STREAM-GAGING STATIONS

AND

PUBLICATIONS RELATING TO WATER RESOURCES

1885–1913

PART VIII. WESTERN GULF OF MEXICO
DRAINAGE BASINS

COMPILED BY B. D. WOOD

Part of Water-Supply Paper 340

WASHINGTON
GOVERNMENT PRINTING OFFICE
1915
CONTENTS.

Introduction.. III
How Government reports may be obtained or consulted.. III
Stream-flow reports.. IV
Principal streams.. 95
Gaging stations.. 95
Reports on water resources of the western Gulf States... 98
 Publications of United States Geological Survey... 98
 Water-supply papers... 98
 Annual reports... 100
 Bulletins... 102
 Geologic folios.. 102
 Miscellaneous reports... 104
Geological Survey hydrologic reports of general interest...................................... IX
 Water-supply papers... IX
 Annual reports.. xvi
 Professional papers... xvii
 Bulletins... xvii
Index by areas and subjects... xix
Index of streams.. xxi
STREAM-GAGING STATIONS AND PUBLICATIONS RELATING TO WATER RESOURCES, 1885-1913.

Compiled by B. D. Wood.

INTRODUCTION.

Investigation of water resources by the United States Geological Survey has consisted in large part of measurements of the volume of flow of streams and studies of the conditions affecting that flow, but it has comprised also investigation of such closely allied subjects as irrigation, water storage, water powers, underground waters, and quality of waters. Most of the results of these investigations have been published in the series of water-supply papers, but some have appeared in the bulletins, professional papers, and annual reports.

The results of stream-flow measurements are now published annually in 12 parts, each part covering an area whose boundaries coincide with natural drainage features as indicated below:

Part I. North Atlantic basins.
 II. South Atlantic and eastern Gulf of Mexico basins.
 III. Ohio River basin.
 IV. St. Lawrence River basin.
 V. Upper Mississippi River and Hudson Bay basins.
 VI. Missouri River basin.
 VII. Lower Mississippi River basin.
 VIII. Western Gulf of Mexico basins.
 IX. Colorado River basin.
 X. Great Basin.
 XI. Pacific basins in California.
 XII. North Pacific basins.

HOW GOVERNMENT REPORTS MAY BE OBTAINED OR CONSULTED.

Water-supply papers and other publications of the United States Geological Survey containing data in regard to the water resources of the United States may be obtained or consulted as indicated below.

1. Copies may be obtained free of charge by applying to the Director of the Geological Survey, Washington, D. C. The edition printed for free distribution is, however, small and is soon exhausted.

2. Copies may be purchased at nominal cost from the Superintendent of Documents, Government Printing Office, Washington, D. C., who will on application furnish lists giving prices.
3. Sets of the reports may be consulted in the libraries of the principal cities in the United States.

4. Complete sets are available for consultation in the local offices of the water-resources branch of the Geological Survey, as follows:

Albany, N. Y., Room 18, Federal Building.
Atlanta, Ga., Post Office Building.
St. Paul, Minn., Old Capitol Building.
Madison, Wis., Capitol Building.
Helena, Mont., Montana National Bank Building.
Denver, Colo., 302 Chamber of Commerce Building.
Salt Lake City, Utah, Federal Building.
Boise, Idaho, 615 Idaho Building.
Phoenix, Ariz., 417 Fleming Building.
Portland, Oreg., 416 Couch Building.
Tacoma, Wash., Federal Building.
San Francisco, Cal., 505 Customhouse.
Los Angeles, Cal., Federal Building.
Santa Fe, N. Mex., Capitol Building.
Honolulu, Hawaii, Kapitolani Building.

A list of the Geological Survey's publications will be sent on application to the Director of the United States Geological Survey, Washington, D. C.

STREAM-FLOW REPORTS.

Stream-flow records have been obtained at more than 1,550 points in the United States, and the data obtained have been published in the reports tabulated below:

[A= Annual Report; B= Bulletin; WS= Water-Supply Paper.]

<table>
<thead>
<tr>
<th>Report</th>
<th>Character of data</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th A, pt. 2</td>
<td>Descriptive information only</td>
<td>1884 to Sept., 1890.</td>
</tr>
<tr>
<td>11th A, pt. 2</td>
<td>Monthly discharge and descriptive information</td>
<td>1884 to June 30, 1891.</td>
</tr>
<tr>
<td>12th A, pt. 2</td>
<td>do</td>
<td>1884 to Dec. 31, 1892.</td>
</tr>
<tr>
<td>13th A, pt. 3</td>
<td>Mean discharge in second-feet</td>
<td>1888 to Dec. 31, 1893.</td>
</tr>
<tr>
<td>14th A, pt. 2</td>
<td>Monthly discharge (long-time records, 1871 to 1893)</td>
<td>1893 and 1894.</td>
</tr>
<tr>
<td>B 131</td>
<td>Descriptions, measurements, gage heights, and ratings</td>
<td>1895.</td>
</tr>
<tr>
<td>16th A, pt. 2</td>
<td>Descriptive information only</td>
<td>1896.</td>
</tr>
<tr>
<td>B 140</td>
<td>Descriptions, measurements, gage heights, ratings, and monthly discharge (also many data covering earlier years).</td>
<td>1896.</td>
</tr>
<tr>
<td>WS 11</td>
<td>Descriptions, measurements, ratings, and monthly discharge (also similar data for some earlier years).</td>
<td>1896.</td>
</tr>
<tr>
<td>18th A, pt. 4</td>
<td>Descriptions, measurements, gage heights, eastern United States, eastern Mississippi River, and Missouri River above junction with Kansas.</td>
<td>1897.</td>
</tr>
<tr>
<td>WS 15</td>
<td>Descriptions, measurements, and gage heights, western Mississippi River below junction of Missouri and Platte, and western United States.</td>
<td>1897.</td>
</tr>
<tr>
<td>WS 16</td>
<td>Descriptions, measurements, ratings, and monthly discharge (also some long-time records).</td>
<td>1897.</td>
</tr>
<tr>
<td>19th A, pt. 4</td>
<td>Descriptions, measurements, ratings, and monthly discharge (also many earlier years).</td>
<td>1898.</td>
</tr>
<tr>
<td>WS 27</td>
<td>Measurements, ratings, and gage heights, eastern United States, eastern Mississippi River, and Missouri River.</td>
<td>1898.</td>
</tr>
<tr>
<td>WS 28</td>
<td>Measurements, ratings, and gage heights, Arkansas River and western United States.</td>
<td>1898.</td>
</tr>
<tr>
<td>20th A, pt. 4</td>
<td>Monthly discharge (also for many earlier years).</td>
<td>1899.</td>
</tr>
<tr>
<td>WS 35 to 50</td>
<td>Descriptions, measurements, and gage heights, and ratings.</td>
<td>1900.</td>
</tr>
<tr>
<td>21st A, pt. 4</td>
<td>Monthly discharge.</td>
<td>1900.</td>
</tr>
<tr>
<td>WS 47 to 52</td>
<td>Descriptions, measurements, gage heights, and ratings.</td>
<td>1900.</td>
</tr>
<tr>
<td>22nd A, pt. 4</td>
<td>Monthly discharge.</td>
<td>1900.</td>
</tr>
</tbody>
</table>

[A=Annual Report; B=Bulletin; WS=Water-Supply Paper.]

<table>
<thead>
<tr>
<th>Report</th>
<th>Character of data</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 65, 66</td>
<td>Descriptions, measurements, gage heights, and ratings</td>
<td>1901</td>
</tr>
<tr>
<td>WS 75</td>
<td>Monthly discharge</td>
<td>1901</td>
</tr>
<tr>
<td>WS 83 to 85</td>
<td>Complete data</td>
<td>1903</td>
</tr>
<tr>
<td>WS 97 to 100</td>
<td>...do...</td>
<td>1903</td>
</tr>
<tr>
<td>WS 124 to 135</td>
<td>...do...</td>
<td>1904</td>
</tr>
<tr>
<td>WS 155 to 175</td>
<td>...do...</td>
<td>1905</td>
</tr>
<tr>
<td>WS 201 to 214</td>
<td>...do...</td>
<td>1906</td>
</tr>
<tr>
<td>WS 241 to 252</td>
<td>...do...</td>
<td>1907-8</td>
</tr>
<tr>
<td>WS 261 to 272</td>
<td>...do...</td>
<td>1909</td>
</tr>
<tr>
<td>WS 281 to 292</td>
<td>...do...</td>
<td>1910</td>
</tr>
<tr>
<td>WS 301 to 312</td>
<td>...do...</td>
<td>1911</td>
</tr>
<tr>
<td>WS 321 to 332a</td>
<td>...do...</td>
<td>1912</td>
</tr>
<tr>
<td>WS 351 to 362a</td>
<td>...do...</td>
<td>1913</td>
</tr>
</tbody>
</table>

* In preparation.

Note.—No data regarding stream flow are given in the 15th and 17th annual reports.

The records at most of the stations discussed in these reports extend over a series of years, and miscellaneous measurements at many points other than regular gaging stations have been made each year. An index of the reports containing records obtained prior to 1904 has been published in Water-Supply Paper 119.

