BIBLIOGRAPHY AND INDEX OF
PUBLICATIONS RELATING TO GROUND WATER
PREPARED BY THE GEOLOGICAL SURVEY
AND COOPERATING AGENCIES

By

GERALD A. WARING and OSCAR E. MEINZER
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Bibliography</td>
<td>5</td>
</tr>
<tr>
<td>Water-supply papers</td>
<td>5</td>
</tr>
<tr>
<td>Annual reports</td>
<td>79</td>
</tr>
<tr>
<td>Monographs</td>
<td>83</td>
</tr>
<tr>
<td>Professional papers</td>
<td>84</td>
</tr>
<tr>
<td>Bulletins</td>
<td>91</td>
</tr>
<tr>
<td>Mineral resources</td>
<td>119</td>
</tr>
<tr>
<td>Geologic folios</td>
<td>121</td>
</tr>
<tr>
<td>Reports published by cooperating agencies</td>
<td>125</td>
</tr>
<tr>
<td>Mimeographed and other duplicated reports</td>
<td>129</td>
</tr>
<tr>
<td>Journal articles</td>
<td>190</td>
</tr>
<tr>
<td>Index</td>
<td>235</td>
</tr>
</tbody>
</table>

II
INTRODUCTION

The work of the Geological Survey includes investigations of the natural water of the United States, both that which occurs above and that which occurs below the land surface. The water below the surface is known as subsurface, subterranean, underground, or ground water. According to the present usage of the Geological Survey the water that occurs below the surface in zones of saturation is called ground water; this is the water that is recovered through wells and springs. It is to this water that the present bibliography applies.

In 1885 the Geological Survey published a paper by T. C. Chamberlin entitled “The requisite and qualifying conditions of artesian wells.” Aside from this well-known paper it published practically nothing on the subject of ground water during the first 10 years after its organization in 1879 except “Lists and analyses of mineral springs,” by A. C. Peale; annual statistics on the production of mineral water, by A. C. Peale; and papers on the hot springs of Yellowstone National Park, by W. H. Weed and by F. A. Gooch and J. E. Whitfield.

In 1888, by act of Congress, the Geological Survey undertook irrigation investigations in the arid regions of the United States, which soon led to the problem of irrigation with artesian water. The Eleventh Annual Report, published in 1891, contains a section on artesian irrigation on the Great Plains and records of wells in seven western States. In the Thirteenth Annual Report, published in 1893, there is a discussion by F. H. Newell on the occurrence and quantity of ground water in arid regions, with statistics on artesian wells and irrigation with well water in the United States. The need for more detailed information on the ground water of the country became evident and resulted in a number of investigations. The first report dealing exclusively with eastern conditions was a paper by W. J. McGee entitled “Potable waters of eastern United States,” published in 1893.
In 1895 Congress made the first of the annual "Stream gaging" appropriations, which include provision for "the investigation of underground currents and artesian wells." Systematic surveys of the ground-water resources of the United States were begun soon after the enactment of the first of these appropriations. In 1903 the Division of Hydrology was organized to conduct the ground-water work. It was a division in the Hydrographic Branch. N. H. Darton was placed in charge of the work in the West and M. L. Fuller in charge of the work in the East. In 1906 the Hydrographic Branch became the Water Resources Branch, and the Division of Hydrology became the Ground Water Division. From 1908 to 1912 the Ground Water Division was in charge of W. C. Mendenhall, and from July 1, 1912, to December 1, 1946, it was in charge of O. E. Meinzer. Since that time it has been in charge of A. N. Sayre.

In 1905 a paper entitled "Bibliographic review and index of papers relating to underground waters published by the United States Geological Survey, 1879-1904," by M. L. Fuller, was issued as Water-Supply Paper 120.

In 1918 a more extensive compilation entitled "Bibliography and index of the publications of the United States Geological Survey relating to ground water," by O. E. Meinzer, was issued as Water-Supply Paper 427. Like Fuller's bibliography, this includes for each paper listed a brief abstract or notation of its references to ground water. At the time this bibliography was issued a total of 609 papers containing information on the subject of ground water had been published by the Geological Survey in 454 volumes. Of these, 307 papers, in 171 volumes, relate primarily to that subject.

Since 1918 there has been a progressive increase in the funds annually made available for ground-water investigations and a corresponding improvement in the quality of the technical work done. The demand came first from the States, which supplied funds for cooperation. Since 1929 Congress has recognized these needs by making increased appropriations but has restricted the major part of the funds for cooperation with State and municipal governments.

The present volume lists a total of 1,777 papers, including all listed in Water-Supply Paper 427 and 1,168 additional papers issued through January 1946. It is therefore in effect a second edition of the 1918 bibliography. Most of the additional papers are based on work done in cooperation with State geological surveys, State engineer offices, and other State agencies concerned with water.
resources. The present volume contains the titles of 919 publications of the Geological Survey, about half of which relate primarily to ground water. It also includes the titles of 276 cooperative ground-water reports published by the various States, the Territory of Hawaii, and the Governments of Antigua and Haiti; 209 short reports on ground water, reproduced by the Geological Survey by mimeographing or other duplicating process; and 373 articles relating to ground water written by members of the Geological Survey and published in various scientific, technical, and trade journals.

The preparation of this volume was supervised by O. F. Meinzer. Abstracts of the water-supply papers that contain information on ground water from Nos. 427 to 640, inclusive, were prepared by K. E. Anderson; abstracts of bulletins that contain ground-water information from Nos. 661 to 900, inclusive, were prepared by C. L. McGuinness; and abstracts of a number of reports issued during 1942-45 were prepared by Miss J. M. Berdan. Nearly all the other abstracts of publications by the Geological Survey issued since 1918 and abstracts of the reports published by cooperating agencies, duplicated reports, and journal articles were prepared by G. A. Waring, who also prepared the index with the help of C. E. Jacob.
Describes various pumps and curious and antiquated lifting devices used chiefly in India and Egypt; engines, windmills, water wheels, and other devices for producing power for lifting water; and storage reservoirs for holding pumped water until needed for irrigation.

2. Irrigation near Phoenix, Ariz., by A. P. Davis. 1897. 98 pp., 31 plns.
Describes chiefly irrigation with surface waters but also contains some well data and discusses briefly the quantity of underflow (pp. 86-92). For more comprehensive reports on the region see Water-Supply Papers 186 and 376-b.

Describes the geography and geology, gives some well data, and discusses the artesian conditions and the irrigation prospects of an indefinite region in southeastern Washington.

Contains directions for constructing reservoirs for pumped well water (pp. 14-19).

6. Underground waters of southwestern Kansas, by Erasmus Hawort. 1897. 65 pp., 12 plns.
Covers a rectangular area comprising all of Meade County, nearly all of Seward, Haskell, and Gray Counties, and parts of Ford and Finney Counties. Describes the physiography, geology, water supplies, and irrigation developments of the area. Discusses the waters of the Dakota sandstone and of the Tertiary formations.

7. Seepage water of northern Utah, by Samuel Fortier. 1897. 50 pp., 3 plns.
Describes the water supplies of Cache Valley and the seepage waters in Ogden Valley. Discusses the loss of ground water by evaporation, transpiration, and seepage.

8. Windmills for irrigation, by E. C. Murphy. 1897. 49 pp., 8 plns.
Describes the apparatus and methods used in making tests of windmills during the summer of 1896 in the vicinity of Garden City, Kans. Gives the results of these tests and draws conclusions.

Describes the water supplies, irrigation developments, and agricultural practice in the valley of Cache la Poudre River, a tributary of the South Platte. Discusses the legislative and judicial control of the water supplies (including ground water), the source and disposal of ground water, the use of ground water, the effects of alkali water on soil, pumping of ground water, and artesian wells.

10. Irrigation in Mesilla Valley, N. Mex., by F. C. Barker. 1898. 51 pp., 11 plns.
Describes primitive methods of irrigation and agriculture employed in the valley of the Rio Grande between Fort Seldon, N. Mex., and El Paso, Tex. Describes pumping for irrigation with windmills and steam engines.

Covers an area that includes Lancaster, Seward, York, Fillmore, Hamilton-Clay, Hall, Adams, Buffalo, Kearney, and Phelps Counties and parts of Saline, Gosper, and Dawson Counties. Describes the physiography, geology, and ground waters of the area and discusses briefly the prospects for obtaining water from deep-seated formations.
 Describes and discusses irrigation works and projects in Texas, considering both
 surface and ground waters as sources of supply. Superseded by Water-Supply
 Paper 71.

14. New tests of certain pumps and water lifts used in irrigation, by O. P.
 Hood. 1898. 91 pp., 1 pi.
 Discusses the mechanics and efficiency of reciprocating pumps and of water lifts
 of various other types.

17. Irrigation near Bakersfield, Calif., by C. E. Grunsky. 1898. 96 pp., 16 pls.
 Describes irrigation with surface water and contains also a statement on early
 pumping from wells for irrigation at Lindsay, San Joaquin Valley, Calif. (p. 94).

18. Irrigation near Fresno, Calif., by C. E. Grunsky. 1898. 94 pp., 14 pls.
 Describes irrigation with surface water and contains a brief discussion of the
 loss of water from Kings River and Fresno Canal and its effect on the water table
 (pp. 71-79).

 Gives data and discusses results of numerous laboratory experiments with wind-
 driven wheels. Describes the apparatus and methods used.

21. Wells of northern Indiana, by Frank Leverett. 1899. 82 pp., 2 pls.
 Gives well data by counties for the northern part of the state and contains two
 maps of Indiana and western Ohio, showing the character and depth of the glacial
 drift and its relation to water supplies.

 pp. 105-200, 12 pls.
 Discusses chiefly water storage and power and canal projects but also contains
 data in regard to seepage from canals (pp. 159-160, 173-178) and quantities of water
 yielded by the sand deposits of Long Island (pp. 191-198).

26. Wells of southern Indiana, by Frank Leverett. 1899. 64 pp.
 Gives well data by counties for the southern part of the State.

27. Operations at river stations, 1898, Part I, (F. H. Newell, chief hydro-
 grapher; B. M. Hall, district engineer, Florida.) 1899. pp. 1-100.
 Contains discharge measurements of Silver, Kissingen, Blue, and Ichatucknee
 Springs, Fla. (p. 45).

28. Operations at river stations, 1898, Part II. (E. H. Newell, chief hydro-
 Contains discharge measurements of Barton Spring near Austin, Tex. (p. 130).

29. Wells and windmills in Nebraska, by E. H. Barbour. 1899. 85 pp., 27 pls.
 Describes home-made windmills, various other water-lifting devices, salt-water
 wells, and blowing and freezing wells; gives well data and other information in
 regard to ground water.

30. Water resources of the Lower Peninsula of Michigan, by A. C. Lane. 1899
 99 pp., 7 pls.
 Discusses the use of water and the effects of quality with respect to the various
 uses. Describes the geology and ground-water conditions in the area covered.

 Discusses the economic value of mineral waters and the interpretation and classification of water analyses; contains analyses of water from various geological formations and generalizations in regard to them; also discusses sanitary conditions of drinking waters.
34. Geology and water resources of a portion of southeastern South Dakota, by J. E. Todd. 1900. 34 pp., 10 pls.
Covers a rectangular area that includes parts of Turner, Hutchinson, Brookings, Yankton, and Clay Counties. Describes the geology and the surface and ground waters with special reference to the artesian water in the Dakota sandstone. Contains a geologic map and maps showing depths to bedrock, depths to the water at the base of the till, and depths to the artesian water. This area is also covered by Geologic Folios 96 and 97.

Contains discharge measurements of 14 springs in Georgia (pp. 147, 148).

Contains discharge measurements of Las Moras and San Felipe Springs, Tex. (p. 277).

41. The windmill; its efficiency and economic use, Part I, by E. C. Murphy. 1901. 72 pp., 14 pls.
See also Water-Supply Paper 42.

42. The windmill; its efficiency and economic use, Part II, by E. C. Murphy. 1901. pp. 77-147, 2 pls.
Nos. 41 and 42 give a classification of windmills, describe early experiments with windmills and tests made by the writer, describe the apparatus and methods used in making these tests, and discuss the results of the tests.

45. Water storage on Cache Creek, Calif., by A. E. Chandler. 1901. 48 pp., 10 pls.
Contains data in regard to wells and irrigation with ground water near Woodland, Sacramento Valley, Calif. (pp. 23-26).

Includes a section on “Computations of seepage in Colorado,” pp. 299-306, in which are given data on seepage, chiefly seepage into rivers, and conclusions as to the relation of irrigation to seepage.

See also Water-Supply Paper 54.

Nos. 53 and 54 relate to an indefinite area in western Idaho including a part of Nez Perce County and to adjacent areas of Washington and Oregon. They describe briefly the physiography, geology, soils, water supplies, and mineral resources of the region.
The information on ground water, all of which is given in Water-Supply Paper 54, includes meager data with recommendations in regard to springs, “horizontal wells” or infiltration tunnels, and artesian wells. No. 54 also contains a short bibliography of artesian waters.

55. Geology and water resources of a portion of Yakima County, Wash., by G. O. Smith. 1901. 68 pp., 7 pls.
Describes the geography, geology, and surface and ground waters of an area comprising about 50 square miles in the vicinity of Yakima. Discusses the artesian basins in detail and gives well data. The part of this area west of Yakima is also
55. Geology and water resources of a portion of Yakima County, Wash.—Continued.

Continued by Geologic Folio 86, which contains a more detailed geologic map and also contains a discussion of the artesian and other ground-water conditions.

See also Water-Supply Papers 61 and 149.

Contains discussions of ground water for irrigation and of alkali conditions and includes records of 854 wells (pp. 22-24, 58-88). Contains map (pl. 5) showing locations of wells listed in the table.

See also Water-Supply Paper 60.

Nos. 59 and 60 give descriptions of pumping plants and of ground-water supplies. No. 59 contains records of 412 wells in Redlands quadrangle and of 478 wells in San Bernardino quadrangle. No. 59 includes a topographic map showing contours of water table, areas of artesian flow in 1897 and 1900, irrigated areas and locations of wells for which records are given.

Nos. 57 and 61 contain tabular data in regard to wells and other borings more than 400 feet deep. They give information as to the depths, diameters, and yields of the wells, the head, temperature, and quality of the water, and purposes for which the boring was done. The data are given by States, and the States are arranged alphabetically. The States from Alabama to Montana, inclusive, are covered by No. 57, and the States from Nebraska to Wyoming, inclusive, by No. 61. A revised edition for all States was published in 1905 as Water-Supply Paper 149.

Contains a paragraph on large springs in the Watauga River basin (p. 82).

Contains a brief description of the springs, flowing wells, and ground-water conditions in the vicinity of Carrizo Springs, Tex. Includes an analysis of the Carrizo Springs mineral water (p. 63).

67. The motions of underground waters, by C. S. Slichter. 1902. 106 pp., 8 pls.

Discusses the origin, depth, and amount of ground waters, the porosity and permeability of rocks and soils; the causes, rates, and laws of the movements of ground water, the surficial and deep zones of circulation, the recovery of water by wells, and the shape and position of the water table. Gives simple methods of measuring the yield of flowing wells. Describes artesian wells at Savannah, Ga.

70. Geology and water resources of the Patrick and Goshen Hole quadrangles, in eastern Wyoming and western Nebraska, by G. I. Adams. 1902. 50 pp., 11 pls.

Describes the geology and contains some information on springs and wells in these quadrangles.

Discusses the principal irrigation systems, giving special attention to the irrigation of rice. Contains data in regard to numerous springs and artesian and other wells.
Contains records of discharge of 33 flowing wells in Moxie Valley, near Yakima, Wash. (pp. 204, 205).

77. The water resources of Molokai, Hawaiian Islands, by Waldemar Lindgren. 1903. 62 pp., 4 pls.
Describes the geography, geology, and water resources of the island of Molokai, including springs and wells. Describes the occurrence of water in lava and its quality as affected by the sea. Contains a discussion and estimate of the quantity of ground water available for irrigation.

Describes briefly the geology of a part of the Snake River plains in Canyon and Owyhee Counties, Idaho, and Malheur and Harney Counties, Oreg. Discusses the conditions on which artesian flow depends and describes springs and wells in the Lewis, Olas, Harney, and Whitehorse artesian basins. Describes artesian wells in alluvial deposits and discusses the size of drill holes, the methods of casing, the preservation of well records, and the importance of laws to govern the use of artesian waters. Gives a list of publications bearing on artesian waters.

Contains a brief description of Barton Springs, near Austin, Tex. (pp. 152-153). See also Water-Supply Papers 132 and 174.

Contains 7 discharge measurements of 4 springs in Nevada (p. 126) and discharge measurement of a group of springs in Idaho (p. 216).

89. Water resources of the Salinas Valley, Calif., by Homer Hamlin. 1904. 91 pp., 12 pls.
Includes data in regard to ground water and pumping plants, and a map showing the area of artesian flow and the areas irrigated with water obtained from wells.

90. Geology and water resources of part of the lower James River Valley, S. Dak., by J. E. Todd and C. M. Hall. 1904. 47 pp., 23 pls.
Describes the geology, surface waters, and artesian and other ground waters of a rectangular area comprising Davison, Hanson, Sanborn, Beadle, and Miner Counties and parts of Kingsbury, Jerauld, Aurora, and McCook Counties. Includes a geologic map of the area and maps showing areas of artesian flow, depths to Dakota sandstone, head of artesian water, depths to bedrock, and depths to water at the base of the till. The area is also described in Geologic Folios 99, 100, 113, and 114.

91. The natural features and economic development of the Sandusky, Maumee, Muskingum, and Miami drainage areas in Ohio, by B. H. and M. S. Flynn. 1904. 130 pp.
Includes descriptions of numerous public water supplies obtained from wells and springs (pp. 88-124).

98. Report of progress of stream measurements for the calendar year 1903, by J. C. Hoyt (M. R. Hall, district hydrographer, Alabama), Part II, Southern Atlantic, eastern Gulf of Mexico, and eastern Mississippi River drainage. 1904. 313 pp., 1 pl.
Contains discharge measurements of Big Springs, near Tuscumbia, Ala. (p. 293).
99. Report of progress of stream measurements for the calendar year 1903, by J. C. Hoyt (E. Johnson, Jr., hydrographer, Missouri; W. G. Russell and G. H. Matthes, hydrographers, Oklahoma), Part III, Western Mississippi River and western Gulf of Mexico drainage. 1904. 422 pp., 1 pl. Contains a description and discharge record of Meramec Spring, near Meramec, Mo. (pp. 235-237) and the discharge records of 16 springs in Oklahoma (p. 321).

101. Underground waters of southern Louisiana, by G. D. Harris, with discussions of their uses for water supplies and for rice irrigation, by M. L. Fuller. 1904. 98 pp., 11 pl. Describes the geology and ground-water conditions of the area, gives data in regard to artesian wells, and outlines methods of well drilling, pumping, and rice irrigation. Includes 25 analyses of ground water.

102. Contributions to the hydrology of eastern United States, 1903; M. L. Fuller, geologist in charge. 1904. 522 pp. Contains a list of publications of the United States Geological Survey relating to ground water, with special reference to springs. Gives an account of the organization and of the work of the division of hydrology (ground water). Contains notes on wells, springs, and general water resources, arranged by counties, in the following States:

- Maine, by W. S. Bayley, pp. 27-55. Contains records of 224 wells and 130 springs and analyses of 3 well waters and of 8 spring waters.
- Vermont, by G. H. Perkins, pp. 73-93. Contains a table giving data in regard to the water supplies of Vermont towns, contains also 111 partial analyses of waters from wells, springs, streams, and lakes and records of 44 wells and 90 springs.
- Massachusetts, by W. O. Crosby and Laurence LaForge, pp. 94-118. Contains records of 162 wells and 40 springs and analyses of 7 well waters and 17 spring waters.
- Rhode Island, by W. O. Crosby, pp. 120-126. Contains records of 24 wells and 12 springs and analyses of 2 well waters and 3 spring waters.
- Georgia, by S. W. McCallie, pp. 207-237. Contains a table giving data in regard to water supplies of cities and villages in the State. Contains records of 90 wells and 100 springs and a table giving the yields of 14 springs. Includes analyses of water from 1 well and 1 spring.
- Florida, by M. L. Fuller, pp. 238-275. Contains records of 242 wells and 43 springs and analyses of 11 well waters and 9 spring waters. Gives the yields of some very large springs.
- Alabama, by E. A. Smith, pp. 276-331. Contains notes on numerous wells by counties.
- Kentucky, by L. C. Glenn, pp. 369-373. Contains records of 16 wells and 2 analyses of artesian water.
- Arkansas, by A. H. Purdue, pp. 374-388. Contains records of 96 wells and 73 springs and analyses of 3 well waters.
- Minnesota, by C. W. Hall, pp. 441-448. Contains records of about 800 shallow wells, about 200 deep wells, and 76 springs; includes an analysis of water from a spring at Mankato.
- Lower Michigan, by W. F. Cooper, pp. 489-512. Contains records of 198 wells and 81 springs and analyses of 11 well waters and 15 spring waters.

Describes the topography and geology of the Gila Valley between the Buttes, 12 miles east of Florence, and the mouth of Salt River; treats of the source, amount, and quality of water in the valley fill and the methods of recovering this water; includes well data and water analyses.

Gives data regarding Hackberry Springs, 2 miles northwest of Toyah Lake, and Santa Rosa Spring, near Santa Lucia, in Pecos County (pp. 14, 15).

106. Water resources of the Philadelphia district, by Florence Bascom. 1904. 75 pp., 4 pls.

Describes the geology and the streams, springs, wells, and public water supplies of an area comprising the Germantown, Norristown, Philadelphia, and Chester quadrangles. Discusses artesian conditions and prospects in the crystalline rocks, the Triassic formations, and the formations of the Coastal Plain. The area is also described in Geologic Folio 162, which contains considerable information on ground water.

108. Quality of water in the Susquehanna River drainage basin, by M. O. Leighton, with an introductory chapter on physiographic features, by G. B. Hollister. 1904. 76 pp., 4 pls.

Contains analyses of ground waters and discussions of the quality of these waters.

110. Contributions to the hydrology of eastern United States, 1904; M. L. Fuller, geologist in charge. 1905. 211 pp., 5 pls.

Contains the reports in the following list. Most of those covering specific areas do not include any maps.

- Description of underflow meter used in measuring the velocity and direction of underground water, by Charles S. Slichter, pp. 17-31.
- The California or "stovepipe" method of well construction, by Charles S. Slichter, pp. 32-36.
- Approximate methods of measuring the yield of flowing wells, by Charles S. Slichter, pp. 37-42.
- Corrections necessary in accurate determinations of flow from vertical well casings, from notes furnished by A. N. Talbot, pp. 43-44.
- Experiment relating to problems of well contamination at Quitman, Ga., by S. W. McCallie, pp. 45-54.
- The new artesian water supply at Ithaca, N. Y., by F. L. Whitney, pp. 55-64.
- Triassic rocks of the Connecticut Valley as a source of water supply, by M. L. Fuller, pp. 95-112.
- Spring system of the Decaturville dome, Camden County, Mo., by E. M. Shepard, pp. 113-125.
- Water resources of the Fort Ticonderoga quadrangle, Vt. and N. Y., by T. N. Dale, pp. 126-129.
- Water resources of the Taconic quadrangle, N. Y., Mass., and Vt., by F. B. Taylor, pp. 130-133.
- Water resources of the Watkins Glen quadrangle, N. Y., by R. S. Tarr, pp. 134-140. The ground-water conditions of this quadrangle are described more fully in Geologic Folio 169.
- Water resources of the central and southwestern highlands of New Jersey, by Laurence La Forge, pp. 141-155.
- Water resources of the Chambersburg and Mercersburg quadrangles, Pa., by G. W. Stose, pp. 156-158. The ground-water conditions of these quadrangles are described more fully in Geologic Folio 170.
- Water resources of the Curnwensville, Patton, Ebensburg, and Barnesboro quadrangles, Pa., by F. G. Clapp, pp. 159-163. The ground-water conditions of the Barnesboro and Patton quadrangles are also briefly described in Geologic Folio 189, and those of the Ebensburg quadrangle in Geologic Folio 132. The ground waters of
10. Contributions to the hydrology of eastern United States, 1904—Continued.

the Curwensville, Barnesboro, and Patton quadrangles are also briefly described in Bulletin 531 d.

Water resources of the Elders Ridge quadrangle, Pa., by R. W. Stone, pp. 164, 165. The ground-water conditions of this quadrangle are also described in Bulletin 256 (with geologic map) and in Geologic Folio 123.

Water resources of the Waynesburg quadrangle, Pa., by R. W. Stone, pp. 166, 167. The ground-water conditions of this quadrangle are also described in Geologic Folio 121.

Water resources of the Accident and Grantsville quadrangles, Md., by G. C. Martin, pp. 168-170. The ground-water conditions of these quadrangles are also described in Geologic Folio 160.

Water resources of the Frostburg and Flintstone quadrangles, Md. and W. Va., by G. C. Martin, pp. 171-173.

Water resources of Cowee and Pisgah quadrangles, N. C., by H. S. Gale, pp. 174-176. The ground-water conditions of the Pisgah quadrangle are described also in Geologic Folio 147.

Water resources of the Middleboro-Harlan region of southeastern Kentucky, by G. H. Ashley, pp. 177-178.

Notes on the hydrology of Cuba, by M. L. Fuller, pp. 183-200.

Describes briefly by counties the deep wells, springs, and municipal water supplies of the State.

12. Underflow tests in the drainage basin of Los Angeles River, by Homer Hamlin. 1905. 55 pp., 7 pls.

Describes in detail the methods and apparatus used in making measurements of the rate and volume of underflow and gives the results of underflow tests made in the valley of Los Angeles River in 1902 and 1903.

The second part of this paper describes briefly the geology and ground waters of the region about Marion, Ind., and the contamination of rock wells and streams by waste oil and brine.

Contains a paper entitled “Occurrence of underground waters,” by M. L. Fuller, pp. 18-40, in which are discussed the source, quality, and temperature of ground waters, the permeability and storage capacity of water-bearing formations, the recovery of water through springs and wells, the conditions that produce artesian flow and the general ground-water conditions in eastern United States.

Contains also brief reports on ground water in the following States, each of which includes a bibliography.

Maine, by W. S. Bayley, pp. 41-56. Includes analyses of 35 spring waters.

New Hampshire, by M. L. Fuller, pp. 57-59.

Vermont, by G. H. Perkins, pp. 60-67. Includes a sketch map of the State, showing water-bearing deposits and analyses of 3 spring waters.

Massachusetts and Rhode Island, by W. O. Crosby, pp. 68-75.

Connecticut, by H. E. Gregory, pp. 76-81. Includes a sketch map of the State, showing the rock formations.

New York, by F. R. Weeks, pp. 82-92. Includes a sketch map of the State, showing the rock formations.

New Jersey, by G. N. Knapp, pp. 93-108. Includes a sketch map of the State, showing the ground-water provinces, and 5 geologic sections, showing the water-bearing formations of the Coastal Plain.

Pennsylvania, by M. L. Fuller, pp. 104-110. Includes a sketch map of the State, showing the main geologic systems.

Delaware, by N. H. Darton, pp. 111-113. Includes geologic sections showing water-bearing formations.

Maryland, by N. H. Darton and M. L. Fuller, pp. 114-123. Includes geologic sections showing water-bearing formations.

District of Columbia, by N. H. Darton and M. L. Fuller, pp. 124-126. Includes geologic sections showing water-bearing formations.

Virginia, by N. H. Darton and M. L. Fuller, pp. 127-135. Includes geologic sections showing water-bearing formations.

North Carolina, by M. L. Fuller, pp. 136-139.

South Carolina, by L. C. Glenn, pp. 140-152. Includes geologic sections showing water-bearing formations.

Georgia, by S. W. McCallie, pp. 153-158. Includes a sketch map of the State showing areas of artesian flow.

Florida, by M. L. Fuller, pp. 159-163.

Alabama, by E. A. Smith, pp. 164-170. Includes a sketch map of the State showing ground-water conditions.

Mississippi, by L. C. Johnson, pp. 171-178. Includes a geologic sketch map of the State.

Louisiana and southern Arkansas, by A. C. Veatch, pp. 179-187. Includes sketch maps showing ground-water conditions.

Northern Arkansas, by A. H. Purdue, pp. 188-197. Includes a geologic sketch map of the State.

Tennessee and Kentucky, by L. C. Glenn, pp. 198-208.

Missouri, by E. M. Shepard, pp. 209-219. Includes sketch maps showing the geology and ground-water conditions of the State.

Wisconsin, Northern Peninsula of Michigan, and the portion of Illinois north of the Carboniferous deposits, by Alfred R. Schultz, pp. 232-241. Includes a sketch map of the region showing the outcrops of the "Potsdam" and St. Peter sardstones.

Lower Michigan, compiled from report by A. C. Lane, pp. 242-247. Includes a geologic sketch map and a section of the area.

Illinois, by Frank Leverett, pp. 248-257. Includes a geologic sketch map and a section of the State.

Indiana, by Frank Leverett, pp. 258-264. Includes sketch maps of the State, showing the geology, the depth of the glacial drift, and the relation of wells to depths of drift.

Ohio, by Frank Leverett, pp. 267-270. Includes sketch maps of the State showing the geology, the depths of the glacial drift, and the relation of wells to the depth of the drift.

West Virginia, by M. L. Fuller, pp. 271-272.

Deals chiefly with surface waters but contains data on deep city wells and collecting tunnel and analysis of tunnel water (pp. 33-42, 57).

Describes briefly the geology of the Columbia Plains and the Kittitas Valley, gives information in regard to the streams, springs, and wells, and discusses the artesian prospects.

Lists all papers that contain information on ground water. Gives brief abstracts of these papers in regard to ground water, with page references for papers dealing mainly with other subjects. Contains an index of the papers listed in so far as they relate to ground water.

Defines and classifies ground waters and gives common-law rules and State legislative acts relating to their use.
123. Geology and underground water conditions of the Jornada del Muerto, N. Mex., by C. R. Keyes. 1905. 42 pp., 9 pls.
Superseded by Water-Supply Paper 188.

Contains discharge measurements of Big Springs, near Albany, Ga. (p. 120), and Cave Spring, Ga. (p. 175).

Contains discharge measurement of Giant Springs, near Great Falls, Mont. (p. 192).

Contains a description and discharge record for Meramec Spring, near Meramec, Mo. (pp. 123-125), and Greer Spring, Mo. (pp. 178-179).

Contains descriptions of the following springs in Texas: Lipan and Kickapoo Springs near San Angelo (p. 48); Barton and Mormon Springs near Austin (pp. 44, 45); Toyah Spring, at Toyahville (pp. 121, 122); and Santa Rosa Spring near Fort Stockton (p. 122). Gives discharge of 20 big springs in Texas (p. 127).

Contains discharge measurements of Heitman's and Monfrena Springs, Nev. (p. 353), and Big Spring, Utah (p. 364).

Contains discharge measurements of 18 springs in Idaho (pp. 271-273).

Describes the geology of that part of the valley in which Phoenix and Mesa are situated. Gives well records and discusses the quantity and chemical character of the ground waters, the duty of water for irrigation, and the cost of pumping. Contains maps showing the geology and the position of the water table.

137. Development of underground waters in the eastern coastal-plain region of southern California, by W. C. Mendenhall. 1905. 140 pp., 7 pls.
Describes the geology of that part of the valley in which Phoenix and Mesa are and Santa Ana quadrangles in Los Angeles and Orange Counties. Discusses the effects of development and drought on ground-water levels, contains records of 2,765 wells, and includes maps showing original areas of artesian flow, areas of artesian flow in 1904, ground-water levels, irrigated lands, and locations of wells and pumping plants. Includes also a general map of the “Valley of southern California,” showing contours of the water table, original areas of artesian flow, and areas of artesian flow in 1904.

Describes the ground-water conditions and the irrigation systems in the Downey and Las Bolsas quadrangles, in Los Angeles and Orange Counties. Discusses the effect of development and drought on ground-water levels, contains records of 3,323 wells, and includes maps showing original areas of artesian flow, areas of artesian flow in 1904, ground-water levels, irrigated lands, and locations of wells and pumping plants. Contains also the general map mentioned under Water-Supply Paper 137.

139. Development of underground waters in the western coastal-plain region of southern California, by W. C. Mendenhall. 1905. 105 pp., 8 pls.

Describes the ground-water conditions and the irrigation systems in the Santa Monica and Redondo quadrangles, in Los Angeles County. Discusses the effects of development and drought on changes in ground-water levels, contains records of 2,097 wells, and includes maps showing original areas of artesian flow, areas of artesian flow in 1904, ground-water levels, irrigated lands, and locations of wells and pumping plants. Contains also the general map mentioned under Water-Supply Paper 137.

140. Field measurements of the rate of movement of underground waters, by C. S. Slichter. 1905. 122 pp., 15 pls.

Discusses the capacity of sand to transmit water, describes the under-flow meter devised by the author and laboratory experiments on the flow of water through sands and gravels, and gives results of measurements of underflow in Rio Hondo, San Gabriel, and Mohave River Valleys, Calif., and on Long Island, N. Y. Discusses specific capacities of wells, gives results of tests of wells and pumping plants in the Rio Grande Valley in New Mexico and Texas and the Arkansas Valley in Kansas, and describes the "stovepipe" method of well construction.

Describes investigation of the underflow in the valley of the Rio Grande in Texas and New Mexico, gives details of tests of pumping plants near El Paso, Tex., in Mesilla Valley, N. Mex., and near Berino, N. Mex., and gives analyses of well waters and data concerning wells at and near El Paso.

142. The hydrology of San Bernardino Valley, Calif., by W. C. Mendenhall. 1905. 124 pp., 12 pls.

Describes the source, circulation, quantity, temperature, and chemical character of the ground water, gives records of 890 wells, and contains maps showing changes in areas of artesian flow and in ground-water levels, and locations of wells pumping plants, and irrigated lands. This paper, like Nos. 137, 138, 139, and 219, also contains a general map of the "Valley of southern California," showing contours of water table, original areas of artesian flow, and areas of artesian flow in 1904.

Discusses the content of sodium chloride in coast and inland waters and its value in indicating pollution of streams and wells. Describes the solutions and methods used in determinations of chlorine. Contains maps showing the normal distribution of chlorine in surface and ground waters in the New England States and New York, and tables giving data on which the maps are based.

145. Contributions to the hydrology of eastern United States, 1905; M. L. Fuller, geologist in charge. 1905. 220 pp., 6 pls.

Contains the reports in the following list. Most of those covering specific areas do not include any maps.

Hydrologic work in eastern United States and publications on ground waters, by M. L. Fuller, pp. 9-29.
The drainage of ponds into drilled wells, by R. E. Horton, pp. 30-39.
Two unusual types of artesian flow, by M. L. Fuller, pp. 40-45.
Construction of so-called fountain and geyser springs, by M. L. Fuller, pp. 45-50.
A convenient gage for determining low artesian heads, by M. L. Fuller, pp. 51, 52.
145. Contributions to the hydrology of eastern United States, 1905—Continued.

- Water resources of the Catatonk area, N. Y., by E. M. Kindle, pp. 53-57. The ground-water conditions in this quadrangle are also described in Geologic Folio 169.
- Water resources of the Pawpaw and Hancock quadrangles, V. Va., Md., and Pa., by G. W. Stose and G. C. Martin, pp. 58-63. The ground-water conditions in these quadrangles are also described in Geologic Folio 179.
- Water resources of the Nicholas quadrangle, W. Va., by G. H. Ashley, pp. 64-66.
- Water resources of the Mineral Point quadrangle, Wis., by U. S. Grant, pp. 67-73. The ground-water conditions in this quadrangle are also described in Geologic Folio 145.
- Water resources of the Joplin district, Mo.-Kans., by W. S. T. Smith, pp. 74-83. The ground-water conditions in this quadrangle are also described in Geologic Folio 148, but analyses are given only in the water-supply paper.
- Water resources of the Winters quadrangle, Ark., by A. H. Purdue, pp. 84-87. The ground-water conditions in this quadrangle are also described in Geologic Folio 154. Water resources of the contact region between the Paleozoic and Mississippi embayment deposits in northern Arkansas, by A. H. Purdue, pp. 88-119.
- Water resources of the Portsmouth-York region, N. H. and Maine, by G. O. Smith, pp. 120, 128.
- A ground-water problem in southeastern Michigan, by M. L. Fuller, pp. 129-147.
- Water-supply from the delta type of sand plain, by W. O. Crosby, pp. 161-173.
- Notes on certain hot springs of the southern United States, by W. H. Weed, pp. 185-206.
- Notes on certain large springs of the Ozark region, Mo. and Ark., compiled by M. L. Fuller, pp. 207-210.

Contains a brief account of the organization of the hydrographic (water resources) branch, including the division of hydrology (ground water). Includes the following papers relating to ground water, drilling methods, and pumping for irrigation.
- Pumping underground water in southern California, by F. C. Finkle.
- Diamond-drill methods, by G. A. Hammond.
- Underground waters of southern California, by W. C. Menderhall.
- Cost of power for pumping irrigating water, by H. A. Storrs.

148. Geology and water resources of Oklahoma, by C. N. Got’ld. 1905. 178 pp., 22 pls.

Covers only the original Territory of Oklahoma, not the eastern part of the State. Describes the topography and geology and the streams, springs, and wells; discusses artesian conditions; outlines the water supplies by counties; treats of irrigation from reservoirs, springs, and wells; and gives 154 analyses of well waters and a table containing records of 261 wells. Includes a geologic map.

Gives location, depth, diameter, yield, water level, and other available information concerning wells 400 feet or more in depth; includes all wells in Water-Supply Papers 57 and 61. Contains some data in regard to every State in the United States, arranged alphabetically by States and counties. Mentions principal publications relating to deep borings.

150. Weir experiments, coefficients, and formulas, by R. E. Horton. 1906. 189 pp., 38 pls.

Superseded by Water-Supply Paper 200.

151. Field assay of water, by M. O. Leighton. 1905. 77 pp., 4 pls.

Describes apparatus, reagents, and methods for rapid field determinations of turbidity, color, iron, hardness, carbonates, bicarbonates, sulfates, chlorides, and calcium in water.
Includes laws relating to wells and springs.

153. The underflow in Arkansas Valley in western Kansas, by C. S. Slichter. 1906. 90 pp., 3 pls.
Discusses the origin and extent of the underflow, the fluctuation of ground-water level, and the chemical composition of the water. Gives results of underflow measurements and tests of the rate of evaporation of ground water. Gives summaries and details of pumping tests and analyses of river and well waters.

154. The geology and water resources of the eastern portion of the Panhandle of Texas, by C. N. Gould. 1906. 64 pp., 15 pls.
Describes the topography and geology and the streams and springs, discusses the ground-water conditions and irrigation, and gives detailed data by counties. Includes a geologic map.

Gives data on ground-water levels and discusses fluctuations due to rainfall, evaporation, barometric changes, temperature changes in rivers, charges in lake levels, tidal changes, irrigation, the construction of dams, ground-water developments, deforestation, cultivation of the soil, drainage, and other causes.

Describes the geology and the ground-water conditions and gives numerous well records. Includes maps showing depths to ground water and areas of artesian flow.

Describes the geology and ground-water conditions of the artesian basin which extends along Pecos River from Roswell to Lake McMillan. Discusses the area and extent of the artesian basin, the source, quantity, pressure, quality, and conservation of the artesian water, and the irrigation with this water. Gives well records and analyses and contains maps showing the area of artesian flow and the intake area.

159. Summary of the underground-water resources of Mississippi, by A. F. Crider and L. C. Johnson. 1906. 86 pp., 6 pls.
Describes the geology and the ground-water conditions of the State. Gives notes on wells by counties, records of deep wells, and chemical analyses. Includes a geologic map (pl. 1) and a map showing ground-water conditions (pl. 5).

160. Underground-water papers, 1906; M. L. Fuller, geologist in charge. 1906. 104 pp., 1 pl.
Gives an account of work done in 1905 and lists of publications relating to ground waters; also contains the following reports:
Significance of the term "artesian," by M. L. Fuller, pp. 9-15.
Representation of wells and springs on maps, by M. L. Fuller, pp. 16-18.
Flowing-well districts in the eastern part of the northern peninsula of Michigan, by Frank Leverett, pp. 29-53.
Drainage of wet lands in Arkansas by wells, by A. F. Crider, pp. 54-58.
Total amount of free water in earth's crust, by M. L. Fuller, pp. 59-72.
Use of fluorescein in the study of underground waters, by R. B. Dole, pp. 73-85.
Peculiar mineral waters from crystalline rocks of Georgia, by M. L. Fuller, pp. 86-91.
Problems of water contamination, by Isaiah Bowman, pp. 92-95.
Instances of improvement of water in wells, by M. L. Fuller, pp. 96-100.

Lists practically all papers that contain any information on ground water; includes brief abstracts with respect to ground water, giving page references for reports dealing mainly with other subjects; contains index with respect to ground-water subjects of papers listed.

Describes the topography and geology, discusses mineral waters and artesian conditions, and outlines the water resources by counties. Contains maps showing the geology and the head of the artesian water.

Contains discharge measurement of Blue Springs, Ga. (p. 98), and three measurements of Warm Springs, Ga. (p. 101).

Contains a description and a one-year record of discharge of Reeds Springs near Albion, Mich. (pp. 24, 25).

Contains a description and discharge record of Meramec Spring near Meramec, Mo. (p. 17).

Describes Barton Springs, near Austin, Tex. (pp. 30, 31).

Contains discharge measurements of Fish and Little Shasta Springs, Calif. (pp. 85, 246).

181. Geology and water resources of Owens Valley, Calif., by W. T. Lee. 1906. 28 pp., 6 pls.

Outlines the geology and ground-water conditions, gives well records, and discusses briefly the artesian prospects, the utilization of ground waters by installation of pumping and power plants, reservoir sites, and the significance of undrained lakes as registers of climate. See also Water-Supply Paper 294.

182. Flowing wells and municipal water supplies in the southern portions of the southern peninsula of Michigan, by Frank Leverett and others. 1906. 292 pp., 5 pls.

See also Water-Supply Paper 183.

183. Flowing wells and municipal water supplies in the middle and northern portions of the southern peninsula of Michigan, by Frank Leverett and others. 1907. 393 pp., 5 pls.

Nos. 182 and 183 describe in general the geology and ground-water conditions of the areas covered and give details by counties concerning flowing wells and municipal
183. Flowing wells and municipal water supplies in the middle and northern portions of the southern peninsula of Michigan—Continued. They contain numerous analyses and several geologic and artesian-water maps.

Describes investigations of velocity, direction, and quantity of underflow at Ogalalla, Nebr., gives chemical analyses of the water, and discusses disadvantages of underflow canals or infiltration ditches. Describes also investigations at North Platte, Nebr., and gives suggestions for the construction of small pumping plants.

Describes the topography and geology, reservoir sites, and the water resources of the valley. Gives the well data and outlines the ground-water conditions in the Santa Fe, Albuquerque, Belen, Jornada, La Mesa, and Mesilla districts. Discusses the origin, course, and quantity of the ground water, its character, and its utilization by means of wells and infiltration ditches. Contains several analyses of river and well waters and includes a topographic map of Mesilla Valley, showing depths to ground water.

190. Underground waters of the Coastal Plain of Texas, by T. U. Taylor. 1907. 73 pp., 3 pls.
Describes the ground waters by counties; gives many well records and analyses; includes a map showing locations of artesian wells.

191. The geology and water resources of the western portion of the Panhandle of Texas, by C. N. Gould. 1907. 70 pp., 7 pls.
Describes the topography and geology, the springs, streams, and shallow and deep-seated ground waters, and the utilization of the waters for irrigation. Gives detailed information by counties and includes a geologic map.

Relates chiefly to surface waters but contains scattered notes on wells used for public supplies throughout the State, a table of data in regard to these wells (pp. 146-149), and a brief discussion of the comparative value of surface and ground waters (pp. 151-153).

195. Underground waters of Missouri, their geology and utilization, by E. M. Shepard. 1907. 224 pp., 6 pls.
Describes the topography and geology of the State and discusses the water supplies by districts and counties; gives statistics of city water supplies, analyses of water, and many well sections and records; includes a map of the State, showing the locations of flowing and non-flowing deep wells.

197. Water resources of Georgia, by B. M. and M. R. Hall. 1907. 342 pp., 1 pl.
Contains description and several discharge measurements of Blue Spring (p. 238), Warm Springs (p. 241), and Cave Spring (p. 302).

Describes the geology of the area and the sources, distribution, recovery, and quality of the ground waters; gives detailed descriptions and tabulated data concerning springs and wells; includes a map showing the geology and the depths to ground water.

Revision of Water-Supply Paper 150. A treatise on the theory of weir with tables and curves based on experiments.
204. Surface water supply of southern Atlantic and eastern Gulf States, 1906; M. R. Hall, district hydrographer. 1907. 110 pp. 5 pls.
Contains discharge record of Silver Springs at Silver Springs, Fla. (p. 50).

Contains a description and discharge record of Meramec Spring, near Meramec, Mo. (pp. 21, 22). See also Water-Supply Papers 99, 131, and 173. Contains discharge records of Antelope, Buffalo, and Sulphur springs, near Sulphur, Okla. (p. 74).

Contains discharge measurements of 10 springs in Utah (p. 92).

213. Surface water supply of California, 1906, by W. B. Clarke, with a section on ground-water levels in southern California (by W. C. Mendenhall). 1907. 219 pp., 4 pls.
Gives the results of a series of measurements of water levels in wells made during 1904, 1905, and 1906 (pp. 189-205). Wells widely distributed over the various basins of southern California were selected in order that the data would give a basis for conclusions as to the fluctuations of the water table in each of these basins.

214. Surface water supply of the north Pacific coast drainage, 1906; J. C. Stevens, Robert Follansbee, and E. C. LaRue, district hydrographers. 1907. 208 pp. 3 pls.
Contains discharge measurement of Warm Springs at Warm Springs Agency, Oreg. (p. 154).

215. Geology and water resources of a portion of the Missouri River valley in northeastern Nebraska, by G. E. Condra. 1908. 59 pp., 11 pls.
Describes the geology, streams, springs, and shallow and artesian wells in Boyd, Knox, Cedar, Dixon, and Dakota Counties, and in a part of Holt County; includes maps showing the geology and the artesian-water conditions; contains information on "blowing wells."

216. Geology and water resources of the Republican River Valley and adjacent areas, Nebraska, by G. E. Condra. 1907. 71 pp., 13 pls.
Describes the geography, geology, and surface and ground waters in Dundy, Hitchcock, Redwillow, Furnas, Harlan, Franklin, Webster, Nuckolls, Thayer, and Jefferson Counties; includes a geologic map; contains information on "blowing wells."

217. Water resources of Beaver Valley, Utah, by W. T. Lee. 1908. 57 pp., 1 pl.
Describes the geography, geology, streams, springs, and seepage waters of the eastern part of Beaver County. Gives data in regard to deep wells in the Beaver, Greenville, Adamsville, Mineralsville, and Milford districts, and at railroad stations between Beryl and Lynn. Discusses possible developments of additional irrigation supplies from surface and underground sources. Describes the quality of the water and contains field assays and laboratory analyses.

Covers the Pasadena, Pomona, and Cucamonga quadrangles, which lie south of the San Gabriel Mountains between Los Angeles and San Bernardino. Describes the geography, geology, and ground-water conditions, discusses fluctuation in ground-water levels and the conservation of the water supply, and gives the results of measurements of water levels in 1904, 1905, and 1906. Describes irrigation systems and gives records of 1,044 wells. Contains maps showing original areas of artesian flow, areas of artesian flow in 1904, ground-water levels, irrigated lands, and locations of wells and pumping plants. Contains also the general map that is described under Water-Supply Paper 142 and is included with Water-Supply Papers 137, 138, and 139.
220. Geology and water resources of a portion of south-central Oregon, by G. A. Waring. 1908. 86 pp., 10 pls.

Describes the geography and geology, and the streams, lakes, and ground waters in the valleys of Goose Lake, Abert Lake, Chewaucan Marsh, Summer Lake, Silver Lake, Christmas Lake, Alkali Lake, and in Warner Valley and several smaller valleys lying chiefly in Lake County. Gives analyses of waters and of alkali in soil and includes a geologic map.

221. Geology and water resources of the Great Falls region, Mont., by C. A. Fisher. 1909. 89 pp., 7 pls.

Describes the geography, geology, and the surface waters, ground waters, and artesian conditions in an irregular area comprising parts of Cascade, Teton Fergus, Chouteau, and Lewis and Clark Counties. Discusses municipal water supplies, the chemical character of the water, water powers, irrigation, and agriculture; gives analyses of water; includes maps showing the geology, the locations of artesian wells, etc.

222. Preliminary report on the ground waters of San Joaquin Valley, Calif., by W. C. Mendenhall. 1908. 52 pp., 1 pl.

Describes the geography, geology, and surface and ground waters of the entire valley. Discusses the origin, circulation, quantity, accessibility, and development of the ground waters; gives notes on the water supplies by counties; and includes a map showing areas of artesian flow and contours of the water table. Superseded by Water-Supply Paper 398.

Covers an area that lies almost entirely south of the 46th parallel. Describes the physiography, drainage, water-bearing rocks, the quantity, source, disposition, and temperature of the ground waters, and the recovery of water from springs, collecting galleries, tunnels, and wells. Discusses well-drilling methods and costs, municipal water supplies, and the quality of the ground waters. Gives detailed data for each county and records of deep wells. Includes a geologic map of southern Maine, and several diagrams showing the relative composition of waters from different kinds of rock.

Describes the physical features of the region, gives hints on desert traveling and on finding water in desert places, describes main routes of travel, and gives detailed descriptions of springs, wells, and other watering places. Includes a map of the region showing roads and watering places.

Describes the geography, geology, precipitation, and drainage, and the source, character, and development of ground waters in the Colorado Desert, with special reference to the Indio region, which is the name applied to the artesian basin extending from the vicinity of Indio to the Salton Sea. Contains a table of well data and a map of the Indio region showing areas of artesian flow, irrigated lands, and locations of wells and pumping plants.

Describes the geology and water horizons of the State, and discusses by counties the deep wells and well prospects. Gives notes on the construction and management of artesian wells. Includes maps showing the geology and the artesian conditions.

230. Surface water supply of Nebraska, by J. C. Stevens. 1909. 251 pp., 6 pls.

Contains discharge measurement of Paxton Spring (p. 160).
Describes the geography, geology, surface waters, ground waters, and artesian conditions of the Harney, Catlow, Alvord, Whitehorse, and Malheur River basins, which lie chiefly in Harney County. Discusses the conservation of the water supply, the temperatures of ground waters, and well drilling methods and costs. Includes a geologic map of the area.

Describes the physiography and geology, and the circulation, quantity, temperature, quality, and contamination of the ground water of the State. Discusses the water in the crystalline rocks, and Triassic sandstones and traps, and the glacial drift. Discusses also the methods of constructing wells and the character and use of the springs. Gives records of wells and springs and analyses of ground waters. Includes detailed descriptions of the towns of Warren, North Haven, and Branford Point.

233. Water resources of the Blue Grass region, Ky., by G. C. Matson, with a chapter on the quality of the waters, by Chase Palmar. 1909. 223 pp., 3 pis.
Describes the physiography, geology, soils, and water resources of an area covering 80 counties in the north-central part of Kentucky. Discusses the source, occurrence, quantity, and recovery of ground water, the artesian conditions, the collection and storage of rain water, and the municipal water supplies, the industrial uses and comparative hardness of the ground waters, and the various medicinal and table waters. Contains detailed data in regard to each county, and numerous well records and water analyses. Includes a geologic map of the area.

234. Papers on the conservation of water resources. 1909. 96 pp., 2 pls.
Contains a paper on underground waters by W. C. Mendenhall.

Contains analyses of surface waters exclusively, but includes a description of analytical methods, an outline of methods for expressing analytical results, and a discussion of the probable accuracy of analyses that are applicable to ground waters as well as to surface waters. Describes methods for the following determinations: Turbidity, total suspended solids, total dissolved solids, silica, iron, calcium, magnesium, sodium and potassium, carbonates, bicarbonates, sulfates, chlorides, nitrites, total acidity, and total iron. Also gives directions for the preparation of the necessary solutions.

240. Geology and water resources of the San Luis Valley, Colo., by C. E. Siebenthal. 1910. 128 pp., 13 pls.
Describes the geography and geology and the artesian and other waters of the valley. Gives detailed data regarding the springs and the flowing and nonflowing wells and discusses adequacy and permanence of the artesian supply, variations in flow, and temperature, quality and uses of the water, well-drilling methods and costs, and approximate methods for measuring the discharge of flowing wells. Contains several analyses and a map showing the area of artesian flow, the gas fields, and the area of colored water.

Contains discharge record of Silver Springs at Silver Springs, Fla., 608 sec-ft., and White Springs, Fla., 72 sec-ft. (pp. 132, 136).

Contains discharge measurements of Antelope and Buffalo Springs near Sulphur, Okla. (p. 118).
Contains discharge measurements of Roaring Springs, Oreg. (p. 143).

Contains a section (pp. 338-348) on "fluctuations in ground-water levels in the valley of southern California, by W. C. Mendenhall, in which are given measurements of depths to the water level in typical wells during 1907-8. These measurements were a continuation of the work reported in Water-Supply Paper 213. Contains also records of the discharge of springs as follows: Fish Springs, Selee Springs, and Black Rock Springs, Calif. (p. 333); Bettles Rest Springs, Oreg. (p. 337); Fords Springs, and Olene Springs, Calif. (p. 338).

Contains discharge measurement of unnamed spring in Oregon (p. 284).

Covers the following 19 counties: Boone, Carroll, Cass, Clinton, Elkhart, Fulton, Grant, Hamilton, Hancock, Hendricks, Howard, Kosciusko, Madison, Marion, Marshall, Miami, St. Joseph, Tipton, and Wabash. Describes the geography and geology, the sources, movements, occurrence, and quantity of ground water and the methods of constructing wells and of lifting water. Describes in detail, for each county, the ground-water conditions and the water supplies for cities, villages, and rural districts. Discusses the methods of making water analyses and of expressing the results, the mineral constituents of natural waters, the influence of these constituents upon domestic, industrial, and medicinal uses of the water, and methods of purification. Compares the chemical composition of the waters in different geologic formations in the area and gives numerous analyses and field assays. Contains maps showing the distribution of rock formations and surface deposits, the thickness of the surface deposits, and the areas of artesian flow.

Discusses the various kinds of water-bearing formations and the relative safety of supplies from each. Discusses different types of springs and their protection from pollution. Discusses dug and drilled wells with respect to their location, yield, cost, and safety from pollution. Discusses also cisterns and combination wells and cisterns.

Covers Bigstone, Swift, Kandiyohi, Meeker, Wright, Anoka, and Washington Counties and all of Minnesota south of these counties. Discusses the physiography, geologic history, geologic formations and their water-bearing capacities, artesian conditions, mineral quality of the ground waters, types of wells, methods of finishing wells in sand, methods of drilling in quartzite, "blowing" and "breathing" of wells, freezing of wells and other phenomena due to variations in atmospheric pressure, drainage into wells, and municipal water supplies. Gives detailed data, by counties, concerning the yield, head, and quality of water. Includes numerous analyses of water and maps showing the thickness and character of surface deposits, the depths to granitic rocks and Sioux quartzite, the distribution of water-bearing formations, the areas of artesian flow, and the quality of ground waters; also diagrams showing geographic variations in the quality of the waters from surface deposits and bedrocks.

257. Well-drilling methods, by Isaiah Bowman. 1911. 139 pp., 4 pls.
Discusses briefly ground water in the United States and water-bearing formations; gives a history of well drilling in Asia, Europe, and the United States; and describes the various methods of drilling and the machinery used. Discusses the difficulties encountered in sinking wells, the flooding of oil wells, the contamination of water wells and methods of preventing contamination, the capacity of wells and methods of testing capacity, methods of measuring the depth of wells and of detecting the deflection of drill holes, and the cost of sinking wells.

Contains the following papers:
- Drainage by wells, M. L. Fuller, pp. 6-22.
- Pollution of underground waters in limestone, by G. C. Matsen, pp. 48-56.
- Protection of shallow wells in sandy deposits, by M. L. Fuller, pp. 57-65.
- Saline artesian waters of the Atlantic Coastal Plain, by Samuel Sanford, pp. 75-86.
- Magnetic wells, by M. L. Fuller, pp. 87-93.
- Underground waters near Manassas, Va., by F. G. Clapp, pp. 94-97.
- The utilization of the underflow near St. Francis, Kans., by H. C. Wolff, pp. 98-119.

Covers the following counties: Adams (western half), Brown, Butler, Clark, Clermont, Clinton, Darke (southern part), Greene, Hamilton, Highland (western half), Miami (southern part), Montgomery, Preble, and Warren. Describes the topography and geology, the water-bearing formations, the source, occurrence, and head of the water, and the municipal water supplies. Gives detailed information in regard to ground-water conditions by counties. Discusses methods of making water analyses and of expressing the results, mineral constituents of natural water and their effects with respect to its use for domestic, industrial, and medicinal purposes, and methods of purifying water. Gives numerous analyses and field assays. Includes maps showing the rock formations, the surface deposits, the thickness of surface deposits, structure contours, and areas of artesian flow. The chapter on the chemical character of the water is nearly the same as the chapter on the same subject in Water-Supply Paper 254.

Describes briefly the ground-water conditions in the valley and discusses the use of ground water for irrigation. Includes analyses but no maps. This report is superseded by Water-Supply Paper 275.

Contains discharge measurement of Beetle's Rest Spring near Klamath Agency sawmills (p. 242).

272. *Quality of the water supplies of Kansas, by H. N. Parker, with a preliminary report on stream pollution by mine waters in southeastern Kansas, by E. H. S. Bailey.* 1911. 375 pp., 1 pl.

Describes the geology, ground water, and artesian basins of the State; discusses the significance of mineral constituents and classification of water; gives details concerning quality of ground water by counties and surface water by drainage basins; contains numerous assays and analyses of surface and ground waters; includes a geologic map of the State.

274. *Some stream waters of the western United States, with chapters on sediment carried by the Rio Grande and industrial application of water analyses, by Herman Stabler.* 1911. 188 pp.

Contains analyses of surface waters exclusively, but the discussion of industrial application of water analyses which it includes is as pertinent for ground waters as for surface waters. This discussion introduces "reacting coefficients" and "reacting values" and develops formulae for calculating, from analysis, the soap-consuming
274. Some stream waters of the western United States—Continued.

power of the water, the amount of softening constituents that it requires the ex­
tent of foaming, priming, and corrosion that it will produce in boilers, the amount
of scale and the hardness of the scale that it will deposit in boilers, and it’s quality
for irrigation.

275. Geology and water resources of Estancia Valley, N. Mex., with notes on
ground-water conditions in adjacent parts of central New Mexico, by
O. E. Meinzer. 1911. 88 pp., 14 pls.

Describes the physiography, geology, soil, and climate of the valley, and discusses
the source and disposal of ground water, the water table, artesian conditions, yields
of wells, quantity of ground water available, quality of ground water, storage of
storm-waters, use of ground water for irrigation, types of wells, windmills, cost of
pumping, and the alkali problems. Contains tables giving depths to water level in
wells and analyses and assays of water from wells and springs. Contains also brief
reports on physiography, geology, soil, ground water, and irrigation in Encino and
Pinos Wells basins, and notes on wells at Vaughan. Includes maps showing physi­
ography and Pleistocene and Recent geology, depths to the water table, and amount
of chlorides and sulfates found in the ground waters.

276. Geology and underground waters of northeastern Texas, by C. H. Gordon.
1911. 78 pp., 2 pis.

Covers an area comprising Bowie, Camp, Cass, Delta, Franklin, Hopkins, Lamar,
Morris, Red River, and Titus Counties. Describes the geography and geology, and
the artesian and other waters found in the various formations. Describes the water
resources by counties. Gives tables of well data and analyses of ground waters and
includes a geologic map of the area.

277. Ground water in Juab, Millard, and Iron Counties, Utah, by O. E. Mein­
zer. 1911. 162 pp., 5 pis.

Describes briefly the physiography, geology, precipitation, soil, vegetation, streams,
and industrial development, occurrence of water in bedrock and in unconsolidated
sediments, artesian conditions, springs, the quality of ground waters, irrigation, con­
struction of wells, and watering places on routes of travel. Describes in more detail
Juab, Round, Little, Sage, Dog, Fernow, and Tintic valleys, the Tintic mining dis­
trict, Pavant and Lower Beaver valleys, Old River Bed, Cherry Creek, the Drum,
and Swasey Wash regions, Sevier Desert, Wah Wah Valley, Sevier Lake bottoms,
White, Fish Springs, Snake, Parowan, and Rush Lake valleys and the Escalante
Desert. Contains several water analyses.

278. Water resources of Antelope Valley, Calif., by H. R. Johnson. 1911.
92 pp., 7 pis.

Describes the drainage, climate, and physiography, and the water-bearing and
non water-bearing formations of an area in Kern, Los Angeles, and San Bernardo­
ino Counties. Discusses the artesian and other ground waters, the chemical character
of the ground waters, certain fallacies as to the origin and quantity of artesian
water, and the present and future development of the underground supplies.
Contents a table of well data and a few chemical analyses, and artesian flow.

288. Surface water supply of the United States, 1910, Part VIII, Wes­
tern Gulf of Mexico, by W. B. Freeman and J. G. Mathers. 1911. 149 pp., 3 pis.
Contains discharge measurements of Hancock, Hanna, and Barton Springs, Tex.
(p. 185).

289. Surface water supply of the United States, 1910, Part IX, Colora­
d River basin, by W. B. Freeman, E. C. Larue, and H. D. Padgett. 1912. 233
pp., 4 pls.
Contains discharge measurements of artesian well and Every Spring, near Las
Vegas, Nev. (p. 220).

299. Underground-water resources of Iowa, by W. H. Norton, W. S. Hendrix­
son, H. E. Simpson, O. E. Meinzer, and others. 1912. 994 pp., 18 pls.

Describes the topography, climate, and geology of the State, the occurrence of
water in the various geologic formations, the artesian phenomena and the yields of
293. Underground-water resources of Iowa—Continued.

artesian wells, the chemical composition of the ground waters, the municipal, domestic and industrial water supplies, and methods of drilling wells. Discusses corrosion of well casings and boilers and the deposition of scale in boilers. Gives a classification of mineral waters. Contains numerous sections of wells and about 400 water analyses. Gives detailed information concerning ground waters and city and village supplies by districts and counties. Includes maps showing the glacial and rock geology, structure contours of water-bearing formations, locations of deep wells, head of artesian water, and quality of ground water. Also includes numerous geologic sections showing depths to the principal water-bearing formations. Describes a method of casing deep wells with cement (p. 562). See also cooperative report 137.

Relates to the Independence region, a segment of Owens Valley that is relatively isolated with respect to water supplies. Describes the underground reservoir of this region and the drainage basin tributary to it. Presents quantitative data on precipitation, stream flow, percolation into the underground reservoir from precipitation, streams, irrigation, and flood waters, evaporation and transpiration from soils in experimental tanks with various depths to water level, fluctuations of the water table, height of capillary rise of ground water, areas with specified depths to the water table within the range of capillary rise, and discharge from springs. Analyzes the data and calculates the annual intake and discharge of the underground reservoir and the available supply of ground water. Includes maps showing depths to ground water and other hydrologic features and also includes numerous diagrams. The results of the tank experiments and their application in estimating the discharge of ground water in closed desert basins are of general interest.

Contains 9 discharge measurements of Dotta Spring in Big Meadows, Calif., 50 to 122 sec. ft., (p. 890).

Gives discharge records of springs and wells in California as follows: Grover Hot Springs (p. 198), Black Rock Springs (p. 285), Seeley Springs (p. 364), Stanson well (p. 680), Shasta Little Springs (p. 913), Anna Creek Spring (p. 914), Bettles Beat Springs (p. 916), Barclay Springs (p. 915), Fords Spring (p. 917), and Olene Springs (p. 918).

Contains discharge measurements of Roaring, Threemile, Thompson, and Knox Springs, in Oregon (p. 196).

Contains discharge measurement of spring in Fish River Basin (p. 81), and spring in Grand Central River Basin (p. 173).

315. The purification of public water supplies, by G. A. Johnson. 1913. 88 pp., 8 pis.

Includes a brief discussion of ground waters for municipal supplies; also information on methods of purification that are more or less applicable to ground waters.

Covers an area of about 5,000 square miles comprising Benton County and parts of Franklin, Grant, Yakima, and Klickitat Counties. Describes the climate, vegetation, physiography, and geology; discusses shallow and artesian waters and irrigation enterprises in Sunnyside and Reservation valleys, Horse Heaven Plateau, and the Columbia River plains, and irrigation along lower Yakima Flver; gives tabulated data concerning wells and springs; includes a geologic map.
Covers Archer, Baylor, Clay, Foard, Hardeman, Haskell, Jack, Knox, Montague, Throckmorton, Wichita, Wilbarger, and Young Counties. Describes the physiography and geology, the occurrence and quality of ground waters and their relation to rock structure, the effects of barometric changes on water levels, and the water-bearing formations; gives detailed information by counties; contains numerous sections of wells and water analyses; includes a geologic map.

Describes chiefly surface-water supplies, but contains brief notes on ground-water supplies and data on the discharge of springs, infiltration tunnels, flowing wells, and pumped wells on several islands, as follows: Kauai, pumped wells (p. 144); Oahu, springs, pumped wells, and flowing wells (pp. 163, 187-196); Maui, pumped wells (pp. 288, 331-332); Hawaii, springs and infiltration tunnels (p. 408). Gives sections of wells on Oahu (pp. 191-193).

Describes the characteristic upland, lowland, and coastal features of the State—the springs, lakes, caverns, sinkholes, natural bridges, terraces, sand dunes, coral reefs, bars, inlets, tidal runways, pine lands, swamps, keys, and ocean currents. Describes in detail the geologic formations, the source, quantity, depth, circulation, and recovery of artesian and other ground waters. Gives detailed information concerning ground-water conditions and water supplies by counties. Contains numerous well sections and tables of well data and includes maps showing the geology and the Pleistocene terraces of the State.

Covers Sulphur Spring Valley and contains a small amount of information on San Pedro, San Simon, and San Bernardino valleys. Describes the physiography, the drainage, the geology, with special reference to the Quaternary deposits in the valley, the seasonal and geographic distribution of the precipitation, the occurrence and level of the ground water, the flowing and nonflowing wells, the quality of ground waters with relation to derivative rocks, water levels, and underground circulation, the effects of quality on irrigation and other uses, the distribution of alkali in the soil, the relation of the alkali to the water table and to the drainage, and the relation of zones of vegetation to water supply and other geographic controls. Contains detailed data in regard to tests of 20 pumping plants and describes a portable weir used in making these tests. Gives the history of agriculture in the valley and discusses agricultural methods. Contains analyses of water and of alkali in the soil and includes maps showing the geology, vegetation, depths to ground water, elevation of the water table, quality of water, and alkali in soil.

Contains discharge measurement of Buckholts Springs, Mont. (p. 364), and Giant Springs, Mont. (p. 365).

Contains records for 1909 to 1912, inclusive, of water levels in the series of wells for which water-level data are given in Water-Supply Papers 218 and 251, with an introductory note by W. C. Mendenhall (pp. 425-484).
Contains three measurements of discharge of Drumheller Springs Wash. (p. 275).

333. Ground water in Boxelder and Tooele Counties, Utah, by Everett Carpenter. 1913. 90 pp., 2 pls.
Covers all of Boxelder County and Tooele, Rush, and Skull valleys in Tooele County. Describes briefly the geography, geology, water in bedrock and in unconsolidated sediments, artesian conditions, springs, and quality of ground waters; gives detailed information by valleys; contains numerous analyses of water; includes a guide to watering places on routes of travel and maps showing locations of flowing and nonflowing wells, springs, and roads.

335. Geology and underground waters of the southeastern part of the Texas Coastal Plain, by Alexander Deussen. 1914. 365 pp., 9 pis.
Covers that part of the Coastal Plain of Texas occupied by the outcrop of Cenozoic rocks east of Brazos River and south of a line extending east and west through Jefferson, in Marion County. Describes the physiography, stratigraphy, geologic structure, occurrence of ground water, springs, artesian systems, and quality of water with reference to various uses and in relation to the geologic formations; gives detailed information by counties; contains numerous well sections and water analyses; includes maps showing the geology of the region and the structure contours and areas of artesian flow for the seven principal artesian reservoirs.

Relates chiefly to surface waters, but contains data in regard to pumping of wells and seepage of ditches on the Island of Kauai (p. 99), discharge of springs and flowing wells and fluctuations of water levels in wells on the Island of Oahu (p. 128), pumping of wells on the Island of Maui (pp. 209-211), and of springs on the Island of Hawaii (p. 381).

Describes the physical features of California and discusses natural waters with respect to mineral analyses, source and amount of dissolved substances, therapeutic and other properties, temperature, and classification. Gives detailed descriptions of springs, particularly those which yield mineral waters or are used as centers of recreation or health resort. Contains numerous analyses and includes maps showing the geology of the State and the locations of hot, carbonated, and sulfur springs.

Consists chiefly of lists of publications on stream gaging, but gives supplementary list of 87 titles of hydrologic reports of general interest, most of which deal with ground water (pp. 169-178).

Describes the physiography and geology, the source, quantity, and disposition of water supplies, the artesian and nonartesian waters, the quality and use of water from springs and wells, and the stratigraphic distribution of the ground water. Gives detailed information by counties. Discusses the quality of the water in relation to industrial, domestic, and medicinal uses, the purification of water, and the composition of surface waters, and of ground waters in relation to geologic formations, geographic position, and depth. Contains many well sections and water analyses and includes maps showing the geology, the areas of artesian flow and the locations and depths of wells.

343. Geology and water resources of Tularosa Basin, N. Mex., by O. E. Meinzer and R. F. Hare. 1915. 817 pp., 19 pls.
Covers a large area in south-central New Mexico between the Rio Grande and
343. Geology and water resources of Tularosa Basin, N. Mex.—Continued.

Pecos Valleys, and also contains data in regard to the vicinity of El Paso, Tex. Describes the physiography and geology and gives data on precipitation and its seasonal and geographic distributions. Discusses the water in the valley in regard to intake zones, occurrence, disposal, yield, artesian head, methods of constructing wells, and quality of the water in relation to derivative rocks, water table, and water-bearing beds and with respect to its use for drinking, cooking, washing, steam making, and irrigation. Discusses likewise the water in Cretaceous and Carboniferous strata and in igneous rocks. Describes the soil and native vegetation in relation to water supplies, the irrigation from streams, springs, flood waters, and wells, the railroad and public water supplies. Contains a guide to watering places on routes of travel, and tables of well data, analyses of water and soil, and distances between watering places. Includes maps showing the geology, vegetation, depths to water, contours of the water table, and locations of watering places and connecting roads.

(a) Preliminary report on ground water for irrigation in the vicinity of Wichita, Kans., by O. E. Meinzer, pp. 1-9.

(b) Ground water for irrigation in the vicinity of Enid, Okla., by A. T. Schwennesen, pp. 11-23, pl. 1. Includes a note on ground water for irrigation on the Great Plains, by O. E. Meinzer.

(c) Underground water of Luna County, N. Mex., by N. H. Darton, pp. 25-40, pl. 2. Includes the results of five pumping tests made by A. T. Schwennesen.

(d) Ground water for irrigation in the valley of North Fork of Canadian River near Oklahoma City, Okla., by A. T. Schwennesen, pp. 41-51, pl. 3.

(e) The water resources of Butte, Mont., by O. E. Meinzer, pp. 79-125. pls. 7-8.

(f) Ground-water resources of the Niles cone and adjacent areas, Calif., by W. O. Clark, pp. 127-168, pls. 9-17.

All except No. 345a include maps showing ground-water conditions. No. 345g contains numerous records of water levels in wells and an estimate of ground-water recharge in 1912-13 and 1913-14 based on fluctuations of the water table. It includes a series of graphs showing fluctuations of the water table and the source of the ground water.

Contains discharge measurement of Hunts Springs near Central, Utah (p. 255).

Contains discharge measurements of 2 springs in Utah, 4 springs in Nevada, and 1 spring in Oregon (pp. 285-287).

Contains discharge measurement of Intermittent Spring, Wash. (p. 749).

Contains 203 miscellaneous analyses of waters from rivers, lakes, wells, springs, and mines, which were made at various times in the chemical laboratory of the United States Geological Survey. Includes analyses of waters from wells, springs, or mines in the following 25 States: Arkansas, Arizona, California, Colorado, Florida, Illinois, Iowa, Kentucky, Maine, Michigan, Mississippi, Missouri, Montana, Nevada, New Mexico, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Utah, Virginia, West Virginia, and Wyoming.
365. Ground water in southeastern Nevada, by Everest Carpenter. 1915. 86 pp., 5 pls.
Covers an area of about 17,000 square miles in Clark, Lincoln, White Pine, and Nye Counties, including the vicinities of Geyser, Lund, Barnev, and Duckwater, on the north, and the vicinities of Sharp, Hiko, Alamo, and Indian Springs, on the west. Describes briefly the geography, geology, water in bedrock and in unconsolidated deposits, artesian conditions, springs, and quality of water. Gives detailed information regarding water supplies in the Las Vegas drainage basin, Duck, Urine, and Meadow valleys, White River drainage basin, Muddy and Virgin valleys, and Bristol, Delamar, Coal, Garden, Dry Lake, Indian Spring, and Railroad valleys. Contains water analyses, a guide to watering places on routes of travel, and a table of distances between watering places. Includes maps showing Pleistocene lake beds, areas of artesian flow, and locations of watering places.

Contains discharge measurements of 9 springs in Oregon (pp. 811-821).

Relates chiefly to surface waters, but contains data on the discharge of springs, tunnels, and flowing wells on the island of Oahu (p. 103), springs on the island of Maui (p. 151), and springs on the island of Hawaii (p. 174).

Covers the towns of Bloomfield, Canaan, East Hartford, East Windsor, Essex, Franklin, Greenwich, Hartford, Manchester, Newton, Norl Canaan, Old Lyme, Salisbury, Saybrook, Stamford, South Windsor, Westbrook, West Hartford, Wethersfield, Windham, and Windsor. Discusses the origin, circulation, quantity, and quality of the waters in stratified and unstratified drift, crystalline rocks, traps, Paleozoic limestones, and Triassic sandstones. Discusses ground water for municipal use and the construction of drilled, driven, and dug wells, and infiltration galleries. Describes the municipal pumping plants at Brookline, Mass., Brooklyn, N. Y., and Plainfield, N. J. Describes the ground-water conditions in detail, by towns. Contains numerous tables of well data and water analyses, and includes maps showing water-bearing formations, depths to water, locations of wells, and woodlands.

(b) Ground water in Paradise Valley, Ariz., by O. E. Meixner and A. J. Ellis, pp. 51-75, pls. 3-5.
(c) Ground water in Big Smoky Valley, Nev., by O. E. Meixner, pp. 85-116, pls. 6-7.
(d) Ground water in La Salle and McMullen Counties, Tex., by Alexander Deussen and R. B. Dole, pp. 141-177, pls. 8-9.
All of these papers include maps showing ground-water conditions. No. 375 a contains statistics on irrigation with ground water in Sacramento Valley and a discussion of problems relating to the construction of wells and to pumping for irrigation. No. 375 d contains data on ground-water intake and discharge and on irrigation with ground water. No. 375 g discusses water in the various geologic formations, especially with reference to its quality and quantity for irrigation, and contains tables of well data and water analyses.

380. The Navajo country—a geographic and hydrographic reconnaissance of parts of Arizona, New Mexico, and Utah, by H. E. Gregory. 1916. 219 pp. 29 pls.
Covers the Navajo and Hopi Indian Reservations in northeastern Arizona, northwestern New Mexico, and southeastern Utah, and some adjacent areas. Gives an outline of the history of the region; describes the geographic provinces, climate, soil, flora, fauna, and geology; describes also the streams and discusses factors
380. The Navajo country—Continued.

influencing stream flow, irrigation with surface waters, storage of rain and surface waters for domestic and stock use, and water powers; discusses ground-water reservoirs, quality of ground water, artesian water, springs, and wells; gives data on watering places and recommendations for prospecting for water in various geographic provinces. Includes maps showing the geology, the locations of watering places, roads, and trails, and the areas covered by forests.

Contains discharge measurements of Toquerville and Hunts Springs in Utah and Stone Cabin and Ash Meadows Springs in Nevada (pp. 191-192).

Contains discharge measurements of Upper and Lower Mollen Springs in Utah, Preston Spring and an unnamed spring in Nevada, and Parsnip Springs and Ana River Spring in Oregon (pp. 297-299).

Contains discharge measurements of Big Spring and Roger Spring, Ore. (p. 328).

Contains five discharge measurements of Warm Springs, Idaho (p. 241).

Contains discharge measurements of two large unnamed springs in Oregon, Intermittent Springs, Wash., and the combined flow of three springs near Parksdale, Oreg. (pp. 173-174).

397. Ground water in the Waterbury area, Conn., by A. J. Ellis, under the direction of H. E. Gregory. 1916. 73 pp., 4 pls.

Discusses the water in glacial drift and crystalline rocks, ground water for private and municipal uses, and methods of developing ground-water supply. Describes the municipal pumping plants at Brookline, Mass., Brooklyn, N. Y., and Plainfield, N. J. Describes in detail the water-bearing formations and water supplies in the towns of Ansonia, Beacon Falls, Middlebury, Naugatuck, Oxford, Seymour, Thompson, Waterbury, and Watertown. Contains tables of well data and water analyses and includes a map showing areas underlain by stratified drift, rock outcrops, woodlands, and locations of wells and springs.

Describes the development of irrigation in the Southwest and gives an outline of the geography and geology of the San Joaquin basin. Discusses briefly the origin, circulation, quantity, and availability of ground water and its use for irrigation. Describes the quality of the surface and ground waters, the standards for classifications, the methods of purifying water, and the effects of quality on use. Explains the variations in the quality of the water with its depth below the surface and
398. Ground water in San Joaquin Valley, Calif.—Continued.

with its geographic and geologic relations. Gives details of 55 pumping tests and
summarizes and discusses the results. Gives numerous well records and water analyses and
detailed descriptions by counties. Includes maps showing areas of artesian flow, contours of the water table, quality of ground water, and locations of the pumping plants investigated.

399. Geology and ground waters of northeastern Arkansas, by L. W. Stephenson and A. F. Crider, with a discussion of the chemical character of the waters, by R. B. Dole. 1916. 315 pp., 11 pls.

Covers an area of about 13,250 square miles extending from Mississippi River west to the Ozark province and from Missouri south to Arkansas River. Describes the physiography, geology, surface waters, stratigraphic distribution of ground waters, springs, artesian waters, and uses of ground water, especially in irrigating rice. Gives detailed descriptions, well sections, and tables of well data by counties. Discusses chemical standards of classification, methods of purification, and the quality of the waters in relation to the strata in which they occur, their geographic positions, and their depths below the surface. Includes numerous analyses and maps showing the geology, the areas of artesian flow, and the locations and depths of wells.

(a) Artesian water for irrigation in Little Bitterroot Valley, Mont., by O. B. Meinser, pp. 9-87, pls. 1-4.

(b) Ground water for irrigation in the Morgan Hill area, Calif., by W. O. Clark, pp. 61-106, pls. 5-7.

Both papers include maps showing ground-water conditions. No. 400 c contains numerous well sections and records of water levels in wells and an estimate of the annual ground-water supply, based chiefly on fluctuations of the water table and porosity of the water-bearing deposits.

416. The divining rod, a history of water witching, with a bibliography, by A. J. Ellis. 1917. 55 pp.

Gives an outline of the history of the popular delusion known as "water witching" and points out fallacies in so-called "mechanical water finders." Advises the public against expending money "for the services of any water witch or for the use or purchase of any machine or instrument devised for locating underground water or other minerals." Lists numerous papers on the subject from 1532 to the present time.

Describes hot springs in 48 localities, carbonated springs in 12 localities, and sulfur springs in 13 localities, also iron springs and salt springs. Discusses the chemical character of the waters of Yukon, Tanana, Lowe, Copper, Stikine, and other rivers. Contains 32 analyses of spring waters and 38 analyses of surface waters. Includes a map of Alaska showing the locations of 108 groups of mineral springs in relation to volcanoes.

Covers the southern part of Grant County. Describes the physiography and geology and the ground-water conditions in each basin with respect to the occurrence, depth, quantity, quality, artesian conditions, and irrigation prospects. Gives well data, analyses of water, and analyses of the water-soluble contents of the soil. Contains a map of the area showing depths to the water table and other features.

Describes the physiography and geology with special reference to Quaternary events; gives data on precipitation, stream flow, seepage, springs, and wells; estimates intake and discharge of ground water; discusses criteria for recognizing shallow-water
423. Geology and water resources of Big Smoky, Clayton, and Alkali Spring Valleys, Nev.—Continued.

areas; discusses the quality of the water with reference to the geologic source of
the valley fill, geographic provinces, and use; describes public water supplies and
discusses irrigation with ground water; contains analyses of water and of alkali
in soil; includes maps showing Pleistocene lake features, depths to ground water,
areas of ground-water intake and discharge, and locations of watering places.

425. Contributions to the hydrology of the United States, 1917; N. C. Grover,
chief hydraulic engineer. 1918.

(a) Ground water in San Simon Valley, Ariz., by A. T. Schwennesen with a
chapter on agriculture by R. H. Forbes, pp. 1-35, pls. 1-3. Describes the physiography
and geology of the valley, the upper water horizon, and the deeper artesian horizon
of the San Simon and Bowie areas, the ground water in the Rodeo and Artesia
valleys, and the irrigation supplies from flowing and non-flowing wells; contains
39 analyses of well and spring waters, numerous records of deep wells and maps
showing areas of artesian flow, depth to water table, and lands irrigated with well
water; also includes a chapter by R. H. Forbes on soil, vegetation, and agricultural
prospects.

(b) Ground water for irrigation in Lodgepole Valley, Wyo.-Nebr., by O. E.
Meinzer, pp. 37-69, pls. 4-6. Describes the physiography and geology of Lodgepole
Valley and the adjacent region and the water in the alluvial gravel and in the
Tertiary and Cretaceous formations; discusses irrigation with ground water; gives
well data and analyses of 20 well waters and 2 samples from Lodgepole Creek;
contains maps showing the geology and the depths to the water table; also includes
data on the cost of pumping for irrigation in western Nebraska, by H. C. Diesem,
U. S. Department of Agriculture.

(c) Ground water in Reese Valley and adjacent parts of Humboldt River Valley,
Nev., by G. A. Waring, pp. 95-129, pls. 7-12. Describes the physiography, geology,
ground-water conditions, and irrigation prospects. Contains well and spring data
and analyses of ground waters. Includes a map showing the geology, shallow-water
areas, and areas of artesian flow.

(d) Ground water in Quincy Valley, Wash., by A. T. Schwennesen and O. E.
Meinzer, pp. 131-158, pls. 13-14. A preliminary report, which outlines the physiographic features, climate, and agricultural conditions of Quincy Valley and adjacent
regions; describes the character and distribution of the Yakima basalt, Pleistocene
lake beds, and Pleistocene outwash gravels and discusses quantity, quality, and
head of water in each of these formations; discusses present and prospective irri-
gation with ground water. Contains a sketch map showing contours of the water
table.

427. Bibliography and index of the publications of the United States Geologi-
cal Survey relating to ground water, by O. E. Meinzer. 1918. 169
pp., 1 pl.

Includes all publications of the Geological Survey prior to 1918 that contain in-
formation on ground water, with page references to reports that deal mainly with
other subjects. Gives a brief abstract of each paper, an index, and a map showing
areas covered by reports.

428. Artesian waters in the vicinity of the Black Hills, S. Dak., by N. H.-Dar-
ton. 1918. 64 pp., 13 pls.

Describes the geology and artesian-water conditions in areas covered in previous
reports but in the light of additional data. Discusses the artesian prospects of the
Dakota, Minnelusa, and Deadwood sandstones. Contains a map showing the geology
and the depths to the water-bearing sandstones.

429. Ground water in the San Jacinto and Temecula Basins, Calif., by G. A.
Waring. 1919. 113 pp., 14 pls.

Describes the irrigation systems, physiography, geology, and ground-water con-
ditions, including artesian conditions and quality of water. Includes well data and
water analyses and a chapter on pumping tests, by Herman Stabler. Contains maps
showing areal geology, irrigated areas, depth to ground water, and artesian areas.
Contains data on the discharge of springs, tunnels, and flowing wells on the Islands of Oahu and Maui (pp. 265-297 and 308).

Contains discharge measurements of 5 springs in Utah (pp. 319-321), 4 springs in Nevada (p. 325), and 10 springs in southeastern Oregon (p. 327).

Contains discharge measurement of Big Springs, at Mayten, Calif. (p. 324).

Contains discharge records for springs near Kailua, Oahu (pp. 97-99), for Kahoma development tunnel, near Lahaina, Maui (pp. 156, 157), and springs near Lahaina (p. 201).

Discusses the detailed physiography and geology of the area, precipitation, and evaporation. Describes occurrence of water in major and minor valleys with reference to valley fill, water table, well yield, methods of well sinking, quality of water, and pumping tests. Includes tables giving well records and analyses of water and maps showing general geology, fluctuations of the water table, contours on the water table, principal water-bearing formations, and mean annual precipitation.

Covers parts of Hartford, New Haven, and Middlesex Counties, Conn. Describes occurrence and availability of ground-water supplies, methods of well construction, and quality of ground water. Contains descriptions of towns with reference to geology, surface water, ground water, records of wells and springs, and water analyses. Includes maps showing areal geology, extent of glacial deposits, and forested areas.

450. Contributions to the hydrology of the United States, 1919; N. C. Grover, chief hydraulic engineer. 1921. iv, 86 pp., 11 pls.

(b) Ground water in Lanfair Valley, Calif., by D. G. Thompson, pp. 29-50, pls. 5-6. Covers the east-central portion of San Bernardino County, Calif. Describes the geology, climate, vegetation, and source, occurrence, and quality of ground water. Includes analyses of water and records of wells and springs.

(c) Ground water in Pahrump, Mesquite, and Ivanpah Valleys, Nev. and Calif., by G. A. Waring, pp. 51-86, pls. 7-11. Covers parts of Nye and Clark Counties, Nev., and Inyo and San Bernardino Counties, Calif. Describes the geography and geology of the region and the ground-water conditions in each valley with reference to springs, artesian water, water table, quality of water, and irrigation. Includes tables of well and spring records and water analyses.
452. Surface water supply of the United States, 1917, Part II, South Atlantic slope and eastern Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; G. C. Stevens and W. E. Hall, district engineers. 1920. 64, xxviii pp., 2 pls.

Contains discharge measurements of 8 springs in Florida (p. 61).

456. Surface water supply of the United States, 1917, Part VI, Missouri River basin; N. C. Grover, chief hydraulic engineer; W. A. Lamb and Robert Follansbee, district engineers. 1921. 242, xlii pp., 2 pls.

Contains discharge measurement of South Spring, Wyo. (p. 238).

Contains discharge measurements of 4 springs near Park City, Utah (p. 264), Warm Springs near Scotts, Calif. (p. 270), and 8 springs in the Harney Lake Basin, Oreg. (p. 271).

