>

Click here to return to USGS publications
<7

science for a changing world

\

PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2),
A COMPUTER PROGRAM FOR SOLVING
GROUND-WATER FLOW EQUATIONS

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 90-4048

http://www.usgs.gov
../index.html

PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2),
A COMPUTER PROGRAM FOR SOLVING
GROUND-WATER FLOW EQUATIONS

By Mary C. Hill

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 90-4048

Denver, Colorado
1990

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

Chief, Branch of Regional Research
U.S. Geological Survey

Box 25046, Mail Stop 418

Federal Center

Denver, CO 80225-0046

Copies of this report can
be purchased from:

U.S. Geological Survey

Books and Open-File Reports Section
Box 25425

Federal Center

Denver, CO 80225-0425

CONTENTS

Page
AbStraCt=—== == o o e 1
Introduction====== == e 1
Purpose and scope=======-—-= - e 1
Previous investigations-=-----===—cocm oo o 2
Three-dimensional ground-water flow model-==-===-====c oo 3
Solution by the preconditioned conjugate-gradient method------=---=-~--=- 4
MICCG=-=-==m e mmm e e et e e - 8
POLCG-—=== == m e e e e e e 11
Convergence criteria~=-==s=--—-mmmmmm oo 12
Input instructions=-~—=—=——=—— e 13
Sample data inputs-=---—===— == e 14
Linking PCG2 to the modular model-==-=====cmm oo eemeeeee e 15
Documentation 0f PCG2=-—== === mmm e e e e 16
Brief description of modules--=--=-==== oo 16
Flowchart==—===== = e e e e e oo 16
Narratives for modules--—-—=—=~ e m o 19
PCG2AL === === e e e e e e e me e 19
PCG2RP === == e e e e e e e e 19
PCG2AP- == e e e e e e e e - 19
SPCG2P === ——— e e e e e m—————— 19
SPCG2E == === = m e e e e e o 19
Adapting SPCG2E for computers with vector and parallel
architecture-—=—===== == e - 20
List of variables-—-—-—=--—~-=c e e e mme——————a 21
References=——===——m - e e e e 24
Fortran listing-==-===-—- - - e e 26
PCG2AL - — === e e e e e e e e e e e e e 27
PCG2RP e e e e e e e e e e e e e o 29
PCG2AP- ===~ m e e e e e e m e 30
SPCG2P === = = mm e e e 41
SPCG2E~ === === = o o o e e e e e 42
FIGURES
Page
Figure 1. Diagram showing aquifer system volumes accounted for
by conductances r , ¢ , and v_ in the finite-difference
n’ n n
method-——=-=—==———— e e e - 5
2. Matrix U for MICCG==r=m=mm=mm i m oo e e e e e e e e 9
3. Matrix M = QT D U for MICCG-=====m=m=mmmmmm e e e e oo 10

iii

PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2),
A COMPUTER PROGRAM FOR SOLVING
GROUND-WATER FLOW EQUATIONS

By Mary C. Hill

ABSTRACT

This report documents PCG2: a numerical code to be used with the U.S.
Geological Survey modular three-dimensional, finite-difference, ground-water
flow model. PCG2 uses the preconditioned conjugate-gradient method to solve
the equations produced by the model for hydraulic head. Linear or nonlinear
flow conditions may be simulated.

PCG2 includes two preconditioning options: modified incomplete Cholesky
preconditioning, which is efficient on scalar computers; and polynomial precon-
ditioning, which requires less computer storage and, with modifications that
depend on the computer used, is most efficient on vector computers. Conver-
gence of the solver is determined using both head-change and residual criteria.
Nonlinear problems are solved using Picard iterations.

This documentation provides a description of the preconditioned conjugate-
gradient method and the two preconditioners, detailed instructions for linking

PCG2 to the modular model, sample data inputs, a brief description of PCG2,
and a FORTRAN listing.

INTRODUCTION

Purpose and Scope

Finite-difference numerical models commonly are used to investigate
ground-water flow systems. Effective use of these models requires that the
matrix equations they produce be solved efficiently, that is, that a correct
solution is produced using as little computer processing time as possible.
Effective use of the models also requires that the amount of computer storage
be minimized to allow for solution on small computers and to avoid over-
burdening large computers.

The purpose of this work is to document PCG2, a numerical code which
uses the preconditioned conjugate-gradient method to solve the matrix equa-
tions produced by the U.S. Geological Survey modular three-dimensional, finite-
difference ground-water flow model. Two preconditioning options are included
which have not previously been available for use with this model, and which
perform better than available solvers for many problems.

Previous Investigations

Matrix equations have been solved using direct or iterative methods. In
most direct methods the matrix is factored exactly and the true solution is
obtained by executing one backward and one forward substitution. In most
iterative methods an initial estimate of the solution is refined iteratively
using an approximately factored matrix, and successive solutions should
approach the true solution. Solution convergence is assumed to have been
reached when some measure of the residual and(or) the difference in results
between successive iterations is less than some user-specified convergence
criteria. Direct solution is straightforward, but iterative methods are less
susceptible to round-off error, are more efficient for large problems, and
require less computer storage (Remson, Hornberger and Molz, 1971, p. 177; Aziz
and Settari, 1979, p. 261).

The preconditioned conjugate-gradient method (Concus, Golub and O'Leary,
1976) is an iterative method which can be used to solve matrix equations if
the matrix is symmetric (matrix element aij = aji’ where the first subscript
is the matrix row number, and the second is the matrix column number) and
positive-definite (all eigen values are positive) (see Hildebrand, 1965, p. 30
and 48 for further discussion of these terms). The matrix produced in ground-
water-flow models always is symmetric and positive-definite. The precondi-
tioned conjugate-gradient method has been the subject of considerable interest
in recent years because of its efficiency and ability to solve difficult
problems (Meijerink and van der Vorst, 1977). It works well, in part, because
the required iteration parameters are calculated internally and need not be
estimated.

Various preconditioners may be used in the preconditioned conjugate-
gradient method. Among the different preconditioners there often is a direct
relationship between increased efficiency and increased computer storage
(Meijerink and van der Vorst, 1977). To avoid this tradeoff, the only
preconditioners considered are those that produce a solver that has computer
storage requirements less than or equal to the strongly implicit procedure
(STP) as programmed for the ground-water flow problem. SIP requires addi-
tional computer storage equal to four arrays with dimensions equal to the
number of grid nodes (McDonald and Harbaugh, 1988, chap. 12).

The incomplete Cholesky preconditioner (ICCG) has been very popular
(Meijerink and van der Vorst, 1977; Kuiper, 1981, 1987). However, alternative
methods of matrix preconditioning have been developed to achieve more effi-
cient conjugate-gradient solvers. Axelsson and Lindskog (1986) presented
a preconditioner that commonly is called the modified incomplete Cholesky
preconditioner (MICCG). It is similar to preconditioners presented by Dupont
and others (1968), Gustafsson (1978), Wong (1979), and Ashcraft and Grimes
(1988). In this paper, MICCG refers to Axelsson and Lindskog's (1986) method.
Hill (in press) showed that MICCG was more efficient than ICCG in solving
eight ground-water flow test cases on a scalar computer. Saad (1985) pre-
sented a least-squares polynomial preconditioner (POLCG), in which the matrix
inverse is approximated by a truncated Neuman polynomial series. It is
similar to preconditioners presented by Dubois and others (1979) and Johnson
and others (1983). In this paper POLCG refers to Saad's (1985) method.

POLCG is not as efficient as SIP or MICCG on scalar computers (Scandrett,
1989; Hill, in press), but is more efficient on vector computers (Scandrett,
1989; Meyer and others, 1989, p. 1445). Storage requirements are less than
for SIP: POLCG requires additional storage equal to three arrays with dimen-
sions equal to the number of grid nodes.

Many preconditioners were excluded from PCG2. Modifications of ICCG
presented by Meijerink and van der Vorst (1977; 1981), Gustafsson (1978;
1979), Wong (1979), and Ashcraft and Grimes (1988) apparently converge in
fewer iterations than ICCG or MICCG. These were not included in PCG2 because
they require that several additional arrays with dimensions equal to the
number of grid nodes be added to computer storage. Additional polynomial
preconditioners have been presented in several papers (Saad, 1985; Ashby,
1987; Meyer and others, 1989). Based on Saad's results, the POLCG was chosen
because it appears to be at least as efficient as the other polynomial methods
and it is easier to use. However, for very large grids (greater than 100,000
cells) the optimal Chebyshev polynomial preconditioner (Meyer and others,
1989) may be more efficient, and users with large grids may wish to consider
this alternative polynomial preconditioner.

Watts (1981) and Hill (in press) indicate that the greatest differences
in solver efficiency on scalar computers occur for three-dimensional, non-
linear problems. Thus, for these types of problems, it may be well worth the
time and effort to try more than one solver. SIP generally is a good alter-
native to consider.

Notation

The following notation is used in this work:
Underlined capital letters indicate matrices: A
Underlined lower-case letters indicate column vectors: r
The element located in matrix row i and column j is designated
as follows: matrix A, element a -

Exception: a single index is used to simplify notation in some
cases. These are described in the text.

THREE-DIMENSIONAL GROUND-WATER FLOW MODEL

In this work, selected numerical methods are presented for solving the
matrix equations that arise when the finite-difference method is used to
discretize the ground-water flow equation as applied to a two-dimensional
aquifer or a three-dimensional layered aquifer system. The finite-difference
model is described in detail by McDonald and Harbaugh (1988), and only aspects
relevant to this report are discussed here.

The finite-difference model produces a set of linear equations which can
be expressed in matrix notation as:

Ax=b | (1)
where A is a coefficient matrix which is discussed below, x is a vector of

hydraulic heads at each grid cell, and b is a vector of defined flows, terms
associated with head-dependent boundary conditions, and storage terms (for

transient problems) at each grid cell. Because of the rigid structure of the
finite-difference grid, and because there are six neighboring cells to each
internal cell of a three-dimensional grid, A is symmetric and there may be as
many as six off-diagonals in A--three above " the main diagonal and three below.
The elements on the off-diagonals equal the negatives of the horizontal or
vertical conductances between the centers of the cells which make up the
finite-difference grid (fig. 1). The horizontal conductances along columns

(cn of fig. 1) equal TiTi+1Aw/(TiALi+l/2 + Ti+1ALi/2)’ where Ti and Ti+l are

transmissivities between two adjoining cells, Aw is the width of the two
cells, and ALi and ALi+1 are lengths of the two cells. Horizontal conduct-

ances along rows (rn of fig. 1) are defined analogously. The vertical
conductances (Vn of fig. 1) equal KZA/Az, where KZ is the vertical hydraulic

conductivity, A is the area of the cell, and Az is the vertical distance
between the centers of the two cells. Each component on the main diagonal of
A, aiis equals:

N
a,., = 2 (-a..) tw,, (2)
i1 =1 ij i

itj
where N is the total number of nodes in the grid; aij are the off-diagonal

elements of row i, which are negative numbers; and w, are the sum of the

conductances associated with head-dependent boundaries and storage terms (for
transient problems), which are positive numbers. Besides being symmetric, A

is also positive-definite (its eigenvalues are always positive) (Varga, 1962

p. 23, 181-188; Hildebrand, 1965, p. 48), and these properties allow

equation 1 to be solved using the methods presented in this work.