The following table gives, by years and drainage basins, the numbers of the papers on surface-water supply published from 1899 to 1913. The data for any particular station will in general be found in the reports covering the years during which the station was maintained. For example, data for Machias River at Whitneyville, Me., 1903 to 1913, are published in Water-Supply Papers 97, 124, 165, 201, 241, 261, 281, 301, 321, and 351, which contain records for the New England streams from 1903 to 1913. Results of miscellaneous measurements are published by drainage basins.
Number of water-supply papers containing results of stream measurements, 1899–1913.

<table>
<thead>
<tr>
<th></th>
<th>1899</th>
<th>1900</th>
<th>1901</th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
<th>1907–8</th>
<th>1909</th>
<th>1910</th>
<th>1911</th>
<th>1912</th>
<th>1913</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Atlantic coast</td>
<td>35</td>
<td>47</td>
<td>48</td>
<td>65</td>
<td>75</td>
<td>82</td>
<td>97</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>165</td>
<td>166</td>
<td>201</td>
<td>202</td>
</tr>
<tr>
<td>South Atlantic coast and eastern Gulf of Mexico</td>
<td>35, 36</td>
<td>48</td>
<td>65</td>
<td>75</td>
<td>82, 83</td>
<td>97, 98</td>
<td>126, 127</td>
<td>167</td>
<td>203</td>
<td>204</td>
<td>242</td>
<td>202</td>
<td>222</td>
<td>322</td>
</tr>
<tr>
<td>Ohio River basin</td>
<td>36</td>
<td>48, 49</td>
<td>65</td>
<td>75</td>
<td>83</td>
<td>98</td>
<td>128</td>
<td>169</td>
<td>205</td>
<td>243</td>
<td>263</td>
<td>283</td>
<td>303</td>
<td>323</td>
</tr>
<tr>
<td>St. Lawrence River and Great Lakes</td>
<td>36</td>
<td>49</td>
<td>65</td>
<td>75</td>
<td>82, 83</td>
<td>97</td>
<td>129</td>
<td>170</td>
<td>206</td>
<td>244</td>
<td>264</td>
<td>284</td>
<td>304</td>
<td>324</td>
</tr>
<tr>
<td>Hudson Bay and Upper Mississippi River</td>
<td>36</td>
<td>49</td>
<td>65</td>
<td>66, 75</td>
<td>83, 85</td>
<td>98, 99, 100</td>
<td>129, 130</td>
<td>171</td>
<td>207</td>
<td>245</td>
<td>265</td>
<td>285</td>
<td>305</td>
<td>325</td>
</tr>
<tr>
<td>Missouri River</td>
<td>36, 37</td>
<td>49</td>
<td>50</td>
<td>66, 75</td>
<td>84</td>
<td>99</td>
<td>130, 131</td>
<td>172</td>
<td>208</td>
<td>246</td>
<td>266</td>
<td>286</td>
<td>306</td>
<td>326</td>
</tr>
<tr>
<td>Lower Mississippi River</td>
<td>37</td>
<td>50</td>
<td>65</td>
<td>66, 75</td>
<td>83, 84</td>
<td>98, 99</td>
<td>128, 131</td>
<td>169, 173</td>
<td>205, 209</td>
<td>247</td>
<td>267</td>
<td>287</td>
<td>307</td>
<td>327</td>
</tr>
<tr>
<td>Western Gulf of Mexico</td>
<td>37</td>
<td>50</td>
<td>60, 65, 75</td>
<td>84</td>
<td>99</td>
<td>132</td>
<td>174</td>
<td>210</td>
<td>248</td>
<td>268</td>
<td>288</td>
<td>308</td>
<td>328</td>
<td>358</td>
</tr>
<tr>
<td>Colorado River</td>
<td>37, 38</td>
<td>50</td>
<td>66, 75</td>
<td>84</td>
<td>99</td>
<td>133</td>
<td>175, 177</td>
<td>211</td>
<td>249</td>
<td>269</td>
<td>289</td>
<td>309</td>
<td>329</td>
<td>359</td>
</tr>
<tr>
<td>Great Basin</td>
<td>38, 39</td>
<td>51</td>
<td>66, 75</td>
<td>85</td>
<td>100</td>
<td>133, 134</td>
<td>176, 177</td>
<td>212, 213</td>
<td>250, 251, 270, 271</td>
<td>290, 291, 310</td>
<td>330</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>38, 39</td>
<td>51</td>
<td>66, 75</td>
<td>85</td>
<td>100</td>
<td>134</td>
<td>177</td>
<td>213</td>
<td>251</td>
<td>271</td>
<td>291</td>
<td>311</td>
<td>331</td>
<td>361</td>
</tr>
<tr>
<td>North Pacific coast</td>
<td>38</td>
<td>39</td>
<td>51</td>
<td>66, 75</td>
<td>85</td>
<td>100</td>
<td>135</td>
<td>177, 178</td>
<td>214</td>
<td>252</td>
<td>272</td>
<td>292</td>
<td>312</td>
<td>332</td>
</tr>
</tbody>
</table>

- Rating tables and index to Water-Supply Papers 47–52 and data on precipitation, wells, and irrigation in California and Utah contained in Water-Supply Paper 52.
- Wissahickon and Schuylkill rivers to James River.
- New England rivers only.
- Hudson River to Delaware River, inclusive.
- Susquehanna River to Yadkin River, inclusive.
- James River only.
- Scioto River.
- Lake Ontario and tributaries to St. Lawrence River proper.
- Tributaries of Mississippi from east.
- Hudson Bay only.
- Gallatin River.
- Platte and Platte rivers near Columbus, Nebr., and all tributaries below junction with Platte.
- Platte and Kansas rivers.
- Green and Gunnison rivers and Grand River above junction with Gunnison.
- Below junction with Gila.
- Mohave River only.
- Great Basin in California, excepting Truckee and Carson-drainage basins.
- Kings and Kern rivers only.
- Rogue, Umpqua, and Siletz rivers.
- In three parts: A, Pacific basins in Washington and upper Columbia River; B, Snake River basin; C, Lower Columbia River and Pacific basins in Oregon.
In these papers and in the following lists the stations are arranged in downstream order. The main stem of any river is determined by measuring or estimating its drainage area—that is, the headwater stream having the largest drainage area is considered the continuation of the main stream, and local changes in name and lake surface are disregarded. All stations from the source to the mouth of the main stem of the river are presented first, and the tributaries in regular order from source to mouth follow, the streams in each tributary basin being listed before those of the next basin below.

The exceptions to this rule occur in the records for Mississippi River, which are given in four parts, as indicated on page iii, and in the records for large lakes, where it is simpler to take up the streams in regular order around the rim of the lake than to cross back and forth over the lake surface.
PART VIII. WESTERN GULF OF MEXICO DRAINAGE BASINS.

PRINCIPAL STREAMS.

The western Gulf of Mexico drainage basins include all streams draining into the Gulf of Mexico west of the mouth of the Mississippi and into the Rio Grande. The largest streams flowing into the Gulf of Mexico above the mouth of the Rio Grande are Sabine, Trinity, and Brazos rivers, Colorado River of Texas, and Guadalupe River. The principal tributaries of the Rio Grande are Chama River, Rio Puerco, and Pecos River in the United States and Rio Salado and Rio San Juan in Mexico. The streams drain wholly or in part the States of Colorado, Louisiana, New Mexico, Texas, and northern States of Mexico.

In addition to the list of gaging stations and annotated list of publications relating specifically to the section, these pages contain a similar list of reports that are of general interest in many sections and cover a wide range of hydrologic subjects, and also brief references to reports published by State and other organizations. (See p. 104.)

GAGING STATIONS.

Note.—Dash after a date indicates that station was being maintained June 30, 1913; period after a date indicates discontinuance.

Sabine River Basin.

Sabine River near Longview, Tex., 1904–1906.
Sabine River at Logansport, La., 1903–1906.
Neches River at Evadale, Tex., 1904–1906.

Trinity River Basin.

Trinity River at Dallas, Tex., 1895–1903; 1903–1906.
Trinity River at Riverside, Tex., 1903–1906.

Brazos River Basin.

Brazos River at Waco, Tex., 1898–1911.
Brazos River near Lewis (Hearne), Tex., 1898–99.
Brazos River at Richmond, Tex., 1903–1906.

Colorado River (of Texas) Basin.

Colorado River at Austin, Tex., 1895–1911.
Colorado River at Columbus, Tex., 1903–1911.
San Saba River near San Saba, Tex., 1905–67925°–15—2
Guadalupe River near New Braunfels, Tex., 1898-99.
Guadalupe River near Cuero, Tex., 1903-1906.

RIO GRANDE BASIN.