Contains discharge measurements of Alpine Hot Springs and Hanser Springs, Idaho (p. 163), and Indian Rock Springs, Idaho (p. 164).

466. Ground water in the Southington-Granby area, Conn., by H. S. Palmer. 1921. 219 pp., 7 pls.

Covers parts of Litchfield, New Haven, and Hartford Counties, Conn. Discusses physiography, geology, water-bearing formations, artesian conditions, springs, means of recovery of ground water, ground water as a source of public supply, and quality of water. Describes towns individually with reference to local aquifers, quality of water, public water supply, and well and spring records. Includes tables of analyses and a geologic map.

Covers parts of White Pine and Elko Counties, Nev. Discusses exploratory drilling done by the United States Geological Survey in the area; the physiography and the surface-water supply; and the ground water, with reference to occurrence, source, depth to water table, discharge, quantity, quality, and springs. Describes test wells of the United States Geological Survey and the irrigation program in the region. Includes a map showing land under irrigation, areas of ground-water discharge, and estimated depths to water.

468. Records of water levels in wells in southern California, by F. C. Ebert. 1921. 156 pp., 4 pls.

Discusses causes of fluctuation of the water table and describes general water-table conditions as shown by the records. Contains data on depth to water from 135 non-flowing wells and head of some flowing wells. Most of the measurements cover the period 1900-1920.

Covers parts of Fairfield and Hartford Counties, Conn. Discusses the physiography, geology, water-bearing formations, artesian conditions, springs, means of recovery of ground water, ground water for public supplies, and quality of water. Describes the towns individually with reference to local aquifers, quality of water, public water supply, and well and spring records. Includes tables of analyses and geologic map of the area.
Contains 3 discharge measurements of Tuscumbia Spring, Tenn. (p. 112).

Contains discharge measurement of Hunt's Spring, near Central, Utah (p. 185).

Contains discharge measurements of Haveter Spring, near Park City, Utah, 3.1 sec.-ft. (p. 260), and of 7 springs in Harney Lake Basin, Oreg. (p. 266).

Contains several discharge measurements of Alpine Springs, Hansen Springs, and Indian Rock Springs, all in Idaho (pp. 167, 168).

489. The occurrence of ground water in the United States, with a discussion of principles, by O. E. Meinzer. 1923. xi, 321 pp., 31 pls.
A comprehensive treatment of the principles of the occurrence of ground water and a systematic description of the rock systems in the United States with respect to their water-bearing properties. The first section includes discussion of porosity, forces controlling water movement, and zones of saturation and aeration. The second section describes water-bearing properties of all rock types. The third section discusses structural features of rocks and their influence on ground water. The last section discusses the water-bearing formations in each of the geologic systems, with tables for geologic formations and their value for water supply in each part of the country. Includes a map of ground-water provinces and a discussion of occurrence of ground water in each of these provinces.

490. Routes to desert watering places in California and Arizona.
(a) Routes to desert watering places in the Salton Sea region, Calif., by J. S. Brown. 1920. pp. i-v, 1-86, pls. 1-7. Covers Imperial County and parts of San Diego and Riverside Counties in southeastern California.
(b) Routes to desert watering places in the Mohave Desert region, Calif., by D. G. Thompson. 1921. pp. i-vii, 1-4, 87-268, pls. 1-4, 8-18. Covers San Bernardino County and parts of Kern and Los Angeles Counties in southern California.
These four papers describe the physical features of the region and give suggestions for desert travel, lists of main roads, and complete road logs, with an index to watering places. Each report includes shaded topographic maps showing roads and watering places. Papers 490 c and 490 d also describe the types of roads.

494. Outline of ground-water hydrology, with definitions, by O. E. Meinzer. 1923. iv, 71 pp.
Gives an outline of the concepts of ground-water hydrology, with classification of many of the concepts. Assigns terms for these concepts, many of which are new. Discusses water of the earth, atmospheric water, surface water, and subsurface water with reference to origin, occurrence, water tables, movement, absorption, and discharge. Includes a section on wells and their classification.
Covers the north-central part of California. Describes the physiography, geology, water-bearing formations, water table, intake and discharge of ground water, quantity of water, artesian conditions, quality of water, well and pumping problems, deep wells, and irrigation. Discusses the valley subdivision with reference to water table, wells, quality of water, and public supplies. Includes well records, water analyses and maps showing contours on the water table, depth to water table, and irrigated areas.

496. The industrial utility of public water supplies in the United States, by W. D. Collins. 1923. iv, 59 pp., 1 pl.
Discusses sources, treatment, and analyses of public water supplies in the United States. Includes tables of analyses of surface and ground water used for public supplies in 307 principal cities. See also Water-Supply Paper 658.

497. The Salton Sea region, Calif., a geographic, geologic, and hydrologic reconnaissance, with a guide to desert watering places, by J. S. Brown. 1923. xv, 292 pp., 19 pis.
Covers Imperial County and parts of San Diego and Riverside Counties in southeastern California. Gives information on the geology, source of water, and occurrence and quality of water in addition to information on watering places of this area contained in Water-Supply Paper 490 a. Includes analyses of water, well records, logs, detailed descriptions of routes of travel, and maps showing geology and watering places.

498. The lower Gila region, Ariz., a geographic, geologic, and hydrologic reconnaissance, with a guide to desert watering places, by C. P. Ross. 1923. xiv, 237 pp., 23 pis.
Covers central Yuma and western Maricopa Counties, Ariz. Gives information on the geology, surface-water supply, and irrigation in addition to information on the watering places of this area contained in Water-Supply Paper 490-C. Includes water analyses, well records, and maps showing geology and watering places.

Covers part of Yuma, Maricopa, Pinal, and Pima Counties in southwestern Arizona. Describes the geology and physiography of the area and discusses the surface water supply, indicators of ground water, quality and mode of occurrence of ground water, and springs. Describes ground-water conditions by areas. Includes water analyses and the description and guide to watering places of the area contained in Water-Supply Paper 490 d.

500. Contributions to the hydrology of the United States, 1921; N. C. Grover, chief hydraulic engineer. 1922. iv, 74 pp., 4 pls.
(a) Ground water for irrigation near Gage, Ellis County, Okla., by D. G. Thompson, pp. 33-35, pl. 4. Discusses possible sources of ground water for irrigation and describes the geology, physiography, artesian conditions, and water-bearing horizons. Includes well records and water analyses.

508. Surface water supply of the United States, 1919-20, Part VIII, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, district engineer. 1922. iv, 136 pp., 2 pls.
Contains discharge record of Barton Springs, Tex. (p. 64), and discharge measurements of San Solomon, Griffin, Saragossa, and Fort Stockton Springs, Tex. (p. 134).

Contains discharge measurement of Haute Spring, Utah (p. 331), and "00" Springs, Ore. (p. 841).
Contains discharge measurement of Oakden Spring, Idaho (p. 307), and 5 measurements of Limestone Springs, Idaho (p. 308).

Contains discharge measurement of springs near Benham Falls, Oreg. (p. 197).

518. Ground water in Musselshell and Golden Valley Counties, Mont., by A. J. Ellis and O. E. Meinzer. 1924. vi, 92 pp., 5 pls.
Describes the physiography, water-bearing properties of rock formations, effect of structure on water supply, artesian conditions, and quality of water with reference to geologic horizon and depth. Includes descriptions of ground-water conditions by townships, water analyses, and a geologic map of the area.

Covers Alameda, Santa Clara, and San Benito Counties, Calif. Describes the physiography, geology, precipitation, and surface water. Discusses absorption, ground-water levels, methods used to determine quantity of ground water, artesian conditions, and water supplies for irrigation and municipal, domestic, and industrial use. Includes data on pumping plants and water levels in wells, well logs, and maps showing contours of water table, fluctuations of water table, and area of artesian flow.

(b) Additional ground-water supplies for the city of Enid, Okla., by B. C. Renick, pp. 15-26. Describes the geology and the source and occurrence of ground water; discusses present water supplies, annual recharge of ground water, and quality of water; and makes recommendations for increasing the ground-water supply.

(d) Base exchange in ground water by silicates as illustrated in Montana, by B. C. Renick, pp. 53-72, pls. 3-5. Discusses the natural softening of water that takes place in the Lance and Fort Union formations in Rosebud County, Mont. Clay minerals soften the hard water as it percolates downward. Includes water analyses and petrographic descriptions of the water-bearing formations.

(e) The artesian-water supply of the Dakota sandstone in North Dakota, with special reference to the Edgeley quadrangle, by O. E. Meinzer and H. A. Hard, pp. 73-95, pls. 6-7. Discusses early artesian drilling, decline in artesian head and shrinkage of area of artesian flow, decline in yield of wells, rate of recharge, the removal of water from the Dakota sandstone and compression of the formation, and the conservation program of North Dakota. Includes well records and analyses of water.

(f) Temperature of water available for industrial use in the United States, by W. D. Collins, pp. 97-104, pls. 8-11. Discusses the relation of temperatures of ground water, surface water, and air. Includes tables showing correlation between air and surface water temperatures and a map showing average ground-water temperatures in nonthermal wells 30 to 60 feet deep.

Contains discharge measurement of Hahatonka Spring, Mo. (p. 325).
528. Surface water supply of the United States, 1921, Part VIII, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, district engineer. 1923. iv, 96 pp., 2 pls.
 Contains 4 discharge measurements of Mill Spring, Tex. (p. 93).

 Contains discharge measurement of Hunts Springs, Utah (p. 178).

 Contains discharge measurement of "00" Spring, Oreg. (p. 190).

 Contains discharge measurements of principal springs, and inflow, on north side of Snake River from Milner to Bliss, Idaho (p. 283-286).

535. Surface water supply of Hawaii, July 1, 1920, to June 30, 1921; N. C. Grover, chief hydraulic engineer; J. E. Stewart, district engineer. 1924. iv, 151 pp.
 Contains discharge measurement of Punahou Springs, near Honolulu (p. 66), and of four branches of Big Springs (p. 83).

 Discusses the subject of coastal ground water, with special reference to the New Haven, Conn., area. Describes the geology, physiography, and ground-water conditions in the New Haven coastal area, with a discussion of the Ghyben-Herzberg theory of fresh and salt water relationships, contamination by salt water, effects of pumping and tides on contamination, and the nature of the fresh and salt water contact. Includes a geologic map, water analyses, descriptions of wells, springs, and pumping plants in the New Haven area, and a bibliography of coastal ground water.

538. The San Juan Canyon, southeastern Utah, a geographic and hydrographic reconnaissance, by H. D. Miser. 1924. v, 80 pp., 22 pls.
 Primarily a geographic reconnaissance of the area. Describes the geology and geography of the canyon and gives descriptions of San Juan River and of tributary springs and streams. Includes a geologic map.

539. Geology and ground-water resources of Townsend Valley, Mont., by J. T. Pardee. 1925. iv, 61 pp., 2 pls.
 Includes parts of Lewis and Clark and Broadwater Counties, Mont. Describes the geology, physiography, and ground-water conditions with reference to public water supplies, water table, quality of water, and artesian conditions. Includes water analyses, well records, and a geologic map.

 Covers New Haven County and part of Middlesex County, Conn. Discusses the geology and physiography of the area and the ground-water resources with respect to occurrence, quality, and methods of recovery. Describes the public water supplies and gives records of wells and springs in the several towns, with water analyses. Includes a geologic map.

 Contains discharge measurement of Alley Spring at Alley, Mo. (p. 103).
548. Surface water supply of the United States, 1922, Part VIII, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, district engineer. 1925. iv, 124 pp., 2 pls.

Contains numerous discharge measurements of Mill Spring, near Austin, Tex., and discharge measurements of Fleming, Sloans, San Solomon, Comanche, Good-enough, and San Felipe Springs and Troy's Johnson Well No. 1 and Grants-Devlin Well No. 4. (pp. 120, 121).

Contains discharge measurements of Ashley Spring, and Hurt's Spring, Utah (p. 170).

Contains discharge measurements of several artesian wells in Idaho (p. 287, 288).

557. Large springs in the United States, by O. E. Meinzer. 1927. vii, 94 pp., 17 pls.

Discusses the distribution and character of large springs and gives a proposed classification with respect to size. Describes in detail the large springs from each part of the United States as to origin, size, fluctuations of discharge, relation to rock structure, and character of the water. Includes maps of several areas showing the relation of springs to geologic structure.

559. Relations between quality of water and industrial development in the United States, by W. D. Collins. 1926. iv, 43 pp., 5 pls.

Discusses requirements of water for various industrial uses, purification of water, public water supplies, and location of typical industries with special reference to quality of water. Lists factors affecting the movement of industrial centers.

560. Contributions to the hydrology of the United States, 1925; N. C. Grover, chief hydraulic engineer. 1925. iii, 134 pp., 2 pls. (Published in March, 1926.)

(b) Chemical character of ground waters of the northern Great Plains, by H. B. Riffenburg, pp. 31-52. Describes the general geology of the region, the general character of ground water, and the changes that take place through base exchange, absorption of base and acid, and reduction of sulfate. Discusses the character of water from the several geologic formations of the region and gives typical analyses of water from the principal formations.

(c) Index of analyses of natural waters in the United States, by W. D. Collins and C. S. Howard, pp. 53-85. A bibliography of publications, chiefly of Federal and State bureaus, containing water analyses arranged by States.

(d) Preliminary report on the geology and water resources of the Mud Lake basin, Idaho, by H. T. Stearns and L. L. Bryan, pp. i-v, 87-134, pls. 1-2. Gives a summary of surface-water supplies, describes the ground-water table in the several parts of the area, and presents an inventory of the water supply, with data on minor lakes, ground water, and artesian conditions. Discusses quality of water and gives a table of analyses of water from 12 wells, 4 lakes, and Lidy Hot Spring. Contains a map showing contours of the water table. See also Water-Supply Paper 818.

Contains discharge measurement of Bennett Spring, Mo. (p. 351).

Contains discharge measurements of Roaring River, Mill, Round, and Blue Springs, Mo. (p. 96).

Contains several discharge measurements of Mill, San Solomon, Giffin, Comanche, Goodenough, and San Felipe Springs, Tex. (pp. 143, 144).

Contains 4 discharge measurements of Formation Springs, Idaho (p. 147).

Contains discharge measurements of four unnamed springs about 4 miles north of Kimberly, Idaho (p. 252).

Contains discharge measurements of Boundary Springs, Oreg. (p. 188), and Big Butte Spring, Oreg. (p. 189).

Contains discharge measurement of Spring No. 7, Waianae Valley (p. 67).

576. The ground-water resources of Mississippi, by L. W. Stephenson, W. N. Logan, and G. A. Waring, with discussions of the chemical character of the waters by C. S. Howard. 1928. vii, 515 pp., 12 pis.

Describes the physiography and surface water briefly. Discusses occurrence of ground water, both artesian and nonartesian, and the water-bearing properties of each geologic formation. A separate section describes the quality of ground water. Describes each county separately as to ground-water conditions, analyses of ground water, representative well records, and public supplies. Includes a geologic map and map showing areas of artesian flow.

577. Plants as indicators of ground water, by O. E. Meinzer. 1927. v, 95 pp., 12 pls.

Lists species of plants that grow principally over shallow ground water and those that do not. Discusses the relation of these two groups and describes the value of plants as indicators of the depth to water and its quality and quantity.

578. The Mohave Desert region, Calif., a geographic, geologic, and hydrologic reconnaissance, by D. G. Thompson. 1929. xi, 759 pp., 34 pls.

Contains information on the geology, physiography, mineral resources, water supplies, and other features of a region covering about 25,000 square miles in southern California. Gives data on about 1,200 wells and 100 springs in about 60
42 PUBLICATIONS RELATING TO GROUND WATER

578. The Mohave Desert region, Calif.—Continued.

separate valleys, with information on the geologic conditions, underground reservoirs, water level, recovery and use of water, and plants as indicators of ground water. Contains analyses of water from about 150 wells and springs. Gives special attention to playas and their relation to ground-water conditions.

(a) Geology of No. 3 reservoir site of the Carlsbad irrigation project, N. Mex., with respect to water-tightness, by O. E. Meinzer, B. C. Renick, and Kirk Bryan, pp. 1-39, pls. f-2. Describes the geology and structure of the reservoir site, which covers about 8 square miles along Pecos River 1 to 10 miles below the dam of McMillan Reservoir. The authors conclude that the risk due to probable leakage is too great to warrant the construction of a dam to impound water to the height contemplated.

Contains discharge measurements of Waynesville Spring and Paydown Spring, Mo. (p. 338).

Contains discharge measurements of 9 springs in Missouri and B:ffalo and Taconas Springs in Tex. (p. 120).

Contains 15 discharge measurements of Mill Spring, near Austin, Tex. (p. 221), and discharge measurements of 11 other springs in Texas (pp. 222, 223).

Contains 5 discharge measurements of Formation Springs, Idaho (p. 126).

Contains discharge measurement of Warner Hot Springs (p. 424).

Contains discharge measurements of 14 springs in Idaho (pp. 255, 256).

Contains several discharge measurements on 4 springs 6 miles east of Butte Falls, Oreg. (p. 208).

Contains discharge measurements on 7 springs near Kailua, T. H. (p. 62).

596. Contributions to the hydrology of the United States, 1927; N. C. Grover, chief hydraulic engineer. 1928. v, 266 pp., 14 pls.

(a) Methods of exploring and repairing leaky artesian wells: Preface, by O. E. Meinzer, pp. 1-3; Methods of exploring and repairing leaky artesian wells on the island of Oahu, Hawaii, by John McCombs, pp. 4-34, pls. 1-3, A; The A u deep-well current meter and its use in the Roswell artesian basin, N. Mex., by A. G. Fiedler, pp. 24-32, pls. 3, B-5. Describes the use of current meters in detecting leaky artesian wells in Hawaii and New Mexico and the methods used in plugging or repairing leaky wells.

(b) Ground water in the Ordovician rocks near Woodstock, Va., by G. M. Hall, pp. 45-66, pls. 7-8. Discusses the ground-water conditions in Shenandoah County, Va., and describes the geology and water-bearing properties of the Cambrian and Ordovician rocks. Describes the chemical character of the water and problems of pollution. Includes analyses of water and a geologic map.

(c) Laboratory tests on physical properties of water-bearing materials, by N. D. Stearns, pp. 121-176, pls. 11-13. Describes the laboratory determination of specific gravity, mechanical composition, porosity, moisture equivalent, and permeability, with illustrations of equipment used.

597. Contributions to the hydrology of the United States, 1928; N. C. Grover, chief hydraulic engineer. 1929. v, 250 pp., 23 pls.

(a) Geology of reservoir and dam sites, with a report on the Owyhee irrigation project, Oreg., by Kirk Bryan, pp. 1-72, pls. 1-10. Describes ground-water considerations in the selection of reservoir and dam sites and gives a bibliography of engineering geology. Also published as Geologia de los sitios devasos de almacenamiento y cortinas: Irrigacion en Mexico, vol. 23, No. 5, September-October 1942, pp. 60-88.

(b) A study of ground water in the Pomperaug Basin, Conn., with special reference to intake and discharge, by O. E. Meinzer and N. D. Stearns, pp. 73-146 pls. 11-19. Describes the geography and geology of the Pomperaug Basin and the ground-water resources of the towns of Bethlehem, Southbury, and Woodbury, Conn. Discusses the methods of making a ground-water inventory with regard to precipitation, evaporation, and surface-water and ground-water runoff; gives a monthly inventory 1913-16. Includes a discussion of relation of water table fluctuations to ground-water storage. Contains geologic map.

(c) Problems of the soft-water supply of the Dakota sandstone, with special reference to the conditions at Canton, S. Dak., by O. E. Meinzer, pp. 147-170, pl. 20. Describes the geology of water-bearing formations at Canton, S. Dak., with special reference to quality of water obtained from horizons in the Dakota sandstone. Includes water analyses and well records.

(d) Geology and water resources of the upper McKenzie Valley, Oreg., by H. T. Stearns, pp. 171-188, pls. 21-23. Describes the geology and ground-water resources of the Upper McKenzie Valley in western Oregon. Includes measurements of spring discharge and a geologic map.

598. Geology and ground-water resources of North Dakota, by H. E. Simpson, with a discussion of the chemical character of the water, by F. B. Riffenburg. 1929. v, 312 pp., 3 pls.

Discusses the physiography, climate, and occurrence of ground water in the various geologic formations of North Dakota. Describes the ground-water provi-ces of the
598. Geology and ground-water resources of North Dakota—Continued.
State and artesian water, with special reference to the Dakota sandstone. Includes county reports, a map showing areas of artesian flow, and a chapter on quality of the ground water.

599. Ground water in Yellowstone and Treasure Counties, Mont., by G. M. Hall and C. S. Howard. 1929. vi, 118 pp., 7 pls.
Describes the physiography and geology of part of south-central Montana and gives the water-bearing properties of each geologic formation. Discusses the relation of structure to ground water, gives methods of obtaining water, and describes public water supplies and their quality. Includes a geologic map, analyses of water, and a discussion of ground-water conditions by townships.

600. Geology and ground-water resources of central and southern Rosebud County, Mont., by B. C. Renick, with chemical analyses of the waters, by H. B. Riffenburg. 1929. x, 180 pp., 12 pls.
Describes the stratigraphy, structure, occurrence and movement of ground water, artesian conditions, surface-water supplies, and water-bearing properties of the various formations. Includes sections on quality of ground water, with water analyses. Discusses ground-water conditions by townships.

Contains discharge measurements of 12 springs in Missouri (p. 247).

Contains discharge measurements of 22 springs in Missouri, and Mammoth Spring, Ark. (p. 109).

Contains discharge measurements of 8 springs in Texas (pp. 262-263).

Contains several discharge measurements of Formation Springs, Idaho (p. 135).

Contains 9 discharge measurements of 4 springs 6 miles east of Butte Falls, Oreg. (p. 192).

615. Surface water supply of Hawaii, July 1, 1924, to June 30, 1925; N. C. Grover, chief hydraulic engineer; M. H. Carson, district engineer. 1930. iv, 155 pp.
Contains numerous discharge measurements of small springs at and near Waianae, T. H. (pp. 55-57).

616. Geology and water resources of the Kau district, Hawaii (including parts of Kilauea and Mauna Loa Volcanoes), by H. T. Stearns and W. O. Clark, with a chapter on ground water in the Hawaiian Islands, by O. E. Meinzer. 1930. ix, 194 pp., 33 pls.
Discusses principles of occurrence of ground water in the Hawaiian Islands and basal and perched ground water and their structural control. Describes the Kau
616. Geology and water resources of the Kau district, Hawaii—Continued.
district of the island of Hawaii in particular, in two separate parts. The first part
describes the geography and geology in detail, and the second describes the water
resources, including occurrence of ground water in the main water table and as
perched or high-level water. Includes a geologic map and charts showing quantities
of water developed.

619. Geology and water resources of the Mokelumne area, Calif., by H. T.
Gives description of the physiography, geology, and available records of surface
water in parts of San Joaquin, Sacramento, and Amador Counties. Discusses in
detail ground-water levels, specific yield of water-bearing materials, and ground-
water recharge and discharge. Contains well logs and records of about 2,000
irrigation wells. Includes maps showing geology, water-table contours, and depth
to water.

620. Geology and ground-water resources of western Sandoval County, N.
Mex., by B. C. Renick. 1931. vi, 117 pp., 10 pls.
Describes the geology and artesian and other ground waters in the western part
of Sandoval County, N. Mex. Discusses in detail the water-bearing properties of
each geologic formation, geologic structure, quality of water, artesian conditions,
and mineralized and thermal springs. Includes a geologic map and structure cross
sections of the area.

626. Surface water supply of the United States, 1926, Part VI, Missouri River
Basin; N. C. Grover, chief hydraulic engineer; W. A. Lamb. Robert
Follansbee, C. G. Paulsen, J. B. Spiegel, and H. C. Beckman. district
engineers. 1930. vi, 228 pp.
Contains discharge measurements of 6 springs in Mo. (p. 224).

627. Surface water supply of the United States, 1926, Part VII, Lower Missis­
pissippi River Basin; N. C. Grover, chief hydraulic engineer; H. C.
Beckman, Robert Follansbee, J. B. Spiegel, and C. E. Ellsworth, dis­
trict engineers. 1930. iv, 98 pp.
Contains discharge measurements of 9 springs in Missouri, and Mammoth Spring,
Ark. (p. 96).

628. Surface water supply of the United States, 1926, Part VIII, Western
Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E.
Contains discharge measurements of 6 springs in Texas (p. 202).

630. Surface water supply of the United States, 1926, Part X, Ti 9 Great
Basin; N. C. Grover, chief hydraulic engineer; A. B. Purton. H. D.
McGlashan, F. F. Henshaw, C. G. Paulsen, and Robert Follanbee, dis­
trict engineers. 1930. v, 145 pp.
Contains discharge measurement of Formation Springs, Idaho (p. 140).

632. Surface water supply of the United States, 1926, Part XII, North Pacific
slope drainage basins: A, Pacific slope basins in Washington and upper
Columbia River Basin; N. C. Grover, chief hydraulic engineer; G. L.
Parker and W. A. Lamb, district engineers. 1930. 154 pp.
Contains discharge measurements of east and west branches of Maplewood Springs,
Wash. (p. 149).

633. Surface water supply of the United States, 1926, Part XII, North Pacific
slope drainage basins: B, Snake River Basin; N. C. Grover, chief hy­
draulic engineer; G. C. Baldwin, G. L. Parker, C. G. Paulsen, A. B.
Contains 11 discharge measurements of Market Lake Springs, near Roberts, Idaho
(p. 256), and 1 measurement of Lidy Hot Springs, 15 miles southwest of Dubois,
Idaho, 0.7 sec.-ft. (p. 257).

Contains discharge measurements of 10 springs in Oregon and of 2 springs at outlet of Merrill Lake, Wash. (pp. 230, 231).

Contains discharge measurements of several small springs near Waianae, T. H. (pp. 52-54).

(a) Preliminary report on the ground-water supply of Mimbres Valley, N. Mex., by W. N. White, pp. 69-90, pl. 1. A preliminary study of Luna County, southwestern New Mexico. Discusses the source of ground water, the facilities for intake and the quantity of ground-water intake, the movement of ground water, shape and fluctuations of the water table, and fluctuations in storage of ground water. Includes a map showing observation wells established and gives recommendations for further study in the area.

(b) Geology and water resources of the middle Deschutes River Basin, Oreg., by H. T. Stearns, pp. 125-220, pls. 10-18. Describes briefly the ground-water resources of a portion of Deschutes and Jefferson Counties, Oreg. Includes discussion of the geologic formations and their water-bearing properties and a measurement of ground-water discharge into Crooked and Deschutes Rivers. Contains a map showing contours of the water table.

(a) A preliminary report on the artesian water supply of Memphis, Tenn., by F. G. Wells, pp. 1-34, pls. 1-2. Describes the geology and the source of ground water at Memphis, Tenn. Gives pumping for the area, with its effect on water levels, and discusses the possibility of increased development. Includes analyses of water. See also Water-Supply Paper 656 and Cooperative report 372.

(b) Outline of methods for estimating ground-water supplies, by O. E. Meinzer, pp. 99-144. Discusses ground-water supplies existing under reservoir and conduit conditions. Includes the estimation of intake from streams and precipitation and estimations of discharge from data on overflow, evaporation, transpiration, and fluctuation of the water table, with notes on safe yield. Describes field measurements of ground-water velocity and determination of permeability by laboratory methods, by the Thiem pumping method, and by the method based on area of influence of wells.

639. Geology and ground-water resources of the Roswell artesian basin, N. Mex., by A. G. Fiedler and S. S. Nye. 1933. xii, 372 pp., 46 pls.

Most of the artesian water of the basin is obtained from the Picacho limestone, of Permian age. The original area of artesian flow comprised 663 square miles. About 60,000 acres are irrigated by water derived directly or indirectly from wells. It is concluded that no new land should be placed under irrigation with artesian water, but the development of shallow ground water should be encouraged.

Describes the geography, stratigraphy, and geologic structure of the area. Discusses the occurrence of ground water in limestone formations and springs and artesian-water conditions. Gives data on the quality of the water, including 101 analyses of representative samples of well and spring waters. Concludes with descriptions of the general features and ground-water conditions in each of the 12 counties that constitute the area studied.
 Contains discharge measurements of 22 springs in Florida (p. 99).

 Contains 2 discharge measurements of Boiling Spring near Max Meadows, Va. (p. 211).

 Contains discharge measurements of Boyler’s Mill, Hahatonka, and Wilkins Springs, Mo. (p. 212).

 Contains records of discharge of Meramec, Big, and Greer Springs (pp. 15, 40, 43) and discharge measurements of Cold, Big, Blue at McCabe, Blue 7 miles northeast of Mountain View, and McCubben Springs, all in Missouri (p. 95).

 Contains several discharge measurements of Barton and Comal Springs (p. 112) and of Bennetts artesian well and Goodenough and San Felipe Springs (p. 113), all in Texas.

 Contains discharge measurements of several small springs in Oahu (pp. 61-62) and of Keanae Spring on Maui, 3.63 sec. ft. (p. 145).

 Gives a summary of the geology and data on the occurrence, quality, and utilization of ground water. Discusses the water-bearing formations and the ground-
656. Ground-water resource of western Tennessee—Continued.
water resources by counties, with special description of the water supply of Memphis.
Contains 176 water analyses and a map showing locations of wells.

658. The industrial utility of public water supplies in the United States, 1932,
by W. D. Collins, W. L. Lamar, and E. W. Lohr. 1934. iv, 135 pp.,
1 pl.
Contains statements on ground-water supplies (p. 21) and many analyses of public
water supplies obtained from wells.

659. Contributions to the hydrology of the United States, 1932; N. C. Grover,
chief hydraulic engineer. 1932. v, 209 pp., 19 pls.
(a) A method of estimating ground-water supplies based on discharge by plants
and evaporation from soil—results of investigations in Escalante Valley, Utah, by
W. N. White, pp. 1-105, pls. 1-10. Gives the results of a detailed study of ground-
water discharge in Escalante Valley, Utah.
(b) Geology and ground-water resources of The Dallas region, Oreg., by A. M.
Piper, pp. 107-189, pls. 11-19. Describes the basalts of the area and discusses the
possibilities of developing ground water for irrigation from the upper and lower
water-bearing zones of the Yakima basalt. Gives 6 analyses of well water and 1
analyses of spring water, tabulated records and logs of wells, and records of springs.
(c) Index of analyses of natural waters in the United States, 1923 to 1931, by
W. D. Collins and C. S. Howard, pp. 191-209. Lists, by states, publications contain­
ing collections of mineral analyses of waters.

iv, 86 pp., 7 pls.
Artesian water in Somervell County is derived largely from two aquifers of the
"basal sands" of the Trinity group occurring at Glen Rose at depths of 100 to 135
feet and 275 to 300 feet, respectively. The draft from the artesian reservoir during
the summer is estimated at 1,000,000 gallons a day, which includes 360,000 gallons
a day of waste but not underground waste. Artesian head has declined generally
throughout the county and continues at a slow rate. The report recommends adop­
tion of a policy of conservation and further investigation of underground leakage
from wells.

661. Surface water supply of the United States, 1928, Part I, North Atlantic
slope drainage basins; N. C. Grover, chief hydraulic engineer; M. R.
Stackpole, H. B. Kinnison, A. W. Harrington, O. W. Hartwell, A. H.
Contains discharge measurements of Koiner, Baker, and Loch Springs near
Waynesboro, Va. (p. 229).

663. Surface water supply of the United States, 1928, Part III, Ohio River
Basin; N. C. Grover, chief hydraulic engineer; A. W. Harrington, A. H.
Horton, Lasley Lee, J. J. Dirzulaitis, H. E. Grosbach, W. R. King, and
Contains discharge measurements of Umbarger, Town, and Killinger Springs at
Marion, Va., and Cave, Blowing, Tanyard, Ellis, Francis, and Big Springs, Tenn.
(p. 240).

667. Surface water supply of the United States, 1928, Part VII, Lower Missis­
ippi River Basin; N. C. Grover, chief hydraulic engineer; H. C. Beck­
man, Robert Follansbee, J. B. Spiegel, and C. E. Ellsworth, district
engineers. 1931. iv, 80 pp.
Contains discharge records of Meramec, Big, and Green Springs, Mo. (pp. 14, 37,
39), and discharge measurements of Misco Spring at Misco, Mo. (p. 78).

668. Surface water supply of the United States, 1928, Part VIII, Western Gulf
of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ells­
worth, district engineer. 1931. v, 123 pp.
Contains several discharge measurements of Barton, Comal, and Goodenough
Springs, Tex. (p. 119); of springs and artesian well at San Antonio, Tex., and
WATER-SUPPLY PAPERS 49

668. Surface water supply of the United States, 1928—Continued.
 Dr. Graham's artesian well at La Pryor Tex. (p. 119); and of San Felippe Springs, near Del Rio, Tex., and Las Moras Springs, Bracketville, Tex. (p. 120).

 Contains 2 discharge measurements of Big Springs, at Big Springs, Idaho (p. 167).

 Contains discharge measurement of Kumalae Springs near Honolulu (p. 40).

676. Geology and ground-water resources of Atascosa and Frio Counties, Tex., by J. T. Lonsdale. 1935. v, 90 pp., 8 pis.
 Describes a portion of the Winter Garden district of southwest Texas. The exposed rock formations are of Quaternary and Tertiary ages. The chief water-bearing formations are the Carrizo sand, Mount Selman formation, and Cook Mountain formation. The Carrizo formation yields water of good quality, which is used extensively for irrigation. The other two formations are important sources of water for domestic use and to some extent for irrigation.

 Describes the physiography of the region and the source of the ground water and discusses the water-bearing properties of the various formations, which range in age from lower Ordovician to Quaternary. Gives data on the water supply in descriptions of the area by counties.

678. Geology and ground-water resources of Uvalde and Medina Counties, Tex., by A. N. Sayre. 1936. v, 146 pp., 11 pis.
 Describes an area that is crossed by the Balcones escarpment. Discusses the general geology and the chemical character of the ground water in connection with the description of the several water-bearing formations. Presents information on ground-water intake, movement, discharge, and utilization. Includes tables of wells, well-measurements, and well logs. Contains a geologic and hydrologic map showing heights to which water in the Edwards limestone would rise in 1930.

 (b) Thermal springs in the United States, by N. D. Stearns, H. T. Stearns, and G. A. Waring. 1937. pp. i-iv, 69-206, i-iv, pls. 7-16. Discusses the geologic problems relating to thermal springs, and their occurrence by physiographic divisions. Includes annotated bibliography and tabulated lists by States of 1,059 spring localities. Contains State index maps showing location of the thermal springs and a map of the United States showing their distribution.

 Discusses the effects of the droughts of 1930, 1931, and 1934 on surface-water and ground-water supplies. Contains diagrams showing fluctuation of ground-water level (figs. 9, 10).

 Contains discharge measurements of 4 springs in Virginia and 10 springs in Florida (pp. 172, 173).
Contains discharge measurements of Miles, Wallace, Cave, and Clifford Pryar Springs, Tenn. (p. 266).

Contains discharge record of Bennett Spring at Briar, Mo. (p. 276).

Contains discharge records of Meramec, Big, and Greer Springs, Mo. (pp. 14, 40, 42), and discharge measurement of Blue Spring, 3 miles southwest of Battlefield, Mo. 3.3 sec.-ft. (p. 85).

Contains discharge records of Goodenough Spring, Tex. (p. 109), and discharge measurements of Barton, T-5, Righland, and Wolf Springs, and Corral River (springs) and San Felipe Creek (springs), Tex. (pp. 126, 127).

Contains discharge measurement of Agency Spring at Klamath Agency, Oreg. (p. 287).

Contains discharge measurements of Hite's, Yager's, Harnsroger, and Price's Springs, Va. (p. 273).

Contains discharge measurements of Hall's Spring, near Buena Vista, Va. 1.0 sec.-ft. (p. 243), and discharge measurements of 7 springs in Florida (p. 244).

Contains discharge records of Huntsville Spring, Tenn., and Tusculumia Spring, Ala. (pp. 266, 272), and discharge measurements of Blue Spring at Jasper, Tenn., and Blowing Spring at Sequatchie, Tenn. (p. 285).
Contains discharge record of Bennett Spring at Brice, Mo. (p. 289), and discharge measurement of Hahatonka Spring, Hahatonka, Mo., 61 sec.-ft. (p. 296).

Contains discharge records of Round, Big, and Greer Springs, Mo. (pp. 57, 59, 62), and discharge measurements of Meramec Spring, Mo., 99 sec.-ft., and Evans Spring, 1% mi. southeast of Steelville, Mo., 2.6 sec.-ft. (p. 111).

Contains discharge record of Goodenough Springs (p. 116), and discharge measurements of Barton, Costley, and Coconut Springs, spring near Pipe Creek, Comal River (springs), and San Felipe Creek (springs), all in Texas (pp. 126, 177).

Contains discharge measurements of Keolewa and Illililka Springs on Molokai, (p. 49), and 27 discharge measurements of Waiakea Springs on Hawaii (p. 98).

Contains discharge records of Warm Spring, at Warm Springs, Va. (p. 20); Sulphur, Weekiawachee, Blue (near Dunnellon), Ichatucknee, and Wakulla Springs, Fla. (pp. 148, 153, 163, 164); and discharge measurements of Rock, Seminole, Alexander, Silver Glen, Salt, Kissengen, Homosassa, Blue (at Juliette), Wekiva, and Fannin Springs, Fla. (pp. 227, 228).

Contains discharge record of Huntsville Spring, at Huntsville, Ala. (p. 316); discharge measurements of 108 large springs in east Tennessee (pp. 537-539); and discharge measurement of Tiese Spring, near Marion, Va., 0.3 sec.-ft. (p. 540).

Contains discharge record of Bennett Spring, at Brice, Mo. (p. 332), and discharge measurements of Hahatonka, Rolufs, and Gollahon Springs, Mo. (p. 340).
Contains discharge records of Round, Alley, Big, and Greer Springs (pp. 52, 53, 55, 58) and discharge measurements of Brown and Boze Mill Springs (p. 106), all in Missouri.

718. Surface water supply of the United States, 1931, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, district engineer. 1933. v, 135 pp.
Contains discharge record of Goodenough Springs (p. 122) and discharge measurements of Rock Spring, Swimming Pool Spring, springs on Maxwell ranch, and Kickapoo, Silver Lake, and San Felipe Springs (pp. 130-131), all in Texas.

Contains discharge measurements of 8 springs in Malheur and Harney Lake Basins, Oreg. (p. 96).

Contains discharge measurement of Dripping Spring near Temecula, Calif. (p. 469), and 25 discharge measurements of Hamner Springs near Norco, Calif. (p. 471).

Contains discharge measurement of Big Springs, Idaho (p. 197).

Contains discharge measurement of Ebbing and Flowing Spring, Va. (p. 369).

Contains discharge records of Warm Springs, Va. (p. 19), and Blue (near Orange City), Kissasen, Sulphur, Weekiwachee, Blue (near Dunnellon), Ichatucknee, and Wakulla Springs, Fla. (pp. 189, 182, 166, 169), and discharge measurements of 29 other springs in Florida (pp. 216-216).

Contains discharge record of Huntsville Spring, at Huntsville, Ala. (p. 333), and discharge measurements of 19 springs in Tennessee (pp. 359, 361, 362).
731. Surface water supply of the United States, 1932, part 6, Missouri River Basin; N. C. Grover, chief hydraulic engineer; H. C. Beckman, Robert Follansbee, W. A. Lamb, T. R. Newell, and J. B. Spiegel, district engineers. 1933. x, 349 pp. Contains discharge record of Bennett Spring at Brice, Mo. (p. 332), and discharge measurements of Conn, Roubidoux, Shanghai, and Gaines Ford Springs, Mo. (p. 342).

732. Surface water supply of the United States, 1932, part 7, Lower Mississippi River Basin; N. C. Grover, chief hydraulic engineer; H. C. Beckman, C. E. Ellsworth, J. H. Gardiner, Berkeley Johnson, W. R. King, C. E. McCashin, and J. B. Spiegel, district engineers. 1933. vi, 132 pp. Contains discharge records of Round, Alley, Big, and Greer Springs (pp. 64, 69, 70, 73) and discharge measurements of Westover, Leeper, Mill, and Bone Mill Springs (p. 128), all in Missouri.

733. Surface water supply of the United States, 1932, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1933. vi, 197 pp. Contains discharge measurements of Comanche Springs near Fort Stockton, Tex. (p. 190).

738. Surface water supply of Hawaii, July 1, 1931, to June 30, 1932; N. C. Grover, chief hydraulic engineer; M. H. Carson, district engineer. 1934. v, 121 pp. Contains discharge records of Pearl Harbor Springs (pp. 48-56), and discharge measurements of Pearl Harbor and Waialae Springs (p. 66) on the island of Oahu.

740. Surface water supply of Hawaii, July 1, 1931, to June 30, 1932; N. C. Grover, chief hydraulic engineer; M. H. Carson, district engineer. 1934. v, 121 pp. Contains discharge records of Pearl Harbor Springs (pp. 48-56), and discharge measurements of Pearl Harbor and Waialae Springs (p. 66) on the island of Oahu.

Contains discharge record of Bennett Spring at Brice, Mo. (p. 239), and discharge measurements of 26 other springs in Missouri (p. 269).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 59, 61, 62, 66), and discharge measurements of 32 other springs in Missouri (pp. 116-117).

748. Surface water supply of the United States, 1933, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1935. vi, 180 pp.
Contains discharge records of Phantom Lake, Giffen, San Solomon, West Sandia, and East Sandia Springs, Tex. (pp. 145-158), and discharge measurements on these and 8 other springs in Texas (pp. 167-174).

Contains discharge measurements of Snyder, Alpine, and Denver and Rio Grande Springs, Utah (p. 102), and unnamed springs in Salt Lake City, Utah (p. 103).

753. Surface water supply of Hawaii, July 1, 1932, to June 30, 1933; N. C. Grover, chief hydraulic engineer; M. H. Carson, district engineer. 1935. v, 125 pp.
Contains discharge records of Pearl Harbor Springs at 6 places on the island of Oahu (pp. 38-43) and 20 discharge measurements on the same springs (p. 53).

Contains discharge records of Warm Spring, Va. (p. 18), Blue (near Orange City), Kissengen, Sulphur, Weekiwachee, Blue (near Dunellen), and Ichatuckee Springs in Florida (pp. 140, 155, 157, 160, 170), and North Springs at Warm Springs, Ga. (p. 180), and discharge measurements of Lithia Spring and Crystal Springs in Florida and Blue Spring, near Hamilton, Ga. (p. 212).

Contains discharge measurements of 38 springs in Tennessee and 1 spring in Alabama (pp. 378-379).
Contains discharge record of Bennett Spring at Brice, Mo. (p. 323), and discharge measurements of 11 other springs in Missouri (pp. 322-333).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 57, 59, 60, 62), and discharge measurements of 19 other springs in Missouri (p. 125).

763. Surface water supply of the United States 1934, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1936. vi, 188 pp.
Contains discharge measurements of Barton, Phantom Lake, San Solomon, and Comanche Springs, Tex. (pp. 181-188).

Contains discharge measurement of Crystal Hot Springs, Utah (p. 91).

Contains discharge measurement of Hammer Springs (p. 351).

Contains discharge measurement of Big Springs near Heise, Idaho (p. 196).

770. Surface water supply of Hawaii, July 1, 1933, to June 30, 1934; N. C. Grover, chief hydraulic engineer; M. H. Carson, district engineer. 1936. 120 pp.
Contains discharge record of Hanalei Tunnel, Kauai (p. 20), and Pearl Harbor Springs, Oahu (pp. 41-46), and discharge measurements of Pearl Harbor Springs (p. 53).

Contains data on ground-water runoff (pp. 246-247) and on ground-water levels in Platte River Valley, Nebr. (pp. 269-273). Contains list of 193 references to relations between rainfall and runoff, and related subjects, including several publications dealing with ground water.

773. Contributions to the hydrology of the United States, 1936; N. C. Grover, chief hydraulic engineer.
(a) Geology and ground-water resources of the Elizabeth City area, N. C., by S. W. Lohman. 1936. pp. i-v, 1-57, pls. 1-4. Discusses the contamination by salt water of the surface-water supply during the drought of 1930-33 and the testing of deep, intermediate, and shallow sources of ground water as a new source of public water supply. Gives attention to the problem of contamination by salt water. As a part of the investigation many small wells tapping the shallow sands were constructed over a large area. These now furnish the entire city supply.
Contributions to the hydrology of the United States, 1936—Continued.

(b) Water resources of the Edwards limestone in the San Antonio area, Tex., by Penn Livingston, A. N. Sayre, and W. N. White. 1936. pp. 1-ii, 59-113, pl. 5. Discusses the Edwards limestone as a ground-water reservoir and the recharge to it and the discharge by springs and from wells. Gives data on the fluctuations in artesian pressure and the safe yield of the reservoir. Contains tabulated data on water levels in observation wells and a map showing lines of equal artesian pressure.

e) Artesian water in the Florida peninsula, by V. T. Stringfield. 1936. pp. i-iv, 115-195, pls. 6-16. The principal artesian formations are limestones of Eocene and Miocene age, which yield copious amounts of water to wells and are the source of some of the largest springs in the United States. Artesian conditions are present nearly everywhere in the peninsula, but the areas in which wells flow are chiefly along the coasts and in the southern part of the State. Includes maps showing artesian flow of highly mineralized water and the isometric surface of artesian water. Contains a table of wells and large springs and a map showing location of the large springs.

(d) Ground-water resources of Kleberg County, Tex., by Penn Livingston and T. W. Bridges. 1936. pp. i-ii, 197-232, pls. 17-21. Gives the history of ground-water development in the county and describes the water-bearing formations, the fluctuations in artesian pressure, movement of the ground water, and the chemical character of ground water, with comments on the waste of water and well-drilling methods. Contains records of 484 wells, with figures of chloride content and hardness. A map shows well locations and the height to which water would rise in the winter of 1932-33.

Describes the geography and geology of the Snake River Plain above King Hill, Idaho, and gives data on the source, movement, and disposal of the ground-water supply of the Snake River basin, which is estimated at 4,000,000 acre-feet. Only a small part of this is utilized for irrigation. Recommends that future irrigation development be confined as far as practicable to the southeast side of Snake River above Milner, so that seepage water may return to a stretch of the river where it will be available for reuse. Contains a contour map of the water table.

A supplement to Water-Supply Paper 774. Contains a tabulation of several hundred well records.

Geology and ground-water resources of Duval County, Tex., by A. N. Sayre. 1937. vi, 116 pp., 8 pis.

The county is in the Coastal Plain, which for the most part is low and featureless. Between the Nueces River and the Rio Grande the plain is interrupted by an erosion remnant, the Reynosa Plateau, which reaches a maximum altitude of nearly 1,000 feet. The streams that cross the area flow only during and immediately after periods of heavy rainfall. The report describes the stratigraphy and structure of the area, with particular regard to ground water, and presents detailed data on water supplies from wells.

Water levels and artesian pressure in observation wells in the United States in 1935, with statements concerning previous work and results, prepared under the direction of O. E. Meinzer and L. K. Wenzel. 1936. iii, 268 pp.

A group of papers prepared by members of the United States Geological Survey. This is the first of a series of annual reports on the fluctuations of the ground-water levels and artesian pressure in the United States.

Introduction, by O. E. Meinzer.
Arkansas, by D. G. Thompson.
California, by F. C. Ebert and A. M. Piper.
Florida, by V. T. Stringfield.
WATER-SUPPLY PAPERS 57

777. Water levels and artesian pressure in observation wells in the United States in 1935—Continued.
Hawaii, by H. T. Stearns.
Idaho.
Indiana, by R. C. Cady.
Iowa and Missouri, by V. C. Fishel.
Kansas.
Michigan, by V. T. Stringfield.
Montana, by W. A. Lamb.
Nebraska, by L. K. Wenzel.
New Jersey, by H. C. Barksdale.
New Mexico, by C. V. Theis and A. G. Fiedler.
New York, by D. G. Thompson and A. W. Harrington.
North Carolina, by E. E. Meinzer.
Oklahoma.
Oregon, by A. M. Piper.
Pennsylvania, by S. W. Lohman.
South Carolina.
Texas, by W. N. White and A. N. Sayre.
Virginia, by O. E. Meinzer, R. C. Cady, and V. C. Fishel.
Washington.
Wisconsin.

778. Geology and ground-water resources of Webb County, Tex., by J. T. Lonsdale and J. R. Day. 1937. v, 104 pp., 12 pls.
The exposed rock formations are of Tertiary and Quaternary ages. The Carrizo sand in the northwest yields potable water. The Cook Mountain formation supplies water for domestic use and some irrigation and yields flowing wells in parts of northeastern Webb County, but that water is too highly mineralized to use for irrigation. The Catanaula tuff yields water for domestic and industrial use and some irrigation but is in general highly mineralized. The Goliad sand yields water for domestic and stock uses in the southeast part of the county but is variable in quantity and quality.

Describes water conditions in Quaternary deposits in an area covering 10,000 square miles and gives the results of a detailed study of part of the Platte River Valley, where 800 wells supply water for irrigation. Discusses losses by percolation and from plant use. There was a great loss of stored water during 1931-34, but with return of normal precipitation the ground-water reserve will be restored.

Describes the geography, geology, and ground-water hydrology of the Mokelumne drainage basin and gives results of studies to determine the extent to which the ground-water supply depends upon water from Mokelumne River and the extent to which the supply may be influenced by regulation of the stream. Concludes that the Pardee Dam affords a means of regulating the discharge so as to effect maximum ground-water replenishment. Contains numerous maps, hydrographs, and profiles.

Contains discharge records of Warm Springs, Va. (p. 22), and Blue (near Orange City), Kissengen, Crystal, Weekiwachee, Blue (near Dunnellon), and Ichetucknee Springs, Fla. (pp. 148, 162, 165, 168, 179), and discharge measurements of 9 other
Springs in Florida and numerous measurements of Blue Spring near Hamilton, Ga. (p. 229).

Contains discharge measurement of Citico Spring at Chattanooga, Tenn. (p. 395).

Contains discharge record of Bennett Spring at Brice, Mo. (p. 338), and discharge measurement of Shanghai Spring, 7 miles east of Waynesville, Mo., 11.8 sec.-ft. (p. 347).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 62, 65, 66, 68), and discharge measurements of 10 other springs in Missouri (p. 147).

788. Surface water supply of the United States, 1935, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. F. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1937. 197 pp., 1 pl.
Contains several discharge measurements of Barton Springs (p. 191) and San Solomon and Comanche Springs, Tex. (pp. 193).

Contains discharge measurements of Big Spring and Crystal Springs, Oreg. (p. 162).

Contains discharge records of Hanalei Tunnel, Kauai (p. 23), and Pearl Harbor Springs, Oahu (pp. 41-45), and discharge measurements of Pearl Harbor Springs (p. 54) and West Makapipi Spring, Maui (p. 63).

796. Contributions to the hydrology of the United States, 1937; N. C. Grover, chief hydraulic engineer.
(b) Geology and ground-water resources of Ogden Valley, Utah, by R. M. Leggette and G. H. Taylor. 1937. pp. i-iv, 99-161, pls. 35-40. Ogden Valley is a trough, bounded on the east and west by faults and containing more than 600 feet of stream and lake deposits, including 70 feet of varved clay. Shallow wells encounter water-table conditions; those which pass through the clay encounter water under artesian pressure. The water level fluctuates 2 to 30 feet during the year. The city of Ogden is supplied by 48 artesian wells, whose discharge in 1933-34 ranged from 12.9 to 20.5 second-feet. See also Cooperative report 424.
796. Contributions to the hydrology of the United States, 1937—Continued.

(e) Ground water in Avra-Altar Valley, Ariz., by D. A. Andrews. 1937. pp. i-ii, 163-180, pls. 41-44. Avra-Altar Valley is in southeastern Arizona, about 80 miles west of Tucson. Water for domestic and stock use is obtained in the lower alluvial lands at 150 to 350 feet. A few wells on the higher alluvial slopes reach water at 550 to 800 feet. In most places the water is of good quality, but in a few places where rocks of Cretaceous age are penetrated the water is highly mineralized. Gives analyses of 26 samples of well water.

(f) Geology and ground-water resources of the valley of Gila River and San Simon Creek, Graham County, Ariz., by M. M. Knechtel, with a section on the chemical character of the ground water, by E. W. Lohr. 1938. pp. i-iv, 181-222, pls. 45-53. Shallow water is obtained in the valley alluvium. Lake beds in the central part of the valley trough yield water at various depths, usually under artesian head. A few small flowing wells have been obtained. Contains logs of seven wells. Describes several springs including Indian Hot Springs. The section on chemical character of the ground water includes 49 analyses of samples of water.

802. Surface water supply of the United States, 1936, part 2, South Atlantic slope and eastern Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; D. H. Barber, E. D. Burchard, J. J. Dirzulaitis, A. E. Johnson, and D. S. Wallace, district engineers. 1938. vi, 228 pp., 1 pl.

Contains discharge records of Warm Springs, Va. (p. 16), and Blue (near Orange City), Kissimmee, Crystal, Weekawachee, Blue (near Dunellon), and Ichathucknee Springs, Fla. (pp. 140, 154, 157, 160, 171), and discharge measurements of 10 other springs in Florida (p. 222).

Contains discharge measurement of Frazier Spring near Pikeville, Tenn. (p. 447).

Contains discharge record of Bennett Spring at Brice, Mo. (p. 354), and discharge measurements of 14 other springs in Missouri (p. 363).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 62, 64, 65, 67), and discharge measurements of 54 other springs in Missouri (pp. 144-145).

808. Surface water supply of the United States, 1936, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1937. 262 pp., 1 pl.

Contains several discharge measurements of Barton, San Solomon, and Comanche Springs, Tex. (pp. 256-257).

Contains discharge records of Hanalei Tunnel, Kauai (p. 17), Pearl Harbor Spring, Oahu (pp. 35-39), and West Makapipi Spring, Maui (p. 57), and discharge measurements of Pearl Harbor Springs (p. 50).
817. Water levels and artesian pressure in observation wells in the United States in 1936, with statement concerning previous work and results, prepared under the direction of O. E. Meinzer and L. K. Wenzel. 1937. iii, 511 pp.

Includes nearly all the periodic measurements made by the United States Geological Survey and cooperating agencies in Nebraska, Pennsylvania, and Utah and in eight areas of the Soil Conservation Service and complete records for selected wells in other States.

Introduction, by O. E. Meinzer.
Arkansas, by D. G. Thompson.
California, by F. C. Ebert and A. M. Piper.
Colorado, by T. W. Robinson.
Florida, by V. T. Stringfield.
Hawaii, by H. T. Stearns.
Indiana, by V. T. Stringfield.
Iowa and Missouri, by V. C. Fishel and G. A. LaRocque.
Kansas, by V. C. Fishel and L. C. Crawford.
Maryland, by M. T. Thompson.
Michigan, by V. T. Stringfield.
Montana, by W. A. Lamb.
Nebraska, by L. K. Wenzel.
New Jersey, by H. C. Barksdale.
New Mexico, by C. V. Theis.
New York: Central New York, by A. W. Harrington; Long Island by R. M. Leggette; Croton Valley, by C. E. Jacob.
North Dakota, by A. N. Sayre.
Oklahoma, by V. C. Fishel and J. A. Allis.
Oregon, by A. M. Piper.
Pennsylvania, by S. W. Lohman.
South Carolina, by V. C. Fishel and J. M. Terry.
South Dakota, by A. N. Sayre.
Tennessee, by D. G. Thompson.
Texas, by W. N. White, A. N. Sayre, Penn Livingston, V. C. Fishel, and V. L. Austin.
Virginia, by O. E. Meinzer, R. C. Cady, and V. C. Fishel.
Washington, by V. C. Fishel and J. P. Bonner.
Wisconsin, by G. T. Owen, V. C. Fishel, and C. C. Yonker.

818. Geology and water resources of the Mud Lake region, Idaho, including the Island Park area, by H. T. Stearns, L. L. Bryan, and Lynn Cran dall. 1939. v, 225 pp., 18 pls.

Describes the geography, geology, and hydrology of the northeastern part of the Snake River Plain. From 1900 to 1921 Mud Lake increased in size from a few hundred acres to 17,520 acres (including a group of smaller lakes), and tracts of swampy land developed, aggregating 10,000 acres. The large increase in water supply resulted from percolation of water used in irrigation on the Egin Bench, about 30 miles east of Mud Lake.

819. The warm springs of Georgia, their geologic relations and origin, a summary report, by D. F. Hewett and G. W. Crickmay. 1937. iv, 40 pp., 8 pls.

Seven groups of warm springs are known in Georgia, but popular interest centers in Warm Springs, in the west-central part of the State, which is improved for use by the Georgia Warm Springs Foundation. The several warm springs are confined to a belt of pre-Cambrian metamorphic rocks, and all of them issue from the Hollis quartzite. The data collected show that the water of Warm Springs is that which falls on the crest of Pine Mountain and is carried in the Hollis quartzite to a depth of about 3,000 feet so that it absorbs heat from the rocks and is delivered at the surface with a temperature of 88° F.
Discusses the effects of the drought on ground-water supplies (pp. 11-13) and gives data on the fluctuation of the water level in an observation well in Hall County, Neb., and one in Arlington, Va.

Contains discharge records of Warm Spring, Va. (p. 18), and Blue (near Orange City), Kissengen, Crystal, Weekiwachee, Blue (near Dunnellon), and Ichataukenee Springs, Fla. (pp. 159, 174, 179, 182, 197), and discharge measurements of Juniper Spring and Fern Hammock Springs, Fla., and Blue Springs, and Radium Springs, Ga. (p. 260).

Contains discharge record of Bennett Spring at Brice, Mo. (p. 361), and discharge measurements of Santa Fe Spring at Arrow Rock, Mo., 0.09 sec.-ft., and Paxton Spring at Humansville, Mo., 0.69 sec.-ft. (p. 369).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 59, 61, 62, 65), and discharge measurements of 9 other springs in Missouri (p. 169).

828. Surface water supply of the United States, 1937, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1939. vii, 437 pp., 1 pl.
Contains discharge measurement of Buffalo Spring, Tex., 3.34 sec.-ft. (p. 423), numerous discharge measurements of Barton Springs, Tex. (p. 424), and 5 discharge measurements of Comanche Springs, Tex. (p. 430).

Contains 6 discharge measurements of Hot Springs, near Santa Barbara, Calif., 0.24 to 0.95 sec.-ft. (p. 359). (Probably include surface water.)

Contains discharge records of Hanalei Tunnel, Kauai (p. 17), Pearl Harbor Springs, Oahu (pp. 41-45), and West Makapipi Spring, Maui (p. 63), and discharge measurements of Pearl Harbor Springs and Kalihi Springs, Oahu (p. 56).
836. Contributions to the hydrology of the United States, 1938-39; G. L. Parker, chief hydraulic engineer.

Issued only in separate chapters, as indicated below. Each chapter contains its own index.

(b) Ground-water resources of the Holbrook region, Ariz., by M. A. Harrell and E. B. Eckel. 1939. pp. i-iv, 19-105, pls. 2-11. Describes the geography, geology, and ground-water resources of a portion of the Colorado Plateau in northeastern Arizona. The exposed sedimentary rocks range in age from Permian to Recent. Extrusive lavas and Tertiary or Quaternary cinder beds cover large areas. The principal water-bearing formations are the Coconino sandstone of Permian age, the lava flows, and the sand and gravel deposits of Recent age along the major streams. Describes public water supplies briefly. Includes maps and tables giving data on most of the wells and springs of the region, including analyses of 118 samples of water.

(c) Artesian-water levels and interference between artesian wells in the vicinity of Lehi, Utah, by G. H. Taylor and H. E. Thomas. 1939. pp. i-iii, 137-156, pls. 12-14. Artesian water is obtained in Pleistocene deposits at 75 to 750 feet, most wells being 130 to 200 feet deep. The supply was depleted by the drought period culminating in 1934, but during 1936 there was a general rise of 5 to 10 feet in the water level. Describes tests to determine the interference of wells.

(d) Ground water in the United States, a summary of ground-water conditions and resources, utilization of water from wells and springs, methods of scientific investigation, and literature relating to the subject, by O. E. Meinzer. 1939. pp. i-v, 157-232, pl. 15. Describes the character and geographic distribution of the major water-bearing formations and calls attention to the differences between formations in which water occurs under artesian conditions. Discusses the discharge of ground water through springs and by evaporation and transpiration. Gives data on the utilization of ground water for public and domestic supplies, industrial purposes, irrigation, and health and recreation purposes. Describes the methods used in both areal and intensive ground-water investigations and gives a brief account of the ground-water work that has been done by the Geological Survey and cooperating parties. Contains a list of 104 representative publications in the United States relating to ground water.

(e) Local overdevelopment of ground-water supplies, with special reference to conditions at Grand Island, Nebr., by L. K. Wenzel. 1940. pp. i-iii, 233-281, pls. 16-21. Declines in water levels in many parts of the United States have been local and due to overdevelopment. Over large areas declines have been caused chiefly or wholly by deficient rainfall. Water levels will probably recover in years of normal precipitation. At Grand Island, Nebr., local overdevelopment has taken place. The solution to the difficulty lies in redistributing the wells in such a manner that less water will be pumped within the city and more will be pumped from wells outside the city limits.

Contains list of stations in 20 States where data on ground-water observation wells have been recorded (pp. 51-53) and a section on literature relating to ground water (pp. 72-78).

Contains numerous analyses of samples of ground water from San Luis Valley, Colo., middle Rio Grande Valley, N. Mex., and Elephant Butte Project, New Mexico and Texas.

Water levels in the eastern and western parts of the United States generally showed net rises during 1937; in the middle part of the United States they generally showed net declines. Annual changes in water level correspond in general to departures from normal annual precipitation.

Introduction, by O. E. Meinzer.
840. Water levels and artesian pressure in observation wells in the United States in 1937—Continued.

Arkansas, Grand Prairie region, by D. G. Thompson.
California: General summary, by F. C. Ebert; Mokelumne area, by A. M. Piper.
Florida, by V. T. Stringfield.
Hawaii, by H. T. Stearns.
Indiana, by V. T. Stringfield and M. M. Fidlar.
Iowa and Missouri, Tarkio Creek area, by V. C. Fishel, G. A. LeRocque, and G. N. Meanier.
Kansas: south-central Kansas, by S. W. Lohman; Limestone Creek area, by V. C. Fishel and C. H. Hardison.
Maryland, by M. T. Thomson.
Michigan, by V. T. Stringfield, A. W. Bergquist, and O. F. Poindexter.
Montana, Flathead Valley, by R. C. Cady.
Nebraska, by L. K. Wenzel.
New Jersey, by H. C. Barkdale.
New Mexico, by A. M. Morgan.
New York: Central New York, by A. W. Harrington; Long Island by R. M. Leggette; Croton Valley, by C. E. Jacob.
North Carolina: State-wide project, by E. D. Burchard; Deep River area, by V. C. Fishel and H. W. Palm; Elizabeth City area, by A. G. Fielder.
North Dakota, by L. K. Wenzel and F. W. Voedisch.
Oklahoma: Texas County, by S. L. Schoff; Stillwater Creek area, by V. C. Fishel and Verne Alexander.
Oregon, Walla Walla Basin, by A. M. Piper.
South Carolina, Tiger Creek area, by V. C. Fishel and J. M. Terry.
South Dakota, City of Huron, by A. N. Sayre.
Tennessee, Memphis, by D. G. Thompson.
Texas: State-wide project, by S. F. Turner; El Paso County, by A. N. Sayre; Howard County, by Penn Livingston; Elm Creek and Deer Creek areas, by V. C. Fishel and V. L. Austin.
Virginia, by F. H. Klaer, Jr.
Wisconsin: Central and northern Wisconsin, by G. T. Owen; Coor Creek area by V. C. Fishel and C. C. Yonker.

The principal ground-water supplies are in the low central part of the basin, which comprises alluvial plains, playas and lake beds, cinder cones, and lava fields. Both shallow water and deep artesian water occur in the Quaternary valley fill. Water also is present in pervious parts of the bedrock in three temperature ranges—slightly thermal, intermediate, and hot. The slightly thermal water occurs in wells in the north part of the basin; water of intermediate temperature issues from springs and flowing wells in the west half of the basin; and hot water issues from several widely scattered springs. The report contains climatic and surface-water data; records of several hundred wells, including logs of about 20 wells and records of water-level measurements in more than 100 wells during 1928-32; data on about 40 springs; and analyses of about 115 water samples from wells, springs, and streams. Contains a statement on precipitation and tree growth by L. T. Jessup.

Contains introduction and records of water levels or artesian pressure in observation wells during 1938 and earlier records of wells in some areas, as follows:
Introduction, by O. E. Meinzer.
64

PUBLICATIONS RELATING TO GROUND WATER

845. Water levels and artesian pressure in observation wells in the United States in 1938—Continued.

Arkansas, Grand Prairie region, by D. G. Thompson.
California: General summary, by F. C. Ebert; Mokelumne area, by A. M. Piper. Connecticut.
Georgia, by V. T. Stringfield, M. A. Warren, and A. C. Munyan.
Hawaii, by H. T. Stearns.
Indiana, by C. L. McGuinness.
Iowa and Missouri, Tarkio Creek area, by V. C. Fishel, G. N. Meesner, and W. T. Wilson.
Kansas: Ford County, by H. A. Waite; Limestone Creek area, by H. A. Waite and C. W. Stewart; South-central Kansas, by S. W. Lohman.
Louisiana, by J. C. Mahler.
Maryland, by A. H. Horton.
Michigan, by A. W. Bergquist and O. F. Poindexter.
Mississippi, by G. F. Brown.
Montana, Flathead Valley, by R. C. Cady.
Nebraska, by L. K. Wenzel.
New Jersey, by H. C. Barksdale.
New Mexico: Mimbres Valley, by G. C. Taylor, Jr.; Portales Valley, by C. S. Conover; Roswell artesian basin, by A. M. Morgan.
New York: Central New York, by A. W. Harrington; Long Island, by E. J. Shaefer; Croton Valley, by C. E. Jacob.
North Carolina: State-wide project, by E. D. Burchard; Deep-River area, by V. C. Fishel and J. W. Gambrell; Elizabeth City area, by A. G. Fiedler.
North Dakota, by L. K. Wenzel and F. W. Voedisch.
Ohio; Butler and Hamilton Counties, by F. H. Klaer, Jr.
Oklahoma: Panhandle counties, by F. H. Klaer, Jr.; Stillwater Creek area, by V. C. Fishel.
Oregon, by G. A. LaRocque, Jr., and A. M. Piper.
South Carolina, Tiger Creek area, by V. C. Fishel.
South Dakota, City of Huron, by A. N. Sayre.
Tennessee, Memphis, by D. G. Thompson.
Texas: State-wide project, by S. F. Turner; El Paso County, by A. N. Sayre; Elm Creek and Deer Creek areas.
Virginia, by V. C. Fishel.
Washington, Palouse River area, by G. A. LaRocque, Jr., and A. M. Piper.
Wisconsin: Central and northern Wisconsin, by G. T. Owen; Coon Creek area, by V. C. Fishel and C. C. Yonker.

848. Ground water in Keith County, Nebr., by L. K. Wenzel and H. A. Waite, with sections on Platte Valley Public Power and Irrigation District, Sutherland project, by E. E. Halmos, and Central Nebraska Public Power and Irrigation District, Tri-County project, by G. E. Johnson. 1941. iv, 68 pp., 8 pls.

Describes the water-bearing formations of the county, which are chiefly the Quaternary deposits and the Ogallala formation, of Tertiary age. Gives data on the depth to water, the fluctuations of ground-water level, recharge and discharge, and utilization for domestic, stock, municipal, and irrigation supplies. Discusses the chemical character and gives analyses of 29 samples of well water. Describes well construction and includes the records of 349 wells. Contains map showing contours on the water table.

849. Contributions to the hydrology of the United States, 1940. papers by W. N. White, R. C. Cady, Penn Livingson and others.

(a) Geology and ground-water resources of the Lufkin area, Tex., by W. N. White, A. N. Sayre, and J. F. Heuser. 1941. pp. i-iv, 1-58, pls. 1-2. The area is underlain by deposits of Eocene age, of which three formations appear likely to yield large supplies of water to wells under artesian head. The Yegua formation yields water that is moderately mineralized, the Sparta sand yields large supplies
849. Contributions to the hydrology of the United States, 1940—Continued.

of water that is moderately to highly mineralized, and the Carrizo sand yields
large quantities of water of low mineralization.

(b) Effect upon ground-water levels of proposed surface-water storage in Flathead
Lake, Mont., by R. C. Cady. 1941. pp. i-iii, 69-81, pls. 8-10. Treats of an alluvial
plain at the north end of Flathead Lake, where Flathead River enters it. The
ground-water level rises and falls in response to the annual change of stage of the
river and lake. It has been proposed to regulate the level of the lake so that a
higher stage may be maintained for a longer time. If this is done a rise of the
water table will probably take place. Some land will thereby be rendered unfit for
agriculture, but most of the land will be unaffected by the rise.

(c) Geology and ground-water resources of the Balmorhea area, western Texas,
by W. N. White, H. S. Gale, and S. P. Nye. 1941. pp. i-iii, 83-146, pl. 11. Dis-
cusses the geologic formations and the structure and its relation to ground
water. Describes springs, shallow ground water, and the intake and discharge of
ground water. Contains well records and stream and spring discharge measure-
ments used to determine seepage losses. See also Cooperative report 390

(d) Underground leakage from artesian wells in the Las Vegas area, Nev., by
Penn Livingston. 1941. pp. i-iii, 147-173, pls. 12-17. Describes the general geologic
and hydrologic features of the artesian basin, the methods of well construction,
and methods of testing for underground leakage. Discusses the waste of ar-

tesian water. The aggregate leakage is not great enough to be responsible for more than
a small part of the serious decline in water levels and artesian pressures that has
taken place in the basin.

850. Summary of records of surface waters of Texas, 1898-1937, by C. E.
Ellsworth. 1939. vi, 154 pp.

Contains discharge measurements of Barton Springs and Mill Spring at Austin,
Tex. (pp. 113-115), and Phantom Lake, Giffin, and San Solomon Springs at Toyahvale,
Tex., and West Sandia, and East Sandia Springs at Balmorhea, Tex. (p. 141).

852. Surface water supply of the United States, 1938, part 2, South Atlantic
slope and eastern Gulf of Mexico basins; N. C. Grover, chief hydraulic
engineer; D. H. Barber, F. M. Bell, E. D. Burchard, J. J. Dirzulaitis,
A. E. Johnson, and D. S. Wallace, district engineers. 1940. vi, 293
pp., 1 pl.

Contains discharge records of Warm Spring, Va. (p. 21), and Blue (near Orange
City), Kissengen, Crystal, Weekiawachee, Blue (near Dun nellon), and Ichattucknee
Springs, Fla. (pp. 175, 189, 193, 196, 212), and discharge measurements of Lake
Spring, Va., 2.55 sec.-ft., Iris Garden Spring, Fla., 3.9 to 7.5 sec.-ft., and Cave
Spring, Ga., 3.61 sec.-ft. (p. 286).

853. Surface water supply of the United States, 1938, part 3, Ohio River
Basin; N. C. Grover, chief hydraulic engineer; E. D. Burchard, J. J.
Dirzulaitis, H. E. Grosbach, A. W. Harrington, A. H. Horton, William
Kessler, J. W. Mangan, C. E. McCashin, J. H. Morgan, F. M. Veatch,
and C. V. Youngquist, district engineers. 1940. vii, 418 pp., 1 pl.

Contains discharge measurements of Blue Spring, Blowing Spring, and unnamed
spring near Lenoir City, all in Tenn. (p. 412).

855. Surface water supply of the United States, 1938, part 5, Hudson Bay and
upper Mississippi River Basins; N. C. Grover, chief hydraulic engi-
near: C. L. Batchelder, H. C. Beckman, F. C. Christopherson, H. E.
Grosbach, R. G. Kasel, W. A. Lamb, J. H. Morgan, S. B. Soule, and
A. H. Tuttle, district engineers. 1940. ix, 350 pp., 1 pl.

Contains discharge measurements of Stevert, Twin, and Big Springs, Iowa (p. 341).

856. Surface water supply of the United States, 1938, part 6, Missouri River
Basin; N. C. Grover, chief hydraulic engineer; H. C. Beckman, Robert
Follansbee, R. G. Kasel, W. A. Lamb, T. R. Newell, J. B. Spiegel, and
A. H. Tuttle, district engineers. 1940. vii, 419 pp., 1 pl.
856. Surface water supply of the United States, 1938—Continued.
Contains discharge record of Bennett Spring, Mo. (p. 410), and discharge measurements of Beaver Spring, S. Dak. (p. 410), and Wet Glaze and Land Springs, Mo. (p. 412).

Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 66, 68, 69, 73), and discharge measurements of Blue Spring and Roaring River Springs, Mo. (p. 193).

858. Surface water supply of the United States, 1938, part 8, Western Gulf of Mexico basins; N. C. Grover, chief hydraulic engineer; C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1940. vii, 355 pp., 1 pl.
Contains discharge measurements of 8 springs in Texas (pp. 344, 345, 348).

Contains discharge measurement of Abraham Hot Springs, Utah (p. 98).

Contains 4 discharge measurements of Hot Springs, near Santa Barbara, Calif., 0.33 to 0.61 sec.-ft. (p. 367). (Probably include surface water.)

Contains discharge records of 18 springs in the Walla Walla River Basin, Oregon and Washington (pp. 176-178).

Contains discharge records of Hanalei Tunnel, Kauai (p. 17), Pearl Harbor Springs, Oahu (pp. 40-44), and West Makapipi Spring, Maui (p. 68), and discharge measurements of Pearl Harbor Springs (p. 66).

872. Surface water supply of the United States, 1939, part 2, South Atlantic slope and eastern Gulf of Mexico basins; C. G. Paulsen, acting chief hydraulic engineer; D. H. Barber, F. M. Bell, E. D. Fitchard, J. J. Dirzulaitis, A. E. Johnson, and D. S. Wallace, district engineers. 1941. ix, 388 pp., 1 pl.
Contains discharge records of Warm Spring, Va. (p. 19), and B'ye (near Orange City), Kissengen, Crystal, Weekiwachee, Blue (near Dunnellon), and Ichastucknee Springs, Fla. (pp. 184, 201, 207, 210, 224), and discharge measurements of Magnolia Spring, Ga., and Iris Garden Spring, Fla. (p. 349), and Cave Spring, Ga. (p. 359).

Contains discharge record of Bennett Spring at Brice, Mo. (p. 497).
Contains discharge records of Round, Alley, Big, and Greer Springs, Mo. (pp. 82, 84, 85, 96).

878. Surface water supply of the United States, 1939, part 8, Western Gulf of Mexico basins; C. G. Paulsen, acting chief hydraulic engineer; D. H. Barber, C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1941. ix, 393 pp., 1 pi.
Contains 8 discharge measurements of Las Moras Springs, Tex. (p. 321), and of 28 other springs in Texas (pp. 341-345).

Contains 10 discharge measurements of Warm Springs, 1,700 feet downstream from Coolidge Dam, Ariz., made from November 11, 1938, to August 1, 1939, 0.32 to 0.97 sec.-ft. (p. 261).

Contains 8 discharge measurements of Hot Springs, near Santa Barbara, Calif., 0.18 to 0.72 sec.-ft. (p. 349). (Probably include surface water.)

Contains 11 discharge measurements of Maplewood Springs at Puyallup Wash., 26.4 to 39.2 sec.-ft. (p. 188).

Contains discharge records of 18 springs in the Walla Walla River Basin, Oregon and Washington (pp. 181-185).

885. Surface water supply of Hawaii, July 1, 1938, to June 30, 1939; C. G. Paulsen, acting chief hydraulic engineer; M H. Carson, district engineer. 1941. v, 142 pp.
Contains discharge records of Hanalei water tunnel on Kauai (p. 16), Pearl Harbor Springs, Oahu (pp. 39-43), and West Makapipi Spring, Maui (p. 69), and Kalae Spring, Hawaii (p. 124).

Contains records of water levels or artesian pressure in about 5,500 observation wells. Also gives complete records of water levels in some wells not heretofore published. The several reports are as follows:
Arizona, by S. F. Turner.
886. Water levels and artesian pressure in observation wells in the United States in 1939—Continued.

Arkansas, Grand Prairie region, by D. G. Thompson.
California; General summary, by F. C. Ebert; San Joaquin County, by A. M. Piper.
Florida, by W. P. Cross and H. H. Cooper, Jr.
Hawaii, by H. T. Stearns.
Idaho, by A. M. Piper.
Indiana, by C. L. McGuinness.
Iowa, State-wide project, by T. W. Robinson.
Iowa and Missouri, Tarkio Creek area, by V. C. Fishel, G. N. Mesnier, and W. T. Wilson.
Louisiana, by J. C. Maher and T. B. Stanley, Jr.
Maryland, by A. H. Horton.
Massachusetts, by M. L. Brashears, Jr.
Michigan, by C. L. McGuinness, O. F. Poindexter, and Norma Billings.
Mississippi, by G. F. Brown and V. M. Foster.
Montana, Flathead Valley, by R. C. Cady.
Nebraska, by L. K. Wenzel.
New Jersey, by H. C. Barksdale and E. J. Schaefer.
New Mexico: Chaves and Eddy Counties, by A. M. Morgan and O. J. Loeltz; Luna and Roosevelt Counties, by C. S. Conover.
North Carolina: State-wide project, by E. D. Burchard; Deep River area, by V. C. Fishel and J. W. Gambrell; Elizabeth City area, by A. G. Fiefler.
Oklahoma: Panhandle counties, Stillwater Creek area, and Cleveland County, by S. L. Schoff.
Oregon, by A. M. Piper.
South Carolina, Tiger River area, by V. C. Fishel.
South Dakota; City of Huron, by A. N. Sayre; Southeastern part, by T. W. Robinson.
Tennessee, Memphis.
Texas: State-wide project, by R. W. Sundstrom; El Paso County, by A. N. Sayre: Elm Creek and Deer Creek areas, by R. W. Sundstrom.
Virginia: Northern Virginia, by V. C. Fishel; Southeastern Virginia, by D. J. Cederstrom.
Washington, by A. M. Piper.
Wisconsin, Coon Creek area, by V. C. Fishel and C. C. Yonker.

887. Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods, by L. J. Wenzel, with a section on direct laboratory methods and bibliography on permeability and laminar flow, by V. C. Fishel. 1942. vi, 192 pp., 6 pls.
The permeability of a water-bearing material may be determined by laboratory tests or by pumping tests. Describes the principal methods and procedure employed. Gives data on four pumping tests in Platte River Valley, N. D., and one pumping test in Arkansas River Valley, Kans., with computation of the permeability of the water-bearing materials by several formulas.

889. Contributions to the hydrology of the United States, 1941-43.

(a) Water supply of the Dakota sandstone, by L. K. Wenzel and H. H. Sand. 1942. pp. i-iv, 1-81, pls. 1-3. Describes the development of flowing artesian wells in the area and the decline in head caused by the great draft on the supply. This decline has been partly controlled since 1921 by legislation restricting the flow of
889. Contributions to the hydrology of the United States, 1941-48—Continued.

Wells to beneficial use, but the original area of flowing wells has continued to grow smaller, until a balance is being reached between the withdrawal of water from the basin and recharge to it. The report gives tabulated data on 375 wells and 33 analyses of water samples, which show that the water is in general of poor quality. Contains map showing fluoride content of the ground water and map showing location of artesian wells and the original western limit of artesian flow and the limit in 1915, 1923, and 1938.

(b) Water-table fluctuations in the Spokane Valley and contiguous area. Washington-Idaho, by A. M. Piper and G. A. LaRocque, Jr., 1944. pp. i-iii, 89-189, pls. 4-7. Prepared in cooperation with the Washington State Department of Conservation and Development. Describes ground-water features of the valley plains along the Spokane and Little Spokane Rivers in Washington and of Rathdrum Prairie and contiguous extensive plains. Includes and interprets about 12,000 measurements of levels in wells in the period ending with 1938.

(c) Ground-water resources of the Houston district, Texas, by W. N. White, N. A. Rose, and W. F. Guyton. 1944. pp. i-iii, 141-290, pls. 8-11. Prepared in cooperation with the Texas Board of Water Engineers and the city of Houston. Covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region that has been in progress during the past 10 years.

(d) Exploratory water-well drilling in the Houston district, Texas, by N. A. Rose, W. N. White, and Penn Livingston. 1944. pp. i-iii, 291-315, pls. 12-16. Prepared in cooperation with the Texas Board of Water Engineers and the city of Houston. Describes 12 test wells 360 to 2,000 feet deep drilled by the city of Houston and presents information obtained from them on available water supplies.

890. Ground-water resources of the Willamette Valley, Oregon, by A. M. Piper. 1942. v, 194 pp., 10 pls. Describes the area and the bedrock formations, of which only the Yakima basalt yields water copiously over an extensive area. The unconsolidated deposits also yield much water. Contains analyses of 35 samples of well water, many well records, and a geologic map showing ground-water levels.

892. Surface water supply of the United States, 1940, Part 2, South Atlantic slope and eastern Gulf of Mexico basins; G. L. Parker, chief hydraulic engineer, D. H. Barber, F. M. Bell, E. D. Buchard, J. J. Dirzulaitis, A. E. Johnson, and D. S. Wallace, district engineers. 1942. viii, 662 pp., 1 pl. Contains discharge records of Warm Spring at Warm Spring, Va. (p. 26), Blue (near Orange City), Kissengen, Crystal, Weekiwachee, Blue (near Dunnellon), and Ichattuckee Springs, all in Florida (pp. 228, 265, 272, 275, 289), and discharge measurements of De Soto and Cave Springs, Ga. (p. 434).

Contains discharge records of Big Springs and Greer Springs, Mo. (pp. 83, 88), and discharge measurements of Meramec, Keener, Cave, and Kirs Bee Springs, Mo., and Roman Nose Spring, Okla. (p. 343).

898. Surface water supply of the United States, 1940, part 8, western Gulf of Mexico basins; G. L. Parker, chief hydraulic engineer; D. H. Barber, C. E. Ellsworth, Robert Follansbee, and Berkeley Johnson, district engineers. 1942. viii, 426 pp., 1 pl.
Contains discharge measurements of Las Moras Springs (p. 406), Barton Springs (p. 414), Schwandners Spring (p. 415), and Comanche, Mud, and Pinto Springs (p. 417), all in Texas.

Contains 3 discharge measurements of Warm Springs near Coolidge Dam, Ariz. (p. 289).

Contains discharge measurement of Sodhouse Spring near Vogtage, Oreg. (p. 122).

Contains 8 discharge measurements of Hot Springs near Santa Barbara, Calif., 0.17 to 1.1 sec.-ft. (p. 367). (Probably include surface water.)

Contains 9 discharge measurements of Maplewood Springs (Creek) at Puyallup, Wash. (p. 299).

904. Surface water supply of the United States, 1940, part 14, Pacific slope basins in Oregon and lower Columbia River Basin; G. L. Parker, chief hydraulic engineer; G. H. Canfield and F. M. Veatch, district engineers. 1941. v, 208 pp., 1 pl.
Contains discharge records of 18 springs in the Walla Walla River Basin, Oregon and Washington (pp. 199-201), and discharge measurements of Rock Springs, near Lupine, Oreg., 20.4 sec.-ft. (p. 202).

905. Surface water supply of Hawaii, July 1, 1939, to June 30, 1940; G. L. Parker, chief hydraulic engineer; M. H. Carson, district engineer, 1942. iv, 136 pp.
Contains discharge record of Hanalei water tunnel on Kauai (p. 18), Pearl Harbor Springs on Oahu (pp. 43-46), and West Makapipi Spring on Maui (p. 75) and discharge measurements of Papaholoholohola Spring on Kauai (p. 83), Pearl Harbor Springs (p. 58), and Waialala Springs on Molokai (p. 65).

Contains the following:
Indiana, by C. L. McGuinness.
Massachusetts, by M. L. Brashears, Jr.
New Jersey, by E. J. Schaefer.
Ohio: Butler and Hamilton Counties, by F. H. Klaer, Jr.; City of Carton, by A. N. Sayre.

Contains the following:
Alabama, by C. W. Carlston.
District of Columbia, by V. C. Fishel.
Georgia, by M. A. Warren and A. C. Munyan.
Maryland: Montgomery County, by A. H. Horton; Prince Georges County, by V. C. Fishel.
Mississippi, by V. M. Foster and G. F. Brown.
North Carolina: State-wide project, by E. D. Burchard; Forsyth, Guilford, and Randolph Counties, by V. C. Fishel; Elizabeth City area, by A. G. Fiedler.
South Carolina, Greenville and Spartanburg Counties, by V. C. Fishel.
Tennessee, Memphis, by F. H. Klaer, Jr.
Virginia: Northern Virginia, by V. C. Fishel; Southeastern Virginia, by D. J. Cederstrom.

Contains the following:
North Dakota, by W. C. Rasmussen.
South Dakota, by T. W. Robinson.
Nebraska, by L. K. Wenzel.
Minnesota, by A. C. Byers.
Iowa: State-wide project, by T. W. Robinson; Page and Montgomery Counties (Tarkio Creek area), by V. C. Fishel.
Missouri, by V. C. Fishel.
Kansas, by V. C. Fishel.

Contains the following:
Arkansas, Grand Prairie region, by D. G. Thompson and R. G. Kazmann.
Louisiana, by J. C. Maher and T. B. Stanley, Jr.
Oklahoma, by S. L. Schoff.
Texas: State-wide project, by R. W. Sundstrom; El Paso County, by A. N. Sayre.
Contains the following:
Montana, Flathead Valley, by R. C. Cady.
Oregon, by J. E. Upson.
Utah, by H. E. Thomas and W. K. Bach.
Wyoming, by T. W. Robinson.

Contains the following:
California, by A. M. Piper and F. C. Ebert.
Hawaii, by H. T. Stearns.

Describes 66 public water supplies serving 35.2 percent of the population of the State. About half of these supplies are obtained from wells in the Coastal Plain. Shows the quality of the supplies by 157 water analyses. Discusses various mineral substances in solution.

913. Geology and ground-water resources of the Big Sprin area, Tex., by Penn Livingston and R. R. Bennett. 1944. v, 113 pp., 18 pls.
Well water supplies are obtained largely from sinks in the Triassic and Cretaceous rocks, caused by removal of salt from underlying Permian formations. Wells of smaller yield are obtained in less disturbed areas and from Tertiary deposits in certain valleys or basins. The report contains many well logs and records, a table of 82 analyses of ground water, and a map showing the water table.

919. Ground-water resources of the Pau area, Texas, by A. N. Sayre and P. P. Livingston. 1945. vi, 190 pp., 16 pls:
Prepared in cooperation with the El Paso Water Board and the Texas State Board of Water Engineers. Gives a detailed description of the geology and the occurrence of ground water, with a discussion of the quality of water, by M. D. Foster. Treats of the ground-water levels, recharge, and quantity of water available. Presents an extensive discussion of mineral contamination of the city wells. Includes maps showing contours on the water table and many records and logs of wells.