Nonlinearities occur if any aquifer is unconfined or if a head-dependent
boundary condition is nonlinear. If any aquifer is unconfined, the horizontal
conductances are a function of hydraulic head, and the main-diagonal and four
of the six off-diagonals of matrix A must be updated during the solution
process. If a head-dependent boundary condition is nonlinear, the boundary
condition may change from being head-dependent to defined flux depending on
the hydraulic head in the aquifer adjacent to the boundary, and the main
diagonal of A and vector b (eq. 1) must be updated.

SOLUTION BY THE PRECONDITIONED CONJUGATE-GRADIENT METHOD

The preconditioned conjugate-gradient method for solving a set of linear
equations is iterative. In iterative methods, it is assumed that the matrix
A can be split into the sum of two matrices; that is A = M + N (Varga, 1962,
E 87-93; Remson and others, 1971, p. 177). M is called the preconditioned
form of A, and the goal is to define M so that it is easy to invert and
resembles A as much as possible. These two criteria generally are impossible
to satisfy simultaneously, and the optimal definition of M has been the focus
of much research. In the preconditioned conjugate- gradlent method, M must
always be symmetric and positive definite. (This brief description of matrix
splitting does not include important requirements that M and N must satisfy to
achieve a convergent solver. Please refer to Varga (1962) for additional

information).
4

j Columns] EXPLANATION
j+

N w AQUIFER AREA ACCOUNTED
\ \\ FORBY r
node n

node AQUIFER AREA ACCOUNTED

i >
' (ne? /A FORBY ¢,

2 & E SIDE VIEW OF VOLUME
g P : ACCOUNTED FOR BY v
o ,7 n
N SEQUENTIAL NODE NUMBER
. ASSIGNED TO EACH GRID
i+1 L NODE, AND CALCULATED AS:
node {n + NC)

n=j+NC(i - 1) + (NC)(NR)(#¢- 1)
NC NUMBER OF COLUMNS

IN THE GRID
Areal view of cells in layer ¢ showing NR NUMBER OF ROWS IN
nodes at cell centers: THE GRID

j COLUMN OF NODE n
i ROW OF NODE n

Columns ¢ LAYER OF NODE n

j j+1

node n

2 o
(2] A
g ELLTENLIL. ATLTLLTEL VIS TTLETLTETLLTSITE Confining unit
3
2

node (n + (NC){NR))

Side view of cells in row i showing
nodes at ceil centers:

Figure 1.--Aquifer system volumes accounted for by conductances
rs Coo and v in the finite-difference method.

Once M has been defined, the basic iterative equation is developed from
equation 1 and the splitting of A, and can be written as:

Kk+1 k Xk (3)

where k is the iteration index. Noting that b - A Xy is the residual (Ek) of

M x =Mx +b -

(e

the original set of equations at the kth iteration, and setting
Sy T Xppp T X 8ives:

Ms, =r (4)
or

L |
Ek - g £k : (5)

The new heads may then be calculdted as X x, *+ Sy- More generally, some

+1 %k
function of Sy may be used to calculate X1

Conjugate-gradient methods are second-order iterative techniques because
at each iteration the new change in x, which is called Py is calculated using
the change from the prior iteration, Py-1 in addition to the vector Sy of
equation 5. Conjugate-gradient methods begin by calculating r, = b - A X,
The following steps are executed for each iteration, starting with k = 0:

-1

s =M (6a)
for k=0 Py = Sy (6b)
sT r
B, = =K (6¢)
for k > 0 k sT r
~k-1 =k-1
By = S * By Bpg (6d)
sT r
U = :%;:ji_‘ (be)
Py A Py
Xer1 = X T % By (6£)
L =L - oy A Py (6g)

where the superscripted T indicates the transpose of the vector. Because
L4 €20 be calculated using the last statement, b need not be saved within

the solver. Iteration parameters Bk and a are calculated internally such
that successive updating vectors, P, are A-orthogonal to previous Py vectors
-- that is, EE Ap, =0, k# 2 (Hestenes and Stiefel, 1952).

Whether or not an iterative method will converge and, if so, how fast
depends on the preconditioner and how Xy is updated. A discussion of conver-

gence is beyond the scope of this report, but references are cited for the
convergence properties of each solver. See Varga (1962) for the general
theory of convergence of iterative methods.

Scaling of the matrix A simplifies POLCG (Dubois and others, 1979), and
is accomplished as:

B=s AS, @
where B is the scaled matrix, all off-diagonal entries of § are zero, and
1
Sii T y3ii (8)

This type of scaling is called diagonal scaling, and it preserves the symmetry
of the original matrix. Diagonal scaling may improve the matrix character-
istics that are most important to convergence because the scaled matrix is
still symmetric and positive definite, and the condition number of A (the
largest eigenvalue divided by the smallest eigenvalue) is minimized (Forsythe
and Strauss, 1955). However, although A is diagonally dominant because:

N

a,, 2z 2 la,.| , (9)
j=1 1

itj

B may not be diagonally dominant if some of the values along the diagonal

of A are much smaller than others. For example, consider the following
original and scaled matrices:

0.9 -0.1 ~-0.75 1.0 -0.23 -0.88
A=1-0.1 0.2 0.0 B =]-0.23 1.0 0.0
-0.75 0.0 0.8 -0.88 0.0 1.0

The first row of B is no longer diagonally domimant. The lack of diagonal
dominance can cause problems when using MICCG. Scaling also may cause more
rounding and truncation errors because all components of the diagonal of A
must be summed, as in equation 2. Without scaling, the conductance terms can
be manipulated individually to reduce rounding and truncation errors (Dorn
and McCracken, 1972, p. 94). Scaling was only used for POLCG.

The precision with which numbers are stored in the computer can sig-
nificantly affect solver performance. For example, making the four arrays
required by SIP double precision (14 to 15 significant digits on the computer
used) instead of single precision (6 to 7 significant digits) can make the
difference between convergence and nonconvergence for some problems (McDonald
and Harbaugh, 1988, p. A-2; A.W. Harbaugh, U.S. Geological Survey, written
commun., 1989). However, increasing the precision of arrays doubles the
required computer storage space. All the arrays required by the solvers
presented in this work were declared as single precision. Double-precision
scalar variables were used to improve the accuracy of calculations, where
possible. The only double-precision array in the model is, then, the array
used to store calculated heads (McDonald and Harbaugh, 1988, p. A-2).

In PCG2, problems caused by the limited precision of the solver arrays are
most prevalent for POLCG (Hill, in press). If the limited precision of the
solver arrays is suspected as the cause of convergence problems, arrays V,

SS, and P may be converted to double precision by doubling their allocated
storage in PCG2AL, and declaring them as double precision in PCG2AP and SPCG2E.

Nonlinear problems are solved by Picard iterations, in which the matrix
A and vector b are periodically updated between iterations using the newly
calculated heads. For nonlinear problems, convergence using the conjugate-
gradient solvers was found to be most efficient if several iterations (called
inner iterations in this report) were accomplished between Picard iteration
updates (Kuiper, 1981 and 1987). This allows the solver to use equations 6c¢
and 6d to calculate several orthogonal Py vectors before updating A and b,

and thus take advantage of the orthogonality of the conjugate-gradient method.

The total number of iterations equals the sum of the inner iterations for all
updates of A and b. For any one A and b, the inner iterations continue until
one of the follow1ng occurs: (1) “the user-defined maximum number of inner
iterations (ITER1 of the input file) are executed; or (2) the final conver-
gence criteria are met. Outer iterations continue until the final convergence
criteria are met on the first inner iteration after an update. The total
number of iterations required is minimized by adjusting ITER1 and re-executing
the problem. For most problems, the optimal value of ITER1 ranges from 3

to 10.

In the absence of round-off error, only inner iterations would be required
for linear problems. However, in practice, round-off error may adversely
affect the residual calculated by the conjugate-gradient method (eq. 6g) when
more than 50 iterations are required. Recalculating the residual as
r = b - A x occasionally by limiting the number of inner iterations to less
than 50 in linear problems alleviates the error. This can be accomplished
using ITER1 of the input file.

A flowchart which displays the steps discussed above is presented in the
section "Documentation of PCG2" of this report.

MICCG

In modified incomplete Cholesky preconditioning, M = UT D U, where U is

an upper triangular matrix with nonzero values along the main d1agona1 and at
off-diagonal locations where A has nonzero values. D is a positive diagonal
matrix with d11 = 1/u11 When A is structured as in “the finite-difference

model with natural ordering of the nodes and there are more than two columns
in the grid, the off-diagonal components of U equal the off-diagonal compo-
nents of A. That is, uij = aij’ for j > i. As an example, figure 2 shows U

for a problem with 2 rows, 3 columns and 2 layers. To more clearly indicate
the physical quantities involved, the variables £ oo and Vo which are

depicted in figure 1 and were described earlier in this paper, are used. To
be consistent, the same subscript, n, is used for the diagonal of matrix U,
so that u, ., now becomes u s where n = 1.

Calculation of the us g is explained by executing the matrix multipli-

cation for the simple problem shown in figure 2. In matrix U D U (fig. 3),

“ros T and v, appear in the same places they occupied in the A matrix.

The additional off-diagonal terms occur because UT D U is an incomplete fac-
torization of A. The u are defined such that the sum of the elements along

a row of QT D U equals the sum of the elements along the same row of A. To
accomplish this for the matrix shown in figure 3:

u1 -r1 0 -¢q 0
u2 -r -C2

ug 0

Y Ty

u

5

Figure 2.--Matrix U for MICCG.

0 vy 0 0 0
0 vy 0 0
-Cq 0 0 -Vg 0 0
0 0 v, 0 0
-r 0 0 -v 0
5 5
uc 0 0 0 0 Ve
u, -r7 = 0 0
ug 8 0 -Ccg 0
Ug 0 0 -Cq
U9 T O
Y11 "f11
Y12 |

The r , c_, and v
n’ n n

are the conductances

along rows and columns and between layers, respectively.

1 11
Uy = 3y
Uz = 833
etc.

r 2 C
e T e T B
b
Yy Yy o]
r 2 r, c r, v (10)
T2 T2 % Yy
b
)))

The general algorithm can be expressed as (R.L. Cooley, written commun.,

1988):

N
b3
j=i+1

(11a)

f")
1]

01

-1, 0 -¢q1
uwtey 1 91
u3+§2 0
\.14+'r.‘L
symmetric
rn2
6n T u
n

Figure 3.--Matrix M = U D U for MICCG.

1
-cz 91
wz -c3 0
.r4 ¢]_
u5+£4+12 “Tg 0
u6+§5+r3 0
U7t
2 2
_n Y
n un n un
T

u +€ +y

0
0
0
-y 0
04 -VS
0 o
-cy 0
‘P-/ -08
0 P
8
Y1079 "Tio
U11€10% 7845
. rn V‘n
n = un ¢n

The r s Cos and v are the conductances

along rows and columns and between layers, respectively.

o O O O o

(]

where,

i-1
2 w . u ./u a =0
o= Jk=1 KL KKK H : (11b)
1y
=0 a,. #0
17
and
u.. =0 for j < 1.
1]

Again, the more general notation for components of U is used. Note that the

fji and fij are equivalent to the wn’ Gn, and ¢n of figure 3, and that they
occur off the main diagonal of ET D U. The variable a is a user-defined relax-
ation parameter and is used to diminish the value of the fij of equation 1lla.