Rio Grande at Thirtymile Bridge near Creede, Colo., 1909--
Rio Grande near Creede (Wason), Colo., 1907--
Rio Grande near Del Norte, Colo. (except 1907), 1889--
Rio Grande near Alamosa, Colo., 1894-5; 1903; 1912--
Rio Grande near Lobatos (Cenicero), Colo., 1899--
Rio Grande near Embudo, N. Mex., 1889-1903; 1912--
Rio Grande near Buckman, N. Mex. (Rio Grande near Ildefonso), 1895-1905; 1909--
Rio Grande near San Marcial, N. Mex., 1895--
Rio Grande near El Paso, Tex., 1889-1893; 1895--
Rio Grande near Fort Hancock, Tex., 1900-1903.
Rio Grande above Presidio, Tex., 1900--
Rio Grande below Presidio, Tex., 1900--
Rio Grande near Langtry, Tex., 1900--
Rio Grande near Devils River, Tex., 1900--
Rio Grande at Eagle Pass, Tex., 1900--
Rio Grande near Laredo, Tex., 1900--
Rio Grande near Roma, Tex., 1900--
Rio Grande near Brownsville, Tex., 1900--
Clear Creek near Creede, Colo., 1910.
South Fork of Rio Grande at South Fork, Colo., 1910--San Luis Creek at Villa Grove, Colo., 1911-12.
San Luis Creek near Villa Grove, Colo., 1910--
Kerber Creek near Villa Grove, Colo., 1911-12.
Saguache River near Saguache, Colo., 1910--
Rio Alamosa near Monte Vista, Colo., 1911-12.
Rio Alamosa near La Jara, Colo., 1909-1912.
Conejos River near Mogote, Colo., 1899-1900; 1905--
Culebra River at San Luis, Colo., 1910-11.
Río San Antonio near Ortiz, N. Mex., 1911.
Costilla Creek near mouth, N. Mex., 1912.
Río Colorado above Questa, N. Mex., 1910-11.
Río Colorado near Questa, N. Mex., 1912--
Río Colorado below Questa, N. Mex., 1910--
Río Hondo near Arroyo Hondo, N. Mex., 1910--
Río Pueblo de Taos near Taos, N. Mex., 1910--
Río Taos at Los Cordovas, N. Mex., 1910--
Río Lucero near Taos, N. Mex., 1910--
Río Fernando de Taos near Taos, N. Mex., 1910--
Chama River at Chama, N. Mex., 1912--
Chama River at Parkview, N. Mex., 1912--
Chama River near Abiquiu, N. Mex., 1895-1897.
Chama River near Chamita, N. Mex., 1912--
Brazos River at Brazos, N. Mex., 1912-1913.
Horn River near Canjilon, N. Mex., 1911--
Río Vallecitos at Vallecitos, N. Mex., 1911--
Santa Fe Creek at Monument Rock, near Santa Fe, N. Mex., 1910-11.
Santa Fe Creek above reservoir, near Santa Fe, N. Mex., 1910; 1913--
Rio Grande tributaries—Continued.

Santa Fe Creek at Santa Fe, N. Mex., 1907-1911.
Santa Fe Water & Light Co.'s ditch near Santa Fe, N. Mex., 1910.
Arroyo Hondo near Santa Fe, N. Mex., 1913-
Rio Puerco at Rio Puerco, N. Mex., 1910-
Rio Puerco near La Joya, N. Mex., 1910-
Bluewater Creek (head of San Jose River) near Bluewater, N. Mex., 1912-
Bluewater Creek at Grants, N. Mex., 1912-
San Jose River near Suwanee, N. Mex., 1910-
Pecos River near Cowles, N. Mex., 1910-
Pecos River near Anton Chico, N. Mex., 1910-
Pecos River at Santa Rosa, N. Mex., 1905-1910; 1910-
Pecos River near Guadalupe, N. Mex., 1912-
Pecos River near Roswell, N. Mex., 1904-1906.
Pecos River near Dayton, N. Mex., 1905-
Pecos River near Lakewood, N. Mex., 1906-1911.
Pecos River at Carlsbad, N. Mex., 1903-1908.
Pecos River near Pecos, Tex., 1898-1907.
Margueretta flume near Pecos, Tex., 1898; 1900-1908.
West Valley ditch near Pecos, Tex., 1904.
Pecos River near Moorhead, Tex., 1898; 1900-
Gallinas River near Las Vegas, N. Mex., 1905-
South Fork of Gallinas River near El Porvenir, N. Mex., 1911-
Taylor Moore ditch near Roswell, N. Mex., 1905.
Hondo River at Hondo Reservoir, N. Mex., 1903-1906.
Hondo reservoir inlet near Roswell, N. Mex., 1906-1908.
Hondo reservoir scour gate near Hondo Reservoir, N. Mex., 1906.
Hondo River at Roswell, N. Mex., 1903-1906.
Rio Ruidoso near Ruidoso, N. Mex., 1911.
Penasco River at Elk, N. Mex., 1910-11.
Penasco River at Cleve's ranch, near Elk, N. Mex., 1911.
Penasco River near Dayton, N. Mex., 1905-1908.
Devils River at Devils River, Tex., 1900-1914.
Rio Salado near Guerrero, Tamaulipas, Mex., 1900-
Rio San Juan at La Quemada, Tamaulipas, Mex., 1900-1902.
Rio San Juan near Santa Rosalia ranch, Tamaulipas, Mex., 1902-

INTERIOR BASINS IN NEW MEXICO.

Mimbres River basin:
Mimbres River near Faywood, N. Mex., 1908-
Lampbright Draw near Santa Rita, N. Mex., 1912-
Whitewater Draw near Hurley, N. Mex., 1913-
Cameron Creek at Fort Bayard, N. Mex., 1907-1911; 1912-
Stevens Creek near Fort Bayard, N. Mex., 1907-1911; 1912-

Rio Tularosa basin:
Rio Tularosa at Mescalero, N. Mex., 1910-11.
Rio Tularosa near Bent, N. Mex., 1911-12.
Rio Tularosa near Tularosa, N. Mex., 1912-
Rio La Luz basin:

REPORTS ON WATER RESOURCES OF THE WESTERN GULF STATES.

PUBLICATIONS OF UNITED STATES GEOLOGICAL SURVEY.

WATER-SUPPLY PAPERS.

Water-supply papers are distributed free by the Geological Survey as long as its stock lasts. An asterisk (*) indicates that this stock has been exhausted. Many of the papers marked in this way may, however, be purchased (at price noted) from the SUPERINTENDENT OF DOCUMENTS, WASHINGTON, D. C. Omission of the price indicates that the report is not obtainable from Government sources. Water-supply papers are of octavo size.

 Describes primitive methods of irrigation and agriculture employed in an area lying along both sides of the Rio Grande, extending from Fort Seldon, N. Mex., on the north, to within 3 miles of El Paso on the south. Chiefly of historic interest.

 Discusses climate, rainfall, irrigation works and projects in Texas; considers use of both surface and underground waters.

40. The Austin dam, by T. U. Taylor. 1900. 51 pp., 16 pls. 15c.
 Describes preliminary projects, construction, economic aspects, and failure of the dam across Colorado River.

57. Preliminary list of deep borings in the United States, Part I (Alabama-Montana), by N. H. Darton. 1902. 60 pp. (See No. 149.) 5c.

61. Preliminary list of deep borings in the United States, Part II (Nebraska-Wyoming), by N. H. Darton. 1902. 67 pp. 5c.
 Nos. 57 and 61 contain information as to depth, diameter, yield, and head of water in borings more than 400 feet deep; under head “Remarks” gives information concerning temperature, quality of water, purposes of boring, etc. The lists are arranged by States, and the States are arranged alphabetically. A second revised edition was published in 1905 as Water-Supply Paper 149 (p. v.). 5c.

71. Irrigation systems of Texas, by T. U. Taylor, 1902. 137 pp., 9 pls. 10c.
 Discusses principal irrigation systems in geographic order and gives statistics as to the location, cost, and benefits of the devices for obtaining water; describes rice irrigation systems, and appends a brief statement of laws governing irrigation in the State.

74. Water resources of the State of Colorado, by A. L. Fellows. 1902. 151 pp., 14 pls. 25c.
 Discusses, under South Platte, Arkansas, Rio Grande, San Juan, Grand, and Green River irrigation divisions, drainage and irrigation and gives records of stream flow.

93. Proceedings of first conference of engineers of Reclamation Service, with accompanying papers, compiled by F. H. Newell, chief engineer. 1904. 361 pp. 25c. [Inquiries concerning this report should be addressed to the Reclamation Service.]
 Contains “Investigations in Pecos Valley,” by W. M. Reed.

101. Underground waters of southern Louisiana, by G. D. Harris, with discussions of their uses for water supplies and for rice irrigation, by M. L. Fuller. 1904. 98 pp., 11 pls. 20c.
 Discusses the topography and stratigraphic geology of the area and the origin of the well waters, gives statistics of artesian wells, describes methods of well drilling and pumping and treats briefly of rice cultivation.
105. The water powers of Texas, by T. U. Taylor. 1904. 116 pp., 17 pls. 15c.
 Gives a résumé of the available data regarding water powers and briefly describes the principal streams.

114. Underground waters of eastern United States; M. L. Fuller, geologist in charge. 1905. 285 pp., 18 pls. 25c.
 Contains brief report on Louisiana and southern Arkansas; discusses the geologic formation as related to water supply; treats particularly of the mineral waters, and gives a list of the principal publications.

140. Field measurements of the rate of movement of underground waters, by C. S. Slichter. 1905. 122 pp., 15 pls. 15c.
 Contains a chapter giving results of tests of typical pumping plants in the Rio Grande valley in Texas and New Mexico.

141. Observations on the ground waters of the Rio Grande valley, by C. S. Slichter. 1905. 83 pp., 5 pls. 5c.
 Describes investigation of the underflow in the valley of the Rio Grande in Texas and New Mexico, gives details of tests of pumping plants near El Paso, Tex., in Mesilla Valley, N. Mex., and near Berino, N. Mex., and analyses of well waters and data concerning wells at and near El Paso.