Contains discharge record of Warm Spring at Warm Springs, Va. (p. 20), and Kissengen, Crystal, Weekiwachee, Rainbow, and Ichatucknee Springs, Fla. (pp. 259, 266, 270, 284), and discharge measurements of De Soto Spring, Ga., and Coldwater, Blue, Nottingham Windmill, and Ledbetter Springs, Ala. (p. 426).

927. Surface water supply of the United States, 1941—Continued.
Contains discharge records of Big and Greer Springs, Mo. (pp. 78, 83), and
discharge measurements of Racing, Montague, Alley, Powder Mill, Blue, Tally, and
Camp Beaver Springs, Mo. (pp. 347-348).

929. Surface water supply of the United States, 1941, part 9, Colorado River
basin: G. L. Parker, chief hydraulic engineer; Robert Follansbee, J.
Contains 5 discharge measurements of Warm Springs on Gila River 1,700 feet
below Coolidge Dam, 0.97 to 2.12 sec.-ft. (p. 396).

931. Surface water supply of the United States, 1941, part 11, Pacific slope
basins in California; G. L. Parker, chief hydraulic engineer; H. D.
Contains 14 discharge measurements of Hot Spring near Santa Barbara, Calif.,
0.05 to 12.3 sec.-ft. (p. 409). (Probably include surface water.)

933. Surface water supply of the United States, 1941, part 13, Snake River
basin; G. L. Parker, chief hydraulic engineer; G. H. Canfield, Lynn
Crandall, Robert Follansbee, T. R. Newell, A. B. Purton, and F. M.
Veatch, district engineers. 1942. vi, 246 pp.
Contains 2 discharge measurements of Box Canyon Springs, Idaho, 307 and 496
sec.-ft. (p. 240).

934. Surface water supply of the United States, 1941, part 14, Pacific slope
basins in Oregon, and lower Columbia River basin; G. L. Parker, chief
hydraulic engineer; G. H. Canfield and F. M. Veatch, district engineers. 1941. vi, 229 pp.
Contains discharge records of springs in the Walla Walla River Basin, Oregon
and Washington (pp. 219-220).

935. Surface water supply of Hawaii, July 1, 1940, to June 30, 1941, G. L.
Parker, chief hydraulic engineer; M. H. Carson, district engineer. 1943.
iv, 140 pp.
Contains records of discharge of Pearl Harbor Springs (pp. 42-44, 47, 61), Waiala
Springs (p. 69), and West Makapipi Spring (p. 82).

936. Water levels and artesian pressure in observation wells in the United
States in 1941, part 1, Northeastern States, by O. E. Meinzer, L. K.
Wenzel, and others. 1943. iv, 251 pp.
Contains the following:
Indiana, by C. L. McGuinness.
Massachusetts, by M. L. Brashears, Jr.
Michigan, by C. L. McGuinness.
New Jersey, by H. C. Barksdale and E. J. Schaefer.
New York: Central New York, by A. W. Harrington; Long Island by R. M.
Leggette.
Ohio, by A. N. Sayre and F. H. Klaer, Jr.

937. Water levels and artesian pressure in observation wells in the United
States in 1941, part 2, Southeastern States, by O. E. Meinzer, L. K.
Wenzel, and others. 1943. iv, 119 pp.
Contains the following:
Alabama, by C. W. Carlston.
District of Columbia, by Bernard Fisher.
937. Water levels and artesian pressure in observation wells in the United States in 1941—Continued.

Florida, by W. P. Cross and H. H. Cooper, Jr.
Georgia, by M. A. Warren.
Maryland, by A. H. Horton and Bernard Fisher.
Mississippi, by G. F. Brown.
North Carolina, by A. G. Fiedler, E. D. Burchard, and Bernard Fisher.
South Carolina, by L. K. Wenzel.
Tennessee, by R. G. Kazmann, and F. H. Kaiser, Jr.
Virginia, by Bernard Fisher and D. J. Cederstrom.
West Virginia, by R. L. Nace.

Contains the following:
North Dakota, by W. C. Rasmussen.
South Dakota, by T. W. Robinson.
Nebraska, by H. A. Waite.
Minnesota, by A. C. Byers.
Iowa, by T. W. Robinson.
Missouri, by T. W. Robinson.
Wisconsin, by L. K. Wenzel.

Contains the following:
Arkansas, by R. G. Kazmann.
Louisiana, by J. C. Maher.
Oklahoma, by S. L. Schoff.
Texas, by R. W. Sundstrom and A. N. Sayre.

Contains the following:
Idaho, by G. C. Taylor, Jr.
Montana, by Bernard Fisher.
Oregon, by J. E. Upson.
Utah, by H. E. Thomas.
Wyoming, by F. C. Foley.

Contains the following:
California, by A. M. Piper, F. C. Ebert, and J. F. Poland.
Hawaii, by H. T. Stearns.

 Gives a detailed description of the several geologic formations and their water-bearing character. Includes data on wells and on quality of the water.
Contains the following:
Connecticut, by J. G. He rris.
Indiana, by C. L. McGuinness.
Massachusetts, by M. L. Brashears, Jr.
Michigan, by C. L. McGuinness, Norman Billings, and O. F. Pointdexter.
New Jersey, by E. J. Schaefer and G. D. DeBuchananne.
Ohio, by F. H. Kl ahr, Jr. (Stark County, by A. N. Sayre and F. H. Kl ahr, Jr.).
Pennsylvania, by G. D. DeBuchananne.

Contains the following:
Alabama, by C. W. Carlston.
Georgia, by M. A. Warren.
Maryland, Montgomery County, by A. H. Horton.
Mississippi, by R. W. Adams.
North Carolina, by M. J. Murdoff.
South Carolina: Beaufort and Jasper Counties, by M. A. Warren; Greenville and Spartanburg Counties, by D. M. Ireland.
Tennessee, Memphis area, by R. G. Kasman.
West Virginia, by R. M. Jeffords.

Contains the following:
Illinois, by T. W. Robinson.
Iowa, by T. W. Robinson and W. E. Hale.
Kansas, by S. W. Lohman and others.
Nebraska, by H. A. Waite and G. D. Jones.
North Dakota, by A. L. Greenlee.
South Dakota, by T. W. Robinson and W. E. Hale.
Wisconsin, by L. K. Wenzel and D. M. Ireland.

Contains the following:
Arkansas, Grand Prairie region, by R. G. Kasman.
Louisiana, by J. C. Maher and P. H. Jones.
Oklahoma, by E. W. Reed.
Texas, by R. W. Sundstrom.

Contains the following:
948. Water levels and artesian pressure in observation wells in the United States in 1942—Continued.

Colorado, by S. W. Lohman.
Oregon, by L. C. Huff.
Utah, by F. E. Dennis, G. B. Maxey, and H. R. McDonald.

Arizona: Introduction, by S. E. Turner; Graham County (Safford Valley), by W. T. Stuart and R. L. Cushman; Greenlee County (Duncan Valley), by H. M. Babcock and R. L. Cushman; Maricopa County (Queen Creek area), by E. M. Cushing; Pima County, by H. R. McDonald and M. J. Scott; Pinal County, by L. M. Cushing; Santa Cruz County, by H. R. McDonald and M. J. Scott.

California: River basins in southern California, by F. C. Ebert; Los Angeles and Orange Counties (Long Beach-Santa Ana area), by J. F. Po'and and A. A. Garrett; San Joaquin County (Mokelumne area), by J. W. Robinson; Santa Barbara County, by G. A. LaRoque, Jr., G. F. Worts, Jr., and J. E. Upson.

Hawaii, by H. T. Stearns.

New Mexico: Introduction, by C. V. Theis; Chaves and Eddy Counties (Roswell artesian basin), by P. D. Akin; Hidalgo County (Virden Valley), by H. M. Babcock and R. L. Cushman; Lea County, by C. R. Murray and P. D. Akin; Luna County (Mimbres Valley), by C. R. Murray; Quay County (House area), by C. R. Murray; Pima County, by H. M. Babcock and R. L. Cushman; Roosevelt County (Portales Valley), by C. R. Murray and P. D. Akin; Socorro County (Hot Springs area), by C. R. Murray; Torrance County (Estancia Valley), by C. R. Murray.

Contains discharge measurements of Warm Springs, Va. (p. 25), and Blue, Kissingen, Crystal, Weekiawachee, Rainbow, Ichatucknee, and Wakulla Springs, Fla. (pp. 246, 286, 293, 297, 311).

Contains discharge records of Big Springs and Greer Spring, M. (pp. 82, 87), and discharge measurements of 9 springs in Missouri and Mammoth Spring, Ark. (pp. 335, 336).

Contains discharge records of Barton, San Solomon, Comanche, and Las Moras Springs, Tex. (pp. 128, 269, 270, 271).

Contains discharge measurement of spring near Rio Blanco, Colo. (p. 340), and of Warm Springs near Coolidge Dam, Ariz. (p. 341).
Contains discharge measurements of 18 springs in the Walla Walla River Basin, Oregon and Washington (pp. 221, 222).

Contains discharge records of Pearl Harbor Springs (pp. 40-52, 44, 56) Wailalai Springs (p. 64), and West Makapipi Spring (p. 77).

968. Contributions to the hydrology of the United States, 1944-45.
(c) Ground-water exploration in the Nachitoches area, La., by J. C. Maher and P. H. Jones. (In preparation.) Describes the structural geology of the area and discusses salt-water conditions in sands beneath most of the city. Concludes that abundant supplies of soft water are present in the Sparta sand and Wilcox formation southwest of the city.

969. Geology and ground-water resources of Box Butte County, Nebr., by R. C. Cady and O. J. Scherer. 1946. v, 102 pp., 9 pls.
Gives a detailed description of the geologic formations and their water-bearing character. Includes data on wells and on quality of the water.

Contains discharge measurements of Warm Springs, Va. (p. 24), and Blue Kissingen, Crystal, Weekiwachee, Rainbow, Ichataucknee, and Wakulla Springs, Fla. (pp. 299, 329, 335, 338, 352).

Contains discharge records of Big and Greer Springs, Mo. (pp. 82, 87), and discharge measurements of Cotter Spring, Ark., several springs in Missouri, and Roaring Spring, Tex. (pp. 374, 375, 378, 380).

Contains discharge records of Barton, San Solomon, Comanche, and Las Moras Springs, Tex. (pp. 131, 271, 272, 273).

Contains discharge measurement of warm springs near Coolidge Dam, Ariz. (p. 349).

Contains discharge measurements of 18 springs in the Walla Walla River Basin, Oregon and Washington (pp. 226, 227).
Contains discharge records of Pearl Harbor Springs (pp. 40-45), Waialale Springs (p. 65), and West Makapipi Spring (p. 78).

Contains the following:
Connecticut, by M. L. Brashears, Jr.
Indiana, by F. H. Klaer, Jr., and J. G. Ferris.
Maine, by M. L. Brashears, Jr.
Massachusetts, by M. L. Brashears, Jr.
Michigan, by W. T. Stuart.
New Hampshire, by M. L. Brashears, Jr.
New Jersey, by G. D. DeBuchanan and J. M. Ludlow.
Ohio, by E. J. Schaefer.
Pennsylvania, by J. B. Graham.
Vermont, by M. L. Brashears, Jr.

Contains the following:
Alabama, by C. W. Carlston.
Florida, by H. H. Cooper, Jr., and G. G. Parker.
Georgia, by M. A. Warren and S. M. Herrick.
Mississippi, by R. W. Adams.
North Carolina, by M. J. Mundenoff.
South Carolina, by M. A. Warren.
Tennessee, by R. G. Kazmann.
Virginia, by D. J. Cederstrom and J. M. Berdan.
West Virginia, by R. M. Jeffords.

Contains the following:
Illinois, by H. G. Hershey.
Iowa, by W. E. Hale and D. A. Barton.
Kansas, by S. W. Lohman and others.
Minnesota, by A. L. Greenlee.
Missouri, by W. E. Hale, S. W. Lohman, and D. A. Barton.
Nebraska, by H. A. Waite.
North Dakota, by A. L. Greenlee.
South Dakota, by W. E. Hale.
Wisconsin, by A. L. Greenlee and F. C. Christopherson.

Contains the following:
Arkansas, by R. G. Kazmann.
Louisiana, by P. H. Jones, W. J. Drescher, and M. C. Pole.
Oklahoma, by E. W. Reed and C. L. Jacobsen.
Texas, by R. W. Sundstrom.

Contains the following:
Colorado, by S. W. Lohman.
Idaho, by P. E. Dennis and A. M. Piper.
Montana, by C. D. Bue and A. L. Greenlee.
Oregon, by J. W. Robinson.
Wyoming, by A. M. Morgan.

Contains the following:
Arizona: Program of work, by S. F. Turner; Graham County (Safford Valley), by R. L. Cushman; Greenlee County (Duncan Valley), by R. L. Cushman; Maricopa County (Queen Creek area), by E. M. Cushing and J. M. Hostetter; Pima County, by E. M. Cushing and J. F. Hostetter; Santa Cruz County, by E. M. Cushing and M. J. Scott.
California, by J. F. Poland, J. W. Robinson, H. M. Stafford, J. E. Ut<son, and others.
Hawaii, by H. T. Stearns.
New Mexico: Introduction, by C. R. Murray; Chaves and Eddy Counties (Roswell artesian basin), by P. D. Akin; Grant County, by C. R. Murray; Hidalgo County (Virden Valley), by R. L. Cushman; Lea County, by C. R. Murray and P. D. Akin; Luna County (Mimbres Valley), by C. R. Murray; Quay County (House area), by C. R. Murray and P. D. Akin; Roosevelt County (Portales Valley), by C. R. Murray and P. D. Akin; Sierra County (Hot Springs area), by C. R. Murray; Torrance County (Estancia Valley), by C. R. Murray.

Gives detailed data on ground-water conditions in the two valleys, with records of water levels and of water pumped for irrigation.

ANNUAL REPORTS

The following paper relates to ground water:
(A 5 c) The requisite and qualifying conditions of artesian wells, by T. C. Chamberlin, pp. 125-173, pi. 21. This is the first paper published by the United States Geological Survey on the subject of ground water. It is a clear, accurate, and comprehensive statement of the conditions that produce artesian basins and give rise to flowing wells and is regarded as authoritative on the subject.

The following paper relates to ground water:
(A 9 d) Formation of travertine and siliceous sinter by the vegetation of hot springs, by W. H. Weed, pp. 613-676, pls. 78-87. Describes the Mammoth Hot Springs and other hot springs and geysers of Yellowstone National Park, also hot springs in New Zealand; gives analyses and discusses the chemical character of the waters from these springs and the deposits which they form.

(A 11 II c) Includes a section on artesian irrigation on the Great Plains (pp. 260-278) in which the limitations imposed by quantity, head, and cost are discussed, and irrigation by means of artesian wells in various countries is described. Records are given of wells in Kansas, Minnesota, Montana, Nebraska, North Dakota, South Dakota, and Texas.

The following papers relate in part to ground water:

(A 13 III a) Water supply for irrigation, by F. H. Newell, pp. 7-99, pls. 108-110. Includes a brief discussion on "subsurface waters" (pp. 28-30), giving statistics on artesian wells and irrigation with well water in the United States in 1890, and commenting accurately on quantity, occurrence, and discharge of water in desert valleys.

(A 13 III b) American irrigation engineering, by H. M. Wilson, pp. 100-349, pls. 111-146. Includes a chapter on subsurface or ground waters with special reference to irrigation (pp. 326-346), in which are discussed artesian and pumped wells, underflow dams, infiltration galleries, and subirrigation.

Fourteenth Annual Report (1892-93), Part II, Accompanying papers. 1893. 597 pp., 73 pls.

The following papers relate to ground water:

(A 14 ii a) Potable waters of the eastern United States, by W. J. McGee, pp. 1-47. Discusses cistern water, stream waters, and ground waters, including mineral springs and artesian wells.

Sixteenth Annual Report (1894-95), Part II, Papers of an economic character. 1895. 598 pp., 43 pls.

The following papers relate in part to ground water:

(A 16 ii e) The public lands and their water supply, by F. H. Newell, pp. 457-533, pls. 35-39. Describes the public lands and the streams, wells, and reservoirs as sources of water supply; contains a brief but comprehensive and farsighted discussion of the ground-water resources of the West (pp. 499-502); includes brief notes on ground water in Arizona, California, Colorado, Idaho, Kansas, Nebraska, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Texas, Utah, and Washington (pp. 504-533).

(A 16 ii f) Water resources of a portion of the Great Plains, by Robert Hay, pp. 535-558, pls. 40-42. Describes an indefinite area that lies on both sides of the east boundary of Colorado and extends from the vicinity of Smoky Hill River northward to the North Platte, thus comprising parts of Colorado, Nebraska, and Kansas. Discusses the lakes, streams, and springs of the area, the underflow of the river bottoms, and the water-bearing strata beneath the higher lands, the source, quantity, and rate of percolation of ground water, the wells in the valleys and on the uplands, the unsuccessful wells, artesian conditions, "blowing" wells and the temperatures of the well waters. Describes briefly the topography and geology of the region and the utilization of the water supply.

The following papers relate to ground water:

(A 17 ii f) The underground water of the Arkansas Valley in eastern Colorado, by G. K. Gilbert, pp. 551-601, pls. 56-68. Relates to an indefinite region adjacent to Arkansas River, in southeastern Colorado. Describes the topography, geology, artesian conditions, and intake areas of the region, the water in the Dakota sandstone, in the upland sands, beneath the terraces, and in the dune sands, and the underflow of rivers and creeks. Includes a sketch map showing the depths to artesian water. See also Professional Paper 52.

(A 17 ii g) Preliminary report on artesian waters of a portion of the Dakotas, by N. H. Darton, pp. 603-694, pls. 69-107. Covers the part of South Dakota lying east of the 101st meridian and the part of North Dakota lying east of the 101st meridian and south of the 47th parallel. Gives an outline of the geologic relations, describes the water horizons and the extent of the artesian waters, gives detailed information by counties concerning wells and prospects for obtaining wells, discusses the origin, quantity, head, and quality of the artesian waters and their use for developing power, gives data by counties regarding irrigation with artesian water.
Seventeenth Annual Report (1895-96), Part II—Continued.

and directions as to the construction and management of artesian wells. Includes
maps showing the areas of artesian flow supplied from the Dakota sandstone and
from glacial drift, respectively, the height to which the artesian water will rise,
the depths to principal artesian horizon of the Dakota sandstone, and contours of
the surface of the bedrock.

(A 17 II b) The water resources of Illinois, by Frank Leverett, pp. 695-849, pls.
108-113. Describes the topography, drainage, precipitation, run-off, navigable rivers,
water powers, wells supplying water for cities, villages, and rural districts, wells
in alluvium, glacial drift, and Tertiary and Paleozoic formations, and flowing wells.
Contains tabulated well data and water analyses, and includes maps of Illinois and
eastern Indiana showing the distribution of Pleistocene deposits, the relation of
glaciar drift to ground-water supplies, the elevation of the St. Peter sandstone, and
areas in which there are flowing wells supplied by glacial drift. Also contains a
map of Wisconsin and northern Illinois showing the main intake areas of the
"Potamam" and St. Peter sandstones.

Eighteenth Annual Report (1896-97), Part II, Papers chiefly of a theoretic
nature. 1897. 653 pp., 105 pls.

The following paper relates to ground water:

(A 18 II b) Geology of portions of the Edwards Plateau and Rio Grande Plain
adjacent to Austin and San Antonio, Tex., with special reference to the occurrence
193-322, pls. 21-64. Describes the geography, geology, water-bearing formations,
springs, and flowing and nonflowing wells. Discusses the artesian conditions, the
probable identity of source of artesian and fissure-spring waters, and the quality
of the artesian water. Contains water analyses and includes a map of the vicinity
of Austin showing the relations of the springs and artesian wells to the geology.

Eighteenth Annual Report (1896-97), Part IV, Hydrography. 1897. 756 pp.,
102 pls.

The following papers relate to ground water:

(A 18 IV b) The water resources of Indiana and Ohio, by Frank Leverett, pp.
419-560, pls. 33-37. Describes the drainage systems, the ground-water conditions,
the flowing and nonflowing wells in glacial drift and rock formations, and the
mineral springs. Contains numerous well records and water analyses. Gives data
regarding water supplies for cities and villages derived from surface and underground
sources. Includes maps of Indiana and Ohio showing the Pleistocene deposits,
the older geologic formations, and the relation of ground-water supplies to the
depth of the glacial drift.

(A 18 IV c) New development in well boring and irrigation in eastern South
Dakota, by N. H. Darton, pp. 561-616, pls. 38-47. Describes the progress that was
made in 1896 in drilling wells and in irrigating with artesian waters in Aurora,
Beadle, Bonhomme, Brule, Buffalo, Charles Mix, Davison, Douglas, Hanson, Hutchinson,
Jerauld, Sanborn, Spink, and Yankton Counties, and in areas west of Missouri
River. Discusses the temperature, pressure, and flow of the artesian waters, the
extent of the artesian basin, and the position of the bedrock. Gives analyses of
waters from Missouri River and from artesian wells in the Sanborn basin. Includes
maps showing the rate of increase of temperature in wells with depth, contours of
the bedrock surface, and flow of wells.

Nineteenth Annual Report (1897-98), Part II, Papers chiefly of a theoretic
nature. 1899. 958 pp., 172 pls.

The following papers relate to ground water:

(A 19 II b) Principles and conditions of the movements of ground waters, by
F. H. King, pp. 59-294, pls. 6-17. Discusses the quantity of water stored in soil,
in sandstone, and in other rocks, the depth to which ground water penetrates, the
gravitational, thermal, and capillary movements of ground water, and the con
figuration of the water table. Gives the results of tests made by the author and
by earlier investigators of the flow of air and water through rigid, porous media
through sands, sandstones, and silts. Summarizes these results and draws conclusions regarding the relation of velocity to pressure. Discusses also the influence
of form, diameter, and arrangement of sand grains on velocity, the methods of
determining diameters of sand grains, the growth of rivers, the rate of seepage
into filtration ditches, the interference of wells, and related subjects.
Nineteenth Annual Report (1897-98), Part II—Continued.

(A 19 II c) Theoretical investigation of the motion of ground waters, by C. S. Slichter, pp. 295-384, pl. 17. A mathematical discussion of the laws governing the movements of ground water, the discharge of flowing wells, and the mutual interference of wells. Includes a bibliography on the motion of ground waters and related topics.

Nineteenth Annual Report (1897-98), Part IV, Hydrography. 1898. 814 pp., 118 pls.

The following papers relate to ground water:

(A 19 IV b) The rock waters of Ohio, by Edward Orton, pp. 633-717, pls. 71-73. Describes the principal geologic formations of Ohio and the waters which they yield; gives detailed information regarding the water supplies of many cities and villages; discusses the flowing wells in various localities, including those in the preglacial channels of Allen, Auglaize, and Mercer Counties; and includes a number of water analyses.

(A 19 IV c) Preliminary report on the geology and water resources of Nebraska west of the 103rd meridian, by N. H. Darton, pp. 727-785, pls. 74-118. Describes the general geology of Nebraska, and the topography, geology, and water horizons of the area covered by the reports. Gives information on springs, streams, irrigation, climate, and timber, and of elevations of various points. Includes a general geologic map of Nebraska and more detailed maps of the portion of the State west of the 103rd meridian, showing the geology and the ground-water conditions. Re-printed as Professional Paper 17.

Twenty-first Annual Report (1899-1900), Part IV, Hydrography. 1901. 768 pp., 156 pls.

The following papers relate in part to ground water:

(A 21 IV a) Report of progress of stream measurements for the calendar year 1899, by F. H. Newell, pp. 9-488, pls. 1-57. Includes brief notes on ground-water supplies at Kearney, Nebr. (pp. 215-217), Alamosa, Colo. (p. 265, pl. 4, A), San Pedro Valley, Ariz. (pp. 352-355, pl. 51, A), Mohave Valley, Calif. (p. 472, pl. 52), Los Angeles River Valley, Calif. (p. 474), Lytle Creek Valley, Calif. (pp. 481-482), and Mission Valley, Calif. (p. 486). The plates referred to are photographs of flowing wells or other ground-water features.

(A 21 IV b) Preliminary description of the geology and water resources of the southern half of the Black Hills and adjoining regions in South Dakota and Wyoming, by N. H. Darton, pp. 489-599, pls. 58-112. Covers an area comprising about 5,500 square miles in southwestern South Dakota and the adjoining portion of Wyoming. Describes the topography, geology, water horizons, wells, surface waters, irrigation, soil, mineral resources, climate, and timber of the area. Includes maps showing the geology, the depths to the Dakota sandstone, and other ground-water conditions.

(A 21 IV c) The High Plains and their utilization, by W. D. Johnson, pp. 601-741, pls. 113-156. Describes the area lying in an irregular belt about midway across the long eastward slope of the Great Plains and including parts of Wyoming, Nebraska, Colorado, Kansas, New Mexico, and Texas. Gives a comprehensive description of the physiographic features and Tertiary deposits of the region and a critical discussion of their interpretation. Discusses precipitation, climate, and the use of streams and storm waters for irrigation. Describes the artesian conditions, with special reference to the Meade artesian basin, and explains the principles of artesian and other ground waters. Concluded in the Twenty-second Annual Report, Pt. IV;

Gives a general description of the geography of a region including Texas, Oklahoma, and New Mexico east of the Rio Grande and describes in more detail the geography and geology of the Black and Grand prairies. Discusses the principles governing artesian and other ground waters, the artesian systems of Texas, and the quality of the waters of these systems. Describes the artesian conditions by counties and gives analyses. Includes maps showing the geology, the locations of artesian wells, and the outcrop of, depths to, and areas of artesian flow from the Trinity, Paluxy, and Woodbine formations.
Twenty-second Annual Report (1900-1901), Part IV, Hydrography. 1902. 690 pp., 65 pls.

The following paper relates to ground water:

(A 22 iv c) The High Plains and their utilization, by W. D. Johnsor, pp. 631-669, pls. 51-65. This is the concluding part of the paper on the High Plains and their utilization begun in the Twenty-first Annual Report, Part IV. It discusses the occurrence of water, consolidated and unconsolidated formations, the origin and level of the ground water of the High Plains, the utilization of ground water for stock raising and irrigation, and methods of constructing wells.

MONOGRAPHS

Contains data on thermal and other springs in the area (pp. 47-54), with 3 analyses of hot-spring waters, and map (pl. 8) showing springs of the region.

Contains data on Steamboat Hot Springs, Nev. (p. 338), analysis of the water (p. 347), and mention of other thermal springs (pp. 381, 382, 402).

Contains a chapter (pp. 523-582) on "Artesian and common wells of the Red River Valley," which discusses the sources of artesian water, the fresh waters in the drift sheets, the saline and alkaline waters in the Dakota sandstone, and the use of artesian water for irrigation; contains analyses of waters from wells, streams, and lakes in Red River Valley and the adjoining region; and gives notes on wells in Clay, Kittson, Marshall, Norman, Polk, Traverse, and Wilkin Countiers, in Minnesota; in Cass, Grand Forks, Pembina, Richland, Traill, and Walsh Counties, in North Dakota; and in a part of the area covered by Lake Agassiz, in Manitoba. The monograph includes numerous maps relating to the Pleistocene geology of the region and a map (pl. 37) showing the distribution and depths of artesian wells in glacial drift and bedrock.

Contains a discussion of the water in the Pleistocene deposits (pp. 272, 273) and a section on artesian wells (pp. 401-465). Discusses the history of artesian-water developments in Colorado, the water-bearing horizons, the artesian structure, the quantity of artesian water, and the yield and decrease in yield of flowing wells. Includes three analyses of well waters and maps showing the geology of the region and the original area of artesian flow.

38. The Illinois glacial lobe, by Frank Leverett. 1899. 817 pp., 24 pls.

Includes a chapter (pp. 550-788) on "Wells of Illinois," which contains a general discussion of artesian and other wells, a table of municipal water supplies derived from underground sources, and a detailed description of wells and ground-water conditions in nearly every county in the State. The monograph includes maps showing the geology, the distribution of wells, the intake areas of "Potsdam" and St. Peter sandstones, and the relation of glacial drift to ground-water supplies.

43. The Mesabi iron-bearing district of Minnesota, by C. K. Leith. 1903. 316 pp., 33 pls.

Contains several references to ground water in relation to the ore deposits (pp. 234, 235, 237, 238, 265-272, 274, 277-279).

45. The Vermillion iron-bearing district of Minnesota, by J. M. Clements. 1903. 463 pp., 13 pls.

Contains data on ground water in relation to the ore deposits (p. 227-234).

This comprehensive treatise deals in much detail with the chemical and physical laws governing ground water, especially in the following sections: "Chemical and physical principles controlling the action of ground water" (pp. 65-123), "Circulation and work of ground water" (pp. 123-158), "The belt of weathering" (pp. 411-429), "The belt of cementation" (pp. 566-594), and "Work of aqueous solutions in segregating ores" (pp. 1072-1198).

Explains the secondary concentration of Mesabi iron ore by percolating water (p. 486), gives the reaction of water and ferrous iron to form magnetite, a reversible reaction (p. 527), describes conditions favoring the solution of silica (pp. 538-539), gives analyses of mine waters and discusses chloride waters (pp. 543-544, 579), and describes the deposition of copper by hot solutions (p. 582). States that the present work of meteoric solutions is slight (pp. 585-586).

Contains data on depth to ground water in the Huron-Erie lobe of glacial drift in Indiana (pp. 171-173). States that "underground waters from the glacial formations are generally abundant and are drawn upon not only for farm use but also for public supplies" (p. 522). Gives list of 14 Federal and State publications on the ground-water supplies.

PROFESSIONAL PAPERS

17. Preliminary report on the geology and water resources of Nebraska west of the 103d meridian, by N. H. Darton. 1903. 69 pp., 43 pls.

Reprint of a paper in the Nineteenth Annual Report, Part IV, with slight changes.

Discusses ground water on pages 44-45. A lower as well as upper limit of the water seems to be present.

Covers South Dakota, Nebraska, central and western Kansas, eastern Colorado, and eastern Wyoming. Describes the geography, geology, and water horizons; gives deep-well data and well prospects by counties; also describes other mineral resources. Includes maps showing the geology, locations of deep wells, structure of the Dakota sandstone, depths to this sandstone, head of artesian water, and areas of artesian flow.

38. Economic geology of the Bingham mining district, Utah, by J. M. Boutwell, with a section on areal geology, by Arthur Keith, and an introduction on general geology, by S. F. Emmons. 1905. 413 pp., 49 pls.

Discusses the character of the mine waters and their relation to oxidation of the ores (pp. 213-215).

42. Geology of the Tonopah mining district, Nev., by J. E. Spurr. 1905. 295 pp., 24 pls.

Discusses present subterranean water (pp. 105-108) and the water in its relation to rock alteration and mineralization (pp. 206-262). Describes several thermal springs and discusses the nature of solfataric action (pp. 256-261).

Discusses ground-water conditions in the mines (pp. 22-24, 212, 213, 219-223, 232, 237-238), discusses oxidation by ground water (pp. 98, 197), defines hydrometamorphism (pp. 124-125), and discusses hydrothermal metamorphisms (pp. 164-177). Treats of water in magmas (p. 163) and mentions sulfate waters (pp. 180, 181, 198).

Describes the geologic formations, the source and occurrence of ground water, and the conditions necessary to obtain flowing wells; gives data in regard to the springs, streams, ponds, lakes, artesian and other deep wells, the water table and its fluctuations, blowing wells, and waterworks; contains record of the rate of movement of the ground water and results of sizing and filtration tests; and gives
44. Underground-water resources of Long Island, N. Y.—Continued.
well records and notes concerning representative wells. Includes water analyses and maps showing the geology, contours of the water table, and locations of wells and waterworks.

46. Geology and underground-water resources of northern Louisiana and southern Arkansas, by A. C. Veatch. 1906. 422 pp., 51 pls.
Covers Louisiana north of the 31st parallel, about the southern half of Arkansas, and adjacent areas in Texas, Oklahoma, and Mississippi. Describes the physiography and geology of the region, the principles governing ground waters and their application to this region, the water-bearing formations with reference to springs and to the artesian pressure, quality and availability of the water, the occurrence of mineral waters, the hygienic value of deep-well waters, and methods and costs of constructing wells. Contains a description of the ground-water conditions in each county and tables of well data arranged by counties, with notes giving well sections and water analyses. Contains also a dictionary of altitudes, arranged by counties. Includes maps showing the geology of the region, the structure contours of the Nacatoch and Bingen formations, areas of artesian flow supplied by these formations, depths to the Sabine and Cockfield sands, and areas of artesian flow supplied by these sands.

Describes the geology of the region in detail and contains a brief discussion (pp. 119, 120) of the probable depths and water-bearing conditions of the principal sandstones. Includes a geologic map.

52. Geology and underground waters of the Arkansas Valley in eastern Colorado, by N. H. Darton. 1906. 90 pp., 28 pls.
Describes the geology of the greater part of the drainage basin of Arkansas River in Colorado; the source, depths, head, areas of artesian flow, quantity and quality of the water in the Dakota sandstone; and the occurrence and quality of the waters in the Red Beds, Morrison formation, Laramie and associated formations, later Tertiary deposits, and dune sands. Includes numerous well sections, several water analyses, and maps showing the geology, depths to Dakota sandstone, areas of artesian flow, and areas not underlain by Dakota sandstone. A preliminary report on the same region, by G. K. Gilbert, was published in the Seventeenth Annual Report, part II, 1896, pp. 1-51.

Describes the geography, geology, water-bearing formations, irrigation developments, mineral waters, and other mineral resources of the basin. Includes a geologic map.

54. Geology and gold deposits of the Cripple Creek district, Colo., by Waldemar Lindgren and F. L. Ransome. 1906. 516 pp., 29 pls.
Describes the original water level in the district and its relation to oxidation (p. 197), discusses sulfide enrichment (p. 204) and the composition and source of the vein-forming waters with relation to the ores (pp. 217-231). Chapter 12, Underground water (pp. 233-251), deals with the original water surface, tunnel drainage, and source of the water.

Covers the southwest corner of Wyoming and a small adjacent portion of Utah. Gives a detailed description of the geology and a brief discussion of the water-bearing formations. Includes a geologic map with structure contours.

Discusses ground water in the mines (p. 131).
63. Economic geology of the Georgetown quadrangle (together with the Empire district), Colo., by J. E. Spurr and G. H. Garrey, with general geology, by S. H. Ball. 1908. 422 pp., 87 pls.
Discusses the hot springs at Idaho Springs and Glenwood (pp. 27, 163-168) and gives analyses of 6 spring waters at Idaho Springs (p. 164).

Describes the geology of the sedimentary rocks and discusses their mineral resources, including their water supplies. Contains information concerning the timber, climate, and surface waters available for irrigation and stock raising. Includes maps showing the geology, outcrops of and depths to principal water-bearing formations, and areas of artesian flow.

Describes water supplies from wells and springs (pp. 142-143) and discusses the ore-depositing solutions (pp. 185-186). Chapter 15 (pp. 187-188) treats of underground water and depth of oxidation. Discusses magmatic water (p. 190).

Discusses the water level in several mines and its relation to oxidation, to copper deposits, and to leached zones (pp. 59-61). Mentions the origin of certain hot springs (p. 71), describes the hot springs at Ojo Caliente and their deposits, and gives an analysis of the water (pp. 72-74).

73. The Tertiary gravels of the Sierra Nevada of California, by Waldemar Lindgren. 1911. 226 pp., 28 pls.
Includes contributions by G. K. Gilbert and F. H. Knowlton. Describes faulting at Walley's Hot Springs, Nev., and gives data on the springs, including analysis of the water (p. 189).

74. Geology and ore deposits of the Butte district, Mont., by W. H. Weed. 1912. 262 pp., 41 pls.
Discusses the action of underground water in the formation of the copper ores (pp. 97-104) and gives analyses of 7 mine waters.

75. Geology and ore deposits of the Breckenridge district, Colo., by F. L. Ransome. 1911. 187 pp., 15 pls.
Discusses the relation of the ground-water level to oxidation and enrichment of the lead-zinc ores (pp. 157-168).

77. Geology and ore deposits of the Park City district, Utah, by J. M. Boutwell, with contributions by L. H. Woolsey. 1912. 231 pp., 44 pls.
Describes the immense amount of water encountered in the mines (pp. 24-26) and discusses the hydrothermal metamorphism and the level of ground water (pp. 101-102).

78. Geology and ore deposits of the Philipsburg quadrangle, Mont., by W. H. Emmons and F. C. Calkins. 1913. 271 pp., 17 pls.
Mentions large springs issuing from limestone (p. 22).

80. Geology and ore deposits of the San Francisco and adjacent districts, Utah, by B. S. Butler. 1913. 212 pp., 41 pls.
Describes water supplies from wells and springs (pp. 20-21). Discusses metasomatic alteration of the rocks by hot solutions (pp. 74-90), the origin of the ore-bearing solutions (pp. 135-136), and alteration of the ores with relation to the water level (pp. 137-138).

82. The geology of Long Island, N. Y., by M. L. Fuller. 1914. 231 pp., 27 pls.
Describes the action of springs in producing landslides (pp. 55-56) and gives records of wells (pp. 84, 90, 91, 102, 103, 119, 181, 182, 148, 149, 167, 168).
90. Shorter contributions to general geology, 1914; David White, chief geologist. 1915. 199 pp., 21 pls.
 (h) A deep well at Charleston, S. C., by L. W. Stephenson, with a report on the mineralogy of the water, by Chase Palmer. pp. 69-94. Gives a detailed log of the well and data on fossils from the drillings. Discusses the character and origin of the artesian water at Charleston.

94. Economic geology of Gilpin County and adjacent parts of Clear Creek and Boulder Counties, Colo., by E. S. Bastin and J. M. Hill. 1917. 379 pp., 23 pls.
 Discusses the relation of ground water to ore deposits, especially the relation of the water table to the downward enrichment of gold, silver, and copper ores (pp. 134-152). Contains, however, almost no data regarding ground water.

95. Shorter contributions to general geology, 1915; David White, chief geologist. 1916. 120 pp., 7 pls.
 (a) The composition of muds from Columbus Marsh, Nev., by W. B Hicks, pp. 1-11. Gives data in regard to shallow wells on Columbus Marsh.

 The climate is dry and the few perennial streams end in sinks, but probably there is considerable water beneath Steptoe and other large valleys, which it may prove feasible to develop by wells (pp. 16-17). "The action of the heated aqueous solutions is regarded as the cause of deep-seated metamorphism within the Ely district" (p. 60). Under the temperature of metamorphosing solutions the density curve of water from 0° to 365° C. is shown graphically (p. 63). Discusses the action of penetrating surface water in aiding weathering (pp. 72-76) and the relations of the water table to deposition of chalcocite (p. 90) and to porphyry ore (pp. 114-115).

 States that "oxidation extends several hundred feet below ground-water level" and gives other data on the water table (p. 67). Reports that "Ground-water level is well below the present lowest mine workings" (p. 117).

98. Shorter contributions to general geology, 1916; David White, chief geologist. 1917. vi, 395 pp., 102 pls.
 (a) Evaporation of brine from Searles Lake, Calif., by W. B Hicks, pp. 1-8. Lists 22 wells from which brine samples were collected and gives an average analysis of the brine (p. 2).

104. The genesis of the ores of Tonopah, Nev., by E. S. Bastin and F. B. Laney. 1918. 50 pp., 16 pls.
 In the Tonopah mines the active ground-water circulation is practically confined to zones of fracturing. Hot ascending waters are encountered in a number of deep workings. Discusses deep mine waters (pp. 26-30), ground water (p. 33), the acidity of mine waters (pp. 43-44), and deposition by hot ascending water (p. 47).

 Describes wells and springs in the district and ground water in the mines (pp. 18-19) and alteration due to downward circulating waters (p. 99). Discusses the water table in the mines and gives analyses of one well water and one mine water (pp. 122-125).

111. The ore deposits of Utah, by B. S. Butler, G. F. Loughlin, V. C. Heikes, and others. 1920. 672 pp., 57 pls.
 Discusses concentration by atmospheric waters (pp. 156-158) and ground-water level (pp. 203-204).

 This is a study of the deposition of iron hydroxide in the waters of springs, bogs,
118. Iron-depositing bacteria and their geologic relations—Continued.
mines, and streams by the action of iron-depositing bacteria. Describes several kinds of bacteria and their occurrence in iron-bearing spring, mine, and well waters. Gives an analysis of city well water from Madison, Wis. (p. 14) and of water from a spring west of Lake Kegonsa (p. 16).

“Small springs of potable water are distributed rather evenly over the mountainous portions of the area, there being probably between 40 and 50 perennial springs in the Globe and Ray quadrangles combined” (p. 28). Gives the analysis of a mine water that deposits hydrous copper silicate (p. 141) and discusses relations of the ground water to the surface and to the ore bodies (pp. 147-149) and the relation of enrichment to ground-water surface (p. 176).

Describes water supplies from springs and wells (pp. 67, 68). Much of the well water is highly mineralized and charged with sulfur compounds. Discusses the effect of mineralized waters on the oil (pp. 87, 88).

117. The Sunset-Midway oil field, Calif., Part II, Geochemical relations of the oil, gas, and water, by G. S. Rogers. 1919. 103 pp. 2 pls.
The major part of this paper is devoted to the oil-field waters of the area, their occurrence in relation to the oil-bearing strata and their types, with discussion of the distribution and significance of the substances in solution. Gives analyses of 52 waters in groups showing the different types and their gradation in character.

122. Copper deposits of the Tyrone district, N. Mex., by Sidney Paige. 1922. iv, 55 pp., 10 pls.
Water for domestic use at Tyrone is pumped from prospect drill holes in Quaternary gravel. Water for the concentrator is pumped from the No. 2 Chemung shaft (p. 4). Discusses the composition of solutions, alteration by ground water, and changes in level of ground water (pp. 27-29, 32, 33). Diagrams show the relation of ground water to chalcoecite enrichment (pp. 30, 31). Describes leaching of the copper ore (pp. 39, 40).

A broad discussion of geochemistry, with a description of the role of water in igneous rocks (pp. 2, 5, and 13-16). Gives the average amounts of water in sedimentary rocks (p. 29) and in the lithosphere (pp. 32, 33). “Hydrogen oxide (water) occurs as liquid inclusions in the minerals of deep-seated igneous rocks and is an abundant component of volcanic emanations. It is a constituent of rocks in the deeper parts of the earth’s crust” (p. 78).

128. Shorter contributions to general geology, 1920; David White, chief geologist. 1921. iii, 146 pp., 22 pls.
(d) The use of geology on the western front, by A. H. Brooks, pp. 85-124, pls. 15-17. Explains the desirability of using geologists to locate wells (pp. 87, 115-117), discusses the importance of ground water as a controlling factor in the construction of trenches and “dugouts” and in military mining (pp. 102-109), and notes the use of water witching by German troops (p. 87).

139. Geology and ore deposits of the Ducktown mining district, Tenn., by W. H. Emmons and F. B. Laney, with the active collaboration of Arthur Keith. 1926. vi, 114 pp., 43 pls.
Discusses the permeability of the area, present circulation of water, the water table, composition of the ground water as related to the water table, and composition of the mine waters (pp. 66-71).

States that there is no evidence of leaching of copper near the surface and, that
144. The copper deposits of Michigan—Continued.

though the deep salt waters contain copper, "no evidence of enrichment at the zone of change from fresh to salt water or to calcium chloride water has been found in any of the mines" (pp. 113, 114). Discusses deposition by descending solutions and by ascending solutions (pp. 120-141). Gives analyses of five mine waters (p. 122).

Describes springs and wells in the area (pp. 9, 10) and discusses relations of water to gas and oil (pp. 81, 82).

147. Shorter contributions to general geology, 1926; W. C. Mendenhall, chief geologist. 1927. ii, 48 pp., 17 pls.

(b) The Montana earthquake of June 27, 1925, by J. T. Paradee, pp. 7-28, pls. 3-13. Describes the changes in springs and wells caused by the earthquake (pp. 10, 11).

148. Geology and ore deposits of the Leadville mining district, Colo., by S. F. Emmons, J. D. Irving, and G. F. Loughlin. 1927. xvi, 368 pp., 70 pls.

Discusses the occurrence of ground water in fault blocks (p. 65), the relation of the depth of oxidation of the zinc ores to the ground-water level (p. 245, 246, 256-258), the composition of descending waters (p. 260), and the alteration of ores by descending waters (pp. 261-271).

152. Geography, geology, and mineral resources of part of southeastern Idaho, by G. R. Mansfield, with descriptions of Carboniferous and Triassic fossils, by G. H. Girty. 1927. xiii, 453 pp., 70 pls.

Describes the distribution and availability of ground-water supplies, with records of 18 wells (pp. 313-315). Discusses normal, mineralized, and thermal springs and gives analyses of their waters (pp. 316-322) and the utilization of springs and wells for domestic supplies (p. 322).

Mentions the association of thermal springs with the frontal fault of the Wasatch Range and with four fault-block spurs (pp. 32, 33) and discusses the temperature of the spring waters and the effect on the temperature of dilution with cool ground water.

154. Shorter contributions to general geology, 1928; W. C. Mendenhall, chief geologist. 1929. iv, 299 pp., 76 pls.

(a) Moraines and shore lines of the Lake Superior Basin, by Frank Leverett, pp. 1-72, pls. 1-8. Briefly describes large springs on the west side of Indiar Lake (pp. 16, 18).

"The quantity of water yielded by the mines decreases markedly with depth. Some mines have become completely dry; in others water in small quantities persists to the deepest levels attained. . . . The experience in deep mining on the Mother Lode coincides with experience elsewhere, namely, that mines become drier in depth" (p. 24).

Describes springs and wells in the quadrangle and gives a list of 37 wells and an analysis of water from Cottonwood Spring (pp. 5-7). Discusses the occurrence of water in some of the mines (p. 8).

163. The significance of geologic conditions in Naval Petroleum Reserve No. 3, Wyo., by W. T. Thom, Jr., and E. M. Speiker, with a section on the
163. The significance of geologic conditions in Naval Petroleum Reserve No. 3, Wyo.—Continued.

waters of the Salt Creek-Teapot Dome uplift, by Herman Stabler. 1931. v, 64 pp., 30 pls.

Describes the character and distribution of waters in Teapot and Salt Creek oil fields (pp. 21-23). Discusses the quality of the ground waters from the several formations and shows analyses graphically (pp. 39-54).

164. The Kaiparowits region, a geographic and geologic reconnaissance of parts of Utah and Arizona, by H. E. Gregory and R. C. Moore. 1931. vii, 161 pp., 31 pls.

Enumerates the geologic horizons from which most of the seeps and springs issue (p. 127). Shows the principal springs on the topographic and geologic maps (pls. 1, 2). No springs are shown in the Arizona portion of these maps.

169. Geology and ore deposits of the Bonanza mining district, Colo., by W. S. Burbank, with a section on history and production by C. W. Henderson. 1932. ix, 166 pp., 35 pls.

States that "the ground water in the southern part of the district is relatively deep and the ore-bearing veins show a much more pronounced and deeper oxidation than in the northern part" (p. 3). Discusses hydrothermal metamorphism of the wall rocks (pp. 71-80) and the nature of the mineralizing solutions (pp. 80-85).

170. Shorter contributions to general geology, 1931; T. W. Stanton, chief geologist. 1932. ii, 69 pp., 23 pls.

(e) The geologic importance of the lime-secreting algae, with a description of a new travertine-forming organism, by M. A. Howe, pp. 57-69, pls. 19-23. "The agency of microscopic algae, especially blue-green algae, in depositing lime in calcareous hot springs and calcareous streams has long been recognized" (p. 57). "The existence of several kinds of blue-green algae in hot springs shows their adaptation to the higher temperatures that doubtless prevailed in the earlier stages of the development of life on the earth" (p. 59). The paper cites examples chiefly of marine reef-forming "nullipores," and of both marine and fresh-water limestones deposited by algae.

171. Geology and ore deposits of the Pioche district, Nev., by L. G. Westgate and Adolph Knopf. 1932. viii, 79 pp., 8 pls.

Describes several springs (p. 4) and discusses the relation of oxidation to the ground-water level (p. 46).

176. Geology and ore deposits of the Breckenridge mining district, Colo., by T. S. Lovering. 1934. vi, 64 pp., 15 pls.

Under "Supergene enrichment" discusses the leaching of zinc and lead ores by ground water and the redeposition at lower levels (pp. 28-32).

Discusses relation of the water table to superficial alteration (p. 10).

178. Geology and ore deposits of the Montezuma quadrangle, Colo., by T. S. Lovering. 1935. ix, 119 pp., 40 pls.

Under "Hypogene alteration" discusses the action of watery solutions at high temperatures (pp. 42, 48).

Describes the water supply of the Marathon Basin (p. 142).

188. The San Juan country, a geographic and geologic reconnaissance of southeastern Utah, by H. E. Gregory, with contributions by M. R. Thorpe. 1938. 123 pp., 26 pls.

Mentions ground water as an agent in producing rock shelters and other recesses (p. 96) and as a factor in causing landslides (p. 103). Describes conditions favorable to springs and some of the principal springs (p. 116) and flowing artesian wells near Bluff and other wells (pp. 116, 117).
194. The gold quartz veins of Grass Valley, California, by W. D. Johnston, Jr., 1940. 101 pp., 39 pls.
Discusses the quantity and quality of mine waters and gives analyses of four mine waters (pp. 23-25).

Describes caves in carbonate rocks and their relation to the ground-water level (pp. 38, 39).

BULLETINS

32. Lists and analyses of the mineral springs of the United States (a preliminary study) by A. C. Peale. 1886. 235 pp.
Defines mineral waters, gives lists of springs by States, and contains analyses of spring waters.

Describes methods used in analyzing natural waters and contains analyses of 43 geyser, spring, and surface waters in Yellowstone National Park.

Describes the main geologic features of a region lying approximately between the 119th and 121st meridians and between the 46th and 48th parallels. Gives conclusions regarding prospects for artesian wells and includes a sketch geologic map. This bulletin is largely superseded by Water-Supply Papers 55, 118, and 316.

Gives the discharge of Barton Spring, near Austin, Tex., as 17 second-feet on November 13, 1894 (p. 92). Contains records of wells collected by Robert Hay in Nebraska, Colorado, and Kansas (pp. 92-126).

Describes briefly the geologic structure and the ground-water conditions in the Atlantic Coastal Plain. Covers the Coastal Plain areas of New York, New Jersey, Delaware, Maryland, District of Columbia, Virginia, North Carolina, South Carolina, and eastern Georgia, giving for each of these States a discussion of the geologic relations and well prospects, tabulated data regarding deep wells, and notes giving well sections, water analyses, and other detailed information not found in the tables. Includes maps and sections showing ground-water conditions.

Gives descriptions and discharge records for the following springs in Texas: San Marcos Spring, San Antonio and San Pedro springs, Las Moras Spring, San Felipe Springs, and Barton Springs (pp. 83-86). Contains data on seepage and evaporation in Nebraska and Kansas (pp. 347-350).

Contains brief notes on artesian wells in the vicinities of Eagle Pass and Carrizo springs. See especially pp. 25, 50-52.

Gives a general sketch of the geography and geology of an indefinite region in Idaho adjacent to Snake River. Discusses artesian and other ground-water conditions and includes a meager amount of well data.

Includes a brief account (pp. 84-88) of the Division of Hydrology (ground water) and of the investigations relating to ground water made by the United States Geological Survey prior to 1904.

Describes the geology and contains a geologic map of the quadrangle. Discusses briefly the water-bearing formations and the quality of their waters (p. 77).

Covers an indefinite region that lies partly in the Great Basin and partly in the basin of Deschutes River, and includes portions of Malheur, Farney, and Crook Counties. Describes the geography and geology of the region, gives meager data regarding the surface and ground waters, discusses briefly the artesian conditions in the Deschutes Basin, and makes suggestion concerning records of artesian wells.

Discusses the importance of accurate well records to drillers, to owners of oil, gas, and water wells, and to geologists. Describes methods of work. Gives tabulated records of wells in 89 States and Territories, and detailed records of wells in California, Colorado, Illinois, Iowa, Kansas, Mississippi, Missouri, New Jersey, New York, Ohio, Pennsylvania, Texas, and West Virginia.

265. Geology of the Boulder district, Colo., by N. M. Fenneman. 1905. 101 pp., 5 pls.

Describes the geology of a rectangular area 16 miles north and south by 9 miles east and west, in the southwestern part of which is situated the city of Boulder. Discusses briefly (pp. 67-69) the flowing wells and water-bearing formations, including the Dakota sandstone. Contains a geologic map of the area.

282. Oil fields of the Texas-Louisiana Gulf Coastal Plain, by N. M. Fenneman. 1906. 146 pp., 11 pls.

Includes well records and discussions of phenomena related to wells, drilling methods, and movements, temperatures, and salinity of ground waters.

The following paper contains information on ground water:

(f) Coal and oil in southern Uinta County, Wyo., by A. C. Veatch, pp. 331-353, pls. 10-12. Describes the geology of an area that occupies Tps. 12 to 23 N., Rs. 115 to 121 W., inclusive, in Uinta County, Wyo. Contains a geologic map and a brief statement in regard to artesian conditions and prospects (p. 353). This area is covered more fully in Professional Paper 56.

Discusses relation of the ores to the water table (pp. 69-70, 144) and concentration of ore by descending water (pp. 138-141).

Gives an account of progress in the collection of well records and samples. Contains tabulated records of wells in 48 States and Territories and detailed records of wells in Alabama, Arizona, Arkansas, California, Colorado, Delaware, Florida, Georgia, Illinois, Indiana, Indian Territory, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Minnesota, Mississippi, Missouri, Montana, New Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, Texas, Utah, Washington, West Virginia, and Wisconsin.
300. Economic geology of the Amity quadrangle, eastern Washington County, Pa., by F. G. Clapp. 1907. 145 pp., 8 pls.
Contains a description of the geology of the quadrangle and a map showing outcrops and structure. Includes brief statements on water supplies and water-bearing formations (pp. 130-134). The quadrangle is covered more fully in Geologic Folio 144, which also contains information on ground water.

303. Preliminary account of Goldfield, Bullfrog, and other mining districts in southern Nevada, by F. L. Ransome, with notes on the Manhattan district, by G. H. Garrey and W. H. Emmons. 1907. 98 pp., 5 pls.
Gives data on the water supply of Goldfield (p. 24) and of Searchlight (p. 75).

308. A geologic reconnaissance in southwestern Nevada and eastern California, by S. H. Ball. 1907. 218 pp., 3 pls.
Contains a brief section on "Hydrology," which discusses streams, springs, tanks, wells, and signs of water (pp. 18-23). Contains descriptions of specific areas which give detailed information regarding springs, wells, and other watering places. Includes a geologic map that also shows watering places and connecting roads.

319. Summary of the controlling factors of artesian flows, by Myron L. Fuller. 1908. 44 pp., 7 pls.
Describes underground reservoirs, the sources of ground water, the confining agents, the primary and modifying factors of artesian circulation, the essential and modifying factors of artesian flow, and typical artesian systems.

Superseded by Bulletin 770.

350. Geology of the Rangely oil district, Rio Blanco County, Colo., with a section on the water supply, by H. S. Gale. 1908. 61 pp., 4 pls.
Describes the geology and contains a geologic map of an area including approximately Tps. 1, 2, and 3 N., Rs. 101, 102, and 103 W., 6th principal meridian. Discusses the water supplies in this area, including artesian wells (p. 58).

Describes the geography and geology and contains a geologic sketch map of western Arizona north of longitude 33° 30', including the valley of Colorado River and Hualpai, Big Sandy, Detrital-Sacramento, Williams, and McMullen Valleys. Contains a section on water supplies, which includes well data and discussion of ground-water prospects.

Describes the geology and contains a geologic map. Includes a section on ground water (pp. 67-78), in which are given well data and 6 water analyses. A part of the area is covered by Geologic Folio 173, which also contains information on ground water.

Describes the apparatus and methods used and presents and discusses the results of the experiments.

Describes the geology and contains a geologic map of the region. Includes data in regard to wells at 24 stations on the Atchison, Topeka & Santa Fe R. (pp. 75-81).

438. Geology and mineral resources of the St. Louis quadrangle, Mo.-Ill., by N. M. Fenneman. 1911. 73 pp., 6 pls.
Describes the geology and contains a geologic map of a rectangular area 31 miles
438. Geology and mineral resources of the St. Louis quadrangle, Mo.-Ill.—Continued.

East and west by 17 miles north and south, including the city of St. Louis. Discusses the water resources, including springs, flowing wells, and deep wells ending in Carboniferous and Ordovician formations (pp. 65-69). The part of this area that lies in Illinois is also covered by Bulletin 5 of the Illinois Geographical Survey.

447. Mineral resources of Johnstown, Pa., and vicinity, by W. C. Phalen and Lawrence Martin. 1911. 142 pp., 7 pls.

Describes the geology and contains a map of the Johnstown quadrangle showing structure contours. Includes a very brief description of water supplies and ground-water conditions (pp. 128-127), which is reprinted in Geologic Folio 174, covering the same quadrangle.

Issued also in separate chapters. The following paper contains information on ground water:

(a) The Powder River oil field, Wyo., by C. H. Wegemann, pp. 56-75. Describes the geology and contains a geologic map of a quadrangular area which includes Tps. 40-42 N., R. 81 W., and portions of adjoining townships. Contains brief notes on water supplies, including water-bearing formations (pp. 58, 59).

479. The geochemical interpretation of water analyses, by Chase Palmer. 1911. 31 pp.

Discusses the expression of chemical analyses and the chemical character and properties of natural waters. Gives a classification of waters based on property values and reacting values, and discusses the character of the waters of certain rivers as interpreted from the analyses. Discusses also the relation of the properties of water to geologic formations, silica in river water, and the character of the water of Mississippi River, the Great Lakes, and St. Lawrence River as indicated by chemical analyses.

Superseded by Bulletin 770.

506. Geology and mineral resources of the Peoria quadrangle, Ill., by J. A. Udden. 1912. 103 pp., 9 pls.

Describes the physiography and geology of a 15-minute quadrangle that includes the cities of Peoria and Pekin. Contains detailed well records and a section on water resources, in which are discussed the water-bearing formations, and the quality, quantity, head, temperature, and use of the artesian waters (pp. 90-97). Includes 8 chemical analyses and maps showing the geology and locations of artesian wells.

Contains a section on underground circulation (pp. 28-31), in which are discussed the "vadose" and deeper circulation and the region of nearly stagnant waters. Contains also 37 analyses of mine waters with discussion (pp. 60-74) and a discussion of chemical changes in descending sulfate waters (pp. 89-91) and related subjects. See also Bulletin 625.

580. Contributions to economic geology, 1911, Part I, Metal and nonmetals except fuels; Waldemar Lindgren, chief geologist. 1913. 400 pp., 7 pls.

The following papers relate in part to ground water:

(a) The occurrence of potash salts in the bitterns of the eastern United States, by W. C. Phalen, pp. 818-829. Includes brief statements in regard to the stratigraphic occurrence and origin of salt water in New York, Michigan, Ohio, West Virginia, Kansas, and Louisiana; also contains analyses.

(b) Salines in Silver Peak Marsh, Nev., by R. B. Dole, pp. 830-845. Includes records of 14 borings, 8 to 55 feet deep, a description of methods used in boring, and analyses of water from these holes and from wells and springs in the vicinity.

The following papers contain information on ground water:

(c) Geology and petroleum resources of the De Beque oil field, Colo., by E. G. Woodruff, pp. 54-68, pl. 6. Contains a description of the geology and a geologic map of a square area covering Tps. 7 and 8 S., Rs. 97 and 98 W., in the vicinity of De Beque, in Mesa and Garfield Counties. Includes a brief statement on artesian water in the area (p. 61).

(d) Geologic structure of the Punxsutawney, Curwensville, Houtzdale, Barnesboro, and Patton quadrangles, central Pennsylvania, by G. H. Ashley and M. E. Campbell, pp. 69-89, pls. 7-8. Discusses the geologic structure of the five quadrangles named and includes a map showing structure contours. It contains a brief statement in regard to shallow and deep wells and artesian prospects (pp. 88-89). The ground water in the Barnesboro and Patton quadrangles is also briefly described in Geologic Folio 189, and the ground water in these two quadrangles and in the Curwensville quadrangle is briefly described in Water Supply Paper 110.

540. Contributions to economic geology, 1912, Part I, Metals and nonmetals except fuels; David White, chief geologist. 1914. 563 pp., 11 pls.

The following papers contain information on ground water:

(n) Prospecting for potash in Death Valley, Calif., by H. S. Gale, pp. 407-415. Includes detailed sections of five wells, 30 to 70 feet deep, with data in regard to their waters, practically all of which are salty, as is shown by the analyses given.

Potash tests at Columbus Marsh, Nev., by H. S. Gale, pp. 422-427. Includes detailed sections of two wells, 32 and 82 feet deep, respectively, with data in regard to their waters, some of which are not salty.

541. Contributions to economic geology, 1912, Part II, Mineral fuels; M. R. Campbell, geologist in charge. 1914. 532 pp., 29 pls.

The following paper contains information on ground water:

(d) Oil and gas near Green River, Grand County, Utah, by C. T. Lupton, pp. 115-133, pl. 6. Describes the geology and contains a geologic map of an area of about 300 square miles southeast of the town of Green River. Contains reaper data in regard to wells, water supplies, and artesian conditions (pp. 117-123).

543. Geology and geography of a portion of Lincoln County, Wyo., by A. R. Schultz. 1914. 141 pp., 11 pls.

Describes the geology and contains a geologic map of an area in the central part of Lincoln County, between Green River and the Salt River Range (Tps. 22-29 N., Rs. 113-117 W.). Includes a brief discussion of ground water and artesian prospects (pp. 134, 135).

Covers an area lying west of Missouri River, north of Cheyenne River, and south of Cannonball River, and extending westward to 102d meridian. Describes the geology and contains a geologic map of the area. Includes a brief discussion of the water in the Dakota and Fox Hills sandstones and in other formations (pp. 24-25).

Includes a brief statement in regard to water supplies from both surface and underground sources (pp. 364-367).

606. Origin of the zinc and lead deposits of the Joplin region, Missouri, Kansas, and Oklahoma, by C. E. Siebenthal. 1915. 283 pp., 11 pls.

A theoretical treatise which relates to underground circulation in the Ozark region. Discusses artesian circulation and flowing wells (pp. 33-37), geochemical interpretation of water analyses, and acidity, neutrality, and alkalinity of natural waters.
606. Origin of the zinc and lead deposits of the Joplin region, Missouri, Kansas, and Oklahoma—Continued.

(pp. 81-88). Reviews, discusses, and classifies analyses of zinc-bearing and related waters from various parts of the United States and from foreign countries (pp. 88-155).

Superseded by Bulletin 770.

618. Geology and underground water of Luna County, N. Mex., by N. H. Darnton. 1916. 188 pp., 13 pls.

Describes the geography and geology, the mineral resources, the water supplies from streams, springs, and wells, and the irrigation development from surface and ground waters. Discusses the source, quantity, and quality of the ground waters and the extent of the water-bearing strata and gives well data by townships. Includes maps showing the geology, the contours of the water table, and the depths to ground water.

The following chapters contain information on ground water:

(a) A reconnaissance in Palo Pinto County, Tex., with special reference to oil and gas, by C. H. Wegemann, pp. 51-59. Gives a brief description of the geology of the county with a note on the prospects of obtaining water of good quality from deep sources.

(b) Oil and gas near Basin, Big Horn County, Wyo., by C. T. Lupton, pp. 157-190, pl. 17. Describes the geology and contains a geologic map of parts of Tps. 50-52 N., Rs. 92 and 93 W. Includes a brief description of the water supplies and of the water-bearing sand and shows a table giving percentages of oil and gas wells that obtained water in each of these sand strata (pp. 164-166). It also includes well records that contain some data in regard to water (pp. 186-189).

625. The enrichment of ore deposits, by W. H. Emmons. 1917. 530 pp., 7 pls.

This paper is a revision of Bulletin 529 with a somewhat enlarged scope.

Describes the geology and contains maps of Harding and Perkins Counties. Describes the drainage and water supply and contains a small amount of data on deep wells not given in Water-Supply Paper 227.

Describes the geology and contains a geologic map of an area lying between the Wasatch Plateau and the San Rafael Swell, in east-central Utah, and extending from the vicinity of Mounds, on the Denver & Rio Grande Railroad, southwest about 80 miles. Describes the drainage and water resources, including the prospects of finding water in the Dakota sandstone and underlying McElmoe formation.

The following chapters contain information on ground water:

(b) The oil and gas geology of the Foraker quadrangle, Osage County, Okla., by K. C. Heald, pp. 17-48, pls. 2-3. Contains, on page 20, a brief statement in regard to ground-water conditions.

(f) Anticlines in central Wyoming, by C. J. Hares, pp. 223-280, pl. 23. Covers nearly 5,000 square miles in Natrona and Fremont Counties, west of Casper and southeast of Lander. Contains (pp. 235-236) a brief discussion of the water supply, including statements regarding various hot springs, springs of large size, sulfur springs, and other mineral springs, also a statement regarding water-bearing formations and artesian prospects. Includes a geologic map.
BULLETINS

Gives detailed data regarding water supplies, including ground water, for the following townships: Tps. 5-8 N., R. 24 E.; Tps. 5-8 N., R. 25 E.; Tps. 5-9 N., R. 26 E.; Tps. 5-9 N., R. 27 E.; Tps. 5-9 N., R. 30 E.; Tps. 5-9 N., R. 31 E.; T. 8 N., R. 22 E. See pages 16, 17, 65-214.

Discusses water-bearing sands and dry sands in oil fields, the origin of salt water, and the relation of salt water to the occurrence of oil and to geologic structure in oil fields. Classifies the oil-field waters and gives the distribution of their principal constituents. Discusses the chemical relation between water and the hydrocarbons and the significance of water analyses in prospecting for oil. Gives 80 analyses of ground waters in the Coalinga, Kern River, Lost Hills, McKittrick, Midway, and Sunset oil fields, Calif.

Covers a large region in northwestern Wyoming, west of the Big Horn Mountains. Gives detailed data regarding surface waters, springs, wells, and ground-water prospects in the numerous anticlinal areas described in the report. See pages 15, 16, 56-185. Includes a geologic map and section.

658. Geologic structure in the Cushing oil and gas field, Okla., and its relation to the oil, gas, and water, by C. H. Beal. 1917. 64 pp., 11 pls.

Discusses (pp. 39, 44-61) the relation of ground water to bodies of oil and gas and to oil-bearing and gas-bearing structures. Distinguishes "top water," "bottom water," and "edge water." Discusses the surfaces that form the contacts between bodies of ground water and bodies of oil or gas and differentiates these from ordinary water tables. Includes diagram showing movement of water into oil wells. Incidentally gives ground-water data of local value.

661. Contributions to economic geology (short papers and preliminary reports), 1917, Part II, Mineral fuels; David White, G. H. Aschley, and M. R. Campbell, geologists in charge. 1918. viii 328 pp., 26 pls.

(a) The Cleveland gas field, Cuyahoga County, Ohio, with a study of rock pressure, by G. S. Rogers, pp. 1-68, pls. 1-2. Some well logs show the occurrence of water (pp. 5-8). Briefly describes occurrence of salt water in the Niagara formation (p. 19). Discusses apparent absence of water in the Clinton sand (p. 19). Includes map showing structure on top of Clinton sand.

(b) Structure of the northern part of the Bristow quadrangle, Creek County, Okla., with reference to petroleum and natural gas, by A. E. Fath, pp. 93-99, pls. 2-4. Some well logs show the occurrence of water (pp. 93-99). Includes topographic map showing structure at base of the Tiger Creek sandstone.

(d) The Irvine oil field, Estill County, Ky., by E. W. Shaw, pp. 141-191, pls. 11-15. Discusses on pp. 176-179 the relation of ground water to the oil in the field, the character of so-called "dry sands," the mineral composition of the water, and the relation of mineral composition to the origin of the water and oil. Includes four analyses of water from the Estill Springs.

(f) The Corsicana oil and gas field, Tex., by G. C. Matson and O. P. Hopkins, pp. 211-252, pls. 17-21. Describes occurrence of water in some of the different formations (pp. 216-236) and water conditions in the field (pp. 241-243, 251, 252). Gives analyses of water from the Corsicana and Woodbine sands (p. 242). Includes map showing structure of parts of the field.

(g) The Palestine salt dome, Anderson County, Tex., pp. 253-270, pls. 22-23; and The Brenham salt dome, Washington and Austin Counties, Tex., pp. 271-280, pls. 24-25, by O. B. Hopkins. Mentions occurrence of water in an oil well in the Wells Creek district and describes sulfur springs in the Posey saline district (p. 270). Some of the well records mention occurrence of water (pp. 274-277, pl. 25).
661. Contributions to economic geology, 1917, Part II—Continued

(h) Oil and gas possibilities of the Hatchetigbee anticline, Ala., by O. B. Hopkins, pp. 281-313, pls. 26-29. Some of the well records mention occurrence of water (p. 310). Describes salt water in the area (pp. 310, 311). Includes geologic map and structure sections and graphic well logs.

(f) Gold placers of the Anvik-Andreafski region, by G. L. Harrington, pp. 333-349, pl. 16. Describes carbonated springs near Willow Creek landing (pp. 347, 348). See also Bulletin 683.

Discusses the geology and occurrence of salt deposits in the United States. Contains numerous logs of test wells and other wells drilled into salt-bearing formations. Includes several geologic maps.

670. The Salt Creek oil field, Wyo., by C. H. Wegemann. 1917. 52 pp., 7 pls.

Describes briefly the water supply of the area (pp. 11, 12), water sands in the Steele shale (pp. 20, 33, 34), and water in the oil sands with analyses of 9 water samples (pp. 42-45). Includes map showing structure on top of Wall Creek and Shannon sands.

677. Geology and mineral deposits of the Colville Indian Reservation, Wash., by J. T. Pardee. 1918. 186 pp., 12 pls.

Describes the relation of ground water to oxidation and enrichment of the ores in the Nespelem district, in which the permanent ground-water level is 15 to 40 feet below the surface (pp. 69, 70). In the Covada district the ground-water level is in most places at a depth of 10 to 30 feet. Some of the descriptions of individual mines and prospects in the Nespelem, Park City, Sanpoil and Covada districts contain references to depth to water level or quantities of ground water encountered in mining. Includes a reconnaissance map of the reservation and geologic maps of several of the mining districts.

Discusses the occurrence of hot springs in the area covered by the report, notably along Snake River and Fall Creek (pp. 81-83).

681. The oxidized zinc ores of Leadville, Colo., by G. F. Louglain. 1918. 91 pp., 8 pls.

Contains reference to unwatering of certain sections of the district to permit mining operations (pp. 15, 16). Discusses vertical distribution of the ores and relation to depths of oxidation and ground-water level (pp. 64-66) and genesis of the ores, especially as related to the influence of descending ground water and the position of the water table (pp. 68-85).

Contains descriptions of mineral springs near Willow Creek landing and an analysis of the water from Soda Springs (pp. 66-67). Includes reconnaissance topographic and geologic maps of the region.

686. Structure and oil and gas resources of the Osage Reservation, Okla., by David White and others. 1922. xvi, 427 pp., 60 pls.

A series of 26 papers on the stratigraphy and structure of specific townships in the county. The following papers contain references to ground water.

(i) T. 26 N., Rs. 9, 10, and 11 E., by F. R. Clark, pp. 91-118, pls. 13-17. Shows water sands in logs of wells (pl. 17).

(e) T. 24 N., Rs. 11 and 12 E., by O. B. Hopkins and Sidney Powers, pp. 287-
686. Structure and oil and gas resources of the Osage Reservation, Okla.—Continued.

(b) Tps. 21-23 N., Rs. 6-7 E., and Tps. 23-25 N., Rs. 3-5 E., by C. F. Bowen, P. V. Roundy, C. S. Ross, and Frank Reeves, pp. 279-301, pls. 43-45. Shows water in logs of wells (pl. 46).

(d) Tps. 21-23 N., Rs. 6-7 E., and Tps. 23-25 N., Rs. 3-5 E., by C. F. Bowen, P. V. Roundy, C. S. Ross, and Frank Reeves, pp. 329-352, pl. 49. Lists several water sands (pp. 333-334).

(f) T. 29 N., Rs. 11 and 12 E., by M. I. Goldman, pp. 329-352, pls. 49. Lists several water sands (pp. 333-334).

(g) T. 28 N., Rs. 11 and 12 E., by M. I. Goldman and H. M. Robinson, pp. 359-394, pls. 51-55. Mentions water sands (pp. 370, 371) and shows water and salt water in logs of wells (pl. 51, 53).

688. The oil fields of Allen County, Ky., with notes on the oil geology of adjoining counties, by E. W. Shaw and K. F. Mather. 1919. 126 pp., 10 pls.

Describes the occurrence of salt water in certain parts of the oil-bearing formations in Allen County and gives analyses of 3 samples of salt water from wells in the area and discusses the properties of these samples (pp. 77-82). Gives a reference to gas and salt water encountered in wells drilled for water. Discusses replacement of oil by water (p. 94). Gives numerous logs and other records of wells, some of which are tabulated (pp. 94-111). The report also contains notes and well records for counties adjoining Allen County. Includes geologic and structure-contour maps, structure sections, and graphic well logs.

(a) Quicksilver deposits of the Phoenix Mountains, Ariz., by F. C. Schrader, pp. 95-110. "Paradise Valley contains excellent underground water. In the Montgomery well, which ends in valley fill at a depth of 225 feet, water was encountered at 196 feet" (p. 97).

691. Contributions to economic geology (short papers and preliminary reports), 1918, Part II, Mineral fuels; David White, G. H. Ashley, and M. R. Campbell, geologists in charge. 1919. viii, 355 pp., 44 pls.

(a) The structure of parts of the central Great Plains, by N. H. Darton, pp. 1-26, pls. 1-4. Contains a number of well records, most of which show the occurrence of water, including deep borings in Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Includes a preliminary map of the central Great Plains showing structure of the Dakota sandstone, several structure maps of small areas, and a number of well sections and generalized structure areas.

(b) Geologic structure of the northwestern part of the Pawhuska quadrangle, Okla., by K. C. Heald, pp. 57-100, pls. 13-15. Discusses briefly the ground-water conditions and the prospects of obtaining potable supplies in the sandstones penetrated in the oil wells (p. 60). Contains a general statement regarding the quality of the ground water. Includes a topographic structure-contour map of the area and several graphic well logs.

(c) Geology and oil and gas prospects of the Lake Basin field, Mont., by E. T. Hancock, pp. 101-147, pls. 14-23. Briefly describes streams and springs in this area (p. 105). Well logs and other records mention occurrence of water (pp. 143-145). Includes map showing structure on base of Eagle sandstone.

(d) Oil and gas geology of the Birch Creek-Sun River area, northwestern Mont., by Eugene Stehinger, pp. 149-184, pl. 24. Contains a brief general statement concerning the effect of the presence of water on accumulation of oil and gas...
691. Contributions to economic geology, 1918, Part 11—Continued.
(pp. 157, 183). Well log shows presence of water in glacial drift (p. 183). Includes geologic map and structure sections.

(q) Geology and oil prospects of the Salinas Valley-Parkfield area, Calif., by W. A. English, pp. 219-250, pls. 27-28. A well in the Pleito district struck flowing water, and another encountered salt water (pp. 222, 223). A well in the Parkfield district struck flowing sulfur water (p. 249). Includes geologic maps and structure section.

(s) Structure and oil resources of the Simi Valley, southern California, by W. S. W. Kew, pp. 323-355, pls. 41-44. “Few springs occur in the Simi Hills, but springs are rather numerous on the Santa Susana Mountains, especially along the Santa Susana fault. Many of them are alkaline and charged with hydrogen sulphide. Water can easily be obtained for drilling, either from springs or by pumping from shallow wells” (p. 325). Includes geologic map, structure sections and six plotted well logs showing fresh water in the surficial sands and sulfur water in deeper strata.

(b) Water-power investigations in southeastern Alaska, by G. H. Canfield, pp. 43-83, pl. 1; Mining developments in the Ketchikan district, by Theodore Chapin, pp. 85-89; Geology and mineral resources of the west coast of Chichagof Island, by R. M. Overbeck, pp. 91-136, pl. 2. Describes hot springs on the north arm of Peril Strait and White Sulphur Springs (Hoonah Warm Spring) (pp. 134-136) and quotes descriptions of them from Water-Supply Paper 418. Includes geologic sketch map.

(e) Sulphur on Unalaska and Akun islands and near Stepovak Bay, by A. G. Maddren, pp. 283-298, pl. 7; The beach placers of the west coast of Kodiak Island, by A. G. Maddren, pp. 299-319, pl. 8. Describes (pp. 283-298) the areas of solfataras on Unalaska and Akun Islands, which give off sulfurous vapors and hot water and have formed surficial deposits of sulfur. The oxidizing action on the rocks by the hot acid vapors is a notable feature.

(p) Tin mining in Seward Peninsula, by G. L. Harrington, pp. 353-361; Graphite mining in Seward Peninsula, by G. L. Harrington, pp. 363-367; The old and platinum placers of the Kivalik-Koyuk region, by G. L. Harrington, pp. 389-400, pl. 10. Describes hot springs near Spring Creek (pp. 399, 400). These are the same as “Warm Springs near Inmachuk River” of Water-Supply Paper 418. Includes geologic sketch map.

693. The evaporation and concentration of waters associated with petroleum and natural gas, by R. V. A. Mills and R. C. Wells. 1919. 104 pp., 4 pls.

Discusses the saline oil-field water that occurs with petroleum and natural gas in the Appalachian fields with regard to its origin and the development of its present chemical characteristics. Proposes that such water is not original connate water or connate water concentrated with no changes in the proportions of dissolved constituents, but that it has been concentrated by evaporation into moving and expanding gas, with changes in the proportions of dissolved constituents as the result of selective deposition and addition of constituents from outside sources. Suggests that the process of concentration by evaporation, with deposition of sodium chloride and related salts, is at least partly responsible for the formation of many salt domes. Discusses the causes of “salting up” of oil wells. Contains numerous chemical analyses of oil-field water and of deposits formed from it and several analyses of shallow ground water.

Superseded by Bulletin 770.
Discusses deposition of gypsum from ground water (pp. 23, 24). Mentions Harris' theory that certain Louisiana salt domes capped with gypsum resulted from deposition of the salts from hot solutions ascending from great depths along fault intersections, the expansive force of crystallization causing the doming. Describes the formation of gypsum by alteration of calcium carbonate by ground water containing sulfuric acid (p. 25). Includes maps showing distribution of gypsum deposits and numerous stratigraphic and structure sections.

701. Geothermal data of the United States, including many original determinations of underground temperature, by N. H. Darton. 1920. 97 pp., 1 pl.
Gives all available published data bearing on the rate of increase of underground temperature with increasing depth. Includes several hundred original observations of temperature, most of them being made in water wells but some in springs and deep mines. Gives figures on depth to water, and yield of wells and cites all sources of information. Includes map showing structure of bedrock and relation to rates of increase of temperature in eastern South Dakota and southeastern North Dakota.

Describes the water supply of the region (pp. 17-20). Within Baxter Basin a few springs near Aspen Mountain furnish the only ground-water supply. Deep drilling in the center of the basin might obtain water from sandstones of the Colorado group or from the Beckwith formation. In the area surrounding the basin surface and shallow ground water, as well as water from many of the springs, is highly mineralized. Underlying sandstones of Tertiary and Mesaverde formations yield flowing wells in some places. Bishop conglomerate in the southern part of the field furnishes many springs with water of satisfactory quality. Contains a number of well logs and other well records, some of which mention occurrence of water. Includes geologic map showing structure on highest sandstone of the Baxter formation and stratigraphic and structure sections and plotted well logs.

(a) A reconnaissance of the Pine Creek district, Idaho, by E. L. Jones, Jr., pp. 1-36, pl. 1. Discusses briefly the position of the ground-water level as related to depth of oxidation of the ore deposits (p. 13). Includes geologic sketch map of the district.
(b) Deposits of manganese ore in New Mexico, by E. L. Jones, Jr., pp. 37-50. Describes manganese prospects and mines scattered over the State. Mentions whether or not existing mine workings reached water level.
(d) Deposits of manganese ore in Arizona, by E. L. Jones, Jr., and F. L. Ransome, pp. 93-184, 3-8. Discusses the supergene origin of the deposits and their probable concentration by ground water (pp. 117, 118). Mentions whether or not the mine workings reached water level. Includes geologic sketch maps of several districts.
(e) Deposits of manganese ore in southeastern California, by E. L. Jones, Jr., pp. 185-208, pl. 9. Mentions water supplies from small springs (p. 191) and from shallow wells (pp. 202 and 208). Discusses oxidation of the original manganese-bearing minerals by "surface water" (p. 204).

(a) The Farnham anticline, Carbon County, Utah, by F. R. Clark, pp. 1-3, pls. 1-2. Reports salt water at 1,840 feet in a well near Green River and fresh water at several horizons below 310 feet in the Navajo and Wingate sandstones in a well on San Rafael Swell (p. 11). Includes geologic map and structure sections.
(d) Oil in the Warm Springs and Hamilton domes, near Thermopolis, Wyo., by A. J. Collier, pp. 61-73, pls. 7-10. Mentions travertine deposited from hot springs
711. Contributions to economic geology, 1919—Continued.

(p. 62). Two wells near crest of Hamilton dome showed no water, oil, or gas (p. 63). Reports hot water in wells on anticline near Thermopolis in vicinity of hot springs (p. 73). Includes structure-contour maps, structure sections, and graphic well logs.

(e) Gas in the Big Sand Draw anticline, Fremont County, Wyo., by A. J. Collier, pp. 75-85, pl. 11. Gives log of well showing brackish water at 200 and 315 feet (p. 78). Includes geologic map and structure section.

(g) Geology and oil and gas prospects of the Huntley field, Mont., by E. T. Hancock, pp. 105-148, pls. 14-18. Logs of four wells give depths at which water was encountered (pp. 142-143). Mentions several wells yielding water and traces of oil (p. 144). Includes geologic map showing structure on base of the Eagle sandstone.

(A) Anticlines near Maverick Springs, Fremont County, Wyo., by A. J. Collier, pp. 149-171, pls. 19-21. Reports mineral springs on west side of the Big Dome (p. 163). Nearly all deep wells obtain water, which usually flows at the surface; there are several water-bearing strata in some wells. In most wells the water is mineralized, but in some it is reported to be fresh. Describes several wells that yield water. Includes topographic map showing structure on top of the Park City formation and structure sections.

713. Geography, geology, and mineral resources of the Fort Hall Indian Reservation, Idaho, by G. R. Mansfield, with a chapter on water resources by W. R. Heroy. 1920. 152 pp., 13 pis.

Describes ground-water resources of the mountainous areas (p. 133) and ground water in Snake River Valley, the large springs of the valley being discussed with various hypotheses of their origin (pp. 133-140). Discusses utilization of ground water and surface water (pp. 140-148). Includes geologic map with structure sections, detailed geologic maps and sections of certain townships, and a map illustrating the water resources.

(i) Potash resources of Nebraska, by W. B. Hicks, pp. 125-139. States that fresh-water lakes are often underlain by impervious beds beneath which is brine and that fresh-water beds are generally encountered below potash deposits (pp. 126, 127). Mentions underlying Dakota sandstone, which contains fresh water; and lake deposits which contain fresh water wherever they are water-bearing. Most waters below a depth of 30 feet are fresh. Discusses origin of the potash brines and deposits as related to surface water and ground-water movement (pp. 127-139).

(m) Permian salt deposits of the south-central United States by N. H. Darton, pp. 205-230, pls. 21-24. Gives records of numerous borings in Kansas, Oklahoma, Texas, and New Mexico, in a few of which salt-water horizons are mentioned. Includes structure sections and graphic well logs.

716. Contributions to economic geology (short papers and preliminary reports), 1920, Part II, Mineral fuels; David White and M. R. Campbell, geologists in charge. 1921. viii, 248 pp., 34 pis.

(a) Geology of Alamosa Creek valley, Socorro County, N. Mex., with special reference to the occurrence of oil and gas, by D. E. Winchester, pp. 1-15, pls. 1-5. Gives location of principal springs in the area and reports that smaller springs are numerous (p. 3). States that bed of Alamosa Creek is saturated with water in most places. Includes geologic map and structure sections.

(b) The Upton-Thornton oil field, by E. T. Hancock, pp. 17-34, pl. 6. Gives log of a well at Cambria, water in the Pahasapa limestone being reported at 1,947-2,345 feet (p. 20). Includes geologic structure-contour map and structure sections.

(c) The Mule Creek oil field, Wyo., by E. T. Hancock, pp. 35-53, pl. 7. Log of a well shows water in the Dakota sandstone at 1,160-1,269 ft. (p. 52).

(d) Natural-gas resources available to Dallas and other cities of central north...
716. Contributions to economic geology, 1920—Continued.

Texas, by E. W. Shaw and P. L. Ports, pp. 58-89, pls. 8-9. Discusses water encroachment in the gas field (pp. 67-68). Gives log of a typical well in Fox field, Oklahoma, which shows fresh-water horizons (p. 72). Includes topographic-structure-contour map showing water encroachment.

(e) The Lance Creek oil and gas field, Niobrara County, Wyo., by E. T. Hancock, pp. 91-122, pls. 10-13. States that water may be obtained in most of the stream beds of the region by shallow drilling, although streams themselves are dry most of the year (p. 94). Includes geologic structure-contour map.

(g) Coal in the middle and eastern parts of San Juan County, N. Mex., by C. M. Bauer and J. B. Reeside, Jr., pp. 155-237, pls. 16-34. States that shallow ground water, usually rather salty, can generally be obtained in arroyo bottoms (p. 158) and that coal is usually weathered for some distance from the outcrop because of the low position of the water table (p. 179). Includes a geologic map of part of the area.

717. Sodium sulphate, its sources and uses, by R. C. Wells. 1923. iv, 43 pp.
Mentions springs and wells in Nevada which yield saline water containing sodium sulfate (p. 23) and notes fresh-water springs occurring near sodium sulfate deposits in Wyoming (p. 29).

718. Geology and ore deposits of the Creede district, Colo., by W. H. Emmons and E. S. Larsen. 1923. ix, 198 pp., 12 pis.
Discusses in detail the chapter on ore deposits (pp. 98-141), the role of ground water in deposition and alteration of mineral deposits. Includes topographic and geologic maps and structure sections.

Reports a strong flow of salt water in a well at Oil Bay and a strong flow of fresh water in a well near Cold Bay (pp. 52, 65). Includes geologic maps of the Controller Bay and Cook Inlet fields with structure sections, a geologic reconnaissance map of the Alaska Peninsula, and topographic map and structure sections of the Yagataga field.

720. Economic geology of the Summerfield and Woodsfield quadrangles, Ohio, with descriptions of coal and other mineral resources, except oil and gas, by D. D. Condit. 1923. 156 pp., 12 pis.
Describes briefly the water resources of the quadrangles (pp. 54, 55). Streams are small and not reliable. Springs are numerous. Ground water usually occurs at shallow depths. Water in valleys at depths of more than 75 feet is usually highly mineralized. Wells less than 75 feet deep on ridges usually obtain sufficient water for domestic use from sandstone, limestone, or coal. Contains geologic map showing structure on base of the Pittsburgh coal.