Ashcraft and Grimes (1988) found that using a relaxation parameter value of
0.97, 0.98, or 0.99 instead of 1.00 sometimes improved convergence by as much
as 50 percent. However, consistently using a value of 1.00 for the relaxation
parameter generally produces solutions which are at least as efficient as
those attained with other commonly used solvers (Hill, in press).

The equation QT DU Sy

= Iy is solved for Vi by forward substitution, then D U Sy T Yy is

= I is solved by a two-step process. First,
QT Yk

solved for s, by backward substitution.

k
The MICCG preconditioned matrix presented in this paper is from Axelsson
and Lindskog (1986), and is nearly identical to that presented by Dupont and
others (1968), Gustafsson (1978, eq. 3.1, and 1979, eq. 6), Wong (1979), and
Ashcraft and Grimes (1988). In the method used in this report, the overcom-
pensation parameter used by Gustafsson (1978) to augment a s of equation 1la

equals zero. Ashcraft and Grimes (1988) found that the number of iterations
required to achieve convergence was insensitive to values of the overcompen-
sation factor, so using a value of zero should not affect convergence.

Convergence properties of incomplete Cholesky with row-sums agreement
are discussed by Gustafsson (1978).

POLCG

In Neuman series polynomial preconditioning, ﬂ_l equals the sum of
several terms of a power-series expansion for the inverse of matrix A (Dubois
and others, 1979; Johnson and others, 1983; Saad, 1985), so that

M_l =T+ A+ éz roeee +aY (12)

11

Then, by weighting the terms as suggested by Johnson and others (1983) and
Saad (1985), an approximate solution can be written as
s, = M-1 r, =c,.r, +c, Ar + ¢ A2r + A3r {(13)
-k - -k 0 =k 1 -~k 2-=k = -k’
when £ = 3, and c,, c,, and c, are coefficients chosen to optimize
convergence. For computational efficiency, equation 13 is calculated by the
following series of steps:

Zp S cp I tArn
Z, = c o tAz, (14)
Sk =Sk TA %

so that the powers of A are never formed explicity (Dubois and others, 1979,
p. 259). One of the advantages of POLCG is that the steps of equation 14 are
efficient on vector and parallel computers.

The coefficients can be calculated using the method described by Saad
(1985, p. 869-871; 880) as: c, = <2 g =21 2 -9

07 328>% 7168 %7 38>
where g is the upper bound on the maximum eigenvalue of A, estimated as the
largest sum of the absolute values of the components in any row of A (Varga,
1962, p. 17; Gerschgorin, 1931). For a scaled matrix, g is generally close to
2. Scandrett (1989) and Hill (in press) used g=2, and the number of itera-
tions required to achieve solutions in their test cases were generally insen-
sitive to changes in g. Using NBPOL of the input file, the user can specify
that g=2 or that g is to be estimated as described above. Estimation of g
uses slightly more execution time per iteration.

Convergence properties of polynomial preconditioners are discussed by
Saad (1985). ‘

Convergence Criteria

An iterative matrix solver is assumed to have converged when some measure
of the residual and{or) the difference in results between successive itera-
tions is less than user-specified convergence criteria. In PCG2, the differ-
ence between results of successive iterations is measured using both the
maximum absolute value of the change in hydraulic head and the maximum
absolute value of the residual for that iteration. Typical values for these
error criteria are 0.01 ft and 0.01 ft3/s, respectively.

The defined convergence criteria are too large if the global ground-
water flow budget errors calculated by the modular model (McDonald and
Harbaugh, 1988, p. 3-16 to 3-22) are unacceptably large. What is unacceptable
depends on the problem being considered and must be determined by the user.
For most ground-water flow problems, global budget errors greater than one
percent are unacceptable. If unacceptably large global budget errors occur,
the error criteria should be reduced.

12

The defined convergence criteria are too small if the accuracy achieved
by the solver exceeds the accuracy required by the user. For example, Hill
(in press) found that reducing both error criteria from 1073 to 107%® increased
the execution time by as much as 55 percent, and, especially for POLCG,
resulted in lack of convergence in some test cases. If the solver is taking
more iterations than expected to achieve convergence and the calculated global
budget error is smaller than required by the user, or if the solver is not
converging and the convergence criteria are very small, the user can increase
the convergence criteria.

INPUT INSTRUCTIONS

Input for PCG2 is read from a unit specified in the IUNIT array of the
Basic Package input file. In the example provided in this report, IUNIT(13)
is used, but this can easily be changed, as noted below in the section
"Linking this program to the modular model". The input for PCG2 is as follows.

FOR EACH SIMULATION

PCG2AL
1. Data: MXITER ITER1 NPCOND
Format: 110 110 110
PCG2RP

2. Data: HCLOSE RCLOSE RELAX NBPOL IPRPCG MUTPCG IPCGCD
F10.0 F10.0 F10.0 110 110 110 110

Explanation of Fields Used in Input Instructions

MXITER--is the maximum number of outer iterations. -- that is, calls to the
solution routine. For a linear problem MXITER should be 1, unless
more than 50 inner iterations are required, when MXITER could be as
large as 10. A larger number (generally less than 100) is required
for a nonlinear problem.

ITER1---is the maximum number of inner iterations. For nonlinear problems,
ITER1 usually ranges from 3 to 10; a value of 30 will be sufficient
for most linear problems.

NPCOND--is the flag used to select the matrix preconditioning method. The
following options are available.

NPCOND PRECONDITIONING METHOD
1 Modified Incomplete Cholesky (for use on scalar computers)

2 Polynomial (for use on vector computers or to conserve
computer storage)

13

HCLOSE--is the head change criterion for convergence, in units of length.

When the maximum absolute value of the head change at all nodes during
an iteration is less than or equal to HCLOSE, and the criterion for
RCLOSE is satisfied (see below), iteration stops. Commonly, HCLOSE
equals 0.01.

RCLOSE--is the residual criterion for convergence, in units of cubic length
per time. When the maximum absolute value of the residual at all
nodes during an iteration is less than or equal to RCLOSE, and the
criterion for HCLOSE is satisfied (see above), iteration stops.
Commonly, RCLOSE equals HCLOSE.

For nonlinear problems, convergence is achieved when the convergence criteria
are satisfied on the first inner iteration.

RELAX---is the relaxation parameter used with NPCOND=1 (MICCG). Usually,
RELAX=1.0, but for some problems a value of 0.99, 0.98, or 0.97 will
reduce the number of iterations required for convergence. RELAX is
not used if NPCOND#1.

NBPOL---is used when NPCOND=2 to indicate whether the estimate of the upper
bound on the maximum eigenvalue is 2.0, or whether the estimate will
be calculated. NBPOL=2 is used to specify the value as 2.0; for any
other value of NBPOL, the estimate is calculated. Convergence is
generally insensitive to this parameter. NBPOL is not used if NPCOND
does not equal 2.

IPRPCG--is the printout interval for PCG. If IPRPCG is equal to zero, it is
changed to 999. The extreme head change and residual (positive or
negative) are printed for each iteration of a time step whenever the
time step is an even multiple of IPRPCG. The printout also occurs at
the end of each stress period regardless of the value of IPRPCG.

MUTPCG--is a flag which controls printing from the solver. If MUTPCG#O,
printing from the solver is suppressed. If MUTPCG=1, the number of
iterations is printed, but the lists of extreme head changes and
residuals is suppressed. If MUTPCG=2, all printing is suppressed.

IPCGCD--is a flag which is used when NPCOND=1 to control whether the same
Cholesky decomposition may be used for multiple calls to PCG2AP.
IPCGCD should be zero for most applications. However, future
packages might benefit from nonzero values of IPCGCD.

SAMPLE DATA INPUTS

Example data set for a linear problem:

10 20 30 40 50
123456789 123456789 123456789 123456789 123456789
1 99 2
.001 .001 1. 2 1

Example data set for a nonlinear problem:

10 20 30 40 50
123456789 123456789 123456789 123456789 123456789

10 5 1

.01 .01 1. 2 1

14

LINKING PCG2 TO THE MODULAR MODEL

The following statements must be included in the main program of the
modular model. Note that IUNIT(13) can be changed to allow the PCG2 input
unit number to be read from a different position of the IUNIT array.
IUNIT(15) is the input number for another package which may benefit from
IPCGCD#0. The "15" can be changed if this is not applicable for the package
represented by IUNIT(15).

c ADD BETWEEN COMMENT STATEMENTS 4 AND 5
IF(IUNIT(13).GT.0) CALL PCG2AL(ISUM,LENX,LCV,LCSS,LCP,LCCD,
1 LCHCHG,LCLHCH,LCRCHG,LCLRCH ,MXITER,ITER1,NCOL ,NROW,NLAY,
2 IUNIT(13),I0UT,NPCOND)

c ADD BETWEEN COMMENT STATEMENTS 6 AND 7
IF(IUNIT(13).GT.0) CALL PCG2RP(MXITER,ITER1,HCLOSE,RCLOSE,
1 NPCOND,NBPOL ,RELAX, IPRPCG,IUNIT(13),I0UT ,MUTPCG,IPCGCD)

C ADD BETWEEN COMMENT STATEMENTS 7C2B AND 7C2C

ICD=0

IF(IUNIT(13).GT.0) CALL PCG2AP(X(LCHNEW),XICD=0(LCIBOU),X(LCCR),
X(LECC),X(LCCV) , X (LCHCOF) ,X (LCRHS) ,X(LCV) ,X(LCSS) ,X(LCP) ,
X(LCCD) ,X(LCHCHG) , X (LCLHCH) ,X (LCRCHG) ,X (LCLRCH) ,KITER,
NITER,HCLOSE ,RCLOSE , ICNVG,KSTP,KPER, IPRPCG,MXITER, ITER1,
NPCOND ,NBPOL , NSTP ,NCOL ,NROW,NLAY ,NODES , RELAX , IOUT , MUTPCG,
IPCGCD,STEPL,DELT, IUNIT(15) ,IP)

U

LAYCON=3 layers may produce a matrix which is not diagonally dominant
when using the BCF package as presented in McDonald and Harbaugh (1988,
P. 5-22 and 5-59). MICCG (NPCOND=1) of the PCG2 package will not function if
the matrix is not diagonally dominant, and POLCG may not converge. To correct
this, make the following change in module BCF1FM (M.G. McDonald, U.S. Geologi-
cal Survey, written commun., 1989):

McDonald and Harbaugh (1988) version:
C/D---~- WITH HEAD BELOW TOP ADD CORRECTION TERMS TO RHS AND HCOF.
RHS(J,I,K)=RHS(J,I,K) + CV(J,I,K-1)*TOP(J,I,KT)

HCOF (J,I,K)=HCOF(J,I,K) + CV(J,I,K-1)
220 CONTINUE

Modified version:

C7D----- WITH HEAD BELOW TOP ADD CORRECTION TERMS TO RHS AND HCOF.
C7D-=---- MODIFIED TO PUT CORRECTION COMPLETELY ONTO RIGHT HAND SIDE
RHS(J,I,K)=RHS(J,I,K) + CV(J,I,K-1)*(TOP(J,I,KT)-HTMP)

220 CONTINUE

After making the required changes and including the FORTRAN listed in
this document, compile and load the modular model as usual.