147. Destructive floods in the United States in 1904, by E. C. Murphy and others. 206 pp., 18 pls. 15c. Contains:
 Pecos River basin flood, New Mexico, from report of Frank S. Dobson.
 Failures of Lake Avalon dam near Carlsbad, N. Mex., by E. C. Murphy.
 Rio Grande floods, New Mexico, by E. C. Murphy.

158. Preliminary report on the geology and underground waters of the Roswell artesian area, New Mexico, by C. A. Fisher. 1906. 22 pp., 9 pls. 15c.
 Discusses topography and geology of a belt lying along Pecos River from Roswell to Lake McMillan; discusses area and extent of artesian basins, source, amount, pressure, quality (with analyses), and waste of artesian waters, and irrigation; lists typical wells and gives well records.

*162. Destructive floods in the United States in 1905, with a discussion of flood discharge and frequency and an index of flood literature, by E. C. Murphy and others. 1906. 105 pp., 4 pls. 15c.
 Gives accounts of floods on Pecos and Hondo Rivers and the Rio Grande and estimates of flood frequency and discharge for Rio Grande at San Marcial, N. Mex., and Colorado River (Texas) at Austin; contains also index to literature on floods on American streams.

*188. Water resources in the Rio Grande valley, New Mexico, and their development, by W. T. Lee. 1907. 59 pp., 10 pls. 20c.
 Describes the physical features of the valley, rock formation and structure, the Engle, San Acaci, San Felipe, and Esplanada reservoir sites, surface and underground waters by districts, the origin, course, and quantity of the underflow, the chemical character of the water in the Mesilla and other districts, and the utilization of the underflow by wells and seepage ditches.

*190. Underground waters of the Coastal Plain of Texas, by Thomas U. Taylor. 15c.
 Describes topography, drainage, and geology, and discusses the underground waters by counties; gives many well records and analyses.

Describes the topography, drainage, climate, geologic features, flowing and nonflowing wells, springs, the grouping of wells, and variations in flow and temperature, and the quality (with analyses) and uses of the water; discusses briefly well-drilling methods and costs, and approximate measurements of flows.

260. Preliminary report on the ground waters of Estancia Valley, New Mexico, by O. E. Meinzer. 1910. 33 pp. 5c. (See Water-Supply Paper 275.)

Discusses briefly the geographic relation and industrial development, geology, and soils; discusses the source, disposal, recovery and quality, and utilization of the ground waters, cost of pumping, windmills, value of crops, and the alkali problem.

274. Some stream waters of the Western United States, with chapters on sediment carried by the Rio Grande and the industrial application of water analyses, by Herman Stabler. 1911. 188 pp. 15c.

Describes collection of samples, plan of analytical work, and methods of analyses; discusses soap-consuming power of waters, water softening, boiler waters, and water for irrigation; gives results of analyses of waters of the Rio Grande and of Pecos, Gallinas, and Hondo rivers.

275. Geology and water resources of Estancia Valley, New Mexico, with notes on ground-water conditions in adjacent parts of central New Mexico, by O. E. Meinzer. 1911. 89 pp., 14 pls. 20c.

Describes physiographic features and geologic formations, soils and climate; discusses the source and disposal of the water supply, the head of the water supply, artesian conditions, yield of wells and quantity of water available, the quality of the water (dissolved solids, chlorine, sulphates, carbonates, and bicarbonates), the storage of storm water, the present and future use of ground water for irrigation, proper types of wells, windmills, cost of pumping, value of crops, and the alkali problem; tables give depth to water and field assays. Contains also brief reports on physiography, geology, soil, ground water, and irrigation in Encino and Pinos Wells basins.

*317. Geology and underground waters of the Wichita region, north-central Texas, by C. H. Gordon. 1913. 88 pp., 2 pls. 10c.

Describes the physiography, climate, surface, and deep waters of an area in Montague, Clay, Wichita, Wilbarger, Hardeman, Foard, Knox, Baylor, Archer, Jack, Young, Throckmorton, and Haskell counties; gives details by counties.

ANNUAL REPORTS.

Each of the papers contained in the annual reports was also issued in separate form.

Annual reports are distributed free by the Geological Survey as long as its stock lasts. An asterisk (*) indicates that this stock has been exhausted. Many of the papers so marked, however, may be purchased from the SUPERINTENDENT OF DOCUMENTS, WASHINGTON, D. C.

Makes a preliminary report on the organization and prosecution of the survey of the arid lands for purposes of irrigation; includes an account of the methods of topographic and hydraulic work, the segregation work on reservoir sites and irrigable lands, field and office methods, and brief descriptions of the topography of some of the river basins.

*Hydrography, pp. 1–110. Discusses scope of work, methods of stream measurement, rainfall and evaporation, and describes the more important streams.

*Engineering, pp. 111–200. Defines the scope of the work and gives an account of the surveys in the Sun River basin and in the Arkansas, Rio Grande, California, Lahontan, Utah, and Snake River divisions.

*The arid lands, pp. 201–289. Includes statement of the Director to the House Committee on Irrigation, extracts from the constitutions of States relating to irrigation, and a report on artesian irrigation on the Great Plains, including a discussion of the general considerations affecting artesian water supply, the economic limit to the utilization of artesian water for irrigation, irrigation by artesian wells in various countries, and the geologic conditions and statistics of artesian wells on the Great Plains.

*Irrigation literature, pp. 345–388. Gives a list of books and pamphlets on irrigation and allied subjects, mainly contained in the library of the United States Geological Survey.

*Report upon the location and survey of reservoir sites during the fiscal year ending June 30, 1891, by A. H. Thompson, pp. 1–212, Pls. LIV–LVII. Describes reservoir sites in Rio Arriba, Taos, Santa Fe, Bernalillo, Mora, San Miguel, Valencia, Socorro, and Sierra counties, New Mexico, and on tributaries of the Rio Grande; for each reservoir site gives the location, height of dam, areas inclosed by contour, approximate contents of reservoir, position of irrigable lands, and areas of segregated lands.

*Hydrography of the arid regions, by F. H. Newell, pp. 213–361, Pls. LVIII–CVI. Discusses the available water supply of the arid regions, the duty of water, flood waters, relation of rainfall to river flow; classified the drainage basins; and describes the rivers of the Missouri, Arkansas, Rio Grande, Colorado, Sacramento, and San Joaquin basins, and the principal streams of the Great Basin in Nevada and Utah and the Snake River drainage.

*The public lands and their water supply, by F. H. Newell, pp. 457–533, Pls. XXXV–XXXIX. Describes general character of the public lands, the lands disposed of (railroad, grant, and swamp lands, and private miscellaneous entries), lands reserved (Indian, forest, and military reservations), the vacant lands, and the rate of disposal of vacant lands; discusses the streams, wells, and reservoirs as sources of water supply; gives details for each State.

*Geology of portions of the Edwards Plateau and Rio Grande Plain adjacent to Austin and San Antonio, Texas, with especial reference to the occurrence of artesian and other underground waters, by R. T Hill and T. W. Vaughan, pp. 193, 322, Pls. XXI–LXIV. Discusses the general principles of artesian waters, the capacity of the various rock sheets for water, the nonflowing wells, the gravity springs, and artesian wells of the Edwards
Eighteenth Annual Report of the United States Geological Survey—Continued. Plateau and Rio Grande Plain; the probable identity of source of artesian and fissure spring waters, and the availability and limitations of underground waters; treats of the chemical quality of the artesian well waters, and gives analyses of waters from the various beds and of spring waters from Austin and vicinity.

Twenty-first Annual Report of the United States Geological Survey, 1899-1900, Charles D. Walcott, Director. 1900. (Parts III, IV, VI, VI continued, and VII, 1901.) 7 parts in 8 vols., and separate case for maps with Pt. V. *Pt. IV, Hydrography, pp. 708, 156 pls. $2.35. Contains:

*The High Plains and their utilization, by W. D. Johnson, pp. 601-741, Pls. CXIII–CLVI. Describes the area lying in an irregular belt lying about midway across the long eastward slope of the Great Plains and including parts of Wyoming, Colorado, and Nebraska (North and South Platte, Platte, Republican, and Smoky Hill River basins), Colorado, Kansas, New Mexico, Oklahoma, and Texas (Arkansas River basin), and Colorado, New Mexico, and Texas (Rio Grande basin); discusses the origin and structure of the High Plains, the precipitation, temperature, and other factors of climate, experiments with irrigation, and the use of mountain streams, local storm-water storage, and artesian waters. Concluded in the Twenty-second Annual Report.

Conclusion of The High Plains and their utilization.

BULLETINS.

An asterisk (*) indicates that the Geological Survey's stock of the paper is exhausted. Many of the papers so marked may be purchased from the SUPERINTENDENT OF DOCUMENTS, WASHINGTON, D. C. Bulletins are of octavo size.

Discusses the importance of accurate well records to the driller, to owners of oil, gas, and water wells, and to geologists; describes the general methods of work; gives tabulated records of wells in Colorado, Louisiana, New Mexico, and Texas, and detailed record of well near Houston, Harris County, Tex. This well was selected because it affords definite stratigraphic information.

*298. Record of deep-well drilling for 1905, by M. L. Fuller and Samuel Sanford. 1906. 299 pp. 25c.

