1998, is called the “1998 water year.”