15

DOCUMENTATION OF PCG2

Brief Description of Modules

Three primary modules and two submodules were created for the precondi-
tioned conjugate-gradient method. The following is a brief description of the
purpose of each of these modules:

Primary modules:
PCG2AL Allocates space for the conjugate-gradient calculations.
PCG2RP Reads, stores and prints the input data.
PCG2AP Performs multiple iterations of the conjugate-gradient
method and checks the convergence criteria.
Submodules:

SPCG2P Called by PCG2AP to print the extreme head changes and
residuals that occurred at each iteration.

SPCG2E Called by PCG2AP to perform one matrix multiplication required by
the polynomial preconditioner. This submodule is executed three
times for each iteration of POLCG.

Flowchart

The flowchart for the package is shown below, and includes the functions
performed by the three primary modules and the two submodules. The following
variable names used in the flowchart are taken from the FORTRAN code. Some
were defined in the input instructions; all are defined later in the following
list of variables.

HCLOSE, IITER, ITER1, MXITER,
NPCOND, PAP, RCLOSE, SRNEW, SROLD

16

START
Read MXITER,ITER1, and NPCOND and allocate space (PCG2AL)

Read other input data and print all input data (PCG2RP)

The following is repeated for each time step

Increment KITER Increment KITER

-l

g
Calculate A and b using other packages

¥
Enter PCG2AP
Initialize arrays and IITER
1f NPCOND=2, scale A, x and b

Increment (IITER)

NPCOND =1 1 NPCOND = 2
Solve S = g_lgk (eq. 6a) using M Solve 8, = g’lsk (eq. 6a) using
of MICCG (eq. 11; fig. 2 and 3) POLCG {(eq. 13). (Execute

| SPCG2E three times.) |

Outer First internal iteration? Outer
} Tter- yes | no Tter-
ation l ‘ l ation

P = 5% (eq. 6h) SROLD = SRNEW

_ T
L SRNEW = 5. 1,
Inner T
} Iter- SRNEW = 5 Iy B, = SRNEW/SROLD (eq. 6c)

ation
Ek = Ek + Bk Rk-l (EQ- 6d)
]

!

PAP=p Ap
a = SRNEW/PAP (eq. 6e)
Solve for new hydraulic heads and
residuals using equations 6f and 6g

17

Outer Largest head change < HCLOSE and Quter

Iter- largest residual < RCLOSE? Iter-
ation ation

Inner no yes
Iter- \] - 10
ation TITER < ITER1? MXITER = 17
A no
yes no yes
l First internal
MXITER = 17 iteration?
no ‘ yes yes no
Y
KITER = MXITER? KITER = MXITER?
Exit Exit
PCG2AP no no PCG2AP
yes yes
Y Y Y v Y
SOLUTION DID SOLUTION SOLUTION DID
NOT CONVERGE CONVERGED NOT CONVERGE

|

Print maximum head changes and residuals for
each iteration (SPCG2P)

Y
Exit PCG2AP

Y
Complete simulation using
modules from other packages

END

18

Narrative for Modules

PCG2AL

Module PCG2AL reads MXITER, ITER1, and NPCOND, and allocates space in
the X array for the arrays required for the solver. Arrays SS, P and V are
required for both values of NPCOND; array CD is required only for NPCOND=1.
Each of these four arrays are vectors dimensioned equal to the number of grid
nodes. Additionally, four smaller arrays are required to store the maximum
head change and residual at each iteration (HCHG and RCHG) and the cell
locations where these occurred (LHCH and LRCH).

PCG2RP

Module PCG2RP reads HCLOSE, RCLOSE, RELAX, NBPQOL, IPRPCG, MUTPCG, and
IPCGCD, and prints all variables read for this package.

PCG2AP

Module PCG2AP performs up to ITER1 iterations of the preconditioned
conjugate-gradient algorithm for solving the flow equation. To save
computational time, all arrays are declared one dimensional. They are
accessed by a single index which is calculated from the layer, row, and
column indexes normally used to access the arrays in three dimensions.

Double precision scalar variables are used for most calculations in this
module to improve the accuracy of the results. Modification of the present
use of double precision may affect simulated results.

For the polynomial preconditioner,) and <, of equation 14 are negative

in the text, but are calculated as positive numbers in the FORTRAN code. The
FORTRAN code is correct because, as programmed in the modular model, matrix A
of equation 1 is negative definite instead of positive definite. While this
poses no mathematical difficulty, it does require that the odd-numbered
coefficients of equation 14 be positive instead of negative.

The steps executed by PCG2AP were outlined in the flowchart previously
presented in this section.

SPCG2P
Submodule SPCG2P prints the extreme values of the head change (HCHG) and

residual (RCHG) out of all cells for each iteration of a time step. The cell
location (LHCH and LRCH) where the values occur also is printed.

SPCG2E
Submodule SPCG2E calculates the matrix-vector multiplication and the

vector addition required by each of the three parts of equation 14. It is
called three times for each polynomial iteration.

19

Adapting SPCG2E for Computers with Vector and Parallel Architecture

Use of the polynomial preconditioner on computers with vector and(or)
parallel architecture will be most efficient if SPCG2E is modified to take
advantage of the computer used. The following points should be considered
when modifying SPCG2E.

The diagonal entries of A all equal -1.0 because A is scaled and is
negative definite (see narrative for modeule PCG2AP). Vectors CR, CC, and CV
contain the off-diagonals of A along which nonzero entries occur. Note that
although array CV is dimensioned using NODES in SPCG2E and elsewhere in the
model, it is originally only given storage space in X for cells in NLAY-1
layers (McDonald and Harbaugh, 1988, p. 4-25). In making changes, care must
be taken to avoid overwriting elements of array HCOF, which is stored in X

after CV.

Using w to represent Iys Zps O Zy, and n to represent the cell number,

the nth element of each vector produced by the matrix-vector multiplications
of equation 14 is calculated by summing -w(n) with:

CR(n) * w(n+1) (15a)
CR(n) * w(n) (15b)
¢Cc(n) * w(n+NCOL) (15¢)
cC(n) * w(n) (15d)
CV(n) * w(ntNRC) (15e)
cV(n) * w(n) n=NODES-NRC (15£)

Equations 15a through 15f are vector-vector multiplications which can be
calculated quickly on computers with vector architecture, but one problem
exists. Along with rows and columns for active cells, A includes rows and
columns for inactive and constant-head cells. Inactive cells are accounted
for by setting appropriate entries of CR, CC, and CV to zero in the beginning
of the "DO 115" loop in PCG2AP and, therefore, cause no problem. However,
constant-head cells are accounted for using the IF statements in SPCG2E, and
these IF statements must be eliminated to vectorize the multiplications.

One way to eliminate the IF statements in SPCG2E is to add a work vector
of length NODES (allocate space in PCG2AL) and use this vector to store CR,
CC, or CV temporarily while performing the multiplications of equation 15
with the work vector. In the work vector, the entries along rows associated
with constant-head cells can be set to zero prior to performing the multipli-
cations. Thus, in equation 15a, CR(n)=0 if cell nt+l is constant head; in
equation 15c, CC(n)=0 if cell n+NCOL is constant head; in equation 15e,
CV(n)=0 if cell n+NRC is constant head. In equations 15b, 15d, and 15f,
CR(n)=0, CC(n)=0, and CV(n)=0 if cell n is constant head.

Alternatively, vectors CR, CC, and CV may be used directly in equation 15,
and the values which are set to zero may be stored in a separate array and
replaced once the multiplication has been completed. This would require a
work vector with length equal to the number of constant-head cells in the grid.
At present, the number of constant-head cells is not available when space is
allocated by calling PCG2AL, and the user would have to modify the data input
and the module to provide this information.

20

Variables for the entire package are listed below.

List of Variables

Variables not listed

below are used only briefly in a few calculations and their meaning can be

identified from nearby lines of the code.

The name of the module is listed

under 'Range' for variables used by only one module.

Variable
ALPHA

BIGH
BIGR
BPOLY

co, C1, C2
cc

CD

cD1

CDCC, CDCR,
CDCV

CR

cv

DONE

DZERO

FCC, FCR,
FCV

HCHG

HCHGN

HCLOSE

HCOF

HNEW

IBOUND

ICNVG

TICNVG
IITER

IN

Range
PCG2AP

PCG2AP
PCG2AP
PCG2AP

PCG2AP
Global

PCG2AP
PCG2AP

PCG2AP
Global
Global
Package
PCG2AP
PCG2AP
Package
PCG2AP
Package
Global

Global

Global

Global

PCG2AP
PCG2AP

Package

Definition
Double-precision field containing o of equation 6e.

Value
for

of head change with the largest absolute value

one iteration.

Value of residual with the largest absolute value for
one iteration.

Estimated upper bound of the maximum eigen value of A;
used in polynomial preconditioning.

Scalar coefficients of equations 13 and 14.

DIMENSION (NCOL,NROW,NLAY), conductance along columns
(see fig. 1).

DIMENSION (NCOL,NROW,NLAY), u. . of equation 1la.

The first nonzero component of CD. Used to ensure that
all values in CD are all 20 or =0.

Double-precision fields containing u?_./u . terms of

; ki’ kk

equation 1la.

DIMENSION (NCOL,NROW,NLAY), conductance along rows
(see fig. 1).

DIMENSION (NCOL,NROW,NLAY), conductance between
layers (see fig. 1).

Double-precision field containing a one.

Double-precision field containing a zero.

Double-precision fields containing fi' terms of
equation 11. J

DIMENSION (MXITER*ITER1), extreme head change (BIGH) for
each iteration.

Double-precision field containing the head change at
one cell at one iteration.

Closure criteria for the head change for the iterative
procedure.

DIMENSION (NCOL,NROW,NLAY), coefficient of head at
cell (J,I,K) in the finite-difference equation.

DIMENSION (NCOL,NROW,NLAY), most recent estimate of head
in each cell. HNEW changes at each iteration.

DIMENSION (NCOL,NROW,NLAY), status of each cell
<0, constant-head cell
=0, inactive cell
>0, variable~head cell

Flag set equal to zero until the iteration procedure
has converged, when it is set to one.

Inner iteration convergence flag.

Inner iteration counter. Reset each time PCG2AP is
called.

Primary unit number from which input for this package
will be read.

21

Variable Range
I0UT Global
IPRPCG Package
IS1Z PCG2AL
ISOLD Package
ISP PCG2AL
ISUM Global
ITER1 Package
KITER Global
KPER Global
KSTP Global
LCname Package
LENX Global
LHCH Package
LRCH Package
MXITER Package
MUTPCG Package
N Package
NBPOL Package
NCD Package
NCF Package
NCL Package
NCN Package
NCOL Global
NITER PCG2AP
NLAY Global
NLL Package
NLN Package

Definition

Primary unit number for all printed output. IO0UT=6.

Frequency (in time steps) with which the extreme head
changes and residuals for each jteration will be
printed.

Number of cells (nodes) in the finite-difference grid.

Before this module allocates space, ISOLD is set equal
to ISUM. After allocation, ISOLD is subtracted from
ISUM to get ISP, the amount of space in the X array
allocated by this module.

Number of words in the X array allocated by this module.

Index number of the lowest element in the X array which
has not yet been allocated. When space is allocated
for an array, the size of the array is added to ISUM.

Maximum number of inner iterations.

Counts the number of times PCG2AP is called.