Gives an account of progress in the collection of well records and samples; contains tabulated records of wells in Colorado, Louisiana, New Mexico, and Texas; and detailed records of wells in Eddy and Torrance counties, New Mexico; and Bexar, Cameron, Coleman, Dallas, Dimmit, Duval, Fayette, Fort Bend, Guadalupe, Hardin, Harris, Hays, Jasper, Johnson, Kendall, Lampasas, Liberty, Medina, Nueces, Parker, Williamson, and Zavalla counties, Tex. The wells of which detailed sections are given were selected because they afford valuable stratigraphic information.

GEOLOGIC FOLIOS.

Under the plan adopted for the preparation of a geologic map of the United States the entire area is divided into small quadrangles, bounded by certain meridians and parallels, and these quadrangles, which number several thousand, are separately surveyed and mapped.† The unit of survey is also the unit of

† Index maps showing areas in the western Gulf of Mexico basins covered by topographic maps and by geologic folios will be mailed on receipt of request addressed to the Director, U. S. Geological Survey, Washington, D. C.
publication, and the maps and description of each quadrangle are issued in the form of a folio. When all the folios are completed they will constitute a Geologic Atlas of the United States.

A folio is designated by the name of the principal town or of a prominent natural feature within the quadrangle. Each folio includes maps showing the topography, geology, underground structure, and mineral deposits of the area mapped and several pages of descriptive text. The text explains the maps and describes the topographic and geologic features of the country and its mineral products. The topographic map shows roads, railroads, waterways, and, by contour lines, the shapes of the hills and valleys and the height above sea level of all points in the quadrangle. The areal-geology map shows the distribution of the various rocks at the surface. The structural-geology map shows the relations of the rocks to one another underground. The economic-geology map indicates the location of mineral deposits that are commercially valuable. The artesian-water map shows the depth to underground-water horizons. Economic-geology and artesian-water maps are included in folios if the conditions in the areas mapped warrant their publication. The folios are of special interest to students of geography and geology and are valuable as guides in the development and utilization of mineral resources.

The folios numbered from 1 to 163, inclusive, are published in only one form (18 by 22 inches), called the library edition. Some of the folios that bear numbers higher than 163 are published also in an octavo edition (6 by 9 inches). Owing to a fire in the Geological Survey building May 18, 1913, the stock of geological folios was more or less damaged by fire and water, but 80 or 90 per cent of the folios are usable. They will be sold at the uniform price of 5 cents each, with no reduction for wholesale orders. This rate applies to folios in stock from 1 to 184, inclusive, also to the library edition of folio 186. The library edition of folios 185, 187, and higher numbers sells for 25 cents a copy, except that some folios which contain an unusually large amount of matter sell for 50 cents a copy. The octavo edition of folio 185 and higher numbers sells for 50 cents a copy. If 34 folios selling at 25 cents each (or their equivalent in higher-priced folios) are ordered at one time a discount of 40 per cent is allowed; $5.10 is the minimum amount accepted at this rate.

All the folios contain descriptions of the drainage of the quadrangles. The folios in the following list contain also brief discussions of the underground waters in connection with the economic resources of the areas and more or less information concerning the utilization of the water resources.

An asterisk (*) indicates that the stock of the folio is exhausted.

42. Nueces, Texas.

Describes geography and geology, and relations of geologic formations to underground waters.

64. Uvalde, Texas.

Describes the topography and geology of the area, the streams, springs and wells, and discusses the possibility of obtaining artesian flows.

76. Austin, Texas.

Describes the topography and geology of the area, the drainage, and discusses the possibility of obtaining artesian water.

120. Silverton, Colorado.

Describes an area in the San Juan Mountains including a portion of the Continental Divide, and sending streams through Animas River to the San Juan, through Uncompahgre to the Gunnison and the Colorado, and through small creeks to the Rio Grande; includes in the discussion of the economic geology a brief study of the ground waters.
171. Engineer Mountain, Colorado.

Describes the topography and geology of the Engineer Mountain quadrangle, in southwestern Colorado about 60 miles east of the Utah boundary, and 34 miles north of New Mexico; discusses the drainage, part of which passes to the Rio Grande and part to the Gulf of California through Colorado River; under “Economic Geology” gives a brief paragraph on the water resources.

183. Llano-Burnet, Texas.

Describes the relief of the Llano and Burnet quadrangles, the drainage through Colorado River (of Texas and tributaries), and tributaries of Brazos River and the geology; under “Mineral Resources” discusses rainfall, streams, springs, wells, tanks, and cisterns.

MISCELLANEOUS REPORTS.

Other Federal bureaus, State and other organizations, have from time to time published reports relating to the water resources of various sections of the country. Notable among those pertaining to the western Gulf of Mexico drainage basins are the reports of the State geological surveys of Louisiana and Texas, the reports of the State engineers of Colorado and New Mexico, and the annual reports of the United States Reclamation Service. The following deserve special mention:

Report of commission appointed to revise the laws of the State of Colorado regulating the appropriation, distribution, and use of water. 1890.

Preliminary examination of reservoir sites in Wyoming and Colorado; letter from the Secretary of War transmitting a letter from the Chief of Engineers, together with a report of Captain Chittenden: 55th Cong., 2d sess., House Doc. 141.

Report on the underground waters of Louisiana, by G. D. Harris, A. C. Veatch and others, made under the direction of the State experiment station: Louisiana Geol. Survey Bull. 1, 1905.

Water supply of southwestern Texas, compiled by H. M. Madison. 1912.

Preliminary reports on the artesian wells of the Gulf coastal slope, by J. A. Singley, and on the organic remains from the deep well at Galveston, by Gilbert D. Harris: Texas Geol. Survey, Fourth Ann. Rept., 1892.
The following list comprises reports not readily classifiable by drainage basins and covering a wide range of hydrologic investigations:

WATER-SUPPLY PAPERS.

 Describes pumps and motive powers, windmills, water wheels, and various kinds of engines; also storage reservoirs to retain pumped water until needed for irrigation.

*3. Sewage irrigation, by G. W. Rafter. 1897. 100 pp., 4 pls. (See Water-Supply Paper 22.)
 Discusses methods of sewage disposal by intermittent filtration and by irrigation; describes utilization of sewage in Germany, England, and France, and sewage purification in the United States.

*8. Windmills for irrigation, by E. C. Murphy. 1897. 49 pp., 8 pls.
 Gives results of experimental tests of windmills during the summer of 1896 in the vicinity of Garden, Kansas; describes instruments and methods and draws conclusions.

*14. New tests of certain pumps and water lifts used in irrigation, by O. P. Hood, 1898. 91 pp., 1 pl.
 Discusses efficiency of pumps and water lifts of various types.

 Includes tables and descriptions of wind wheels, makes comparisons of wheels of several types, and discusses results.

 Gives résumé of Water-Supply Paper No. 3; discusses pollution of certain streams, experiments on purification of factory wastes in Massachusetts, value of commercial fertilizers, and describes American sewage-disposal plants by States; contains bibliography of publications relating to sewage, utilization and disposal.

 Describes briefly topography, climate, rivers, irrigation methods, soils, forestation, water power, and transportation facilities.

*41. The windmill; its efficiency and economic use, Part I, by E. C. Murphy. 1901. 72 pp., 14 pls. 15c.

*42. The windmill; its efficiency and economic use, Part II, by E. C. Murphy. 1901. 75 pp., 2 pls. 10c.
 Nos. 41 and 42 give details of results of experimental tests with windmills of various types.

*43. Conveyance of water in irrigation canals, flumes, and pipes, by Samuel Fortier. 1901. 86 pp., 15 pls.

44. Profiles of rivers in the United States, by Henry Gannett. 1901. 100 pp., 11 pls. 15c.
 Gives elevations and distance along rivers of the United States, also brief description of many of the streams. Arrangement geographic. Many river profiles are scattered through other reports on surface waters in various parts of the United States.
*56. Methods of stream measurement. 1901. 51 pp., 12 pls.

Describes the methods used by the Survey in 1901–2. (See also Nos. 64, 94, and 95.)

57. Preliminary list of deep borings in the United States, Part I (Alabama-Montana), by N. H. Darton. 1902. 60 pp. (See No. 149.) 5c.

61. Preliminary list of deep borings in the United States, Part II (Nebraska-Wyoming), by N. H. Darton. 1902. 67 pp. 5c.

Nos. 57 and 61 contain information as to depth, diameter, yield, and head of water in borings more than 400 feet deep; under head “Remarks” gives information concerning temperature, quality of water, purposes of boring, etc. The lists are arranged by States, and the States are arranged alphabetically. A second revised edition was published in 1905 as Water-Supply Paper 149 (q. v.). 5c.

64. Accuracy of stream measurements, by E. C. Murphy. 1902. 99 pp., 4 pls.

(See No. 95.) 10c.

Describes methods of measuring velocity of water and of measuring and computing stream flow and compares results obtained with the different instruments and methods; describes also experiments and results at the Cornell University hydraulic laboratory. A second, enlarged edition published as Water-Supply Paper 95.

*67. The motions of underground waters, by C. S. Slichter. 1902. 106 pp., 8 pls.

Discusses origin, depth, and amount of underground waters; permeability of rocks and porosity of soils; causes, rates, and laws of motions of underground water; surface and deep zones of flow, and recovery of waters by open wells and artesian and deep wells; treats of the shape and position of the water table; gives simple methods of measuring yield of flowing well; describes artesian wells at Savannah, Ga.