721. Geology and petroleum resources of northwestern Kern County, Calif., by W. A. English. 1921. 48 pp., 2 pls.
Mentions "edge water" in the Lost Hills field, a water sand in the North Belridge field, and interbedded water sands and oil sands in the Belridge field (pp. 37-38). Includes geologic map and structure sections.

723. Geology and ore deposits of the Manhattan district, Nev., by H. G. Ferguson. 1924. ix, 162 pp., 18 pls.
Reports that there are numerous small springs in the Toquima Range (p. 3) and that there is a considerable underground flow of water in gravel of some of the dry canyons, estimated as 50,000 gallons a day in Manhattan Gulch. Gives analyses of ground water in Manhattan Gulch and a discussion of changes in its chemical character (pp. 129-132). Includes geologic maps and structure sections.

Describes Saratoga Springs and several other sources of water supply (pp. 24, 25). Wells on the lower slopes of large alluvial fans would probably yield sufficient water for commercial use in extracting nitrates. Describes water supplies in the middle Amargosa region from several springs and mine tunnels (pp. 59-60).
725. Contributions to economic geology (short papers and preliminary reports), 1921, Part I, Metals and nonmetals except fuels; F. L. Ransome and E. F. Burchard, geologists in charge. 1922. xi, 440 pp., 19 pls.

(c) Deposits of manganese ore in Montana, Utah, Oregon, and Washington, by J. T. Pardee, pp. 141-243, pls. 7-10. A number of the descriptions of individual mines and prospects in the Philipsburg district, Mont., mention occurrence of water or depth to water level (pp. 146-174). The water supply for the C. F. & I. mine is hauled from a spring in White Wash Valley (p. 193). In a mine in Pleasant Valley, Oreg., water stood 45 feet below the surface (p. 226).

(d) Contact-metamorphic tungsten deposits of the United States, by F. L. Hess and E. S. Larsen, pp. 245-309, pls. 11-14. Mentions water supplies from small springs in the Victorville and Benton areas, Calif. (pp. 262, 277), from springs or shallow wells near several prospects in Nevada (pp. 278, 283, 286, 288, 293, 294, 300), and from shallow wells in Willow Wash, Utah (p. 308).

(g) The Taylor Creek tin deposits, New Mexico, by J. M. Hill, pp. 347-359. "Water can be had in shallow wells in most of the canyons, and at a few places in Railroad, Kennedy, upper Corduroy, and upper Taylor Canyons water rises to the surface" (p. 249). Includes a geologic sketch map.

726. Contributions to economic geology (short papers and preliminary reports), 1921, Part II, Mineral fuels; David White and M. R. Campbell, geologists in charge. 1922. x, 322 pp., 54 pls.

(b) Geology of the Cement oil field, Caddo County, Okla., by Frank Reeves, pp. 41-85, pls. 6-12. Explains change in color of Whitehorse sandstone in the Cement anticlinal area as being due to cementation by ground water ascending through fissures (pp. 55, 56). Gives several logs of wells, some showing water. Includes maps showing structure on top of Whitehorse sandstone in Cement oil fields and Kiowa areas, stratigraphic sections, and graphic well logs.

(e) Geologic structure of parts of New Mexico, by N. H. Dartn., pp. 173-275, pls. 30-50. Contains logs of numerous wells, most of which were drilled for water, and notes the water-bearing strata.

(f) Geologic structure and oil and gas prospects of a part of Jefferson County, Okla., by H. M. Robinson, pp. 277-302, pls. 51-52. States that water for drilling may be obtained from shallow wells (p. 277). Contains seven well logs, six of which report water. Includes a structure contour map.

Contains numerous well logs and test-hole records in which the occurrence of water is mentioned (pp. 14-103). The water table is close to the surface throughout most of the greensand areas. Includes geologic map and structural sections.

Discusses rock weathering due to solution by ground water carrying carbon dioxide and the effect of frozen ground on the circulation of ground water. Vigor of circulation is a vital factor in thawing (pp. 5, 6). Contains topographic-geologic map of the York tin region and seven topographic and geologic sketch maps of tin areas.

(c) Bonanza ores of the Comstock lode, Virginia City, Nev., by E. S. Bastin, pp. 41-63. Gives description, analyses, and discussion of the mine water of the Comstock lode (pp. 57-69).

(d) Silver enrichment in the San Juan Mountains, Colo., by E. S. Bastin, pp. 65-129. Gives description and four analyses of water from hot springs near Ouray (pp. 67-69), analysis of water from a "soda spring" (p. 119), and analyses of four samples of mine water (pp. 108, 119). Mentions enrichment by descending water in a number of the mine descriptions. Many samples of mine water were tested for acidity or alkalinity. Notes springs that deposit sulfur and calcium carbonate (p. 126).

(e) Primary native-silver ores near Wickenburg, Ariz., and their bearing on the genesis of the silver ores of Cobalt, Ontario, by E. S. Bastin, pp. 131-155. Refers to comparative dryness of the mine works, depth to original ground-water level, and lack of oxidation of ore deposits (pp. 145, 146).

(f) General features of the brown hematite ores of western North Carolina, by W. S. Bayley, pp. 157-208, pis. 4-6. Notes the shallowness of the water table in low lands along Nottely and Valley Rivers (p. 194) and on many pages mentions springs in the area. Includes topographic and geologic maps, and structure sections of several of the districts.

(a) The structure of the Madill-Denison area, Oklahoma and Texas, with notes on oil and gas development, by O. B. Hopkins, Sidney Powers, and H. M. Robinson, pp. 1-33, pis. 1-6. Contains numerous logs and other records of wells, most of which mention the occurrence of water. Includes a geologic map, a map showing structure on top of the Goodland limestone, and graphic well logs.

(b) Oil and gas prospects in and near the Crow Indian Reservation, Mont., by W. T. Thom, Jr., pp. 35-53, pl. 7. States that wells penetrating the Sundance formation will probably encounter two or three water-bearing sandstones (p. 40). Mentions water supply available for drilling in the different areas and notes that both surface water and shallow ground water are scarce. Reports water in the Cloverly and Tensleep formations in Black Gulch dome area (p. 51). Includes map of part of the area showing structure on the top of the Cloverly formation.

(c) The Osage oil field, Weston County, Wyo., by A. J. Collier, pp. 71-110, pis. 10-14. Mentions several wells drilled for water supply (p. 74). Gives numerous references to occurrence of water in wells drilled for oil. Contains a paragraph dealing with artesian wells in the Dakota and Lakota sandstones (p. 96). Tabulated well records give data on the water-bearing sands (pp. 107-110). Includes a structure contour map and structure sections.

(d) Geology of the Ranger oil field, Tex., by Frank Beeven, pp. 111-170, pls. 15-19. Describes the occurrence of saline water in the oil sands (pp. 141, 142). Well tables (pp. 144-161) contain a few references to salt water, as do well logs (pp. 152-170). Includes structure contour maps and graphic well logs.

(f) The Twentymile Park district of the Yampa coal field, Routt County, Colo., by M. K. Campbell. 1923. iv, 82 pp., 13 pls.

Reports a well drilled for oil in the village of Milner, which yielded a small flow of artesian water, and mentions that other water wells have been drilled in Milner, some more than 400 feet deep (pp. 29, 30). Includes map showing outcrop of coal and sandstone beds and geologic structure, and stratigraphic sections.
749. Geology of the Tullock Creek coal field, Rosebud and Big Horn Counties, Mont., by G. S. Rogers and Wallace Lee. 1923. vi, 181 pp., 16 pls.

Describes the occurrence of springs in the region and states that water is probably obtainable from shallow wells in most of the coulees (p. 8). Includes geologic and structure contour map and stratigraphic and structure sections.

(b) Origin of certain rich silver ores near Chloride and Kingman, Ariz., by E. S. Bastin, pp. 17-39. States that the water level was 220 feet below collar of Distaff shaft, 60 feet below collar of Rural shaft, 25 feet below collar of Kay shaft, and about 100 feet in mines near Stockton Hill (pp. 19, 24, 25, 30, 33). Notes that oxidation of ores above the water level is incomplete and that downward enrichment of ores is slight (pp. 35, 36).

(c) Observations on the rich silver ores of Aspen, Colo., by E. S. Bastin, pp. 41-62, pl. 3. Describes secondary ores deposited from descending ground water and the occurrence and quality of the mine water, with analyses of two water samples (pp. 49-62).

(b) Progress report on a subsurface study of the Pershing oil and gas field, Osage County, Okla., by W. W. Rubey, pp. 23-70, pls. 7-9. Briefly discusses the quality of oil-field water (p. 68). Includes structure contour map and graphic well logs.

(c) Geology and possible oil and gas resources of the faulted area south of the Bearpaw Mountains, Mont., by Frank Reeves, pp. 71-114, pls. 10-14. Gives record of the four wells that were drilled for oil in the area, with data on the water-bearing strata (pp. 103-106). Discusses the role of ground water in oil accumulation and gives two analyses of water from one of the wells (pp. 107-111). Describes the water resources of the area, stating that there are many springs along fault planes but little shallow ground water except in gravel terraces (p. 113). Includes a geologic map.

(d) Geologic structure of San Juan Canyon and adjacent country, Utah, by H. D. Miser, pp. 115-155, pls. 15-20. Gives records and logs of wells, three of which report artesian water (pp. 150-155). Includes a geologic map.

(e) The Scobey lignite field, Valley, Daniels, and Sheridan Counties, Mont., by A. J. Collier, pp. 157-230, pls. 21-29. Some springs issue at the contact of glacial drift and bedrock. Shallow wells obtain water in gravel. Wells in underlying rock yield water that often carries sulfur and iron (pp. 161, 162). Includes geologic map and structure and columnar section.

(f) The Ekalaka lignite field, southeastern Montana, by C. M. Bauer, pp. 231-267, pls. 30-34. States that the Dakota and Lakota sandstones are potential sources of artesian water and that the Fox Hills sandstone carries water in that part of the area which it underlies (p. 248). Includes geologic maps and columnar sections.

(g) Geology and oil and gas prospects of part of Moffat County, Colo., and southern Sweetwater County, Wyo., by J. D. Sears, pp. 269-319, pls. 35-37. Mentions flows of hot sulfur water and salt water from the Frontier (?) sandstone (pp. 307, 308, 315, 316). Describes oil and gas shows in springs (pp. 309, 310). Mentions water in the Dakota sandstone (pp. 311, 319). States that Marshall's Spring furnishes hardly enough for camp use (p. 318). Includes a geologic structure contour map.

753. Geology and oil resources of a part of Los Angeles and Ventura Counties, Calif., by W. S. W. Kew. 1924. viii, 202 pp., 17 pls.

Contains data on numerous wells, some of which mention occurrence of water (pp. 121-128). Includes a geologic map and structure sections.

756. Oil and gas fields of the Lost Soldier-Ferris district, Wyo., by A. E. Fath and G. F. Moulton. 1924. iv, 57 pp., 8 pls.

Gives K. C. Heald's opinion on relation of oil to edge water (p. 31). One of the graphic well logs of plate 8 records water at one horizon. Mentions water in the
756. Oil and gas field of the Lost Soldier-Ferris district, Wyo.—Continued. Wall Creek sand (p. 34) and in the Frontier sand (pp. 35, 52). Includes geologic maps showing structure on top of the Wall Creek sand, and graphic well logs.

759. Geology of the Bristow quadrangle, Creek County, Okla., with reference to petroleum and natural gas, by A. E. Fath. 1925. iv, 63 p., 13 pls. Describes drainage and water supply of the area (p. 4). Most farms obtain water from wells 15 to 35 feet deep. Water for some farms and municipalities and for well-drilling is obtained from deeper wells in sandstone, some as much as 300 feet deep. Data on oil wells at various places in the report mention the occurrence of water. Includes topographic and geologic map, stratigraphic sections, graphic well logs, correlated well sections, and structure contour maps.

762. Geology and ore deposits of the Rochester district, Nev., by Adolph Knopf. 1924. ix, 78 pp., 4 pls. Some of the descriptions of individual mines and prospects state whether or not the workings reached water level (pp. 59-76). Includes geologic map and structure sections.

763. Geology and ore deposits of the Aravaipa and Stanley mining districts, Graham County, Ariz., by C. P. Ross. 1925. vi, 120 pp., 12 pls. Discusses oxidation and enrichment of ore deposits as related to the position of the water table (pp. 72-76). States that water was encountered in the shaft of the Arizona mine at a depth of 500 feet (p. 97). Describes a spring at the Cold Spring prospect (p. 108). Includes a geologic map and structure sections.

767. Geology and coal resources of the Gallup-Zuni Basin, N. Mex., by J. D. Sears. 1925. v, 53 pp., 17 pls. States that the Gallup city water supply comes from 7 wells 1,000 to 1,600 feet deep in Dakota sandstone (pp. 6, 7). Wells as much as several hundred feet deep furnish water to villages and settlers in the district (p. 51). Mentions a 1,155-foot well drilled for oil near Defiance Switch on the Santa Fe Ry., which obtained an artesian flow from the Navajo sandstone at 1,030 feet (p. 51). Includes geologic map of Gallup coal district showing structure on top of upper Otero coal bed, geologic map of Gallup-Zuni Basin, geologic map of Zuni Indian Reservation showing coal outcrops, map of part of New Mexico showing structure on top of Chupadera formation, and columnar sections and graphic well logs.

770. The data of geochemistry (fifth edition), by F. W. Clarke. 1924. 841 pp. Earlier editions were published as Bulletins 330, 491, 616, and 695. Gives estimates of the total quantity of underground water in the earth's crust (p. 35). Contains a discussion of the statement and interpretation of water analyses (pp. 64-68) and a short discussion of springs (pp. 68-69). A chapter on mineral waters and springs (pp. 181-217), the definition and classification of mineral waters (including typical analyses), changes in composition of water and reactions with adjacent material, chemical deposits from water, vadose and juvenile waters, and the relation of thermal springs to volcanism.

774. The copper deposits near Salmon, Idaho, by C. P. Ross. 1927. iv, 44 pp., 5 pls. Gives a brief description of Salmon Hot Springs (p. 10). Includes a geologic sketch map of part of the area.

775. Geology and lignite resources of the Marmarth field, southwestern North Dakota, by C. J. Hares. 1928. vi, 110 pp., 14 pls. There are numerous springs in the area, but their water is mostly of poor quality. Wells also furnish water of poor quality. A few flowing artesian wells in the area probably obtain water from the Fox Hills sandstone (pp. 18-11). Some of the township descriptions contain mention of the water supply (pp. 89-104). Includes geologic map showing outcrops of lignite beds, and columnar sections.
 (b) Geology of a part of western Texas and southeastern New Mexico, with special reference to salt and potash, by H. W. Hoots, pp. 33-126, pls. 8-17. Contains numerous logs and other records of wells. Mentions occurrence of fresh water in the upper part of the Dockum group (Triassic) near Midland, Tex., and describes character and water supply of the Trinity sands (pp. 96, 98). Includes geologic map, maps showing thickness of salt beds and structure on top of salt beds, and graphic well logs.

781. Contributions to economic geology (short papers and preliminary reports), 1925, Part II, Mineral fuels; W. T. Thom, Jr., geologist in charge. 1926. iii, 29 pp., 6 pls.
 (b) Geology of the Baxter Basin gas field, Sweetwater County, Wyo., by J. D. Sears, pp. 13-29, pls. 2-6. Reports that many springs "issue along fault lines and along the contact of the Bishop conglomerate with older formations" (p. 16). Well tables mention occurrence of water in some wells (pp. 24, 25). Includes geologic and structure contour map, stratigraphic sections, and graphic well logs.

782. Ore deposits of the Jerome and Bradshaw Mountains quadrangles, Ariz., by Waldemar Lindgren, with statistical notes by V. C. Heikes. 1926. ix, 192 pp., 23 pls.
 Describes relation of ground water to depth of oxidation, giving depths to water level in certain mines (pp. 49-53). Some of the descriptions of individual mines and prospects also contain comments on water level in relation to oxidation, or depth to water level, or quantity of water pumped from the mines. Includes a geologic map.

 (a) Mineral industry of Alaska in 1924 and Administrative report, by P. S. Smith, pp. 1-39; Selected list of Survey publications on Alaska, pp. i-xvii. States that a well drilled on the Pearl Creek dome in the Cold Bay district obtained some gas and a strong flow of water at 3,017 feet (p. 29).

 (a) Recent developments in the Aspen district, Colo., by Adolph Knopf, pp. 1-28, p. 1. States that large volumes of ground water issue from limestone into the Hope tunnel near Aspen (p. 25). Includes a geologic map.
 (b) Potash investigations in 1924, by W. B. Lang, pp. 29-47. Pl. 2. Brine is recorded in 2 wells in Texas (p. 30) and in 1 flowing well in Utah (p. 39).

786. Contributions to economic geology (short papers and preliminary reports), 1926, Part II, Mineral fuels; W. T. Thom, Jr., geologist in charge. 1927. ii, 98 pp. 5 pls.
 (a) The geology of the Ingomar anticline, Treasure and Rosebud Counties, Mont., by K. C. Heald, pp. 1-37, pls. 1-2. States that springs and wells furnish the only permanent supply of water, the best being in the Judith River and Claggett formations at depths down to 1,500 feet (pp. 5, 6). The Dakota sandstone in the anticline commonly carries water but is dry in some places (p. 22). Includes a geologic map showing structure on top of the Judith River formation.
 (b) Geology of the Cat Creek and Devils Basin oil fields and adjacent areas in Montana, by Frank Reeves, pp. i-xv, 39-98, pls. 3-5. Discusses effect of circulating ground water containing sulfate on oil with which it comes in contact (p. 70). Describes occurrence of water in the sands of the Cat Creek field, including partial analyses of 11 water samples (pp. 71-80). Discusses role of ground water in accumulation of oil (pp. 81-86). Tabulated well data and logs of wells mention occurrences of water (pp. 87-95). Includes geologic map and structure sections of part of the area, structure-contour map of central Montana, and graphic well logs.
787. Geology and ore deposits of the Mogollon mining district, N. Mex., by H. G. Ferguson. 1927. vi, 100 pp., 25 pls.

States that permanent water level in the productive part of the district had not been reached 800 feet below stream level, owing to damming action of the Queen fault and vein (pp. 47, 48). A diagram shows probable relations of water level to oxidation and enrichment of the ore bodies (p. 49). Includes reconnaissance and detailed geologic maps and structure sections.

Gives data on 6 test wells, mentioning salt water in 4 of them (pp. 49, 50). Includes topographic and geologic maps and structure sections.

794. "Red Beds" and associated formations in New Mexico, with an outline of the geology of the State, by N. H. Darton. 1928. xvi, 375 pp., 62 pls. (Published in April 1929.)

Contains numerous logs and other records of wells, many of which report occurrence of water. Includes a shaded topographic map of the State, reconnaissance geologic maps of parts of the State, and a large number of stratigraphic and structure sections and graphic well logs.

(a) Potash brines in the Great Salt Lake Desert, Utah, by T. B. Nolan, pp. 25-44, pl. 3. Briefly describes saline springs occurring at the edge of the desert that yield water of much lower salinity than the brines of the desert flat (p. 32). Includes a map showing salinity of the brine underlying Great Salt Lake Desert.

(b) Geology and oil and gas prospects of northeastern Colorado, by K. F. Mather, James Gilluly, and R. G. Lusk, pp. 65-124, pls. 14-18. Well logs show occurrence of water (pp. 118-124, pl. 18). Includes geologic map and section of part of northeast Colorado, structure-contour map of Fort Collins-Wellington oil field, and graphic well logs.

(c) Geology and coal resources of the Salina Canyon district, Sevier County, Utah, by E. M. Spieker and A. A. Baker, pp. 125-170, pls. 19-22. States that the Wasatch formation may carry water under artesian pressure near Saline Creek south of Taylor Flat (p. 170). Includes geologic map and structure section and columnar section.

(d) Geology and oil and gas possibilities of the Bell Springs district, Carbon County, Wyo., by C. E. Dobbin, H. W. Hoots, and C. H. Dane, pp. 171-202, pls. 23-27. States that numerous springs occur in the bluffs east of Separation Flats, especially near Bell Springs (pp. 172, 173). Well records mention occurrence of water in some wells drilled for oil (pp. 193-195). Includes geologic map showing structure on top of Cloverly formation in surrounding area and graphic well logs.

797. Mineral resources of Alaska, report on progress of investigations in 1926, by P. S. Smith and others. 1929. ii, 227, xii pp., 6 pls.

(f) Geology and mineral resources of the Aniakchak district, by R. S. Knappen, pp. 161-227, pl. 6. Briefly describes mineral springs in the area (p. 170). Includes a geologic map.

798. Geology of the Muddy Mountains, Nev.—Continued.

A section on water resources describes springs in the area (pp. 16-18). Includes a geologic map and structure sections.

801. Geology and water resources of the Edgeley and La Moure quadrangles, N. Dak., by H. A. Hard. 1929. v, 90 pp., 5 pls.

Discusses springs of the area (p. 12), and a section on water resources describes the occurrence of ground water in the glacial drift, Pierre and Benton formations, and especially in the Dakota sandstone (pp. 44-56). A section on artesian conditions and prospects, as shown by a survey in 1923 by O. E. Meinzer, gives the history of well drilling and describes original head and area of artesian flow, decline in head, shrinkage in area of artesian flow, increase in hydraulic gradient, and decline in yield of flowing wells from 1886 to 1923 (pp. 52-74). Gives data on specific capacities and total discharge of artesian wells, rate of recharge of Dakota sandstone, withdrawal of water from storage, compression of the sandstone, and quality, temperature, and occurrence of natural gas in water of the Dakota sandstone (pp. 74-78). Tabulated well data give location, depth, and other information on the principal artesian wells in and near Edgeley quadrangle, including data on original head and flow and head and flow in 1923 (pp. 79-87). Includes geologic maps and maps showing thickness of glacial drift and artesian water conditions.

803. Geography, geology, and mineral resources of the Portneuf quadrangle, Idaho, by G. R. Mansfield. 1929. vi, 110 pp., 8 pls.

Describes the ground-water conditions and mentions springs and travertine deposits (pp. 102-104). Includes a geologic map showing structure on the phosphate shale member of the Phosphoria formation, and structure sections.

Mentions the presence of water in several wells penetrating the upper part of the Cloverly formation (pp. 85, 86). Includes geologic map showing outcrops of coal beds, structure sections, columnar sections, and graphic well logs.

(a) The Pumpkin Buttes coal field, Wyo., by C. H. Wegemann, R. W. Howell, and C. E. Dobbin, pp. 1-14, pls. 1-5. States that "springs issuing from sandstone and coal beds occur at many places in the field; the largest are the perennial Hot Springs" (p. 3).

(b) The northward extension of the Sheridan coal field, Big Horn and Rosebud Counties, Mont., by A. A. Baker, pp. 15-57, pls. 6-29. Describes streams, springs, and general ground-water conditions in the area (pp. 20-22). Log of a well gives depths to water-bearing beds (p. 64).

(c) Geology and oil and gas prospects of part of the San Rafael Swell, Utah, by James Giluly, pp. 59-130, pls. 30-35. States that springs are few and that their water is of poor quality (p. 76). Log of a well in Emery County mentions occurrence of water at 2,943 feet (p. 123). Includes geologic map showing structure on base of Shinarump conglomerate and structure and columnar sections.

(d) Geology of the Rock Creek oil field and adjacent areas, Carbon and Albany Counties, Wyo., by C. E. Dobbin, H. W. Hoots, C. H. Dane, and E. T. Hancock, pp. 131-153, pls. 36-43. Data on test wells mention water in the Cloverly formation (p. 49) and in the Wall Creek (?) sand (pp. 150-151).

(e) Thrust faulting and oil possibilities in the plains adjacent to the Highwood Mountains, Mont., by Frank Reeves, pp. 155-195, pl. 44. Mentions "water in several sands" (p. 181) and various water-bearing sands in logs of 6 wells (pp. 186-190). Includes geologic map showing structure on top of Kootenai formation and structure sections.

Describes water resources of the quadrangles (pp. 182-189). States that springs are numerous, especially in the mountainous parts of the area. Describes the hot
808. Geology of the De Queen and Caddo Gap quadrangles—Continued.

springs and gives two analyses of their water. Says that water under artesian pressure may be obtained throughout most of the Coastal Plain portion of the area. Maps show areas where flowing wells may be expected in the Trinity, Woodbine, and Tokio formations, and contours show the maximum depths to which artesian wells should be drilled (pp. 184, 185). Most of the older formations north of the Coastal Plain also yield some water to wells. Includes geologic maps and structure sections.

(c) Indiana oolitic limestone, relation of its natural features to its commercial grading, by G. F. Loughlin, pp. 113-202, pls. 27-46. Discusses relation of ground-water level to development of certain features of the limestone (pp. 138-143).

812. Contributions to economic geology (short papers and preliminary reports), 1929, Part II; Mineral fuels; H. D. Miser, geologist in charge. 1930. vi, 338 pp., 48 pls.

(a) The Forsyth coal field, Rosebud, Treasure, and Big Horn Counties, Mont., by C. E. Dobbin, pp. 1-55, pls. 1-10. Describes springs from the Lance and Fort Union formations (pp. 5, 6). States that domestic water supplies are obtained chiefly from dug wells or from drilled wells penetrating sandstone overlying the Rosebud coal bed.

(b) The Kevin-Sunburst oil field and other possibilities of oil and gas in the Sweetgrass arch, Mont., by A. J. Collier, pp. 57-189, pls. 11-18. Mentions well and spring water from the Virgelle sandstone (Cretaceous) (p. 61). States that large areas covered by Colorado shale have no potable water supply. Some of the well data (pp. 85-92) and tabulated well records (pp. 94-168) mention occurrence of water. Many of the "dry holes" yield salt water or sulfur water. Describes water associated with the oil (pp. 179, 180). Gives analyses of six water samples (pl. 18). Includes maps of Sweetgrass arch and the Kevin-Sunburst field showing structure on the Madison limestone, and graphic well logs.

(c) Geology and coal resources of the Meeker quadrangle, Moffat and Rio Blanco Counties, Colo., by E. T. Hancock and J. B. By, pp. 191-242, pls. 19-30. Mentions occurrence of flowing salt water in two wells drilled for oil on the Meeker dome (p. 213). Includes geologic map showing structure on top of Trout Creek sandstone, and structure and columnar section.

Describes hot springs of the Wood River region and gives 3 analyses of water from Hailey Hot Springs (pp. 115-117). Discusses briefly the occurrence and quantity of ground water (pp. 117-120). Some of the descriptions of individual mines and prospects mention the presence of water.

Describes a cold sulfur spring near Yukon River north of Calico Bluff and gives an analysis of the water (pp. 64, 65). Includes geologic reconnaissance map and structure sections.

818. Geology and mineral resources of the Cleveland district, Ohio, by H. P. Cushing, Frank Leverett, and F. R. Van Horn. 1931. vii, 128 pp., 23 pls.

Mentions the presence of water in Devonian or late Silurian limestone in the logs of two wells (pp. 117, 121). States that the Big Lime (Silurian) and Rame sandstone (Carboniferous) are aquifers (pp. 130-131). Describes briefly commercial springs and mineralized spring waters. Includes a topographic map showing the area, a map showing the Pleistocene deposits, and one showing structure on top of the Clinton sand, and structure sections.

Mentions springs from the Emery sandstone and Mancos shale and briefly comments on the quality of the water (p. 12). Includes geologic structure-contour maps and structure sections, a topographic map of the southern extension of the field, and columnar sections.

(b) A geologic study of the Madden Dam project, Alhajuela, Canal Zone, by Frank Reeves and C. P. Ross, pp. 11-49, pls. 4-13. Presents the results of an investigation to determine the feasibility of constructing a dam to store water, mainly for dry-season use, in the Panama Canal. Gives data on water-level in test holes and describes permeability and solution tests on samples from core drilling (pp. 20-24). Describes pressure tests in which water was pumped into test wells in an attempt to determine the amount and direction of leakage and discusses location of the dam with respect to possible leakage (pp. 26-34). Gives logs of 24 test wells (pp. 43-49). Includes general topographic and geologic map of the reservoir and detailed geologic map and sections of the area in vicinity of dam.

(a) Geology and mineral resources of parts of Carbon, Big Horn, Yellowstone, and Stillwater Counties, Mont., by R. S. Knappen and G. F. N'vulson, pp. 1-70, pls. 1-5. Describes briefly the water supplies of the area (p. 7). Both alluvial materials and sandstone below stream level yield water to wells; some wells flow. Describes circulation of ground water and notes that data on some wells report the occurrence of water (pp. 57-63). A section on ground water contains description of several wells and springs and two analyses of water from deep wells (pp. 67-70). Includes geologic map showing structure on top of the Greybull sandstone member of the Cloverly formation.

A section on water resources describes surface-water and ground-water resources of the area, including occurrence of ground water in the different formations, descriptions of public supplies, and analyses of two samples of water from public supplies (pp. 56-59). Includes geologic map and structure sections.

829. Geology and coal, oil, and gas resources of the New Kensington quadrangle, Pa., by G. B. Richardson. 1932. viii, 102 pp., 9 pls.

Logs and other records of wells report water in various sands in the oil-producing areas (pp. 55-56). Some of the well logs in an appendix (pp. 74-97) mention the occurrence of water. Includes geologic map, topographic map showing structure on top of Upper Freeport coal, sketch geologic and contour maps of surrounding areas, columnar sections, and graphic well logs.

(b) The Ashland coal field, Rosebud, Powder River, and Custer Counties, Mont., by N. W. Bass, pp. 19-105, pls. 3-37. Briefly describes ground-water resources of the area (p. 26). Many springs of potable water come from coal beds. Potable well water is obtainable in most parts of the area, and flowing artesian water is found in the Tongue River and Otter Creek Valleys. Where springs yield alkaline water from the Lebo shale, potable water may be obtained by drilling to the Lance formation. Contains geologic map showing outcrops of coal beds, and columnar sections.

835. Geology and oil resources of the Elk Hills, Calif.—Continued.

Some of the well records mention occurrence of water (pp. 47-58). Describes the water of the eastern field, including occurrence, chemical characteristics, and direction and rate of movement (pp. 58-80). Shows location and migration of edge water in the different horizons (pls. 16, 17). Includes geologic map showing structure on limestone “A” of Tulare formation, map showing structure on top of the Scales bed, and many graphic well logs.

Contains numerous well logs, some of which mention the occurrence of water. “Water is obtainable in wells at moderate depths in most parts of the region, but the water varies widely in quality” (p. 256). Includes geologic map of the region and structure contour maps of several of the oil and gas fields.

839. Geology of the Boston area, Massachusetts, by Laurence LaForge. 1932. v, 105 pp., 15 pls.

Describes briefly the ground-water and surface-water resources of the area (pp. 91, 92). Includes a geologic map and structure sections and maps showing the surficial geology.

840. Geology and mineral resources of the Middletown quadrangle, Pa., by G. W. Stose and A. I. Jonas. 1933. v, 86 pp., 15 pls.

Describes briefly springs of the area, with comments on the quality of spring water, occurrence of ground water in the different formations, and the larger springs in the area (pp. 75-82). Includes geologic map and structure sections.

841. Geology and oil possibilities of the Moab district, Grand and San Juan Counties, Utah, by A. A. Baker. 1933. v, 95 pp., 11 pls.

Describes briefly springs of the area, with comments on the quality of spring water from the different formations (pp. 7, 8). Record of a well on the Shafer dome reports fresh water at a depth of 5,860 feet in beds separated by shale from overlying salt beds (p. 17). Logs of 8 wells report occurrence of water in the Hermosa, Paradox, and Molas (?) formations (pp. 85-92). Includes a geologic map and structure sections and a geologic structure contour map.

842. Metalliferous deposits of the greater Helena mining region, Mont., by J. T. Pardee and F. C. Schrader. 1933. xi, 318 pp., 47 pls.

A few of the descriptions of individual mines contain references to depth to water level, or volume of water pumped from mines. Includes a geologic map of the region and detailed geologic maps of a number of the mining districts.

Briefly describes water supplies of the region (pp. 132, 133). Includes geologic map, drainage map showing distribution of hot springs, and columnar sections.

844. Mineral resources of Alaska, report on progress of investigations in 1931, by P. S. Smith and others.

(c) The Suslota Pass district, upper Copper River region, Alaska, by F. H. Moffit. 1933. pp. i-ii, 137, 162, pl. 2. Briefly describes springs and underground drainage of the area (p. 140). Includes geologic reconnaissance map.

846. Contributions to economic geology (short papers and preliminary reports), 1933; G. F. Loughlin, geologist in charge.

(a) Some mining districts of eastern Oregon, by James Gilluly, J. C. Reed, and C. F. Park, Jr. 1933. pp. i-viii, 1-140, pls. 1-8. Many of the descriptions of individual mines and prospects contain references to water levels in the mines. Includes geologic maps of the Mormon Basin and Virtue districts and of Gold Hill and vicinity in the Ochoco Creek area.
847. Contributions to economic geology (short papers and preliminary reports), 1934-36; G. F. Loughlin, geologist in charge.

(a) The Contact mining district, Nev., by F. C. Schrader. 1935. pp. i-iv, 1-41, pls. 1-4. States that oxidation of the ores extends 150 to 250 feet below the surface, although water level is reached at shallower depths in most mines (p. 17). A few of the descriptions of individual mines contain comments on quantities of water encountered in mining. Includes geologic reconnaissance map.

(b) The Rosebud coal field, Rosebud and Custer Counties, Mont., by W. G. Pierce. 1936. pp. i-iv, 43-120, pls. 5-21. Discusses surface-water and ground-water supplies and gives data on springs and flowing artesian wells in the area (pp. 45-51). Includes a geologic map showing outcrops of coal beds, a generalized structure-contour map, and structure and columnar sections.

(c) The Richey-Lambert coal field, Richland and Dawson Counties, Mont., by F. S. Parker. 1936. pp. i-iy, 121-174, pls. 22-27. Briefly describes surface-water and ground-water supplies of the area in a section on drainage and water supply, including comments on the quality of water from different formations (pp. 126, 127). Includes a geologic map showing outcrop of coal beds, a generalized structure coal map, and columnar sections.

(d) Geology and mineral resources of the western part of the Arkansas coal field, by T. A. Hendricks and Bryan Parks. 1937. pp. i-iv, 189-224, pl. 35. Describes occurrence of salt water in gas-bearing sands in the area (pp. 215, 216).

(e) The Girdwood district, Alaska, by C. F. Parks, Jr. 1933 [1934]. pp. i-viii, 381-424, pi. 33. Discusses the relation of oxidation of the ores to position of the water table (pp. 409, 410). Briefly describes water supplies of the area (p. 413). Includes geologic map and structure sections.

849. Investigations in Alaska Railroad belt, 1931, by P. S. Smith and others.

(g) The Book Cliffs coal field in Garfield and Mesa Counties, Colo., by C. E. Erdmann. 1934 (1935). vi, 150 pp., 21 pis. Briefly describes drainage and water supply of the area (pp. 16-19). States that springs are few and their water is poor. Says that salt water was encountered at 265 feet in a well drilled for oil. One mine was flooded, probably by water from coal beds. Mentions the presence of salt water in the Mancos shale and water in the Entrada and Wingate sandstones (pp. 70-72). Includes geologic map showing outcrop of coal beds, map showing structure on top of the Sego sandstone, and structure and columnar sections.

853. Zinc and lead deposits of northern Arkansas, by E. T. McKnight. 1935. vi, 311 pp., 11 pls. States that springs are abundant throughout the area and that they supply the fair-weather flow of streams (pp. 13-15). Discusses the origin of the ores; the theory of deposition by artesian circulation is believed not to apply (pp. 138-150). Also briefly discusses relation of oxidation of the ores to position of the water table (p. 151). Some of the descriptions of individual mines mention occurrence of water and depth to water level (pp. 153-303). Includes geologic maps showing structure on base of St. Joe limestone and on St. Peter sandstone and structure sections.

854. Geology and ore deposits of the Casto quadrangle, Idaho, by C. P. Ross. 1934 (1935). vi, 135 pp., 8 pls. Describes the hot springs of the area and gives analyses of water samples from three of them (pp. 105, 106). Includes geologic map and structure sections.
855. Geology and mineral resources of the Bellefonte quadrangle, Pa., by Charles Butts and E. S. Moore. 1936. vi, 111 pp., 12 pls.
Briefly describes underground drainage of the area (p. 12). Sinkholes are common. Discusses the water resources, gives the records of several drilled wells, and describes the municipal supplies of the larger towns (pp. 105-107). Includes geologic map and structure sections.

Describes briefly the ground-water investigations made in Montana from 1915 to 1921 (pp. 8, 9). Treats of drainage and surface-water irrigation (pp. 19-24). Logs of gas and oil wells mention occurrences of water (pp. 104-124). Discusses the water resources of the county under the following heading: Water-bearing properties of the rock formation, Relation of rock structure to water supply, Artesian conditions, Water supplies, Methods of obtaining ground-water supplies, Storage of surface water, Storage of ice, and Quality of water. The last includes analyses of 36 water samples. Gives detailed descriptions of water supplies by townships (pp. 156-196). Includes geologic map showing structure on top of Cloverly formation, structure section, detailed structure-contour maps of parts of the area, and columnar sections and graphic well logs.

860. Geology and fuel resources of the southern part of the San Juan Basin, N. Mex.
(b) Part 2, The Mount Taylor coal field, by C. B. Hunt. 1936. i-v, 31-80, pls. 18-38. Data on several wells record water in the Dakota sandstone, and water in the Mesa Verde formation is mentioned (pp. 79, 80). Includes geologic structure-contour map and columnar section.
(c) Part 3, The La Ventana-Chacra Mesa coal field, by C. H. Dane. 1936 [1937] pp. i-v, 81-166, pls. 39-55. Describes drainage and water supply of the area and mentions several springs (pp. 85, 86). Includes geologic map showing structure on base of Hasta sandstone, and columnar sections.

The occurrence of flowing artesian water in 4 of the 8 test holes drilled is mentioned (pp. 46-48). The drilling equipment and method of drilling are described (pp. 49-54). Includes topographic and geologic maps; structure sections, and graphic well logs.

Describes the topography, drainage, and water supply of the area (pp. 5-11). "The springs of the area provide the most satisfactory source of drinking water." Well logs and well records mention occurrences of salt water and sulfur water in several formations (pp. 158-171). Includes geologic map, a map showing structure on base of the Wingate sandstone, and structure sections.

865. Geology of the Monument Valley-Navajo Mountain region, San Juan County, Utah, by A. A. Baker. 1936. vi, 106 pp., 17 pls.
A section on drainage and water supply mentions the underflow in Oljeto Wash and states that the principal domestic water supplies are from springs, the location of which are shown on the geologic map (pp. 10-12). Refers to the apparent lack of water in the sediments penetrated by wells drilled for oil and gas (p. 97). Includes geologic structure-contour map, structure sections, reconnaissance topographic map, and columnar sections.

867. Geology of the Coastal Plain of South Carolina, by C. W. Cooke. 1936. v, 196 pp., 18 pls.
Contains numerous descriptions of wells, springs, and sinkholes and a number of well logs (pp. 21-152). Describes ground-water resources of the region, including data on the water-bearing characteristics of the different formations, the quality of the water, and county descriptions (pp. 161-188). Includes records of about 250 wells.
867. Geology of the Coastal Plain of South Carolina—Continued.
and about 100 water analyses. Contains geologic map of the Cretaceous and Tertiary
formations and a map showing distribution of the Quaternary formations and
terraces.

870. Geology and ore deposits of the Bayard area, Central mining district, N.
Mex., by S. G. Lasky. 1936. vi, 144 pp., 17 pls.
Briefly describes water supply of the area. Streams are intermittent except for
short stretches fed by springs, most of which occur along faults. Water is generally
obtained from wells, which must be drilled to depths of several hundred feet. The
water table stands at about stream level in the area. Describes several wells in the
area and occurrence of water in the Ground Hog mine (pp. 9-11). Discusses the
relation of water level to depth of supergene alteration (p. 100). Some of the
descriptions of individual mines and prospects mentions depth to water level or
quantities of water encountered (pp. 105-138). Shows the approximate position of
permanent water level in part of the area (p. 15). Includes geologic map and
structure sections.

871. Mineral resources of the region around Boulder Dam, by D. F. Hewett,
Eugene Callaghan, B. N. Moore, T. B. Nolan, W. W. Pubey, and W.
T. Schaller. 1936. vi, 197 pp., 14 pls.
Describes the artesian basin in the vicinity of Las Vegas, Clark County, Nev.
Measurements of discharge from about 50 wells show a 35 to 50 percent decline
"during the last 15 years" (p. 183).

873. Geology and mineral resources of the Butler and Zelienople quadrangles,
Pa., by G. B. Richardson. 1936. v, 93 pp., 8 pls.
Logs and other records of wells drilled for oil mentions occurrence of water, and
description of oil and gas resources gives some data on presence or absence of
water in the various oil sands and on quality of the water (pp. 10, 11, 46-64). A
section on water describes briefly the surface-water and ground-water resources,
mentioning the principal water-bearing formations (pp. 69-72). Includes analyses
of four samples of water from deep wells and one sample from a shallow well.
Gives result of thermal gradient determination in a deep well. Some of the well
logs mention occurrence of water (pp. 76-88). Includes a geologic map of each
quadrangle and a topographic map of each that also shows structure on top of the
Vanport limestone.

874. Geology and fuel resources of the southern part of the Oklahoma coal
field.
(a) Part 1, The McAlester district, Pittsburg, Atoka, and Latimer Counties, by
T. A. Hendricks. 1937. pp. i-iv, 1-90, pls. 1-10. Describes very briefly the water
supply of the district (p. 8). Also describes the water-bearing properties of the
Gerty sand (Quaternary) (p. 93). Includes geologic map showing distribution of the
Gerty sand, and structure sections.
(b) Part 2, The Lehigh district. Coal, Atoka, and Pittsburg Counties, by M. M.
Knechtel. 1937. pp. i-iv, 91-149, pl. 11. One of the records of wells drilled for oil
and gas mentions the occurrence of salt water (p. 142). Includes a geologic map
showing structure on the Lehigh coal bed.
(c) Part 3, The Quinton-Scipio district, Pittsburg, Haskell, and Latimer Counties,
One of the records of wells drilled for oil and gas mentions occurrence of salt
water (p. 207). The lower beds of the middle part of the McAlester shale almost
invariably carry "a hole full of water" (p. 210). States that the Hartshorne sand­
stone is the chief gas-producing formation in the area but is barren of liquids at
atmospheric pressures and that a well penetrating the Morrow formation obtained
water near the base (pp. 212, 213). Describes the use of casing to shut off water in
gas wells in the area (p. 222). Includes geologic map showing distribution of Gerty
sand, structure contour maps, and graphic well logs showing occurrence of water.

877. Geology and ore deposits of the Bayhorse region, Custer County, Idaho,
by C. P. Ross. 1938. vii, 161 pp., 18 pls.
Describes briefly a spring-fed stream, Warm Springs Creek (p. 7). Mentions de­
posits of travertine, some of which are believed to be spring deposit, and describes
877. Geology and ore deposits of the Bayhorse region—Continued.
the hot springs of the area, with analyses of water from three of the springs (pp.
62-65). Notes the high permeability of the Germer tuffaceous beds. In certain
parts of the area these absorb much of the rainfall and diminish surface run-off (p. 98).
A few of the descriptions of individual mines and prospects mention occurrence of
water, or depth to water level in the mines (pp. 116-157). Includes geologic map and
structure sections.

879. Geology and mineral resources of the Baker quadrangle, Oreg., by James
Gilluly. 1937. vi., 119 pp., 3 pis.
A section on development of drainage discusses the part played by ground water
in the undermining and recession of permeable lava beds where such beds overlie
relatively impermeable unconsolidated sediments (pp. 79-83). Several of the descrip­
tions of individual mines and prospects mention occurrence of ground water or depth
to water level (pp. 93-114). Includes a geologic map and structure sections.

884. Geology and mineral deposits of the Snowmass Mountain area, Gunnison
County, Colo., by J. W. Vanderwilt. 1938. viii, 184 pp., 24 pis.
Some of the descriptions of individual mines and prospects mention occurrence
of water or position of the water level (pp. 114-152). Includes a geologic map
and structure sections.

885. Geology and ore deposits of the Lordsburg mining district, Hidalgo
A section on surface and ground water states that springs and streams are absent
from the district (pp. 8, 9). Gives average depths to the water table in the hill and
valley portions of the district. Gives data on quantities of water encountered in
mines, including rates of pumping at several mines and effect on the water table
in the vicinity. Includes analyses of two samples of mine waters. Briefly discusses
position of the water table as related to oxidation and enrichment of the area (p.
41). Several of the descriptions of individual mines and prospects mention occurrence
of water or depth to water level. Includes geologic maps and structure sections.

886. Contributions to economic geology (short papers and preliminary re­
Mansfield, geologists in charge.
(c) Geology and ore deposits of the southwestern Arkansas quick-silver district,
by J. C. Reed and F. G. Wells. 1938. pp. i-vi, 15-90, pis. 2-17. Several of the de­
scriptions of individual mines and prospects mention occurrence of quantities of
water in the mines. Includes geologic map and structure sections.

891. Geology and mineral resources of the Honeybrook and Phoenixville
quadangles, Pa., by F. Bascom and G. W. Stose. 1938. v, 145 pp.,
11 pis.
Describes ground-water resources of the quadrangles, including descriptions of
the water-bearing characteristics of the three major classes of rock present (un-
metamorphosed, and igneous), the principal water-bearing formations, and public
and private water supplies. Includes analyses of samples of water from three springs
(pp. 135-140), a geologic map, and structure sections.

893. Metalliferous mineral deposits of the Cascade Range in Oregon, by
Eugene Callaghan and A. F. Buddington. 1938. viii, 141 pp., 22 pis.
A few of the individual descriptions of mines and prospects mention occurrence of
water. Describes the hydrothermal alteration of wall rock (p. 49). Contains
reconnaissance geologic map of the Cascade Range in Oregon south of Mount
Hood and a topographic and geologic map of the Bohemia district.

899. Geologic structure and occurrence of gas in part of southwestern New
York.
(c) Part 1. Structure and gas possibilities of the Oriskany sandstone in Steuben,
Yates, and parts of the adjacent counties, by W. H. Bradley and J. F. Pepper. 1938.
pp. i-iv, 1-68, pls. 1-4. Briefly describes the permeability and occurrence of salt
water in the Oriskany sandstone (p. 46). Many of the records of wells in the quad­
rangle descriptions and in the well tables mention occurrence of salt water or fresh
water (pp. 46-65). Includes a geologic structure contour map.
902. The brown iron ores of eastern Texas, by E. B. Eckel. 1938. vi, 157 pp., 20 pls.

Shallow wells in the Sparta sand (Eocene) give abundant supplies of good water (p. 32). "As a general rule two of the chief horizons for shallow water wells on the uplands of eastern Texas occur near the top and base of the Weches greensand. Where the Sparta sand is more than about 12 to 15 feet thick the wells encounter water at the top of the Weches member, but where the Weches occurs at the surface water is ordinarily found at or near the base of the greensand" (p. 44). Discusses the relation of the ground-water table to the iron deposits and gives an analysis of water from Hughes Springs (pp. 44, 45).

Gives data on several wells drilled in glaciofluvial deposits of the Nushagak Bay area (pp. 70, 71).

905. The coal resources of McCone County, Mont., by A. J. Collier and M. M. Knechtel. 1939. vii, 80 pp., 16 pls.

"Most of the water for domestic use is obtained from shallow dug wells near the creeks, from drilled wells a few feet to 200 or 300 feet deep, and from springs near the outcrops of coal beds. The towns of Circle, Brockway, and Vida obtain practically their entire water supplies from a single well each. A well 270 feet deep at Circle supplies water for the locomotives of the Northern Pacific Railway" (p. 7).

(b) Geology and coal resources of the Minot region, N. Dak., by D. A. Andrews. 1939. pp. i-iv, 43-84, pls. 11-15. Discusses artesian water in the Des Lacs area (p. 80, 81). Shows the approximate extent of the flowing-well area and the location of many other water wells, in which the approximate depth to water is indicated by the altitude of the coal beds (p. 11). See also Water-Supply Paper 598, pages 289-282.

(c) The Mizpah coal field, Custer County, Mont., by F. S. Pr-rker and D. A. Andrews. 1939 [1940]. pp. i-iv, 85-133, pis. 16-40. "Water for domestic supply is obtained from wells and springs. Along the Powder River flowing wells 100 to 300 feet in depth penetrate sandy layers of the sandstone member of the Lance formation and furnish plentiful supplies of potable water. Along Mizpah Creek wells of equal depth do not flow, but the water rises within a short distance of the surface" (p. 11).

Describes and gives the location of the principal springs of the area (pp. 15, 16, pl. 1).

(a) Manganese carbonate in the Batesville district, Ark., by H. D. Miser, with a chapter on minerals of the ores, by D. F. Hewett and H. D. Miser. 1941. pp. i-v, 1-97, pls. 1-10. Mentions the action of ground water on the character and concentration of the ore bodies (pp. 31, 38-40).

(b) Geology and oil and coal resources of the region south of Coorv, Park County, Wyo., by W. G. Pierce and D. A. Andrews. 1941. pp. i-v, 99-180, i-iv, pls. 11-24. Describes hot-spring deposits of sulfur (p. 177).

922. Strategic minerals investigations, 1940, short papers and preliminary reports.

(b) Quicksilver deposits of the Battle Creek district, Humboldt County, Nev., a preliminary report; by R. J. Roberts. 1940. pp. i-iii, 1-29, pls. 1-5. "The lodes of the Mount Diablo district appear to have been deposited from hot waters that derived their metallic constituents from distant magmatic sources" (p. 49). "The warm springs near the Mount Diablo mine and those near many other quicksilver
922. Strategic minerals investigations, 1940—Continued.

Mines may represent dying stages of the hot-spring activity that produced the mineral deposits” (p. 50). “It seems clear that nearly all of the sulphide minerals are products of the original mineralization, deposited from ascending water. In the Mount Diablo district, as in many others, the effects produced on quicksilver ores by descending waters appear to be trivial economically” (p. 51).

Manganese deposits at Phillipsburg, Granite County, Mont., a preliminary report, by E. N. Goddard. 1940. pp. i-iv, 157-204, pls. 26-34. "There seems little doubt that the primary ore of the Phillipsburg district was deposited from hydrothermal solutions that rose from depths along vein fissures. The early ore-bearing solutions introduced quartz and the sulphides. The later solutions, which carried the bulk of the manganese, deposited manganese carbonate. It is possible that in the course of weathering and oxidation some of the manganese has been dissolved by circulating ground water and redeposited at lower levels" (p. 177). Discusses the irregularity of the water table and its relation to the depth of oxidation (pp. 178, 179).

Antimony deposits of the Wildrose Canyon area, Inyo County, Calif., by D. E. White. 1940. pp. i-iii, 307-325, pls. 45-46. Mentions hot-spring deposits of antimony cemented by travertine and their relation to antimony minerals (p. 314). "The ore bodies probably were deposited at relatively low temperature and pressure by aqueous solutions ascending from deep-seated igneous sources" (p. 319).

Quicksilver deposits of the Mayacmas and Sulphur Bank districts, Calif., a preliminary report, by C. P. Ross. 1940 (1941) pp. i-iii, 327-353, pls. 47-55. Discusses the origin of the deposits through the agency of "hot solutions from some deep magmatic source" (pp. 345, 346).

Quicksilver deposits in San Luis Obispo County and southwestern Monterey County, Calif., by E. B. Eckel, R. G. Yates, and A. E. Granger. 1941. pp. i-v, 515-580, pls. 78-87. Discusses the origin of the deposits by solutions rising from considerable depth along faults and deposition due to "the chemical nature of the rocks or of the ground waters within them" (pp. 543-544).

923. Geology and mineral resources of the Randolph quadrangle, Utah-Wyo., by G. B. Richardson. 1941. v, 54 pp., 8 pls.

Describes water supplies from springs and wells. Swan Creek Spring, Utah, issues from the Blacksmith limestone, the discharge being 30 to 35 second-feet in winter and more than 200 second-feet in May (pp. 49-51).

Gives logs of five deep wells (pp. 52-56).

936. Strategic minerals investigations, 1942, short papers and preliminary reports.

MINERAL RESOURCES

The report on mineral resources for the calendar years 1883 and 1884 and the reports for each subsequent year contain sections on mineral waters, which give statistics, by calendar years, of production, importation, and exportation, lists of mineral springs, and other information in regard to the trade in the waters of the United States that are sold for medicinal or table use. The statistics are given largely by States.

The reports on mineral waters for successive years were prepared by the following authors:

1883-1900, inclusive, by A. C. Peale.
1901-1904, inclusive, anonymous.
1905, by M. L. Fuller.
1906-1909, inclusive, by Samuel Sanford.
Reports on mineral waters—Continued.
1910-1912, inclusive, by G. C. Matson.
1913-1915, inclusive, by R. B. Dole.
1916-1919, inclusive, by A. J. Ellis.
1920-1923, inclusive, by W. D. Collins.

In addition to the annual statistics, these reports contain the following papers relating to mineral water:

Mineral Resources of the United States, 1882. 1883.
The divining rod, by R. W. Raymond, pp. 610-626. Gives a vivid historical review and discussion of the so-called "divining rod," which has been supposed to have virtue for finding ground water and other minerals, as well as for detecting criminals, etc.

Mineral Resources of the United States, 1905. 1906.

Mineral Resources of the United States, 1911, Part II, Nonmetals. 1912.
The concentration of mineral water in relation to therapeutic activity, by R. B. Dole, pp. 1175-1192. Discusses mineral constituents in relation to physiological reactions, minimum doses of inorganic substances, the therapeutic action of certain inorganic radicles, and tolerance for mineral matter in drinking water.

Mineral Resources of the United States, 1913, Part II, Nonmetals. 1914.
Radioactivity of mineral waters, by R. B. Dole, pp. 435-440. Gives the radioactivity of 52 well-known waters from springs in Europe and the United States, compares their strength with that of radioactive compounds used in medical practice, and discusses therapeutic uses of radioactive waters. Includes an incomplete bibliography of publications on radium, radioactivity, and radiotherapy.

A historical sketch of the mineral-water trade, by R. B. Dole, pp. 215-219. Tabulates and discusses the domestic production and importation from 1883 to 1914 and includes diagrams showing the annual production and the price during this period.

Comparison of American and European mineral waters, by A. A. Chambers, pp. 500-510. Compares the analyses of certain chalybeate, carbonate, sulfide, chloride, and sulfate spring waters in the United States with the analyses of well-known mineral waters of Europe of similar types. Concludes that the counterparts of European waters can in general be found in this country. Contains a brief bibliography of mineral waters, chiefly those from American springs.

Mineral Resources of the United States, 1918, Part II, Nonmetals. 1921.
Mineral waters, by A. J. Ellis, pp. 495-501, pl. 5. States that the three groups of waters included are natural carbonated waters that have lost part of their carbon dioxide, natural waters that have been artificially carbonated, and waters from which iron has been removed. Three uses of mineral water are recognized—table use, medicinal use, and use in the manufacture of soft drinks. A map showing distribution of sources of mineral waters indicates concentration of the industry in California, Minnesota, Wisconsin, Illinois, and the North Atlantic Coast States.

Mineral Resources of the United States, 1921, Part II, Nonmetals. 1924.
Mineral waters, by W. D. Collins [with list of published analyses of mineral waters], pp. 229-236. In addition to statistics of sales of mineral waters in 1920 and 1921, gives statements and figures on the condition of trade. Also discusses the value of analyses of mineral waters and lists 16 publications containing “large numbers of analyses of springs waters, analyses of water from springs of special importance, or analyses of other waters with which spring waters may be compared.”

Mineral waters, by W. D. Collins, pp. 109-124. In addition to statistics on sales in the United States in 1922 and 1923, gives statistics on soft drinks and on imports and exports, with a discussion of the condition of trade and a review of the mineral-water trade, 1883-1923. Tabulates by states the source of mineral waters sold in 1922, giving the name and location of each spring or well.
<p>	No.	Name of folio and year of publication	State	Author	Boundaries	
				North	South	East
18	1894 Fredericksburg	Md.-Va.	Darton, N. H.	38 30	38 00	77 00
1995						
17	1895 Marysville	Calif.	Lindgren, Waldemar; Turner, H. W.	39 30	39 00	121 30
1896						
23	1896 Nomini	Md.-Va.	Darton, N. H.	38 30	38 00	76 30
24	Three Forks	Mont.	Peale, A. C.	46 00	45 00	111 00
1897						
36	1897 Pueblo	Colo.	Gilbert, G. K.	38 30	38 00	104 30
39	Truckee	Calif.	Lindgren, Waldemar	39 30	39 00	120 00
1898						
42	1898 Nueces	Tex.	Hill, R. T.; Vaughan, T. W.	30 00	29 30	100 00
45	Boise	Idaho	Lindgren, Waldemar	44 00	43 30	116 00
1899						
55	1899 Fort Benton	Mont.	Weed, W. H.	48 00	47 00	110 00
56	Little Belt Mountains	do.	do	47 00	46 00	110 00
58	Elmoror	Colo.	Hills, R. C.	37 30	37 00	104 30
1900						
64	1900 Uvalde	Tex.	Vaughan, T. W.	29 30	29 00	99 30
66	Colfax	Calif.	Lindgren, Waldemar	39 30	39 00	120 30
67	Danville	Ill.-Ind.	Campbell, M. R.; Leverett, Frank.	40 15	40 00	87 30
68	Walseinburg	Colo.	Hills, R. C.	38 00	37 30	104 30
1901						
70	1901 Washington	D. C.-Va.-Md.	Darton, N. H.; Keith, Arthur.	39 00	38 45	76 45
71	Spanish Peaks	Colo.	Hills, R. C.	37 30	37 00	104 30
1902						
76	Austin	Tex.	Hill, R. T.; Vaughan, T. W.	30 30	30 00	97 30
89	Norfolk	Va.-N. C.	Darton, N. H.	42 00	41 30	87 30
81	Chicago	Ill.-Ind.	Alden, W. C.	42 00	41 30	87 30
83	New York City	N. Y.-N. J.	Merrill, F. J. H.; Darton, N. H.; Hollick, Arthur; Sailsbury, E. D.; Dodge, R. E.; Willis, Bailey; Pressey, H. A.	41 00	40 30	73 45
84	Ditney	Ind.	Fuller, M. L.; Ashley, G. H.	38 30	38 00	87 00
85	Oelrichs	S. Dak.-Nebr.	Darton, N. H.	43 30	43 00	103 00
1903						
86	Ellensburg	Wash.	Smith, G. O.	47 00	46 30	120 30
87	Camp Clarke	Nebr.	Darton, N. H.	42 00	41 30	103 00
88	Scott Bluff	do.	do	42 00	41 30	103 30
92	Gaines	Pa.-N. Y.	Fuller, M. L.; Alden, W. C.	42 00	41 45	77 45
96	Olivet	S. Dak.	Todd, J. E.	43 30	43 00	97 30
97	Parker	do.	do	43 30	43 00	97 00
99	Mitchell	do.	do	44 00	43 30	98 00
100	Alexandria	do.	do	44 00	45 30	97 30
<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio and year of publication</th>
<th>State</th>
<th>Author</th>
<th>North</th>
<th>South</th>
<th>East</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>1904</td>
<td>101 San Luis 1 Calif.</td>
<td>Calif.</td>
<td>Fairbanks, H. W.</td>
<td>35 30</td>
<td>25 30</td>
<td>120 30</td>
<td>121 00</td>
</tr>
<tr>
<td></td>
<td>102 Indiana</td>
<td>Ind.</td>
<td>Richardson, G. B.</td>
<td>40 45</td>
<td>40 30</td>
<td>79 00</td>
<td>79 15</td>
</tr>
<tr>
<td></td>
<td>103 Nampa</td>
<td>Idaho-Oreg.</td>
<td>Lindgren, Waldemar</td>
<td>44 06</td>
<td>45 20</td>
<td>116 10</td>
<td>117 00</td>
</tr>
<tr>
<td></td>
<td>104 Silver City</td>
<td>Idaho</td>
<td>Drake, N. F.</td>
<td>43 30</td>
<td>43 00</td>
<td>116 00</td>
<td>117 00</td>
</tr>
<tr>
<td></td>
<td>105 Patoka</td>
<td>Ind.-Ill.</td>
<td>Fuller, M. L.; Clapp, F. G.</td>
<td>38 30</td>
<td>38 00</td>
<td>87 30</td>
<td>88 00</td>
</tr>
<tr>
<td></td>
<td>106 Mount Stuart</td>
<td>Wash.</td>
<td>Smith, G. O.</td>
<td>47 30</td>
<td>47 00</td>
<td>120 30</td>
<td>121 00</td>
</tr>
<tr>
<td></td>
<td>107 Newcastle 2</td>
<td>Wyo.-S. Dak.</td>
<td>Darton, N. H.</td>
<td>44 00</td>
<td>43 30</td>
<td>104 00</td>
<td>104 30</td>
</tr>
<tr>
<td></td>
<td>108 Edgemont 3</td>
<td>S. Dak.-Nebr.</td>
<td>Darton, N. H.; Smith, W. S. T.</td>
<td>43 30</td>
<td>43 00</td>
<td>103 30</td>
<td>104 00</td>
</tr>
<tr>
<td></td>
<td>111 Globe</td>
<td>Ariz.</td>
<td>Ransome, F. L.</td>
<td>33 30</td>
<td>32 10</td>
<td>110 45</td>
<td>111 00</td>
</tr>
<tr>
<td></td>
<td>112 Bisbee</td>
<td>do</td>
<td>Todd, J. E.</td>
<td>44 30</td>
<td>44 00</td>
<td>98 00</td>
<td>98 30</td>
</tr>
<tr>
<td></td>
<td>113 Huron 4</td>
<td>S. Dak.</td>
<td>Todd, J. E.; Hall, C. M.</td>
<td>44 30</td>
<td>44 00</td>
<td>97 30</td>
<td>98 30</td>
</tr>
<tr>
<td></td>
<td>114 De Smet 5</td>
<td>do</td>
<td>Cum.</td>
<td>33 15</td>
<td>33 00</td>
<td>109 15</td>
<td>109 30</td>
</tr>
<tr>
<td>1905</td>
<td>117 Casselton-Fargo 7</td>
<td>N. Dak.-Minn.</td>
<td>Hall, C. M.; Willard, D. E.</td>
<td>47 00</td>
<td>46 30</td>
<td>96 30</td>
<td>97 30</td>
</tr>
<tr>
<td></td>
<td>120 Silverton 8</td>
<td>Colo.</td>
<td>Cross, Whitman; Howe, Ernest; Ransome, F. L.</td>
<td>38 00</td>
<td>37 45</td>
<td>107 30</td>
<td>107 45</td>
</tr>
<tr>
<td></td>
<td>121 Waynesburg</td>
<td>Pa.</td>
<td>Stone, R. W.</td>
<td>40 00</td>
<td>39 45</td>
<td>80 00</td>
<td>80 15</td>
</tr>
<tr>
<td></td>
<td>122 Tahlequah</td>
<td>Okla.-Ark.</td>
<td>Taff, J. A.</td>
<td>35 00</td>
<td>35 30</td>
<td>94 30</td>
<td>95 00</td>
</tr>
<tr>
<td></td>
<td>123 Elders Ridge</td>
<td>Pa.</td>
<td>Smith, R. W.</td>
<td>40 45</td>
<td>40 30</td>
<td>79 15</td>
<td>79 30</td>
</tr>
<tr>
<td></td>
<td>124 Mount Mitchell</td>
<td>N. C-Tenn.</td>
<td>Keith, Arthur</td>
<td>44 00</td>
<td>44 30</td>
<td>104 00</td>
<td>104 30</td>
</tr>
<tr>
<td></td>
<td>127 Sundance 9</td>
<td>Wyo.-S. Dak.</td>
<td>Darton, N. H.; Darton, N. H.</td>
<td>45 00</td>
<td>44 30</td>
<td>104 00</td>
<td>104 30</td>
</tr>
<tr>
<td></td>
<td>128 Alladin 10</td>
<td>Wyo.-S. Dak.</td>
<td>O'Hara, C. C.</td>
<td>33 15</td>
<td>33 00</td>
<td>109 15</td>
<td>109 30</td>
</tr>
<tr>
<td></td>
<td>129 Clifton</td>
<td>Ariz.</td>
<td>Lindgren, Waldemar</td>
<td>33 15</td>
<td>33 00</td>
<td>109 15</td>
<td>109 30</td>
</tr>
<tr>
<td>1906</td>
<td>132 Muscogee</td>
<td>Okla.</td>
<td>Taff, J. A.</td>
<td>36 00</td>
<td>35 30</td>
<td>95 00</td>
<td>95 30</td>
</tr>
<tr>
<td></td>
<td>133 Penobscot Bay</td>
<td>Pa.</td>
<td>Butts, Chas.</td>
<td>40 30</td>
<td>40 15</td>
<td>78 30</td>
<td>78 45</td>
</tr>
<tr>
<td></td>
<td>134 Nepestia 11</td>
<td>Colo.</td>
<td>Fisher, C. A.</td>
<td>38 30</td>
<td>38 00</td>
<td>104 00</td>
<td>104 30</td>
</tr>
<tr>
<td></td>
<td>136 St. Marys</td>
<td>Md.-Va.</td>
<td>Shattuck, G. B.; Miller, B. L.</td>
<td>38 30</td>
<td>38 00</td>
<td>76 00</td>
<td>76 30</td>
</tr>
<tr>
<td></td>
<td>137 Dover</td>
<td>Del.-Md.-N. J.</td>
<td>Miller, B. L.</td>
<td>39 30</td>
<td>39 30</td>
<td>75 30</td>
<td>76 00</td>
</tr>
<tr>
<td></td>
<td>138 Redding</td>
<td>Calif.</td>
<td>Diller, J. S.</td>
<td>41 00</td>
<td>40 30</td>
<td>122 00</td>
<td>122 30</td>
</tr>
<tr>
<td></td>
<td>140 Milwaukee special</td>
<td>Wis.</td>
<td>Alden, W. C.</td>
<td>43 09</td>
<td>42 54</td>
<td>87 50</td>
<td>88 00</td>
</tr>
<tr>
<td></td>
<td>141 Bald Mountain-Dayton</td>
<td>Wyo.</td>
<td>Darton, N. H.; Salisbury, R. D.</td>
<td>45 00</td>
<td>44 30</td>
<td>107 00</td>
<td>108 00</td>
</tr>
<tr>
<td></td>
<td>142 Cold Peak-Fort McKinney</td>
<td>do</td>
<td>do</td>
<td>44 30</td>
<td>44 00</td>
<td>106 30</td>
<td>107 80</td>
</tr>
<tr>
<td>1907</td>
<td>144 Amity</td>
<td>Pa.</td>
<td>Clapp, F. G.</td>
<td>40 15</td>
<td>40 00</td>
<td>80 00</td>
<td>80 15</td>
</tr>
<tr>
<td></td>
<td>145 Lancaster-Mineral Point</td>
<td>Wis.-Iowa- Ill.</td>
<td>Grant, U. S.; Bur- chard, E. F.</td>
<td>43 00</td>
<td>42 30</td>
<td>90 00</td>
<td>91 00</td>
</tr>
<tr>
<td></td>
<td>146 Rogersville</td>
<td>Pa.</td>
<td>Clapp, F. G.</td>
<td>40 00</td>
<td>39 45</td>
<td>80 15</td>
<td>80 30</td>
</tr>
<tr>
<td></td>
<td>147 Pisgah</td>
<td>N. C.-S. C.</td>
<td>Keith, Arthur</td>
<td>35 30</td>
<td>35 00</td>
<td>82 30</td>
<td>83 00</td>
</tr>
<tr>
<td></td>
<td>148 Joplin district</td>
<td>Mo.-Kans.</td>
<td>Smith, W. S. T.; Sie- benthal, C. E.</td>
<td>37 15</td>
<td>37 00</td>
<td>94 15</td>
<td>94 45</td>
</tr>
<tr>
<td></td>
<td>149 Ebensburg</td>
<td>Maine</td>
<td>Smith, G. O.; Bastin, E. S.; Brown, C. W.</td>
<td>44 30</td>
<td>44 00</td>
<td>68 30</td>
<td>69 00</td>
</tr>
<tr>
<td></td>
<td>150 Devils Tower 12</td>
<td>Wyo.</td>
<td>Darton, N. H.; O'Hara, C. C.</td>
<td>45 00</td>
<td>44 30</td>
<td>104 30</td>
<td>105 00</td>
</tr>
<tr>
<td></td>
<td>151 Roan Mountain</td>
<td>Tenn.-N. C.</td>
<td>Keith, Arthur</td>
<td>36 30</td>
<td>36 00</td>
<td>82 00</td>
<td>82 30</td>
</tr>
<tr>
<td></td>
<td>152 Patuxent 13</td>
<td>Md.-D. C.</td>
<td>Shattuck, G. B.; Miller, B. L.; Bibbins, Arthur, Cross, Whitman; Howe, Ernest; Irving, J. D.</td>
<td>39 00</td>
<td>38 30</td>
<td>76 30</td>
<td>77 00</td>
</tr>
<tr>
<td></td>
<td>158 Ouray</td>
<td>Colo.</td>
<td>do</td>
<td>38 15</td>
<td>38 00</td>
<td>107 30</td>
<td>107 45</td>
</tr>
<tr>
<td></td>
<td>154 Winslow</td>
<td>Ark.-Okla.</td>
<td>Purdue, A. H.</td>
<td>36 00</td>
<td>35 30</td>
<td>94 00</td>
<td>94 30</td>
</tr>
</tbody>
</table>
Geologic Folios—Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio and year of publication</th>
<th>State</th>
<th>Author</th>
<th>Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>East</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>West</td>
</tr>
<tr>
<td>156</td>
<td>Elk Point</td>
<td>S. Dak.-Nebr.-Iowa</td>
<td>Todd, J. E.</td>
<td>43 00</td>
</tr>
<tr>
<td>158</td>
<td>Rockland</td>
<td>Maine</td>
<td>Bastin, E. S.</td>
<td>44 15</td>
</tr>
<tr>
<td>159</td>
<td>Independence</td>
<td>Kans.</td>
<td>Schrader, F. C.</td>
<td>37 30</td>
</tr>
<tr>
<td>161</td>
<td>Franklin Furnace</td>
<td>N. J.</td>
<td>Spencer, A. C.; Kimmel, H. B.; Wolff, J. E.; Salisbury, R. D.; Palace, Charles</td>
<td>41 15</td>
</tr>
<tr>
<td>163</td>
<td>Santa Cruz</td>
<td>Calif.</td>
<td>Branner, J. C.; Newson, J. F.; Arnold, Ralph.</td>
<td>37 30</td>
</tr>
<tr>
<td>164</td>
<td>Belle Fourche</td>
<td>S. Dak.</td>
<td>Darton, N. H.; O'Hara, C. C.; Todd, J. E.</td>
<td>45 06</td>
</tr>
<tr>
<td>165</td>
<td>Aberdeen-Redfield</td>
<td>do.</td>
<td>Willard, D. E.; Williams, H. S.</td>
<td>45 30</td>
</tr>
<tr>
<td>166</td>
<td>El Paso</td>
<td>Tex.</td>
<td>Richardson, G. B.</td>
<td>32 00</td>
</tr>
<tr>
<td>168</td>
<td>Jamesstown-Tower</td>
<td>N. Dak.</td>
<td>Willard, D. E.; Williams, H. S.</td>
<td>47 00</td>
</tr>
<tr>
<td>169</td>
<td>Watkins Glen-Catamount</td>
<td>N. Y.</td>
<td>Tarr, R. S.; Kindle, E. M.</td>
<td>42 30</td>
</tr>
<tr>
<td>170</td>
<td>Mercersburg-Chambersburg</td>
<td>Pa.</td>
<td>Stose, G. W.</td>
<td>40 00</td>
</tr>
<tr>
<td>171</td>
<td>Warren</td>
<td>Pa.-N. Y.</td>
<td>Butts, Charles</td>
<td>42 00</td>
</tr>
<tr>
<td>172</td>
<td>Laramie-Sherman</td>
<td>Wyo.</td>
<td>Darton, N. H.; Blackwelder, Eitot; Sleighbenthal, C. E.</td>
<td>41 30</td>
</tr>
<tr>
<td>173</td>
<td>Johnstown</td>
<td>Pa.</td>
<td>Phalen, W. C.</td>
<td>40 30</td>
</tr>
<tr>
<td>174</td>
<td>Birmingham</td>
<td>Als.</td>
<td>Butts, Charles</td>
<td>34 00</td>
</tr>
<tr>
<td>176</td>
<td>Bismarck</td>
<td>N. Dak.</td>
<td>Leonard, A. G.</td>
<td>47 00</td>
</tr>
<tr>
<td>177</td>
<td>Choptank</td>
<td>Md.</td>
<td>Miller, B. L.</td>
<td>39 00</td>
</tr>
<tr>
<td>178</td>
<td>Llano-Burnet</td>
<td>Tex.</td>
<td>Paige, Sidney</td>
<td>31 00</td>
</tr>
<tr>
<td>179</td>
<td>Kenova</td>
<td>Ky.-W. Va.-Ohio.</td>
<td>Phalen, W. C.</td>
<td>38 30</td>
</tr>
<tr>
<td>180</td>
<td>Murphysboro-Herrin</td>
<td>Ill.</td>
<td>Shaw, E. W.; Savage, T. E.</td>
<td>38 00</td>
</tr>
<tr>
<td>181</td>
<td>Apishapa</td>
<td>Colo.</td>
<td>Stose, G. W.</td>
<td>38 00</td>
</tr>
<tr>
<td>182</td>
<td>Ellijay</td>
<td>Ga.-N. C.</td>
<td>LaForge, LaForge; Phalen, W. C.</td>
<td>35 00</td>
</tr>
<tr>
<td>183</td>
<td>Talula-Springfield</td>
<td>Ill.</td>
<td>Shaw, E. W.; Savage, T. E.</td>
<td>40 00</td>
</tr>
<tr>
<td>184</td>
<td>Barneshoro-Patton</td>
<td>Pa.</td>
<td>Campbell, M. R.; Clapp, F. G.; Butts, Charles</td>
<td>40 45</td>
</tr>
<tr>
<td>185</td>
<td>Niagara</td>
<td>N. Y.</td>
<td>Kindle, E. M.; Taylor, F. B.</td>
<td>43 30</td>
</tr>
<tr>
<td>No.</td>
<td>Name of folio and year of publication</td>
<td>State</td>
<td>Author</td>
<td>Boundaries</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North</td>
</tr>
<tr>
<td>191</td>
<td>Raritan... 1914</td>
<td>N. J.</td>
<td>Bayler, W. S.; Kühn, H. B.; Salisbury, R. D.</td>
<td>41 00</td>
</tr>
<tr>
<td>192</td>
<td>Eastport... 192</td>
<td>Maine</td>
<td>Bastin, E. S.; Williams, H. S.</td>
<td>45 00</td>
</tr>
<tr>
<td>193</td>
<td>San Francisco... 193</td>
<td>Calif.</td>
<td>Lawson, A. C.</td>
<td>38 00</td>
</tr>
<tr>
<td>194</td>
<td>Van Horn... 194</td>
<td>Tex.</td>
<td>Richardson, G. B.</td>
<td>31 30</td>
</tr>
<tr>
<td>195</td>
<td>Belleville-Breeze... 195</td>
<td>Ill.</td>
<td>Udden, J. A.; Shaw, E. W.</td>
<td>38 45</td>
</tr>
<tr>
<td>197</td>
<td>Columbus... 197</td>
<td>Ohio</td>
<td>Hubbard, G. D.; Stauffer, C. R.; Bownocker, J. A.; Prosser, C. S.; Cumings, E. B.</td>
<td>40 15</td>
</tr>
<tr>
<td>198</td>
<td>Castle Rock... 198</td>
<td>Colo.</td>
<td>Richardson, G. B.</td>
<td>39 30</td>
</tr>
<tr>
<td>199</td>
<td>Silver City... 199</td>
<td>N. Mex.</td>
<td>Paige, Sidney; Darton, N. H.</td>
<td>33 00</td>
</tr>
<tr>
<td>200</td>
<td>Galena-Elizabeth... 200</td>
<td>Ill.-Iowa</td>
<td>Shaw, E. W.; Trowbridge, A. C.</td>
<td>42 30</td>
</tr>
<tr>
<td>201</td>
<td>Minneapolis-St. Paul... 201</td>
<td>Minn.</td>
<td>Sardeson, F. W.</td>
<td>45 15</td>
</tr>
<tr>
<td>203</td>
<td>Colorado Springs... 2</td>
<td>Colo.</td>
<td>Finlay, G. I.</td>
<td>39 00</td>
</tr>
<tr>
<td>204</td>
<td>Tolchester... 204</td>
<td>Md.</td>
<td>Miller, B. L.; Matthews, E. F.; Bibbina, A. B.; Little, H. P.</td>
<td>39 30</td>
</tr>
<tr>
<td>205</td>
<td>Detroit... 205</td>
<td>Mich.</td>
<td>Sherzer, W. H.</td>
<td>42 30</td>
</tr>
<tr>
<td>206</td>
<td>Leavenworth-Smithville... 206</td>
<td>Mo.-Kans.</td>
<td>Hinds, Henry; Greene, F. C.</td>
<td>39 30</td>
</tr>
<tr>
<td>207</td>
<td>Deming... 207</td>
<td>N. Mex.</td>
<td>Darton, N. H.</td>
<td>32 30</td>
</tr>
<tr>
<td>208</td>
<td>Colchester-Macomb... 208</td>
<td>Ill.</td>
<td>Hinds, Henry</td>
<td>40 30</td>
</tr>
<tr>
<td>209</td>
<td>Newell... 209</td>
<td>S. Dak.</td>
<td>Darton, N. H.</td>
<td>45 00</td>
</tr>
<tr>
<td>210</td>
<td>Herman-Morris... 210</td>
<td>Minn.</td>
<td>Sardeson, F. W.</td>
<td>45 45</td>
</tr>
<tr>
<td>211</td>
<td>Elkton-Wilmington... 211</td>
<td>Md.-Del.-N. J.-Pa.</td>
<td>Bascom, F.; Miller, B. L.</td>
<td>39 45</td>
</tr>
<tr>
<td>212</td>
<td>Syracuse-Lakin... 212</td>
<td>Kans.</td>
<td>Darton, N. H.</td>
<td>38 00</td>
</tr>
<tr>
<td>213</td>
<td>New Athens-Oakawville... 213</td>
<td>Ill.</td>
<td>Shaw, E. W.</td>
<td>38 30</td>
</tr>
<tr>
<td>214</td>
<td>Baton-Brilliant-Koehler... 214</td>
<td>N. Mex.-Col.</td>
<td>Lee, Willis T.</td>
<td>37 00</td>
</tr>
<tr>
<td>215</td>
<td>Hot Springs... 215</td>
<td>Ark.</td>
<td>Purdue, A. H.; Miser, H. D.</td>
<td>34 37</td>
</tr>
<tr>
<td>216</td>
<td>Carlyle-Centralia... 216</td>
<td>Ill.</td>
<td>Shaw, E. W.</td>
<td>38 45</td>
</tr>
<tr>
<td>217</td>
<td>Ray... 217</td>
<td>Ariz.</td>
<td>Ransome, F. L.</td>
<td>38 15</td>
</tr>
</tbody>
</table>
Geologic folios—Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio and year of publication</th>
<th>State</th>
<th>Author</th>
<th>Boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>North</td>
</tr>
<tr>
<td>216</td>
<td>Central Black Hills 1925</td>
<td>S. Dak.</td>
<td>Barton, N. H.; Paige, Sidney</td>
<td>0</td>
</tr>
<tr>
<td>220</td>
<td>Gillespie-Mount Olive 1926</td>
<td>Ill.</td>
<td>Lee, Wallace</td>
<td>39 15</td>
</tr>
<tr>
<td>221</td>
<td>Bessemer-Vandiver 1927</td>
<td>Ala.</td>
<td>Butts, Charles</td>
<td>33 30</td>
</tr>
<tr>
<td>222</td>
<td>Gaffney-Kings Mountain 1931</td>
<td>S. Car.-N. Car.</td>
<td>Keith, Arthur; Sterrett, D. B.</td>
<td>35 15</td>
</tr>
<tr>
<td>223</td>
<td>Coatesville-West Chester 1934</td>
<td>Pa.-Del.</td>
<td>Bascom, F.; Stose, G. W.</td>
<td>40 00</td>
</tr>
<tr>
<td>224</td>
<td>Somerset-Windber 1939</td>
<td>Pa.</td>
<td>Richardson, G. B.</td>
<td>40 15</td>
</tr>
<tr>
<td>225</td>
<td>Fairfield-Gettysburg 1934</td>
<td>Pa.</td>
<td>Stose, G. W.; Bascom, F.</td>
<td>33 15</td>
</tr>
</tbody>
</table>

1. Includes map showing artesian or other ground-water conditions.
2. Information on mineral water only.
3. International boundary.
4. Discusses mineral waters associated with the ore deposits and ground water in relation to the zone of oxidized ore and in relation to mine drainage.
5. Contains no discussion of ground water but a section and data regarding oil and gas wells, which give information as to depth at which salt water is found.
6. Gives 6 analyses of ground water.
7. The geologic maps show ground-water contours.
8. Gives log of well at Fort Dupont and data on several other wells.
9. Gives well logs, water analyses, and maps of ground-water conditions.
10. Gives log of 1 deep well and 2 analyses of ground water.
11. Describes the hot springs and gives average analysis of their water and the analyses of several cold springs.
12. Gives several well records and maps of artesian water-bearing formations.
13. Gives 38 analyses of well, spring, and stream waters.
15. Gives analysis of spring water.
16. Gives analyses of 9 well waters and 3 spring waters.

REPORTS PUBLISHED BY COOPERATING AGENCIES

ALABAMA

 Describes the geography, geology, and climate of the State. Contains a general discussion in regard to the occurrence, circulation, and recovery of ground water and in regard to artesian wells. Gives detailed description of wells, mineral waters, and ground-water conditions, with discussions of artesian prospects by provinces, counties, and vicinities. Discusses the chemistry and classification of the waters from the various horizons and gives water analyses. Includes maps showing the geology and the areas of artesian flow.
126 PUBLICATIONS RELATING TO GROUND WATER

Gives a brief discussion of the climate, an outline of the geology, and a description of the physiography. Discusses ground water in the several kinds of rocks and describes in detail the limestone caves in the several counties and the various water-bearing formations. Discusses the relation of ground water to structure, ground water in mines, and the chemical character of natural waters. A description by counties occupies the latter part of the report (pp. 185-345) and is followed by 23 photographs, chiefly of caves and springs.

States that most of the water containing harmful amounts of fluoride is derived from the Eutaw formation and that this water is generally very low in total hardness and high in bicarbonate content. Says that it is generally possible to obtain water of low fluoride content by drilling to an underlying formation, or, in some places, by the use of water from shallow wells.

Describes ground-water conditions in a belt about 50 miles wide, extending northwest-southeast across the State. Discusses the several water-bearing formations, quality of the water, and the several methods of well construction that are used and contains description of the ground-water supplies for 20 counties.

ARIZONA

A summary of investigations made in the Big Sandy Valley, the Queen Creek area, and Safford and Duncan Valleys.

Describes the geology, with special attention to the older valley fill and younger alluvium. Most of the wells obtain water from the latter. Discusses the probability of obtaining artesian water. Contains map showing location of wells, springs, and generalized geology.

Contains data on 73 wells and 20 springs with partial analyses of the water and logs of 7 wells. Contains 3 maps showing location of the wells and springs.

Contains brief descriptions of the valleys and records of water levels in observation wells.

 Prepared in cooperation with the Corps of Engineers, United States Army. Gives
15. Water resources of Safford and Duncan-Virden Valleys, Ariz., and N. Mex.—Continued.

Brief description of the geology, with inventory of water entering and leaving each valley. Concludes that river floods did not contribute much water to the ground-water reservoir, except in the form of temporary bank storage, most of which was returned to the river during receding stages. Discusses the effects of floods: pumping, evapo-transpiration, and irrigation. Gives data on the fluctuation of ground-water levels and on the quantity and quality of the ground water. Includes map of each valley showing contours of the ground-water table.

Contains records of 610 wells and 126 springs, 199 well logs, and 390 water analyses and map showing location of the wells and springs.

Prepared in cooperation with the Corps of Engineers, United States Army. Presents records of nearly 200 wells and springs, 24 well logs, and 59 water analyses and map showing locations of wells and springs.

Prepared in cooperation with the Corps of Engineers, United States Army. Gives records of 251 wells, drillers logs of 54 wells, the logs of 16 test holes, 84 analyses of samples of well water, and two analyses of samples of water from Queen Creek. Lists 18 previous reports or releases on water supply in southern Arizona.

Lists the publications that have been released and describes the ground-water projects that are under investigation.

20. Ground-water resources of the Santa Cruz Basin, Ariz., by S. F. Turner and others, Tucson, Ariz., May 14, 1943. 84 pp., 3 pls. 4 figs. (Mimeographed.)

Prepared in cooperation with the Corps of Engineers, United States Army. Contains sections on the History of the Santa Cruz Valley and Development of irrigation, by M. J. Scott; Geology and its relation to ground-water supplies, by G. A. Waring; and Quality of water, by J. D. Hem. Presents a detailed study of the ground-water supplies in the irrigated areas and gives estimates of the amounts of ground-water inflow from the several tributary areas. Contains many data on ground-water recharge from flood flows.

20 a. Geology and ground-water resources of the Verde River Valley near Fort McDowell, Ariz., by H. R. McDonald and H. D. Padgett, Jr., Tucson, Ariz., Nov. 1 1945. 99 pp., 5 pls., 11 tables, 14 figs. (Mimeographed.)

Prepared in cooperation with the city of Phoenix, Ariz. Gives general data on the geology and discusses the recharge and discharge of ground water, ground-water storage, and quality of the water with chemical analyses. Includes records of 114 wells.
ARKANSAS

Describes geologic conditions affecting the occurrence of ground water. Gives data on water levels in 1929, 1938, and 1944. Discusses determination of permeability, transmissibility, and storage coefficients, the yield from Pleistocene water-bearing beds, and conservation of the supply. The plate shows contours of the piezometric surface of the Grand Prairie rice region in the spring of 1944.

CALIFORNIA

Gives history and methods of water spreading and amount of water spread along Santa Ana River and other streams. Gives data in regard to precipitation, run-off, and stream percolation in the San Bernardino Basin. Describes the ground-water reservoir in this Basin, giving data on fluctuations of the water table and the artesian head. Discusses ground-water fluctuations in other basins in southern California and draws conclusions as to the effect of water spreading. Includes a map showing the original area of artesian flow in the San Bernardino Basin and the areas in 1904 and 1912, also locations of wells and of lands used for spreading water.

A brief report covering an arid valley, known as Salt Wells Valley, which lies mostly in northeastern Kern County but extends into Inyo and San Bernardino Counties and comprises a part of the area included in Tps. 25-27 S., Rs. 38-40 E. Gives information in regard to precipitation, stream flow, evaporation of ground water, and water supply available by pumping from wells.

"The purpose of this investigation was to determine the total quantity of ground water that reaches the valley or flood channel of the river in this area." The data presented are based on discharge records at five gaging stations on the river and on records of the ground-water level in several wells. Concludes that there is a large supply of ground water now unused, which could be recovered by pumping from wells. "The storage in this underground reservoir, as well as the summer inflow, could be drawn upon to meet the fluctuating demands of irrigation."