Stress period counter.

Time step counter. Reset at the start of each stress
period.

Location in the X array of the first element of array
'name’ .

Length of the X array in words. This should always be
equal to the dimension of X specified in the MAIN
program.

DIMENSION (3,MXITER*ITER1), Layer, row, and column of
the cell containing the extreme head change (BIGH)
for each iteration.

DIMENSION (3,MXITER*ITER1), Layer, row, and column of
the cell containing the extreme residual (BIGR) for
each iteration.

Maximum number of calls of PCG2AP.

Flag to control printing from the solver (see input
instructions).

Cell index.

Used when NPCOND=2 to indicate how the value of the
upper bound of the maximum eigenvalue is calculated
(see input instructions).

One-dimensional subscript of conductance to the adjacent
cell, which is in the last column.

One-dimensional subscript of conductance to the adjacent
cell, which is in the next column.

One-dimensional subscript of the cell index of the
adjacent cell which is in the last column.

One-dimensional subscript of the cell index of the
adjacent cell which is in the next column.

Number of columns in the grid.

Counts the total number of inner iterations that are
executed.

Number of layers in the grid.

One-dimensional subscript of the cell index of the
adjacent cell which is in the last layer.

One-dimensional subscript of the cell index of the
adjacent cell which is in the next layer.

22

Variable

NLS
NLZ

NODES
NORM

NPCOND

NRB

NRC
NRH

NRL
NRN
NROW
NSTP
P

PAP
RCHG
RCHGN
RCLOSE
RELAX
RHS
SROLD

SRNEW

SS
\

Range
Package

Package

Global
PCG2AP

Package

Module

Package
Package

Package
Package
Global
Global
PCG2AP
PCG2AP
PCG2AP
PCG2AP
Package
Package
Global
PCG2AP
PCG2AP

PCG2AP
PCG2AP

Definition

One-dimensional subscript of conductance to the
adjacent cell which is in the next layer.

One-dimensional subscript of conductance to the
adjacent cell which is in the last layer.

Number of cells (nodes) in the finite-difference grid.

Flag for scaling the matrix set of equations. NORM=1
and scaling is executed only when NPCOND=2.

Preconditioner used:

1 Incomplete Cholesky with row-sums agreement
2 Polynomial

One-dimensional subscript of conductance to the
adjacent cell which is in the last row.

Number of cells in a model layer.

One-dimensional subscript of conductance to the
adjacent cell which is in the next row.

One-dimensional subscript of the cell index of the
adjacent cell which is in the last row.

One-dimensional subscript of the cell index of the
adjacent cell which is in the next row.

Number of rows in the grid.

Number of time steps in the current stress period.

DIMENSION (NCOL,NROW,NLAY), p, and p of equations
6d-63. k k-1

Double-precision field containing the denominator of
equation 6e.

DIMENSION (MXITER*ITER1), Extreme residual (BIGR) for
each iteration.

Double-precision field containing the residual change
at one cell at one iteration.

Closure criteria for the residual for the iterative
procedure.

Relaxation parameter of equation 1la.

DIMENSION (NCOL,NROW,NLAY), right-hand side of the
finite-difference equation. RHS is an accumulation
of terms from several different packages.

Double-precision field containing the denominator of
equation 6c.

Double-precision field containing the numnerator of
equations 6c and 6e.

DIMENSION (NCOL,NROW,NLAY), Sy of equation 6a-be.

DIMENSION (NCOL,NROW,NLAY), intermediate solution when
solving equation 6a, and when calculating PAP.

23

REFERENCES

Ashby, S.F., 1987, Polynomial preconditioning for conjugate gradient
methods: Department of Computer Science, Report UIUCDCS-R-87-1355,
University of Illinois, Urbana-Champaign, IL., 131 p.

Ashcraft, C.C., and Grimes, R.G., 1988, On vectorizing incomplete
factorization and SSOR preconditioners: SIAM Journal of Scientific and
Statistical Computing, v. 9, no. 1, p. 122-151.

Axelsson, 0., and Lindskog, G., 1986, On the eigenvalue distribution of a
class of preconditioning methods: Numerical Mathematics, v. 48,

p- 479-498.

Aziz, Khalid and Settari, Antonin, 1979, Petroleum reservoir simulation,
Elsevier, 476 p.

Concus, Paul, Golub, G.H., and O'Leary, D.P., 1976, A generalized conjugate
gradient method for the numerical solution of elliptic partial
differential equations, in Bunch, J.P., and Rose, D.J., eds., Sparse
Matrix computations, Academic Press, p. 303-332.

Dorn, W.S. and McCracken, D.D., 1972, Numerical methods with FORTRAN IV
case studies: John Wiley, 447 p.

Dubois, P.F., Greenbaum, A., Rodrique, G.H., 1979, Approximating the inverse
of a matrix for use in iterative algorithms on vector processors:
Computing, vol. 22, p. 257-268.

Dupont, Todd, Kendall, R.P., and Rachford, H.H., Jr.,1968, An approximate
factorization procedure for solving self-adjoint elliptic difference
equations: SIAM Journal on Numerical Amalysis, v. 5, no. 3, p. 559-573.

Forsythe, G.E. and Strauss, E.G., 1955, On best conditioned matrices:
American Mathematical Society Proceedings, vol. 6, no. 3, p. 340-345.

Gerschgorin, S., 1931, Uber die abrenzung der eigenwerte einer matrix: Isv.
Akad. Nauk SSSR Ser. Mat., vol. 7, p. 749-754.

Gustafsson, Ivar, 1978, A class of first order factorization methods: BIT
v. 18, p. 142-156.

1979, On modified incomplete Cholesky factorization methods for the

solution of problems with mixed boundary conditions and problems with

discontinuous material coefficients: International Journal for Numerical
Methods in Engineering, v. 14, p. 1127-1140.

Hestenes, M.R. and Stiefel, Eduard, 1952, Methods of conjugate gradients for
solving linear systems: Journal of Research for the National Bureau of
Standards, vol. 49, no. 6, p. 409-436.

Hildebrand, F.B., 1965, Methods of applied mathematics: Prentice-Hall, Inc.,
362 p.

Hill, M.C., in press, Solving ground-water flow problems by conjugate-gradient
methods and the strongly implicit procedure: Water Resources Research.

Johnson, 0.G., Micchelli, C.A., and Paul, George, 1983, Polynomial
preconditioners for conjugate gradient calculations: SIAM Journal of
Numerical Analysis, v. 20, no. 2, p. 362-376.

Kuiper, L.K., 1981, A comparison of the incomplete Cholesky-conjugate
gradient method with the strongly implicit method as applied to the
solution of two-~dimensional groundwater flow equations: Water
Resources Research, v. 17, no.4, p. 1082-1086.

1987, Computer program for solving ground-water flow equations by the
preconditioned conjugate gradient method: U.S. Geological Survey Water-
Resources Investigations Report 87-4091, 34 p.

24

McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional ground-
water flow model: U.S. Geological Survey Techniques of Water-Resources
Investigations, bk. 6, ch. Al, 548 p.

Meijerink, J.A., and van der Vorst, H.A., 1977, An iterative solution method
for linear systems of which the coefficient matrix is a symmetric
M-Matrix: Mathematics of Computation, v. 31, no. 137, p. 148-162.

1981, Guidelines for the usage of incomplete decompositions in solving
sets of linear equations as they occur in practical problems, Journal of
Computational Physics, v. 44, p. 134-155.

Meyer, P.D., Valocchi, A.J., Ashby, S.F., and Saylor, P.E., 1989, A numerical
investigation of the conjugate gradient method as applied to three-
dimensional groundwater flow problems in randomly heterogeneous porous
media: Water Resources Research, vol., 25, no. 6, p. 1440-1446.

Remson, Irwin, Hornberger, G.M. and Molz, F.J., 1971, Numerical methods in
subsurface hydrology: John Wiley, 389 p.

Saad, Y., 1985, Practical use of polynomial preconditionings for the
conjugate gradient method: SIAM Journal of Scientific and Statistical
Computing, v. 6, no. 4, p. 865-881.

Varga, R.S., 1962, Matrix iterative analysis: Prentice-Hall, Inc., 322 p.

Watts, J.W., 1981, A conjugate gradient-truncated direct method for the
iterative solution of the reservoir simulation pressure equation:
Society of Petroleum Engineers, v. 21, no. 3, p. 345-353.

Wong, Y.S., 1979, Pre-conditioned conjugate gradient methods for large
sparse matrgix problems, in Proceedings of the First International
Conference on Numerical Methods in Thermal Problems, Swansea, U.K.,

July 2-6, 1979, eds. R.W. Lewis and K. Morgan, p. 967-979.

25

FORTRAN LISTING

26

PCG2AL

SUBROUTINE PCG2AL(ISUM,LENX,LCV,LCSS,LCP,LCCD,LCHCHG,LCLHCH,

1 LCRCHG, LCLRCH, MXITER, ITER] ,NCOL , NROW, NLAY, IN, IOUT , NPCOND)
c
o VERSION 0002 01MAY1989 PCG2AL
c
C I ZE XXX E RS2 R SR SRR SRR R R R R R R E R R R R R E R R R R R R YRR R
c ALLOCATE STORAGE IN THE X ARRAY FOR PCG ARRAYS
C AEEREEER AR RRRRRAAKRRRRRRRR AR AR AR AR R Rk RN h ki hhkhikh
c
c SPECIFICATIONS:
C O e v e . ot ki o 4420 4Bt . . i S v S S S Sl A A S e HVY S S P S e e ———— -
c _________________________ - ———
c
o PRINT A MESSAGE IDENTIFYING PCG PACKAGE
WRITE(IOUT,1)
1 FORMAT(1HO,'PCG2 -- CONJUGATE GRADIENT ‘SOLUTION PACKAGE'
1,', VERSION 2, 5/1/88"')
c
o[READ AND PRINT MXITER,ITERL AND NPCOND
READ(IN,2) MKITER, ITER],NPCOND
2 RORMAT(3I10)
WRITE(IOUT,3) MXITER,ITERL,NPCOND
3 FORMAT(' MAXIMUM OF',14,' CALLS OF SOLUTION ROUTINE'/
1 ,' MAXIMUM OF',I4,' INTERNAL ITERATIONS PER °
2 ,"CALL TO SOLUTION ROUTINE'/
3 ;' MATRIX PRECONDITIONING TYPE :',I5)
c
oI ALLOCATE SPACE FOR THE PCG ARRAYS
ISOLD=ISUM
NRC=NROW*NCOL
ISIZ=NRCANLAY
LCV=ISUM
ISUM=ISUM+ISIZ
LCSS=ISUM
ISUM=ISUM+ISIZ
LCP=ISUM
ISUM=TSUM+ISIZ
LCCD=ISUM
IF(NPCOND.NE.2) ISUM=ISUM+ISIZ
LCHCHG=ISUM
ISUM=ISUM+MXITER* ITERL
LCLHCH=ISUM
1SUM=ISUM+ 3 *MXITER* ITER]
LCRCHG=1ISUM
ISUM=ISUM+MXITER* ITERL
LCLRCH=ISUM
ISUM=ISUM+3*MXITER*ITER1
C
C----—-CALCULATE AND PRINT THE SPACE USED IN THE X ARRAY