72. Sewage pollution in the metropolitan area near New York City and its effect on inland water resources, by M. O. Leighton. 1902. 75 pp., 8 pls. 10c.

Defines “normal” and “polluted” waters and discusses the damage resulting from pollution.

77. The water resources of Molokai, Hawaiian Islands, by Waldemar Lindgren. 1903. 62 pp., 4 pls. 10c.

Describes briefly the topography, geology, coral reefs, climate, soils, vegetation, forests, fauna of the island, the springs, running streams and wells, and discusses the utilization of the surface and underground waters.

Treats of measurements of rainfall and laws and measurements of stream flow; gives rainfall run-off, and evaporation formulas; discusses effect of forests on rainfall and run-off.

First edition was published in Part II of the Twelfth Annual Report.

Contains, in addition to an account of the organization of the hydrographic [water-resources] branch of the United States Geological Survey and the reports of the conferences, the following papers of more or less general interest:

Limits of an irrigation project, by D. W. Ross.
Relation of Federal and State laws to irrigation, by Morris Bien.
Electrical transmission of power for pumping, by H. A. Storrs.
Correct design and stability of high masonry dams, by Geo. Y. Wisner.
Irrigation surveys and the use of the planetable, by J. B. Lippincott.
The use of alkaline waters for irrigation, by Thomas A. Means.
HYDROLOGIC REPORTS.

*94. Hydrographic manual of the United States Geological Survey, prepared by E. C. Murphy, J. C. Hoyt, and G. B. Hollister. 1904. 76 pp., 3 pls. Gives instruction for field and office work relating to measurements of stream flow by current meters. (See also No. 95.)

95. Accuracy of stream measurements (second, enlarged edition), by E. C. Murphy. 1904. 169 pp., 6 pls. Describes methods of measuring and computing stream flow and compares results derived from different instruments and methods. (See also No. 94.)

103. A review of the laws forbidding pollution of inland waters in the United States, by E. B. Goodell. 1904. 120 pp. (See No. 152.) 10c.
Explains the legal principles under which antipollution statutes become operative, quotes court decisions to show authority for various deductions, and classifies according to scope the statutes enacted in the different States.

110. Contributions to the hydrology of eastern United States, 1904; M. L. Fuller, geologist-in charge. 1905. 211 pp., 5 pls. 10c.
Contains the following reports of general interest. The scope of each paper is indicated by its title.
- Description of underflow meter used in measuring the velocity and direction of underground water, by Charles S. Slichter.
- The California or "stovepipe" method of well construction, by Charles S. Slichter.
- Approximate methods of measuring the yield of flowing wells, by Charles S. Slichter.
- Corrections necessary in accurate determinations of flow from vertical well casings, from notes furnished by A. N. Talbot.
- Experiment relating to problems of well contamination at Quitman, Ga., by S. W. McCallie.
- Notes on the hydrology of Cuba, by M. L. Fuller.

113. The disposal of strawboard and oil-well wastes, by R. L. Sackett and Isaiah Bowman. 1905. 52 pp., 4 pls. 5c.
The first paper discusses the pollution of streams by sewage and by trade wastes, describes the manufacture of strawboard and gives results of various experiments in disposing of the waste. The second paper describes briefly the topography, drainage, and geology of the region about Marion, Ind., the contamination of rock wells and of streams by waste oil and brine.

Contains report on "Occurrence of underground waters," by M. L. Fuller, discussing sources, amount, and temperature of waters, permeability and storage capacity of rocks, water-bearing formations, recovery of water by springs, wells and pumps, essential conditions of artesian flows, and general conditions affecting underground waters in eastern United States.

115. River surveys and profiles made during 1903, by W. C. Hall and J. C. Hoyt. 1905. 115 pp., 4 pls. 10c.
Contains results of surveys made to determine location of undeveloped power sites.

Scope indicated by title.

Scope indicated by title.

*122. Relation of the law to underground waters, by D. W. Johnson. 1905. 55 pp. 5c.
Defines and classifies underground waters, gives common-law rules relating to their use, and cites State legislative acts affecting them.
140. Field measurements of the rate of movement of underground waters, by C. S. Slichter. 1905. 122 pp., 15 pls. 15c.

Discusses the capacity of sand to transmit water, describes measurements of underflow in Rio Hondo, San Gabriel, and Mohave River valleys, Cal., and on Long Island, N. Y.; gives results of tests of wells and pumping plants, and describes stovetop method of well construction.

143. Experiments on steel-concrete pipes on a working scale, by J. H. Quinton. 1905. 61 pp., 4 pls.

Scope indicated by title.

Discusses common salt in coast and inland waters, salt as an index to pollution of streams and wells, the solutions and methods used in chlorine determinations, and the use of the normal chlorine map; gives charts and tables for chlorine in the New England States and New York.

145. Contributions to the hydrology of eastern United States, 1905; M. L. Fuller, geologist in charge. 1905. 220 pp., 6 pls. 10c.

Contains brief reports of general interest as follows:

- Drainage of ponds into drilled wells, by Robert E. Horton. Discusses efficiency, cost, and capacity of drainage wells, and gives statistics of such wells in southern Michigan.
- Construction of so-called fountain and geyser springs, by Myron L. Fuller.
- A convenient gage for determining low artesian heads, by Myron L. Fuller.

146. Proceedings of second conference of engineers of the Reclamation Service, with accompanying papers, compiled by F. H. Newell, chief engineer. 1905. 267 pp. 15c.

Contains brief account of the organization of the hydrographic [water-resources] branch and the Reclamation Service, reports of conferences and committees, circulars of instruction, and many brief reports on subjects closely related to reclamation, and a bibliography of technical papers by members of the service. Of the papers read at the conference those listed below (scope indicated by title) are of more or less general interest:

- Proposed State code of water laws, by Morris Bien.
- Power engineering applied in irrigation problems, by O. H. Ensign.
- Estimates on tunneling in irrigation projects, by A. L. Fellows.
- Diamond-drill methods, by G. A. Hammond.
- Mean-velocity and area curves, by F. W. Hanna.
- Importance of general hydrographic data concerning basins of streams gaged, by R. E. Horton.
- Effect of equatorial vegetation on stream flow, by R. E. Horton.
- Sanitary regulations governing construction camps, by M. O. Leighton.
- Cost of stream-gaging work, by E. C. Murphy.
- Equipment of a cable gaging station, by E. C. Murphy.
- Sluicing of reservoirs, by W. M. Reed.
- Farm-unit classification, by D. W. Ross.
- Cost of power for pumping irrigating water, by H. A. Storrs.
- Records of flow at current-meter gaging stations during the frozen season, by F. H. Tillinghast.

147. Destructive floods in United States in 1904, by E. C. Murphy. 15c.

Contains a brief account of "A method of computing cross-section area of waterways," including formulas for maximum discharge and areas of cross section.

Gives by States (and within the States by counties), location, depth, diameter, yield, height of water, and other available information, concerning wells 400 feet or more in depth; includes all wells listed in Water-Supply Papers 57 to 61; mentions also principal publications relating to deep borings.

Scope indicated by title.

151. Field assay of water, by M. O. Leighton. 1905. 77 pp., 4 pls. 10c.

Discusses methods, instruments, and reagents used in determining turbidity, color, iron, chlorides, and hardness in connection with the studies of the quality of water in various parts of the United States.

Scope indicated by title.

Includes general discussion of fluctuation due to rainfall and evaporation, barometric changes, temperature changes in rivers, changes in lake level, tidal changes, effects of settlement, irrigation, dams, underground water developments, and to indeterminate causes.

*160. Underground water papers, 1906; M. L. Fuller, geologist in charge. 1906. 104 pp., 1 pl.

Gives account of work in 1905; lists of publications relating to underground waters, and contains the following brief reports of general interest:

- Significance of the term "artesian," by Myron L. Fuller.
- Representation of wells and springs on maps, by Myron L. Fuller.
- Total amount of free water in the earth's crust, by Myron L. Fuller.
- Use of fluorescein in the study of underground waters, by R. B. Dole.
- Problems of water contamination, by Isaiah Bowman.
- Instances of improvement of water in wells, by Myron L. Fuller.

*162. Destructive floods in the United States in 1905, with a discussion of flood discharge and frequency and an index to flood literature, by E. C. Murphy and others. 1906. 105 pp., 4 pls. 15c.

163. Bibliographic review and index of underground-water literature published in the United States in 1905, by M. L. Fuller, F. G. Clapp, and B. L. Johnson. 1906. 130 pp. 15c.

Scope indicated by title.

*179. Prevention of stream pollution by distillery refuse, based on investigations at Lynchburg, Ohio, by Herman Stabler. 1906. 34 pp., 1 pl. 10c.

Describes grain distillation, treatment of slop, sources, character, and effects of effluents on streams; discusses filtration, precipitation, fermentation, and evaporation methods of disposal of wastes without pollution.

180. Turbine water-wheel tests and power tables, by R. E. Horton. 1906. 134 pp., 2 pls. 20c.

Scope indicated by title.

Discusses composition, disposal, purification, and treatment of sewages and recent tendencies in sewage-disposal practice in England, Germany, and the United States; describes character of crude sewage at Boston, removal of suspended matter, treatment in septic tanks, and purification in intermittent sand filtration and coarse material; gives bibliography.