24. Index of factual data from water wells on a part of the coastal plain in Los Angeles and Orange Counties, Calif., by A. M. Piper, J. F. Poland, and others. Los Angeles, Calif., June 1942. 298 pp. 2 pls. (Dittoed.)

Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. Embodies a cross reference to numbers that have been ascribed by various agencies to about 4,000 wells in the area. Describes each of the three principal systems of numbers for the wells, based on "serial" numbers, "location" numbers, and numbers applied by the United States Geological Survey. Gives sources and scope of the data and indexes of the wells under the three numbering systems.

25. Descriptions of water wells in the coastal zone of the Long Beach-Santa Ana area, Calif., by J. F. Poland and others. Los Angeles, Calif., December 1942. vii, 152 pp. (Mimeographed.)
25. Descriptions of water wells in the coastal zone of the Long Beach-Santa Ana area, Calif.—Continued.
Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. A collection of data on 1,929 wells in the Long Beach-Santa Ana area compiled in the course of an investigation of salt-water contamination of the ground water in that area.

26. Partial chemical analyses of waters from wells, streams, ponds, and sumps in the coastal zone of the Long Beach-Santa Ana area, Calif., 1940-43, by A. A. Garrett and others. Los Angeles, Calif., July 1943. xxi, 89 pp., 3 pls. (Dittoed.)
Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach.
Prepresents analytical data from 2,090 partial analyses of water samples taken from 948 wells, 41 points on streams, and 29 ponds and sumps. Draws conclusions as to significant changes in quality of the waters.

27. Water resources of Santa Barbara County, Calif., a report of progress in the cooperative inventory, by J. E. Upson, A. M. Piper, and others. Los Angeles, Calif., August 1943. 32 pp. (Mimeographed.)
Prepared in cooperation with Santa Barbara County. Describes the methods of investigation, including geologic mapping, establishment of observation wells, and chemical analyses of water samples. Discusses the general features of the ground-water basins of Santa Ynez Valley, Goleta Basin, and Carpinteria Basin.

Prepared in cooperation with Santa Barbara County. Gives a summary of the hydrologic features and describes 195 observation wells, with records of the water levels.

29. Progress report on the cooperative ground-water investigation in the Long Beach-Santa Ana area, Calif., by A. M. Piper, J. F. Poland, and others. Los Angeles, Calif., August 1943. 45 pp., 8 pls. (Mimeographed.)
Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. Discusses scope of the investigation and gives data on observation wells, chemical analyses of ground waters, inventory of ground-water withdrawal, and water-level measurements. Describes the geologic features of the coastal zone and the extent of salt-water encroachment.

30 a. Description of water wells and water levels in observation wells in 1930-41 in the Carpinteria, Goleta, and Santa Ynez Valley areas of Santa Barbara County, Calif., by G. A. LaRocque, Jr., G. F. Worts, Jr., and J. E. Upson. Los Angeles, Calif., May 1944. 359 pp. (Mimeographed.)
Prepared in cooperation with Santa Barbara County. Provides descriptions of many observation wells and records of the water levels. To be published also as Water Supply Paper.

30 b. Description of water wells and water levels in observation wells in 1920-41 in the San Antonio, Santa Maria, and Cuyama Valleys of Santa Barbara County, Calif., by G. A. LaRocque, Jr., J. E. Upson, G. F. Worts, Jr., and L. Porter, Jr. Los Angeles, Calif., August 1944. 168 pp. (Mimeographed.)
Prepared in cooperation with Santa Barbara County. Provides descriptions of many observation wells and records of the water levels. To be published also as Water Supply Paper.
PUBLICATIONS RELATING TO GROUND WATER

30 c. Progress report on the cooperative ground-water investigation in the Torrance-Santa Monica area, Calif., by J. F. Poland, A. A. Garrett, and Allen Sinnott. Los Angeles, Calif. September 1944. 53 pp., 6 pls. (Dittoed.)

Prepared in cooperation with the Los Angeles County Flood Control District and other agencies. States that during the past 20 years there has been progressive salt-water contamination of the shallow water-bearing gravel west of Long Beach and of the main water-bearing zone extending northward from Redondo Beach. Discusses the sources of contamination and the absence of natural barriers to prevent more extensive contamination.

30 d. Geologic features in the coastal zone of the Long Beach-Santa Ana area, Calif., with particular respect to the ground-water conditions, by J. F. Poland, A. M. Piper, and others. Los Angeles, Calif., May 1945. 327 pp. (Mimeographed.)

Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. Discusses the geology and gives detailed information on the ground-water conditions of the area. To be published also as Water Supply Paper of the United States Geological Survey.

30 e. Withdrawals of ground water from the Long Beach-Santa Ana area, Calif., by J. F. Poland, Allen Sinnott, and others. Los Angeles, Calif., November 1945. 112 pp. (Mimeographed.)

Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. Presents detailed information on the amounts of ground water developed in the area.

30 f. Chemical character of native and contaminated waters in the Long Beach-Santa Ana area, Calif., Appendix, by A. M. Piper, A. A. Garrett, J. F. Poland, and others. Los Angeles, Calif., November 1945. 111 pp. (Dittoed.)

Prepared in cooperation with the Orange County Water District, the Orange County Flood Control District, the Los Angeles County Flood Control District, and the Board of Water Commissioners of the city of Long Beach. Discusses the character of the contamination and presents analyses of the ground waters.

COLORADO

Discusses the ground-water conditions in the area, the movements of the ground water, and water supply in the Santa Fe formation. Issued in mimeographed form in 1937 by the U. S. Geological Survey with the title Outline of the geology and ground-water conditions of the Rio Grande depression in Colorado and New Mexico (64 pp.).

Discusses ground water in the shallow valley fill—its source, recharge, and use for irrigation. Describes the artesian water from late Tertiary deposits and gives data on the quantity discharged and the fluctuations in head. Issued in mimeographed form in 1937 by the U. S. Geological Survey (119 pp.).

CONNECTICUT

41. Record of wells, springs, and ground-water levels in the towns of Bridgeport, Easton, Fairfield, Stratford, and Trumbull, Conn., by R. M. Leg-

Gives the owners, elevations above sea level, types, depths, diameters, depths to bedrock, water levels, chloride determinations, and maps showing the locations of 1,878 wells in 5 towns in southwestern Connecticut.

42. Record of wells, springs, and ground-water levels in the towns of Branford, Chester, Clinton, Essex, Guilford, Haddam, Killingworth, Madison; North Branford, Old Saybrook, Saybrook, and Westbrook, Conn., by R. M. Leggette and others. Connecticut Ground-Water Survey Bull. GW-2, Hartford, Conn., 1938. 340 pp. (Mimeographed.)

Gives tabulated data on 2,624 wells in the 12 towns. Includes maps showing the location of wells and springs.

Gives tabulated data on 1,837 wells in the 8 towns named. Includes maps showing the location of wells and springs.

Gives tabulated data on 1,158 wells in the 8 towns named. Includes maps showing the location of wells and springs.

Gives tabulated data on 3,042 wells in the 8 towns named. Includes maps showing the location of wells and springs.

Contains a description of the ground-water investigation being conducted in the New Haven area, one of the most critical in the State with respect to ground-water supply.

Summarizes the progress of ground-water studies in Connecticut during 1942-44.

FLORIDA

51. A preliminary report on the underground-water supply of central Florida,
A general discussion of ground water and of the shallow and deep water-bearing formations in the central part of the State. Contains analyses of well and spring waters and water-supply tables giving the principal sources of water in towns in each county.

Gives a general discussion of ground water and of artesian water and a description, by counties, of ground-water supplies in 9 counties in eastern Florida, with local details, including well logs and water analyses. Contains maps showing areas of artesian flow in Florida and in the several counties. See also Fifth Annual Report, 1913.

Consists of county reports on the location and surface features, elevation, drainage, area of artesian flow, and local details, including well logs and water analyses in 16 counties in the western part of the State. Includes maps showing the areas of artesian flow.

Gives a preliminary discussion of ground water and of artesian conditions in Florida and a description by counties of the water-bearing formations and areas of artesian flow in 19 counties in the eastern and southern parts of the State, in part reprinted from the Third Annual Report. Contains water analyses and well logs and maps showing areas of artesian flow.

A comprehensive summary of the geology of the State. Describes the several formations and gives details for each county in which they are exposed. Mentions the solution of Ocala limestone by free circulation of ground water (p. 48), springs and sinks in the Ocala and Tampa limestones and in the Hawthorn formation, sinks in the Choctawatchee formation (p. 145), and natural wells and pot holes in the Key Largo limestone (p. 209).

Describes ground-water studies in Florida by the United States Geological Survey in cooperation with the Florida State Geological Survey, with brief statements on principal water-bearing formations, contamination by salt water, and other problems relating to the occurrence of ground water.

Describes the several water-bearing formations of Recent to Eocene age and the artesian conditions, with well records and data on the quality of the water.

Describes the Tertiary formations of the area and their water-bearing properties, the present water supplies from wells and springs, truck-farm irrigation from wells,
58. Ground-water resources of Sarasota County, Fla.—Continued.
the artesian area, and the quality of ground water and its relation to sea water, with discussion of the Ghyben-Herzberg theory. Gives data on the consumption of water, and the State law for conserving the artesian water. Includes a hydrologic map, table of analyses of ground water, and table of well records.

Summarizes the data obtained concerning the source of the artesian water by use of the deep-well current meter, discusses the quality of the water, and gives analyses of 27 well waters.

This is in part a progress report on studies of ground-water supplies and consumption in Manatee, Pinellas, northwestern Hillsborough, Orange, Seminole, and Duval Counties. Contains notes on the quality of water, artesian conditions, and contamination by salt water.

A summary of investigations on the quantity and quality of shallow water and artesian supplies.

Prepared in cooperation with Dade County and the cities of Miami, Miami Beach, and Coral Gables. A detailed discussion of the area under the headings Surface water, Geology and test wells, Ground water, and Quality of water.

Discusses the nonartesian ground-water supplies and their protection from salt-water contamination. Gives information on the surface-water supplies. Includes maps showing salt-water encroachment and contours of the water table.

64. Ground-water conditions in Orlando and vicinity, Fla., by A. G. Unklesbay. Tallahassee, Fla., 1944. 61 pp., 11 figs. (Mimeographed.)
Prepared in cooperation with the Florida Geological Survey and the Corps of Engineers, United States Army. Gives a short discussion of the geology and of ground-water conditions. Presents about 250 well records and tabulated water-level measurements on about 145 observation wells.

Prepared in cooperation with the Florida Geological Survey, Dade County, and the cities of Miami, Miami Beach, and Coral Gables. Describes the Sandy Flatlands, the Big Cypress Swamp, and the Everglades. Discusses in detail the Pleistocene and Pliocene rocks. States that test wells in the Miami area indicate that the Tamiami formation is among the most productive water-bearing formations ever investigated by the United States Geological Survey. Considers large areas of salty ground water in the northern part of the Everglades to be remnants of sea water altered by dilution with fresh water and by chemical reactions mainly of the base-exchange type.
134 PUBLICATIONS RELATING TO GROUND WATER

FOREIGN

71. Memorandum on the geology of the ground waters of the Island of Anti­
gua, B. W. I., by T. W. Vaughan. Imperial Dept Agr. for the West
Indies, West Indian Bull., vol. 14, No. 4, Georgetown, Barbados, 1915.
pp. 276-280.

Outlines the physiography and geology of Antigua and their bearing on ground-
water conditions. Discusses the prospects of obtaining artesian and other ground
water and the quality of the ground water, especially with reference to salt. Includes
a sketch map of the island showing the geology. Refers to work of H. A. Tempany,
chemist and superintendent of agriculture for the Leeward Island-is, who published
two papers on the same subject containing some detailed spring and well data and a
number of analyses of ground water. The papers by Tempany are The water supply
of Antigua (West Indian Bull., vol. 12, No. 4) and The ground waters of Antigua
(West Indian Bull., vol. 14, No. 4.)

72. Geology of the Republic of Haiti, by W. P. Woodring, J. S. Brown, and
W. S. Burbank. Dept. Public Works, Geol. Survey, Republic of Haiti,
Port-au-Prince, Haiti, 1924. 631 pp., 40 pis.

Parts I-IV (pp. 28-512) form a comprehensive report on the geography, geology,
geomorphology, and mineral resources. Part V discusses the surface and ground-
water supplies by topographic areas (pp. 513-542), the quality of water (pp. 542-
550), springs (pp. 550-566), and public water supplies (pp. 566-578). Under quality
of water gives analyses of about 15 water samples in tabulated and in graphic form.
Describes several types of springs and includes 6 analyses of spring water. Includes
a bibliography and two appendixes on fossils (pp. 596-613), four geologic maps
(pis. 1, 2, and 86 and fig. 29), and four sketch maps showing springs and water
supplies (figs. 34-37). French edition also published.

GEORGIA

81. A preliminary report on the underground waters of Georgia, by S. W.
McCallie. Georgia Geol. Survey Bull. 15, Atlanta, Ga., 1908. 370
pp., 30 pis.

Describes the physiography and geology of the State and discuses briefly precipi-
tation, evaporation, and absorption by the soil. Describes in general the water of
the various geologic formations, and in more detail the ground-water conditions in
each county in the Coastal Plain, Crystalline area, and Paleozoic area. Contains
numerous analyses of ground water and discussions of the quality. Includes a
chapter entitled "Experiment relating to problems of well contamination at Quit-
man" and one entitled "Blowing springs and wells of Georgia." It includes a table of
data regarding public water supplies, a table of miscellaneous spring records, and
a geologic map of Georgia.

82. Reports on condition of water supply at Savannah, Ga. Mayor of Sa-

Contains the following papers submitted by the United States Geological Survey:
Preliminary report on Savannah water supply, by L. W. Stephenson and R. B.
Dole, pp. 1-14.
The water supply of Savannah, Ga., by R. B. Dole, pp. 15-89. These papers
discuss the yield and head of the artesian wells of Savannah, the consumption of
water, the sanitary and chemical quality of the water, and the cost of operation.
They give the results of fluorescein tests and several analyses of surface and
ground water. They conclude with recommendations for future developments.

83. Artesian water in southeastern Georgia, with special reference to the
coastal area, by M. A. Warren. Georgia Div. Cons.—Dept. Mines,
Mining and Geol. Bull. 49, Atlanta, Ga., September 1944. 140 pp.,
34 figs.

States that the principal artesian aquifers are the Ocala limestone (Eocene) and
Suwanee limestone (Oligocene) and discusses their distribution and direction of
dip. Says that excessive discharge from wells has greatly lowered the original piezo-
metric surface and gives specific data. Considers the possibility of contamination
by inflow of salt water in the Savannah area to be remote.

Presents tabulated records of wells in 12 counties in southeastern Georgia.

HAWAII

Discusses and gives data regarding artesian water on the Island of Oahu, the relation of precipitation to artesian head, the discharge of flowing and pumped wells, the interference of wells, the progress of artesian well boring, and waste of water from artesian wells. Includes a proposed law relating to the use of water from artesian wells. The data were collected by R. C. Rice and R. D. Klise, of the United States Geological Survey, under the direction of T. F. Sedgwick.

Part 1 (pp. 1-198) describes the geography, geomorphology, and geology, with mention of the water-bearing properties of the several volcanic series. Part 2 (pp. 199-467) describes ground-water resources in detail. Basal ground water (pp. 215-378) treats of the water in the several lava formations, the artesian conditions being discussed in several subdivisions. Perched ground water (pp. 378-467) treats of water-supply tunnels and springs. Gives a numbering system for drilled wells, shown on the map in Bulletin 2. Includes small map of ground-water areas on Oahu.

An annotated list of 436 titles, arranged alphabetically by authors. About 170 of the articles are listed in the index under ground water and subjects relating to it.

By March 1938 a total of 186 wells had been drilled within the district of Honolulu and 549 on Oahu outside the district of Honolulu. In the tabulated lists 409 of these 735 wells have been given numbers, 1 to 409 inclusive, the other 326 wells being designated by subletters or numbers. The data include location, well logs, ownership, and use.

The text contains no data on ground water, but the map (pl. 2, scale 1:62,500) shows the location of drilled wells, dug wells and shafts, water tunnels, and springs, numbered with reference to lists given in Bulletin 1.

This report brings up to date the progress in ground-water development on Oahu since Bulletin 1 was issued in 1935. Describes ten shafts constructed since 1935 that are capable of delivering 100,000,000 gallons of water a day. A graph shows the striking rise of ground-water levels as a result of the wet years of 1936-39. Includes the results of an electrical resistivity survey of the depth to water under the Schofield Plateau. Lists public water supplies and their geologic source, the discharge of the Waialua hole water-development tunnels, and the monthly pumpage of Honolulu and the sugar plantations from 1934 to 1939. Give tunnels developing ground water
97. Supplement to the Geology and ground-water resources of the Island of Oahu, Hawaii—Continued.

that were not described in Bulletin 1 and records of wells drilled since Bulletin 4 was published. Includes the records of transpiration and evaporation at Laulakahua and Kaukonahua stations since 1934. Contains a map showing shafts and tunnels and a map of Oahu showing ground-water areas.

The report is divided into Part 1, Geology and ground-water resources of the island of Lanai (pp. 1-115), and Part 2, Geology and ground-water resources of the island of Kahoolawe (pp. 117-173). After introductory statements on the geography and history of Lanai, the report discusses the geomorphology and the geology of the island, with statements on the water-bearing properties of the several formations of volcanic and sedimentary rocks. Presents a 3-page discussion of the petrography of the volcanic rocks, followed by discussion of ground water (pp. 63-95). This includes basal ground water (pp. 75-85) and high-level ground water (pp. 85-95). Explains under the former heading the application of the Ghyben-Herzberg principle to conditions on the island. Under the latter heading gives data on the construction and discharge of the several water tunnels. The geophysical investigations by Swartz (pp. 97-115) were made to determine the depth to the water table beneath a part of the island. The discussion of Kahoolawe is similar to that of Lanai, with description of the water-bearing properties of the several series of volcanic rocks. Treats fully of the petrography of the volcanic rocks (pp. 140-173). The report includes a geologic and topographic map of Lanai and a small geologic map of Kahoolawe showing wells.

The report is divided into Part 1, General geology and ground-water resources of Maui (pp. 1-222); Part 2, Geology and ground-water resources of the Nahiku area, east Maui (pp. 22-274); and Part 3, Petrography of Maui (pp. 275-305). Maui is composed of two eroded volcanoes and covers 728 square miles. The lava rocks in east Maui are divided into the Honomanu, Kula, and Hana volcanic series, and in west Maui into the Wailuku and Lahaina volcanic series. The sedimentary rocks consist of alluvium, calcareous dunes, and a mud flow. The Honomanu, Wailuku, and Kula lavas are the chief aquifers. They supply 28 irrigation wells, which yield an average of 170 million gallons a day of basal water. These wells are minelike shafts with infiltration tunnels and are called Maui-type wells. Well 16 yields 40,000,000 gallons daily with a 2½-foot drawdown, which is the largest amount yielded by any well in the Hawaiian Islands. The largest spring (No. 26) on the island is artesian. It yields 10,400,000 gallons daily and issues from Kula lavas near Nahiku. West Maui has numerous perennial streams supplied by springs from a dike complex. Twenty-three tunnels in west Maui recover 20.5 million gallons a day of high-level water, mostly from this dike complex. East Maui has few perennial streams in proportion to its size, and they are chiefly small, owing to the water sheds being underlain with permeable lavas. Forty tunnels recover a million gallons a day of high-level water in east Maui and all from structures other than dikes.

It is estimated that about 100 million gallons a day of basal water wastes into the sea from west Maui and about 700 million gallons a day from east Maui. Describes a number of sites where wells could be sunk to recover this water. Also describes sites where tunnels could be driven to recover high-level supplies. The hydrology of east and west Maui is conspicuously different in many respects, mainly because of the difference in the stage of dissection, the extensive veneer of very permeable Hana lavas on east Maui, and the comparatively small area of the Lahaina lavas of similar age on west Maui. The only thermal water known in the Hawaiian Islands, except on the active volcano of Kilauea, is in a well in west Maui.

The report includes a geologic and topographic map of Maui (scale 1:62,500) showing wells, tunnels, springs, irrigation ditches, and reservoirs.
111. Preliminary report on the water resources of the Mud Lake Basin, Idaho, by L. L. Bryan and H. T. Stearns, Moscow, Idaho, June 1922. 44 pp., 41 pis. (Mimeographed.)

Prepared in cooperation with the U. S. General Land Office, the Idaho Department of Reclamation, and the Idaho Bureau of Mines and Geology. Discusses the geology, climate, streams, and water table and gives data on the water supply in lakes, the ground-water supply, and artesian conditions. Includes numerous diagrams showing stream discharge and ground-water levels. Contains map showing ground-water contours and table of 17 analyses of well, spring, and lake waters. See also Water-Supply Paper 818.

The area studied also includes small parts of the basin in Utah and Nevada. Describes the surface-water resources and gives runoff, precipitation, and other records. Describes the water in the Quaternary alluvium and in the Tertiary volcanic rocks (pp. 49-74). Discusses the artesian area, describes thermal springs, and gives well records and analyses of water samples.

Describes the geology of the Moscow basin, ground-water conditions in the valley fill, and the decline in head of artesian wells. Gives the total annual consumption of water in Moscow as 230,000,000 gallons. Estimates the annual increment to the basin to be 550,000,000 gallons. Makes recommendations for improving the city water system. Includes a map showing geology of the basin, location of wells, and artesian head.

Describes the land forms, rock formations, and geologic development of the basin. Gives data on the precipitation and streams. Discusses the water table and the discharge, quality, and temperature of ground water. Concludes that flowing artesian water is not to be expected from the consolidated rocks but that small flowing wells may be developed in the valley fill. Contains 22 well records and 4 analyses of ground water. Includes map showing geology and well locations.

Describes the structure of the several geologic formations of the area and the Lewis artesian basin. After brief discussion of the surface-water resources, gives details of the Bruneau artesian slope, with records of 104 artesian wells. Discusses the quality of the water and presents analyses of 20 well waters and 3 spring waters. Makes recommendations for further development of the artesian water supply.

Describes the geology and ground-water conditions in the lava and the alluvium. Discusses the artesian conditions and area, with statements of the amount, permanence, and quality of the water and gives numerous well records and analyses of 4 well waters and 3 spring waters. Treats briefly of irrigation problems and well construction. Includes a map showing the geology and the water table by contours.

117. Ground water for municipal supply at Idaho Falls, Idaho—Continued.

Gives the results of a short field examination in March and April 1926. Con­cludes that the most favorable chances for an uncontaminated water supply will be obtained by drilling to porous layers of basalt or to sand and gravel beneath the basalt.

Describes the area and the types of lava. Water or ice is present in three kinds of localities—large water holes in broken lava, where snow collects in winter; crev­ices into which water may drip during thawing periods in autumn or spring and be refrozen by cold circulating air; and lava caves or tubes, where drafts of cold air freeze water that has percolated into them. Lists the names and locations of 15 places where perennial water or ice is present. Plate 1 is a sketch map showing the location of the area. The other plates are photographs of the area and of volcanic phenomena.

ILLINOIS

Discusses the economic features of the district as a manufac­turing site and describes the topography and geology and the water supplies from springs, cisterns, streams, lakes, reservoirs, and wells. Discusses underground drainage, fluctua­tions of the water table, water resources of the karst, contamination of karst water, unusual phenomena associated with springs and wells, and artesian condi­tions. Contains well sections and mineral and sanitary analyses of water.

INDIANA

134. Ground-water resources of the Indianapolis area, Marion County, Ind., by C. L. McGuinness. Indiana Dept Cons., Div. Geol., Indianapolis, Ind., Jan. 1, 1943. 49 pp. (Mimeographed.)

Describes the geology of the area and the principal water-bearing formations. Gives data on the development of wells.

135. Preliminary report on ground-water conditions in the vicinity of Scotts­burg, Scott County, Ind., by F. H. Klaer, Jr., Indiana Dept. Cons., Div. Water Res., Indianapolis, Ind., April 1945. 8 pp., 1 pl. (Mimeographed.)

The total public water supply from shallow wells in glacial deposits was about 130,000 gallons a day in December 1944. This amount was not sufficient for all needs, and nearly 50 test wells were drilled to determine other favorable areas for constructing wells. Further testing is recommended south of the local drainage basin of a small lake that has supplied water for industrial use.

136. Memorandum concerning a pumping test at Gas City, Ind., with a de­tailed discussion of the methods used in the quantitati­ve analysis of water-well interference problems, by J. G. Ferris. Indian Dept, Cons., Div. Water Resources, Indianapolis, Ind., April 1945. 23 pp., 8 figs. 7 tables. (Mimeographed.)

The municipally-owned water supply of Gas City is obtained from a group of four wells serving a population of 3,400. The daily consumption in 1943 ranged from 171,000 gallons in January to 297,000 gallons in August. The report gives data on test drilling and pumping tests to develop a larger supply and presents a mathematical analysis of the pumping tests.

IOWA

Underground water resources of Iowa—Continued.

An exhaustive study of the ground-water resources of the State, divided into 15 chapters as follows:
1. Topography and climate, by H. E. Simpson.

Includes a map of Iowa showing artesian conditions and elevation of the St. Peter sandstone and map showing glacial drift sheets. This report is essentially the same as Water-Supply Paper 293.

KANSAS

Following 7 years of deficient precipitation, a few apparently successful irrigation wells have been drilled, in some of which the water stands more than 150 feet below the surface. Before irrigation from wells becomes more widespread, it is recommended that detailed ground-water studies be started with a view to determining the probable effect that increased withdrawal may have on the underground reservoirs.

The main part of the report treats of the geologic conditions affecting the occurrence of ground water and describes the several water-bearing formations of the State. A small map (fig. 19) shows the ground-water provinces of the State. Contains the following papers:

- Occurrence of ground water in Ford County, by H. A. Waite, pp. 67-68.
- Ground water in the Scott district, by H. A. Waite, pp. 73-74.
- Ground-water investigations in the Stanton district, by T. G. McLaughlin and Bruce Latta, pp. 75-76.
- Gaging the ground-water reservoirs of Kansas, by S. W. Lohman, pp. 77-79.

143. Prospecting for a softer water supply for the Kansas State Penitentiary, Lansing, Kans., by S. W. Lohman and Alexander Mitchell. Kansas State Board of Health, Lawrence, Kans., July 1940. 17 pp., 1 map. (Mimeographed.)

Describes present supply from four wells of large diameter in alluvium and the pumping equipment. Gives data on nine test wells. Recommends either more complete treatment of present supply to reduce hardness or the use of water from Missouri River.

Describes the geologic formations and their water-bearing characteristics and discusses artesian water, the amount developed from springs, flowing wells and nonflowing wells. Treats of the quality of the water, present utilization, and future development of the basin. Contains a short discussion of the shallow ground water. Includes maps showing ground-water levels and areas of artesian flow and a contour map of the piezometric surface near Meade County State Park.

Gives a summary of the geography and geology of the county and a general discussion of the occurrence of ground water, its recharge, discharge, recovery, utilization, and quality. Describes the several water-bearing formations. Includes 38 analyses of water samples from wells, 22 well logs, and tabulated data on 147 wells. Contains maps showing geology, water-table contours, and depths to water.

"This report presents the results of a detailed investigation of the ground-water conditions in and near Lawrence, with particular reference to the possibility of replacing the present municipal surface-water supply with a suitable supply of ground water. ... The alluvium in the Kansas River Valley is by far the most productive source of ground water in the vicinity of Lawrence." Estimates that an adequate supply for the city can be obtained from the alluvium in the Kansas River Valley. Includes a map showing water-table contours and gives analyses of 34 water samples from wells and test borings and records and logs of wells and borings.

Describes the geographic features and the water-bearing characteristics of the Lamotte sandstone, Roubidoux sandstone, Jefferson City-Cotter dolomite, and Boone limestone. Includes several water analyses.

A short discussion of the character of the Pennsylvania, Tertiary (?), and Quaternary rocks, and water supplies in them.

Describes the general geology and the several water-bearing formations and gives data on the recovery, utilization, and quality of water. Contains well records, well logs, data on water levels, and 38 analyses of water from typical wells. Includes maps showing geology, water-table contours, and depths to water.

Describes the available ground-water supplies in McPherson Valley, in Arkansas River Valley between Hutchinson and the Oklahoma State line, and in areas where only small supplies are available.

"This report calls timely attention to the availability in many parts of Kansas of large supplies of water from wells or from streams for use by national defense agencies. It also summarizes the quality of water from wells in different parts of the State with reference to suitability for industrial use." Contains list of references to publications on geology and water resources in Kansas.

152. Kansas mineral resources for wartime industries—Continued.

"Industrial ground-water supplies in excess of 5 million gallons a day can be obtained at many places in Kansas, and at certain selected localities supplies in excess of 20 million gallons a day are available."

Describes the source, occurrence, availability, and quality of ground water. The Ogallala formation (Pliocene) and Dakota sandstone (Cretaceous) are the chief water-bearing formations in the uplands. Large supplies of hard water are obtained from alluvium in the Arkansas River Valley. Discusses recharge and discharge of ground water and describes the various types of wells used. Tables give well records, well logs, and chemical analyses.

Summarizes the geology, geography, and ground-water resources and gives data on well logs and test holes. States that much artesian water is obtained from the Ogallala formation (Pliocene). Includes chemical analyses of 48 samples of ground water and tabulated records of 354 wells and 24 test holes.

A detailed report on the area, with preliminary description of the geography and general geology. Discusses fluctuation of the water table, ground-water recharge and discharge, and recovery, utilization, and quality of water, with analyses. Summarizes the principal geologic formations and their water-bearing properties. Includes well records and logs, map showing geology and water-table contours, and map showing depths to water.

Describes the geology of the area, which is covered by deposits of Cretaceous, Tertiary, and Quaternary age. States that water in some of the Cretaceous sandstones is highly mineralized but in some of the Dakota sandstone (Cretaceous) and in younger formations is satisfactory for most uses. The depth to water ranges from about 5 feet in the main stream valleys to more than 150 feet in some upland wells that obtain water from Dakota sandstone.

Gives the results of an investigation for water supply for the Kansas Ordnance Plant. Test drilling showed a thickness of about 35 feet of alluvium. A pumping test showed that about 200,000 gallons of water a day could be developed from several wells distributed in an area of about one square mile, with a pumping rate not greater than 50 gallons a minute from each well.

Describes the geologic formations and states that the main water-bearing beds are in the Ogallala formation (Pliocene) and in Pleistocene deposits and stream alluvium in the valleys of the Arkansas and Pawnee Rivers. States that the ground water is generally hard but suitable for most purposes. Discusses recharge to the aquifers and presents maps showing contours on the water table and depth to water.

159. Geology and ground-water resources of Thomas County, Kans., by J. C. Frye, with analyses by E. O. Holmes, Kansas Geol. Survey Bull. 59, Lawrence, Kans., December 1945. 111 pp., 6 pls., 13 figs.
159. Geology and ground-water resources of Thomas County, Kans.—Continued.

A detailed report on Thomas County, with discussion of the several water-bearing formations, data on quantity of water, and well records.

KENTUCKY

Pleistocene deposits of gravel in the Ohio River Valley near Louisville have a maximum thickness of about 180 feet. Heavy pumpage for industrial plants in 1941-42 seriously lowered the ground-water supply, which is recharged chiefly by infiltration from the river. The report recommends reduction of pumpage until it does not exceed the recharge and suggests the development of additional supplies by induced filtration from the river, recharge through wells and basins, and the construction of wells in outwash deposits southwest of Louisville. Contains maps showing contours on the bedrock, contours on the water table, and lines of equal thickness of saturated aquifer.

Describes the need for cool water by two large alcohol distilleries and the serious lowering of the ground-water table by continuous pumping of their own wells. States that the difficulty was solved by pumping the private wells only in the summer and using water from the municipal wells in the winter.

Describes the formation of shale and jointed and cavernous limestone of Ordovician to Mississippian age. States that about 50 deep wells have been drilled. About one-third of these yield water of good quality at rates of more than 20 gallons a minute; the rest encountered highly mineralized water. Estimates the total pumpage in 1943 as being 5 to 8 million gallons a day.

Presents 92 tabulated analyses of water from wells in or near Louisville.

Gives the results of a cooperative investigation on the decline of the ground-water level, which indicate that pumpage exceeded the probable recharge by 20 to 30 million gallons a day. Recommends that pumping be reduced to less than 40 million gallons a day.

Supplements list of analyses issued August 1944 and includes second analyses of water from 48 of the wells in the previous group. Also includes analyses of water from 10 wells that were not previously sampled. Map shows location of all the wells included in both tabulations.

A tabulated list of 175 logs of wells and test borings in Kentucky.

Discusses the subject under the chapter headings of Geology, General underground water conditions, Methods and cost of well making, and Underground water prospects by counties. Contains table of wells and springs and maps of artesian areas. A preliminary report entitled, "The underground waters of northern Louisiana and southern Arkansas," by A. C. Veatch, but not specifically a joint report of the State and Federal surveys, was issued in 1905 as Louisiana Geol. Survey Bull. 1, pt. 2.

A general discussion of ground-water resources of the State and their development for municipal supplies and irrigation. In 1937 nearly 214,000 acres were irrigated from wells, chiefly rice land in the southwest part of the State. Mentions studies of water levels in Rapides Parish, with notes on the post-Miocene and Miocene water-bearing beds. Notes the presence of objectionable amounts of fluoride in some waters.

Discusses the chemical character of water from the Miocene formations and from sediments overlying the Miocene deposits. States that most of the water from Miocene formations contains some fluoride, the water from the younger Miocene sands in and near Bunkie having the highest fluoride content. Mentions that the coarser sediments overlying the Miocene deposits yield soft water that contains no fluoride. Includes a map showing location of wells.

Gives general statements concerning the water-bearing formations in Rapides, Grant, LaSalle, Jefferson Davis, Acadia, Avoyelles, Tangipahoa, St. Tammany, and East Baton Rouge Parishes. Contains map of Rapides Parish showing piezometric surface of water in Miocene sands.

A description of the several geologic formations, with summary statements of their water-bearing properties and the quality of the water.

Describes the three principal water-bearing sands in the Miocene series and the water-bearing beds of the Pleistocene and Recent deposits. Discusses the fluctuation of water levels and decline of artesian head and presents records of the water level and of pumpage. Gives analyses of waters from 4 wells. A map showing the piezometric surface is reproduced from Louisiana Geol. Survey Bull. 17.

167. Ground-water resources of Rapides Parish, La., by J. C. Maher. Louisiana Geol. Survey Bull. 17, New Orleans, La., 1940. 100 pp., 10 pls.

Describes the several water-bearing formations, which range from Miocene to Recent in age. Discusses the public water supplies, consumption of water, quality of water, and artesian conditions. Gives 61 analyses of well waters, measurements of water level or artesian pressure in 55 wells, and logs of 46 wells. Includes maps showing quality of water and piezometric surface.

168. Records of wells and water analyses for Caddo and Bossier Parishes, La., by L. O. Wiringa. New Orleans, La., 1948. 71 pp., 1 map. (Mimeographed.)
168. Records of wells and water analyses for Caddo and Bossier Parishes, La. — Continued.
Prepared in cooperation with the Police Juries of Caddo and Bossier Parishes, the Louisiana Department of Conservation, and the Louisiana Department of Public Works. Contains a short summary of the investigation and tabulated records of 327 wells in Bossier Parish. Gives the results of preliminary chemical examination of 82 well waters in Caddo Parish and 29 in Bossier Parish and chemical analyses of four well waters from each parish.

169. Ground-water geology at Natchitoches, La., by J. C. Maher and P. H. Jones. New Orleans, La., May 1, 1944. 23 pp. 3 pls., 1 table. (Mimeographed.)
Prepared in cooperation with the Louisiana Geological Survey and the city of Natchitoches. Data obtained by test drilling indicate that the city is on a downthrown fault block. Salt water is present in the sands underlying most of the city, but to the southwest abundant supplies of soft water are present in the Sparta sand and in sands of the Wilcox formation. A supply of at least one million gallons a day may be obtained for the city from three to five properly constructed wells in that area. See also Water Supply Paper 968 c.

Prepared in cooperation with the Louisiana Department of Conservation and the Louisiana Department of Public Works. Outlines the geology and discusses source and movement of the ground water. Describes water-level fluctuations, decline of water levels, safe yield, and water utilization. Plates 6-10 show contours on the piezometric water surface at different dates. Includes tabulated records of 221 wells in Acadia Parish and 220 wells in Jefferson Davis Parish.

Prepared in cooperation with the Louisiana Department of Conservation and the Louisiana Department of Public Works. Describes the geology, with special regard to the Tertiary and Quaternary deposits and ground-water conditions in the shallow sands. Summarizes the quality of ground water, yield of wells, purp­pose, recharge, and conservation of the ground-water supplies.

MARYLAND

Discusses the ground-water table, artesian wells, springs, dug wells, and the several water-bearing formations in Maryland (pp. 231-262). Describes surface-water and ground-water conditions in the several counties of Maryland, the District of Columbia, and Delaware and gives well records (pp. 263-491). Discusses public water supplies and sanitary conditions and chemical character of the waters and gives many water analyses (pp. 492-542).

MICHIGAN

Discusses the geology and water supplies by regions. The Grosse Ile well, of great flow, locally thought to have caused decline of wells in the lower Huron River region, is not a factor. Removal of timber and ditching have been factors, but the chief cause was the severe drought of 1903-4. Return to normal rainfall will result in increase of the water supply. Recommends deeper wells as simplest solution of the shortage. Discusses desirability of laws regulating deep or artesian wells.
MISSISSIPPI

191. Artesian water resources in Mississippi, by V. M. Foster and G. F. Brown. Mississippi State Plann. Comm., University, Miss., March 1939. 16 pp., 6 tables. (Mimeographed.)

A report of progress of investigations during the preceding year, with discussion of the decline of artesian pressure, or static water levels. Gives 6 pages of tabulated well data showing the decline in various wells.

States that the principal water-bearing beds are the Meridian sand in the base of the Claiborne group and sands near the middle of the Wilcox formation, and that the former is capable of yielding enough water to supply all needs of the camp down to about 280 feet. Says that the water is of good quality but contains appreciable amounts of iron and carbon dioxide and therefore needs treatment.

Describes the geologic formations that underlie the area and their water-bearing properties. States that the water supply of the camp is obtained from nine wells, which draw from three different formations.

194. Geology and ground-water resources of the Camp Shelby area, by G. F. Brown. Mississippi Geol. Survey Bull. 58, University, Miss., 1944. 72 pp., 7 pls., 8 figs.

States that large supplies of fresh water are contained in the Catahoula sandstone, Hattiesburg formation, and Pascagoula formation, all of Miocene age. Water for the camp is obtained chiefly from the Hattiesburg formation, the pumpage being about four million gallons a day, from depths mainly of less than 100 feet. Also describes Pleistocene deposits and their water-bearing possibilities.

Gives a detailed description of the geology and water-bearing properties of the several formations. Discusses the ground-water resources in George, Hancock, Harrison, Jackson, Pearl River, and Stone Counties. Describes the waste of ground water, encroachment, and conservation of ground water. Includes geologic map, cross sections, hydrographs, and logs and records of many wells.

MISSOURI

Gives general information on the springs in Missouri and descriptions and discharge of 159 springs. Includes outline map of Missouri showing location and relative size of the large springs.

NEBRASKA

Describes the selection of observation wells and methods of recording the data. Gives summary of water-level records in Platte River Valley, October 1930 to October 1934. Includes map showing location of observation wells.

146 PUBLICATIONS RELATING TO GROUND WATER

Prepared in cooperation with Nebraska Department of Roads and Irrigation. Gives short discussions of the geology and ground-water conditions in each county and the logs of 243 test holes. Includes maps showing location of test holes and data on the water-bearing formations.

Prepared in cooperation with Nebraska Department of Roads and Irrigation. Gives a brief description of the geology of Furnas County and its relation to the occurrence of ground water. Contains map showing location of test holes, contours on top of the Cretaceous bedrock, and the approximate thickness of the water-bearing sand and gravel in the valley of the Republican River and its principal tributaries. Presents the logs of about 130 test holes.

Prepared in cooperation with the Nebraska Department of Roads and Irrigation. Describes the geology and ground-water conditions in each county. Presents the logs of 151 test holes in Red Willow County and 15 in Frontier County. Includes maps showing location of test holes and data on the water-bearing beds.

Prepared in cooperation with Nebraska Conservation and Survey Division. Gives results of a study of the possibilities of pump irrigation in an area of about 70 square miles situated north and northwest of O'Neill. Includes records of 13 test holes 39 to 84 feet deep and descriptions of the geology, topography, drainage, soils, and ground water. Concludes that pump irrigation may be economically feasible on a small scale in a limited part of the area.

NEVADA

Prepared in cooperation with the Nevada State Engineer's Office. Discusses the valley fill and the occurrence of shallow water and artesian water. Gives data on the quality of the water. Emphasizes the need for improved well construction and for conservation of the ground water. Includes map of the basin showing location of wells and depths to water.

NEW JERSEY

Describes the ground-water conditions in various parts of the State and in several metropolitan areas. Gives the problems involved in a closer control by the State of the development of the ground-water resources.

Describes the present water supplies, their quality (with four analyses of well water), and the consumption, and discusses the possible sources of future supply.
212. Ground-water supplies of the Atlantic City region—Continued.
Contains a detailed study of the 800-foot sand of the Kirkwood formation (Tertiary)
with discussion of the danger of salt-water contamination. Gives a short description
of the shallow ground-water horizons on the mainland.

213. Ground-water supplies in the vicinity of Asbury Park, N. J., by D. G.
Thompson. New Jersey Dept. Cons. and Devel. Bull. 35, Trenton,
N. J., 1930. 50 pp.
Describes the water supplies and ground-water horizons and the consumption and
quality of water, with 8 water analyses. Gives a detailed description of the water­
bearing capacity of the three principal sands in the Cretaceous deposits and dis­
cusses the possibility of contamination by salt water.

214. Ground-water supplies of the Passaic River Valley near Chatham, N. J.,
by D. G. Thompson. New Jersey Dept. Cons. and Devel. Publ. 38,
Trenton, N. J., 1932. 51 pp., 1 pl.
Gives a short description of the water supplies of the area and the amount of
water consumed. Discusses the geologic conditions affecting the occurrence of ground
water. Presents data on the amount of water available and gives the results of
three pumping tests. A short discussion of quality of water includes 5 analyses of
well water. Includes a map showing the location of well fields and contours on the
surface of the bedrock.

80 pp., 2 pls.
Describes the water supplies of the area from wells in Tertiary and Cretaceous
sands, discusses the geologic conditions, and gives graphic logs of 13 well. Gives a
detailed study of wells and data on the consumption of water. A discussion of
quality of water includes 5 analyses from city wells and 3 other samples of the
Camden water supply. Contains a map showing the principal water-bearing forma­
tions in the area.

216. Supplementary report on the ground-water supplies of the Atlantic City
region, N. J., by H. C. Barksdale, R. W. Sundstrom, and M. S.
Brunstein. New Jersey State Water Policy Comm. Special Rept. 6,
This is primarily a study of the three principal producing sands of the Atlantic
City waterworks and a discussion of contamination by salt water. Contains 3
analyses of the ground water and numerous tests of chloride content of the water.
Includes maps showing location of wells and maps of the city well field showing by
contours the piezometric surface.

217. Water supplies in the No. 1 sand in the vicinity of Parlin, N. J., by H.
C. Barksdale. New Jersey State Water Policy Comm. Special Rept. 7,
A study of the lowest water-bearing sand in the Raritan formation (Cretaceous),
especially with regard to marked lowering of head of the water due to extensive
pumping. Contains a short discussion of the quality of the water (with 3 analyses
of deep well water) and of the danger of salt-water contamination. Includes a map
showing intake area of the No. 1 sand and location of principal wells.

218. The ground-water supplies of Middlesex County, N. J., by H. C. Barksdale
and others. New Jersey Water Policy Comm. Special Rept. 8, Trento­
Describes the geology of the area and the main water-bearing formations. States
that the Old Bridge sand of the Raritan formation is the most importan-t aquifer
and supplies more than half of the total amount of water used for pub-ic and
industrial purposes. Also discusses the yield from the Farrington sand of the
Raritan formation and from strata of the Newark group. Concludes that no more
large ground-water developments can be made in the county and that additional
large supplies must come from surface water sources.
NEW MEXICO

A study of the head of artesian water and the quantity of water discharged from wells. Describes the area of artesian flow and includes map (pl. 2) showing the original and later flowing-well areas. Discusses recharge and methods of repairing and plugging wells and makes recommendations as to future water development and its control by legislation. See also Cooperative reports 236, 240, 242.

Discusses the stratigraphy, structure, and artesian-water conditions and the prospective areas of artesian flow. Gives recommendations for drilling three test wells.

A short discussion of the geography of the area and of the alluvial water-bearing deposits in the plains areas.

A summary statement concerning the water-bearing formations, with discussion of possible artesian water in the Chupadera formation, of Permian age, and shallow ground water in the alluvial flood plains and terraces of the Pecos River.

A study of the possible development of additional water supplies for irrigation at Hope community, especially from bodies of perched ground water. Study was made of five areas, but recommendation is made for testing only the middle Penasco. Describes the stratigraphy and structure. Gives special attention to perched water and springs and to shallow ground-water conditions. A short discussion of quality of water includes analyses of the river water and of three samples of spring water.

A general discussion of the stratigraphy and structure, with a brief description of ground-water conditions, and a detailed study of artesian-water development and the decline in artesian head. Treats briefly of the area of flowing wells, quantity of water discharged, and recharge. Includes a map showing area of artesian flow and area of economic pumping lift.

The examination was made in order to study the quantity and annual replenishment of the ground-water supply. Since early irrigation development in 1910, the ground-water level appears to have declined 5 or 6 feet throughout most of the region. Discusses the development of the water in the alluvial deposits, the water level, and available quantity of ground water, with recommendations for detailed study. See also Cooperative reports 238, 242, 246, 251.

238. Preliminary report on the ground-water supply of Mimbres Valley, N. Mex.—Continued.

Discusses the source of ground water and gives records of stream discharge, underflow, and ground-water intake. Gives observations on the changes in ground-water level and recommendations for legal control of further development. See also Cooperative reports 243, 246, 251.

Gives a short description of the exposed geologic formations. Presents detailed study of water in the Tertiary deposits and its development for irrigation. Discusses briefly quality of water and gives 15 analyses of well waters. Concludes that the ground-water supply is relatively undeveloped but recommends the beginning of observations of the water level. Reproduces the State law regulating use of ground water. See also Cooperative reports 244, 247, 250.

After brief description of the geology and the artesian water development, discusses the ground-water recharge, the amount of water in the valley fill, and the construction of wells. Gives a short discussion of the water table in the Felix shallow-water district. Includes a map showing flowing-well and pumping-well area and maps showing depths to water table.

Gives a summary of the geology of the area and detailed discussion of ground water in the valley fill and the development of irrigation. Gives logs of 5 wells and records of depth, water level, and yield of about 450 wells. In the discussion of quality of water gives several analyses. Includes map showing hydrographic and geologic data and maps showing hydrologic features, slope of water table, and lowering of the water table. See also Cooperative report 245.

Gives a summary of the artesian conditions and irrigation development and describes the local artesian conditions by townships. Discusses the changes in head of artesian water from 1925 to 1932. Includes a short description of water level in the Felix shallow-water district.

A report on investigations made to determine the safe pumping yield of the ground-water reservoir. Gives a summary of the amount of water pumped and the water-table fluctuations, with short discussions of the form of the water table and quality of the water. Gives tabulated data on pumping plants and depth to water in observation wells. Contains a map showing location of observation wells and contours of the water table.

Gives observations on the geologic formations, with discussion of ground water in the Tertiary deposits and data on quality of the water. Presents records of water level in observation wells and data on the water table. Gives results of pumping tests on five wells. Includes a map showing contours of the water table.

Gives summary of a previous report (See Cooperative report 241) and data on additional pumping tests. Presents data on the quantity of ground water pumped for irrigation and records of water levels in observation wells. Includes maps showing changes in ground-water level.

Gives data on pumping plants and the amount of water pumped from wells. Records the changes in ground-water level as noted in observation wells.

Discusses the character of the water-bearing material. Gives details on the pumpage of water and the changes in water level. Describes the recharge area, with computations on the ground-water recharge based on the fluctuations of the water table.

Discusses the geology of the area and its general relation to the occurrence of brine. Describes the occurrence of ground water in the several formations, including artesian water in Laguna Grande de la Sal. Includes maps showing location of wells and springs and map showing area underlain by brine.

Gives data on precipitation, evaporation, and amount of pumping, and changes in water levels, 1934-37, based on the records from 136 observation wells. Includes maps showing changes in the ground-water level.

Gives a summary of hydrologic conditions, data on the amount of pumping from 1934 to 1937, and the fluctuations of water levels in 24 observation wells.

Gives data on the water pumped from wells, 1934-37. Presents the changes in water level and an interpretation of the data. Includes map showing areas irrigated by wells and maps showing decline in the water table.

Discusses the several geologic formations and the presence of water in the Quaternary and Permian strata. Gives data on depth to shallow ground water, its development for irrigation, and the quantity available. Includes map showing contour of the water table and map showing depths to the water table. Gives records of 496 wells drawing water from the valley fill and records of change in water level in a number of observation wells.

The flow of the springs changes with the stage of water in Lake MacMillian, a few miles to the northeast, varying from 272 second-feet when the reservoir is full to about 40 second-feet when it is empty. The springs are probably fed by river water through shallow underground channels, but the water is derived from leakage from the Roswell artesian basin. All the leakage from Lake MacMillian reappears in the springs.

Describes the position of the water table as measured in about 1,160 shallow wells. "These measurements have shown that over most of the flood-plain area of the middle Rio Grande Valley the water table lies within 8 feet of the surface and that the movement of ground water is considerably influenced by seepage from irrigation and irrigation canals and by ground-water discharge by transpiration in areas of natural vegetation." Gives tabulated data on depth to water, by acreage, in the several districts. Discusses source and movement of the ground water.

Describes the method of investigation. Discusses the water table and movement and source of the ground water. Gives a real description of recharge, movement and discharge of the ground water, and description of ground-water conditions before drains were constructed. Includes map showing contours of the water table.

An intensive survey of the area, with discussion of the geology, geomorphology, and ground-water hydrology of the several areas in the Pecos Valley in New Mexico and the Pecos River Basin in Texas. Contains maps showing the water table and location of wells and hydrographs showing fluctuation of the ground-water level.

Discusses the relation of the ground water and geology to the regimen of the river. Describes several large springs from cavernous limestone and small springs of salt water from the Rustler formation.

NEW YORK

Describes the area, the development of ground water, the population and present consumption of water, and the scope of the investigation.

Describes some of the problems in an investigation of the ground-water supplies of Long Island. About 250,000,000 gallons a day is pumped from wells in the boroughs of Brooklyn and Queens. Salt water is being drawn into some wells in Brooklyn.
Briefly describes the geology. Ancient sedimentary rocks are overlain by glacial drift to a maximum depth of 300 feet. The preglacial valley of the Genesee River and its main tributaries is the most promising source for large quantities of ground water. Gives partial analyses of 1,918 samples of water and more detailed analyses of 179 samples. Contains table of 116 springs and tabulated records of more than 4,000 wells. Includes map of the bedrock surface and maps showing well locations.

Briefly discusses the water-bearing formations and the use of ground water in the area. Presents extensive data on the amounts of water withdrawn during 1904-34.

Prepared in cooperation with the Kings County Water Board. This is the first of a series of four reports containing records of wells on Long Island not contained in U. S. Geological Survey Professional Paper 44. Published to accompany Bulletin GW-2, Engineering report on the water supplies of Long Island. Gives tabulated data on about 700 wells. Includes logs and other information for many of the wells and a map showing location of wells. See also Cooperative report 279.

Prepared in cooperation with the Suffolk County Water Authority. This is the second of a series of four reports containing records of wells on Long Island. Gives tabulated data on about 200 wells and many well logs. Includes map showing location of wells. See also Cooperative report 281.

Prepared in cooperation with the Nassau County Water Board. This is the third of a series of four reports containing records of wells on Long Island. Includes data on about 200 wells in Nassau County, many well logs, and map showing location of wells.

Prepared in cooperation with the Queens County Water Board. This is the last of a series of four reports containing records of wells on Long Island. Gives records of numerous wells and tabulated data on 604 wells. Includes map showing location of wells.

These records are in addition to those published in U. S. Geological Survey Professional Paper 44 and New York Water Power and Control Commission Bulletin GW-3. It was prepared in cooperation with the Kings County Water Board. Presents logs and descriptive notes on about 250 wells. Includes map showing location of wells. See also Cooperative report 275.

280. The water table in the western and central parts of Long Island, N. Y.—Continued.
Summarizes the geology and early ground-water records. Gives tabulated data on shallow observation wells (p. 289). Plates show contour of the water table in May 1943 and profiles of the water table in 1903 and 1943.

Prepared in cooperation with the New York State Water Power and Control Commission, the Suffolk County Board of Supervisors, and the Suffolk County Water Authority. Contains records of about 400 wells in Suffolk County in addition to those published in U. S. Geological Survey Professional Paper 44 and the New York State Water Power and Control Commission Bulletin GW-4. Includes map showing location of wells. See also Cooperative report 276.

Prepared in cooperation with the New York State Water Power and Control Commission, the Nassau County Board of Supervisors, and the Nassau County Water Board. Contains records of many wells in the county in addition to those published in U. S. Geological Survey Professional Paper 44 and New York State Water Power and Control Commission Bulletin GW-5, with data on the ground-water levels. Includes map showing location of wells. See also Cooperative report 277.

NORTH CAROLINA

Consists of two parts bound in one volume. Part I describes the physiography and geology; Part II describes the water resources, both surface and underground. Part II opens with a bibliography and a general discussion of the ground-water conditions but consists chiefly of detailed descriptions, by counties, of the topography, geology, ground-water conditions, and artesian prospects, with tables giving well data. These county descriptions are followed by a discussion of the quality of the water, by counties, and tables of analyses. The volume contains maps of the Coastal Plain of North Carolina showing the distribution of the surficial deposits and the underlying formations, the position of the basement rocks, and the areas in which potable water can be obtained from the various formations.

Discusses the area under the headings of Physiography, Geology, Climatic data, Percolation, Temperature of water in wells, Soil moisture, Porosity, Mechanical analyses, Water levels, and Calculated velocity.

Contains the logs of 52 wells and a map showing their location. Includes a brief description of the principal water-bearing formations.

NORTH DAKOTA

A report on the surface and ground-water resources of North Dakota, including water analyses. Serious depletion of stream flow and ground-water levels has taken
301. A preliminary report on water conservation and utilization—Continued. Discusses geology with relation to ground-water supplies. Wells are divided into those drawing from “mantle deposits”, including glacial drift, and those drawing from artesian aquifers.

Prepared for the Federal Emergency Administration of Public Works. Discusses the geology with relation to ground-water supplies and supplies of 15 cities and towns and gives data on 7 dam sites. Describes rural supplies from the Dakota sandstone, Niobrara and Benton formations, and glacial deposits. Contains a record of water levels, logs of wells, and analyses of surface water and ground water.

Contains summaries and other data on State reports for North Dakota and South Dakota, with recommendations for future studies. Includes appendix I, Bibliography of reports and papers, and appendix II. Bibliography of State laws relating to ground water.

Describes potential areas in North Dakota where ground water may be adequate to permit well irrigation and recommends the Oakes area for immediate investigation. Contains outline map of North Dakota showing the Pleistocene geology.

OHIO

311. Abstract of the progress report on the ground-water investigation in Butler and Hamilton Counties, Ohio, by D. G. Thompson and F. H. Klaer, Jr. Mill Creek Valley Cons. Assoc., Cincinnati, Ohio, Feb. 19, 1940. 12 pp., 2 pls. (Mimeographed.)
Discusses the water-bearing beds, pumpage and water-level data, and specific data on the several areas studied. Includes graphs showing water-level records and pumpage.

312. A quantitative study of the well fields of the Mill Creek Valley water-supply project, Butler County, Ohio, by F. H. Klaer, Jr., and R. G. Kazmann. Cincinnati, Ohio, July 1943. 54 pp., 8 pls., 2 appendixes of 42 pp. containing well data and logs. (Dittoed.)
Prepared in cooperation with the Federal Works Agency. Presents the results of a study of a project to supply water for Wright Aeronautical Corp. at Lockland, Ohio. Concludes that the pumpage of 12 million to 15 million gallons a day will cause little permanent regional lowering of ground-water levels in the area.

OKLAHOMA

Describes the exposed formations, which range from Permian to Recent in age, and their water-bearing properties. About three-quarters of the area is covered by Tertiary beds, and the Ogallala formation (Pliocene) contains the principal water-bearing sands. Recharge is chiefly from local precipitation. Surface water is obtained in valley alluvium. Discusses the present development and the chemical character of the water, 72 analyses of well water being given, nearly all of them
321. Geology and ground-water resources of Texas County, Okla.—Continued.
from the Ogallala formation. Briefly describes the present and possible future
supplies for irrigation. Gives data on observation wells and 21 well logs. The
records of about 560 dug and drilled wells are tabulated. Includes a map showing
the geology and depths to water.

322. Geology and ground-water resources of Cimarron County, Okla., by S.
L. Schoff, with a section on Mesozoic stratigraphy, by J. W. Stovall.
Oklahoma Geol. Survey Bull. 64, Norman, Okla., 1943. 317 p., 23 pls.
Describes the geology and the principal water-bearing beds. States that the
Dakota sandstone is an unimportant water-bearing formation, but that the Ogallala
formation, which underlies more than half of the county, contains the principal
water-bearing strata and that the water, though somewhat hard, is satisfactory
for most domestic, industrial, and irrigation uses.

323. Oklahoma water, quantity, occurrence, and quality of surface and ground
water. Data on ground water by E. W. Reed, G. L. Oakland, and C. L.
Jacobsen. Oklahoma City, Okla., Mar. 1, 1945. 145 pp., 3° pls., 29
figs. 11 tables. (Offset.)
Prepared for Oklahoma Planning and Resources Board by the Water Resources
Branch of the Geological Survey. A comprehensive summary of the water resources
of Oklahoma. The discussion of ground water resources includes description
of the principal water-bearing formations and of the alluvium of the main river valleys.
Contains bibliography of 27 reports dealing with ground water in Oklahoma.

OREGON

331. Ground-water resources of the Willamette Valley, Oreg., by A. M. Piper.
Describes the occurrence of ground water in the alluvium of the flood plains and
in detrital materials of the central valley plain. Briefly discusses irigation, by
small pumping units. See also Water-Supply Paper 890.

332. Water resources and watershed protection problems of Oregon munici­
palities, by A. M. Piper and others. Oregon State Plann. Bd., Port­
Principally a report on municipal watersheds: ground-water supplies are briefly
mentioned. About 70 towns and villages use water from wells exclusively. Other
municipalities use ground water as auxiliary supplies. Many obtain their water
from springs. Includes maps showing the types of municipal water supplies through­
out the State.

333. The ground-water problem in Oregon, by A. M. Piper. Oregon Agr. Ex­
Outlines ground-water conditions in the Willamette Valley, the Dylles region,
Honey Basin, the Milton-Fillwater district, and the Butter Creek bas'n. Recommends
a reconnaissance of the entire State to determine, evaluate, and classify
the numerous ground-water problems, with a series of observation wells and com­
prehensive investigations to study the ground-water resources and determine safe
yields.

PENNSYLVANIA

341. Ground water in southwestern Pennsylvania, by A. M. Pi-er, with
analyses by M. D. Foster and C. S. Howard. Pennsylvania Topog.
and Geol. Survey, 4th ser., Bull. W1, Harrisburg, Pa., 1933. 406
pp., 1 pl.
This is the first of a series of six reports issued 1933-39, which cover the ground­
water resources of the entire State. Gives a summary of the geologic and physio­
graphic history, and the structure. Describes the water-bearing materials, methods
of well construction, and pumping equipment. Briefly describes artesian conditions
in two areas. The data on chemical character of the water include 91 analyses of
well water. Mentions salt water at numerous places in the text. Discusses in detail
the sequence and water-bearing properties of the rocks (pp. 91-205) and gives summary descriptions of the six counties that comprise the area (pp. 205-398), with extensive tabulated lists of wells and springs, and drillers' logs. Contains a map showing the geology, with structure contours, chiefly from previously published data, and notes on the water-bearing properties of each formation. Includes six county maps showing location of wells and springs.

Describes the rock formations and their water-bearing properties from pre-Cambrian igneous and metamorphic rocks to Quaternary glacial deposits. Gives a summary of wells by groups of formations, followed by a discussion of the dissolved mineral matter, and summaries of analyses of 144 samples of water from wells and springs tabulated at the end of the report. Briefly discusses the utilization and recovery of ground water and describes ground-water conditions, including some flowing wells, in the 15 counties that comprise the area. Contains a geologic map compiled from previously published data, with notes on the water-bearing properties of the several formations.

Gives a brief summary of the geology, followed by a general discussion of the occurrence of ground water in glacial drift, sandstone, shale, and coal. The rocks consist of Quaternary, carboniferous, and older formations. Discusses quality of water and gives a tabulated summary of analyses of water from glacial drift, sandstone, and shale (pp. 54-63). Descriptions of ground-water conditions, with well records, in each of the 12 counties that comprise the area form the latter part of the report (pp. 64-211). Contains a geological map prepared from previously published data, with notes on the water-bearing properties of the several formations.

After a general description of the geology and ground-water conditions, discusses the various water-bearing formations of Quaternary, Carboniferous, and earlier geologic ages. The detailed description of ground-water development in the 14 counties that comprise the area includes data on the formations, artesian conditions, well records, and quality of water, with tabulated analyses. Includes a geologic map prepared from previously published data, with notes on the water-bearing properties of the several formations.

Gives a summary of the geography and geology of the area and of the occurrence of ground water in the different kinds of rocks. Describes recovery and utilization of ground water and discusses the quality of water and its various chemical constituents in regard to use. Gives tabulated summary of the analyses of 92 water samples, arranged according to the 13 geologic formations or groups in which they are present. Describes these water-bearing formations in detail and the ground-water conditions in the 14 counties that comprise the area. Includes a geologic map prepared from previously published data, with notes on the water-bearing properties of the several formations.

After a summary of the geography, geologic history, and geomorphology, gives general statements on the ground water and its recovery and utilization. Under
Quality of water discusses the chemical constituents in regard to use and gives a tabulated summary of 41 analyses of ground water, grouped according to the geologic formations in which they are present. Discusses the several water-bearing formations and describes ground-water conditions and development in the 8 counties that comprise the area, with data on wells, springs, public water supplies, and quality of water.

Prepared in cooperation with Pennsylvania Department of Forests and Waters and the Weather Bureau, U. S. Department of Agriculture. Relates chiefly to surface-water discharge but contains discussion of normal ground-water depletion and storage (pp. 59-64). Appendix A is Major floods in Pennsylvania (pp. 154-167). Seven of the graphs relate to ground-water depletion (figs. 3, 4, 7, 17, 22, 36, 51), and one (fig. 11) relates to ground-water recharge.

A short description of the geology of the State and of water in the several rock formations, with data on the quality and quantity of the ground water, methods of recovery, and public water supplies.

A brief discussion of the water-bearing formations of Pennsylvania grouped according to their yield. The most productive are the glacial lake and stream deposits and the Cretaceous formations; the least productive are the pre-Cambrian, lower Cambrian, upper Pennsylvanian, and Permian rocks.

Prepared in cooperation with the Pennsylvania State Planning Board, the Pennsylvania Department of Commerce, and the Pennsylvania Department of Forests and Waters. Analyses of seven of the larger springs in the State are given for comparison with analyses of samples of water from the streams. See also Cooperative report 447.

RHODE ISLAND

Summarizes earlier studies of the area and gives information on the geography and geology. Includes data on the occurrence and yield of ground water, with analyses of samples of water from nine industrial wells, and logs and records of 67 wells and test holes. Maps show location of wells and depth to bedrock.

Contains tabulated data on 168 wells and the logs and records of 165 wells and test holes. Maps show location of wells and depth to bedrock.
SOUTH DAKOTA

Treats of the geology (pp. 1-34) and the hydrology (pp. 35-93), with a discussion of the areas by counties. Contains map showing contours on top of the Dakota sandstone and map showing head of artesian water in the Dakota sandstone. Contains analyses of 17 samples of well water. See also Cooperative report 392.

TENNESSEE

Contains a discussion of the water resources, including ground water, and town supplies from wells and springs, with five analyses of spring and well waters. Mentions the possible use of springs for irrigating small tracts.

Gives history of artesian-well development in Memphis and describes the several geologic formations and their water-bearing properties. Presents data on pumpage, seasonal fluctuations of head in wells, and chemical character of the water. Includes map of Memphis showing location of wells. Also published as Water-Supply Paper 638 a.

373. The water supply of the Memphis area, Tenn., by R. G. Karmann. Memphis, Tenn., September 1944. 66 pp., 12 figs. (Dittoed.)

Prepared in cooperation with the Memphis Light, Gas, and Water Division. Ground water is obtained at Memphis from terrace sand and gravel at depths of 40 to 180 feet, from sands of the Claiborne group at 250 to 600 feet, and from the Wilcox formation at 1,200 to 1,500 feet. Most of the municipal and industrial pumpage is from depths of about 500 feet. Pumpage has greatly increased in recent years, being about 115 million gallons a day in 1944. Studies are being made to determine the source of recharge and the safe yield of water.

TEXAS

Describes the topography, geology, mineral resources, and ground water of Toyah, Salt, and Hueco basins, Gypsum Plain, Guadalupe-Delaware Mountains, Diablo Plateau, and Rio Grande Valley. Contains a table of well data, well sections, and water analyses, and includes a map showing the geology and the locations of wells and springs.

Summarizes the ground-water studies that have been made in southern Texas, in the east Texas oil-field area, in Somervell County, in the High Plains, and in western Texas, and gives data on the reports that have been issued or are in preparation. Gives brief discussion of the water-bearing formations and data on areas irrigated and comments on salt-water contamination.

A summary of the work being done; with map of the State showing counties covered.
County reports on ground-water surveys in Texas by the Works Progress Administration, under the general supervision of W. N. White, S. F. Turner, W. O. George, and others. Texas State Bd. Water Eng., Austin, Tex. (Mimeographed.)

These reports contain records of wells and springs, driller's logs, logs of Works Progress Administration test wells, partial analyses of water, and maps showing location of all wells and springs described. The following reports have been issued:

1934
- Nueces County, by W. A. Lynch, 28 pp.

1935
- Hansford County, by W. L. Broadhurst, 60 pp.
- Lavaca County, by W. O. George, 66 pp.
- Refugio County (part), R. A. Muenster, 46 pp.

1936
- Andrews County (south half), by J. W. Lang, 33 pp.
- Brazoria County (west of Brazos River), by J. F. Heuser, 45 pp.
- Burleson County, by W. L. Clark, 46 pp.
- Comal County, by E. J. Michal, 41 pp.
- Ector County, by D. A. Davis, 34 pp.
- Foard County, by L. P. Huggins, 60 pp.
- Fort Bend County (west of Brazos River), by G. A. Elledge, 52 pp.
- Freestone County, by H. L. Chenaault, 86 pp.
- Gillespie County, by Elgean Shields, 51 pp.
- Guadalupe County, by E. S. Altgelt and E. J. Michal, 66 pp.
- Karnes County, by G. H. Shafer, 73 pp.
- Leon County, by G. H. Shafer, 74 pp.
- Milam County, by W. L. Clark, 55 pp.
- Rusk County, by W. M. Lyle, 86 pp.
- Smith County, by W. M. Lyle, 67 pp.
- Stephens County, by G. H. Samuell, 36 pp.
- Wilson County, by E. L. Marek, 72 pp.

1937
- Austin County, by R. E. May, 36 pp.
- Coleman County, by J. H. Samuell and D. A. Davis, 64 pp.
- Colorado County, by R. E. May, 24 pp.
- De Witt County, by H. M. Mapp, 43 pp.
- Goliad (part), and Refugio Counties, by R. A. Muenster and E. J. Michal, 91 pp.
- Lamb County, by W. L. Broadhurst, 83 pp.
- Midland County, by D. A. Davis, 42 pp.
- Panola County, by W. M. Lyle, 45 pp.
- Parmer County, by C. R. Follert and E. L. Bradshaw, 45 pp.
- Potter County, by L. C. Smyers, 52 pp.
- Shelby County, by W. M. Lyle, 82 pp.
384. County reports on ground-water surveys in Texas by the Works Progress Administration—Continued.

1939
Carson County, by S. W. Adair, 50 pp.
Collingsworth County, by C. R. Follett and Bruce Wilson, 62 pp.
Gonzales County, by J. M. Frazier, Jr., 58 pp.
Ochiltree County, by L. G. Davis, 44 pp.
San Patricio County, by C. E. Johnson, 62 pp.
San Saba County, by G. H. Shafer, 49 pp.

1940
Aransas County, by C. E. Johnson, 45 pp.
Armstrong County, by J. C. Dalgarn, 46 pp.
Live Oak County, by W. A. Lynch, 15 pp.
Mason County, by W. M. Lyle, 48 pp.
Roberts County, by C. R. Follett and C. V. Foster, 63 pp.
Taylor County, by H. A. Smith, 37 pp.

1941
Calhoun County, by C. E. Johnson, 69 pp.
Irion County, by J. M. Frazier, Jr., 39 pp.

1942
Childress County, by C. V. Foster, 38 pp.
Robertson County, by L. G. Davis, 61 pp.
Sterling County, by W. O. George and J. C. Dalgarn, 58 pp.

A summary of the work being done, with map of the State showing counties covered.

A summary of the work that is being carried on.

A summary of water-level studies being made, with tabular data, and map of the State showing counties covered.

Describes the studies on water levels. Contains map showing location of observation wells and water level in wells.

A summary of cooperative water-level surveys under the headings: Use of ground water, in Texas; Progress of water well and spring inventory; and Distribution of Texas ground-water publications. Includes two maps of the State showing localities and counties being covered.

Presents a brief discussion of the geology, describes the large springs of the area, with discharge measurements, and gives data on other springs and the shallow ground water, with well records and water analyses. Discusses the source of ground water from streams and its discharge. Includes a map showing relation of the large springs to the geologic structure and a map showing contour of the water table. Published also as Water-Supply Paper 489 c.

A summary of the importance of ground water in the area, the development of irrigation, previous investigations, source and discharge of the ground water, and amount of water pumped in 1937. About 1,150 wells were used for the irrigation of 160,000 acres.

A short summary of the occurrence and movement of ground water and of ground-water supplies in Texas, with comment on the waste of water from flowing artesian wells.

393. County reports on ground-water surveys in Texas, under the general supervision of W. N. White, S. F. Turner, W. O. George, and others. Texas State Bd. Water Eng., Austin, Tex. (Mimeographed.)

Contain records of wells and springs, driller's logs, partial analyses of water, and maps showing location of all wells and springs described. The following reports have been issued:

1938
- Dawson County, by J. C. Cumley, 40 pp.
- Hays County, by B. A. Barnes, 30 pp.

1939
- Brazoria County (east of Brazos River), by S. F. Turner and P. P. Livingston, 11 pp.
- Fort Bend County (east of Brazos River), by P. P. Livingston and S. F. Turner, 11 pp.
- Harris County, by P. P. Livingston and S. F. Turner, 97 pp.

1940
- Brooks County, by S. F. Turner and J. C. Cumley, 63 pp.
- Jim Hogg County (northern part), by J. C. Cumley, 15 pp.
- Victoria County, by J. C. Cumley, 29 pp.
393. County reports on ground-water surveys in Texas—Continued.

1941
Galveston County, by B. A. Barnes, 155 pp.
Hidalgo County, by J. T. Lonsdale, 102 pp.
Tom Green County, by B. A. Barnes and J. C. Dalgarn, 80 pp.

1942
Brazos County, by B. A. Barnes and J. C. Cumley, 55 pp.
Casey County, by W. L. Broadhurst, 39 pp.
Chambers County, by L. G. Davis, 94 pp.
Harrison County, by W. L. Broadhurst, 40 pp.
Houston district, Harris County, and adjoining parts of Fort Bend and Waller Counties, by W. N. White, N. A. Rose, and W. F. Gupton, 178 pp.
Jackson County, by C. R. Follett and J. C. Cumley, 47 pp.
Morris County, by W. L. Broadhurst, 19 pp.
Upshur County, by W. L. Broadhurst, 15 pp.

1943
Dallas County, by J. C. Cumley, 104 pp.
Gregg County, by W. L. Broadhurst, 34 pp.
Hopkins County, by W. L. Broadhurst, 17 pp.
Marion County, by W. L. Broadhurst, 16 pp.
Rains County, by W. L. Broadhurst, 13 pp.
Rusk County, by C. R. Follett, 56 pp.

1944
Matagorda County, by G. H. Cromack and T. W. Bridges, 80 pp.

1945
Deaf Smith County, by W. H. Alexander, Jr., 88 pp.
Lubbock County, by J. W. Lang, 126 pp.
Swisher County, by J. H. Dante, 91 pp.

1946
Gaines County, by G. H. Cromack, 26 pp.

Gives data on water levels in 21 observation wells during 1937-39. See also Water-Supply Papers 840, 845, 886.

A summary of studies being made. Discusses decline of water table, natural ground-water discharge, and ground-water reports.

Gives a summary of the geology of the water-bearing formations and discusses the pumpage and the decline of water levels in 1937-40. Treats briefly of the chemical character of the water and gives notes on the results of exploratory well drilling for additional supplies for Houston. Describes the transmissibility and storage capacity of the water-bearing beds and summarizes the ground-water developments.

Discusses recharge and discharge of ground water in the region, the development of irrigation, and the use of ground water for irrigation in 1937-39. Presents data on the changes in water levels in some areas to the middle of November 1940. Comments on the effect of pumping on the ground-water supply. Includes maps showing location of wells and springs.

Prepared in cooperation with the New Mexico State Engineers and the Texas State Board of Water Engineers. Describes the chemical character of the water in the several portions of the upper, middle, and lower basins. Discusses ground water of only the lower basin, giving analyses of 34 samples of water. States that many sources of ground water in the Pecos River Basin of Texas are highly mineralized, and inflow from those sources causes an increase in the concentration of the river water.

399. Water supply in the Sandflat area and adjacent territory in Rusk, Nacogdoches, and Shelby Counties, Tex.; Ground water, by W. L. Broadhurst; Surface water by Trigg Twichell. Texas State Bd. Water Eng., Austin, Tex., April 1942. 25 pp., 1 map. (Mimeographed.)

Discusses an area in east Texas on the southwest flank of the Sabine uplift and briefly describes the geology and the principal water-bearing formations (Carrizo sand and Wilcox formation). Gives data on 28 wells and springs, tabulated well records, well logs, and analyses of water samples from 13 wells and 1 spring. Contains map showing the surface geology and location of the wells.

400. The ground-water resources of Texas—their conservation and development, by S. F. Turner. Texas State Bd. Water Eng., Austin, Tex., June 1939. 7 pp. (Mimeographed.)

A résumé of an illustrated lecture given at a number of colleges in Texas, describing the ground-water resources of the State and the waste that is taking place, with recommendations for conservation and development.

401. A few interesting facts regarding the natural flow from artesian well 4, owned by the San Antonio Public Service Co., San Antonio, Tex., by P. P. Livingston. Texas State Bd. Water Eng., Austin, Tex., June 17, 1942. 7 pp. (Mimeographed.)

The well is 1,032 feet deep and is supplied from the Edwards limestone. The natural flow is 37 cubic feet per second (1,600 gallons a minute), which is believed to be the largest natural flow of any well in the United States.

Describes the principal water-bearing formations and the area of flowing wells. Discusses the high water table and the chemical character of the ground water.

403. Published reports on Texas ground-water resources, by W. N. White and R. W. Sundstrom. Texas State Bd. Water Eng., Austin, Tex., 1942. 6 pp. (Mimeographed.)

A list of 145 titles consisting of 21 water-supply papers, 1 circular, 18 mimeographed reports, and 106 mimeographed publications on specific counties containing records of wells and springs, drillers logs, and water analyses.
404. Ground-water supply of Big Spring, Tex., by P. P. Livingston. Texas State Bd. Water Eng., Austin, Tex., Sept. 29, 1942. 5 pp., 2 figs. (Mimeographed.)
Gives conclusions reached concerning water supplies available for the city of Big Spring. See also Water-Supply Paper 818.

Summarizes data on the mean annual precipitation and discusses the intake and natural discharge of ground water, the depth to ground water, and its use for irrigation in the High Plains. Gives data on the fluctuations of ground-water levels in the Plainview, Hereford, Muleshoe, Lubbock-Littlefield, and Texline districts. Summarizes the net loss or gain of storage in the districts in 1938-43 and gives figures on the total pumpage.

Prepared in cooperation with the city of Houston, Tex. Describes equipment and methods used in drilling wells and making the tests, laboratory determinations, and comparisons and correlations. Illustrations include electrical logs of test wells. Also published as Water-Supply Paper 889 d.

Discusses the several geologic formations and their water-bearing properties and the present development of water supplies from wells.

408. Progress report on the ground-water resources of the Texas City area, Tex., by N. A. Rose. Texas State Bd. Water Eng., Austin, Tex., Nov. 15, 1943. 45 pp., 4 figs. (Mimeographed.)
The area is underlain by formations of sand and clay of Pleistocene age. Water is obtained chiefly from the "Alta Loma" sand. Because pumpage due to industrial expansion was about ten times as great in 1943 as it was in 1930, artesian pressure has declined until it is considerably below sea level, and the chloride content of the water has increased materially.

States that the area is underlain chiefly by Pennsylvanian rocks, which contain only small supplies of highly mineralized water, but that terrace deposits of gravel and sand yield water of good quality. The report describes the present water supply of Vernon and recommends the testing of terrace deposits south and southwest of the city for additional supplies.

A list of 276 titles, arranged chronologically under the following headings: Water supply papers (25), Mimeographed reports and reprints (31), Mimeographed reports containing results of water-well surveys (134), and Unpublished reports (86).

The fourth of a series of mimeographed progress reports on the High Plains, the others being issued in July 1940, December 1940, and April 1943 (Cooperative reports 391, 397, 405). The present report is concerned primarily with pumpage during the irrigation season of 1943 and changes in water levels. Summarizes the development of irrigation and the fluctuation of water levels in several districts.
412. Results of pumping tests of municipal wells at Tyler, Tex., by W. L. Broadhurst. Texas State Bd. Water Eng., Austin, Tex., October 1944. 28 pp., 3 figs. (Mimeographed.)

States that the city wells obtain waters from sands of the Wilcox formation. Concludes that a total of 10 million gallons a day could be obtained from the city well fields and two other well fields that could be developed a few miles away.

Prepared in cooperation with the city of Houston. Gives data on history of the investigation and previous reports, and developments of ground water in 1942-44. Describes the Houston and Pasadena pumping areas and the Katy rice-growing area. Presents data on fluctuation of the shallow water level and on the chemical character and temperature of the ground water. Maps (figs. 6-9) show altitude of water levels in wells in the Houston district in January of each year from 1941-44 inclusive.

Summarizes ground-water conditions in the High Plains region, El Paso area, Pecos River Basin, Winter Garden district, Houston district, Galveston-Texas City-Baytown district, Lufkin-Nacogdoches area, Balcones fault zone, Big Spring area, and East Texas. Includes a list of the published reports on the ground-water resources of Texas.

A summary of public water supplies in 77 counties of eastern Texas. Gives in condensed form the available data for each municipality, including water consumption, storage facilities, number of customers, chemical and sanitary treatment of the water, and chemical analyses of the water. Where ground water is used, gives well records and logs, character of pumping equipment, yield of wells and water-level records. States that ground water is used at 273 localities, surface water at 46, and a combination of the two sources at 4 localities.

Discusses development of irrigation from wells since 1934, the depth to ground water, and the fluctuations of water level in 10 counties. Summarizes the net changes in water levels 1938-44 and presents tabulated data on representative wells. Maps (figs. 1 and L-A) show location of observation wells and depth to water. Graphs (figs. 2-10) show changes in water level in typical wells, 1936-44.

Presents data on the geologic formations and their water-bearing properties and the development of water supplies from wells. Includes data on surface water supplies, tables of well records, well logs, and analyses of ground water. Maps (figs. 1, 2) show areal geology and location of wells.

Describes the geologic formations and their water-bearing properties and gives data on development of water supplies from wells. Presents a summary of withdrawals of ground water, and its temperature. Contains a section on surface water supplies and tabulated well records, well logs, and water analyses. Includes map showing location of wells and springs.
166 PUBLICATIONS RELATING TO GROUND WATER

UTAH

A résumé of past and current ground-water work. Several hundred observation wells have been established in about 25 distinct ground-water areas during the past year. Detailed investigations were made in parts of Davis, Sanpete, Utah, Boxelder, and Salt Lake Counties.

Describes the work being done by the Geological Survey in cooperation with the State Engineer of Utah and mentions recent manuscript reports prepared on various areas in the State, which have been released to the public.

About 100 artesian wells in the area obtain water from alluvial outwash. Tests on 48 wells showed leakage from one aquifer to another, the total in the area probably being less than 3,000 gallons a minute, only about one-fifth of which is lost in shallow sand and gravel. During the nonirrigation season of 1943-44 most of the total flow was wasted from uncapped wells. The report recommends the control of flowing wells and gives instructions for the repair of leaky wells.

Describes the source, movement, and disposal of water in the artesian reservoir. Gives records of water level in three observation wells and summarizes data on the capacity of the artesian reservoir and the rate of recharge.

VIRGINIA

431. The underground water resources of the Coastal Plain province of Virginia, by Samuel Sanford. Virginia Geol. Survey Bull. 5, Charlottesville, Va., 1913. 361 pp., 1 pl.

Describes and discusses the topography, geology, origin, occurrence, and emergence of ground water, types of springs and their pollution, artesian conditions, cisterns, collecting tunnels, types of wells, magnetic wells, and freshening of deep water. Gives detailed information on wells and ground-water conditions by counties and contains tables of well data and of analyses of spring and well water. Includes a map showing the areas of artesian flow and the quality of the ground water.

Presents the results of investigations on springs in the southern part of the Great Valley of Virginia, being the first of a proposed series of reports on the springs of Virginia. Gives the name and location, geologic occurrence, discharge, and temperature of 566 springs, with partial analyses of the waters of more than 400 of them. "Numerous cold springs issue at the outcrops of the Oriskany sandstone, the Helderberg limestone, and the limestone formations of Ordovician and Cambrian age. The springs found at the outcrop of the other formations are generally small, most of those in shale formations being confined to slight seepages of waters relatively high in sulphates. Practically all of the warm springs issue at the outcrops of the Oriskany sandstone (Lower Devonian), Lowville limestone (Middle Ordovician), and Copper Ridge dolomite (Ordovician or Cambrian)." Contains a map showing the location of springs that discharge 100 gallons a minute or more.

433. Thermal springs of Virginia, by Frank Reeves. Virginia Geol. Survey Bull. 36, University, Va., 1932. 56 pp., 8 pls.

"In the northwest part of Virginia and adjacent parts of West Virginia there are 90 or more springs that have temperatures ranging from those slightly in excess
433. Thermal springs of Virginia—Continued.

of the mean annual temperature to a temperature of 105°F. Nearly all the warm springs issue from the Oriskany sandstone, the Lowville limestone, and the Elbrook limestone, where these formations rise to the surface from considerable depth as a result of anticlinal folding. The report gives a preliminary discussion of distribution, temperature, discharge, and chemical character of the springs, followed by a discussion of "Geology of the thermal springs." It then discusses "Source of the heat and water supply of the warm springs," with special regard to the geological structure. A summary (pp. 35-52) gives a tabulated list of 325 springs, with name and location, discharge, temperature, and geologic occurrence. Contains a geologic map of the thermal springs region of Virginia and West Virginia, showing location of the springs.

After a preliminary discussion of the geology of the area and the occurrence of ground water, describes the water-bearing properties of the various rock formations of the region. Contains a small geologic map of northern Virginia, with notes on the water-bearing properties of each formation or group. Gives a summary (table 17) of data on the rock formation, depth, and yield of 1,320 wells examined. See also Cooperative report 436.

435. Ground-water resources of the Shenandoah Valley, Va., by R. C. Cady, with analyses by E. W. Lohr. Virginia Geol. Survey Bull. 45, University, Va., 1936. 137 pp., 5 pls.

Presents a summary of the occurrence of ground water in relation to geologic structure and the principal types of rocks and discusses the water-bearing properties of the several formations of the area. A short description of springs is followed by details on ground-water conditions in each of the 6 counties of the area, with data on the municipal supplies, 458 well records, and 40 analyses of ground water. Includes a map showing location of wells and springs.

Gives a preliminary description of the geology and the relation of ground water to the geologic structure and principal types of rocks. Describes the water-bearing properties of the various rock formations of the area. Describes ground-water conditions in each of six counties and parts of three other counties that comprise the area, with data on the water-bearing formations, municipal supplies, well records, well logs, and analyses of ground water. Includes a small geologic map of northern Virginia, with notes on the water-bearing properties of each formation (reproduced from Virginia Geol. Survey Bull. 41).

A summary of the stratigraphy of the Cretaceous and later deposits and their geologic structure. Contains a brief description of the occurrence and quality of the artesian water, based on the analyses of about 55 samples. Gives special attention to the fluoride content. Includes map showing the structure on the base of the Eocene, the flowing-well areas, the piezometric surface of water in the Potomac group, and the distribution of fluoride in well water.

438. Ground-water resources of the southeastern Virginia Coastal Plain, by D. J. Cederstrom. Virginia Geol. Survey Circ. 1, University, Va., 1941. 11 pp., 2 pls. 4 figs.

A preliminary report accompanying release of well records, analyses, and logs of wells. Summarizes geology and occurrence of ground water. The area is subdivided into Fall Zone, area east of Fall Zone to Norfolk, and the Norfolk area. Discusses yield of wells and quality of water in these three areas. Gives data showing heights above sea level to which water will rise in wells in the Potomac group and the distribution of fluoride in southeastern Virginia.

States that large supplies of water are obtainable from wells more than 500 feet deep throughout most of the Virginia Coastal Plain. Says that the water at these

Deept wells in the Virginia Coastal Plain, including the Eastern Shore, and only about 200 to 300 gallons a minute can be obtained along the Fall Zone. Between these two areas the presence of a favorable thickness of sands that yield fresh water has been demonstrated at almost every place where deep wells have been drilled. Also states that supplies of at least one million gallons a day may be obtained from properly constructed wells throughout most of the area. The report includes a table of well records. Also published in The Commonwealth (Va. Chamber of Commerce), vol. 10, No. 4, April 1943, pp. 20-22, 56.

440. Chloride in ground water in the Coastal Plain of Virginia, by D. J. Cederstrom. Virginia Geol. Survey Bull. 58, University, Va., 1943. 36 pp., 4 pls.

A detailed discussion of the chloride content in artesian water and also in shallow ground water, with summary of chloride content in deep well waters, by counties.

