Ground-Water Resources in the Lower Milliken–Sarco–Tulucay Creeks Area, Southeastern Napa County, California, 2000–2002

By Christopher D. Farrar, and Loren F. Metzger

U.S. GEOLOGICAL SURVEY Resources Investigations Report 03-4229
Sacramento, California 2003

Prepared in cooperation with the
Napa County Department of Public Works

Complete accessible text of report (7.71 MB PDF)

To view PDF documents, you must have the Adobe Acrobat Reader (free from Adobe Systems) installed on your computer.
(download free copy of Acrobat Reader).


     Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years.

    The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells.

    The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made.

    Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water extraction produced three large pumping depressions in the northern and east-central parts of the area. The general decline in ground-water levels is a result of increases in ground-water pumpage and possibly changes in infiltration capacity caused by changes in land use.

Ground-water-level declines during 1960-2002 are evident in the records for 9 of 10 key monitoring wells. In five of these wells, water levels dropped by greater than 20 feet since the 1980s. The largest water-level declines have occurred since the mid 1970s, corresponding with a period of accelerated well construction and ground-water extraction.

    Analysis of samples from 15 wells indicates that the chemical quality of ground water in the study generally is acceptable. However, arsenic concentrations in samples from five wells exceed the U.S. Environmental Protection Agency primary drinking-water standard of 10 micrograms per liter, and iron concentrations in samples from five wells exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 300 micrograms per liter. Water from 12 of 15 wells sampled contained concentrations of manganese that exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 50 micrograms per liter. Two wells produced water that had boron in excess of the California Department of Health Services action level of 1 milligram per liter.

    Stable isotope, chlorofluorocarbon, and tritium data indicate that ground water in the area is a mixture of waters that recharged the aquifer system at different times. The presence of chlorofluorocarbons and tritium in water from the study area is evidence that modern recharge (post 1950) does take place. Water-temperature logs indicate that ground-water temperatures throughout the study area exceed 30°C at depths in excess of 600 feet. Further, water at depths greater than 600 feet in parts of the study area may contain objectionable concentrations of some constituents that may limit the use of the ground water.




Purpose and Scope

Description of Study Area

Previous Investigations




Sonoma Volcanics

Quaternary Alluvial Deposits

Ground-Water Hydrology


Streamflow Gains and Losses

Methods of Data Collection and Analysis

Streamflow Measurements and Estimated Gains and Losses


Discharge from Pumpage

Ground-Water Underflow

Ground-Water Levels and Movement

Monitoring Network

Ground-Water Levels

Ground-Water Movement

Annual and Seasonal Water-Level Fluctuations

Long-Term Changes in Ground-Water Levels

Ground-Water Level Changes, 1975-2001

Surface-Water and Ground-Water Quality

Methods of Water Sampling and Analysis

Surface-Water and Ground-Water Chemistry

Oxygen-18 and Deuterium


Stable Isotope Results

Ground-Water Age Dating



Water Temperature

Summary and Conclusions

References Cited

Document Accessibility: Adobe Systems Incorporated has information about PDFs and the visually impaired. This information provides tools to help make PDF files accessible. These tools convert Adobe PDF documents into HTML or ASCII text, which then can be read by a number of common screen-reading programs that synthesize text as audible speech. In addition, an accessible version of Acrobat Reader 5.0 for Windows (English only), which contains support for screen readers, is available. These tools and the accessible reader may be obtained free from Adobe at Adobe Access.


Water Resources of California

U.S. Department of the Interior, U.S. Geological Survey
Persistent URL:
Page Contact Information: Contact USGS
Last modified: Wednesday, December 07 2016, 01:20:43 PM
FirstGov button  Take Pride in America button