Link to USGS home page.

Concentrations and Distribution of Manmade Organic Compounds in the Lake Tahoe Basin, Nevada and California, 1997-99, Version 1.1

By Michael S. Lico and Nyle Pennington

Report availability: Portable Document Format (PDF).


The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99.

Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds.

Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range.

Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine compounds than those collected during baseflow conditions. Upper Angora Lake had the fewest number of organochlorine compounds detected of all lake samples. Dioxins and furans were not detected in SPMD samples from two sites in Lake Tahoe or from two tributary streams.

The number of polycyclic aromatic hydrocarbon (PAH) compounds and their combined concentrations generally were higher in samples from Lake Tahoe than those from tributary streams. Areas of high-motorized boating activity at Lake Tahoe had the largest number and highest concentrations of PAH's. PAH compounds were detected in samples from SPMD's in four of six tributary streams during spring runoff, all tributary streams during baseflow conditions, and at all lake sites. The most commonly detected PAH's in tributary streams during spring runoff were phenanthrene, fluoranthene, pyrene, and chrysene, and during baseflow conditions were phenanthrene, 1-methylphenanthrene, diethylnaphthalene, and pyrene. Upper Truckee River, which has an urban area in its drainage basin, had the largest number and highest combined concentration of PAH's of all stream samples.

Bottom-sediment from Lake Tahoe had detectable concentrations of p-cresol, a phenol, in all but one sample. A sample collected near Chambers Lodge contained phenol at an estimated concentration of 4 micrograms per kilogram (µg/kg). Bottom-sediment samples from tributary streams had no detectable concentrations of organochlorine or PAH compounds. Several compounds were detected in bottom sediment from Upper Angora Lake at high concentrations. These compounds and their concentrations were p, p'-DDD (10 µg/kg), p, p'-DDE (7.4 µg/kg), 2,6-dimethylnaphthalene (estimated at 190 µg/kg), pentachlorophenol (3,000 µg/kg), and p-cresol (4,400 µg/kg).

Return to WRIR 99-4218 Home.

For more information about USGS activities in Nevada, visit the USGS Nevada District home page.