441. Selected well logs in the Virginia Coastal Plain north of James River, by D. J. Cederstrom. Virginia Geol. Survey Circ. 3, University, Va., 1945. 82 pp. (Offset.)

Summarizes the geology, structure, and principal water-bearing formations in the Coastal Plain. Gives columnar section of sedimentary rocks in the area and logs of 81 wells.

442. Geology and ground-water resources of the Coastal Plain in southeastern Virginia, by D. J. Cederstrom. Virginia Geol. Survey Bull. 63, University, Va., 1946. 385 pp., 38 pls., 31 figs. 50 tables.

Presents a detailed description of the geology and ground-water conditions in the area. Contains many well records and logs and information on the quality and quantity of ground water.

WASHINGTON

446. Factual data pertaining to wells and springs in the Columbia Basin project area, Wash., by G. C. Taylor, Jr. Portland, Oreg., January 1944. 85 pp., 1 pl. (Dittoed.)

Prepared in cooperation with the Washington Department of Conservation and Development. Explains the principal features of the well records and gives three tables as follows: Records of wells in the Columbia Basin project area. Records of the principal springs in the area, and Chemical analyses of representative waters in the area.

WEST VIRGINIA

447. Apparatus for the measurement of temperatures in deep wells, and temperature determinations in some deep wells in Pennsylvania and West Virginia, by C. E. VanOrstrand. pp. lxvi-cxii from West Virginia Geol. Survey Rept. for 1918, Wheeling, W. Va., 19'8.

Describes and illustrates the several types of thermometers used and gives tabulated data on measurements in 12 wells in West Virginia and 1 well in Pennsylvania.

Discusses the need for ground-water studies in West Virginia and outlines the projected plan of study by the United States Geological Survey in cooperation with the West Virginia Geological and Economic Survey. Gives a general discussion of the occurrence of ground water in the State.

Discusses quality of the water, with analyses, and gives conclusions regarding the source of recharge, limitation of yield, and additional supplies. Concludes that a considerable part of the water is derived by percolation from the Ohio River, with effective filtration of impurities.
WISCONSIN

Describes the geography and geology of the State and the conditions controlling local ground waters and artesian waters, the following wells and artesian prospects, the springs and mineral waters, the uses of water supplies, and the quality of water from various geologic sources and from the rivers and lakes of the State. Gives detailed description by counties, with well sections and water analyses. Includes maps showing the geology, the surface of the pre-Cambrian rocks, the head of artesian water, and the areas of soft and hard water.

WYOMING

A preliminary report on investigations in the Egbert-Pine Bluffs area, the Cheyenne area, and the Laramie area. Each investigation includes a study of the geology, the recharge and discharge of ground water and the gradient and direction of its flow, estimates of the quantity of ground water in storage, the limits of safe development of areas that are yielding water to wells, and a discussion of areas favorable for new production of ground water.

Contains brief description of the principal aquifers and data on ground-water levels in the Egbert-Pine Bluff area, Carpenter area, Cheyenne area, and Laramie area.

MIMEOGRAPHED AND OTHER DUPLICATED REPORTS

These brief reports are on file in the Washington office of the Ground Water Division of the Geological Survey. Copies of most of them can be obtained on application to the Geological Survey. Many of them have been superseded by more detailed reports.

Describes tests made by the method in tracing the underground courses of water from streams and sinkholes.

Gives the results of an investigation made in 1921. Ground water is abundant in the valley bottoms at about 20 feet and on the bench lands at depths of 100 to 300 feet. Conditions are in general unfavorable for artesian water. Describes local conditions in the several parts of the area, with notes on quality of water. See also Water-Supply Paper 539.

The results of investigation offer no encouragement to prospect for artesian water nor water in the valley alluvium. Four shafts failed to reach water at depths of 67 to 250 feet. Springs are few and small. Many mining shafts of the Searchlight district, however, encountered some water.

Small artesian flows are obtained for watering stock, but large artesian supplies for irrigation cannot be developed. Shallow ground water is present but is not profitable for irrigation. In a few places artesian water might be developed in the lavas bordering the valleys.

Shallow ground water is obtained in the alluvium of the flood plain of the Rio Grande and in the alluvium and underlying Santa Fe formation along Jemez Creek. Wells on the Indian reservations obtain water in the Santa Fe formation. Recommends a test well for artesian water west of San Ysidro. Discusses probability of artesian water in the Dakota sandstone and other formations. See also Water-Supply Paper 620.

Gives definitions of 520 terms used in ground-water studies. See also Water-Supply Paper 494.

A study of water supply for the Arlington and Washington districts, beyond the limits of the Alexandria municipal supply. Shallow wells will not be advisable because of liability of contamination and of depletion during droughts. Wells drilled to depths of 100 to 150 feet and getting water from crystalline rocks may be feasible, but the yield of each well will be small. Surface-water from Pimmit Run or the Potomac River might furnish an adequate supply.

A summary of observations on the daily fluctuation of the ground-water level caused by alfalfa and native vegetation. See also Water-Supply Paper 659 a.

Summarizes the results of studies and describes the artesian conditions. Gives a summary of the geology, consisting of Quaternary valley fill overlying Permian rocks of the Chupadera formation. Most of the artesian water comes from cavernous limestone in the Chupadera. Discusses source of the artesian water. Includes a map showing area of flowing wells and of pumped wells. See also Water-Supply Paper 639.

A summary statement that the ground-water supply is adequate to irrigate an additional area of 10,000 acres.

Gives data on the quality of water from the Dakota sandstone, in different wells. See also Water-Supply Paper 597 c.

Announces publication of Water-Supply Paper 597 b. Summarizes studies carried on in Pomperaug Basin, Conn., under the headings: Natural storage for the water supply; Estimates of runoff, evaporation, and underground percolation; Recharge and discharge of the subterranean reservoir.

Summary of a cooperative investigation begun in 1926. The vineyards and orchards of the area are supplied by water pumped from wells. There are 2,000 pumps on wells used for irrigation, and more than half of them are in an area of less than 72 square miles. A total of 45,800 acres is irrigated by well water. About 70,800 acre-feet of water is pumped annually for irrigation and domestic and stock use. See also Water-Supply Paper 619.

Gives a summary of the ground-water conditions, the Holly Springs and Grenada formations being the most productive water-bearing horizons. The Pliolit formation is a deeper water-bearing zone. Gives data on the pumpage of water. See also Water-Supply Papers 668 a and 668.
See also Water-Supply Paper 637 b.

A summary of ground-water and artesian conditions in the area, with data on test wells.

A summary of conditions with surface water used for irrigation and of the possibility of extending irrigation by pumping shallow ground water.

A report on an area where about 200,000 acre-feet of water is being pumped yearly from Pleistocene deposits for irrigation. The hydrostatic head has dropped notably, and the safe yield has been exceeded for several years. Includes a map showing contours of artesian head. See also Cooperative report 29 e and Journal article 196.

Describes the geology and the water-bearing formations and gives data on the extent of irrigation with water from the several formations. Discusses underground leakage and the waste of water.

A summary of the geology and structure. Water supplies for irrigation may be obtained from the upper and lower zones of the Yakima basalt. See also Water-Supply Paper 659 b.

A summary based on an investigation in cooperation with the Oregon State Agricultural Experiment Station. Discusses the water available for irrigation from wells in the valley plain of the Willamette River and its tributaries. See also Water-Supply Paper 777.

22. Recent replenishment of ground-water supply recorded by observation well near Washington, D. C., by R. C. Cady. Apr. 28, 1931. 1 p.
A summary of recent changes of water level in an observation well. See also Water-Supply Paper 777.

Measurements in 99 observation wells show lower water levels in the spring of 1931 than on corresponding dates in 1930. The average lowering was 1% feet. See also Water-Supply Paper 777.

A preliminary account of the geology and ground-water resources of Harney Basin, Oreg. Two promising sources of water exist, the deeper part of the valley fill and the uppermost water-bearing strata of the bedrock. Thermal springs are numerous. The geologic structure is a shallow saucer-shaped basin, modified by faulting. Artesian conditions probably are present. The methods of well construction heretofore used are inadequate. See also Water-Supply Paper 841.

Gives data on development of the Memphis water supply and a summary of the geology of the area. See also Water-Supply Papers 638 a and 656.

A summary of studies in 12 counties and part of another in connection with which the records of about 1,000 wells were collected and 89 analyses of well and

Spring water were made. Describes geology and the water-bearing properties of the different types of rock. See also Cooperative report 344.

Discusses relation of ground water to stream flow and methods of investigation. Regards root zone and zone of saturation as reservoirs that regulate surface flow of water. Effects of droughts on wells are comparable to their effects on springs. Wells that extend for considerable depths below the water table are not easily affected by drought, and wells that extend into large artesian reservoirs are independent of seasonal variations in precipitation.

Summary of data on the artesian water supply and state legislation for control of its development. See also Water-Supply Paper 699.

A summary of the changes in water level in an observation well in Arlington County, Va., during 1928-31. See also Water-Supply Paper 777.

A summary of the quantitative results of an extensive investigation during 1929-27. The average annual contribution of water to the Snake River Plains about King Hill, Idaho, from all tributary valleys, both surface and underground flow, was computed to have been 9,079,500 acre-feet. The average annual disposal of water was computed to have been 9,971,000 acre-feet, including the discharge of Snake River, transpiration of crops, evaporation, and increased storage in surface reservoirs and underground. The difference of 891,500 acre-feet is equal to about 12 percent of the average annual precipitation in the region and represents to some extent the ground-water recharge from precipitation. See also Water-Supply Papers 774 and 775.

The most promising water-bearing formations are the Carrizo sandstone and the Cook Mountain formation, which yield large quantities of water, some of which is suitable for irrigation. Water suitable for domestic and stock use occurs in the Catahoula and Reynosa formations, and some wells in these formations may yield water suitable for irrigation under proper conditions of soil drainage. See also Water-Supply Paper 778.

Describes a device made and used in Utah for measuring the shut-in pressure of flowing artesian wells.

Describes a 5-inch Venturi flume designed by H. C. Troxell and C. A. Taylor and used in southern California to measure the discharge of water from irrigation wells.

Summarizes the changes in water levels in observation wells in 1931-32. See also Water-Supply Paper 777.

Gives the results of studies in 13 counties and parts of 2 others. Includes a summary of data obtained from 1,300 wells and partial analyses of 144 samples of well and spring waters. Includes a map showing ground-water conditions. See also Cooperative report 342.
Describes geology and ground-water conditions of Jordan Valley, Utah. The area of artesian flow in 1931 was about the same as in 1904, and therefore the safe yield of the ground-water reservoir has not been exceeded. Considerable waste takes place from the uncontrolled flow of wells. Construction of existing wells is inefficient. Includes maps showing artesian head and chloride content.

1 p.
A summary of recent changes in water level in observation wells. See also Water-Supply Paper 777.

The Carrizo sandstone and Mount Selman formation yield considerable water to both flowing and pumped wells. Gives data on the amount of land irrigated and the waste of water. Describes water-level measurements to determine the amount of water that can be withdrawn without seriously depleting the supply. See Water-Supply Paper 676.

Describes the chief water-bearing formations and the studies on pumping and water levels. The underground reservoir is capable of supplying more water than has heretofore been withdrawn from it. See also Water-Supply Papers 889 d and f and Cooperative reports 388, 394, and 396.

The chief water-bearing formations are the Catahoula tuff and the Reynosa formation. Most of the water is rather highly mineralized, but in the southeast part of the area water suitable for irrigation is obtained. Irrigation with ground water is there feasible, but development should proceed slowly until the adequacy of the supply has been determined. See also Water-Supply Paper 776.

Describes some of the problems to be considered in a current investigation of ground-water supplies of Long Island. It is estimated that 250,000,000 gallons a day is pumped from wells in the boroughs of Brooklyn and Queens and in Nassau County. Salt water is being drawn into wells in certain parts of Brooklyn. See also Cooperative reports 271, 272, 274.

42. The upward trend of the ground-water level in northern Virginia, by R. C. Cady. June 20, 1933. 2 pp.
A summary of the changes of water-level in five observation wells during 1928-33. See also Water-Supply Paper 777.

43. The construction and protection of drilled wells, by A. G. Fiedler. Sept. 9, 1933. 8 pp.
Describes the methods of drilling wells by the cable-tool percussion and the hydraulic rotary methods. Discusses the contamination of wells, methods of protection of casings, and the chlorination of completed wells.

Summary of a study of the alluvial basin of the Walla Walla River, with data on fluctuation of the ground-water level in response to irrigation and to rainfall.

Describes the construction and operation of a gage for measuring the shut-in pressure of flowing artesian wells as used in Utah.
46. Ground-water resources in the Houston district, Tex., by W. N. White and Penn Livingston. Dec. 29, 1933. 6 pp.
Gives figures on the amount of water pumped for the city of Houston in 1928-33, the fluctuations in artesian pressure, and five analyses showing the quality of the water. See also Cooperative reports 388, 394, 396.

A review of the data collected since 1921 and interpretations of all data on the Mud Lake region, Idaho, including inventory of the ground-water supply and methods for obtaining maximum conservation and utilization. See also Water-Supply Paper 819.

Preliminary report on the possibilities of developing additional ground-water supplies for the Kula and Makawao districts. The drought of 1932-33 seriously affected the public water supply, and new sources of ground water were desired. A material increase in the water supply can probably be obtained by the development of ground water from buried drainage surfaces.

A summary of the studies that have been made, including tests, drilling, pumping tests, measurements of water level, and collection of well data. See also Water-Supply Paper 779.

Gives data on additional ground-water supplies available to Honolulu from the dike complex of the Koilau range, from six minor high-level sources, and from the artesian reservoirs. Contains map showing boundary of dike complex and most favorable location for a water tunnel.

The outcrop area of the Carrizo sand, which supplies water to the irrigation wells of the area, covers about 175,000 acres, and most of the recharge occurs from precipitation on the outcrop area during years of heavy rainfall. Prior to 1929 there was a decline of water levels. From 1929 to 1933 there was decrease in withdrawal, and the water level was about the same in the latter as in the former year. The yield of wells amounted to 20,000 acre-feet, sufficient to irrigate 27,000 acres. Additional development of ground water is not justifical in view of the facts brought out by the investigation. See also Cooperative report 393, Dimmit and Zavala Counties and part of Maverick County.

To determine the extent to which the ground-water supply is dependent on the water flowing in Mokelumne River, a monthly water inventory was made for the years 1926 to 1933, based on detailed investigation. A table gives the net loss or gain by seepage. See also Water-Supply Paper 619.

Reviews the cooperative examination of the area and lists eight previous releases giving information on the progress of the work. See also Water-Supply Papers 774 and 775.

A condensed discussion of the subject, under the headings: Direct discharge; Zone of saturation; Belt of soil moisture; Intermediate belt and capillary fringe; Ground-water recharge; Ground-water discharge; and Types of springs and their relation to stream flow.
Prepared in cooperation with Texas State Bd. Water Eng. and Texas State Dept. Health. An area of about 150 square miles surrounding the city of Mineral Wells was examined. In 1931 there were about 150 commercial wells, all in the city, averaging 200 feet in depth and obtaining water from the Brazos River conglomerate, of Pennsylvanian age. The water is especially high in sodium sulfate. Results of pumping tests show mutual interference of some wells. Gives the results of field chemical tests on 59 water samples and analyses of 12 samples, the location of the wells sampled being shown on an index map.

A paper prepared for the News Memorandum of the Bureau of Yards and Docks, United States Navy, with special regard to ground-water supplies at naval stations. Discusses the common water-bearing formations, safe yield of wells, and salt-water and drilling problems, with references to published reports of the United States Geological Survey.

A report to the chairman of the State Geological Surveys Committee of the Division of Geology and Geography, National Research Council. Discusses the relation of Federal to State geological surveys and the best bases of cooperation. "The water resources investigations of an ideal State geological survey or comparable organization may be classified as (1) research in the principles and methods of hydrology; (2) systematic investigation of the natural waters of the State with respect to occurrence, quantity, head, quality, and methods of recovery; and (3) dissemination and application of the results of the research and investigation."

58. Four-year decline of the ground-water level in the Platte River Valley in central Nebraska caused by subnormal precipitation, by L. K. Wenzel. Apr. 1, 1935. 2 pp., 2 pls.
The water level declined 1 to 8 feet from October 1930 to October 1934, the decline being greatest where the water table lies deepest. During the period the deficiency of precipitation amounted to about 1,400,000 acre-feet, and the net loss of ground water was about 400,000 acre-feet. The records indicate that recharge in normal years will restore the water levels to their normal position. See also Water-Supply Paper 779.

Describes the development of water-level measurements on observation wells, and their value in connection with studies of drought conditions.

Gives instructions on types of observation wells, their equipment and protection, the methods and frequency of measurements, installation and operation of automatic recorders, and collection of field data.

61. The relation of ground-water levels to temperatures and precipitation at Harvey, N. Dak., by A. N. Sayre. June 10, 1935. 2 pp.
Gives data on water level in a well of the city water supply system in which the level is low in the spring season and rises to maximum height in early summer. The water-level fluctuations also show a marked relation to the seasonal temperature. Includes diagram showing fluctuation in water level in the well from January 1927 to May 1935.

The alluvial deposits contain clean water-bearing sands, which are thick and abundant near the apex of alluvial cones and thin and less numerous beneath
62. Geology and ground-water resources of the Harvey Basin, Oreg.—Continued.

the central plain. The deeper wells yield water under artesian pressure. Thermal springs, from known or inferred faults, discharge water as much as 154° F. in temperature. Along the borders of the plain the ground-water is moderately mineralized, chiefly with sodium bicarbonate. In the central part of the plain some wells yield saline or sulfate water. See also Water-Supply Paper 841.

Describes the varying discharge of a small spring. See also Journal article 142.

Nearly all water supplies of the area are from wells. It is estimated that the pumpage for municipal, irrigation, and other uses is about 30,000 acre-feet a year and that about 56,000 acre-feet a year percolates southward under the upland and reappears in the tributaries of Republican and Blue Rivers. With the return of normal years of precipitation there will be restoration of the ground-water supply. See also Water-Supply Paper 779.

A summary of ground-water conditions in Ogden Valley, Utah, with data on fluctuations in ground-water level and discussion of artesian conditions. See also Water-Supply Paper 796 d.

Most of the ground water is in the Ogallala formation, which overlies Cretaceous and Triassic rocks that contain small amounts of highly mineralized water. About half an inch of precipitation reaches the water table yearly. The ground water moves east or southeast and discharges by evaporation from lakes or as springs along the escarpment that bounds the plains on the south and east.

In the pediment zone of Avra Valley the bedrock lies near the surface, and water supplies may be found in some places in shallow wells in the disintegrated rocks. In the parts of the valley underlain by alluvium large quantities of water are available to wells at depths ranging from 150 to 800 feet. See also Water-Supply Paper 796 e.

68. Ground-water resources of northwestern New Mexico, by G. A. Waring and D. A. Andrews. Nov. 8, 1935. 2 pp., 1 map.

The principal water-bearing formations are sandstones of Upper Cretaceous to Jurassic age. Most of the northern part of the region from a synclinal basin, in which flowing wells have been obtained in the Dakota sandstone. Includes a map showing the geology of the area.

The supply of shallow ground water is in thin discontinuous layers of sand and gravel. These are recharged periodically when the creek is in freshet, but their storage capacity is small, and many shallow wells failed in 1934-35. Water-bearing beds at depths of several hundred feet yield reliable supplies for domestic and stock use but are at too great pumping depths to be feasible for irrigation.

A summary account of an address by Thornton Lewis of the Carrier Engineering Corp. Discusses the several methods of air conditioning and the use of well water for the purpose. Gives data on the amount of water required and costs of installations.

Gives a summary of the water-bearing formations and possible artesian conditions in several parts of the region, with notes on water horizons in several test wells drilled for oil.
Describes and illustrates the equipment used for measuring the shut-in pressure of artesian wells in Utah, with explanation of operation of the gage. Gives itemized cost of construction of the instrument.

73. Symposium on ground-water levels, by D. G. Thompson and others. June 10, 1936. 1 p.
Gives summary of meeting and titles of 10 papers presented in the symposium, with statement as to extent of the studies of ground-water levels in 25 States and the Territory of Hawaii.

Prepared in cooperation with the Soil Conservation Service, United States Department of Agriculture.

Describes conditions desirable in an observation well.

Describes the systems adopted for wells in Oregon and Utah, with comments on other suggested plans for designating the map location of individual wells.

Discussion of a paper of the same title by R. E. Horton. Treats especially of the annual rate of replenishment of underground reservoirs as affected by rainfall and stream discharge. Discusses increase of ground-water supply by artificial recharge and storage in upstream areas. Includes a list of 12 papers on ground-water levels and storage.

Treats of the electric-resistivity method and its use in locating water horizons near El Paso, Tex., and in Hawaii; in dam-site investigations in the West; and in salt-water studies in New Jersey.

A short account of a meeting of the International Union of Geodesy and Geophysics at Edinburgh, Scotland, and notes on hydrologists who were visited in Germany, Holland, and France.

Describes the system used in the Division of Geology, Washington State Department of Conservation and Development, for filing well logs, according to a symbol that designates the location to the nearest tenth mile with reference to the land-net system.

Comments on a previous paper by O. E. Meinzer and describes the system used by the author in designating wells in Oregon, based on the township and range lines as coordinates.

The valley area is an intermontane trough 10 to 20 miles wide extending southward from the San Carlos Indian Reservation. Along Gila River is an alluvial plain 1 to 3 miles wide. The higher land is terraced. The lower lands are underlain by numerous strata of sand and gravel containing water under little or no artesian
82. Ground water in Gila and San Simon Valleys, Graham County, Ariz.—Continued.

pressure. The terrace gravel yields little water. The deeper valley deposits yield artesian water under sufficient pressure to flow in some places. Analyses of 49 water samples show them to be mainly of sodium chloride, sodium carbonate, and sodium sulfate types. About one-third of the waters analyzed are too highly mineralized to be fit to use for irrigation. See also Water-Supply Paper 786 f.

Describes tests of the interference between artesian wells in an area of about 5 square miles.

84. Apparatus for testing the permeability of samples of unconsolidated sediments in the field, by V. C. Fishel and V. T. Stringfield. Feb. 10, 1937. 3 pp., 2 pls.

Describes the apparatus and gives a chart for determining the permeability from the rate of decline of the water level in the manometer tube.

The Holbrook area covers about 10,000 square miles on the Colorado Plateau in parts of Coconino, Navajo, and Apache Counties, Ariz. The principal water-bearing formations are the Coconino sandstone, the lava flows, and recent sand and gravel along the major streams. The best supplies are obtained from the Coconino sandstone. Small structures such as the Holbrook dome aid in causing artesian conditions in small areas. See also Water-Supply Paper 836 b.

The general rise in ground-water levels in Utah in 1936 indicates that recharge to ground-water basins, most of which are artesian, has been greater than the discharge. This has been caused in part by increased precipitation and in part by the adoption of conservation measures that limit the amount of water wasted from artesian wells. See also Water-Supply Paper 817.

87. Ground-water supplies of Mill Creek Valley and the Norwood Trough, Ohio, by D. G. Thompson. April 5, 1937. 23 pp.

Gives an introductory discussion of the geology and glaciation and then describes ground-water recharge, the present water supply, which is chiefly from the Ohio River, and the quality of water. Gives data on consumption and the decline of the water table. Possible sources of additional supply from reservoirs are considered.

88. Ground-water supplies of Mill Creek Valley and the Norwood Trough near Cincinnati, Ohio, by D. G. Thompson. Apr. 29, 1937. 2 pp.

Ground water is obtained generally from wells in alluvial deposits that fill ancient river valleys cut in the bedrock. Recent studies show a great decline in ground-water levels due in large part to heavy and increasing pumpage. Recommends other sources.

89. Sundry hydrologic observations, especially concerning the ground-water supply of London, by O. E. Meinzer. May 18, 1937. 4 pp.

Gives a summary of the water-supply system for a population of about 7,500,000, the average daily consumption of water being about 280,000,000 gal.-ns. About two-thirds is from the Thames River, one-sixth from the Lee River, and one-sixth from wells that obtain most of their water from the Cretaceous chalk formation. In the central part of London the ground-water level has declined greatly in recent years, owing to the great draft by wells.

In the vicinity of Lehi, Utah, artesian water is obtained from two horizons, at depths of 130 to 200 feet and at 200 to 400 feet. During 1936, because of decreased irrigation due to a rainy growing season and closer control of flowing wells to prevent waste of water, the ground-water level rose to 5 to 10 feet. A series of tests show that wells in the same horizon cause interference with each other but do not affect wells of a different horizon. See also Water-Supply Paper 886 c.

An account of a visit to The Hague and examination of its water-supply system and of the supply to Amsterdam from the dune area, where the balance of fresh-water and salt-water depends on the principles discovered by Badon Ghyben and Alexander Herzberg.

Summarizes the changes in water level in about 400 observation wells distributed throughout the State. See also Water-Supply Paper 840.

Summarizes the results of cooperative study of the area. See also Cooperative report 345.

A summary of the ground-water conditions and resources of the country, the utilization of the ground water, and the scientific investigation and literature relating to the subject. See also Water-Supply Paper 489.

Presents two examples of use of the form as employed in Texas, with comments on it.

Discusses briefly the geology and artesian water resources of the area and emphasizes the loss of artesian head and the quality of the water, particularly the fluoride content.

A summary of a cooperative study of the area. See also Cooperative report 346.

Gives a summary of changes in water level in various States during the year. See also Water-Supply Paper 840.

The water supply is from four shallow wells, in two of which there has been salt-water encroachment. The situation is not serious, but pumping from these wells should be done only when additional water supply is necessary.

A discussion of artesian conditions in general and in the Paleozoic formations of the east-central region, in the Roswell basin of New Mexico, the Atlantic and Gulf Coastal Plain, the Cretaceous formations of the Great Plains region, in glacial drift, and in valley fill of the western mountain region. See also Water-Supply Paper 836 d.

102. Wells used for public-water supply at Spokane, Wash., by A. M. Piper and G. A. LaRocque, Jr. Nov. 10, 1938. 2 pp., 2 tables.
The supply from the Spokane River was discontinued in 1908, when a large supply was developed from shallow wells in coarse glacial outwash near the river. See also Water-Supply Paper 889 b.
A body of brine at the base of the Rustler formation extends from north of the Laguna to near Malaga Bend of the Pecos River. Artesian pressure forces the brine into the river at and near the Bend. The salt is derived from the Salado halite. The brine from the Laguna does not reach Malaga Bend.

104. Georgia public water supplies, by W. D. Collins. Jan. 6, 1939. 6 pp
Surface water supplies are used in the Appalachian Highlands and artesian well water in the Coastal Plain. Gives data on the dissolved solids and hardness of the water supplies of 65 cities. See also Water-Supply Paper 912.

A summary of shallow ground-water conditions in the area. See also Water-Supply Paper 639.

A summary of the results of a cooperative study begun in 1937. See also Cooperative report 321.

A summary of recent changes in water levels in observation wells. See also Water-Supply Paper 845.

Notice of release of two reports on ground-water supply and ground-water levels in the valley. “These reports show that since 1914, when the first records were obtained, there has been a consistent fall in water levels in the heavily pumped areas.” See also Water-Supply Paper 637 b.

Gives a summary of the changes of water level in 77 observation wells throughout the State and data on the observation-well program in cooperation with the North Dakota Geological Survey. Includes map showing location of wells. See also Water-Supply Paper 845.

Gives a summary of ground-water studies in Utah, the importance of ground water in the State and the laws regulating its development. Emphasizes the value of studies of the ground-water level in connection with conservation of the supply.

Gives a summary of the studies made on the ground-water level, wells, and pumping plants for irrigation with water from the valley alluvium. See also Cooperative reports 141, 142, 152.

Summarizes data on the changes in water level in various parts of the State, which are based on records from about 680 observation wells. Includes map showing average changes in the ground-water level. See also Water-Supply Paper 845.

A summary of data on changes in water level in 407 shallow wells in the area. See also Water-Supply Paper 845.

Describes and illustrates a system of valves in which an antifreeze liquid is used. Fuel oil has been found to be the most satisfactory liquid for the purpose.
A summary of the geology and an outline of the ground-water hydrology. Includes a map showing the several ground-water areas or provinces and the depth to water by contour lines.

A list of reports, papers, and memoranda released during the fiscal year. Contains the titles of 105 reports and papers published or transmitted for publication.

117. The role of hydraulic laboratories in geophysical research: Ground Water; permeability, specific yield, etc., by O. E. Meinzer. Sept. 13, 1939. 10 pp. (Mimeographed by U. S. Bureau of Standards.)
"The present paper relates only to studies that have been or can be performed in the laboratory on the movement and storage of ground water." Discusses experimental work that has been done on the law of flow through water-bearing materials; investigations relating to dense materials; rate of flow computed from velocity; rate of flow computed from permeability; storage coefficient of artesian aquifers; and specific yield. Contains list of 22 papers cited.

A summary of data collected on ground-water levels and ground-water flow. See also Water-Supply Paper 899 b.

Describes conditions encountered and equipment and procedures used in drilling test wells for public-water supply in the "Equus beds." See also Journal article 214.

120. Municipal and industrial supplies from wells in Butler and Hamilton Counties, Ohio, by D. G. Thompson and F. H. Klaer, Jr. Feb. 19, 1940. 2 pp.
Summarizes the amount of water pumped, with notes on the precipitation. See also Cooperative report 311.

121. Water levels in wells are at low stages in northern Virginia and vicinity of Washington, D. C., by V. C. Fishel. Feb. 23, 1940. 1 p.
A summary of changes recorded in four observation wells in Virginia. See also Water-Supply Paper 906.

Gives a summary of changes in ground-water levels in the several parts of the State during 1936-39. See also Water-Supply Paper 886.

A summary of water-level changes during 1939. See also Water-Supply Paper 886.

Cooperative study has been in progress since 1938, and records of about 1,300 wells have been obtained. See also Water-Supply Papers 845 and 886.

Gives summary of observation of ground-water level during 1932-39 and notes the area of decline or rise in the water table. Includes a map showing by contour lines the change in water levels. See also Water-Supply Papers 817, 845, 886.

126. Test drilling with hand tools as developed by the Soil Conservation Service, by S. L. Schoff. May 10, 1940. 2 pp.
Describes equipment and method of rapidly drilling wells in alluvial material to about 50 feet maximum depth.
Describes a simple and inexpensive float gage "for indicating highest and lowest stages of water level reached in an observation well or at a stream-gaging station during the interval between visits by an observer." Illustrated by diagrams and photograph.

Summarizes ground-water conditions in sand and gravel in Escambia County, gives data on amount of water pumped by the Pensacola waterworks, and comments on salt-water encroachment at Bayou Chico.

Announces preliminary results of a cooperative investigation begun in November 1938. About 115,000,000 gallons of artesian water is withdrawn daily from wells in the six coastal counties of Georgia, of which about 40,000,000 gallons is withdrawn in Chatham County, in which Savannah is located, and about an equal amount in Glynn County, in which Brunswick is located. Most of the artesian water is derived from the Ocala limestone.

130. Water levels in wells rise from low stages in northern Virginia, by V. C. Fishel. May 15, 1940. 1 p.
A summary of recent changes noted in observation wells. See also Water-Supply Paper 906.

A summary of recent changes in ground-water levels, as noted in observation wells. See also Water-Supply Paper 906.

A summary of a cooperative report recently prepared. The annual yield from the artesian water-bearing beds that can be maintained without decreasing the head is about 7,100 acre-feet. Under conditions of general pumping sufficient to lower the head enough to stop all surface flows and underground leakage an annual yield of 10,000 acre-feet could probably be obtained. See also Cooperative reports 144, 154.

133. Bibliography of technical reports, articles, and memoranda published or otherwise released (by the Ground Water Division) during the fiscal year ended June 30, 1940, by O. E. Meinzer and Jane Daniel. Aug. 10, 1940. 11 pp.
Contains titles of 133 reports and papers relating to ground water.

Describes the progress of cooperative studies in 11 counties, where records of 1,100 wells have been collected. Summarizes information on the water-bearing formations, artesian head, areas of flowing wells, and consumption.

Describes a group of thermal springs in north-central Oregon ranging in temperature from 122° to 182° F. States that the discharge of Kah-ne-ta Spring is 380 gallons a minute and that of 5 other springs nearby is 1 to 30 gallons a minute each.

Gives data on pumpage and a summary of observations of changes in water level.

137. Ground-water levels in Utah, September 1, 1940, by G. H. Taylor. Sept. 21, 1940. 1 p.
A summary of recent changes in ground-water levels in Utah. See also Water-Supply Paper 910.
 Gives data on the change of water level in five observation wells. See also Water-Supply Paper 910.

 Describes and illustrates an instrument developed and used on intermittent streams in Arizona. Description of a collapsible shelter for water-stage recorders 1/4 p. Turner accompanies the article (1 p., 1 pl.).

 A brief description of the geology and shallow well water in the valley alluvium. Suggests possibilities of artesian water in a small area. Comments on the contents of chloride, alkaline salts, and fluoride in some of the waters. See also Cooperative report 12.

 A summary of artesian water development in the State from the Dakota sandstone.

142. Equipment for measuring depth to water, by Penn Livingston and A. M. Piper. Feb. 10, 1941. 4 pp., 2 pls.
 Describes and illustrates equipment using electric means of indicating the ground-water level. Includes a discussion and description by Piper of a float-actuated device for closing the electric circuit.

 Cavernous limestone is the source of most private and public water supplies in Dade County, Fla. Contamination by salt water has taken place only near the sea coast and near the lower part of some canals. See also Cooperative report 62.

144. Ground-water resources of Stanton County, Kans., by B. F. Latt. Apr. 7,1941. 1 p.
 A summary of the ground-water conditions in the county. See also Cooperative report 145.

 A summary of the changes in ground-water level in the principal valleys of the State, based on observation of nearly 1,100 wells. See also Water-Supply Paper 910.

 Summarizes water-level measurements in the Queen Creek area, the Santa Cruz River Valley, and Safford and Duncan Valleys. There was a general decline in the first area, fluctuation conforming to the irrigation-pumping season in the second, and a slight net rise in the third. See also Water-Supply Papers 886 and 911.

 A summary of the changes in water level in 486 observation wells in the State. See also Water-Supply Paper 908.

 Gives summary of change in ground-water levels. See also Water-Supply Paper 911.

 A summary of changes in ground-water levels in the valley. See also Water-Supply Paper 911.

 Summarizes the changes in water level that took place from January 1938 to January 1941. See also Water-Supply Paper 911.
151. Salt-water problems and methods of investigation. May 15, 1941.
Contains the 30 short papers listed below, which were presented at a conference of the geologists and engineers of the Ground Water Division of the Geological Survey, in Washington, on April 30, 1941.
Salt-water intrusion in the No. 1 sand near Parlin, N. J., by P. C. Baker. 3 pp.
General statement on salt-water problems in Maryland, by H. C. Barksdale. 3 pp.
Ground-water investigations in the vicinity of Galveston, Tex., with special reference to salt-water intrusion, by B. A. Barnes. 7 pp., 4 figs.
Summary of ground-water conditions in New York with respect to salt-water encroachment, by M. L. Brashears, Jr. 3 pp.
General statement concerning salt-water encroachment in Massachusetts, by M. L. Brashears, Jr. 1 p.
The results of electric resistivity prospecting for salt-water contacts in the Hawaiian Islands, by A. C. Byers. 5 pp.
Salt water in the Coastal Plain of Alabama, by C. W. Carlston. 3 pp.
Chlorides in the Virginia Coastal Plain, by D. J. Cederstrom. 4 pp., 1 fig.
The possibility of salt-water intrusion in northeast Florida, by H. H. Cooper, Jr. 5 pp.
Salt-water intrusion in the vicinity of Pensacola, Fla., by H. H. Cooper, Jr. 4 pp.
Summary of salt-water encroachment studies in southeast Florida, by W. P. Cross. 3 pp.
Summary on salt-water intrusion in New Haven, Conn., by J. G. Ferris. 2 pp.
The salt-water problem in Coastal Plain of Mississippi, by V. R. Foster. 3 pp.
Salt-water problems in the East Texas oil field, by P. P. Livingston. 3 pp., 1 fig.
Salt-water problems in the Winter Garden area, Tex., by P. P. Livingston. 3 pp.
Equipment for exploring wells, by P. P. Livingston. 5 pp., 1 fig.
Summary of salt-water intrusion in Kansas, by S. W. Lohman. 10 pp.
Salt-water problems in Louisiana, with special reference to the Colfax area, by J. C. Maher. 3 pp.
Ground-water conditions along the Pacific coast with respect to salt-water intrusion, by A. M. Fiper. 3 pp.
Salt-water problems in Iowa and South Dakota, by T. W. Robinson. 3 pp.
Occurrence of salt water in the Houston district, Tex., by N. A. Peters. 3 pp., 2 figs.
Salt-water problems in the El Paso, Tex., area, by A. N. Sayre. 3 pp.
Conditions affecting salt-water intrusion in the Atlantic City region, N. J., by E. J. Scharer. 3 pp.
Salt-water intrusion in Oklahoma, by S. L. Schoff. 5 pp.
Salt-water invasion in Hawaii, by H. T. Stearns. 8 pp.
General survey of problems of salt-water contamination of ground water in the Coastal Plain of the southeastern States, by V. T. Stringfield. 2 pp.
Sailine ground-water conditions in Utah, by H. E. Thomas. 4 pp.
Salt-water problems in Arizona, by S. F. Turner. 1 p.
Artesian water in the coastal area of Georgia, with special reference to the possibility of salt-water encroachment in the Savannah area, by M. A. Warren. 3 pp.
Notes on salt-water problems, by L. K. Wenzel. 3 pp.

152. Water levels in wells are at low stages in northern Virginia and vicinity of Washington, D. C., by V. C. Fishel. June 18, 1941. 1 p.
A summary of records on two observation wells in the area. See also Water-Supply Paper 937.

A list of 24 papers containing data on the electrical logging of wells, published during 1934-40.

154. Geology and ground-water resources of Morton County, Kansas., by T. G. McLaughlin. July 30, 1941. 1 p.
A summary of ground-water conditions in the county and notice of release of the report. See also Cooperative report 149.

Describes the use of metal strips coated with slaked lime, whit'ng, or other material to show the water mark in wells. Includes three form sheets showing method of recording observations.
156. Ground water in the Cincinnati area reaches the lowest levels in three
years, by F. H. Klaer, Jr. Sept. 2, 1941. 3 pp.
A summary of the changes in ground-water levels near Cincinnati, Ohio, during
1938-40. See also Water-Supply Papers 845, 886, and 906.

157. Geophysical studies in the Hanawi area, Nahiku, Island of Maui, Terri­
Summarizes the results of electric resistivity surveys to trace inland a spring
that yields 10 million gallons of water a day from lava.

158. Geophysical studies on the island of Molokai, Territory of Hawaii, by G.
Summarizes the results of electric resistivity measurements to determine the thick­
ness of the basal fresh-water lens overlying salt water. From data obtained, the
altitude of the basal fresh-water table was computed to range from 1.3 to 18.8 feet
above sea level. Includes a map showing by contour lines the altitude of the basal
fresh-water table in the west half of the island.

159. Completion of test well for irrigation near Deming, N. Mex., by C. R.
Gives data on a test well driven 1,000 feet deep to determine whether there
are additional water-bearing formations below those drawn upon by present ir­
rigation wells. Additional water-bearing strata were found between 300 and 450
feet, but at greater depths clay was encountered underlain by igneous rock. Wells
tapping the lower beds will have less drawdown than the present well*, but the
conditions found do not indicate that any greater quantity of ground water will be
available than has previously been estimated.

160. Water resources of Safford and Duncan-Virden Valleys, Arizona and New
Mexico, by S. F. Turner, R. B. Morrison, and others. Oct. 13, 1941
2 pp.
Summary of an investigation in progress since October 1, 1939, on the source,
amount, and disposal of all water entering each valley. The river-bottom growth in
Safford Valley used about 70,000 acre-feet of water during the water year October
1, 1939 to September 30, 1940. The consumption by crops was about 100,000 acre-feet,
during the same period. The principal sources of ground-water supply are canal
seepage, irrigation seepage, infiltration from the Gila River, underflow from tribu­
tary washes, artesian leakage, and rainfall.

161. Bibliography of technical reports, articles, and memoranda published or
otherwise released (by the Ground Water Division) during the fiscal
year ended June 30, 1941, by O. E. Meinzer and Jane Daniel. Nov.
10, 1941. 14 pp.
Contains titles of 169 reports and papers relating to ground water.

162. Ground-water resources of Box Butte County, Nebr., by R. C. Cady and
Most of the ground water pumped comes from formations of Miocene and Pliocene
age. Although these formations consist of fine-grained sand and sandstone, they
yield large quantities of water to wells. Their productiveness is due to the great
thickness of the saturated beds and to the fact that their sands are well assorted
and contain very little silt and clay. See also Water-Supply Paper 969.

163. Ground-water resources of Scotts Bluff County, Nebr., by L. K. Wenzel,
The estimated annual discharge of ground water by wells is about 8,000 acre-feet;
the loss due to evaporation and to transpiration by plants in the lowlands is about
100,000 acre-feet; and about 325,000 acre-feet of ground water percolates to streams
that carry it out of the county. See also Water-Supply Paper 943.

29, 1942. 1 p.
A summary of changes in the water level in 22 observation wells from September
1937 to November 1941. See also Water-Supply Papers 845, 886, 906, 938.
 Briefly discusses recharge by water spreading and by means of wells. Gives examples of each method and references to several articles on the subject, with extracts from U. S. Dept. Agr. Tech. Bull. 578 and data on the water-supply system of Des Moines, Iowa.

166. Ground-water levels in Kansas during the period October to December 1941, by S. W. Lohman. Feb. 11, 1942. 1 p.
 A summary of changes in water level in observation wells during the period. See also Water-Supply Paper 988.

 A summary of changes in ground-water level in 18 principal areas of ground-water development in the State. See also Water-Supply Paper 940.

 A summary of the changes of water level in observation wells during 1941. Includes graph showing average water level 1938-41 and cumulative departure from normal precipitation. See also Water-Supply Paper 989.

 A summary of the changes in water levels in observation wells. See also Water-Supply Paper 941.

 An additional supply of water is believed to be available from the Ogden Valley artesian reservoir by means of wells. See also Cooperative report 424.

 A summary of pumpage and average ground-water levels in several parts of Santa Cruz Basin, and in Safford and Duncan-Virden Valleys in the Gila River Basin. See also Water-Supply Paper 941.

172. Bibliography of technical reports, articles, and memoranda published or otherwise released (by the Ground Water Division) during the fiscal year ended June 30, 1942, by O. E. Meinzer and Jane Daniel. Nov. 10, 1942. 9 pp.
 Contains titles of 111 reports and papers relating to ground water.

 Gives purpose and methods of investigation of ground water in the Panhandle, including well inventory, observation-well program, water analyses, permeability tests of water-bearing materials, and plans for future work.

174. Ground-water levels in Oklahoma rise slightly in 1940, by S. L. Schoff. March 1941. 2 pp. (Released by the Oklahoma Geological Survey.)
 Summarizes the annual trend in water levels in observation wells.

 Outlines work to be done in North Canadian Valley, Okla., including well inventory, observation-well program, test drilling, and pumping tests to determine extent and quality of the water resources.

176. Water in wells in New Mexico rose to unprecedented high levels during 1941, by C. V. Theis. June 6, 1942. 2 pp.
 Gives a summary of the change in ground-water levels in several parts of the State.

An abstract of an article by Dewey Johnson in Cast Iron News [Chicago, Ill.], April 1942. Gives data on the amount of water used in producing war equipment. States that 100 gallons are required to produce one pound of powder and 66 gallons for every pound of steel. Also gives the amounts used in some other operations and at army camps.

178. Geology and ground-water resources of Beaver County, Okla., by S. L. Schoff. Oct. 3, 1942. 4 pp., 1 map. (Released by the Oklahoma Geological Survey.)

Announces release of tables of well records for Beaver County, Okla., pending final report on the ground-water resources of the county, and gives short description of the water-bearing formations, present water supplies, and prospects for future supplies.

Summarizes data on the water levels and amounts of water pumped for irrigation. See also Water-Supply Paper 993.

Describes the method of drilling 8 small test wells with hand-operated equipment.

Summarizes early results obtained from monthly records on 130 observation wells in 40 States.

Following a test on the operation of a well field, correlations were made of the level of a nearby river, ground-water levels, temperatures, pumping rates of the wells, and well interferences. Graphs are presented showing the relationship of pumping rate, ground-water temperature and drawdown, and the variation of interference effects with ground-water temperature.

Summarizes the developed and available supplies of ground water in Jordan Valley, near the city, and gives data on yield of some of the flowing wells.

184. Ground-water levels remain high in most areas of Oklahoma, by E. W. Reed. Mar. 9, 1943. 2 pp. (Released by Oklahoma Geological Survey.)

Says that water levels were the highest on record in several parts of the State but declined in the Norman area, owing to heavy pumping.

Describes source of the ground-water supplies and gives the safe annual yields for several subdivisions of the basin. Calls special attention to the recharge from flood flows. See also Cooperative report 15.

States that more than 1,000 wells obtain artesian water chiefly from a zone of sand and gravel 60 to 125 feet thick encountered at depths of 90 to 300 feet. Says that the annual discharge from springs is about 20,000 acre-feet, and that about 6,000 acre-feet is withdrawn from wells.

Contains titles of 118 reports and papers relating to ground water.
188. An inexpensive monthly recorder, redesign of Lietz 8-day water-stage recorder for monthly operation, by J. G. Ferris. Nov. 10, 1943. 4 pp., 4 figs.
Describes the instrument and gives two diagrams showing gear trains and two graphs showing character of record produced.

189. Results of detailed field work on the geology and ground-water resources of Cimarron County, Okla., by E. W. Reed and S. L. Schoff. January 1944. 4 pp. (Released by the Oklahoma Geological Survey.)
Gives a summary of the field work done and conclusions as to ground-water conditions.

Gives a summary of data obtained from observation wells during 1943 showing declines due to abnormally low rainfall.

Summarizes previous work and describes the present exploratory program, using data on test drilling, sampling, drillers' logs, and electric logs. Concludes that it is advisable to do test drilling separately from water-supply development, so as to allow preparation of exact specifications for the latter.

States that the pumping of ground water for public supplies in the three western counties of Long Island averaged 168 million gallons a day in 1942, which was about 11 percent more than in 1941, and that in Suffolk County, which comprises the eastern part of the island, the net pumpage for public water supplies, irrigation, and industrial uses was 35 million gallons a day.

States that some of the wells yield as much as 1,800 gallons a minute and that the average ground-water withdrawal in the area is about six million gallons a day, about two-thirds of which is used for industrial purposes and the remainder for public water supply.

Describes an indicator paste for use on measuring tapes. The material changes color when wet, adheres firmly to tapes, and is not affected by oil. Three brands of the material are listed.

Describes experiments in which inserts of standard sizes of pipe into rough and jagged casing were used. Presents discharge curves showing gallons a minute for various sizes of pipe, plotted against height of jet.

States that an average of 745 million gallons a day was pumped from wells in 1943, chiefly for irrigation, in the basin of Gila River above its confluence with Salt River, including the Santa Cruz River Basin. Gives table showing the pumpage from five areas in southern Arizona in 1940-43.

198. Bibliography of technical reports, articles, and memoranda published or otherwise released (by the Ground Water Division) during the fiscal year ended June 30, 1944, by J. M. Berdan and Jane Daniel. Nov. 10, 1944. 8 pp.
Contains titles of 100 reports and papers relating to ground water.
States that the pumpage of ground water for public supplies in the three western counties of Long Island averaged 117 million gallons a day in 1943, which was 39 percent less than in 1942, the decrease being due chiefly to decrease in the average rate of pumping by New York City from its Long Island ground-water sources. States also that in Suffolk County, which constitutes the eastern portion of the island, the net pumpage for public water supplies, irrigation, and industrial purposes, was estimated at 40 million gallons a day.

Describes the trajectory method of measuring a stream of water that falls freely from the discharge pipe of a pump, where the pipe is either horizontal or inclined to the horizontal. States that the method is more rapid than measurement by weir or current meter and requires only a carpenter's square and level.

201. Partial penetration of pumping well, adjustments for, by C. E. Jacob. Aug. 10, 1945. 7 pp., 4 graphic figs.
Gives mathematical discussion of discharge from a well that penetrates only a part of the thickness of a water-producing bed.

States that the pumpage of water for public supplies in the three western counties of Long Island averaged 153 million gallons a day in 1944, which was about 30 percent greater than in 1943, and that in Suffolk County, which constitutes the eastern portion of the island, the net pumpage for public water supplies, irrigation, and industrial purposes was estimated at 45 million gallons a day.

States that the pumpage in 1944 from wells in the Santa Cruz and Gila River Basins in Santa Cruz, Pima, and Pinal Counties exceeded the estimated safe annual yield by more than 400,000 acre-feet, about 873,800 acre-feet being pumped, chiefly for irrigation. Gives pumpage from five areas in southern Arizona for 1944.

States that the water levels rose somewhat, owing to decrease in water consumption in Memphis and vicinity, and that the pumpage in August 1945 from the 500-foot sand was about 93 million gallons a day.

The recovery method developed by Theis is applicable for determining permeability or transmissibility when the storage coefficient (S) remains constant. Failure of the data to plot on a straight line through the origin is shown to be due to variation in S.

A general discussion of the difficulties involved in laboratory methods of determination and in pumping-test determinations.

States that the selection of the optimum well site requires knowledge not only of geology and hydrology but also of other allied sciences.

Contains titles of 85 published reports and papers relating to ground water and 105 titles of papers otherwise released.
The following abbreviations are used for the publications most frequently cited:

A. G. U. Trans., Transactions of the American Geophysical Union, Washington, D. C.
Civil Eng., Civil Engineering, New York, N. Y.
Econ. Geol., Economic Geology, Lancaster, Pa.
Jour. Geol., Journal of Geology, Chicago, Ill.
Water Works Eng., Water Works Engineering, New York, N. Y.

Describes the geology of the middle Atlantic Coastal Plain and the artesian water conditions, with records of 6 wells in Virginia and 4 in Maryland. Gives conclusions as to presence of artesian water in various parts of the area.

Gives data on temperature of the water from 46 wells, a map showing rate of increase of temperature with depth, and a contour map of the bedrock surface.

The deep zone of flow and the surface zone are essentially continuous. The head depends not on dip of the strata but on the curved nature of the ground-water table. The dip of the strata is therefore immaterial, and flows in many cases are produced against or up the dip. The slope of the ground-water table is so precipitous at the heads of many of the deep reentrant bays on the north shore that a slight difference in permeability is sufficient to determine an artesian horizon.

Describes the conditions under which artesian water is present in an area of crystalline rocks in the vicinity of York, Maine. In three cases cited the water overflows at the surface. These data are also given in Water-Supply Paper 145, pp 120-128.

Discusses the work of the Division of Hydrology in its general score (bibliographic, statistical, technical, legal, scientific, and economic) and the work related to geography (form of water table and movement of ground-water body, catchment areas, geologic structure, depth of water, artesian head, artesian areas, and cartographic representation).

Several large hot springs issue from the "red beds" of the Chugwater formation on the crest of a small anticline. The total discharge is more than 1,000 gallons a...
6. The hot springs at Thermopolis, Wyo.—Continued.

The hot springs at Thermopolis, Wyo., have a minute and the maximum temperature 135°F. The analysis given shows total dissolved solids of 129.82 grains per gallon. Describes the extensive hot-spring deposits and discusses the source of the water. The heat may be due to the depth from which the water rises, or it may be due to deep-seated igneous rocks in the vicinity, which have not yet cooled.

Summarizes the development of hydrologic investigations and the character of hydrologic problems. Discusses special investigations requiring the collection of well samples and measurements of underflow. Describes the principles of occurrence of ground water and mentions methods of sinking wells and drainage and pollution problems. States the problems for future investigation, including source, depth of penetration, saturation, circulation, mineralization, and rate of underflow.

Consists of five short papers, three of which deal with ground water as follows: Geological conditions of municipal and institutional water supplies in Michigan, by Leverett, which contains data on wells; Michigan water supplies, by Vaughan, which discusses bacteriological quality of surface water and ground-water supplies; and Ideals concerning municipal water supplies, by Russell, which discusses shallow and deep wells.

A summary of ground-water conditions in the coastal plain of southern California. Contains map of the artesian basins in the valley of southern California.

Discusses the amount, uses, and decline of ground water, the causes of decline, the waste of artesian water, remedies for decline, and the ground-water legislation of several States.

Describes the mode of occurrence of ground water and the interference of wells in sand and gravel, limestone, slate, and crystalline rocks, and discusses the pollution of water-bearing strata by oil-well waste and sewage.

Gives a summary of investigations chiefly in Maine, New Hampshire, Massachusetts, and Maryland, the results of which were published in Water-Supply Paper 223, "Underground waters of southern Maine." Describes the character of crystalline rocks and the mode of occurrence of water in them in joint cracks or fissures. Discusses the uncertainty of and the proportion of successful wells and mentions the limiting depth of abundant water and the composition of water in crystalline rocks.

A general discussion of the requisite conditions for artesian water, with diagrams showing synclinal structure and hydrostatic grade.

Discusses the subject under the following heads: Geologic development of the Coastal Plain; Artesian waters; Principal geologic and artesian water groups of the Atlantic Coastal Plain; Quality of artesian waters; and Utilization of Coastal Plain supplies.

The volcanic theory is advanced to explain the excess of chloride in some deep subsurface water.

Palmer's method of stating and interpreting water analyses is shown to be based on the principle that natural waters are balanced chemical systems having definite properties. These properties are shown to summarize composition, to furnish a convenient basis for preliminary comparison and study, and to afford a measure of the potency of the water as a geologic agent. Contains analyses of various types of natural water.

Water associated with petroleum and natural gas is subject to concentration of the dissolved constituents incident to the extraction of the hydrocarbons through wells. This concentration is brought about by evaporation of the water in the expanding gas incident to its withdrawal. Also, during geologic time, connate water has been evaporated by escaping gases, thus contributing toward the formation of highly concentrated oil-field and gas-field brines. See also Bulletin 698.

Presents evidence that indicates that the sandstones were dried out soon after deposition. The facts do not show that there is a disappearance of water with depth. The brines of deep-seated sedimentary strata are thought to be connate.

Submits evidence based on a study of brines in southwest Pennsylvania and West Virginia to show their probable connate origin. Their presence prevented lateral and vertical entrance of other water, and their chemical analyses not only show greater similarity to ocean water than to surface water, but also the distribution of chemical constituents is more accurately explained by connate origin.

Describes flows from several unproductive oil wells on two anticlines in the northeastern Appalachian region. In Pleasants County, W. Va., the flowing wells are on a saddle of an anticlinal crest, the pressure being transmitted from water-bearing formations in the domes. On a flank of the Frederickstown anticline in Beaver County, Pa., the water comes from depths of less than 100 feet, and the head is due to pressure transmitted from more superficial formations in nearby hills.

Gives characteristics of springs and spring water. Proposes a classification based on deep-seated and shallow sources and issuance from porous or from impervious rocks. Gives sketch maps and diagrams showing the several types of springs.

Numerous springs along Snake River Canyon between Milner and King Hill discharge more than 5,000 second-feet of water. The springs issue 80 to 150 feet above the river. Gives discharge measurements on the springs in 1902 and 1917-18. "The flow is usually minimum during March and April and maximum during September and October." Discusses probable source of the water and its potential use for irrigation.

Differences in character and concentration of waters occurring in various horizons with regard to salt domes are believed to be sufficiently marked and regular to permit the use of analyses in estimating the position of a water and probably also in locating deeply buried salt domes.
Discusses the estimation of safe yield of ground water by intake methods, discharge methods, water-table methods, and underflow methods.

"It has been estimated that there are more than 4,000 hot springs in the park, not counting many steaming fissures, and about 100 geysers. It is difficult to make distinction between a hot spring and a geyser, for many of the springs boil for long periods and erupt occasionally or even only once... It has been suggested that radioactivity might cause some of the hydrothermal action in the Yellowstone Park, but special investigations have shown that the emanations were too weak to be a material factor." Describes Hells Half Acre, Castle Geyser, Excelsior Geyser, Lone Star Geyser, Old Faithful Geyser, and Foundation Geyser.

A general article, in Spanish, treating of the subject under the following headings: Fundamental principles; Forces which control water in rocks; Properties of the rocks with respect to water; Capacity to retain and to give up water; Zones of the rocks (saturation, aeration, and discharge); Hydraulic properties of some rocks; Influence of structure of the rocks; Absorption of water; Springs of the zone of saturation; Artesian wells; and Quantities of water.

The rocks consist chiefly of very permeable lavas. This permeability results in heavy absorption of rain, flatness of the water table, scarcity of springs and streams, large yields of aquifers, and large yields and specific capacities of wells. The ground water can be divided into two kinds: high-level water, and low-level water. Describes the occurrence of the two kinds.

Describes the character of the water and the geology of the area. Cites evidence indicating meteoric origin of the water and other evidence indicating juvenile origin. Concludes that both hypotheses rest on insecure foundations.

Discusses the physiography of the region and the areas of ground-water discharge. Contains maps of the present and Pleistocene lakes in the Basin and Range province. Discusses extent to which ancient lakes would be restored by lowered temperatures.

Describes contamination of wells near the Connecticut coast by sea water, and the relation of topography and geology to the wells. Explains the law of equilibrium of salt and fresh water, as developed by Ghyben and later by Herzberg. Discusses the effects of pumping, the season, and the tides, on the saline contamination.

Describes and illustrates the graphic method employed in the United States Geological Survey, using patterns or colors to show the six principal dissolved solids, calcium, magnesium, sodium, chloride, sulfate, and bicarbonate, with provision for showing also silice and suspended matter.

A summary of ground-water studies which have been carried on since July 1923, with data on the water supplies.

These lectures were delivered before the Minnesota Well Drillers Association February 6-8, 1924. They were published in eight issues of the journal under the following headings: How water occurs in the rocks (Apr. 1924, pp. 1, 3, 5, 8); Kind of rocks and their value for yielding water to wells (May 1924, pp. 1, 3, 8, 11, 12); Structure of the rocks and its meaning to drillers (June 1924, pp. 1, 2, 6); Rock formations—Geological history of Minnesota (July 1924, pp. 1, 3, 9); The origin and circulation of the ground water (Aug. 1924, pp. 1, 3, 8, 9); The water table and the pollution of water wells (Sept. 1924, pp. 1, 7, 11); The quantity and conservation of ground water (Oct. 1924, pp. 1, 7); and Estimating the quantity of ground-water supplies (Nov. 1924, pp. 1, 6, 7).

Summarizes the occurrence of thermal springs with relation to volcanic rocks, artesian structure, and faults, with conclusions as to source of thermal water. Contains map of southeastern Idaho showing relation of thermal springs and large cold springs to the Snake River basin plain; also map of northwestern Nevada showing relation of springs, mainly thermal, to pre-Quaternary faults (after Water-Supply Paper 489, fig. 69).

A short popular description of the area, with mention of the unusual sources of water—ice wells, springs, and lava tunnels.

Describes four groups of warm springs—those of Terre-Neuve or Eaux Boynes, of Los Pozos, and of the southern peninsula and the sulfur springs or "sources pu­antes." Gives analysis of water from each group and discusses the source of the water. Also published in Cooperative report 72.

Describes the springs at Hot Springs, Ark., with data on their temperature and flow. The spring openings at Hot Springs are numerous, but all are found within an area of about 20 acres. The total flow has been estimated at 165 gallons a minute and the temperature range from 35° to 64° C. Analysis of the somewhat random measurements made in the past 120 years gives no trustworthy evidence of a permanent increase or decrease in flow or temperature.

"The oil fields on the west side of San Joaquin Valley yield three types of water: 1, Saline waters containing sulphates as their principal salts; 2, saline waters containing large amounts of chlorides; 3, alkaline carbonate waters having notable amounts of alkali carbonates." Describes the types and gives examples. Discusses the hypothesis of H. Von Hoefer as to change of sulfate water into carbonate water mixed with sulfide water. Treats of the origin of oil-field sulfur waters and alkaline carbonate waters. The alkaline sulfide waters are alkaline carbonate waters altered by absorption of a volatile sulfur compound emanating from the oil. The geochemical relation of alkaline water to granite rock minerals applies to the alkaline carbonate waters in the California oil fields.

Describes the geology of the artesian basin along the valley of Yellowstone River below Forsyth. Gives analyses of artesian water from 10 gas-bearing wells. Discusses the chemical character of the waters and of the gases that they contain. These gases contain more than 30 percent of nitrogen and unimportant amounts of helium. Methane reduces sulfate in the water to hydrogen sulfide, forming carbonate and bicarbonate.

Describes briefly several of the most important lines of investigation under the headings: Survey of desert watering places; Water in the basalt of the Northwest and in the Hawaiian Islands; Quantitative investigations; Hydrologic laboratory; and The Dakota artesian basins.

Abstract of a paper presented at the annual meeting of the American Association for the Advancement of Science, December 1924. The Dakota sandstone forms the most remarkable artesian basin in the United States with respect to its great extent, the long distance through which the water must percolate from the outcrops of the formation, and especially the tremendous pressure under which the water in the sandstone was originally held by its thick and continuous cover of impermeable shales. The decline in pressure and flow, after the drilling of more than 16,000 wells, has been great. See also Water-Supply Paper 520 e.

Abstract of a paper presented at the annual meeting of the American Association for the Advancement of Science, December 1924. The systematic hydrologic tests include those of mechanical composition, porosity, moisture equivalent, and permeability. Calls special attention to a new method of taking volumetric samples and to a new piece of apparatus for making permeability determinations based on Darcy's law that the flow of ground water through a given material varies directly as the hydraulic gradient.

Discussion of a paper by Palmer in the November 1924 issue of the same journal. Cites Palmer's statement that the alkaline sulfide waters are alkaline carbonate waters that have been altered by volatile sulfur compounds, specifically carbonoxysulfide. Asks whether this substance has been found in the California waters.

The water supply for Atlantic City and nearby resorts is obtained largely from Miocene sand below 300 feet of clay. The sand is reached at about 800 feet at Atlantic City and somewhat deeper southward. During the past 30 years, owing to heavy pumping, the static head has dropped more than 80 feet. The head will drop farther as the draft becomes greater until the limit of economic pumping is reached. The danger of drawing salt water into the wells is a factor to be considered.

A summary of data later published as Water-Supply Paper 557.

Announces publication of Water-Supply Paper 596 a and includes notes on locating leaks in wells.

The type of natural water most generally used in the United States is characterized by its content of alkaline earth bicarbonates. Presents diagram showing composition of three surface waters and seven well waters for city supplies. Gives summary of examination of about 8,800 analyses of water, many of the waters
47. Natural sodium bicarbonate waters in the United States—Continued.
being distinctly sodium bicarbonate waters. The Atlantic Coastal Plain is perhaps
the best defined area in which such water is found. It is common also in southern
California, Nevada, southern Arizona, North Dakota, and Montana and is also
present in other specified areas.

48. Recent work on the discharge method of estimating ground-water sup­
Describes investigations begun in 1925 in Escalante Valley, Utah.

49. Exploring and repairing leaky artesian wells, by A. G. Fiedler and John
McCombs. Water Works, vol. 64, No. 6, Chicago, Ill., June 1927.
p. 254.
Announces publication of Water-Supply Paper 586 a, with a few remarks on
leaky wells.

Describes a type of current meter designed and constructed by C. H. Au of the
United States Geological Survey. It is essentially a turbine wheel mounted within
a cylindrical brass case that is suspended in a 3-inch pipe and lowered and removed
from a well by means of a cable and reel.

51. Ground water in New Mexico now subject to appropriation, by A. G. Fied­
Gives the provisions of the new State law, which is the outcome of a study of
the Roswell artesian basin made by Mr. Fiedler.

A note prepared in cooperation with the Idaho Bureau of Mines and Geology.
It is a popular description of the area, with mention of the occurrence of water
and ice in caves and tunnels in the lava.

53. Record of earthquake made by automatic recorders on wells in California,
Describes and presents graphs made by automatic recorder, showing slight fluctua­
tion of water level in well during earthquake as contrasted with fluctuations due
to pumping of nearby wells and to the weight of passing trains.

54. Compressibility and elasticity of artesian aquifers, by O. E. Meinzer. Econ.
The pore space in an artesian aquifer is filled with water that exerts a hydrostatic
force against the weight of the overlying rocks. When wells are drilled this force
is reduced. The artesian water supports a part of the load of the overlying rocks,
and the aquifers contract when the artesian pressure is decreased and expand when
it is increased.

55. Note on an ebb and flow spring near Rogersville, Tenn., by G. M. Hall.
pp. 3-9.
A spring 3.8 miles northeast of Rogersville forms part of the water supply of a
dairy. During periods of about 1 hour the flow changes from a minimum of 10
gallons a minute to a maximum of 50 gallons a minute. The period between maxi­
imum discharges is locally said to be 2 hours 40 minutes. Describes the geology
of the area. A cross section showing hypothetical caverns in limestone illustrates
the probable cause of variation in flow, which is siphon action.

56. The origin of artesian pressure, by A. M. Piper. Econ. Geol., vol. 23, No.
The Dakota-Lakota beds are stream and coastal plain deposits in which it is
likely that many lenses of sandstone are interconnected parts of tortuous pipes of
coarse sediments. The notably salt water in northwestern South Dakota is in the
56. The origin of artesian pressure—Continued.

The deepest part of the geosyncline and may be connate water that has not been flushed out of the beds by meteoric water. The lines of equal artesian head, as drawn by Darton, are essentially parallel to the structure contours. Adequate interpretation of the hydraulic profile is impossible, because the effects of unequal draft and the rate of decline in head have not been fully evaluated.

Examples are given where rapid deepening of stream beds has occurred, partly as the result of loss of vegetation by overgrazing but probably also in part as a result of change to drier climate. With deepening of the stream beds the ground-water level has been lowered, and areas formerly covered with phreatophytes, such as sacaton, willow, and cottonwood, are now inhabited only by plants that do not depend upon ground water or by mesquite, which can send its roots to considerable depth to reach water.

Discusses rock formations as reservoirs and describes methods of estimating discharge by overflow, by transpiration and evaporation, from fluctuations of water table, and from ground-water rating curve. Considering rock formations as conduits, describes methods based on field tests of velocity, laboratory determinations of permeability, pumping tests, area of influence of wells, and the movements of water levels in relation to rates of withdrawal. See also Water-Supply Paper 683 c.

Gives a summary of the specifications for well drilling.

Discusses the proper method of measuring drawdown.

Describes cementing by the dump-bailer method, the tubing method, and the casing method. Also mentions plugging by asphalt and the plugging of bottom water by cement or by lead wool.

Discusses permeability of rocks and relation of reservoir sites to water table and outlines methods of investigation. Emphasizes application of general ground-water studies within the reservoir area. Appended discussion by E. Crandall gives data on leakage of the Mackay, Idaho, reservoir.

63. Problem of soft water in the Dakota sandstone, by O. E. Meinzer. Howell Drillers’ News, Minneapolis, Minn., vol. 8, No. 8, September 1929; No. 9, September 1929; pp. 1, 3, 5, 8; No. 10, October 1929; pp. 1, 6, 7-9.

Describes the extent and water-bearing characteristics of the Dakota sandstone. In general the upper strata contain soft water and the lower strata contain hard water. Soft water is obtained near Canton, S. Dak., in wells 300 to 500 feet deep sunk to upper strata of the sandstone. The water rises under artesian pressure 200 feet or more above the depth at which it is struck. The city of Canton obtains its supply of 158,000 gallons a day from several wells in the sandstone. Discusses the chemical character of the water and also the physical character of the water-bearing sandstone, which is fine-grained and has slight coherence.

64. The sanitation of farm water supplies, by A. G. Fiedler. Howell Drillers’ News, vol. 8, No. 9; Minneapolis, Minn., September 1929. pp. 1, 2, 10.

Discusses the responsibility of the driller to keep the well free from pollution,
64. The sanitation of farm water supplies—Continued.
gives examples of surface pollution of farm wells, explains methods of protecting
wells by casing, and recommends the sterilization of new wells with chloride of
lime.

65. Artesian water supply of Memphis Tenn., by F. G. Wells. Water Works
Gives the history of the Memphis water supply and a brief summary of the
geologic conditions. Discusses the total pumpage, drawdown, and character of
the water. See also Water-Supply Paper 665.

66. The origin of artesian pressure (a discussion), by D. G. Thompson. Econ.
The data on artesian head in the Dakota sandstone, presented by N. H. Darton,
were collected in different years and have different degrees of reliability. The
discharge of large quantities of water from the Dakota sandstone has caused loss
of head over large areas. Darton's map of the piezometric surface probably does
not represent the condition before the formation was tapped. Facts advanced by
W. L. Russell to support his theory that the artesian pressure is due primarily
to weight of the overlying rocks may be explained in other ways.

67. The well driller and the water-works field, by A. G. Fiedler. Water Works
and Sewerage, Chicago, Ill., April 1930, pp. 120-122; (abbreviated)
Water Works Eng., Apr. 23, 1930, pp. 586, 589; Howell Driller's News,
vol. 9, No. 5, May 1930, pp. 1, 2, 3, 5; A. W. W. Assoc. Jour., vol. 22,
No. 7, July 1930, pp. 919-925.
About half the people of the United States use water supplies from wells, and
three-fourths of the cities and villages that have waterworks draw upon underground
supplies. "The driller's task is to construct the well in such a manner that it will
not only make a sufficient quantity of water of suitable quality available but
also yield the greatest quantity of water at least expense." Defines yield, drawdown,
and capacity of a well. Emphasizes the desirability of obtaining water supplies of
low mineral content and describes methods of protecting wells from surface pollu-
tion and contamination underground from highly mineralized water.

68. Chemical character of the hot springs of Arkansas and Virginia, by M. D.
Foster. Ind. and Eng. Chemistry, vol. 22, No. 6, Easton, Pa., June
1930. pp. 632-635.
Gives analyses of water from three springs at Hot Springs, Ark., made by Hay-
wood in 1907 and by Miss Foster 1925-26, which show nearly constant composition
of some springs and changes in others. Analyses of water from five springs in
Warm Springs Valley, Va., show them to be of similar composition. Discusses the
differences in mineral content of the several springs.

69. New Mexico law on artesian water only unconstitutional on technicality,
p. 1844.
A reply to discussion of ownership rights of artesian water in same journal,
Nov. 19, 1930, p. 1746.

70. Fundamental principles of well construction, by A. G. Fiedler. Water
Works and Sewerage, vol. 78, Chicago, Ill., March 1931, pp. 94-96;
Discusses selection of location and the features of sanitary significance. Con-
tamination should be prevented by properly casing the well. Chlorination of wells
is now extensively practiced to eliminate and prevent contamination.

71. Choosing the site and constructing the well, by A. G. Fiedler. Water
Works Eng., vol. 84, Apr. 8, 1931, pp. 444-446; also published as proper
4, April 1931, pp. 1, 7, 9, 10; and vol. 10, No. 5, May 1931, pp. 1, 2, 8.
Discusses the importance of location and types of wells and their protection from
pollution and contamination. Recommends the chlorination of newly completed
wells and describes methods. Gives methods of plugging abandoned wells.

Dissolved gases sufficient in quantity to cause pumping troubles are not uncommon in ground water. With the release of pressure caused by pumping, the dissolved gases pass out of solution and give rise to bubbles, which, when of minute size, give a chalky appearance to the water.

Describes methods and results obtained by measuring downward movement of ground water. Presents sketches showing the position of intercepting pans and collecting basins. Gives tables showing moisture equivalent and moisture content of soil as obtained by soil-sampling tubes from experimental plots in California. States that it is difficult if not impossible to determine the amount of downward movement of water with certain types of intercepting pans.

Mentions research problems relating to movement of ground water that are being investigated in hydrologic laboratories in the United States.

A preliminary report on the occurrence and quantity of ground water in the area. See also Water-Supply Paper 779.

Gives the reasons for formation of the section and the make-up of the several committees. Lists 26 suggested fields of hydrology to be covered by permanent committees.

Describes in three short articles the various kinds of fishing tools and their uses in cable-tool drilling of wells.

Discussion of factors of location, type of well, protection at surface and underground, chlorination of completed wells, and abandonment and plugging of unused wells.

The basic causes of the drought of 1930 are unknown; the 1930 rainfall was deficient in 40 States. "Low stream flow and low ground-water levels seriously affected water supplies dependent upon natural stream flow or shallow wells. Most of the water sources supplied from adequate storage or from deep wells tapping water-bearing formations were ample for usual activities." Discusses runoff records, drought damage, effect on water power and navigation, and the factors of evaporation and transpiration.

Large supplies of ground water occur in solution channels in the Tampa and Ocala limestones. In the Orlando area all surface drainage and sewage is disposed of down "drainage wells" which reach solution channels. There is danger of bacterial pollution and also of contamination by salt water near the sea coast.

The greater number of public water supply systems in South Carolina, Georgia, Alabama, and Mississippi use ground water, but the greater consumption is from systems using surface water. Discusses the relation of ground-water supplies to the geologic conditions, the danger of contamination by salt water along sea coasts, and the problems of safe yield from water-bearing formations.

Outlines scope of field covered by newly formed Committee on Underground Waters, reviews recent and current investigations in the field, and discussers suggested lines of activity for the committee.

Enumerates nine phases of ground-water occurrence in oil-field development. Comments especially on the encroachment of edge water.

A summary of investigations in progress.

Describes pumping tests in Nebraska and measurements made of the depths to water in 81 observation wells spaced radially from the pumped well. Gives Thiem's formula, modified for convenient use, drawdowns in certain observation wells, and computed coefficients of permeability.

A mathematical discussion of the effect of artesian flow of a well on the piezometric surface in the vicinity of the well.

Discusses the record of an observation well in Arlington County and the relation of the fluctuation in water level to the barometric changes.

Thirty-six shallow wells scattered over Pennsylvania are being measured weekly in an attempt to correlate the ground-water levels with the ground-water runoff in the streams at low stages and to forecast low stream-flow conditions.

A summary of information published as Water-Supply Paper 638-c. Describes methods for estimating the rate at which rock formations will supply water, the hydrologic principles on which the methods are based and their historical development and applicability. With quantitative methods, rock formations may be considered as reservoirs, or as conduits of water. Reservoir methods are based on measurement of intake, discharge, or changes in storage. Includes evaluation of extraneous influences on water levels, such as barometric and tidal effects.

Although the majority of public water supply systems use ground water, the larger cities depend chiefly on surface-water supplies; hence the total consumption of surface water is much greater than that of ground water. In 1923 the State of New Jersey began investigation of the ground-water supplies in cooperation with the United States Geological Survey, and there is need for similar intensive investigation in other eastern areas.
Describes "The Geyser" spring, on the bank of Swift Creek, 7 miles northeast of Afton, Wyo. The spring issues from a fissure high on the side of a limestone cliff and intermittently flows and ceases to flow in intervals of about 20 minutes. Cites stories of the discovery and early history of the spring.

Describes the mud scow (California or stovepipe) method of drilling, the kind of casing used, drilling rig, tools, and hydraulic jacks, and the operations of drilling, perforating the casing, and developing the well.

Gives data on the extensive use of ground water for public supplies. Discusses better methods of well construction, better pumping machinery, and the value of ground-water investigations.

Contrasts the fresh-water and salt-water conditions, contamination of the former by the latter, and the occurrence of fresh water overlying salt water.

Discusses effect of rock pressure on artesian head and on fluctuations in water levels and describes the effect of drawdown and cone of depression on the water table.

Specifies the organizations studying problems of ground-water hydrology and reviews current ground-water investigations.

Forms Appendix B of the Report of the Committee on Underground Waters for 1932-33. Describes the studies made during the year and gives short statements of the results.

Gives data on the changes in water level, with graphs showing daily fluctuations.

Describes and presents graphs showing the effect of the tremors on the water level in four observation wells and mentions the mechanical effect on eight water-stage recorders on streams in the area.

Gives data on a pumping test in the Platte River Valley, Nebr., with diagram showing profiles of the cone of depression, and table of specific yield for several distances from the pumped well and for several periods after pumping began.

Describes method of locating entry of contaminating salt water into a well by means of electrical conductivity measurements and cites the use of the method in salinity exploration work in Sarasota County, Fla.
Defines the terms used and describes experiments with alluvial materials from the Mokelumne area, Calif. Summarizes the results of others in similar work connected with soil and irrigation studies.

Comments on J. O. Riddle's article, "Excluding salt water from island wells," in Civil Engineering for July 1933. Recommends water-stage recorders for further study in Nassau.

Describes the cable-tool percussion and the hydraulic rotary methods of well drilling and the protection of drilled wells by proper casing against pollution from the surface and contamination from highly mineralized ground water. Discusses protection of the casing by cement and describes the methods of placing the cement by dump-bailer, by pumping through tubing, and by pouring down the casing. Recommends chlorination of newly completed wells to overcome any pollution which has taken place during the drilling.

Outlines the hypotheses of the origin of ground water from the Greek philosophers to modern times and the rise of geology and its application to ground water. Discusses interrelation of geology and hydrology as a course in the fundamental training of graduate students in geology.

Gives a detailed description of the geology and of the geysers, fumaroles, hot springs, and mud pots, which cover an area of less than a quarter of a square mile about 6 miles southwest of Beowawe railroad station. Discusses origin of the thermal activity and presents analyses of three samples of the water.

Results of a study of the possibility of developing a suitable public supply of ground-water to replace the surface-water supply, which has become contaminated by salt water. Extensive test drilling and pumping indicate that water deeper than 300 feet is too salty and an abundant supply at 75 feet is also of poor quality, but that the required amount of water of good quality can be obtained from shallow beds of sand by many wells distributed over a large area. See also Water-Supply Paper 778 a.

Describes geologic and water conditions under the following headings: Koolau and Waianae volcanoes dominate the geology of the island; Fluctuations of sea level and late eruptions complete the geologic structure; Water resources are studied by means of geology; Dike systems exert major control over high-level water; Ground-water barrier is indicated between Koolau and Waianae lavas; Additional water supplies can be obtained from some of the artesian reservoirs; Recent lavas will yield additional water supplies; Limestone reefs contain reserve supply of water; Inventory shows the geologic source of the water; Methods are outlined for developing water supplies from the dike system; Tunnels are recommended for the artesian reservoirs; and Summary of undeveloped water supplies.
JOURNAL ARTICLES

Reviews current ground-water investigations.

Forms appendix A of the Report of the Committee on Underground Waters for 1933-34. Discusses units to express coefficient of permeability and cites objections to the Wyckoff and the Nutting expressions.

Forms appendix B of the Report of the Committee on Underground Waters for 1933-34. Calls attention to work done in assembling records of advance and retreat of glaciers and states that "the fluctuation of lake levels is a closely related subject that is equally fundamental in the study of hydrology." Recommends a survey of the records available with a view to considering the feasibility of more detailed studies of changes in lake levels. Also recommends survey of existing records of fluctuations in ground-water levels with a view to making plans for further work and for the standardization of methods.

Forms appendix C of the Report of the Committee on Underground Waters for 1933-34. Lists 43 papers relating to ground water published during 1932-33 and gives brief statements on some of them, calling attention to phases of ground-water problems that are not apparent from the titles.

Describes apparatus and results of tests. The flow varies approximately with the hydraulic gradient. The tests strengthen the presumption that Darcy's law holds precisely for flow through permeable material under indefinitely low gradients.

Describes field tests in Utah to determine the rate at which changes in pressure are transmitted in artesian aquifers and the distance to which such changes extend. The transmission of pressure is not always rapid; the rate appears to be determined largely by the distance traversed and the magnitude of the changes of pressure.

Describes the relation of stream flow to ground-water levels near Colesville, Md. A study of their relations permits predictions regarding ground-water levels, ground-water discharge, and stream discharge.

The chloride content of ground water in the region of Houston and Galveston is shown by isochlors drawn on a generalized geologic section. The chloride content of the water in each of the sands of the Beaumont, Lissie, and Goliad formations shows a continuous increase from the outcrop to the Gulf. Some salt-water encroachment is indicated.

Describes successful efforts to conserve artesian water supplies in the Honolulu, Hawaii, and Roswell, N. Mex., artesian basins. Effective programs of conservation must include hydrologic study and investigation of mechanical difficulties, a program of education, and a legislative plan with provision for enforcement. Legal control relates to proper construction and operation of wells and equitable distribution of the water. Recommends the doctrine of prior appropriation for beneficial use as against the doctrines of unrestricted use and correlative rights.
Discusses water-supply conditions in the drought region of the north-central part of the country, prospects of replenishment, and relief measures. Many surface-water supplies and shallow wells failed, but the recognized water-bearing formations in general supplied the demands made upon them without serious depletion.

An interpretation of the influence of geology on the water resources of the north interior States with reference to the drought. Next to the weather, the geologic conditions are the most important controls of both surface-water and ground-water supplies in times of drought. The region is largely underlaid by water-bearing formations, which constitute great hold-over reservoirs. The critical areas were those where the main water-bearing formations are absent, or contain salt water, or are thin or impervious.

A summary of studies made in Sarasota County and tests on wells in the county with deep-well current meters in September and October 1932. See also Cooperative report 59.

Discusses extent of use of ground water for public water supplies and relation of stream flow to ground-water level. Gives a graph of fluctuation of artesian head in the Atlantic City 800-foot sand showing that the head changes with pumpage rather than with precipitation.

Discusses principles of ground-water occurrence, ground-water conditions in the north-interior region, and ground-water levels. "The present low ground-water levels in the north-interior region are largely due to the severe drought conditions of the last few years, and there will be recovery of the ground-water levels with recurring wet years."

During the earthquakes of March 12 and April 14, 1934, the fluctuation of pressure in a recording gage on an artesian well in Ogden Valley, Utah, was, respectively, 5.5 and 3.8 pounds per square inch.

The Coastal Plain is underlain by seaward-dipping sediments from which water is pumped extensively. Overpumping causes not only lowering of ground-water level but in some places allows the encroachment of salt water. Highly mineralized water is found in some places in deep wells, and shallow water is therefore used for large and also small supplies.

The largest water supplies are from glacial drift, especially outwash sand and gravel north of the Ohio River and in the river valley. Discusses problems of quantity and quality of water.

Summarizes developments of the past year and investigations in progress. "The outstanding feature of the past year has been the focusing of public attention on
problems of underground water as a result of the drought conditions, the activities of the national and State resource and planning surveys, and the creation of emergency relief projects.”

A summary of work in progress.

Describes the program for ground-water level measurements in about 350 wells in Nebraska. Gives correlation of water-level fluctuations, with precipitation in the Platte River Valley in central Nebraska.

The severe droughts of recent years have developed great interest in the ground-water resources of the country. The records of water levels in wells and their interpretation have long formed an important part of ground-water work. On January 1, 1933, about 3,000 observation wells in the country were being measured periodically by the Ground Water Division of the United States Geol. Survey or by cooperating parties. The immediate problem is to round out this work into a comprehensive and coordinated national program.

Tests were made to determine the validity of Darcy’s law for very low hydraulic gradients. The results indicate that rate of flow varies directly as the hydraulic gradient down to indefinitely low gradients.

A summary of information on the three principal water-bearing formations: the Carrizo sand (Eocene), the Goliad sand (Pliocene), and the Lissie formation (Pleistocene). Discusses the recharge areas of outcrop of the formations, the decline in artesian head, and the amount of pumpage.

A mathematical discussion of the lowering of ground-water level, developing a nonequilibrium type of formula for the effects of pumping, involving time as an independent variable and a “coefficient of storage.”

The principal artesian formations consist of limestones of Eocene and Miocene age. The principal recharge areas are in the central, north-central, and northwestern parts of the peninsula and one area in Georgia. The principal areas of natural discharge include the north-central and northwestern portions, through large springs, some of which are submarine. Contains maps showing area of artesian flow, area of highly mineralized water, and piezometric surface of the artesian water.

Salt Lake City depends chiefly on mountain streams for water supply. In 1931 the low precipitation of the preceding winter was not enough to provide adequate supply. On benches east of Jordan River 17 wells were sunk, which yielded 29,700,000 gallons a day.

Gives data on the discharge and temperature (82° to 119° F.) of water from 4 springs and a flowing artesian well and another flowing well 7 miles to the southeast. From temperature observations on other wells in the region concludes that the spring water rises from a depth of about 2,500 feet. Analyses show the water to be rather highly mineralized, sodium and chloride being the chief constituents.

Describes the several water-bearing formations of the State and presents maps showing area of artesian flow, piezometric surface of the artesian water, and the area of highly mineralized water.

Abstract of a report by a board of engineers and geologists to the War Department relating to the geology and hydrology of a sea-level canal under construction across the northern part of the Florida Peninsula. The board finds that the water level in the Ocala limestone will be lowered about 40 feet along part of the canal route, and the effects of this lowering will extend 10 or 15 miles from the canal. Also the lowering of the water table along the canal will affect the artesian head in the artesian basin east of Silver Spring. Includes map showing piezometric surface.

Calls attention to study and preliminary report for the War Department on ground-water conditions in connection with the construction of the ship canal across Florida. Points out that construction of the canal ought not to proceed to any large commitments, nor should the excavation penetrate far into the limestone layer until these investigations are completed and much more precise quantitative knowledge of supply, pressure, transmission of the water through the rocks, and the effect on springs is available.

Intensive studies of the Atlantic City, Camden, Asbury Park, Runyon, Canoe Brook, and East Paterson areas were made to determine ground-water conditions and safe yields. Continued overdevelopment will seriously menace the 800-foot Atlantic City sand with salt-water invasion.

Presents a table showing the highest and lowest extrapolated temperatures in the earth at two given depths for a number of localities. Computed maximum and minimum depths to 212° F. are also given for each locality.

Describes a small spring whose discharge has varied periodically since an earthquake of February 21, 1916. The water issues from talus but may flow from cavernous reservoirs in limestone, which give it the ebb-and-flow character.

A group of large springs discharge 5,000 cubic feet per second from the north side of Snake River Canyon between Bliss and Twin Falls, Idaho, issuing from pillow lava at the base of basalt flows. Some of the springs issue from box canyons or alcoves, which have been made by the springs, probably by the solution of the basalt. It is believed that these springs are older than the others.

Water tends to move from a position of high pressure to one of low pressure. Pressure changes are transmitted with much lag under water-table conditions and with less lag under artesian conditions. Static conditions are present in reservoirs completely sealed or sealed at one end or which contain fluids differing in specific gravity, such as water and oil or fresh and salt water.

The two general sources of ground-water supply in New England are the bedrock, which is suitable for small individual supplies, and the glacial sand and gravel, which are adaptable to large supplies. Outlines the theory of formation of sand and gravel bodies by glaciation. By means of correlation between iron content of well water and the areas of older drift refutes the belief that the last or late Wisconsin ice covered all New England. Contains maps showing the position and extent of the Wisconsin ice according to two theories.

Of the more than 200,000,000 gallons of water a day pumped from wells, about 65 percent comes from the surficial deposits of Illinoian or Wisconsin age, about 25 percent from the Jameco gravel of early Pleistocene age, and about 20 percent from the Cretaceous strata.