*186. Stream pollution by acid-iron wastes, a report based on investigations made at Shelby, Ohio, by Herman Stabler. 1906. 36 pp., 1 pl. 10c.

Gives history of pollution by acid-iron wastes at Shelby, Ohio, and resulting litigation; discusses effect of acid-iron liquors on sewage purification processes, recovery of copperas from acid-iron wastes, and other processes for removal of pickling liquor.

*187. Determination of stream flow during the frozen season, by H. K. Barrows and R. E. Horton. 1907. 93 pp., 1 pl. 15c.

Scope indicated by title.
*189. The prevention of stream pollution by strawboard waste, by E. B. Phelps. 1906. 29 pp., 2 pls. 5c.
 Describes manufacture of strawboard, present and proposed methods of disposal of waste liquors, laboratory investigations of precipitation and sedimentation, and field studies of amounts and character of water used, raw material and finished product, and mechanical filtration.

 Scope indicated by amplification of title.

 Gives results of measurements of flow of Alaskan streams, discusses available water supply for ditch and pipe lines and power development; presents notes for investors.

*200. Weir experiments, coefficients, and formulas, revision of paper No. 150, by R. E. Horton. 1907. 195 pp., 38 pls. 35c.
 Scope indicated by title.

*218. Water-supply investigations in Alaska, 1906-7 (Nome and Kougarok regions, Seward Peninsula; Fairbanks district, Yukon-Tanana region), by F. F. Henshaw and C. C. Covert. 1908. 156 pp., 12 pls. 25c.
 Describes the drainage basins, gives results of observations at the gaging stations, and discusses the water supply of the ditches and pipe lines, and possibilities of development; gives also meteorological records.

*226. The pollution of streams by sulphite-pulp waste, a study of possible remedies, by E. B. Phelps. 1908. 37 pp., 1 pl. 10c.
 Describes manufacture of sulphite pulp, the waste liquors, and the experimental work leading to suggestions as to methods of preventing stream pollution.

228. Water-supply investigations of the Yukon-Tanana region, Alaska, 1907 and 1908 (Fairbanks, Circle, and Rampart districts), by C. C. Covert and C. E. Ellsworth. 1909. 108 pp., 7 pls. 20c.
 Describes the drainage basins; gives results of observations at gaging stations; discusses the water supplies of the ditches and pipe lines and possibilities of hydraulic development.

*229. The disinfection of sewage and sewage filter effluents, with a chapter on the putrescibility and stability of sewage effluents, by E. B. Phelps. 1909. 91 pp., 1 pl. 15c.
 Scope indicated by title.

234. Papers on the conservation of water resources. 1909. 96 pp., 2 pls. 15c.
 Contains the following papers, whose scope is indicated by their titles: Distribution of rainfall, by Henry Gannett; Floods, by M. O. Leighton; Developed water powers, compiled under the direction of W. M. Steuart, with discussion by M. O. Leighton; Undeveloped water powers, by M. O. Leighton; Irrigation, by F. H. Newell; Underground waters, by W. C. Mendenhall; Denudation, by R. B. Dole and Herman Stabler; Control of catchment areas, by H. N. Parker.

*235. The purification of some textile and other factory wastes, by Herman Stabler and G. H. Pratt. 1909. 76 pp. 10c.
 Discusses waste waters from wool-scouring, bleaching, and dyeing cotton yarn, bleaching cotton piece goods, and manufacture of oleomargarine, fertilizer, and glue.
 Describes collection of samples, method of examination, preparation of solutions, accuracy of estimates, and expression of analytical results.

 Discusses hydraulic power and irrigation, French, Italian, and Swiss legislation relative to the development of water powers, and laws proposed in the French Parliament; reviews work of bureau of hydraulics and agricultural improvement of the French department of agriculture, and gives résumé of Federal and State water-power legislation in the United States.

255. Underground waters for farm use, by M. L. Fuller. 1910. 58 pp., 17 pls. 15c.
 Discusses rocks as sources of water supply and the relative safety of supplies from different materials; springs, and their protection; open or dug and deep wells, their location, yield, relative cost, protection, and safety; advantages and disadvantages of cisterns and combination wells and cisterns.

*257. Well-drilling methods, by Isaiah Bowman. 1911. 139 pp., 4 pls. 15c.
 Discusses amount, distribution, and disposal of rainfall, water-bearing rocks, amount of underground water, artesian conditions, and oil and gas bearing formations; gives history of well drilling in Asia, Europe, and the United States; describes in detail the various methods and the machinery used; discusses loss of tools and geologic difficulties; contamination of well waters and methods of prevention; tests of capacity and measurement of depth; and costs of sinking wells.

 Contains the following papers (scope indicated by titles) of general interest:
 Drainage by wells, by M. L. Fuller.
 Freezing of wells and related phenomena, by M. L. Fuller.
 Pollution of underground waters in limestone, by G. C. Matson.
 Protection of shallow wells in sandy deposits, by M. L. Fuller.
 Magnetic wells, by M. L. Fuller.

*259. The underground waters of southwestern Ohio, by M. L. Fuller and F. G. Clapp, with a discussion of the chemical character of the waters, by R. B. Dole. 1912. 228 pp., 9 pls. 35c.
 Describes the topography, climate, and geology of the region; the water-bearing formations, the source, mode of occurrence, and head of the waters, and municipal supplies; gives details by counties; discusses in supplement, under chemical character, method of analysis and expression of results, mineral constituents, effect of the constituents on waters for domestic, industrial, or medicinal uses, methods of purification, chemical composition; many analyses and field assays. The matter in the supplement was also published in Water-Supply Paper 254 (The underground waters of north-central Indiana).

274. Some stream waters of the western United States, with chapters on sediment carried by the Rio Grande and the industrial application of water analyses, by Herman Stabler. 1911. 188 pp. 15c.
 Describes collection of samples, plan of analytical work, and methods of analyses; discusses soap-consuming power of waters, water softening, boiler waters, and water for irrigation; gives results of analyses of waters of the Rio Grande and of Pecos, Gallinas, and Hondo rivers.

XVI STREAM-GAGING STATIONS, ETC., 1885–1913.

Contains results of work at gaging stations.

*315. The purification of public water supplies, by G. A. Johnson. 1913. 84 pp., 8 pls. 10c.
Discusses ground, lake, and river waters as public supplies, development of waterworks systems in the United States, water consumption, and typhoid fever; describes methods of filtration and sterilization of water, and municipal water softening.

Describes the general features of the islands and gives results of measurements of streams and of observations of rainfall and evaporation; contains a gazetteer.

334. The Ohio Valley flood of March–April, 1913 (including comparisons with some earlier floods) by A. H. Horton and H. J. Jackson. 1913. 96 pp., 32 pls. 20c.
Although relating specifically to floods in the Ohio Valley, this report discusses also the causes of floods and the prevention of damage by floods.

Contains results of stream measurements on the islands in 1912.

337. The effects of ice on stream flow, by William Glenn Hoyt. 1913. 76 pp., 7 pls. 15c.
Discusses methods of measuring the winter flow of streams.

ANNUAL REPORTS.

*Fifth Annual Report of the United States Geological Survey, 1883–84, J. W. Powell, Director. 1885. xxxvi, 469 pp., 58 pls. $2.25. Contains:
The requisite and qualifying conditions of artesian wells, by T. C. Chamberlain, pp. 125 to 173, Pl. XXI. Scope indicated by title.

*Irrigation in India, by H. M. Wilson, pp. 368–561, Pls. CVII to CXLVI. (See Water-Supply Paper 87.)

*American irrigation engineering, by H. M. Wilson, pp. 101–349, Pls. CXI to CXLV. Discusses the economical aspects of irrigation, alkaline drainage, silt and sedimentation; gives brief history of legislation; describes perennial canals in Idaho-California, Wyoming, and Arizona; discusses water storage at reservoirs of the California and other projects, subsurface sources of supply pumping and subirrigation.

*Potable waters of the eastern United States, by W J McGee, pp. 1 to 47. Discusses cistern water, stream waters, and ground waters, including mineral springs and artesian wells.

*Natural mineral waters of the United States, by A. C. Peale, pp. 49–88, Pls. III and IV. Discusses the origin and flow of mineral springs, the source of mineralization, thermal springs, the chemical composition and analysis of spring waters, geographic distribution, and the utilization of mineral waters; gives a list of American mineral spring resorts; contains also some analyses.

*Principles and conditions of the movements of ground water, by F. H. King, pp. 59–294, Pls. VI to XVII. Discusses the amount of water stored in sandstone, in soil, and in other rocks, the depth to which ground water penetrates; gravitational, thermal, and capillary movements of ground waters, and the configuration of the ground-water surface; gives the results of experimental investigations on the flow of air and water through a rigid, porous media, and through sands, sandstones, and silts; discusses results obtained by other investigators, and summarizes results of observations; discusses also rate of flow of water through sand and rock, the growth of rivers, rate of filtration through soil, interference of wells, etc.

*Theoretical investigation of the motion of ground waters, by C. S. Slichter, pp. 295–384, Pls. XVII. Scope indicated by title.