4

5

ICG=ISUM-ISOLD
WRITE(IOUT,4) ICG

FORMAT(1X,17,' ELEMENTS IN X ARRAY ARE USED BY PCG')
ISUM1=ISUM-1

WRITE(IOUT,5) ISUM1,LENX

FORMAT(1X,I7,' ELEMENTS OF X ARRAY USED OUT OF',I7)

27

IF(ISUM1l.GT.LENX) WRITE(IOUT,6)
6 FORMAT(1X,' ***X ARRAY MUST BE DIMENSIONED LARGER***')

28

OOQOO000000000

PCG2RP

SUBROUTINE PCG2RP (MXITER,ITER1,HCLOSE,RCLOSE,NPCOND,NBPOL,
1 RELAX, IPRPCG, IN,IOUT,MUTPCG, IPCGCD)

----- VERSION 0002 01MAY1989 PCG2RP

IZZ 222X R SRR RSS2SR R RERRRRR R R RS2 2R Rt AR R R R R R R RS LR

READ DATA FOR PCG
R R R R R Y R R 22 R 2L

SPECIFICATIONS:

——————— READ HCLOSE,RCLOSE,RELAX,NBPOL, IPRPCG,MUTPCG
READ(IN,1) HCLOSE,RCLOSE,RELAX,NBPOL, IPRPCG,MUTPCG, IPCGCD
1 FORMAT(3F10.0,4I10)

------- PRINT MXITER,ITER1,NPCOND,HCLOSE,RCLOSE,RELAX,NBPOL,IPRPCG,
------- MUTPCG, IPCGCD
WRITE(IOUT,100)
100 FORMAT(1HO,///57X,'SOLUTION BY THE CONJUGATE-GRADIENT METHOD'
1/57X,43('-*))
WRITE(IOUT,115) MXITER
115 FORMAT(1HO, 38X, 'MAXIMUM NUMBER OF CALLS TO PCG ROUTINE =',I9)
WRITE(IOUT,120) ITERL
120 FORMAT(1lH ,42X,'MAXIMUM ITERATIONS PER CALL TO PCG =',I9)
WRITE(IOUT,122) NPCOND
122 FORMAT(1lH ,49X, 'MATRIX PRECONDITIONING TYPE =',19)
IF(NPCOND.EQ.2) WRITE(IOUT,123)
123 FORMAT(1H ,58X,'THE MATRIX WILL BE SCALED')
WRITE(IOUT,124) RELAX,NBPOL
124 FORMAT(1H ,26X,'RELAXATION FACTOR (ONLY USED WITH',
1' PRECOND. TYPE 1) =',El5.5,/,
2 1H ,19X, 'PARAMETER OF POLYMOMIAL PRECOND. '
3 ,'" =2 (2) OR IS CALCULATED :',I9)
WRITE(IOUT,125) HCLOSE
125 FORMAT(1H ,43X,'HEAD CHANGE CRITERION FOR CLOSURE =',El5.5)
WRITE(IOUT,127) RCLOSE
127 FORMAT(1H , 39X, 'RESIDUAL CHANGE CRITERION FOR CLOSURE =',E15.5)
IF(IPRPCG.LE.O0)IPRPCG=999
WRITE(IOUT,130) IPRPCG,MUTPCG
130 FORMAT(1H ,30X,'PCG HEAD AND RESIDUAL CHANGE PRINTOUT INTERVAL ='
1,19,/,1H ,30X,'ALL PRINTING FROM THE SOLVER IS SUPPRESSED (1) ='
2,I9)
WRITE(IOUT,135) IPCGCD
135 FORMAT(1H ,5X,'FOR NPCOND=1, DO (0) OR DO NOT (1) RECALC.',
1 ' CHOL. DIAG. EACH OUTER ITER. =',I9,/)

RETURN
END

29

0OO0OO0O0O00O0O00O00O0

PCGZAP

SUBROUTINE PCG2AP (HNEW, IBOUND,CR,CC,CV,HCOF,RHS,V,SS,P,CD,

1 HCHG,LHCH,RCHG,LRCH,KITER, NITER, HCLOSE,RCLOSE, ICNVG,
2 KSTP,KPER, IPRPCG,MXITER, ITER1,NPCOND, NBPOL,NSTP,NCOL, NROW,
3 NLAY,NODES ,RELAX, IOUT, MUTPCG, IPCGCD, STEPL, DELT, IU, IP)

————— VERSION 0002 01MAY1989 PCG2AP

RREAKRKRAKRKIARAKARRRRRARKRA AR AR AR AT Rk hhkhhkhhhhhkhkkhhhkhhhhkhhhhhkik

SOLUTION BY THE CONJUGATE GRADIENT METHOD -

UP TO ITER1 ITERATIONS
ARERRARR R R AR R R R AR AR IR RA AR AR R R AR RR KRk kR hhhkhhhhhhhhkh

SPECIFICATIONS:
PARAMETER (DZERO=0.D0,DONE=1.D0)
DOUBLE PRECISION HNEW,HHCOF,RRHS,RES
DOUBLE PRECISION Z,B,D,E,F,H,S,ALPHA
DOUBLE PRECISION ZHNEW,BHNEW,DHNEW,FHNEW, HHNEW, SHNEW, HCHNEW
DOUBLE PRECISION SRNEW,SROLD,SSCR,SSCC,SSCV,VCC,VCR,VCV
DOUBLE PRECISION CDCC,CDCR,CDCV,CDN
DOUBLE PRECISION PN,VN,SSN,HCHGN,RCHGN,PAP
DOUBLE PRECISION FCC,FCR,FCV,FV

DIMENSION HNEW(NODES), IBOUND(NODES), CR(NODES), CC(NODES),

1 CV(NODES), HCOF(NODES), RHS(NODES),

2 V(NODES), SS(NODES), P(NODES), CD(NODES), HCHG(MXITER*ITER1),
3 LHCH(3,MXITER*ITER1), RCHG(MXITER*ITER1), LRCH(3,MXITER*ITERI)

——————— ASSIGN VALUES TO FIELDS THAT ARE CONSTANT DURING AN ITERATION
NRC=NROW*NCOL
------- INITIALIZE VARIABLES USED TO CALCULATE ITERATION PARAMETERS
SRNEW=DZERO
BPOLY=0.
IF(NPCOND.NE.1l) RELAX=l.
NORM=0
IF(NPCOND.EQ.2) NORM=1
——————— INITIALIZE VARIABLE USED TO TEST FOR NEGATIVE CHOLESKY DIAGONAL
CD1=0.
—————— CLEAR PCG WORK ARRAYS.,
DO 100 N=1,NODES
SS(N)=0.
P(N)=0.
100 V(N)=0.
IF(NPCOND.EQ.1) THEN
ITYPE=0
IF(IPCGCD.EQ.1.AND.{(IU.EQ.0.OR.IP.GT.0.0R.KPER.GT.1)) THEN
IF(STEPL.EQ.DELT) ITYPE=1
STEPL=DELT
ENDIF
IF(ITYPE.EQ.0) THEN
DO 105 N=1,NODES
105 CD(N)=0.
ENDIF
ENDIF

30

—————— CALCULATE THE RESIDUAL. IF NORM=1, CALCULATE THE DIAGONALS OF
—————— THE A MATRIX,AND STORE THEM IN HCOF.

DO 115 K=1,NLAY

DO 115 I=1,NROW

DO 115 J=1,NCOL

——————— CALCULATE 1 DIMENSIONAL SUBSCRIPT OF CURRENT CELL AND
------- SKIP CALCULATIONS IF CELL IS INACTIVE
N=J+(I-1)*NCOL+(K-1)*NRC
IF(IBOUND(N).EQ.0) THEN
CC(N)=0.)
CR(N)=0.
IF(N.LE. (NODES-NRC)) CV(N)=0.
IF(N.GE.2) CR(N-1)=0.
IF(N.GE.NCOL+1l) CC(N-NCOL)=0.
IF(N.LE. (NODES-NRC) .AND.N.GE.NRC+1) CV(N-NRC)=0.
HCOF (N)=0.
RHS (N)=0.
GO TO 115
ENDIF

——————— CALCULATE 1 DIMENSIONAL SUBSCRIPTS FOR LOCATING THE 6
——————— SURROUNDING CELLS

NRN=N+NCOL

NRL=N-NCOL

NCN=N+1

NCL=N-1

NLN=N+NRC

NLL=N-NRC

——————— CALCULATE 1 DIMENSIONAL SUBSCRIPTS FOR CONDUCTANCE TO THE 6
------- SURROUNDING CELLS.

NCF=N

NCD=N-1

NRB=N-NCOL

NRH=N

NLS=N

NLZ=N-NRC

————— GET CONDUCTANCES TO NEIGHBORING CELLS
------- NEIGHBOR IS 1 ROW BACK
B=DZERO
BHNEW=DZERO
IF(I.NE.1) THEN
B=CC(NRB)
BHNEW=B* (HNEW(NRL) -HNEW(N))
ENDIF

------- NEIGHBOR IS 1 ROW AHEAD
H=DZERO
HHNEW=DZERO
IF(I.NE.NROW) THEN
H=CC(NRH)
HHNEW=H* (HNEW(NRN) -HNEW(N))
ENDIF

31

Cmmmmm—- NEIGHBOR IS 1 COLUMN BACK
D=DZERO
DENEW=DZERO
IF(J.NE.1) THEN
D=CR(NCD)
DHNEW=D* (HNEW (NCL)-HNEW(N))
ENDIF

Cm———mmm NEIGHBOR IS 1 COLUMN AHEAD
F=DZERO)
FHNEW=DZERO
IF(J.NE.NCOL) THEN
F=CR(NCF)
FHNEW=F* (HNEW (NCN) -HNEW(N))
ENDIF

Cowmmmem NEIGHBOR IS 1 LAYER BEHIND
Z=DZERO
ZHNEW=DZERO
IF(K.NE.l) THEN

Z=CV(NLZ)

ZHNEW=Z* (HNEW(NLL)-HNEW(N}))
ENDIF

------- NEIGHBOR IS 1 LAYER AHEAD
S=DZERO
SHNEW=DZERO
IF(K.NE.NLAY) THEN
S=CV(NLS)
SHNEW=S* (HNEW (NLN) -HNEW(N))
ENDIF

IF(I.EQ.NROW) CC(N)=0.
IF(J.EQ.NCOL) CR(N)=0.

------- CALCULATE THE RESIDUAL AND STORE IT IN RHS. TO SCALE A,

------- CALCULATE THE DIAGONAL OF THE A MATRIX, AND STORE IT IN HCOF.
E=~Z-B-D-F-H~-S
2RHS=RHS (N)
HHCOF=HNEW(N) *HCOF' (N)
RHS (N) =RRHS-ZHNEW-BHNEW~DHNEW-HHCOF ~FHNEW-HHNEW-SHNEW
IF(NORM.EQ.1) HCOF(N)=HCOF(N)+E
IF(IBOUND(N).LT.0.) RHS(N)=0.

115 CONTINUE

——————— SCALE CC,CR,CV,RHS AND HNEW IF NORM=1l.
IF(NORM.EQ.l) THEN
DO 120 K=1,NLAY
DO 120 I=1,NROW
DO 120 J=1,NCOL
N=J+(I-1)*NCOL+(K~1)*NRC
IF(IBOUND(N).EQ.0) GO TO 120
HHCOF=SQRT (-HCOF(N))
IF(N.LE. (NODES-NCOL) .AND.CC(N).GT.0.)