Thermal springs issue from rhyolite in the canyon of West Fork of Bruneau River, Idaho, and the canyon of South Fork of Owyhee River, Ore. The Idaho springs are scalding, the Oregon springs merely warm, but the waters of the two localities are similar in chemical character and seem to be similar in geologic origin. They contain unusually large amounts of silica and fluoride in solution and may rise from comparatively shallow depths through siliceous and fluoride-bearing rocks that have abnormally high temperatures.

A discussion of the several factors involved in changes of ground-water level.

A summary of studies that have been carried on intermittently since 1851.

The Plainfield-Union Water Co. has made daily measurements of the water level in a test well at the plant during most of the period 1891-1936. The fluctuations of water level are shown in a figure, together with records of the total pumpage and the precipitation.

The Dakota sandstone is the principal source of artesian water supply in west-central South Dakota. Since the early developments there has been pronounced decline of the static water level. The greatest decline has taken place along the Missouri River and averaged 15 feet a year at Chamberlain during 1891-1911. There was a decline in head of about 100 feet from 1900 to 1915. The paper includes a map showing the artesian water head.

The chief sources of ground water in the area are the Dakota sandstone and glacial sand and gravel. The drought had no effect on water supplies from the sandstone and only minor effect on the supplies of large glacial reservoirs, except where excessive water was pumped. The smaller ground-water reservoirs were seriously depleted but have recovered.

Gives average fluctuations and net changes in water level in groups of wells segregated according to different depths of water level below the land surface.

Gives hydrographs for four wells in the south coastal basin showing the relation of the fluctuations of the water levels in the wells to precipitation and stream flow.

Gives hydrographs showing the relation of the fluctuation of the water levels to stream flow and precipitation for six wells located near Huntsville, Holladay, West Jordan, Great Salt Lake, Willard, and Fillmore.

The paper points out several incorrect assumptions that underlie McGee's quantitative conclusions, which were based on a questionnaire answered by crop reporters, who gave the depths of water in each well at the time the well was constructed and at the time of the questionnaire—the fall of 1910, which was a dry year. Presents data to show that the seasonal and cyclic fluctuations of the water table could account for all the average decrease in depth of water reported by McGee.

Describes and illustrates the following three methods of studying changes of ground-water level when records over a considerable period of time are available: the seasonal water-level method, the long-time trend method, and estimating the amount of precipitation required to increase ground-water storage.

The channel-storage method is based on the law that in any period when there is no overland runoff the quantity of water derived by effluent seepage into a stream system equals the quantity discharged from the stream system minus the decrease or plus the increase in channel storage. The paper presents the results of investigation on a small drainage basin in Virginia.

Points out some erroneous conceptions about transpiration. The diurnal cycle in the ground-water table and in the stream represents an accumulation curve showing the difference between additions to and extractions from storage. The maximum rate of ground-water discharge occurs at the time when the ground-water level is at the minimum stage and vice versa.

Classifies rocks with respect to their origin and discusses the relationship of their interstices to the transmission of contamination. The mode of occurrence of ground-water supplies, whether under water-table or artesian conditions, is a vital factor in the protection of the supply from contamination. Contamination moves in the same direction as the ground water, but normal direction of movement may be reversed by heavy pumping.

Discusses the floods of 1936 in northeastern United States and drought conditions in some of the western States. Ground-water levels in many places declined below those of 1935. "The rather general recharge of the ground-water reservoirs in 1935 was sufficient to create a hold-over storage that was in many areas ample to supply demands in 1936."

A survey of the function of water in the physical and biological evolution of the earth and its relation to human activities. The hydrologic cycle has two phases: One includes evaporation, atmospheric movement of the water vapor, and precipitation; the other includes the movement and temporary storage of precipitated water. Considers climatic changes in geologic and historic time and natural storage in rock formation. Calls attention to the emergence of hydrology as a recognized science and the need for the adequate development.

Discusses the origin and nature of glacial deposits in New England in relation to ground-water supplies and the relation of degree of weathering of the deposits to the iron content of the water.

To prevent contamination by salt water, the "Maui" type of well is used. It consists of a vertical or inclined shaft at the bottom of which is a pumping chamber and sump fed by one or more infiltration tunnels. These are so constructed as to skim the fresh water from the surface of the heavier salt water.

The chief factors that influence contamination are the character of water-bearing rocks (size, shape, and arrangement of interstices) and the mode of occurrence, whether under water-table or artesian conditions. Discusses rate and direction of movement and the effect of pumping.

Ground water plays a large part in stream discharge. To decrease surface runoff and increase ground-water supplies, artificial methods of recharge, such as water spreading, have been used under favorable conditions with success. The importance of not upsetting the natural balance of the stream is stressed.

Subsidence in the Santa Clara Valley, Calif., was caused by withdrawal of ground water and resulting compression of the aquifers. Similar subsidence has probably taken place in other areas. Compressibility and elasticity of artesian aquifers may be of great importance in connection with water supplies.

Clay beds are widespread on Long Island, but erosion channels through them permit some recharge to underlying sandy strata. About 65 percent of the pumped water supply of more than 200,000,000 gallons a day comes from surficial beds of Illinoian or Wisconsin age. Because of restricted recharge to the lower beds and the desirability of saving them for use in localities where the upper beds may easily become contaminated by salt water, any future large developments should be from the surficial beds.
A summary of the types of ground-water investigations made in Texas by the United States Geological Survey. Methods of determining the safe yield are the recharge method, the transmission method, and the discharge method. Mentions special problems of salt-water encroachment and salt-water leaks in water wells.

A summary of investigations by various organizations and individuals.

Forms Appendix A of the Report of the Committee on Underground Waters for 1936-37. Lists 76 papers and makes brief statements on some of them, calling attention to phases of ground-water problems that are not apparent from the titles.

Summarizes work relating to quality of ground water done in Pennsylvania, New Mexico, and Florida.

Introduces a series of five other papers on the subject. Geophysical methods will prove valuable in the study of ground water, especially the electrical-resistivity method, which depends on the conductivity of the water. It is promising for distinguishing salt water from fresh water and coarse water-bearing materials from sediments that are too fine to yield much water.

The basal fresh water floats on salt water in accordance with the Ghyben-Herzberg principle. The top of the salt water was located by resistivity methods in several places, three examples being given. Mentions possible causes of errors in the determinations but states that in general it is feasible to determine the depths to salt water by resistivity measurements made with the partitioning method.

The location of areas near El Paso in which salt water occurs was attempted by electrical resistivity methods. The northern boundary of one such area was defined. In another area water of better quality beneath the salt water was suggested by the resistivity curves and was encountered in a test well.

Interference tests on several artesian wells pumping from the Lloyd sand show that the beginning or cessation of pumping in one group of wells has a measurable effect on artesian head in wells as much as 7 miles distant.

Conditions that produced record-breaking floods in March 1937 raised ground-water levels to the highest average stage of the past 5-1/3 years, but they declined to low stages in September. Ground-water discharge to the Susquehanna River during the period seems to have been sufficient to account for the stream flow, exclusive of storm runoff.

Discusses the ground-water areas and ground-water level in Utah and the regulation and conservation of ground water by legislation. Includes map showing ground-water provinces and areas.

Nearly all the rainfall either evaporates locally or percolates underground. The average annual rainfall is 14 to 22 inches. A thick mantle of silt overlies the water-bearing Ogallala formation. Several methods of estimating the recharge indicate an average of less than half an inch of water a year.

Discussion of a paper by Sidney Paige in Econ. Geol., Sept.-Oct., 1936, pp. 587-579. Concludes that construction of the canal will cause substantial lowering of the water table over a wide area, substantial decrease in flow of certain large streams, and intrusion of sea water into the lower portion of the Ocala formation.

"Much of the classification of ground waters adopted in many court decisions and by writers of legal textbooks is not consistent with scientific principles of ground-water hydrology." Discusses the subject under the heads: Attempts at, or lack of, control in eastern States (gives also examples of legislation in the West); Doctrines of correlative rights and appropriation; Examples of lack of appreciation of fundamental hydrologic problems.

The chemical character is due chiefly to the amount of dissolved carbon dioxide and the materials through which the waters percolate. Wells of shallow and moderate depth in the Coastal Plain of Virginia, North Carolina, and South Carolina yield calcium bicarbonate waters. Deep wells yield sodium bicarbonate waters, due to base exchange. In Florida and Georgia there is no evidence of base exchange, and both shallow and deep wells yield calcium bicarbonate waters. Along the coast the normal ground-water relationships may be upset by admixture of salt water.

Discusses the procurement of water from wells and describes location, protection, and treatment necessary to make it suitable for use. Chief factors of sanitary quality are mode of occurrence, nature of the formation, slope of land surface and water level, rate of pumping, height above any nearby surface water body, and distance from sources of pollution. Shows approved types of pumping equipment and details of installation by 20 text figures.

Discusses a paper by Sidney Paige in Econ. Geol., Sept.-Oct. 1936, pp. 587-579. Treats of the permeability of the Ocala limestone, artesian conditions effect on ground-water levels, salt-water conditions, and the effect on the water-supply of the Sanford district.

Describes methods of studying the ground-water resources of the State. Emphasizes the value of long-time records of water levels and pumpage. Gives types of observation wells and methods of measuring water levels in them.

The actual amounts and relative amounts of the dissolved mineral constituents usually determine the chemical character and general usefulness of a water. Some ground water, especially shallow water, varies in composition from time to time. A single analysis of iron and manganese content may be misleading. The treatment of a water sample during the time between collection and analysis is important.
212 PUBLICATIONS RELATING TO GROUND WATER

Describes the progress of the water-well and spring inventory of the State and the distribution of well records to libraries throughout the State.

An abridgment of a paper presented before the 1938 meeting of the American Society of Civil Engineers. Florida depends upon ground water for municipal and private requirements. Emphasizes the need for careful planning in ground-water exploitation. Describes the water-bearing formations of the State and discusses the factors that should be taken into account in their development.

Briefly reviews the occurrence of ground water and cites ground-water developments to illustrate legal control problems arising as a result of use of ground water. Discusses general principles of law and rights relating to surface waters in relation to their bearing upon legal control of ground water. The doctrine of reasonable use and correlative rights does not appear to bring about desired ground-water control. The doctrine of appropriation, properly applied, offers a means of control, which is being used successfully in several areas.

Development of pure water supplies in recent years has been a large factor in increasing longevity. The great ground-water reservoirs in the United States are the valley fill in the Western States, the Great Plains sand and gravel, lava in the Northwest and in Hawaii, glacial drift in the Northern States, the Gulf and Atlantic Coastal Plains, the Dakota sandstone, and Paleozoic rocks. Emphasizes the increasing development and use of ground water.

Summarizes the more important papers and developments in the field of ground water during the year in appendixes as follows: A, Ground-water investigations in California, by H. F. Blaney; B, Ground-water problems related to production of oil, by F. H. Lahee; C, Notes on the hydrology of limestone terranes, by A. C. Swinnerton.

Use of ground water for air conditioning has resulted in considerable increase in pumpage on the western end of Long Island, where the draft on the ground-water reservoir was already excessive. In order to conserve the ground water, the State Water Power and Control Commission requires that water from new wells used for air conditioning shall be returned to the ground. This is usually done through a recharge well. The temperature of the ground water has been increased 10° to 15° by the return of the used water.

Gives data on test wells in the valley, water-level measurements, and determinations of the underflow by the Slichter method, the Thiem method, and the Theis method. The values of the underflow, determined by these methods, ranged from 86,000 to 99,000 gallons a day. In his summary and conclusions the author discusses the weaknesses and the advantages of each method used.

The ground water is in a closed basin, and except for Rio Grande there is no

Outflow and very little inflow. Pumpage is concentrated near El Paso. Volumes of cones of depression were computed, and average specific yield was calculated. The volume of water released from storage is only a fraction of the total pumpage.

Records for 1928-38 show water-level decline each year. During the irrigation season 150,000 to 250,000 acre-feet of water is pumped from Pleistocene sand and gravel. Artesian head has declined in the area between the Ozark Plateau and Crowley's Ridge, though only a small withdrawal of ground water has taken place, which shows that the recharge is small, owing to a nearly impervious cover of silt and clay.

Describes ground-water conditions in Southampton, Sussex, and Isle of Wight Counties. Artesian water is obtained from Cretaceous beds. The original head has lowered, and a cone of depression has formed in the area including the cities of Franklin and Courtland. Hard water moving eastward becomes soft as a result of reaction between the waters and base-exchange minerals in the sands.

Ground-water supplies in the area are chiefly from the Willis (T), Lissie, and Beaumont formations. Shallow waters in the different formations differ in content of calcium bicarbonate and total mineral content. Waters in all the formations change from calcium bicarbonate to sodium bicarbonate type as they pass downward, presumably as a result of reaction between the waters and base-exchange minerals in the sands.

Discusses the hydraulic character of an aquifer, its equilibrium, the piezometric surface, and cones of depression.

Gives notes on the drilling of wells for water for cattle and sheep under the Taylor Grazing Act, with figures on the costs of wells. To the end of July 1937 the Division of Grazing, United States Department of the Interior, had drilled 109 successful wells.

Salt-water intrusion is upward movement of salt-water caused by artificial lowering of fresh-water head in beds containing both fresh and salt water. Discusses the principle of Ghyben and Herzberg and gives examples. Effective control of ground-water pumpage will be necessary to prevent salt-water intrusion in many important water-bearing formations of the Atlantic Coastal Plain.

Describes occurrence and quality of ground water in the area, which forms part of the Gulf Coastal Plain. The principal sources of ground water are the Willis, Lissie, and Beaumont sands (Tertiary and Pleistocene). Shallow waters are characterized by calcium bicarbonate. With increasing depth, in some formations sodium is exchanged for calcium and magnesium, owing to base exchange minerals in the beds. The area is one in which heavy pumping tends to produce intrusion of salt.

Water into some of the important water-bearing beds. About 100 million gallons a day of ground water is used for industrial purposes in the area. The ground-water conditions, chemical character of the water, change of character with depth, waterhead, and possibility of salt-water contamination with overpumping are typical of the general conditions throughout the Gulf Coastal Plain. The paper includes 15 analyses of ground water and a graphic presentation of the chemical compositions of typical waters.

Discusses surface and ground-water supplies for irrigation and also the effect of pumping on the ground-water level. Describes studies to determine the rate of natural discharge of ground water at the edge of the High Plains. Artificial methods of increasing the recharge to ground-water supplies do not seem to be feasible.

Ground water occurs both as perched water and as basal ground water floating on salt water in accordance with the Ghyben-Hersberg principle. Magnetic and electrical resistivity surveys were made on Oahu, Molokai, and Maui. Several wells were located which had been covered over, and the height of the water table was determined in several places.

In large parts of the area affected by the drought of 1934 water levels have risen, although there has been no excessive precipitation. In some areas where precipitation has continued deficient or where there has been heavy pumping water levels have declined. Large rises have taken place on Long Island, N. Y., and in parts of California, owing to heavy precipitation. Evidence on the compressibility of water-bearing formations has accumulated. Studies of contamination by salt water are being made.

Analyses of the fluctuations of the water levels in two wells, one near Carlsbad, N. M., and the other near Iowa City, Iowa, show that after corrections are made for barometric fluctuations there are semidurnal fluctuations that can be closely correlated with the earth tides caused by the moon and the sun.

A study of the fluctuation of water level in a well 54 feet from a railroad track. The author shows that the weight of a passing train compresses the aquifer and causes water to rise in the well. The magnitude of fluctuation of the water level varies with the speed and weight of the train.

Subterranean water is classified on the basis of its occurrence, and international terms are proposed to designate different kinds of water in the zones of aeration and of saturation.

Gives data on fluctuations in water level in artesian wells near Carlsbad and Conchas Dam, N. Mex., in phase with the moon's rotation. Ascribes the fluctuations to elastic dilation and compression of water contained in the aquifer due to bulging and recession of earth's crust by earth tides. Derives tentative formula relating these fluctuations to earth tides.

Defines geophysics and describes several geophysical methods useful in groundwater studies, particularly the electrical resistivity method.

Describes a deposit at Abraham Hot Spring, 19 miles north of Delta, Utah, from which 715 tons of manganese ore was shipped in 1929-30. Gives 4 analyses of the thermal water, which show very small content of manganese.

Water in the Dakota sandstone in northwestern Iowa occurs under artesian conditions, but the head is nowhere sufficient to produce natural flow from wells at the land surface. A contour map of the piezometric surface of the water in the formation shows the general direction of movement to be southward, but a prominent ground-water divide begins about 60 miles east of the Iowa-South Dakota State line and extends about 100 miles southward from the Minnesota-Iowa State line. Some decline of artesian head has occurred locally in heavily pumped areas.

Gives data on depth to water and thickness of zone of saturation in different areas. The Ogallala formation furnishes most of the ground water. Alluvium and the Dakota and Cheyenne sandstones are also important sources of ground water. Jurassic and Triassic rocks supply a few wells. Permian red beds yield small supplies of highly mineralized water in the eastern part of the area.

Describes the location and testing of a new water supply for Wichita, and the remapping of the "Equus beds." Hydrologic studies included drilling 100 test wells and driving 60 others, collection of water samples for analysis, mapping of the water table, and measurements of ground-water recharge. Includes map showing the geology and contours of the water table.

Ground water is used by three-fourths of the public water-supply systems in Ohio, which supply 1½ million people. Large quantities are used for cooling and other industrial uses. Water levels have declined throughout the State. Investigation was begun in the Cincinnati area in 1938, where 65,000,000 gallons was pumped daily from alluvial valleys. Declines in the water level of as much as 90 feet have taken place in the past 50 years in the industrial centers.

Describes geology and water-bearing characteristics of the rock formations and glacial drift and methods of well construction in the forested areas developed by the Michigan Forest Fire Experiment Station. Gives ground-water conditions, use for public supplies, and mentions the program of water-level measurements in observation wells.

A general statement concerning water in the lavas of the islands.

Describes and illustrates fluctuations in water levels in wells in Utah, California, and New Mexico caused by earthquakes in Alaska on November 10, 1938, and in Chile on January 24, 1939. Compares these fluctuations with previously reported seismic fluctuations in wells.

Essential factors controlling the establishment of a new hydraulic equilibrium when water is discharged from an aquifer by a well are distance from and character of recharge, distance to natural discharge, and shape of the cone of depression as determined largely by the physical characteristics of the aquifer. Water discharged from wells must be balanced by a loss of storage in the aquifer, a decrease in the natural discharge, or an increase in the recharge, the last of which is possible only when the available recharge exceeds the capacity of the aquifer to transmit water under natural conditions.

States that erroneous legal concepts have been perpetuated because of the reluctance of courts to depart radically from precedents established in previous cases. Asks if a person pumping subflow should not be given priority over a subsequent appropriation of surface flow.

Briefly reviews the ground-water provinces and water-bearing formations, with a discussion of artesian conditions. Includes maps showing the major physical divisions, geologic formations, the area of artesian flow in Georgia, Florida, and Mississippi, and a map of the piezometric surface of artesian water in Florida and part of Georgia.

A review of "The physics of the divining rod," by J. C. Maby and T. B. Franklin, G. Bell & Sons, Ltd., London, 1939. 462 pp. The reviewers say that the authors "attempt to demonstrate that the diviners' art is based on muscular reaction to physical radiations."

Depth to the water table ranges from less than 25 feet to about 300 feet. The Osagala formation supplies most of the ground water, being 100 to 500 feet thick. Alluvium and the Dakota and Cheyenne sandstones are also important sources of water. Includes maps showing hydrology of the Oklahoma Panhandle and a map of the water table in northeastern Texas County, Okla.

Discusses doctrines of English law, reasonable use, correlative rights, and appropriation. In the East the tendency is towards "reasonable use;" in the West toward "appropriation," as in the New Mexico law of 1927.

Describes the several geologic formations of the area and gives cross sections of the alluvial deposits. Discusses salt-water contamination and ground-surface movement, with explanation of sinking.

Describes an instrument for testing natural waters for the presence of dissolved electrolytes by the electrical-resistivity method. Gives typical field tests for chloride.

Mentions the number of reports received from foreign countries on questions relating to ground water. Gives subjects approved for discussion at the 1942 meeting. Summarizes developments in ground-water studies during the past year. Includes appendix A on determination of ground-water level by seismic methods, by E. B. Burwell, Jr., and appendix B on hydrology and physiography of limestone terranes, by A. C. Swinnerton.

A summary of studies on the intrusion of salt water into fresh-water horizons. The safe yield of aquifers may be limited by the danger of salt-water intrusion rather than by their capacity to absorb and transmit water.

A summary of studies in western Nebraska, based chiefly on observations of water levels in wells. Includes water-table contour map of Keith County and map of Box Butte County showing contours and gradients of the water table.

A rigorous mathematical derivation of equations relating to fluctuations of pressure in an idealized elastic artesian aquifer due to atmospheric or other loading and to discharge by wells.

The geology and ground-water conditions of the drainage basin were not discussed by Mr. Pettis. Calls attention to the probable water-table conditions and the fact that it is not clear how the losses of water from land and lake areas were computed.

Gives examples of the need to guard against sabotage of ground-water supplies. The protection should cover the manufacture and installation of vital equipment. Public officials should check on the availability of ground-water supplies for an emergency and should look into the adequacy of their public supplies.

Discusses the specifications for testing and accepting wells. States that wells should be rated on the yield per foot of drawdown. Describes the use of a water-table map in determining ground-water movement and in computing amount of water withdrawn from storage.

Mentions six reports issued by the Pennsylvania Topographic and Geologic Survey in cooperation with the United States Geological Survey and gives summary of the data in Bulls. W1 and W3. Briefly describes the several water-bearing formations and the source of the ground water and discusses well casing, screens, and drilling.

Outcrops, well logs, and geophysical data give information on the bedrock surface and on folding in the overlying deposits. Hydrologic problems include the manner of
235. Problems of Coastal Plain geology and hydrology—Continued.
recharge to Cretaceous beds, the chemistry of softening by base exchange, the origin
of bicarbonate and fluoride contents, the relation of fresh water to salt water, and
safe yield.

236. Present status of our knowledge regarding the hydraulics of ground wa-
ter, by O. E. Meinzer and L. K. Wenzel. Econ. Geol., vol. 35., No. 8,
648-649.
On the basis of Darcy’s law a number of field and laboratory methods have been
developed for determining: the permeability of water-bearing materials. The methods
may be placed in four groups: Direct laboratory methods, indirect laboratory methods,
field velocity methods, and field discharge methods. Methods of the first and fourth
groups are most widely used. The paper also discusses the range in permeability of
natural materials, the relation of storage to movement of ground water, and the
compressibility and elasticity of artesian aquifers.

237. Fluctuations of water level in wells in the Los Angeles basin, Calif., dur-
ing five strong earthquakes, 1933-1940, by G. A. LaRocque, Jr. A. G.
Describes the character of the basin and presents graphs and tabulated data on
fluctuation of the water level in observation wells.

238. The effect of a well on the flow of a nearby stream, by C. V. Theis. A
Assuming a homogeneous aquifer and free interchange between ground water and
a surface stream, the decrease in flow of the stream due to a nearby well varies with
its distance, the duration of discharge, and the physical character of the aquifer.
Gives an equation expressing the effect under ideal conditioning.

239. The effect of a well on the flow of a nearby stream, by C. V. Theis; dis-
Discussion of a mathematical paper by C. V. Theis in the same publication. “The
results obtained by the use of the mathematical approach to ground-water problems,
although definitely remunerative, have clearly demonstrated that formulas involving
ground-water flow can be applied to field conditions with assurance only when con-
siderable caution and judgment are exercised.”

240. Ground-water inventory in the upper Gila River Valley, New Mexico and
Arizona: Scope of investigation and methods used, by S. F. Turner
Discusses the studies that are being carried on under the headings: Surface flow
and underflow, Ground water, Bank storage, Transpiration, and Rainfall and evapora-
tion. Gives hydrographs of two wells and of Gila River at two stations.

241. Coefficients of storage and transmissibility obtained from pumping tests
in the Houston district, Tex., by C. E. Jacob. A. G. U. Trans., August
Describes technique used to determine physical characteristics of water-bearing
sands, from observations at well fields under transient conditions of operation.

242. Application of coefficients of transmissibility and storage to regional
problems in the Houston district, Tex., by W. F. Gurton. A. G. U.
A discussion of decline of water levels in the district, with mathematical treatment
of the subject. Contains map showing altitude of water levels in February 1940 and
hydrographs of seven wells.

243. Factors producing a 9-year decline in ground-water levels in Scott County,
Gives data on the ground-water level in an area where there was a notable decline
during 1933-40. Discusses the relation of pumping and of precipitation to this decline.
Contains map showing contours of water table.

Describes the fault zone. Gives evidence of faulting of the alluvial sediments and of the effects on the ground-water table.

Describes the rock formations underlying the valley. Discusses the water-bearing cavernous limestones of the San Andres and Chalk Bluff formations, which constitute the important artesian aquifer.

Describes the character of the water-bearing Lloyd sand and gives a mathematical discussion of its high apparent compressibility.

A report of ground-water studies that have been carried on during the past year by the United States Geological Survey and by State and other organizations.

The area is one of the most productive artesian basins in the United States, yielding at least 180,000,000 gallons a day, nearly half of which is used by six large industrial plants. The water comes from the Ocala limestone from depths of 200 to 500 feet. Most of the wells flow, except near Savannah, where the head has been reduced by heavy withdrawal, but encroachment of salt water has not yet taken place. The total dissolved solids in the artesian water range from about 175 to 500 parts per million. Contains maps showing the artesian area and contours of the piezometric surface.

Ground water generally is more economical than surface water for cooling purposes because of its lower temperature. The New York State Water Power and Control Commission requires that ground water pumped for cooling purposes must be returned to the ground. The amount of recharge during the cooling season has increased from about 1/2 million gallons a day in 1933 to 30 million gallons a day in 1940. The temperature of the water returned to the ground ranges from 2° to 20° higher than the temperature of the water pumped from the ground.

A yield of 2,600 gallons a minute is reported from a well at a Kraft paper mill at Franklin. Other coastal plain wells at West Point, Fort Eustis, and Hopewell yield about 1,000 gallons a minute each. The water comes from sand of the Potomac group (Lower Cretaceous) at depths of 368 to 603 feet.

Gives a summary of the development and possibilities of ground-water supplies, with tables showing the sources of public water supplies in the State.

Discusses the subject under the headings Topography and drainage, Water-bearing formations, Methods of investigation, Shallow ground water, Quality of water, Salt-water intrusion, and Ground water as a future source of supply. Contains three maps showing water-table contours in the Miami area.
220 PUBLICATIONS RELATING TO GROUND WATER

Discusses the public water supplies of 66 cities having a population of more than 2,500 each and constituting 35 percent of the total population of the State. Surface-water supplies serve 38 cities having a total population of 759,784, and ground-water supplies serve the other 33 cities having a total population of 339,035. Discusses the chemical character of the surface-water and ground-water supplies and gives a table showing hardness of each. See also Water-Supply Paper 912.

Salty water from wells along the Atlantic and Gulf coasts are low in calcium, magnesium, and sulfate in comparison with theoretical mixtures of sea water and fresh ground water from about the same depths in the same formations. This indicates that base exchange and sulfate reduction have taken place. From the indicated occurrence of these phenomena conclusions are drawn about the origin of the contaminating salt water, whether it is present-day sea water or connate water. Contains tables and diagrams giving analyses of representative samples of ground water.

The ninth volume of a series of reports on physics of the earth issued under the auspices of the Division of Physical Sciences of the National Research Council. The present volume includes the following chapters dealing with ground waters by members of the United States Geological Survey: 1. Introduction (on the hydrologic cycle and the historical development of hydrology), by O. E. Meinzer, pp. 1-31; 10, Ground water, by O. E. Meinzer and L. K. Wenzel, pp. 385-417; 15 E, Chemistry of ground water, by M. D. Foster, pp. 646-655; and 15, Hydrology of lava-rock terranes, by H. T. Stearns, pp. 678-703. Ground water is also discussed in chapter 9 Soil moisture, by K. v. Terzaghi and L. T. Baver, and chapter 14, Hydrology of limestone terranes, by A. G. Swinnerton. Other chapters discuss various phases of surface water, including precipitation, snow and ice, glaciers, lakes, runoff, and drought.

A summary of the investigation being carried on by the United States Geological Survey in cooperation with the State.

Discusses the main constituents that make up practically all the dissolved mineral matter in most natural waters and the effects of hardness, alkalinity, and corrosiveness. Specifies the desirable features of water for various industrial uses. Presents information on the general character of public water supplies in different parts of the United States.

Gives a summary of the geology and principal water-bearing formations in southern Florida.

Describes the extent of ground-water investigations in the Southwest by the United States Geological Survey and cooperating agencies and outlines the problems of some of the principal ground-water provinces.

Describes the solution phenomena associated with the gypsum and gypiferous beds of the San Andres formation and the halite, polyhalite, and anhydrite of the Salado formation.

"Since about September 1940 the Division of Ground Water of the United States Geological Survey . . . has reported on ground-water conditions at about 750 localities in the United States and foreign countries where military establishments, industrial plants for the production of war materials, or housing projects were being contemplated."

In the lava plains in the vicinity of Dubois, Idaho, water in drilled wells is obtained from depths of 300 to 400 feet by lift pumps, chiefly for watering sheep. Most of the wells are operated by windmills. Some deeper wells are operated by steam or gasoline engines. From one well in which the depth to static water level is 680 feet, a 10-horsepower engine pumped 32,000 gallons in 65 hours without appreciably lowering the water level. Gives data on the cost of pumping.

Contains a short discussion of the sources of spring water in the area.

A general report on ground-water conditions in the islands, with 6 maps showing ground-water areas and chief ground-water developments. Includes data on the fluctuation of water levels in wells.

Emphasizes the need for legislation because of the rapid development of ground water for irrigation in the State. Summarizes the ground-water studies that are being carried on in Wyoming.

A discussion of ground water as a storage supply and its development for irrigation and for municipal and industrial supplies. Also describes development of ground-water supplies for defense industries. Mentions cooperative studies by the United States Geological Survey and State organizations and also legislation for the conservation of the ground-water supplies.

Difference in types of fluctuation of the ground-water level may depend on the topographic position of wells, their distance from streams, and the depth to water. The formula used for determining flow of ground water into a ditch may be applicable to flow of ground water into a stream. Although the rate of movement is slow, the large area of discharge along stream banks may produce conditions so that contributions of ground water to streams may in some areas be much greater, at least for short periods, than is customarily thought.

Describes the well schedule (form 9-185, March 1935) used in the Ground Water Division of the United States Geological Survey and specifies the information to be obtained for each of 14 headings on the form.

Ground-water recharge in cold climates takes place chiefly during the spring melting of snow, the amount of recharge being dependent on the disappearance of frost from the soil. Detailed observations of water level in the Lower Peninsula of Michigan show the rapid effects of freezing and thawing weather, rapid local recharge from melting snow and from heavy rains, and minor fluctuations due to transpiration and to changes in barometric pressure.

A comprehensive paper containing a large number of representative water analyses. These show that the water that may have been present originally in the sediments has been washed out and circulation of surface-derived water is generally active. Discusses the general characteristics of water in the several important oil-bearing formations.

The principal ground-water reservoir is the Ogallala formation, which lies at or near the surface over most of the area. Recharge takes place through depression ponds, influent streams, and sandhill and upland areas. Discharge by pumping wells for irrigation has increased greatly since 1934 and has resulted in a general lowering of the water table of about 3 feet.

"The Edwards limestone of Lower Cretaceous age is the principal water-bearing formation in a belt 5 to 25 miles wide that extends from Austin southwest to San
278. Recharge, movement, and discharge in the Edwards limestone reservoir, Texas—Continued.

Antonio and thence west through Uvalde and Del Rio to Comstock, a distance of about 250 miles.” Briefly describes the geology, recharge, discharge, and movement of the ground water.

A discussion of recharge in the flood channel of Queen Creek, Pinal County, Ariz. The flow is almost entirely storm water, the stream bed usually being dry.

Gives description of the instrument and its use in ground-water studies.

Describes various storage reservoirs projected and contains incidental reference to ground-water supplies.

Chiefly a description of projects for storage reservoirs but also discusses subter­ranean water (pp. 60-65). Includes outline map and a graph of rainfall and stream discharge.

Describes various reefs and lithified beaches and assigns the origin of some of them to ground water percolating seaward at about tide level. Mentions fresh-water springs along shore at about half-tide level.

Contains information on springs (pp. 221-223).

Contains incidental references to ground water. Geologic map shows the swamps and other lowland areas of shallow ground water, alluvial outwash slopes of abundant ground water, and limestone areas of the Northern Range, from which several large springs issue.

Describes the several geologic formations and the physical character of the strata. Geologic map (fig. 1) shows six formations. These include extensive lowland deposits of marine and delta clay, sand, and gravel and also valley alluvial gravel. These unconsolidated deposits are of Recent age and contain much shallow ground water.

288. Durchflussmenge und physikalische Erscheinungen in natürlichen und kunstlichen Bodenschichten, von L. K. Wenzel (original title, Determination of run-off and physical conditions of the flow of underground water in natural or in altered ground, the flow being natural or induced; translated into German by G. Thiem). Gas- und Wasserfacl. vol. 83, Berlin, 1940. pp. 150-153.

Publication in German of a paper presented at the meeting of the International Association of Scientific Hydrology, September 1939. The paper summarizes reports relating to the movements of ground water submitted for presentation at the Washington meeting of the International Union of Geodesy and Geophysics, September 1939, by authors from Belgium, Denmark, France, Germany, the Netherlands, Poland, Tunisia, and the United States.

A summary of the results of field work, and information obtained by test drilling. The island is composed largely of volcanic and sedimentary rocks of Cretaceous age, strongly folded, intruded by diorite magmas, and overlain by clay and marl of Oligocene and Miocene age. The Tertiary rocks have been gently folded along westward-southwestward trending axes. Oscillations in sea level produced alluvium-filled valleys, alluvial terraces, raised beaches, and coral reefs. Ground water can be obtained in moderate quantities from the old rocks, the Tertiary marls, and the alluvium. The alluvium is the most promising source for additional water supplies. The cause of well failures and the source of mineralization of the water are discussed.

Describes the various types of investigations made by the Division of Ground Water, United States Geological Survey, and the investigations that are under way in Arizona. Briefly discusses the projects in other western States, with special reference to the needs for expansion.

Contains a brief discussion of each of the ground-water provinces in the Southwest and states that investigations are in progress in all of them. Emphasizes that the outstanding feature of the ground water is the great amount of hold-over storage, which is drawn upon when pumping exceeds recharge, and that depletion is manifested in the lowering of water levels and by salt-water encroachment.

Describes the abundant depressions resembling sinkholes. Concludes that they are formed chiefly by solution of beds of salt and anhydrite at depths of 500 to 1,000 feet or more below the surface and by deep-seated circulation of water from the artesian basin and that this circulation was made possible by late Pliocene faults.

The coefficients of transmissibility and storage determined from pumping tests by means of Thiem's formula and Theis' nonequilibrium formula were in close agreement and may be used to estimate future drawdowns of water levels in the area.

There is progressive increase of mineralization east of the Fall Zone and softening by base exchange. Carbon dioxide that is liberated in the sediments causes excessively high bicarbonate content. Some of the carbon dioxide may result from the breakdown of sulfate. The origin of fluoride in the waters is also discussed.

The waters do not seem to be simple mixtures of ground water with sea waters.
296. Chemical composition of salty ground waters along the Atlantic and Gulf coasts—Continued.
They are lower in calcium, magnesium, and sulfate and higher in sodium, suggesting that the waters have undergone base exchange and reduction of sulfate. The indicated replacement of magnesium and calcium by sodium suggests that these base minerals are not in equilibrium with present-day sea water or with salty waters formed by its admixture with fresh ground water in which sodium carbonate is the predominant constituent.

297. Differential density of ground water in ore deposition, by D. J. Cederstrom. Econ. Geol., vol. 37, No. 6, September-October 1942. p. 524.
Comments on a paper by J. S. Brown on the same subject (Econ. Geol., vol. 37, No. 4, July 1942, pp. 810-817) and suggests tests of his theory of the enrichment of ore deposits below the water table.

Concerns the important concept that is expressed by different authors by the terms loss, evaporative loss, evaporation, evaporation and transpiration, evaporative-transpiration, consumptive use, or fly-off. Considers that it might be well to adopt the last-named term, as it is a short, simple term correlative to runoff.

Discussion of a paper by R. E. Horton, who describes the experiment and concludes that net or effective capillary head should be used in applying Darcy's law. Discussion by Jacob and Meinzer show that in the experiment the water moved in accordance with Darcy's law.

The fundamental fact about ground water is that it occurs in great widespread subterranean reservoirs, many of which have large storage capacities. Though irregular and intricate in their construction, they can be accurately mapped, and their structure can be determined. Their hydraulics are also intricate with respect to the intake, head, movement, storage, and discharge of their waters, and involve principles of physics which have little or no significance in the hydraulics of surface water. The waters of these reservoirs, however, obey rigorously the laws of fluid mechanics, and within limitations imposed by the irregularities of the rock formations and of the weather it is possible to determine their annual recharge, perennial yield, and storage capacities. Moreover, the efficient and beneficial operation of these reservoirs can be accomplished by the practical application of the knowledge developed by these scientific methods of investigation.

Gives analyses of water samples from 25 public supplies in six counties. Eighteen of these supplies are pumped from wells in limestone. The hardness of each supply is shown graphically on an outline map.

Describes the uses of ground water in Louisiana and lists the work in progress and the work accomplished by the Louisiana State Geological Survey in cooperation with the United States Geological Survey.

Presents a short discussion of the water supplies developed at 16 military establishments and war industry plants in the State.

Describes the network of observation wells measured by the United States Geological Survey and states that water levels have risen generally during 1942. Points out that the rate of recharge varies greatly with the character of the water-bearing formations.

Describes the cooperative program of ground-water observations and discusses water levels and artesian pressure in various parts of the State. Presents maps showing location of observation wells, and the observation wells and chloride content of waters in New Orleans.

Describes developments in methods, from the successful completion of the first well drilled for brine near Charleston, West Virginia, in 1808 to the invention of the process of jetting wells in 1884.

Gives a summary of the work of the committee of 16 persons and of important papers issued during the year.

A summary of the work of the commission during the year, including appointment of representatives to Central and South America under the Coordinator of Inter-American Affairs.

A summary of the work of members of the United States Geological Survey and other agencies in aiding the development of ground-water supplies for war plants and other industries and establishments connected with the war effort.

Calls attention to the similarity of some problems of the petroleum engineer and of the ground-water hydrologist and gives specific examples.

A mathematical consideration of quantitative methods and the use of the non-equilibrium formula, with discussion by M. K. Hubbert, C. V. Theis, and the authors (pp. 560-564).

Suggests a statistical method of evaluating ground-water levels, by which the levels are treated in terms of the frequency of their occurrence. Presents three graphs illustrating the method.

A summary of work being done in the prosecution of the war by geologists trained in hydrology.

Discusses the three general classes of natural waters—soft, hard, and salt—and their distribution in the United States. Gives typical analyses of surface and ground waters.

Gives a general discussion of ground-water supplies, the amounts pumped for irrigation, and the encroachment of salt water in some areas.

The geologic formations from which the Houston district obtains its water supply consist of interbedded clay, sand, and gravel of Miocene, Pliocene, and Pleistocene ages. The pumpage increased greatly during 1937-41 and caused marked decline in water levels. The quality of ground water compares favorably with other supplies in the United States. Exploratory drilling shows that additional supplies are available west and northwest of Houston and that salt-water encroachment from down the dip is not likely to occur for many years.

Describes the character of the unconsolidated water-bearing deposits of the area and discusses the contamination in certain places by encroachment of salt water from the ocean.

Discusses the geologic history of the area and the characteristics of the several formations, based on 15 test wells 20 to 97 feet deep in the Everglades. Includes a small map showing direction of surficial drainage in southern Florida.

A brief discussion of the principles of ground-water recharge with reference to water-table conditions.

States that the principal source of water is a thickness of 800 feet or more of permeable limestone of Eocene age, consisting of the Ocala limestone and deeper beds. Describes the geologic formations and discusses the quality of water, areas of recharge and discharge, storage and transmissibility, cones of depression, water-level records, and salt-water encroachment.

A short summary of the ground-water supplies available for municipal and industrial uses.
States that ground-water supplies are obtained from glacial outwash gravel in the valley of the Ohio River and that recharge takes place of infiltration from this river. Concludes that some areas are pumped too heavily. Contains maps showing contours on the bedrock and on the ground-water table and hydrographs showing pumpage and drawdown in wells.

Comments on an article by Eric Hardy entitled "Water diviners officially recognized by British Army" (Water Works Eng., vol. 97, No. 7, Dec. 5, 1944, pp. 340, 351). Mentions correspondence with A. Beeby Thompson and others indicating that diviners were not used, or used only in a few instances.

Discusses a paper entitled "The nature and significance of certain variations in composition of Los Angeles Basin ground waters," by R. B. Morse (Econ. Geol., vol. 38, No. 6, September-October 1943, pp. 477-511). Attention is called to the fact that carbonaceous deposits, which are locally abundant, are a probable cause of base exchange in the Long Beach area and that the naturally softened waters are almost universally darkened by organic matter.

Gives definitions and a brief history of determinations of transmissibility and storage coefficients and discusses tests made in three localities. States that the storage coefficients obtained were used to determine source of water supply, quantity available, and minimum yield to be expected from a well field under certain assumed conditions of operation.

Discusses the large amount of ground water used for municipal supplies and the great development of irrigation in the Western States. Says that the increase is due to several causes, including improved methods of constructing wells, improved pumping equipment, and improved methods of removing iron, manganese, and the hardening constituents. Emphasizes the need for careful development to avoid contamination by salt water in some areas and to avoid serious depletion in others.

Briefly discusses the principal geologic and hydrologic divisions of North Dakota and describes the necessity for state-wide investigation of ground-water resources.

Discusses the cooperative studies being made. States that water levels declined during 1940-44 due to deficient precipitation but are expected to recover when the precipitation increases.

Describes the geologic conditions at Louisville, which make artificial recharge of the ground-water reservoir practicable, and discusses the results of recharge as practiced at three industrial plants. Suggests recharge of ground-water reservoirs with cold city water during winter as a practicable means of ensuring cold water throughout the year for industrial uses.

The municipal water supply of the city of Natchitoches has been obtained from shallow wells in the Wilcox formation, but the supply has been gradually depleted. Nine exploratory test wells have shown that abundant supplies of soft water can be obtained from the Sparta sand and sands of the Wilcox formation southeast of the city.

Upper Cretaceous deposits are widely distributed south of the James River but seem to be absent immediately north of the river. This condition is ascribed to pre-Eocene channeling. There are Eocene deposits some distance north of the river, where the land is believed to have subsided throughout Eocene time. Subsidence is accounted for by faulting of the basement rock, the maximum displacement along the postulated fault being 800 to 600 feet in the Hampton Roads area.

The alluvial deposits in the valley furnish large supplies to many public water systems and industrial plants. Recharge is in part by infiltration from the river and is indicated by the temperature and chemical character of well water. This recharge is of great importance in some localities.

Discusses the character of water-bearing rocks in the mountain and piedmont areas as contrasted with those in the Coastal Plain. Describes the quality of the water in the different formations.

A general discussion of the occurrence of ground water in Pennsylvania and an account of reconnaissance investigations in 1935-36. States that in 1943 money was made available for beginning a detailed study of the ground-water resources of the State. See also cooperative reports 341-346, 349.

Briefly describes the sources of water used for the invasion of Saipan. States that a number of the Japanese wells were taken over and repaired and additional wells were put down. Says that drive points were used on the beaches in the early stages of the invasion and that later springs and irrigation wells were cleaned out and used.

Water levels in wells throughout the Houston district have declined since 1937, owing to increased pumping. In an area about 25 miles long and 10 miles wide north and northeast of Houston the water level has risen since December 1, 1942. This condition is ascribed to leakage of several million cubic feet of gas a day from a gas well into the water-bearing sands.

Summarizes the conditions that produce artesian wells. Discusses withdrawal and recharge of water, waste of artesian water, and the need for detailed investigation of ground-water supplies. Concludes that in areas where ground-water levels are not affected by artificial withdrawal the water table normally fluctuates through an annual range and also in longer cycles that correlate with cycles of wet and dry years.
States that the principle of prior appropriation will promote to the greatest extent the orderly and effective development of the ground-water supplies. Reviews the water-right doctrines as applied to the Western States and the laws to control waste from artesian wells.

Summarizes the activities of the committee of 16 members and gives short statements concerning important ground-water studies being carried on in various parts of the United States.

Gives data on 14 shallow test wells and presents a map of Long Island showing configuration of main ground-water table. Gives graphic well records of the fluctuation of the water level. (For part 1 see Journal article 312.) Also reprinted with same paging in New York Dept. Conserv., Water Power and Control Comm., Bull. G-14, Albany, N. Y., 1945.

A mathematical consideration of the formulas that are used to determine the coefficients of storage and transmissibility of water-bearing materials and to determine the drawdown of the ground-water level caused by the discharge of a well or group of wells, with a discussion (pp. 944-951) by C. E. Jacob, W. P. Guyton, and R. G. Kazmann.

The composition of the ground water contaminated by sea water differs considerably from the composition of simple mixtures of ground water and sea water. The differences can be explained as being due to cation exchange. The concentration of calcium is larger and of magnesium and sodium smaller than is required by computed analysis of mixture of the waters. Analyses of samples of the contaminated ground water that are presented suggest that soil colloids may be involved in the chemical changes.

Calls attention to the sharp distinction between typical phreatic, or water-table, conditions, and typical pleistoc, or artesian conditions. Reviews early studies of the hydraulic of wells and describes experimental work of recent years. States that the present view is that water delivered from an artesian aquifer first from the aquifer itself and later in larger volume from the associated clay and silt beds. Therefore there has been relatively little compression of the aquifer and hence little reduction in its permeability.

Serious overdevelopment of the ground-water supply in Alexandria and vicinity necessitated the development of additional supplies in the Bryou Rapides area, about 6 miles northwest of Alexandria. Exploratory work was first done, including the drilling of 6 test holes. The principal fresh-water sands are at depths of 150 to 970 feet, in Miocene deposits. Brackish or salt water is found at a minimum depth of 1,100 feet.

The water supply for Camp McCain comes from a basal sand of the Claiborne group and a deeper sand of the Wilcox formation; that for Camp Van Dorn comes
346. Geologic factors affecting the perennial yield of artesian aquifers in three areas in Mississippi—Continued.
from four aquifers within Miocene deltaic deposits; and that for Camp Shelby comes from wells in sand lenses of the Hattiesburg formation. See also Cooperative reports 192, 193, and 194.

The most reliable index of the quantity of water a formation will yield has heretofore been considered to be the correlation of pumpage with water levels in wells. Under new methods, pumping tests establish the equation of a water-level drawdown curve for a short period of time; by means of the equation the curve can then be extended over a longer period. Pumping tests made for this purpose at six places in Texas are briefly described.

Briefly describes the geology and ground-water conditions and discusses in detail the encroachment of salt water at Miami, Miami Beach, and Coral Gables. See also Cooperative report 63.

Describes the filled valley of the Ohio River. Gives data on water pumpage and yield of wells and discusses emergency recharge during 1944. Outlines plans for future conservation of ground water. Includes map of the Louisville area showing contours on the water table. See also Cooperative reports 160 d and 160 e.

A short discussion of the safe yield from wells, salt-water intrusion and the need for legal regulation of pumping.

A summary of the temperature and chemical composition of ground water in the United States and discussion of the occurrence, available quantity of ground water, the effects of overdraft, and possible additional supplies in some areas.

Silver Bluff is part of a coastal ridge that has an average height of about 8 feet above sea level. It is composed of oolitic limestone underlain by coral limestone and calcareous sandstone. Drainage canals have lowered the original ground-water level and allowed salt water to encroach inland 8,000 to 9,000 feet. A balance between fresh and salt water seems to be established for a zone between the shore and about 2,500 feet inland. Farther inland the balance has not yet been attained.

Heavy withdrawal of artesian water has created large cones of depression at Savannah and Fernandina and smaller cones at Jacksonville and Brunswick. However, large additional supplies can be developed in most parts of the area if the new well fields are located at sufficient distances from existing ones and the lower parts of the water-bearing limestones are not developed too extensively.

The area is underlain by poorly consolidated, fluvialite, and brackish-water sediments of Miocene age. The four most important water-bearing sands are at depths of 600 to 1,450 feet. The combined pumpage of the two camps is several million gallons a day.

Gives a review of ground-water development in the area and describes the several water-bearing formations. Discusses increase of pumpage, decline of the water levels, and intrusion of salt-water. States that the determination of safe yield of the water-bearing formations is complicated by several factors and must await the collection of detailed information by test drilling and by pumping tests.

Describes the growth of the observation-well program in West Virginia, gives table showing net changes in water level in 32 typical wells in 1944, and presents graphs of water-table fluctuations at three localities from January 1943 to June 1945, inclusive. Summarizes the highest and lowest recorded ground-water levels and water-level conditions during 1944.

Describes the available surface-water and ground-water supplies and discusses their chemical quality. Concludes that large supplies of water are available but that careful consideration should be given to the chemical character of water used for injection to prevent reaction with the natural brine to form insoluble compounds that would seal off the injection wells.

States that during the war period the summer production from wells in the southern part of the city was about 30 million gallons a day. Discusses the local recharge and possibilities of new developments.

This is the first of a series of five papers on artificial recharge prepared as a symposium on the subject. The full utilization of natural subterranean reservoirs of water requires systematic development based on geology and hydrology and the principles of hydraulics. In an artesian aquifer geologic study with test drilling is needed to determine the intake area and its structural relations to the pumped wells. Artificial recharge requires an effective process for getting surface water into the saturated part of the aquifer.

Artificial recharge by water spreading is practiced in several places in New Jersey. At the Perth Amboy Water Works such recharge has been carried on for more than 30 years. The city of East Orange spreads the water from several small streams over the area supplying its wells. In some places well sites are chosen to take advantage of potential recharge from bodies of surface water.

During the summer of 1944 more than 200 recharge wells and several recharge pits on Long Island returned water to underground storage at the rate of 60 million gallons a day. The water is returned to glacial deposits of sand and gravel from which most of it was pumped. In many places the water table is far below sea level, and sea water continues to move inland in areas of heavy pumping.

Industrial plants at Louisville pumped about 62 million gallons of water a day from wells in 1943, which resulted in the serious decline of water levels. The re-
362. Artificial recharge of glacial sand and gravel with cold filtered river water at Louisville, Ky.—Continued.

Artificial recharge of cold, filtered river water into the aquifer has been increased about 2 million gallons a day by introducing city water into the wells in winter. This makes an ample supply of cool water available from the wells during the summer when the city water becomes too warm to be used in certain plants.

The principal aquifer at Orlando consists of about 900 feet of permeable limestone of Eocene age overlain by relatively impervious beds. Owing to the lack of adequate surface drainage, more than 175 wells have been drilled into this limestone to drain streets, control lake levels, and dispose of sewage.

Pumpage of ground water for public supply in the United States was greatly accelerated after the beginning of the war in Europe. Large ground-water supplies were also developed for military and naval establishments. The technical staff of the Geological Survey engaged in ground-water investigations has made many examinations and prepared more than 3,000 reports on ground water for war purposes.

States that southern Florida emerged from the sea in late Pliocene time. Describes the geologic history during the several glacial and interglacial ages. Says that the Tamiami formation is the most important aquifer but that the Pamlico sand, Anastasia formation, and Miami colite are drawn upon for shallow well supplies. Includes map of the Everglades drainage district showing contours on top of the Pliocene rocks.

The trained ground-water geologist can render important service to the armed forces by providing water-supply intelligence for planning on the operational and on the strategic levels and by acting as field adviser to the engineer troops charged with supplying water. He can also be helpful as a consultant to the construction engineers during the operations by locating well sites, evaluating springs and stream supplies, and advising or instructing troops on methods of well construction, development, and pumping.

Address of president of the Society of Economic Geologists delivered at Pittsburgh, Pa., December 27, 1945. Discusses the broad aspects of the science of hydrology, the geologic controls in hydrology, and the hydrologic controls in geology. Describes the scope and prospects of economic geology and its relation to engineering. States that hydrology is involved in economic geology in three important respects—as an agency in the genesis of most important mineral and rock products of economic value; as a factor in most of the geologic problems of earth construction; and as dealing with a uniquely important mineral product. Concludes with a discussion of water considered as a mineral.

Presented at annual meeting of the American Society of Civil Engineers in New York, N. Y., January 17, 1946. States that combat supplies for each soldier were one-half to 1 gallon a day, bivouac supplies 1 to 5 gallons a day, and temporary camp supplies 5 to 15 gallons a day. In humid regions supplies were obtained from streams and shallow wells, but in arid regions pipe lines were often extended many miles from available supplies. Describes distillation units used on some of the small Pacific islands where no fresh water was available. Discusses chlorination
368. Military water supplies in the southwest Pacific area—Continued.

and other means used for purifying water supplies. Emphasizes the need for advance information on water supplies in the strategic planning of military operations. Summarizes the work of geologists and engineers in developing water supplies in various areas of military activity.

Summarizes pumping tests that were made on a well near the Missouri River, the water level being checked by readings on 38 nearby observation wells.

Summarizes studies that were carried on during 1943 to obtain satisfactory water supplies for 35 cities in El Salvador.

A list of 172 titles of articles relating to ground water published during 1939-44.

"This paper outlines certain fundamental principles in a graphic procedure which appears to be an effective tool in segregating analytical data for critical study with respect to sources of the dissolved constituents in waters, modifications in the character of a water as it passes through an area, and related geochemical problems." A discussion by the author is given on pages 927-928.

States that the largest single use of ground water in Louisiana is for irrigation. Perhaps two-thirds of the annual withdrawal, or about 120,000,000,000 gallons, is used for this purpose, chiefly for rice growing in the southwestern part of the State and in the strawberry farming area in the southeastern part. Gives a summary of ground-water conditions and records of wells in which water-level measurements were made during 1944.
INDEX

The following abbreviations are used in the index:

W, Water-supply paper. GF, Geologic folio.
M, Monograph. D, Mimeographed or other duplicated report.

Names of formations and geologic ages are entered as used in the reports, indexed without revision to bring them into accord with current usage.

A

Abernathy, G. E., Ground-water resources in southeastern Kansas...... C 147
Ground-water supplies in Kansas available for national defense.... C 151
Absorption areas for artesian water A 5 c; C 16
Absorption of water, apparatus for measuring W 155
by sinkholes .. W 233; A 16 II f
by specific materials W 258, 294, 343, 423; C 81
drainage wells in relation to W 258, 774, 818; C 92
estimates of ... W 219, 294, 423, 520 e, 597 b, 638 c; C 15, 16
from floods .. W 294, 380; C 15, 16, 21; D 173; J 240, 279
from irrigation .. W 294; C 15, 16; D 173
from precipitation W 153, 155, 294, 380, 400 e, 597 b, 638 c; C 15, 16;
D 173; J 73
from streams .. W 153, 158, 199, 294, 345, 375 d, 380, 400 e, 432, 519,
597 b, 637 b, 628 c; C 21
in alkali flats .. W 343
lysimeters for measuring W 155
measurement of ... W 155, 294, 400 e, 423, 519, 597 b, 637 b, 638 c; C 15,
16; J 240, 279
principles of .. W 114, 159, 219, 257, 494; A 14 II a, 19 II b; C 1, 431
spreading flood waters in relation to.............................. C 21; J 279
See also Quantity of ground water; Recharge of ground water.
Acidity of ground water. See Analyses; Quality.
Adams, G. I., Economic geology of Iola quadrangle, Kans............... B 238
Patrick and Goshen Hole quadrangles, Wyo. and Nebr............... W 70
Water supply of Ozark region in northern Arkansas W 110
Adams, R. W., Geology and ground-water resources of the coastal
area of Mississippi C 195
Geology and ground-water supply at Camp McCain (Miss.) C 192
Water levels and artesian pressure in the United States........... W 945, 987
Adaville formation, water in, in Wyoming P 53
Africa, deep wells in W 257
Air conditioning, water for C 97, 160, 160 a; D 70; J 193, 245, 351, 361
Air in soils, flow of A 19 H b
 ground water in relation to W 404; A 19 H b
Air lifts ... W 256, 843
Akin, P. D., Water levels and artesian pressure in the United States W 949, 991
Alabama, areas, all of State W 102, 114; C 1
 areas, Bessemer quadrangle GF 221
 Birmingham quadrangle GF 175
 Columbiana quadrangle GF 226
 Hatchetigbee anticline B 661 h
 Marengo County B 298
 Mobile County B 298
 Montevallo quadrangle GF 226
 northern .. C 2
 Vandiver quadrangle GF 221
 artesian water in W 114; C 1
 bibliography of ground water in W 114, 120, 149, 163
 mineral waters in W 114; B 32; MR 1883-1923; GF 175; C 1
 quality of ground water in W 102, 114; B 32; GF 175; C 1, 2 3
 salt water in W 114; B 661 1; C 1; D 151
 spring discharge measurements in W 98, 698, 713, 728, 758
 springs in .. W 114, 557; A 14 H b; B 32; GF 175, 221, 226; C 1
 temperature of ground water in C 1
 water levels in W 907, 997, 945, 987
 well records for W 57, 102, 149; B 264, 298; C 1
Alachua clay, water in, in Florida W 319
Alaska, artesian water in B 719, 739 c, 789 c, 811, 903
 bibliography of ground water in W 120, 163
 mineral waters in W 418; B 32; 1R 1883-1884
 quality of ground water in W 418
 salt water in B 719, 739 c, 789
 spring discharge measurements in W 134
 springs in .. W 418; B 32, 662 f, 683, 692 b, e, g, 739 c, 783 b, 797 f,
 816, 855 c, d
 Springs, thermal, in W 418; B 692 b, e, g, 783 l, 797 f, 844 d
 temperature of ground water in W 418; B 32
 well records for W 719
Alden, W. C., Chicago folio, Ill GF 81
 Gaines folio, Pa.-N. Y. GF 92
 Milwaukee special folio, Wis. GF 140
Alexander, Verne, Water levels and artesian pressure in the United States, 1937 W 840
Alexander, W. H., Jr., Ground water in the High Plains in Texas, C 405,
 411, 416
 Ground-water resources of Liberty County, Tex. C 418
 Ground-water resources of the Houston district, Tex. C 413
 Relation of phenomenal rise of water levels to a defective gas well, H Harris County, Tex. J 337
Algae in ground water W 315, 338, 345 g; A 9 d
Algeria, artesian water in A 11 H c
 bibliography of ground water in W 163
 irrigation with ground water in W 136; A 11 H c
INDEX 297

Algonkian formations. See Pre-Cambrian.

Alkali as indicator of ground water ... W 423

Alkali coefficient of water for irrigation .. W 274, 335, 398

Alkali flats, water in .. W 422; B 530 r

Alkali in ground water. See Analyses; Quality.

Alkali in soil, water table in relation to W 320, 343, 422, 423, 495

Alkalinity of ground water. See Analyses; Quality.

Allis, J. A., Water levels and artesian pressure in the United States, 1946 ... W 817

Alluvial fans. See Valley fill; Debris-filled basins.

Alluvium, interbedded with lava, artesian water in B 199

interbedded with lava, perched water in W 616; C 92, 99

water in—

<table>
<thead>
<tr>
<th>State</th>
<th>Pages or Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>GF 226; C 4</td>
</tr>
<tr>
<td>Alaska</td>
<td>B 903</td>
</tr>
<tr>
<td>Antigua</td>
<td>C 71</td>
</tr>
<tr>
<td>Arizona</td>
<td>W 450 a, 498, 499, 796 c; B 690 d; GF 217; C 12, 15, 20; D 67, 82, 140, 173; J 240, 279</td>
</tr>
<tr>
<td>Arkansas</td>
<td>W 399</td>
</tr>
<tr>
<td>California</td>
<td>W 112, 140, 142, 219, 294, 345 h, 375 a, 400 e, 446, 450 c, 495, 497, 519, 619; C 23; J 318</td>
</tr>
<tr>
<td>Connecticut</td>
<td>W 374, 397, 466 470, 540</td>
</tr>
<tr>
<td>Cuba</td>
<td>J 287</td>
</tr>
<tr>
<td>Florida</td>
<td>D 128</td>
</tr>
<tr>
<td>Hawaii</td>
<td>C 92, 99</td>
</tr>
<tr>
<td>Idaho</td>
<td>W 774, 818, 889 b; C 111, 112, 113 114, 117</td>
</tr>
<tr>
<td>Illinois</td>
<td>A 17 ii; GF 195; C 131</td>
</tr>
<tr>
<td>Iowa</td>
<td>W 293</td>
</tr>
<tr>
<td>Kansas</td>
<td>W 153, 258, 273; GF 206, 212; C 142, 143 146, 150 153, 154, 155, 156, 157, 158, 159; D 111, 119; J 214</td>
</tr>
<tr>
<td>Kentucky</td>
<td>W 233</td>
</tr>
<tr>
<td>Michigan</td>
<td>GF 2 f5; C 182</td>
</tr>
<tr>
<td>Minnesota</td>
<td>W 256; GF 201</td>
</tr>
<tr>
<td>Mississippi</td>
<td>W 159, 576</td>
</tr>
<tr>
<td>Missouri</td>
<td>GF 206</td>
</tr>
<tr>
<td>Montana</td>
<td>W 518, 599, 600; B 751 c, 856; D 2</td>
</tr>
<tr>
<td>Nebraska</td>
<td>W 12, 184, 425 b, 848; GF 89; C 202, 204</td>
</tr>
<tr>
<td>Nevada</td>
<td>W 450 c, 467; C 20 °; D 3, 4</td>
</tr>
<tr>
<td>New Mexico</td>
<td>W 140, 141, 158, 188, 422, 620, 637 b; B 725 g; C 233, 234, 237, 238, 241, 248, 256; D 5, 68</td>
</tr>
<tr>
<td>North Dakota</td>
<td>W 9 f, GF 181</td>
</tr>
<tr>
<td>Ohio</td>
<td>W 91, 259; D 88</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>W 500 b; C 321, 323; D 106, 115, 178</td>
</tr>
<tr>
<td>Oregon</td>
<td>W 220, 231, 637 d, 890; C 331; D 21, 44, 69</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>W 114; C 341, 345, 346, 351</td>
</tr>
<tr>
<td>St. Croix, Virgin Islands</td>
<td>J 289</td>
</tr>
<tr>
<td>Texas</td>
<td>P 187; C 256, 402, 409, 418</td>
</tr>
<tr>
<td>Trinidad, British West Indies</td>
<td>J 236</td>
</tr>
<tr>
<td>Utah</td>
<td>W 157, 217; P 1 f2; D 186</td>
</tr>
<tr>
<td>Virginia</td>
<td>C 435</td>
</tr>
<tr>
<td>Washington</td>
<td>W 88 f b; D 44</td>
</tr>
<tr>
<td>West Virginia</td>
<td>C 448, 449; J 333</td>
</tr>
</tbody>
</table>
Alluvium, water in, Wisconsin ... C 451
Wyoming .. W 425 b; B 716 a
See also Valley fill; Gravel; Sand.
Alum Bluff formation, water in, in Florida W 819
water in, in Georgia ... W 341
Aluminum in ground water ... W 273, 338; P 47; MR 1911
Ames, F. C., Water levels and artesian pressure in the United States, 1936 W 817
Amick, H. C., The "fittifying" spring near Greenbrier Cove, Tenn. ... J 142
Ammon, G., on flow of air through soils A 19 \pi b
Ammonia in ground water ... W 240, 256; MR 1911 n
Amsden formation, water in, in Montana B 856
water in, in Wyoming ... P 53
Anacacho formation, water in, in Texas A 18 \pi b; GF 64
Analyses, mechanical, of water-bearing material: W 67, 104, 136, 489, 596 f; A 19 \pi b; P 44

Analyses of ground water—
Alabama .. W 102; B 32; GF 175, 221; C 1, 2
Alaska ... W 418; B 662 f, 683, 783 b, 816
Antigua ... C 71
Arizona ... W 104, 136, 320, 364, 375 b, 450 a, 498, 499, 796 e, f, 836 b; B 32; GF 129; C 13, 15, 16, 17, 18, 19; J 136
Arkansas .. W 102, 145, 364, 399; P 45; B 32, 330, 491, 606, 616, 808; GF 215; J 28
Asia .. P 330, 491, 616
Atlantic Coastal Plain ... J 183, 254
Australia .. B 330, 491, 616
Austria-Hungary .. B 330, 491, 616
British Columbia .. B 330, 491, 616
California .. W 58, 59, 116, 142, 255, 278, 338, 364, 398, 429, 446, 459 b, 495, 497, 578; P 98 a, 117; B 32, 330, 491, 529, 540 n, 606, 616, 653; C 26
Canada .. T 330, 491, 616
Colombia .. B 330, 491, 616
Colorado ... W 240, 364, 839; A 17 \pi f; M 27; P 32, 52, 63; B 32, 330, 491, 529, 606, 616, 735 d; MR 1916; GF 135, 153, 203
Conneciticut .. W 102, 110, 232, 374, 397, 449, 466, 470, 537, 540, 597 b; P 44; B 32
Delaware ... C 171
District of Columbia .. W 364; B 32, 138; C 171
England .. B 330, 491, 616; MR 1916
Fiji Islands .. B 330, 491, 616
Florida ... W 102, 319, 364, 596 g; B 32; C 51, 52, 53, 54, 57, 58, 59, 62; J 301
France .. B 330, 491, 616; MR 1916
Georgia .. W 102, 160, 341, 912; B 32, 138; C 81, 82
Germany .. B 330, 491, 529, 606, 616; MR 1916
Gulf Coastal Plain ... J 23, 254
Haiti ... C 72
Hawaii .. C 92, 97, 98
Iceland .. P 330, 491, 616
Idaho ... W 560 d, 818; P 152; B 32, 877; C 111, 112, 114, 115, 116
Analyses of ground water, Illinois W 164, 364; A 17 ii h; B 32, 330, 438, 491, 506, 616; GF 81, 188, 195, 200, 208, 213; C 131

Indiana..........................W 254; A 18 iv b; B 32, 330, 491, 616

IowaW 293, 364; B 32; GF 145, 200

ItalyB 330, 491 ,616

JavaB 330, 491, 616

KansasW 145, 153, 258, 273, 345; P 32; B 32, 330, 491, 606, 616; C 145, 146, 147, 149

KentuckyW 102, 164, 233, 364; B 32, 330, 491, 606, 616, 661 d, 688

LouisianaW 101; P 46; B 330, 491, 616; C 163, 166, 167

MaineW 102, 114, 144, 223, 258, 364; B 32, 330, 491, 616; GF 149

MassachusettsW 102, 110, 144; B 32

MichiganW 31, 102, 145, 183, 188, 364; B 32, 330, 491, 606, 616, 625; GF 155, 205; C 181

MinnesotaW 102, 256; M 25; B 32, 330, 491, 606, 616, 625; GF 201

MississippiW 159, 364; P 46; A 32

MissouriW 102, 145, 195, 364; B 32, 330, 438, 491, 606, 616, 625

MontanaW 221, 345, 364, 400 b, 518, 520 d, 539, 560 b, 660; B 32, 330, 491, 529, 606, 616, 751 c, 822 a, 856; GF 56; J 39, 275

NebraskaW 184, 215, 484

New HampshireW 102, 144; B 32

New JerseyB 32, 138, 727; GF 191; C 212, 213, 214, 215, 216, 217

New MexicoW 123, 158, 188, 275, 343, 364, 422, 425 a, c, 30, 639, 839; P 68; B 32, 330, 491, 616, 618; GF 207; C 15, 235, 239, 241, 243, 244

New South WalesB 330, 491, 616

New YorkW 102, 108, 110, 144, 145, 364; P 44; B 32, 330, 491, 529, 530 r, 540 n, p, 606, 616, 727; C 112

New HampshireW 102, 144; B 32

New JerseyB 32, 138, 727; GF 191; C 212, 213, 214, 215, 216, 217

New MexicoW 123, 158, 188, 275, 343, 364, 422, 425 a, c, 30, 639, 839; P 68; B 32, 330, 491, 616, 618; GF 207; C 15, 235, 239, 241, 243, 244

New South WalesB 330, 491, 616

New YorkW 102, 108, 110, 144, 145, 364; P 44; B 32, 330, 491, 616; MR 1916; GF 190; C 273, 276

New ZealandB 330, 491, 616

North CarolinaW 160, 258, 364; B 32, 138, 330, 491, 616; C 291

North DakotaW 420 e, 560 b; A 17 ii g; M 25; B 32; GF 168; C 301, 302

OhioW 259; A 18 iv b, 19 iv b; B 32, 330, 491, 616, 693; GF 197

OklahomaW 148, 345, 364, 500 b, 520 b; B 606; C 321

OregonW 220, 659 b, 841; B 32

PennsylvaniaW 108, 110, 364; B 32, 330, 491, 616, 693, 826, 873, 891; GF 223, 225; C 341, 342, 343, 344, 345, 356, 352

Philippine IslandsB 330, 491, 616

Rhode IslandW 102, 144; B 32

South CarolinaW 258, 364; P 90 h; B 32, 138, 867

South DakotaW 227, 597 c; A 17 ii g, 21 iv b; P 32: B 32: GF 107, 108.

TennesseeW 164, 364; B 32, 330, 491. 529, 616, 638 a, 640, 656, 677; C 371

TexasW 66, 141, 190, 276, 317, 335, 343, 364, 375 g, 660, 833, 849 a; 913; A 18 ii b, 21 viii; P 46; B 32, 661 f, 902; GF 166, 194; C 381, 388, 390, 398, 399; D 46, 55; J 202
Analyses of ground water, United States...W 496, 658, 659 c
 UtahW 157, 199, 217, 277, 333, 364; P 107; B 32, 330, 491, 616
 VermontW 102, 114, 144; B 32
 VirginiaW 258, 364, 596 c; B 32, 330, 491, 616; GF 80; C 431, 432, 433, 435, 486
 WashingtonW 111; B 32
 West Indies ..0 71
 West VirginiaW 145, 364; B 32, 693; GF 179
 WisconsinP 113; B 32; GF 140
 WyomingW 364, 425 b; A 9 d, 21 iv b; P 32, 152, 163; B 32, 47, 330, 364, 491, 616, 670; GF 107, 173; J 274

Analyses of ground water, bacteriologicW 193, 256, 259; C 82
 bibliography ofW 559; B 330, 491, 606, 616; MB 1913 n h, 1916
 interpretation ofJ 16, 372

Analyses of mine waters—
 Arizona ...W 364; P 115
 California ..P 194; B 529
 Colorado ..W 364; B 529, 715. 735 d, 750 c
 Germany ..B 529
 Kansas ...W 272
 Mexico ...B 529
 Michigan ..W 364; M 52; P 144; B 625
 Minnesota ..M 52; B 625
 Missouri ..W 364; B 625
 Montana ..W 345 g, 364; B 529
 Nevada ..W 364; B 529, 735 c
 New Mexico ..B 885
 Oklahoma ..W 364
 Tennessee ..W 364; P 139; B 529
 Utah ..W 364; P 107

Analyses of mineral waters, bibliography ofMR 1913 II h, 1916

Analyses of oil-field waters—
 California ..P 117, 163; B 835
 Kentucky ...B 688
 Montana ...B 751 c, 786 b
 Ohio ...B 693
 Pennsylvania ..B 693
 West Virginia ..B 693
 Wyoming ..B 670

Analyses of soil, methods of mechanicalW 67, 104, 136, 489, 596 f;
 A 19 II b; P 44

Analyses of spring waters—
 Alaska ...W 418; B 816, 844 d
 Arkansas ..J 68
 California ..W 338; M 13
 Haiti ...J 36
 Idaho ...B 814, 874, 877; J 147
 Oregon ..J 147
 Utah ...J 211
 Virginia ...J 68
 Wyoming ...J 6
Analyses of tufa formed by hot springs	W 145; A 9 d; P 152
Analyses of water, accuracy of	W 236, 274, 596 h
assays compared with	W 398
computation of	W 151, 236, 398, 596 h
conversion of	A 14 n b
detecting errors in	W 236, 596 h
equivalents for	MR 1911 II n
expression of	W 236, 274, 559; A 14 n b; B 47, 330, 479, 491, 889 e
in field	W 151, 193, 537; B 47
industrial application of	W 274
interpretation of	W 274, 298, 559; B 47, 806, 616; J 16
logarithms for	W 298
methods of	W 193, 226, 254, 320; B 47
reaction coefficients for	W 274
solutions for	W 236

Analyses of water for—

- acidity | W 236 |
- alkalinity | W 151, 596 h |
- bacteria | W 193, 315 |
- bicarbonate | W 151, 236 |
- carbonate | W 151, 236, 596 h; B 47 |
- chloride | W 144, 151, 236, 596 h; F 47; J 15 |
- color | W 151, 596 h |
- hardness | W 151, 520 d, 596 h |
- phosphate | B 47 |
- potassium | W 236, 596 h; P 88 a; B 47 |
- radioactivity | B 395; MR 1913 II h |
- silica | W 236, 596 h; B 47 |
- specific substances | W 236; B 47 |

See also Assays of ground water.

Anamorphism, zone of, ground water in relation to | M 47 |

Anastasia formation, water in, in Florida | J 258, 365 |

Anderson, G. H., Geyser area near Beowawe, Eureka County, Nev | J 107 |
Anderson, J. E., Water levels and artesian water in the United States, 1937 | W 840 |

Andrews, D. A., Geology and coal resources of the Minot region, N. Dak | B 906 b |

Geology and oil and coal resources of the region south of Cody, Wyo | B 921 f |

Ground water in Avra-Altar Valley, Ariz | W 796 e |

Ground water in Avra Valley, Ariz | D 67 |

Ground-water resources of northwestern New Mexico | D 68 |

Mizpah coal field, Mont | B 906 c |

Annual recharge of ground water. See Quantity of ground water.

Antigua, ground water in | C 71 |

Antimony in ground water | B 47 |

Antrim shale, water in, in Michigan | W 114 |

Apparatus for—

- making assays of water | W 151 |
- making mechanical analysis of soil | W 67, 596 f |
- recording water levels in wells | W 155; A 19 n b; D 127, 136, 155, 188 |
- separating the emanation of uraninite in water | B 395 |
Apparatus for testing color of water .. W 151
testing gases in ground water ... B 395
testing solids in water ... W 137, 138, 139
testing turbidity of water ... W 151
testing windmills .. W 20, 41, 42

Apparatus for measuring, artesian pressure .. W 145; C 92; D 32, 45, 72
deflection of wells .. W 257
depth to water .. D 142
discharge of wells and springs .. W 150, 200, 596 a; D 33, 195
evaporation of water from sand ... W 29; A 19 π b
flow of ground water .. W 67, 110, 112, 140, 141, 637 b; 887; P 44; J 194
flow of water and air through various media .. A 19 π b
percolation of water .. W 155
permeability of water-bearing material .. W 596 f, 887; A 19 π b; D 84
radioactivity in water ... B 395; MR 1913 II h
rate of rise of water in wells .. W 140
water retained by soils ... A 19 π b
Apparatus showing, flow of water due to settling of sediments A 19 π b
loss in head by friction in sands ... W 258
loss in head of artesian water ... W 12, 54; A 17 π g, 19 iv c; P 17, 32, 52
Aquifers, compression of artesian ... W 887, 889 a, d; J 54, 133, 168, 199, 207,
219, 230, 236, 241, 242, 246, 280, 344
use of term .. W 293, 494

See also specific formations.
Arabahoe formation, water in, in Colorado M 27; P 32
Archean formations. See Pre-Cambrian; specific formations.
Archimedes limestone, water in, in Arkansas W 114, 145
Areas of ground-water discharge, methods of determining W 423, 597 b
Arey, M. F., Underground water resources of Iowa W 293
Arikaree formation, water in, in Colorado .. P 32
water in, in Nebraska ... W 425 b; A 19 iv c; P 17, 32; GF 87, 88
in South Dakota ... W 227; P 32
in Wyoming ... W 425 b; P 32; C 456
Aristotle, on origin of ground water .. A 14 π B j; J 106, 255
Arizona, absorption of water in ... W 104; C 15, 20; D 177; J 240, 279
areas, Apache County ... W 836 b
Avra-Altar Valley .. W 796 e; C 20; D 67, 173
Big Sandy Valley .. C 11, 12, 13; D 140
Bisbee quadrangle .. GF 112
Clifton quadrangle .. GF 129
Coconino County .. W 836 b
Duncan Valley ... W 886, 911, 941; C 11, 14, 15, 17; D 160
Gila River Valley .. W 104, 450 a, 498, 796 f; C 11, 14, 16, 17;
D 82, 146, 160, 171, 203; J 240
Globe quadrangle ... GF 111
Graham County ... W 450 a, 796 f, 886, 911, 941; C 11, 14, 15, 16;
D 146, 160, 171; J 240
Greenlee County ... W 886, 911, 941; C 11, 14, 15, 17; D 19, 160,
171; J 240
Holbrook region ... W 836 b; D 85
Lower Gila region ... W 490 c, 498
Maricopa County ... W 2, 136, 375 b, 886, 911, 941; B 298; C 11, 18
INDEX 243

Arizona, areas, Miami area P 115
Mohave County .. C 12, 13, 15; D 140
Navajo County ... W 380, 836 b
northeastern .. W 380
northern .. B 435
northwestern ... B 352
Papago region .. W 490 d, 499; C 14, 20; D 146. 171, 173
Paradise Valley .. W 375 f; B 690 d
Patagonia Mountains .. B 582
Phoenix and vicinity .. W 2, 136, 375 b
Pima County ... W 490 d, 499, 796 e, 886, 911, 941; C 11, 20; D 173
Pima Indian Reservation W 104; C 20; D 146. 171, 173
Pinal County ... W 104, 886, 911, 941; C 11, 20, 18; D 173
Queen Creek area ... C 11, 18; W 146, 171; J 279
Ray area .. P 115; GF 217
Safford Valley .. W 796 f, 886, 911, 941; C 11, 14, 15, 16;
D 146, 160, 171; J 240
Salt River Valley .. W 136
San Bernardino Valley .. W 320
San Carlos Indian Reservation W 450 a, 886, 911, 941; C 11
14, 15, 16; D 146, 160, 171, 173; J 240
San Pedro Valley .. W 320; A 21 IV a
San Simon Valley .. W 425 a, 775 f; D 82
Santa Cruz River Basin W 104, 490 d, 499, 796 e, 886, 911
941; C 11, 20; D 146, 171, 173, 185, 203
Santa Rita Mountains .. B 582; C 20
southeastern .. W 320, 425 a; C 19
southwestern .. W 490 d, 499
Sulphur Spring Valley ... W 320
Verde River Valley .. C 20 a
Virden Valley .. C 14
west-central ... B 352

artesian water in .. W 320, 380, 425 a, 450 a, 498, 796 f; A 21 IV a; B 435;
GF 112; C 15, 16, 19, 20; D 82
bibliography of ground water in W 149, 163; C 18, 19
evaporation of ground water in W 2; C 15, 20; D 160; J 240, 279
infiltration ditches in .. W 104
irrigation with artesian water in W 425 a, 450 a, 796 f; A 21 IV a;
B 435; C 15, 16
irrigation with other ground water in W 2, 104, 136, 320, 375 b, 395,
425 a, 450 a, 498, 796 f, 886, 911, 941; A 16 II e; C 12, 13, 14, 15, 16, 17, 18, 20; D 146, 160, 171, 173, 185, 196, 203; J 240
mine waters in .. W 364; B 582; GF 112
mineral waters in ... B 32; MR 1883-1916; GF 129; C 13, 15, 16, 17, 18, 20;
D 151
perched water in .. W 320
pumping in ... W 104, 136, 320, 375 b, 425 a; D 171, 18 f.
196, 203
quality of ground water in W 104, 136, 320, 364, 375 b, 425 a, 450 a,
496, 498, 499, 796 e, f, 836 b; B 32; GF 129; C 13, 14, 15, 16, 17, 18,
20, 20 a; D 52, 151; J 136
quantity of ground water in .. W 104, 136; C 14, 15, 20, 20 a; D 146,
160, 171, 173, 185, 196, 203; J 240. 279, 300
Arizona, salt water in... .W 104, 136, 320, 375 b, 796 e, f; GF 12f; C 13, 15, 16, 17, 18, 20; D 151

spring discharge measurements in ...W 879, 899, 959, 979; C 13, 15, 16, 17 springs inW 320, 380, 490 c, d, 498, 499, 557, 679 b. 796 f, 836 b; A 14 II b; B 32, 582, 763, 808; GF 111, 129; C 13, 15, 16, 17, 20; D 85; J 136

springs, thermal, in . W 679 b, 796 f; B 32, 582; GF 129; C 15, 16, 20; J 136 temperature of ground water inW 320, 796 f; B 32, f 52, 582; C 13, 15, 16, 17, 18, 20

underflow inW 104; C 12, 15, 20; D 160; J 240

water levels inW 886, 911, 941, 949, 991

water table inW 104, 136, 320, 375 b, 426 a, 498; GF 129; C 13, 14, 15, 16, 17, 18, 20; D 146, 160, 171; J 240, 279

watering places inW 380, 490 c, d, 499; B 352

well records for... .W 57, 104, 136, 149, 320, 375 b, 380, 499, 796 f, 836 b; B 298, 352, 435, 540 p; GF 111, 112; C 13, 15, 16, 18, 20, 20 a

wells in, construction ofW 380, 498

cost of ..W 320

Arkansas, areas, all of State ..W 102

areas, Batesville district ...B 921 a

Eureka quadrangle ..GF 202

Grand Prairie region ..D 18, 23; J 196; C 20 e

Hempstead County ..B 298

Hot Springs and vicinity ...W 145; J 28

Hot Springs quadrangle ..GF 215

northeastern ..W 399

northern ..W 114, 145

Ozark region ..W 110, 145

southern ..W 114; P 46

southwestern ..B 691 j

Tahlequah quadrangle ...GF 122

Winslow quadrangle ..W 145; GF 154

artesian water in ..W 114, 145, 399; P 46; B 808; D 18

bibliography of ground water in ..W 114, 120, 149, 163

irrigation with ground water in ..W 399; D 18

mineral waters in ..W 114, 145; P 46; B 32; MR 1883-1923; GF 154

public water supplies in ..W 399; P 46

pumping in ..W 399; D 18

quality of ground water in ..W 102, 145, 394, 399; P 46; B 32, 330, 491, 606, 616; GF 154; J 28, 68

radioactive waters in ..MR 1913 II b

rice irrigation in ..W 399

salt water in ..B 691 j, 847 e

spring discharge measurements in ..W 84, 957, 977

springs inW 102, 110, 114, 145, 364, 557, 627, 679 b; A 14 II b; P 86; B 32, 808; GF 122, 154, 215; D 85; J 37, 68, 136

springs, thermal, in ..W 145, 679 b; B 808; GF 215; J 37, 68

water levels in ..W 777, 817, 840, 845, 886, 909, 933, 947, 989

water table in ..W 399; P 46; B 886 c, 921 a; D 93; J 196; C 20 e

ewell records for ..W 57, 102, 145, 149, 399; P 46; B 374, 298, 691 j
Arkansas, wells in, construction of ... W 145; P 46
cost of .. W 399; P 46
drainage into ... W 160
Arnold, Ralph, Santa Cruz folio, Calif ... GF 163
Arsenic in ground water ... W 338; B 47; ME 1911 n n
Artesian basins produced by settling of strata .. A 21 iv c
Artesian pressure, factors influencing in the United States A 5 c; B 319
methods of measuring ... W 118, 145; D 32, 45, 72
Artesian springs ... W 90, 255, 278, 388, 796 f; A 2 iv c; C 16
Artesian water, absorption areas for .. A 5 c; C 16; D 95, 101
apparatus showing loss of head in ... W 12, 54, 227; A 17 ii g, 19 iv c; P 17, 32, 52
barometric pressure in relation to ... B 319; GF 156; C 92
bibliography of ... W 54
bounties for discovering ... W 122
confining beds for ... A 5 c, 21 iv c; B 3:9; C 92, 99
cost of recovering, in California .. W 142, 145, 158, 219, 225, 234, 256, 278, 293, 400 b, 423, 425 a, 520 e; C 91, 92, 431; J 338
in Montana .. W 222, 393
in Nevada ... W 275 d, 423
criteria useful in prospecting for ... A 5 c; C 431; J 13
definition of .. W 160, 341, 494, 86 d; C 451
definition of .. W 518; B 606; J 54
depth in relation to .. A 5 c
dip of strata in relation to ... A 5 c; J 3
discharge of .. J 344
depth in relation to .. A 11 ii c
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
deformation in relation to .. A 5 c; J 3
escape of, in wells .. W 118, 257, 520 e; A 5 e
faillacies regarding ... W 278, 380; B 319
faults in relation to ... A 18 ii b; J 294
gas in, flows produced by ... A 5 c
head of, atmospheric effects on ... B 519; GF 156
climate in relation to .. C 21, 91
density in relation to ... B 319
depth in relation to .. A 5 c; GF 168
fluctuations in ... W 34, 101, 240, 256, 319, 638 a; GF 15c; C 21, 91, 92, 94, 97, 242, 43; J 56, 66
gage for measuring ... W 145; C 92
loss in .. W 59, 60, 90, 137, 138, 139, 142, 145, 219, 246, 255, 256, 293, 425 a, 520 e, 596 a; A 17 ii g; GF 96, 97, 99, 100, 113, 114 156; C 91, 231, 481; J 152, 177
measurement of .. W 118, 145; C 58, 94, 144; J 149, 230
Salton Sink in relation to ... W 225
temperature in relation to .. B 319
water table in relation to ... W 256, 293; A 5 c; C 451
high-level flows of .. W 320
Artesian water, hot, in IdahoGG 45
in Montana ...W 400 b
hot springs in relation toW 400 b
lakes produced by ..A 18 IV c
law relating to ..W 55, 78, 122, 520 e, 596 a; C 91, 131
leakage of ...W 118, 257, 638 c; A 5 c; C 92
methods for detectingW 118, 596 a; A 5 c; C 92
maps showing See Maps.
methods for increasingW 494; B 606; J 86
See also Movements of ground water.
origin of ...W 101, 158, 494, 520 e, 889 a; A 5 c; M 27; B 319; GF 97, 117;
J 344, 347, 353
perched bodies of ..W 320-494; C 99
“pit flows” of ..W 277
power developed fromW 67, 494; A 17 II g; GF 168; C 81
principles of ..W 114, 118, 195, 254, 257, 341, 365, 399, 49 c 598, 520 e,
889 a; A 5 c, 14 II a, 21 IV c, 21 VII; M 27; P 44, 46; B 319, 856;
GF 68, 71, 86; C 1, 451; J 13, 54, 344, 347, 353
significance of term ..W 160
temperature of. See Temperature of artesian water,
unusual conditions ofW 145, B 319; J 3
Artesian water in—
Algonkian formations ..W 256
Arapahoe formation ..M 27
Benton formation ...GF 96, 99, 100, 113, 114, 165
Boone formation ...GF 148
Calvert formation ...GF 136, 137, 152
crystalline rocks ..W 106, 145, 160, 232, 374, 397; A 5 c; GF 149, 157,
158; C 451; J 4
Dakota sandstone ..W 6, 12, 34, 215, 216, 227, 256, 520 e, 597 c, 598, 889 a;
A 16 II f, 17 II f, g, 18 IV c, 19 IV c, 21 IV c; M 25, 27; P 17, 32,
52, 65; B 350, 691 g, 736 d; GF 68, 71, 85, 87, 88, 96, 97, 100, 107,
108, 113, 114, 127, 128, 135, 156, 164, 165, 168; C 361; J 41, 56, 66
Deadwood sandstone ..W 227; P 32; GF 164; C 361
debris-filled basins ..W 142, 181, 219, 225, 240, 277, 278, 320, 333, 343,
375 d, 423
Denver formation ...M 27
Ellensburg formation ...W 55, 118; GF 86
faults ..B 319
fissured rocks ..W 160, 232, 374, 397; A 5 c
Fox Hills formation ..M 27
Fredericksburg group ..A 21 VII
glacial drift ..W 182, 183, 254, 256, 293; A 17 II g, h, 18 IV b, 19 IV b; M 38
P 44; GF 96, 97, 99, 100, 113, 114, 117, 140, 155, 157, 165, 168, 210; C 451
Glen Rose formation ..A 21 VII
gneiss ..W 106; GF 157
Grand Falls chert ..GF 148
joints ...W 160, 232, 256; B 319
Jurassic formations ..P 188
lacustrine deposits ...W 217, 220; 277, 333, 425 a
Artesian water in, Lakota sandstone P 65; B 736 d; GF 107, 108 127, 128, 150, 164; C 361
Laramie formation W 599, 600; M 27; GF 87
lava .. W 4, 55, 616; B 252; C 91, 92, 97, 99; J 255
lava and interbedded alluvium W 4, 54; B 199
Lloyd sand ... P 44
Magothy formation GF 152
Minnelusa formation GF 128, 150, 164; C 361
Monmouth formation GF 137
Montana clays .. M 27
Myrick formation W 375 G
Newark sandstone W 256; GF 157
Niagara limestone A 19 IV b; GF 145; C 451
Ocala limestone W 319, 773 c; C 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65; J 134, 137, 138, 139, 189, 221, 248, 252, 258
Paluxy sand ... A 21 VII
Permian formations W 500 b
Pierre shale .. W 258
Plattesville limestone GF 145; C 451
Pleistocene coastal clays A 21 VII
Potomac group ... B 138; GF 137, 152; C 497
Potsdam sandstone W 256, 293; A 17 II h; M 38; GF 81, 140, 145; C 451
preglacial channels A 19 IV b
quartzite .. W 256
Quaternary stream deposits W 6
rocks overlain by glacial drift W 145, 256
St. Peter sandstone W 233, 256, 293; A 17 II h; M 38; B 438; GF 81, 140, 145, 148; C 451
slate .. W 258
solution passages B 319
Tertiary formations B 906 b, c; C 58
trap rocks ... B 319
Triassic formations W 232, 470, 540; M 27; GF 157
Trinity sand ... A 21 VII; GF 76
unconfined horizontal beds W 145; P 44; B 319
valley fill ... W 89, 137, 138, 142, 181, 199, 219, 220, 222, 225, 240, 277, 278, 320, 333, 375 d, 519; GF 163; C 32, 113, 116; D 18
Wasatch formation P 53; B 796 c
weathered rocks beneath clay B 319
Woodbine sand A 21 VII
See also specific States.
"Artesian wedges," nature of B 119
Artesian wells, clogging of W 293
closing of ... W 90, 227; A 17 II g
detecting flows in W 118; J 46 49, 50, 276
diameters of, in relation to yield W 293
gases in relation to yield of A 5 c
in United States prior to 1890 A 13 III a
interference of A 19 II c
large yields of W 67, 158; GF 205; C 91
laws of flow in A 19 II c
leaks in .. W 118, 257, 596 a, 638 c; A 5 c ; C 92
Artesian wells, management of ... W 227
methods of controlling .. W 118; A 5 c
temperature of water in relation to yield of A 5 c
yield of, diameters in relation to .. W 293, 887
effect of density on .. B 319
effect of gases on ... A 5 c
effect of temperature on .. A 5 c; B 319
effect of weather on .. W 258
methods of measuring ... W 110, 219, 240, 257; W 33, 45, 72, 114, 195
principles of ... W 293, 887
seasonal variations in ... W 240; C 91, 92

See also Artesian water; Well construction.