*Hydrography of Nicaragua, by A. P. Davis, pp. 563–637, Pls. LXIV to LXXV. Describes the topographic features of the boundary, the lake basin, and Rio San Juan; gives a brief résumé of the boundary dispute; discusses rainfall, temperature, and relative humidity, evaporation, resources, and productions, the ship, railway, and canal projects; gives the history of the investigations by the Canal Commission, and results of measurements on the Rio Grande, on streams tributary to Lake Nicaragua, and on Rio San Juan and its tributaries.

*Hydrography of the American Isthmus, by A. P. Davis, pp. 507–630, Pls. XXXVII to L. Describes the physiography, temperature, rainfall, and winds of Central America; discusses the hydrography of the Nicaragua Canal route and the Panama Canal route; gives estimated monthly discharges of many of the streams, rainfall, and evaporation tables at various points.

PROFESSIONAL PAPERS.

*72. Denudation and erosion in the southern Appalachian region and the Monongahela basin, by L. C. Glenn. 1911. 137 pp., 21 pls. 35c.

Describes the topography, geology, drainage, forests, climate and population, and transportation facilities of the region, the relation of agriculture, lumbering, mining, and power development to erosion and denudation, and the nature, effects, and remedies of erosion; gives details of conditions in Holston, Nolichucky, French Broad, Little Tennessee, and Hiwassee river basins, along Tennessee River proper, and in the basins of the Coosa-Alabama system, Chattahoochee, Savannah, Saluda, Broad, Catawba, Yadkin, New, and Monongahela rivers.

BULLETINS.

*32. Lists and analyses of the mineral springs of the United States (a preliminary study), by A. C. Peale. 1886. 235 pp.

Defines mineral waters, lists the springs by States, and gives tables of analyses so far as available.

*298. Record of deep-well drilling for 1905, by M. L. Fuller and Samuel Sanford. 1906. 299 pp. 25c.

Bulletins 264 and 298 discuss the importance of accurate well records to the driller, to owners of oil, gas, and water wells, and to the geologist; describes the general methods of work; gives tabulated records of wells by States, and detailed records selected as affording valuable stratigraphic information.

*319. Summary of the controlling conditions of artesian flows, by Myron L. Fuller, 1908. 10c.

Describes underground reservoirs, the sources of underground waters, the confining agents, the primary and modifying factors of artesian circulation, the essential and modifying factors of artesian flow, and typical artesian systems.

*479. The geochemical interpretation of water analyses, by Chase Palmer. 1911. 31 pp. 5c.

Discusses the expression of chemical analyses, the chemical character of water and the properties of natural waters; gives a classification of waters based on property values and reacting values, and discusses the character of the waters of certain rivers as interpreted directly from the results of analyses; discusses also the relation of water properties to geologic formations, silica in river water, and the character of the water of the Mississippi and the Great Lakes and St. Lawrence River as indicated by chemical analyses.
INDEX BY AREAS AND SUBJECTS.

[A=Annual Reports; M=Monograph; B=Bulletin; P=Professional Paper; W=Water-Supply Paper; G F=Geologic folio.]

Alaska: Surface waters ---------------------------------- W 196, 218, 228, 314
Artesian waters: Essential conditions---------- A 5; B 319; W 44, 67, 114
Bibliographies1-- W 119, 120, 163, 280
Chemical analyses:2 Methods and interpretation _ W 151, 236, 259, 274; B 479
Colorado: Quality of waters---------------------------------- W 240
 Surface waters---------------------------------- W 74, 147, 162, G F 171
 Underground waters ----------------------------- A 16, ii;
 21, iv; 22, iv; B 264, 298; W 57, 149, 240; G F 120, 171
Conservation --- W 234
Cuba: Surface, underground, and quality of waters __________ W 110
Denudation--- P 72
Engineering methods-- W 1,
 3, 8, 20, 41, 42, 43, 56, 64, 94, 95, 110, 143, 150, 180, 187, 200, 257, 337
Floods--- W 40, 147, 162, 334
Hawaiian Islands: Surface waters ________________________ W 77, 318, 336
India: Irrigation-- A 12; W 87
Ice measurements-- W 187, 337
Irrigation, general ________ A 10, ii; 11, ii; 12, ii; 13, iii; 16, ii; W 20, 22, 41, 42, 87
Legal aspects: Surface waters----------------------------- W 103, 152, 238
 Underground waters---------------------------------- W 122
Louisiana: Quality of waters-------------------------------- W 101
 Underground __ W 57, 101, 114, 149; B 264, 298
Mineral springs: Analyses ________________________________ A 14, ii; B 32
Origin, distribution, etc.-------------------------------- A 14, ii
Lists--- B 32; W 114
Motions of ground waters___________________________ A 19, ii; B 319; W 67, 110, 140, 155
New Mexico: Quality of waters----------------------------- W 200, 275
 Surface waters-- W 10, 147, 162, 188, 275
 Underground waters---------------------------------- A 21, iv;
 22, iv; W 61, 149, 158, 168, 200, 275
Nicaragua: Surface waters_____________________________ A 20, iv; 22, iv
Panama: Surface waters---------------------------------- A 22, iv
Pollution: By industrial wastes_________________ W 179, 186, 189, 226, 235
 By sewage-- W 72, 104
 Laws forbidding-------------------------------------- W 103, 152
 Indices of_______________________________________ W 144, 160
Profiles of rivers--- W 44, 115
Puerto Rico: Surface waters and irrigation---------- W 32
River profiles-- W 44, 115

1 Many of the reports contain brief subject bibliographies. See abstracts.
2 Many analyses of river, spring, and well waters are scattered through publications, as noted in abstracts.
INDEX BY AREAS AND SUBJECTS.

Sanitation; quality of waters; pollution; sewage irrigation. W 3, 22, 72, 103, 110, 113, 114, 144, 145, 152, 160, 179, 185, 186, 189, 194, 226, 229, 235, 236, 255, 258, 315

Sewage disposal and purification. W 3, 22, 72, 113, 185, 194, 229

Texas: Quality of waters. A 18, ii; W 190, 236, 274
Surface waters. W 13, 40, 71, 93, 105, 162, 190, 274; G F 183
Underground waters. A 18, ii; 21, iv; 22, iv; W 61, 71, 140, 141, 149, 190, 317; G F 42, 64, 76, 183

Underground waters: Legal aspects. W 122
Methods of utilization. W 114, 255, 257
Pollution. W 110, 145, 160, 258

Windmill papers. W 1, 8, 20, 41, 42
<table>
<thead>
<tr>
<th>INDEX OF STREAMS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alamosa, Rio, Colo.</td>
</tr>
<tr>
<td>Arroyo Hondo, N. Mex.</td>
</tr>
<tr>
<td>Bluewater Creek, N. Mex.</td>
</tr>
<tr>
<td>Brazos River, Tex.</td>
</tr>
<tr>
<td>Brazos River, N. Mex.</td>
</tr>
<tr>
<td>Cameron Creek, N. Mex.</td>
</tr>
<tr>
<td>Chama River, N. Mex.</td>
</tr>
<tr>
<td>Clear Creek, Colo.</td>
</tr>
<tr>
<td>Colorado, Rio, N. Mex.</td>
</tr>
<tr>
<td>Colorado River, Tex.</td>
</tr>
<tr>
<td>Conejos River, Colo.</td>
</tr>
<tr>
<td>Costilla Creek, N. Mex.</td>
</tr>
<tr>
<td>Culebra River, Colo.</td>
</tr>
<tr>
<td>Delaware River, N. Mex.</td>
</tr>
<tr>
<td>Devils River, Tex.</td>
</tr>
<tr>
<td>Fernando de Taos, Rio, N. Mex.</td>
</tr>
<tr>
<td>Fresnal, Rio, N. Mex.</td>
</tr>
<tr>
<td>Gallinas River, N. Mex.</td>
</tr>
<tr>
<td>Gallinas River, South Fork, N. Mex.</td>
</tr>
<tr>
<td>Grande, Rio, Colo., N. Mex., Tex.</td>
</tr>
<tr>
<td>Guadalupe River, Tex.</td>
</tr>
<tr>
<td>Hondo, Arroyo, N. Mex.</td>
</tr>
<tr>
<td>Hondo reservoir inlet, N. Mex.</td>
</tr>
<tr>
<td>Hondo, Rio, N. Mex.</td>
</tr>
<tr>
<td>Hondo River, N. Mex.</td>
</tr>
<tr>
<td>Horn River, N. Mex.</td>
</tr>
<tr>
<td>Kerber Creek, Colo.</td>
</tr>
<tr>
<td>Lake McMillan, N. Mex.</td>
</tr>
<tr>
<td>La Luz, Rio, N. Mex.</td>
</tr>
<tr>
<td>Lampbright Draw, N. Mex.</td>
</tr>
<tr>
<td>Lucero, Rio, N. Mex.</td>
</tr>
<tr>
<td>Margueretta flume, Tex.</td>
</tr>
<tr>
<td>McMillan, Lake, N. Mex.</td>
</tr>
<tr>
<td>Mimbres River, N. Mex.</td>
</tr>
<tr>
<td>Neches River, Tex.</td>
</tr>
<tr>
<td>Pecos River, N. Mex., Tex.</td>
</tr>
<tr>
<td>Penasco River, N. Mex.</td>
</tr>
<tr>
<td>Pueblo de Taos, Rio, N. Mex.</td>
</tr>
<tr>
<td>Puerco, Rio, N. Mex.</td>
</tr>
<tr>
<td>Rio Alamoss, Colo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page.</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

| xxI |