32

4 CC(N)=CC(N)/ (HHCOF* (SQRT(-HCOF (N+NCOL))))
IF(CR(N).GT.0.) CR(N)=CR(N)/(HHCOF*(SQRT (~HCOF(N+1))))
IF(N.LE. (NODES-NRC) .AND.CV(N).GT.0.)

CV(N)=CV(N)/(HHCOF* (SQRT(~HCOF (N+NRC))))

HNEW (N) =HNEW (N) * HHCOF
RHS (N) =RHS (N) /HHCOF
120 CONTINUE
ENDIF

——————— CALCULATE PARAMETER B OF THE POLYNOMIAL PRECONDITIONING METHOD
IF(NPCOND.NE.2) GO TO 152
IF(NBPOL.EQ.2) THEN
BPOLY=2
GO TO 151
ENDIF
DO 150 K=1,NLAY
DO 150 I=1,NROW
DO 150 J=1,NCOL

N=J+(I-1)*NCOL+(K-1)*NRC
IF(IBOUND(N).LE.0)GO TO 150

NCF=N
NCD=N-1
NRB=N-NCOL
NRH=N
NLS=N
NLZ=N-NRC

B=DZERO

IF(I.NE.1) B=CC(NRB)
H=DZERO

IF(I.NE.NROW) H=CC(NRH)
D=DZERO

IF(J.NE.1) D=CR{NCD)
F=DZERO

IF(J.NE.NCOL) F=CR({NCF)
Z2=DZERO

IF(K.NE.1l) Z=CV(NLZ)
S=DZERO

IF(K.NE.NLAY) S=CV{NLS)

——————— NOTE : ABS. VAL. OF THE DIAG. OF THE SCALED A MATRIX IS 1.
HHCOF=HCOF (N)
IF(NORM.EQ.l) HHCOF=DONE
T=DABS(Z)+DABS (B)+DABS (D) +ABS (HHCOF) +DABS (F) +DABS (H) +DABS(S)
IF(T.GT.BPOLY) BPOLY=T
150 CONTINUE
151 CONTINUE

------- CALCULATE ITERATION PARAMETERS FOR POLYNOMIAL PRECONDITIONING
——————— METHOD FOR A NEGATIVE DEFINITE MATRIX.
C0=(15./32.)*(BPOLY**3)
Cl=(27./16.)*(BPOLY**2)
C2=(9./4.)*BPOLY

33

152 CONTINUE

153

~—-—START INTERNAL ITERATIONS

IITER=0

IF(KITER.EQ.1) NITER=0
ICNVG=0

IICNVG=0

CONTINUE

IITER=IITER+]
NITER=NITER+1l

——-INITIALIZE VARIABLES THAT TRACK MAXIMUM HEAD CHANGE AND RESIDUAL
-—-VALUE DURING EACH ITERATIONS

BIGH=0.
BIGR=0.

—~—CHECK NPCOND FOR PRECONDITIONING TYPE AND EXECUTE PROPER CODE

IF(NPCOND.EQ.2) GO TO 165

—-——CHOLESKY PRECONDITIONING

--—-STEP THROUGH CELLS TO CALCULATE THE DIAGONAL OF THE CHOLESKY
--—MATRIX (FIRST INTERNAL ITERATION ONLY) AND THE INTERMEDIATE
--—-SOLUTION. STORE THEM IN CD AND V, RESPECTIVELY.

DO 155 K=1,NLAY
DO 155 I=1,NROW
DO 155 J=1,NCOL

N=J+(I-1)*NCOL+(K-1)*NRC
IF(IBOUND(N).LE.O)GO TO 155

~--CALCULATE V

H=DZERO
VCC=DZERO
IC=N-NCOL
IF(I.NE.1) THEN
H=CC(IC)
IF(CD(IC).NE.0.) VCC=H*V(IC)/CD(IC)
ENDIF

F=DZERO
VCR=DZERO
IR=N-1
IF(J.NE.1l) THEN
F=CR(IR)
IF(CD(IR).NE.0.) VCR=F*V(IR)/CD(IR)
ENDIF

S=DZERO
VCV=DZERO
IL=N-NRC
IF(K.NE.1l) THEN
S=CV(IL)
IF(CD(IL).NE.0.) VCV=S*V(IL)/CD(IL)

34

ENDIF
V(N)=RHS(N)-VCR-VCC-VCV

——————— CALCULATE CD - FIRST INTERNAL ITERATION ONLY
IF(IITER.EQ.1.AND.ITYPE.EQ.0) THEN
CDCR=DZERO
CDCC=DZERO
CDCV=DZERO
FCC=DZERO
FCR=DZERO
FCV=DZERO
IF(IR.GT.0.AND.CD(IR).NE.O.) CDCR=(F**2)/CD(IR)
IF(IC.GT.0.AND.CD(IC).NE.O.) CDCC=(H**2)/CD(IC)
IF(IL.GT.0.AND.CD(IL).NE.O.) CDCV=(S**2)/CD(IL)
IF (NPCOND.EQ.1) THEN
IF(IR.GT.0) THEN
FV=CV(IR)
IF(K.EQ.NLAY.AND. ((J+I).GT.1)) FV=DZERO
IF(CD(IR).NE.0.) FCR=(F/CD(IR)}*(CC(IR)+FV)
ENDIF
IF(IC.GT.0) THEN
FV=CV(IC)
IF(K.EQ.NLAY.AND.(I.GT.l)) FV=DZERO
IF(CD(IC).NE.0.) FCC=(H/CD(IC))*(CR(IC)+FV)
ENDIF
IF(IL.GT.0) THEN
IF{CD(IL).NE.O.) FCV=(S/CD(IL))*{CR(IL)+CC(IL))
ENDIF
ENDIF
IF(NORM.EQ.0) THEN
B=DZERO
H=DZERO
D=DZERO
F=DZERO
Z=DZERO
S=DZERO
IF(I.NE.1) B=CC(IC)
IF(I.NE.NROW) H=CC(N)
IF(J.NE.1l) D=CR(IR)
IF(J.NE.NCOL) F=CR(N)
IF(K.NE.1) Z=CV{(IL)
IF(K.NE.NLAY) S=CV(N)
HHCOF=HCOF (N)-Z~B-D-F-H-§
ENDIF
IF(NORM.EQ.1) HHCOF=-DONE
CD (N) =HHCOF-CDCR-CDCC-CDCV-RELAX* (FCR+FCC+FCV)
IF(CD1.EQ.0..AND.CD(N).NE.0.) CD1=CD(N)
IF(CD(N)*CD1.LT.0.) THEN
WRITE(IOUT,510)

510 FORMAT(//,' CHOLESKY DIAGONAL LESS THAN ZERO -- '
1 'EXECUTION TERMINATED (MATRIX NOT DIAGONALLY DOMINANT)')
STOP
ENDIF
ENDIF

35

155 CONTINUE

——————— STEP THROUGH EACH CELL AND SOLVE FOR S OF THE CONJUGATE
——————— GRADIENT ALGORITHM BY BACK SUBSTITUTION. STORE RESULT IN SS.
DO 160 KK=NLAY,1,-1
DO 160 II=NROW,l,-1
DO 160 JJ=NCOL,1,-1

N=JJ+(II-1)*NCOL+(KK-1)*NRC
IF(IBOUND(N).LE.0)GO TO 160

NC=N+1
NR=N+NCOL
NL=N+NRC

——————— BACK SUBSTITUTE, STORING RESULT IN ARRAY S8
SSCR=DZERO
SSCC=DZERO
SSCV=DZERO
IF(JJ.NE.NCOL) SSCR=CR(N)*SS(NC)/CD(N)
IF(II.NE.NROW) SSCC=CC(N)*SS(NR)/CD(N)
IF(KK.NE.NLAY) SSCV=CV(N)*SS(NL)/CD(N)
VN=V(N)/CD(N)
SS(N)=VN-SSCR-SSCC-SSCV
160 CONTINUE
------- SKIP OVER OTHER PRECONDITIONING TYPES
GO TO 199
165 CONTINUE

------- POLYNOMIAL PRECONDITIONING
DO 170 N=1,NODES
V(N)=RHS(N)

170 CONTINUE
CALL SPCG2E(IBOUND,RHS,HCOF,CR,CC,CV,V,SS,C2,NORM,NCOL, NROW,
1 NLAY,NODES)
CALL SPCG2E(IBOUND,RHS,HCOF,CR,CC,CV,SS,V,Cl,NORM, NCOL,NROW,
1 NLAY,NODES)
CALL SPCG2E(IBOUND,RHS,HCOF,CR,CC,CV,V,SS,C0,NORM, NCOL,NROW,
1 NLAY ,NODES)

199 CONTINUE

------- CALCULATE P OF THE CONJUGATE GRADIENT ALGORITHM
SROLD=SRNEW
SRNEW=DZERO
DO 200 N=1,NODES
IF(IBOUND(N).LE.0)GO TO 200
SRNEW=SRNEW+SS (N) *RHS(N)
200 CONTINUE

IF(IITER.EQ.1) THEN
DO 205 N=1,NODES
205 P(N)=SS(N)
ELSE
DO 210 N=1,NODES
210 P(N)=SS(N)+(SRNEW/SROLD) *P(N)

36

ENDIF

——————— CALCULATE ALPHA OF THE CONJUGATE GRADIENT ROUTINE.
——————— FOR THE DENOMINATOR OF ALPHA, MULTIPLY THE MATRIX A BY THE
——————— VECTOR P, AND STORE IN V; THEN MULTIPLY P BY V. STORE IN PAP.

PAP=DZERO

DO 290 K=1,NLAY

DO 290 I=1,NROW

DO 290 J=1,NCOL

N=J+(I-1)*NCOL+(K-1)*NRC
V(N)=0.
IF(IBOUND(N).LE.0)GO TO 290

NRN=N+NCOL
NRL=N-NCOL
NCN=N+1
NCL=N-1
NLN=N+NRC
NLL=N-NRC

NCF=N
NCD=NCL
NRB=NRL
NRH=N
NLS=N
NLZ=NLL

B=DZERO

IF(I.NE.1) B=CC(NRB)
H=DZERO
IF(I.NE.NROW)H=CC(NRH)
D=DZERO

IF(J.NE.1) D=CR(NCD)
F=DZERO

IF(J.NE.NCOL) F=CR(NCF)
Z=DZERO

IF(K.NE.1) Z=CV(NLZ)
S=DZERO

IF(K.NE.NLAY) S=CV(NLS)

IF(NORM.EQ.0) PN=P(N)

IF(NORM.EQ.1) PN=DZERO

BHNEW=DZERO

HHNEW=DZERO

DHNEW=DZERO

FHNEW=DZERO

ZHNEW=DZERO

SHNEW=DZERO

IF(NRL.GT.0) BHNEW=B* (P(NRL)-PN)
IF(NRN.LE.NODES) HHNEW=H* (P (NRN)-PN)
IF(NCL.GT.0) DHNEW=D* (P (NCL)-PN)
IF(NCN.LE.NODES) FHNEW=F* (P (NCN)-PN)
IF(NLL.GT.0) ZHNEW=Z*(P(NLL)-PN)
IF(NLN.LE.NODES) SHNEW=S* (P (NLN)-PN)

37

——————— CALCULATE THE PRODUCT OF MATRIX A AND VECTOR P AND STORE
——————— RESULT IN V.
PN=HCOF (N) *P(N)
IF(NORM.EQ.l) PN=-P(N)
VN=ZHNEW+BHNEW+DHNEW+PN+FHNEW+HHNEW+SHNEW
V(N)=VN
PAP=PAP+P(N) *VN
290 CONTINUE

------- CALCULATE ALPHA
ALPHA=SRNEW/PAP

——————— CALCULATE NEW HEADS AND RESIDUALS, AND SAVE THE LARGEST
------- CHANGE IN HEAD AND THE LARGEST VALUE OF THE RESIDUAL.
DO 300 K=1,NLAY
DO 300 I=1,NROW
DO 300 J=1,NCOL

N=J+(I-1)*NCOL+(K-1)*NRC
IF(IBOUND(N).LE.O0) GO TO 300

HCHGN=ALPHA*P(N)
IF(DABS(HCHGN) .GT.ABS(BIGH)) THEN
BIGH=HCHGN
IH=I
JH=J
KH=K
NH=N
ENDIF
HNEW (N) =HNEW (N) +HCHGN

———————— RESIDUAL (V IS THE PRODUCT OF MATRIX A AND VECTOR P)
RCHGN=-ALPHA*V(N)
RHS (N)=RHS (N)+RCHGN
IF(ABS(RHS(N)).GT.ABS(BIGR)) THEN
BIGR=RHS(N)
IR=1
JR=J
KR=K
NR=N
ENDIF
300 CONTINUE

------- UNSCALE LARGEST CHANGE IN HEAD AND LARGEST RESIDUAL, AND
——————— CHECK THE CONVERGENCE CRITERION
IF(NORM.EQ.1) THEN
BIGH=BIGH/SQRT (-HCOF(NH))
BIGR=BIGR*SQRT(~HCOF(NR))
ENDIF
IF(MXITER.EQ.l1) THEN
IF(ABS(BIGH).LE.HCLOSE.AND.ABS(BIGR).LE.RCLOSE) ICNVG=1l
ELSE
IF(IITER.EQ.1.AND.

38

1 ABS(BIGH) .LE.HCLOSE.AND.ABS(BIGR).LE.RCLOSE) ICNVG=1l
ENDIF
IF(ABS(BIGH).LE.HCLOSE.AND.ABS(BIGR).LE.RCLOSE) IICNVG=1l

——————— STORE THE LARGEST UNSCALED HEAD CHANGE AND RESIDUAL VALUE
——————— (THIS ITERATION) AND THEIR LOCATIONS.

II=NITER

HCHG(II)=BIGH

LHCH(1,II)=KH

LHCH(2,II)=IH

LHCH(3,II)=JH

RCHG(II)=BIGR
LRCH(1,II)=KR
LRCH(2,II)=IR
LRCH(3,II)=JR

------- GO TO NEXT INTERNAL ITERATION IF CONVERGENCE HAS NOT BEEN
------- REACHED AND IITER IS LESS THAN ITER1
IF(MXITER.EQ.1l) THEN
IF(ICNVG.EQ.0.AND.IITER.LT.ITERL1) GO TO 153
ELSE
IF(IICNVG.EQ.0.AND.IITER.LT.ITER1) GO TO 153
ENDIF

------- UNSCALE CR,CC,CV AND HNEW
IF(NORM.EQ.l) THEN
DO 310 N=1,NODES
IF(IBOUND(N).EQ.0) GO TO 310
HHCOF=SQRT (-HCOF(N))
IF(N.LE. (NODES-NCOL).AND.CC(N).GT.0.)
CC(N)=CC(N) * (HHCOF* (SQRT (~HCOF (N+NCOL)) })
IF(N.LE.(NODES-1) .AND.CR(N).GT.0.)
CR(N)=CR(N) * (HHCOF* (SQRT (~HCOF(N+1))))
IF(N.LE. (NODES-NRC) .AND.CV(N).GT.0.)
CV(N)=CV(N)* (HHCOF* (SQRT (—~HCOF (N+NRC)) })
HNEW (N)=HNEW (N) /HHCOF

310 CONTINUE

ENDIF

------- IF END OF TIME STEP, PRINT # OF ITERATIONS THIS STEP
IF(ICNVG.EQ.0 .AND. KITER.NE.MXITER) GO TO 600
IF(MUTPCG.GT.1) GO TO 600
IF(KSTP.EQ.1) WRITE(IOQUT,500)

500 FORMAT(1HO)
WRITE(IOUT,501) KITER,KSTP,KPER,NITER

501 FORMAT(1X,I5,' CALLS TO PCG ROUTINE FOR TIME STEP',I4,
1' IN STRESS PERIOD',I3,/1X,I5,' TOTAL ITERATIONS')
IF(MUTPCG.EQ.1) GO TO 600

——————— PRINT HEAD CHANGE EACH ITERATION IF PRINTOUT INTERVAL IS REACHED
IF(ICNVG.EQ.0 .OR. KSTP.EQ.NSTP .OR. MOD(KSTP,IPRPCG).EQ.0)
1 CALL SPCG2P(HCHG,LHCH,RCHG,LRCH,IITER,KITER,KSTP,KPER,
2 ITERL1,NITER,MXITER, IOUT,NPCOND, BPOLY)

39

40

OO0OO0O0000000O0

a0

SPCG2P

SUBROUTINE SPCG2P (HCHG,LHCH,RCHG,LRCH,IITER,KITER,KSTP,KPER,ITER],
1 NITER,MXITER, IOUT,NPCOND,BPOLY)

———-VERSION 0001 01MAY1988 SPCG2P

khkkkhkhkhhkhhkhkhhkkhhhhkhhhhkhhhhhhhkkhkhhhhkhkhkhkhkhhhkhkhkhhhhhkhhhhhhhhkrhhhkkhhrk

PRINT MAXIMUM HEAD CHANGE AND RESIDUAL VALUE FOR EACH ITERATION

DURING A TIME STEP
Ry R R R TS S)]

SPECIFICATIONS:

DIMENSION HCHG(MXITER*ITER1l), LHCH(3,MXITER*ITERL)
DIMENSION RCHG(MXITER*ITER1), LRCH(3,MXITER*ITER1)

IF(NPCOND.EQ.2) WRITE(IOUT,2) BPOLY

2 FORMAT(1H0O,'B OF THE POLYNOMIAL PRECONDITIONING METHOD: ',El12.4)
WRITE(IOUT,S)

5 FORMAT(1HO, 'MAXIMUM HEAD CHANGE FOR EACH ITERATION:'/

1 1HO, 4(" HEAD CHANGE LAYER,ROW,COL')/1X,120('~"'))
WRITE (IOUT,10) (HCHG(J),(LHCH(I,J),I=1,3),J=1,NITER)
WRITE(IOUT,11)

WRITE(IOUT,15)
15 FORMAT(1HO,'MAXIMUM RESIDUAL FOR EACH ITERATION:'/
1 1HO, 4(" RESIDUAL LAYER,ROW,COL"')/1X,120("'~"))

WRITE (IOUT,10) (RCHG(J),(LRCH(I,J),I=1,3),J=1,NITER)
WRITE(IOUT,11)

RETURN

10 FORMAT((1X,4(4X,G12.4,"' (',I3,',',13,',',I3,')")))
11 FORMAT(1HO)

END

41

OO00O000O00O00O000n

SPCG2E

SUBROUTINE SPCG2E(IBOUND,RHS,HCOF,CR,CC,CV,VIN,VOUT,C,NORM,NCOL,
1 NROW, NLAY, NODES)

————— VERSION 0001 01MAY1989 SPCG2E
P I L A R R R Ry e R S S S 22y

MATRIX MULTIPLICATIONS FOR POLYNOMIAL PRECONDITIONING
AR AR R AR AR AR AR AR AR R AR AR R AR AR AR RN AR RN RARRRRA AR RN AR RA AR

SPECIFICATIONS:

DOUBLE PRECISION VN,CRHS,Z,B,D,F,H,S,2ZV,BV,DV,FV,HV,SV,DZERO
DIMENSION IBOUND(NODES),CR(NODES),CC(NODES),CV(NODES),
1 RHS(NODES),VIN(NODES),VOUT (NODES) ,HCOF (NODES)

DZERO=0.
NRC=NROW*NCOL
DO 290 K=1,NLAY
DO 290 I=1,NROW
DO 290 J=1,NCOL

N=J+(I-1)*NCOL+(K~-1)*NRC
VOUT(N)=0.
IF(IBOUND(N).LE.0)GO TO 290

NRN=N+NCOL
NRL=N-NCOL
NCN=N+1
NCL=N-1
NLN=N+NRC
NLL=N-NRC

NCF=N
NCD=NCL
NRB=NRL
NRH=N
NLS=N
NLZ=NLL

B=DZEROC
BV=DZERO
IF(I.NE.1.AND.IBOUND(NRL).GE.O0) THEN
B=CC(NRB)
BV=B*VIN(NRL)
ENDIF
H=DZERO
HV=DZERO
IF(I.NE.NROW.AND.IBOUND(NRN).GE.0) THEN
H=CC(NRH)
HV=H*VIN(NRN)
ENDIF
D=DZERO
DV=DZERO

42

IF(J.NE.1.AND.IBOUND(NCL).GE.0) THEN
D=CR (NCD)
DV=D*VIN(NCL)
ENDIF
F=DZERO
FV=DZERO
IF(J.NE.NCOL.AND.IBOUND(NCN).GE.0) THEN
F=CR (NCF)
FV=F*VIN(NCN)
ENDIF
Z=DZERO
ZV=DZERO
IF(K.NE.1.AND.IBOUND(NLL).GE.0) THEN
Z=CV(NLZ)
ZV=Z*VIN(NLL)
ENDIF
S=DZERO
SV=DZERO
IF(K.NE.NLAY.AND.IBOUND(NLN).GE.0) THEN
S=CV(NLS)
SV=S*VIN(NLN)
ENDIF

------- CALCULATE THE PRODUCT OF MATRIX A AND VECTOR VIN AND STORE
—————— RESULT IN VOUT
VN=HCOF (N) *VIN(N)
IF(NORM.EQ.1) VN=-VIN(N)
CRHS=C*RHS(N)
VOUT (N) =CRHS+2V+BV+DV+VN+FV+HV+SV
290 CONTINUE
RETURN
END

43
*U.S. GOVERNMENT PRINTING OFFICE: 1990-0-773-204/20022

	WRIR 90-4048 - Preconditioned Conjugate-Gradient 2 (PCG2), A Computer Program for Solving Ground-Water Flow Equations
	Abstract
	Introduction
	Purpose and scope
	Previous investigations

	Three-dimensional ground-water flow model
	Solution by the preconditioned conjugate-gradient method
	MICCG
	POLCG
	Convergence criteria

	Input instructions
	Sample data inputs
	Linking PCG2 to the modular model
	Documentation of PCG2
	Brief description of modules
	Flowchart
	Narratives for modules
	PCG2AL
	PCG2RP
	PCG2AP
	SPCG2P
	SPCG2E

	Adapting SPCG2E for computers with vector and parallel architecture
	List of variables

	References
	Fortran listing
	PCG2AL
	PCG2RP
	PCG2AP
	SPCG2P
	SPCG2E