Ash beds, perched water on .. W 616; C 92, 99
Ashley, G. H., Ditney folio, Ind. ... GF 84
Geologic structure of Punxsutawney, Curwensville, Houtzdale, Barnes-
boro, and Patton quadrangles, Pa. .. B 531 d
Ground-water investigations in Pennsylvania .. J 335
Nicholas quadrangle, W. Va. .. W 145
Water resources of the Middlesboro-HHarlan region of southeastern Kent-
tucky ... W 110

Asia, irrigation with ground water in ... W 1
pumping in .. W 14
well drilling in .. W 257

See also China; India; Japan; Persia; Russia; Turkestan

Aspirator for mechanical analysis of soil .. W 67

Assays of ground water—
Arkansas .. W 389
California ... W 398
Georgia .. C 81
Indiana ... W 254
Kansas ... W 273
Kentucky .. W 233
New Mexico ... W 275
North Carolina ... C 291
Utah ... W 333

Assays of water, accuracy of .. W 151, 398
analyses compared with ... W 398
apparatus for making .. W 151
computation of ... W 151, 398
methods of making, for specific substances W 151, 198, 398
reagents for ... W 151

Atlantic Coastal Plain. See specific States.

Atmospheric effects on wells. See Wells.

Auriferous gravel, water in, in California .. GF 66
Austin, V. L., Water levels and artesian pressure in the United States
W 817, 840

Austin formation, water in, in Texas .. W 276; A 18 II b; GF 64
Australia, bibliography of ground water in .. W 163
deep wells in ... W 257
Austria-Hungary, bibliography of ground water in W 163
mineral waters in ... MR 1916
INDEX 249

Austria-Hungary, quality of ground water in........B 330, 491, 616; MR 1916
radioactive waters in ..MR 1913 II

Ayer, G. R., Water levels and artesian pressure in the United States
W 944, 986

B

Babb, C. C., Progress of stream measurements, 1904W 130
Babcock, H. M., Duncan-Virden Valley, Greenlee County, Ariz., and
Hidalgo County, N. Mex. ...C 17
Ground-water levels and pumpage in Arizona in 1939-40C 14
Ground-water resources of the Santa Cruz Basin, Ariz.C 20
Queen Creek area, Maricopa and Pinal Counties, Ariz.C 18
Recharge to ground water from floods in a typical desert washJ 279
Water levels and artesian pressure in the United States .W 911, 941, 949
Water resources of Safford and Duncan-Virden Valleys, Ariz.-N. Mex. C 15
Water-stage recorder, self-startingD 139

Bach, W. K., Ground water levels in UtahT 122, 145
Method to protect a pressure-recorderD 114
Water levels and artesian pressure in the United States.....W 886, 910

Baillie, E. H. S., Stream pollution by mine waters in southeast Kansas...W 273

Baldwin, G. C., Surface water supply of the United States, W 393, 463, 483,
513, 553, 613, 633, 653, 673

Ball, S. H., Geologic reconnaissance in southwestern Nevada and eastern
California ...B 308
Baluchistan, ground water in, bibliography ofW 163
Barber, D. H., Surface water supply of the United States, 1935W 782
Barbour, E. H., Wells and windmills in NebraskaW 29
Barium in ground waterW 254, 338, 399; B 47; MR 1911 II

Barker, F. C., Irrigation in Mesilla Valley, N. Mex.W 10
Barksdale, H. C., Artificial recharge of productive ground-water aquifers in
New Jersey ..J 360
Contamination of ground water by salt water near Parlin, N. J. ...J 228
Demand for water for air conditioningD 70
Ground-water problems in New JerseyJ 350
Ground-water supplies of Middlesex County, N. J.C 218
Ground-water supplies of the Atlantic City region, N. J.C 216
Quantitative investigation of New Jersey ground watersJ 140
Salt-water intrusion, a coastal ground-water problemJ 201
Salt-water problems in MarylandD 151
Water-level fluctuations at Plainfield, N. J.J 151
| **Barksdale, H. C.**, Water levels and artesian pressure in the United States |
Water supplies, Parlin, N. J.	827, 880, 840-845, 886, 936
Water-table fluctuations near Runyon, N. J.	217
Barnes, B. A., Ground water, Galveston, Tex., with special reference to salt-water intrusion	151
Barnett, V. H., Gillette coal field, northeastern Wyoming	796 a
Standing Rock and Cheyenne River Indian Reservations, N. Dak.-S. Dak.	575

Barometric effects on wells. See Wells.
Barriers to ground water. See Dams.

Barton, D. A., Water levels and artesian pressure in the United States, 1943 | 988

Basalt. See Lava.

Bascom, Florence, Coatesville-West Chester folio, Pa.-Del. | GF 223

Elkton-Wilmington folio, Md.-Del.-N. J-Pa. | GF 211

Fairfield-Gettysburg folio, Pa. | GF 225

Geology and mineral resources of the Honeybrook and Phoenixville quadrangles, Pa. | B 891

Geology and mineral resources of the Quakertown-Doylestown district, Pennsylvania and New Jersey | B 828

Philadelphia folio, Pa.-N. J.-Del. | GF 161

Trenton folio, N. J.-Pa. | GF 167

Water resources of Philadelphia district, Pa.-N. J.-Del. | W 106

Base exchange in ground water, caused by carbonaceous matter | J 325

in Atlantic and Gulf States | J 296

in Virginia | J 295

Basins. See Debris-filled basins.

Bass, N. W., Ashland coal field, Mont. | B 831 b

Bastin, E. S., Bonanza ores of the Comstock lode, Nev. | B 735 c

Eastport folio, Maine | GF 192

Economic geology of Gilpin County and adjacent parts, Colo. | P 94

Genesis of the ores at Tonopah, Nev. | P 104

Origin of silver ores near Chloride and Kingman, Ariz. | B 750 b

Penobscot Bay folio, Maine | GF 149

Primary natives-silver ores near Wickenburg, Ariz. | B 735 e

Rockland folio, Maine | GF 158

Silver enrichment in the San Juan mountains, Colo. | B 735 d

Silver ores of Aspen, Colo. | B 750 c

Batesville sandstone, water in, in Arkansas | W 114, 115

Bauer, C. M., Coal in San Juan County, N. Mex. | B 716 g

Ekalaka lignite field, southeastern Montana | B 751 f

Lignite in Fort Berthold Indian Reservation, N. Dak. | B 726 d

Bayley, W. S., General features of hematite ores of North Carolina. | B 735 f

Passaic folio, N. J.-N. Y. | GF 157

Raritan folio, N. J. | GF 191

Underground waters in Maine | W 114

Underground waters of southern Maine | W 223

Wells and springs in Maine | W 102

Beal, C. H., Geologic structure in Cushing oil and gas field, Okla., and its relation to oil, gas, and water. | B 658
Beaumont clay, water in, in Texas .. W 335
Becker, G. F., Geology of the quicksilver deposits of the Pacific slope... M 13
 Beckman, H. G., Large springs of Missouri .. C 200
 Surface water supply of the United States, Part 6. W 586, 606, 626, 646, 686, 701, 716, 731, 746, 761, 786, 806, 826, 856, 876, 896
 Beckwith formation, water in, in Wyoming P 56
 Bedding planes, water in ... W 114, 254, 489; B 319
 Beekley, A. L., Geology of Standing Rock and Cheyenne River Indian Reservations, N. Dak.-S. Dak. .. B 575
 Belgium, ground water in, bibliography of W 163
 radioactive water ... MR 1913 II h
 Bell, F. M., Surface water supply of the United States W 852, 872
 Bennett, R. R., Geology and ground-water resources of the Big Spring area, Tex. .. W 193
 Ground water in the Baltimore area (Md.) J 355
 Recharge, movement, and discharge in the Edwards limestone reservoir, Texas ... J 278
 Water goes to war .. D 177
 Water levels and artesian pressure in the United States, 1943........... W 987
 Benton formation, water in—
 Kansas ... W 273; P 32
 Nebraska ... W 216; P 32
 North Dakota .. W 587; B 801; C 302
 South Dakota ... W 90, 227; P 32; GF 96, 97, 99, 100, 113, 114, 165; C 302
 Wyoming .. P 32; B 364; GF 173
 Berea grit, water in, in Michigan .. W 30, 31, 114
 water in, in Ohio ... W 114; B 818
 Berdan, J. M., Bibliography of technical reports, articles, and memoranda published or otherwise released (by the Ground Water Division, United State Geological Survey) .. D 187, 198, 209
 List of current publications concerning ground water J 371
 Water levels and artesian pressure in the United States, 1943........... W 987
 Bergquist, A. W., Water levels and artesian pressure in the United States ... W 840, 845
 Bermuda Islands, bibliography of ground water in W 163
 Berry, E. W., Surface and underground water resources of Maryland .. C 171
 Bevan, Arthur, Water levels in tidewater Virginia in 1943 D 190
 Bibbins, Arthur, Patuxent folio, Md.-D. C. GF 152
 Tolchester folio, Md. .. GF 204
 Bibliography, absorption of water .. W 294
 analyses of American mineral water ... MR 1913 II h, 1916
 analyses of water .. W 659 c; B 330, 491, 606, 616; MR 1913 II h, 1916
 artesian water .. W 54
 blowing wells .. W 155
 deep wells .. W 57, 61
 “divining rod” ... W 416
 electrical well logging .. D 153
 evaporation .. W 155, 294
 fluctuations of water table .. W 155
Bibliography, ground water. See specific States.
ground-water literature... W 168, 836 d; D 116, 133, 161; J 98, 113, 172, 371
mineral waters, general............. W 120, 163; NR 1905, 1916
mineral waters in United States... W 120, 163; MR 1905, 1916, 1921
movements of ground water.......... A 19 II c
percolation...................... W 294
permeability..................... W 897
pumping appliances................ W 348
radioactivity of ground water........ MR 1913 d
United States Geological Survey publications on ground water
W 120, 340, 427
water in crystalline rocks........ W 232
water witching.................... W 416
weirs........................... W 150, 200
Bicarbonate in ground water... W 254, 259, 273, 338, 341, 398; P 117; MR 1911
Bighorn limestone, water in, in South Dakota.............. P 32
water in, in Wyoming......................... P 32
Billings, Norman, Water levels and artesian pressure in the United States
W 886, 906, 944
Bingen formation, water in, in Arkansas...... W 114; P 46; B 691 j
water in, in Louisiana................. W 114
Birdseye limestone, water in, in Ohio.......... W 259
Black alkali in ground water........ W 320, 343
Black creek formation, water in, in North Carolina
water in, in South Carolina............ B 867
Blackwelder, Eliot, Laramie-Sherman folio, Wyo..... GF 173
Blank, H. R., Geologic studies on Long Island with respect to ground-water supplies
J 146, 169
Bleaching, quality of water for........... W 254, 398
Blowing springs.................... C 81
Blowing wells. See Wells, blowing.
Boiler compounds.................. W 398
Boiler use of ground water. See Quality; Analyses.
Bolsons. See Debris-filled basins; Valley fill.
Bone Valley gravel, water in, in Florida................. W 319
Bonner, J. P. Water levels and artesian pressure in the United States
W 817, 840
Boone formation, water in, in Arkansas...... W 145; GF 122, 154
water in, in Kansas................... GF 148
in Missouri....................... GF 148
in Oklahoma....................... GF 122, 182, 154
Borate in ground water......... W 338; B 47, 330, 491, 616; MR 1911 II n
Boring of wells. See Well construction.
Boston formation, water in, in Arkansas.............. W 145
Bottom water, relation of, to oil............. B 658
Bounties for discovering artesian water............. W 122
Boutwell, J. M., Economic geology of the Bingham mining district, Utah.P 38
Geology and ore deposits of the Park City district, Utah.................. P 77
Records of wells and springs in New Hampshire.... W 102
Bowen, C. F., Structure and oil and gas resources of the Osage Reservation,
Okla....................... B 686 1, u
INDEX

Bowman, Isaiah, East St. Louis district, Ill. ... C 131
Flowing wells and municipal water supplies in southern peninsula
of Michigan ... W 182
Problems of water contamination ... W 160
Well-drilling methods .. W 257
Well records on Long Island, N. Y .. P 44
Bowencker, J. A., Columbus folio, Ohio ... GF 197
Boyce water lift .. W 14
Boyd, David, Irrigation near Greeley, Colo .. W 9
Bradley, W. H., Structure and gas possibilities of the Oriskany sandstone,
N. Y ... B 899 a
Branner, J. C., Santa Cruz folio, Calif ... GF 168
Brashears, M. L., Jr., Artificial recharge of ground water on Long Island,
N. Y ... J 361
Cooperative ground-water investigation in Massachusetts J 272
Ground-water conditions in New York with respect to salt-water en­croachment ... D 151
Ground water for air conditioning on Long Island, N. Y J 193
Ground-water studies in northeastern Massachusetts J 329
Ground-water temperature on Long Island, N. Y J 249
Progress report on the ground-water resources of Providence, R. I. . C 355
Public water supply of Shelter Island Heights, N. Y D 100
Record of wells in Kings County, N. Y ... C 279
Record of wells in Nassau County, N. Y ... C 282
Record of wells in Suffolk County, N. Y, Supplement 1 C 281
Report of ground-water pumpage on Long Island, N. Y D 192, 199, 202
Salt-water encroachment in Massachusetts .. D 151
Water levels and artesian pressure in the United States W 886, 906, 936, 944, 986
Well records for the Aberjona Valley area, Mass D 193
Bratton, D. H., Design and use of maximum-minimum water-level gage
(comments) .. D 155
Ground-water levels and pumpage in Safford Valley, Ariz C 14
Water levels and artesian pressure in the United States, 1940 W 911
Brazil, J. J., Ground water in the oil-field areas of Ellis and Russell Counties,
Kans ... C 156
Brazil, ground water in .. J 282, 283, 284, 285
ground water in, bibliography of ... W 163
springs in ... J 284, 285
Breathing wells. See Wells.
Brecia, as ground-water dam in Hawaii .. C 92, 98, 99
water in, in California ... W 375 a
Breeding, S. D., Ground-water resources of Liberty County, Tex C 418
Water resources of Gregg County, Tex ... C 417
Water resources of Harrison County, Tex .. C 407
Brewing. See Quality.
Bridges, T. W., Ground-water resources of Kleberg County, Tex W 773 d
Brine. See Quality; Salt water.
British Columbia, ground water in, bibliography of W 163
Broadhurst, W. L., Ground water in the High Plains in Texas W 889 c;
C 391, 397, 405, 411
Public water supplies in eastern Texas ... C 415
Brothwell, W. H., Use of geology on the western front P 128 d

Brooks, A. H., Use of geology on the western front P 128 d

Brown, C. W., Penobscot Bay folio, Maine GF 149

Brown, G. F., Artesian water resources in Mississippi C 191

Brown, J. S., Coastal ground water, with special reference to Connecticut W 537

Brunstein, M. S., Ground-water supplies of the Atlantic City region .. C 216

Brunstown formation, water in, in Arkansas P 46

Bryan, Kirk, Change in plant associations by change in ground-water level J 57

Brown, R. H., Salt-water encroachment in limestone at Silver Bluff, Miami, Fla ... J 352

Brownstown formation, water in, in Arkansas P 46

Brule clay, water in, in Colorado .. P 32

Bryan, Kirk, Change in plant associations by change in ground-water level J 57

Brunstein, M. S., Ground-water supplies of the Atlantic City region .. C 216

Bryan, Kirk, Change in plant associations by change in ground-water level J 57

Classification of springs .. J 21

Geologic features in New England ground-water supply J 145

Geology and ground-water conditions of the Rio Grande depression in Colorado and New Mexico ... C 31

Geology and ground-water resources of Sacramento Valley, Calif W 495

Geology of No. 3 reservoir site, Carlsbad irrigation project, N. Mex W 580 a
INDEX

Bryan, Kirk, Geology of reservoir and dam sites, with report on Owyhee project, Oreg. ... W 597 a
Ground water for irrigation in Sacramento Valley, Calif W 375 a
Ground water in Quinn River and Paradise Valleys, Nev D 4
Ground-water reconnaissance in De Baca County, N. Mex C 234
Ground-water reconnaissance in Socorro County, N. Mex C 233
Hot springs of Arkansas .. J 37
Hot water supply of the Hot Springs, Ark J 28
New England ground-water supply J 164
Papago country, Ariz., with guide to desert watering places W 499
Routes to desert watering places in the Papago country, Ariz. .. W 490 d

Bryan, L. L., Geology and water resources of the Mud Lake basin, Idaho

W 560 d
Geology and water resources of the Mud Lake region, Idaho W 818
Water resources of the Mud Lake region, Idaho C 111; D 47
Bucket lifts .. W 1, 14
Buddington, A. F., Metalliferous mineral deposits of the Cascade Range,
Oreg .. B 893
Mineral investigations in southeastern Alaska B 783 b
Bue, C. D., Seepage loss and gain of Mokelumne River, Calif D 52
Water levels and artesian pressure in the United States, 1943 .. W 990
Burbank, W. S., Copper deposits of Michigan P 144
Geology and ore deposits of the Bonanza mining district, Colo ... P 169
Burchard, E. D., Surface water supply of Hawaii, 1922-23 W 575
Surface water supply of the United States, 1940 W 893
Water levels and artesian pressure in the United States W 777, 817,
840, 845, 886, 907, 937
Burgoon sandstone, water in, in Pennsylvania GF 133; C 343
Buried channels, water in ... W 273, 293
Burleigh, H. P., Ground water in the southern High Plains D 66
Burlington limestone, water in, in Illinois B 438, 50¢: GF 208
water in, in Iowa .. W 293
in Missouri .. W 195; B 438
Butler, B. S., Copper deposits of Michigan P 144
Geology and ore deposits of the San Francisco and adjacent
districts, Utah ... P 80
Ore deposits of Utah ... P 111
Butts, Charles, Barnesboro-Patton folio, Pa GF 189
Bessemer-Vandiver folio, Ala ... GR 221
Birmingham folio, Ala ... GF 175
Ebensburg folio, Pa ... GF 133
Geology and mineral resources of the Bellefons quadrangle, Pa ... B 855
Montevallo, Columbiana folio, Ala GF 226
Warren folio, Pa.-N. Y ... GF 172
Byers, A. C., Electric resistivity prospecting for salt water contacts
in Hawaiian Islands ... D 151
Physics of the divining rod (review) J 222
Water levels and artesian pressure in the United States W 908, 938
Byrne, Frank, Water levels and artesian pressure in the United
States, 1940 ... W 908
<table>
<thead>
<tr>
<th>Publication</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cady, R. C., Channel storage method of determining effluent seepage</td>
<td>J 159</td>
</tr>
<tr>
<td>Effect on ground-water levels of storage in Flathead Lake, Mont.</td>
<td>W 489 b</td>
</tr>
<tr>
<td>Geology and ground-water resources of Box Butte County, Nebr.</td>
<td>W 969</td>
</tr>
<tr>
<td>Geology and ground-water resources of Scotts Bluff Country, Nebr.</td>
<td>W 943</td>
</tr>
<tr>
<td>Ground water in northern Virginia</td>
<td>C 434</td>
</tr>
<tr>
<td>Ground-water level in northern Virginia</td>
<td>D 42</td>
</tr>
<tr>
<td>Ground-water recharge of deep water table in the Great Plains</td>
<td>J 229</td>
</tr>
<tr>
<td>Ground-water resources of Box Butte County, Nebr.</td>
<td>D 162</td>
</tr>
<tr>
<td>Ground-water resources of northern Virginia</td>
<td>C 436</td>
</tr>
<tr>
<td>Ground-water resources of Scotts Bluff County, Nebr.</td>
<td>D 163</td>
</tr>
<tr>
<td>Ground-water resources of Shenandoah Valley, Va</td>
<td>C 435</td>
</tr>
<tr>
<td>Observation wells, manual of methods</td>
<td>D 60</td>
</tr>
<tr>
<td>Replenishment of ground water near Washington, D. C.</td>
<td>D 22, 29</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States</td>
<td>W 777, 817, 840, 847, 886, 907, 910</td>
</tr>
<tr>
<td>Water levels in observation wells in Virginia</td>
<td>J 87</td>
</tr>
<tr>
<td>Water levels in wells in northern Virginia</td>
<td>D 37, 107</td>
</tr>
<tr>
<td>Caesium in ground water</td>
<td>W 520 d; B 47</td>
</tr>
<tr>
<td>Calcium, field tests for</td>
<td>W 157</td>
</tr>
<tr>
<td>California, areas, all of State</td>
<td>W 338</td>
</tr>
<tr>
<td>areas, Alameda County</td>
<td>B 298</td>
</tr>
<tr>
<td>Amador County</td>
<td>W 619, 780; D 52</td>
</tr>
<tr>
<td>Antelope Valley</td>
<td>W 278</td>
</tr>
<tr>
<td>Bakersfield and vicinity</td>
<td>W 17</td>
</tr>
<tr>
<td>Cache Creek</td>
<td>W 45</td>
</tr>
<tr>
<td>Carpinteria Valley</td>
<td>C 27, 30 a</td>
</tr>
<tr>
<td>Coachella Valley</td>
<td>W 225</td>
</tr>
<tr>
<td>coastal plain of southern California</td>
<td>W 137, 138, 139; J 9</td>
</tr>
<tr>
<td>Colfax quadrangle</td>
<td>GF 66</td>
</tr>
<tr>
<td>Colorado Desert</td>
<td>W 225</td>
</tr>
<tr>
<td>Colton and vicinity</td>
<td>W 59, 60</td>
</tr>
<tr>
<td>Concord quadrangle</td>
<td>GF 193</td>
</tr>
<tr>
<td>Cuyama Valley</td>
<td>C 30 b</td>
</tr>
<tr>
<td>Death Valley</td>
<td>B 540 n</td>
</tr>
<tr>
<td>eastern</td>
<td>B 308</td>
</tr>
<tr>
<td>Elk Hills</td>
<td>B 835</td>
</tr>
<tr>
<td>foothill belt east of Los Angeles</td>
<td>W 219</td>
</tr>
<tr>
<td>Fresno and vicinity</td>
<td>W 18</td>
</tr>
<tr>
<td>Goleta Valley</td>
<td>C 27, 30 a</td>
</tr>
<tr>
<td>Haywards quadrangle</td>
<td>GF 193</td>
</tr>
<tr>
<td>Imperial County</td>
<td>W 395, 490</td>
</tr>
<tr>
<td>Indian Wells Valley</td>
<td>C 22</td>
</tr>
<tr>
<td>Indo region</td>
<td>W 225</td>
</tr>
<tr>
<td>Ivanpah Valley</td>
<td>W 450 c</td>
</tr>
<tr>
<td>Kings River Delta</td>
<td>W 58</td>
</tr>
<tr>
<td>Lantfair Valley</td>
<td>W 450 b</td>
</tr>
<tr>
<td>Lodi vicinity</td>
<td>W 619; D 13</td>
</tr>
<tr>
<td>Long Beach-Santa Ana area</td>
<td>C 25, 27, 29, 30 d, e, f</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>C 24</td>
</tr>
<tr>
<td>Los Angeles River Valley</td>
<td>W 112; A 21 iv a; J 325</td>
</tr>
<tr>
<td>Lytle Creek Valley</td>
<td>A 21 iv a</td>
</tr>
</tbody>
</table>

Caesium in ground water | W 520 d; B 47 |
Calcium, field tests for | W 157 |
California, areas, all of State | W 338 |
areas, Alameda County | B 298 |
Amador County | W 619, 780; D 52 |
Antelope Valley | W 278 |
Bakersfield and vicinity | W 17 |
Cache Creek | W 45 |
Carpinteria Valley | C 27, 30 a |
Coachella Valley | W 225 |
coastal plain of southern California | W 137, 138, 139; J 9 |
Colfax quadrangle | GF 66 |
Colorado Desert | W 225 |
Colton and vicinity | W 59, 60 |
Concord quadrangle | GF 193 |
Cuyama Valley | C 30 b |
Death Valley | B 540 n |
eastern | B 308 |
Elk Hills | B 835 |
foothill belt east of Los Angeles | W 219 |
Fresno and vicinity | W 18 |
Goleta Valley | C 27, 30 a |
Haywards quadrangle | GF 193 |
Imperial County | W 395, 490 |
Indian Wells Valley | C 22 |
Indo region | W 225 |
Ivanpah Valley | W 450 c |
Kings River Delta | W 58 |
Lantfair Valley | W 450 b |
Lodi vicinity | W 619; D 13 |
Long Beach-Santa Ana area | C 25, 27, 29, 30 d, e, f |
Los Angeles County | C 24 |
Los Angeles River Valley | W 112; A 21 iv a; J 325 |
Lytle Creek Valley | A 21 iv a |
INDEX 257

California, areas, Marysville quadrangle ... GF 17
Mesquite Valley ... W 450 c
Mission Valley ... A 21 IV a
Mohave Desert .. W 409 b, 578
Mohave Valley .. A 21 IV a
Mokelumne area .. W 619, 780; D 52
Monterey County .. B 264
Morgan Hill district .. W 400 e
Mother Lode .. P 157
Niles cone area ... W 345 h
Orange County .. B 598; C 24
Owens Valley .. W 181, 294
Pahrump Valley .. W 450 c
Redding quadrangle ... GF 138
Riverside County ... W 490
Sacramento County .. W 619, 780; D 52
Sacramento Valley .. W 375 a, 495, 619, 780; D 52
Salinas Valley .. W 89
Salt Wells Valley ... C 22
Salton Sea region ... W 490 a, 497
San Antonio Valley .. C 30 b
San Bernardino Valley .. W 59, 60, 142; C 21
San Diego County .. W 52, 446; B 264
San Francisco quadrangle .. GF 193
San Jacinto basin ... W 429
San Joaquin County .. W 619, 780; D 52
San Joaquin Valley ... W 222, 378; B 653
San Luis Obispo County .. B 298
San Luis quadrangle ... GF 101
San Mateo quadrangle .. GF 193
Santa Ana River Valley ... C 23
Santa Barbara and vicinity .. W 116
Santa Barbara County ... C 27, 27 30 a, b
Santa Clara County .. W 519; B 238; J 225
Santa Clara Valley .. W 345 h, 400 e, 519; J 168, 225
Santa Cruz quadrangle .. GF 163
Santa Maria Valley .. C 30 b
Santa Ynez Valley .. C 27, 30 a
southeastern ... W 224, 490 a, 497
southern ... W 146, 213, 219, 331, 468; B 753; J 9, 318
Sunset-Midway oil field ... P 116
Tamalpais quadrangle .. GF 193
Temecula basin .. W 429
Torrance-Santa Monica area ... C 30 c
Truckee quadrangle ... GF 39
Tulare County ... B 298
Ventura County ... B 298

artesian water in .. W 45, 59, 60, 89, 137, 138, 139, 142, 146, 181, 213, 219, 222, 224, 225, 278, 398, 429, 450 c, 468, 495, 497, 519; B 691 h; GF 138, 163, 193; C 21; J 9
auriferous gravels of, water in ... GF 66
bibliography of ground water in .. W 57, 120, 142, 149, 163
California, desert watering places in W 224, 490 a, b, 497; B 308

evaporation in..................................... W 18, 58, 181, 294, 345 h
infiltration tunnels in W 116, A 19 II b; GF 193
irrigation, with artesian water in W 137, 138, 139, 142, 219, 222, 225, 278, 398, 429

with other ground water in W 17, 45, 58, 59, 60, 89, 116, 137, 138, 139, 142, 146, 181, 219, 222, 225, 278, 345 h, 375 a, 395, 398, 400 e, 429, 446, 450 c, 495, 497, 519, 619; A 16 II e; C 23; D 13

mineral waters in W 338; B 32; MR 1883-1927; GF 39, 101

public water supplies in W 59, 60, 116, 116, 137, 138, 139, 142, 224, 226, 278, 338, 364, 398, 429, 446, 450 b, c, 495, 497, 519, 578; B 32, 529, 540 n, 606, 653; GF 17, 39; C 29, 30 c, f; J 38, 43, 325

quantity of ground water in W 58, 112, 137, 138, 139, 140, 142, 219, 222, 278, 345 h, 375 a, 398, 400 e, 519; C 21, 22, 27, 26, 27, 30 a

salt water in W 58; P 98 a; B 540 n, 653, 669, 691 h; C 25, 29, 30 c, f; J 225, 318

seepage water in W 18, 58; A 19 II b

spring discharge measurements in W 177, 251, 298, 300, 338, 370, 441, 460, 591, 721, 766, 831, 861, 910

springs in .. W 142, 181, 219, 224, 278, 338, 429, 450 b, 490 e, b, 497, 557, 578, 679 b; A 14 II b; M 11, 13; B 32, 308, 691 m, 710 e, 725 d, 922 b; k; GF 39, 66, 101; J 264

thermal ... W 142, 181, 338, 364, 429, 679 b; M 13; B 308, 922 b; GF 30, 101; J 264

temperature of ground water in W 142; B 32; GF 39

underflow, of Los Angeles River in W 112

of Mohave River, Rio Hondo, and San Gabriel River in W 140

water levels in W 619, 777, 817, 840, 845, 886, 911, 941, 949, 991

water table in W 58, 137, 138, 139 142, 146, 213, 219, 222, 225, 251, 294, 331, 345 h, 375 a, 398, 400 e, 429, 446, 468, 495, 497, 519, 619, 780; GF 193; C 21, 22, 24, 28, 29, 30 a, b, d, e; J 9, 53, 100, 155, 160

well records for W 45, 57, 58, 60, 69, 137, 138, 139, 142, 149, 181, 213, 219, 222, 225, 251, 278, 294, 331, 345 h, 398, 423, 446, 450 b, c, 468, 495, 497, 519, 619, 780; B 264, 298, 540 r, 691 m, 755, 835; GF 193; C 21, 22, 24, 25

wells in, construction of W 52, 110, 140, 277, 375 a, 495

cost of ... W 137, 138, 139, 142, 219, 222, 225, 278, 375 a, 398

Calkins, F. C., Geology and water resources of east-central Washington. W 118

Callaghan, Eugene, Manganese in a thermal spring in west-central Utah. J 211

Metalliferous mineral deposits of the Cascade Range in Oregon. B 893

Caloosahatchee marl, water in, in Florida W 819

Calvert, W. R., Geology of Standing Rock and Cheyenne River Indian Reservations, N. Dak.-S. Dak. .. B 575

Calvert formation, water in, in Delaware GF 137

water in, in Maryland GF 136, 137, 152, 204

Cambrian formations, water in—

Alabama W 114; GF 175, 221: C 1, 2

Arizona ... W 836 b

Connecticut W 374

Delaware ... W 106
Cambrian formations, water in, Georgia ... W 114; C 81
Illinois ... W 114; A 17 n h; M 38; GF 87, 145, 200
Iowa ... W 114, 145, 293; GF 145, 200
Kansas ... GF 148; C 142
Maine ... GF 149, 158
Maryland .. GF 179, 204
Minnesota W 114, 256
Missouri .. W 114, 145, 195; GF 148
Nebraska .. P 32
New Mexico GF 199
New York .. W 259
North Carolina GF 124, 147, 151
Ohio .. W 259
Oklahoma .. C 323
Pennsylvania W 106, 110, 114; B 840, 855, 891; GF 162, 179, 225; C 342, 345, 347, 349
South Carolina GF 147
South Dakota W 227, 428; A 21 n v b; P 32, 65; GF 107, 127, 128, 164
Tennessee .. GF 124, 151
Virginia .. W 114, 596 c; C 432, 433, 434, 435, 436
West Virginia W 114, 179
Wisconsin W 114, 145; GF 140, 145; C 451
Wyoming ... A 21 n v b; P 32, 51, 65; GF 107, 127, 128, 150

See also specific formations.

Campbell, M. R., Marnesboro-Patton Folio, Pa GF 189
Danville folio, Ill.-Ind .. GF 67
Geologic structure of Punxsutawney, Curwensville, Houtzdale, Barnesboro and Patton quadrangles, Pa B 531 d
Canada, ground water in, bibliography of W 163
Canal Zone, water table in .. B 821 b
well records for .. B 821 b
Canfield, G. H., Surface water supply of the United States, part 10 W 720, 900
Surface water supply of the United States, part 11 W 691, 706
Surface water supply of the United States, part 12 W 753
Surface water supply of the United States, part 14 W 794, 834, 864, 884, 904, 964, 984

Cannon, R. S., Jr., Geology and ore deposits of the Metaline quadrangle, Wash P 202
Canyon formation, water in, in Texas .. W 817
Capacity of rocks for water. See Quantity; Porosity.
Capacity of wells. See Wells.
Cape Fear formation, water in, in North Carolina C 291
Capillarity, fluctuation of water table in relation to W 155 489, 494
ground water in relation to .. W 489, 494, 638 c; M 47
water retained by .. W 489, 638 c; A 19 n b
Capillary movements of ground water W 158, 234, 345, 489, 494; A 19 n b
Caps, S. R., Underground waters of north-central Indiana W 254
Carbonaceous matter, action of, on ground water J 325
Carbonate in ground water .. W 254, 259, 273, 338, 341, 398; P 117; B 330, 491, 616; MR 1911, 1916
Carbonation produced by ground water M 47
Carboniferous formations, water in—

<table>
<thead>
<tr>
<th>State</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>W 114; GF 175; C 1, 2</td>
</tr>
<tr>
<td>Arizona</td>
<td>W 380, 836 b; B 435</td>
</tr>
<tr>
<td>Arkansas</td>
<td>W 110, 114, 145; GF 122, 154</td>
</tr>
<tr>
<td>Colorado</td>
<td>P 32, 52; B 785 a</td>
</tr>
<tr>
<td>Georgia</td>
<td>W 114; C 81</td>
</tr>
<tr>
<td>Illinois</td>
<td>W 114; A 17 II b; M 38; B 438, 506; GF 105, 185, 188, 195; C 131</td>
</tr>
<tr>
<td>Indiana</td>
<td>W 26, 114, 254; A 18 iv b; GF 105; C 134</td>
</tr>
<tr>
<td>Iowa</td>
<td>W 114; GF 184, 233; C 160 b</td>
</tr>
<tr>
<td>Kansas</td>
<td>W 273; P 32; B 238; GF 148, 159, 206; C 142, 144, 147, 148</td>
</tr>
<tr>
<td>Kentucky</td>
<td>W 114; GF 184, 233; C 160 b</td>
</tr>
<tr>
<td>Maryland</td>
<td>W 110, 114; GF 160, 179</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>B 839</td>
</tr>
<tr>
<td>Michigan</td>
<td>W 30, 31, 114, 182, 183</td>
</tr>
<tr>
<td>Missouri</td>
<td>W 114</td>
</tr>
<tr>
<td>Montana</td>
<td>W 221; B 822 a, 856; J 275</td>
</tr>
<tr>
<td>Nebraska</td>
<td>W 12; A 19 iv c; P 17, 32</td>
</tr>
<tr>
<td>New Mexico</td>
<td>W 123, 158, 343, 620; B 435; C 234, 235, 236, 248, 252; D 9</td>
</tr>
<tr>
<td>New York</td>
<td>GF 172</td>
</tr>
<tr>
<td>Ohio</td>
<td>W 91, 114; A 18 iv b; 19 iv b; B 818; GF 184</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>W 148, 500 b, 520 b; B 641 b, 661 b, 686, 691 c, 759; GF 122, 132, 154; C 23</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>W 110, 114; B 300, 531 d, 829, 873; GF 102, 121, 123, 138, 144, 146, 160, 172, 174, 189; C 341, 343, 345, 346, 349</td>
</tr>
<tr>
<td>South Dakota</td>
<td>W 227, 428; A 21 iv b; P 32, 65; GF 107, 127, 128, 164</td>
</tr>
<tr>
<td>Tennessee</td>
<td>W 114, 677</td>
</tr>
<tr>
<td>Texas</td>
<td>W 154, 191, 276, 317; A 18 II b; GF 194</td>
</tr>
<tr>
<td>Utah</td>
<td>W 380; B 876 c, 841, 863</td>
</tr>
<tr>
<td>Virginia</td>
<td>W 114</td>
</tr>
<tr>
<td>West Virginia</td>
<td>W 110, 114; GF 160, 179, 184</td>
</tr>
<tr>
<td>Wyoming</td>
<td>A 21 iv b; P 32, 51, 53, 65; B 364; GF 107, 127, 128, 141, 150, 173; J 274</td>
</tr>
</tbody>
</table>

See also specific formations.

Carlston, C. W., Early history of water-well drilling in the United States

Fluoride in the ground water of the Cretaceous area of Alabama

Ground-water resources of the Cretaceous area in Alabama

Salt water in the Coastal Plain of Alabama

Water levels and artesian pressure in the United States

Carpenter, Everett, Ground water in Boxelder and Tooele Counties, Utah

Carrizo sand, water in, in Texas

Carson, M. H., Surface water supply of Hawaii

Casings in wells. *See* Well casings.

Casper formation, water in, in Wyoming

Castle Hayne formation, water in, in North Carolina
INDEX

Catahoula formation, water in, in Arkansas .. P 46
water in, in Louisiana .. W 114; P 46; C 164, 166, 167
in Mississippi ... C 193, 194, 195
in Texas .. W 335, 778; D 40

Catchment areas. See Origin of ground water; Absorption of water.

Cathcart, S. H., Geology of the York tin deposits, Alaska B 733
Cation exchange of substances in ground water .. J 343
Caverns, deposits made by ground water in ... W 233, 258; A 18 iv b
formed by ground water, in Florida .. W 319
in Kentucky .. W 233
in Washington ... P 202
limestone, origin of .. J 307
water in .. W 114, 233, 255, 258, 319, 489, A 18 iv b, 21 iv c; C 2, 92, 181
pollution of ... W 233, 258

See also Pollution of ground water; Sinkholes.

Caves. See Caverns; Sinkholes; Lava tubes.

Cederstrom, D. J., Artesian water resources of Southampton, Sussex, and Isle of Wight Counties, Va .. D 97
Chloride in ground water in the Coastal Plain of Virginia C 440
Chloride in the Virginia Coastal Plain ... D 151
Deep wells in the Virginia Coastal Plain ... C 439
Differential density of ground water in ore deposition J 297
Geology and artesian water resources of a part of the southern Virginia Coastal Plain ... C 437
Geology and artesian-water resources of a portion of the Virginia Coastal Plain ... J 197
Geology and ground-water resources of the Coastal Plain in southeastern Virginia .. C 442
Geology and hydrology of St. Croix, Virgin Islands .. J 289
Ground-water resources of the southeastern Virginia Coastal Plain C 438
Industrial ground water at Franklin, Va ... J 250
Municipal and industrial ground-water supplies in tidewater Virginia J 322
Problems of Coastal-Plain geology and hydrology ... J 235
Progressive down-dip changes in composition in artesian water* from the Cretaceous rocks of Virginia ... J 295
Selected well logs in the Virginia Coastal Plain north of James River C 441
Structural geology of southeastern Virginia ... J 332
Water levels and artesian pressure in the United States W 886, 907, 937, 945, 987

Cellars, drainage of, into wells .. W 258
Cementation produced by ground water ... M 47; B 726 b
Central America, public water supplies in .. J 370
Chadron sandstone, water in, in Colorado .. P 32
water in, in Nebraska ... A 19 iv; P 17, 32; GF 156
in South Dakota .. W 2 iv; P 32
in Wyoming .. P 32
Chalk, water in, in South Dakota .. GF 100, 113, 114, 156
Chalybeate waters. See Quality of ground water regarding iron.

Chamberlin, T. C., Requisite and qualifying conditions of artesian wells A 5 c
Chambers, A. A., Comparison of American and European mineral waters .. MR 1916
Chandler, A. E., Water storage on Cache Creek, Calif .. W 45
Chamotte shale, water in, in Kansas .. B 238
Character of ground water. See Analyses; Pollution; Quality.
Chattahoochee formation, water in, in Florida .. W 319
water in, in Georgia .. W 341
Chemistry of ground water. See Analyses; Pollution; Purification; Quality.
Cherokee shale, water in, in Missouri .. W 195
Chesapeake group, water in, in Atlantic Coastal Plain .. B 138
water in, in Maryland .. GF 23, 204
in North Carolina .. C 291
in Virginia .. W 114; GF 23; C 431, 437, 441, 442
Chester group, water in, in Illinois .. V 114; B 438
water in, in Indiana .. W 114
in Missouri .. W 195; B 438
Chester Valley limestone, water in, in Delaware .. W 106
water in, in New Jersey .. W 106
in Pennsylvania .. W 106
Chickamauga limestone in Georgia .. C 81
Chickies quartzite, water in, in Delaware .. W 106
water in, in New Jersey .. W 106
in Pennsylvania .. W 106; GF 162
China, ground water in, bibliography of well drilling in .. W 163
Chinle formation, water in, in Arizona .. W 836 b
Chloride in ground water—
Connecticut .. W 144, 232
Georgia .. C 81
Hawaii .. C 92, 94, 97, 99
Louisiana .. J 305
Maine .. W 144, 223
Massachusetts .. W 114, 144
Minnesota .. W 256
New Hampshire .. W 144
New Jersey .. C 216
New York .. W 144
Ohio .. W 259
Rhode Island .. W 114, 144
Texas .. C 408, J 117
Vermont .. W 144
Virginia .. C 431, 439, 440; J 197
Choctawatchee marl, water in, in Florida .. W 319
Chouteau limestone, water in, in Missouri .. W 195
Christopherson, F. C., Water levels and artesian pressure in the United States, 1943 .. W 988
Chugwater formation, water in, in Montana .. W 599; B 822 a
water in, in Wyoming .. B 364, 656, 711 h; GF 173
Chupadera formation, water in, in New Mexico .. D 9
Cincinnati shale, ground water in relation to, in Wisconsin .. C 451
Cincinnatian formations, water in, in Indiana .. W 254
Circulation of ground water. See Movements of ground water.
INDEX

Cisco formation, water in, in Texas ... W 317
Cisterns, catchment areas for ... A 14 II a
combined with wells W 255
construction of W 255, 499, 518; A 14 II a
effect of “creep” on ... A 14 II a
in arid regions W 380, 497, 599, 600
pollution of W 255, 599, 600; C 431
types of ... A 14 II a
Citronelle formation, water in, Mississippi .. C 195
Claiborne formation, water in—
Arkansas .. W 399; P 46
Georgia .. W 341
Louisiana .. P 46
Mississippi .. W 159, 576; C 192; J 246
Tennessee .. C 373
Texas .. C 407, 417
Clapp, F G., Amity folio, Pa. ... GF 144
Barnesboro-Patton folio, Pa. ... GF 189
Bibliography of ground-water literature in 1905 ... W 163
Composition of mineral springs in Maine .. W 258
Conservation of our artesian water supply .. J 10
Economic geology of the Amity quadrangle, Pa. .. B 300
Flowing wells on anticlines J 20
Interference of wellsJ 11
Patoka folio, Ind.-Ill. ... GF 105
Rogersville folio, Pa. ... GF 146
Underground water in crystalline rocks ... J 12
Underground waters near Manassas, Va. .. W 258
Underground waters of southern Maine .. W 223
Underground waters of southwestern Ohio .. W 259
Water resources of the Curwensville, Patton, Ebensburg, and Barnesboro
quadrangles, Pa. ... W 110
Well waters in the slates of Maine .. W 258
Clapp, W. B., Progress of stream measurements for 1905 W 177
Clark, F. R., Farnham anticline, Carbon County, Utah B 711 a
Structure and oil and gas resources of the Osage Reservation, Okla. B 686 i
Clark, W. B., Coastal plain of North Carolina ... C 291
Philadelphia folio, Pa.-N. J.-Del. ... GF 161
Surface and underground water resources of Maryland C 171
Trenton folio, N. J.-Pa. ... GF 167
Clark, W. O., Exploratory drilling for water in Steptoe Valley, Nev. W 467
Geology and water resources of the Kau district, Hawaii W 616
Ground water for irrigation in the Morgan Hill area, Calif. W 400 e
Ground water in Santa Clara Valley, Calif .. W 519
Ground water resources of the Niles cone, Calif .. W 345 h
Clarke, F. W., Composition of the earth’s crust ... P 127
Data of geochemistry ... B 330, 491, 6, 6, 695, 770
Water analyses from the laboratory of the United States Geological
Survey ... W 364
Classification of ground water, chemical. W 254, 273, 274, 341, 398, 399, 559; B 330, 479, 491, 606, 616; J 208; C 1

of ground water, for boiler use W 254, 259, 274, 293, 335, 341, 398, 399, 576
for domestic useW 335, 341, 343, 398, 399, 576
for irrigationW 274, 333, 335, 398, 399
legal ..W 122
numerical standards forW 274, 398
of mineral watersW 293, 338
of oil-field watersB 653
of springsW 255, 333, 398, 399
of well-drilling methodsW 257, 494
of wellsW 255, 494

Clay, drainage into wells inW 258
water inW 114, 223, 255, 257, 319, 425 b, 439; A 21 viii

Cleaning of wells. See Well construction.

Clear Fork formation, water in, in TexasW 317

Cleavage in relation to ground waterW 223, 489

Cleavage planes, water inW 114, 223, 489; B 319

Clements, J. M., Vermillion iron-bearing district of MinnesotaM 45

Climate. See Evaporation; Precipitation.

Clinton limestone, water in, in IndianaW 114
water in, in MichiganW 114
in OhioW 114, 259; A 19 iv b

Clinton sandstone, water in, in MichiganW 30
water in, in OhioC 344, 345, 346
in PennsylvaniaB 344, 345, 346
in VirginiaC 346

Cloverly sandstone, water in, in MontanaB 736 b
water in, in WyomingB 796 a, 806 a

See also Dakota sandstone.

Coal beds, water in—
MontanaB 847 c, 856
Ohio ..B 720
PennsylvaniaB 300, 447; GF 174; C 343, 344, 345; J 173
South DakotaB 627
WyomingB 796 a, 806 a

Coal mine waters, sulfuric acid inW 273

Coastal Plain. See specific States.

Cockfield formation, water in, in ArkansasW 114; P 46
water in, in LouisianaW 114; P 46; C 164

Coconino sandstone, water in, in ArizonaW 836 b
Coldwater shale, water in, in MichiganW 30, 114

Coli bacillus in ground waterW 193, 256, 315

Collecting areas. See Absorption; Origin.

Collecting galleries. See Infiltration ditches and tunnels.

Collier, A. J., Anticlines near Maverick Springs, WyoB 711 h
Coal resources of Mecone County, MontB 905
Gas in the Big Sand Draw anticline, WyoB 711 e
Kevin-Sunburst oil field and oil and gas in Sweetgrass arch, Mont. B 812 b
Nesson anticline, N. DakB 691 g
Oil in Warm Springs and Hamilton domes, WyoB 711 d
INDEX

Collier, A. J., Osage oil field, Wyo. B 736 d
Scobey lignite field, Mont B 751 e
Collins, W. D., Chemical characters of waters of Florida W 596 g
Geology and ground-water resources of Sacramento Valley, Calif. W 495
Georgia public water supplies D 104
Graphic representation of water analyses J 31
Index of analyses of natural waters in the United States W 560 c, 659 c
Industrial utility of public water supplies in the United States W 496, 658
Mineral waters .. MR 1f?1 b, 1923 f
Natural sodium bicarbonate water in the United States J 47
Natural waters available for industrial use J 315
Practical water analysis W 596 h
Quality of water and industrial development in the United States W 559
Springs of Virginia .. C 432
Temperature of water available for industrial use in the United States W 520 f
Water for industrial purposes J 257
Color in ground water W 240, 254, 259, f38, 341, 398
Colorado, areas, Apishapa quadrangle GF 186
areas, Arkansas Valley A 17 ii f, P 52
Bonanza mining district P 169
Boulder district ... B 265
Brilliant quadrangle .. GF 214
Castle Rock quadrangle GF 198
Colorado Springs quadrangle GF 203
De Beque quadrangle .. B 531 c
Denver Basin .. M 27; P 32
eastern .. A 17 ii f, 21 iv c, 22 iv c; P 32, 52
Elmoror quadrangle .. GF 58
Fremont County .. B 298
Garfield County ... B 531 c
Greeley and vicinity W 9
Mesa County ... B 531 c
Milner area ... B 748
Nepesta quadrangle .. GF 135
northeastern .. A 16 ii f
northwestern .. B 350
Ouray quadrangle .. GF 153
Pueblo County ... B 298
Pueblo quadrangle .. GF 36
Rangely oil district B 350
Raton quadrangle .. GF 214
Rio Blanco County .. B 350
Rio Grande Basin .. C 31
San Luis Valley ... W 240; C 32
Silverton quadrangle GF 120
South Platte Valley .. W 184
southeastern ... P 52
southwestern ... D 71
Spanish Peaks quadrangle GF 71
Trinidad and vicinity GF 71
Colorado, areas, Walsenburg quadrangle .. GF 68
 artesian water in W 9, 240; A 16 II f, 17 II f, 21 IV a; M 27; P 32,
 52; B 265, 350, 531 c, 748; GF 36, 58, 68, 71, 135, 198, 203; C 32
 bibliography of ground water in .. W 57, 120, 149, 163
 color of ground water in ... W 240
 irrigation with artesian water in .. W 240
 with other ground water in ... W 5, 9, 240, A 16 II e, f, 21 IV c, 22 IV c;
 C 32
 law relating to ground water in .. W 9, 122
 mine waters in ... W 364; B 760 c; GF 120
 mineral waters in B 32; MR 1883-1923; GF 153, 203
 public water supplies in .. W 240; P 32; GF 198
 pumping in ... W 9
 quality of ground water in .. W 9, 240, 364, 839; A 17 II f; M 27; P 32, 52;
 B 32, 529, 606; GF 135, 153, 203
 salt water in ... B 531 c, 812 c, 851
 seepage in ... W' 9, 50, 358
 sheet water in .. A 16 II f
 spring discharge measurements in .. W 959
 springs in—W 240, 364, 679 b; A 14 II b, 16 II f, 17 II f; P 63; B 32, 350,
 735 d, 843, 851; GF 135, 153, 203
 thermal .. W 364, 679 b; P 63; B 735 d, 843; GF 153
 temperature of ground water in .. GF 153
 water levels in ... W 817, 948, 990
 water table in ... W 9; P 94; B 265; GF 120
 well records for ... W 57, 149, 240, 264; A 16 II f, 17 II f; M 27; P 32, 52;
 B 131, 264, 298, 691 a, 796 b; GF 135, 186
 wells in, construction of ... W 240; GF 68
 cost of ... W 9, 240; B 131; GF 68
Colorado group. See specific formations.
Colorado River Basin, bibliography of ground water in W 340
Columbia clay, water in, in Missouri .. W 195
Columbia formation, water in—
 Atlantic Coastal Plain ... B 138
 Georgia ... C 81
 Kentucky ... W 164
 Maryland ... GF 13, 23
 North Carolina ... C 293
 Tennessee ... W 164
 Virginia ... GF 13, 23; C 431, 441
Columbia River lava. See Lava.
Comanche series, water in, in Texas ... W 317
Composition of ground water. See Analyses; Quality.
Condit, D. D., Economic geology of the Summerfield and Woodsfield
 quadrangles, Ohio .. B 720
Condra, G. E., Geology and water resources of Missouri River Valley in
 Nebraska ... W 215
 Geology and water resources of Republican River Valley, Ne... W 216
Confining beds for artesian water .. B 319; A 5 c; C 92, 99
Conglomerate, drainage into wells in .. W 258
 water in ... W 110, 232, 255, 257, 456 a, 489, 499
INDEX

Connate water W 160, 398, 494; P 90 h; B 319, 330, 491, 530 b, 616, 653, 661 d; C 291

Connecticut, areas, all of State W 210, 114, 160, 2"2; C 48
areas, central, Bradford Point W 232
central ... W 110; C 44
Glastonbury area W 470
Hartford district W 374
Meriden area W 449
near New York P 44
New Haven area W 537, 540; C 47; J 273
north-central C 46
North Haven W 232
Norwalk area W 470
Pomperaug basin W 597 b; D 12
Salisbury district W 374
Saybrook district W 374
southeastern C 42, 45
southern .. C 43
Southington-Granby area W 466
southwestern C 41
Stamford district W 374
Suffield area W 470
Warren .. W 282
Waterbury district W 374
Willimantic district W 374

artesian water in W 232, 374, 397, 466, 470, 540
bibliography of ground water in W 114, 120, 163, 537
infiltration tunnels in W 374, 397, 540
mineral waters in W 114, 232; B 32; MR 1883-1923
public water supplies in W 232, 374, 397, 449, 466, 470, 537, 540, 597 b;
C 41, 42, 43, 44, 45
quality of ground water in W 102, 110, 144, 232, 374, 397, 449, 466, 470, 537, 540, 597 b; P 44; B 32; C 41, 42, 43, 44, 45
quantity of ground water in W 160, 232, 597 b; D 12
salt water in W 537; D 151; J 30
springs in .. W 102, 114, 232, 374, 397, 449, 466, 470, 537, 540, 597 b;
A 14 ii b; B 32; C 41, 42, 43, 44, 45
temperature of water in W 587; B 32
water levels in W 777, 840, 845, 886, 906, 936, 944, 986
water table in W 160, 232, 374, 397, 540, 597 b; C 41, 42, 43, 44, 45,
43; J 273
well records for W 57, 102, 110, 149, 232, 274, 374, 397, 449, 466, 470,
537, 540, 597 b; B 264, 298; C 41, 42, 43, 44, 45, 46; J 273
wells in, construction of W 232, 374, 397, 449, 540
cost of ... W 160

Conover, C. S., Water levels and artesian pressure in the United States
W 845, 886, 911

Conservation of artesian water W 142, 145, 158, 219, 225, 234, 256, 278, 293,
400 b, 423, 425 a, 520 e; C 92, 4"1; J 10
Conservation of dike-complex in Hawaii C 92, 97, 98, 99
Conservation of ground water in Texas C 400
Conservation of ground water in the United States W 234
Construction of wells. See Well construction.
Contact planes, artesian water in ...B 319
Contamination. See Analyses; Pollution; Purification; Quality.
Contours of water table. See Maps.
Cook Mountain formation, water in, in Texas. W 375 g, 676, 773, 849 a; D 19
Cooke, C. W., Geology of Florida ...C 55
Geology of the Coastal Plain of South CarolinaB 867
Late Cenozoic geology of southern FloridaC 65
Cooper, H. H. Jr., Artesian water in the coastal area of Georgia and northeastern Florida ...J 248
Artificial recharge of artesian limestone at Orlando, Fla.J 363
Ground-water investigations in Florida, with special reference to the Jacksonville area ...J 321
Ground-water resources of the Pensacola area, Fla.D 128
Perennial yield of artesian water in coastal area of Georgia and northeastern Florida ...J 353
Possibility of salt-water intrusion in northeast FloridaD 151
Salt-water intrusion in the vicinity of Pensacola, Fla.D 151
Water levels and artesian pressure in the United StatesW 845, 886, 906, 937, 945, 987
Cooper, W. F., Well and spring records in lower MichiganW 102
Copper in ground water ..W 399; M 52; B 47
Coral reefs, water in ..C 92, 97
Corniferous limestone, water in, in OhioW 114; A 19 iv b
Corrosion by water, in boilers, methods of calculatingW 274
See also Quality; Well screens.
Cotton manufacturing, quality of water forW 254, 298
Couche, definition of ..A 14 ii a
Cowgill, E. B., Irrigation on the Great PlainsW 5
Crandall, Lynn, Geology and ground-water resources of the Snake River Plain, Idaho ...W 774, D 53
Geology and water resources of the Mud Lake region, IdahoW 818
Ground water in Big Lost River Valley, IdahoD 17
Ground water in Little Lost River Valley, IdahoD 16
Records of wells on Snake River Plain, IdahoW 775
Springs of Snake River Canyon, Idaho ...J 22
Surface water supply of the United StatesW 738, 768
Water resources of the Mud Lake Region, IdahoD 47
Water supply on the Snake River Plains, IdahoD 30
Crane, W. R., Economic geology of the Iola quadrangle, KansB 328
Crawford, J. G., Oilfield waters of Montana plainsJ 275
Oilfield waters of Wyoming and their relation to geologic formations.J 274
Crawford, L. C., Water levels and artesian pressure in the United States, 1936..W 817
Crenothrix in ground water ...W 254, 259, 333; P 113
Cretaceous formations, water in——
Alabama ...W 114; GF 226; C 1, 2, 3, 4,
Arizona ...W 399, 886 b; B 435
Arkansas ...W 114, 359; P 46; B 691 j
Colorado ...A 17 ii f; M 27; P 32, 52; B 265, 350; GF 36, 58, 68, 71, 185, 153, 186, 203
INDEX 269

Cretaceous formations, water in, Delaware W 106, 114; B 138; GF 137, 162, 21'; C 171

- District of Columbia W 114; B 138; GF 70, 152; C 171

- Georgia W 67, 114, 341; B 138, 164; C 81

- Iowa W 114, 293; GF 156

- Kansas W 6, 273; P 32; C 142, 144, 145, 153, 155, 156, 159; J 261

- Kentucky W 114, 164

- Louisiana W 114

- Maryland W 114; B 138; GF 13, 137, 152, 182, 204, 211; C 171; J 355

- Minnesota W 114, 159, 5°c; C 192

- Montana W 518, 520 d, 539, 600; B 691 d, 711 g, 711 c, 768 a, 812 a, b, 822 a, 847 c, f, 856; GF 55, 128; J 275

- Nebraska W 12, 70, 215, 425 b; A 19 iv c; P 17, 32; GF 85, 87, 88, 108, 156; C 202, 203, 204

- New Jersey W 106, 114; B 138; GF 162, 167; C 215, 215, 217

- New Mexico W 123, 343, 380, 620; B 435; GF 199; C 232; D 5, 68

- New York W 114; P 44; B 138; GF 157; C 274; J 146

- North Carolina W 114, 773 a; B 138; GF 80; C 291, 2°3; J 334

- North Dakota W 520 e, 598; GF 55, 128; B 575; GF 117, 168, 181

- Oklahoma W 148; C 328; D 115; J 223, 261

- Pennsylvania W 106; B 138; GF 162, 167; C 351

- South Carolina W 114; P 90 h; E 138, 867

- South Dakota W 34, 90, 227, 428, 597 c; A 17 ii g, 21 iv b; P 32, 65; B 575, 627; GF 85, 96, 97, 100, 107, 108, 113, 114, 127, 128, 156, 164, 165; D 11

- Tennessee W 114, 164, 638 a, 656, 677; C 371, 372; D 14, 25

- Texas W 190, 191, 276, 317, 335, 375 g, 678, 913; A 18 ii b, 21 vii; B 661 f; GF 42, 64, 76, 183; C 402, 417; D 19, 66

- Utah P 56; B 541 d; 628: 819, 863

- Virginia W 114; B 138; GF 13, 80; C 431, 434, 436, 437; J 295, 332

- Wyoming W 70, 425 b; A 21 iv b; P 32, 51, 53, 56, 65; B 364, 471, 543, 621 l, 641, 656, 670, 711 e; GF 107, 127, 128, 141, 142, 150, 178; J 274

See also specific formations.

Cruckmay, G. W., The warm springs of Georgia W 819

Criden, A .F., Drainage by wells in Arkansas W 160

Geology and ground waters of northeastern Arkansas W 399

Underground-water resources of Mississippi W 159

Critchlow, H. T., A long-term record of water level at Plainfield, N. J. J 151

Criteria for locating ground water W 224, 423; B 308

Crooked wells W 257

Crosby, W. O., Sizing and filtration tests on Long Island, N. Y. P 44

Water from delta type of sand plain W 145

Water resources of Massachusetts and Rhode Island W 114

Well and spring records in Massachusetts and Rhode Island W 102

Cross, W. P., Ground water in southeastern Florida J 252

Salt water encroachment studies in southeast Florida D 151

Water levels and artesian pressure in the United States W 886, 907, 937

Water resources in southeastern Florida C 21; D 143

Cross, Whitman, Geology of the Denver Basin, Colo M 27

Geology of the San Juan region, Colo B 843
270 PUBLICATIONS RELATING TO GROUND WATER

Cross, Whitman, Ouray folio, Colo .. .GF 153
Silverton folio, ColoGF 120
Crystalline rocks, artesian water in W 160, 232, 374, 377; B 391; J 4
deep wells in .. W 232; C 431
mineral water in ... W 160
water in—
 Alabama .. W 114
 Arizona .. W 499, 836 b
 bibliography of ... W 232
 California .. W 219, 338
 Connecticut ... W 232, 374, 397, 449, 466, 470, 540, 597 b
 Delaware ... GF 211, 223; C 171
 District of Columbia ... W 114; C 171
general ... W 160, 232, 489; A 5 c, 19 II b; P 127; B 319; J 12, 145, 255
 Georgia .. C 81
 Maine ... W 145, 223; GF 14?, 158; J 4, 12
 Maryland ... GF 152, 204, 211; C 171; J 12, 355
 Massachusetts ... J 12
 Minnesota .. W 256
 Montana .. W 345 g
 Nevada .. W 365; D 3
 New Hampshire .. J 12
 New Jersey .. W 114; GF 157, 167, 191
 New Mexico .. W 343, 620
 New York .. W 114; GF 157
 North Carolina .. GF 124, 147, 151, 222; C 291
 Pennsylvania .. W 106, 114, 167; B 891; GF 211, 223, 225
 South Carolina .. GF 147, 222
 Tennessee ... GF 124, 151
 Utah .. W 277
 Virginia .. W 114; C 431; D 7
 Wisconsin ... C 451
Cuba, ground water in ... W 110
ground water in, bibliography of .. W 163
Cummings, E. R., Columbus folio, Ohio GF 197
Curbs. See Wells; Well casings.
Cushing, E. M., Design and use of maximum-minimum water level gage
 (comments) .. D 155
 Ground-water conditions of the Baton Rouge area, La C 170 a
 Ground-water resources of the Santa Cruz Basin, Ariz. C 20
 Recharge to ground water from floods in a typical desert wash... J 279
 Water levels and artesian pressure in the United States W 911, 941, 949, 991
Cushing, H. P., Geology and mineral resources of the Cleveland district,
 Ohio .. B 818
Cushman, R. L., Water levels and artesian pressure in the United States
 .. W 949, 991

D

Dakota sandstone, water in—
 Arizona .. W 880
INDEX

Dakota sandstone, water in, Colorado . W 9; A 16 II f, 17 II f; M 27; P 32, 52; B 265, 691 a; GF 36, 58, 68, 71, 135, 186; D 71

general .. W 67; J 41, 56, 66
Iowa .. W 215, 293; J 212
Kansas W 6, 273; A 16 II f, 21 IV c; P 32; B 691 a; GF 212; C 153, 155, 156
Montana .. B 751 f, g, 786 a; GF 128
Nebraska . W 12, 215, 216, 425 b; A 16 II f, 21 IV c; P 32; B 691 a, 715 i; GF 85, 87, 88, 108; C 202, 204
New Mexico .. W 380, 620; B 767, 860 b; GF 214; D 5, 68
North Dakota . W 520 e, 598, 889 a; A 17 II g; M 25; B 575, 691 g, 801; GF 168, 181; C 301, 302, 333; D 141
Oklahoma .. A 21 IV c; C 322; J 213
South Dakota . W 34, 90, 215, 227, 428, 597 c, 889 a; A 17 II f, 21 IV b; P 32, 65; B 575, 691 a; GF 85, 96, 97, 99, 100, 107, 108, 113, 114, 128, 164, 165, 209, 219; C 302, 303, 361; D 11; J 63, 152
Texas ... W 191
Utah .. W 380; P 188; B 541, 628, 852; D 71
Wyoming . W 425 b; A 21 IV b, 21 IV c; P 32, 51, 53, 65; B 564, 471 a, 691 a, 716 c, 781 b; GF 107, 127, 128, 141, 142, 173
Dale, T., Fort Ticonderoga quadrangle, Vt.-N. Y. W 110

Dams, fluctuation of water table in relation to .. W 155, 597 a, 849 b; P 44
for ground water, artificial .. W 39, 67, 199; A 13 III b
law relating to ... W 122
natural ... W 320, 343, 427, 489, 494
Dane, C. H., Geology and fuel resources of the Quinton-Scipio district
Okla ... B 874 c
Geology and oil and gas possibilities of the Bell Springs district,
Wyo ... B 796 d
Geology of the Rock Creek oil field, Wyo ... B 806 d
Geology of the Salt Valley anticline, Utah ... B 863
La Ventana-Chacra Mesa coal field, N. Mex ... B 860 c
Daniel, Jane, Bibliography of technical reports, articles, and memoranda published or otherwise released (by Ground Water Division, United States Geological Survey) ... D 116, 133, 161, 172, 187, 198, 209
Darcy, Henri, on flow of water through soils .. W 67, 887; A 19 II b; J 255
Darcy’s law, experimental verification of .. J 299
Darton, N. H., Aladdin folio, Wyo.-S. Dak.-Mont .. GF 128
Artesian water in the vicinity of the Black Hills, S. Dak W 428
Artesian water of a portion of the Dakotas ... A 17 II g
Artesian well prospects in Virginia, Maryland, and Delaware J 1
Artesian wells on the Atlantic Coastal Plain ... B 188
Bald Mountain-Dayton folio, Wyo ... GF 141
Belle Fourche folio, S. Dak .. GF 164
Camp Clark folio, Nebr .. GF 87
Central Black Hills folio, S. Dak ... GF 219
Cloud Peak-Fort McKinney folio, Wyo ... GF 142
Deep borings in the United States .. W 57, 61, 149
Deming folio, N. Mex ... GF 207
Devils Tower folio, Wyo .. GF 150
Edgemont folio, S. Dak.-Nebr ... GF 108
Fredericksburg folio, Va.-Md .. GF 13
Geologic basis for artesian prediction .. J 13
Darton, N. H., Geologic structure of parts of New Mexico B 726 e
Geology and mineral resources of the Laramie Basin, Wyo B 364
Geology and underground waters of Arkansas Valley in eastern Colorado ... P 52
Geology and underground waters of Luna County, N.Mex. .. W 345 c; B 618
Geology and underground waters of Nebraska west of 103d meridian ... A 19 iv c; P 17
Geology and underground waters of South Dakota W 227
Geology and underground waters of the central Great Plains ... P 32
Geology and water resources of the Black Hills and adjoining regions, S. Dak ... A 21 iv b; P 65
Geology of the Bighorn Mountains, Wyo P 51
Geothermal data from deep artesian wells J 2
Geothermal data of the United StatesB 701
Geyser of Yellowstone National Park J 25
Hot springs at Thermopolis, Wyo J 6
Laramie-Sherman folio, Wyo GF 173
Newcastle folio, Wyo-S. Dak GF 107
Newell folio, S. Dak ... GF 209
New York City folio, N. Y.-N. J GF 83
Nomini folio, Md-Va ... GF 23
Norfolk folio, Va.-N. C .. GF 80
Oelrichs folio, S. Dak-Nebr GF 85
Passaic folio, N. J.-N. Y .. GF 157
Permian salt deposits of south-central United States B 175 m
Philadelphia folio, Pa.-N. J.-Del GF 162
Reconnaissance of northwestern New Mexico and northern Arizona ... B 435
"Redbeds" and associated formations in New Mexico B 794
Scotts Bluff folio, Nebr ... GF 88
Silver City folio, N. Mex .. GF 199
Structure of parts of the central Great Plains B 691 a
Sundance folio, Wyo-S. Dak GF 127
Syracuse-Lakin folio, Kans GF 212
Trenton folio, N. J.-Pa GF 167
Underground waters of Delaware, District of Columbia, Maryland, and Virginia .. W 114
Underground waters of southeastern Nebraska W 12
Washington folio, D. C.-Md.-Va GF 70
Well boring and irrigation in eastern South Dakota in 1896 ... A 18 iv c
Davis, A. P., Irrigation near Phoenix, Ariz W 2
Davis, C. A., Wells and municipal water supplies in the southern peninsula of Michigan W 182, 183
Dawson arkose, water in, in Colorado GF 198
Day, J. R., Geology and ground-water resources of Webb County, Tex. W 778
Ground-water resources of Webb County, Tex D 31
Deadwood sandstone, water in, in South Dakota W 227, 428; A 21 iv b:
	P 32, 65; GF 107, 128, 164, 209, 219
water in, in Wyoming A 21 iv b; P 32, 51, 65; GF 107, 127, 141, 142, 150
Dean, H. J., Surface water supply of Oregon, 1878-1910 W 370
Water resources of California, part 3 W 300
Debris-filled basins, fluctuations of water table in W 142, 219, 343, 345 g, 345 h, 375 a, 400 e, 423, 637 b, 886, 911, 941; C 14; 15, 16, 21
Debris-filled basins, ground water in—

Arizona .. W 104, 136, 320, 375 b, 425 a, 493, 796 e, f;
 B 352; C 15, 16; J 240
California .. W 89, 142, 219, 222, 225, 278, 294, 375 a, 398,
 345 h, 400; GF 163
Colorado .. W 240
discharge of .. W 142, 219, 294, 423, 637 b; C 21, 22
Montana ... W 345 g, 400 b
Nevada .. W 365, 375 d, 423; B 350 r
New Mexico ... W 123, 260, 275, 348, 345 c, 620, 637 b; B 618; GF 207
Oregon ... W 220, 231
quantity of .. W 142, 219, 294, 423; C 21, 22
Texas .. GF 166, 194; C 381
Utah ... W 157, 199, 217, 277, 333

See also Valley fill.

DeBuchananne, G. D., Artificial recharge of productive ground-water aquifers in New Jersey ... J 360

Water levels and artesian pressure in the United States ... W 944, 986

Decorah shale, water in, in Iowa ... W 293
water in, in Minnesota ... W 256
Deflection of wells, methods of measuring ... W 257
Deforestation, fluctuation of water table in relation to ... W 155

Delaware, areas, all of State ... W 114; C 171; J 1
areas, Coastal Plain ... B 138
Coatesville quadrangle ... GF 223
Dover quadrangle ... GF 137
Elkton quadrangle ... GF 211
New Castle County ... B 298
northeastern .. W 106; GF 162
West Chester quadrangle ... GF 223
Wilmington quadrangle ... GF 211
artesian water in ... B 138; GF 137; C 171; J 1
bibliography of ground water in ... W 114, 179, 149, 163
mineral waters in ... B 32; MP 1883-1918
public water supplies in ... B 138; C 171
quality of ground water in ... W 258; C 171
salt water in ... W 258
springs in ... B 32; C 171
well records for ... W 57, 114, 149; B 138, 298; GF 137, 162; C 171
Delta deposits, water in, in California ... W 225, 619
water in, in New England ... W 145

Denmark, bibliography of ground water in ... W 163

Dennis, P. E., Geology and ground water of the Pecos River Basin—
N. Mex. ... C 256
Ground water in the Pecos River Basin in Texas ... C 402
Underground water investigation in Utah ... C 422

Water levels and artesian pressure in the United States ... W 948, 990

Density of ground water ... B 47, 319
Denver formation, water in, in Colorado ... M 27
Deoxidation produced by ground water ... M 47
Depth of wells, methods of measuring ... W 257
Depth to ground water, methods of estimating ... W 423, 577
Depth to which ground water penetrates .. \textit{W} 67, 160, 494; \textit{A} 19 II b; \textit{M} 47

Descartes on origin of ground water ... \textit{A} 14 II b

Desert basins. \textit{See} Debris-filled basins; Valley fill.

Desert flats, ground water under .. \textit{W} 277; \textit{B} 530 k

Desert springs. \textit{See} Watering places; Springs.

Desert watering places. \textit{See} Watering places.

Desert wells. \textit{See} Watering places; Wells.

De Smet formation, water in, in Wyoming \textit{P} 51; \textit{GF} 141, 142

Des Moines group, water in, in Iowa ... \textit{W} 293

water in, in Missouri .. \textit{W} 195

Deussen, Alexander, Geology and underground waters of the Texas Coastal
Plain .. \textit{W} 335

Ground water in Lasalle and McMullen Counties, Tex....................... \textit{W} 375 g

Development of wells, by gravel screens ... \textit{W} 255, 256, 293, 343, 345 a, g
by pumping ... \textit{W} 255, 256, 293, 343, 345 a, g
by rescreening .. \textit{W} 255
by stream jetting .. \textit{W} 255
by use of exposures .. \textit{W} 255, 257

\textit{See also} Well construction.

Devonian formations, water in—

Alabama .. \textit{W} 114; \textit{C} 1, 2
Arkansas .. \textit{W} 114; \textit{B} 808
Illinois .. \textit{W} 114
Indiana ... \textit{W} 26, 114, 254; \textit{A} 18 IV b
Iowa ... \textit{W} 114, 145, 293
Kentucky .. \textit{W} 114, 233
Maryland .. \textit{W} 110, 114; \textit{GF} 179
Michigan ... \textit{W} 30, 31, 114, 182, 183; \textit{GF} 205; \textit{C} 181
Minnesota ... \textit{W} 256
Missouri ... \textit{W} 114, 195
New York .. \textit{W} 114; \textit{C} 273
Ohio .. \textit{W} 91, 114; \textit{A} 18 IV b, 19 IV b; \textit{GF} 197
Pennsylvania ... \textit{W} 110, 114; \textit{GF} 179; \textit{C} 344, 345, 346, 349
Tennessee ... \textit{W} 114, 677
Virginia .. \textit{W} 114; \textit{C} 432, 433, 434, 435, 436
West Virginia ... \textit{W} 110, 114; \textit{GF} 179; \textit{C} 433

\textit{See also} specific formations.

De Witt formation, water in, in Texas .. \textit{W} 335

Diameter of soil grains, methods of measuring \textit{A} 19 II b

Diesem, H. C., Cost of pumping for irrigation in western Nebraska \textit{W} 425 b

Diffusion of gases and solids in ground water \textit{M} 47

Dikes, water confined by .. \textit{C} 92, 97, 98, 99

Diller, J. S., Redding folio, Calif .. \textit{GF} 138

Dils, N. S., Progress of stream measurements, 1902 \textit{W} 85

Dip of strata, artesian conditions in relation to \textit{A} 5 c

Dirzulaitis, J. J., Surface water supply of the United States, part 1 \textit{W} 661, 696, 726

Surface water supply of the United States, part 2 \textit{W} 682, 677, 712, 727, 742, 757, 782, 802, 822, 852, 872, 892

Surface water supply of the United States part 3 \textit{W} 148, 663, 713
INDEX

vertical pipe method of measuring D 195

Discharge of ground water, by capillarity W 275, 294, 345 h, 423, 454, 638 c;
A 13 iii a, 19 i b; C 15, 16, 22; D 54, 160; J 240, 255, 279

by evaporation .. W 7, 153, 275, 294, 343, 345 h, 380, 423, 494, 597 b, 638 c, 659 a; A 13 iii a, 19 ii b; C 15, 16, 22; D 54, 160; J 240, 255, 279

by transpiration .. W 7, 153, 294, 320, 343, 375 d, 423, 494, 560 d, 577, 638 c, 659 a, 744, 818; C 15, 16, 22; D 54, 160; J 240, 255

water table in relation to .. W 153, 294, 343, 423, 495, 597 b; C 15, 16;
D 160; J 240, 255

See also Capillarity; Evaporation; Quantity of ground water; Transpiration; Springs; Water table.

Discharge of wells, dome method of measuring W 67, 110, 157, 219, 240

simple methods of measuring W 257

weirs for measuring ... W 150, 200, 320

See also Wells; Artesian wells.

Disposal of ground water. See Discharge; Evaporation; Quantity; Springs; Transpiration.

Dissociation of solids dissolved in ground water, theory of M 47

Dissolved solids in ground water. See Analyses; Quality.

Distilling, quality of water for W 233, 254, 398

District of Columbia, artesian water in B 188; GF 70, 152; C 171

bibliography of ground water in W 114, 120, 163

mineral waters in ... W 114; B 32; MR 1896-1920

public water supplies in ... C 171

quality of ground water in W 364; B 32, 137; C 171

springs in .. W 114; B 32; C 171

water levels in .. W 907, 937

well records for ... W 57, 114, 149; B 133; GF 70, 152; C 171

Divining rod. See Water witching.

Dobbin, C. E., Forsyth coal field, Mont B 796 a

Geology and coal and oil resources of the Hanna and Carbon
Basins, Wyo ... B 804

Geology and oil and gas possibilities of the Bell Springs
district, Wyo .. B 796 d

Geology of the Rock Creek oil field, Wyo B 806 d

Gillette coal field, Wyo .. B 796 a

Pumpkin Buttes coal field, Wyo B 806 a

Dodge, R. E., New York City folio, N. Y.-N. J GF 83

Dole, R. B., Chemical character of the waters in north-central Indiana W 254

Chemical character of the waters in northeastern Arkansas W 399

Chemical characer of the waters in southwestern Ohio W 259

Concentration of mineral water in relation to therapeautic activity
MR 1911 n n

Fluorescein in the study of ground water W 160

Ground water in Lasalle and McMullen Counties, Tex W 375 g

Ground water in San Joaquin Valley, Calif W 398

Historical sketch of the mineral-water trade MR 1914

Production of mineral waters MR 1913-1915

Published analyses of American mineral waters MR 1613 n h

Quality of surface waters east of the one hundredth meridian W 236
PUBLICATIONS RELATING TO GROUND WATER

Dole, R. B., Quality of surface waters in Minnesota .. W 193
Quality of the underground waters in the Coastal Plain of Georgia W 341
Radioactivity of mineral waters ... MR 1913 II h
Salines in Silver Peak Marsh, Nev ... B 580 r
Water supply of Savannah, Ga ... C 82
Dollen, B. H., Ground waters of Monroe County, N. Y C 273
Domes in relation to salt water ... W 335
Double-acting pumps .. W 14
Double Mountain formation, water in, in Texas .. W 317
Douglas formation, water in, in Kansas ... GF 206
water in, in Missouri .. GF 206
Dowsing. See Water witching.

Drainage, effect of, on ground water .. W 67
into wells—
 Arkansas .. W 160
 Florida .. J 80
 Georgia ... W 160
 Idaho ... W 774, 818
 Iowa ... W 293
 Michigan ... W 145, 160
 Minnesota .. W 256
of sewage and industrial wastes into wells .. W 258
with windmills in Holland ... W 20
Drainage wells, diagrams illustrating ... W 145
siphonage in .. W 145, 258
Drake, N. F., Nampa folio, Idaho-Oreg ... GF 103
Silver City folio, Idaho .. GF 104
Dresbach sandstone, water in, in Iowa ... W 293
water in, in Minnesota .. W 256; GF 201
See also Cambrian formations; Potsdam sandstone.

Drescher, W. J., Water levels and artesian pressure in the United States, 1943 ... W 989

Drift. See Glacial drift.

Drilling. See Well construction.

Drillings from wells. See Well drillings.

Drought, effect of, on water levels ... W 680; J 79, 119, 120, 123, 162
Dry farming, ground water in relation to .. W 275, 277, 320, 425 a
Dry sands at deep horizons ... B 653, 661 d
Dundee limestone, water in, in Michigan ... W 30, 114; GF 205

Dune sand, water in—
 Arkansas ... W 145
 Colorado ... A 17 II f; P 52
 Hawaii .. C 92, 99
 Idaho ... W 774, 818
 Kansas ... W 273; C 155
 Minnesota .. W 256; GF 201

Dyeing, quality of water for ... W 254, 341, 398
Dynamite, methods of using, in wells .. W 223, 255, 257
Dynamometer diagrams of reciprocating pumps W 14
Dynamometers for testing windmills ... W 20
INDEX

E

Eagle Pass formation, water in, in Texas A 18 II b
Eagleford clay, water in, in Texas W 276
Eakin, T. E., Water levels and artesian pressure in the United States, 1943 ... W 990
Earthquakes, effect of, on ground water P 147 b; J 124, 218
Ebert, F. C., Water levels and artesian pressure in the United States W 777, 817, 840, 845, 886, 911, 941, 949
Water levels in wells in southern California W 468
Water-table fluctuations in southern California J 155
Eckel, E. B., Brown iron ores of east Texas B 902
Ground-water resources of the Holbrook region, Ariz W 836 b; D 85
Quicksilver deposits in San Luis Obispo County and southwestern Monroe County, Calif ... B 922 r
Eckel, E. C., Wells and springs in Mississippi W 102
Eden shale, water in, in Kentucky W 233
water in, in Ohio ... W 259
“Edge water” related to oil B 658
Edwards limestone, water in, in Texas W 678, 773 b; A 18 II b; GF 42, C 401
Effluent seepage. See Runoff, ground-water
Egypt, ground water in, bibliography of W 163
ground water in, irrigation with W 1, 136
quality of ... W 136
El Salvador, Central America, public water supplies in J 370
Eldridge, G. H., Geology of the Denver Basin, Colo M 27
Electric currents in ground water W 258
Electric resistivity logging of wells, by oil companies D 153; J 310
in Louisiana ... D 191
in Texas ... C 406
Electrolytic bridge to determine total solids in water W 137, 138, 139; J 226
Elevators for lifting water W 1, 14
Ellensburg formation, water in, in Washington W 55, 118, 316; GF 86, 106
Ellis, A. J., Geology and ground waters in western part of San Diego County, Calif W 446
Ground water in Hartford, Stamford, Salisbury, Willimantic, and Saybrook areas, Conn W 374
Ground water in Musselshell and Golden Valley Counties, Mont W 518
Ground water in Paradise Valley, Ariz W 375 b
Ground water in the Waterbury area, Conn W 397
Mineral waters ... MR 1916, 1917, 1918, 1919
The divining rod, a history of water witching W 416
Ellis, E. E., Water in crystalline rocks W 160
Water in crystalline rocks in Connecticut W 232
Ellsworth, C. E., Summary of surface water supply in Texas W 850
Surface water supply of the United States W 508, 528, 548, 568, 587, 588, 608, 628, 648, 668, 703, 718, 733, 748, 763, 788, 808, 828, 858, 878, 898, 958, 977, 978
Emmons, S. F., Geology and ore deposits of the Leadville mining district, Colo P 148
Geology of the Denver Basin, Colo M 27
Emmons, W. H., Enrichment of ore deposits B 625
Emmons, W. H., Enrichment of sulphide ores .. B 529
Geology and ore deposits of the Creede district, Colo B 718
Geology and ore deposits of the Ducktown mining district, Tenn B 139
Geology and ore deposits of the Philipsburg quadrangle, Mont P 78
England, bibliography of ground water in .. W 168
ground water in London .. D 89
mineral waters in ... MR 1916
public water supplies in .. D 89
quality of ground water in .. B 330, 491, 616; MR 1916
Engler, Kyle, Ground-water supplies for rice irrigation in the
Grand Prairie region, Ark .. C 20 e
English, V. A., Geology and oil prospects of Salinas Valley—Parkfield
area, Calif ... B 691 h
Geology and petroleum resources of northwestern Kern County,
Calif .. B 721
Eocene formations. See Tertiary; specific formations.
Equus beds, water in, in Kansas .. W 273; J 214
Erdmann, C. E., Book Cliffs coal field, Colo B 851
Escondido formation, water in, in Texas .. W 375 g
Europe, well drilling in .. W 257
See also specific counties.
Eutaw formation, water in, in Alabama ... C 1, 3, 4
water in, in Georgia ... W 341; C 81
in Tennessee .. W 164, 638 a; C 372
Evaporation, at depth by gases .. J 17
controlling factors in .. W 294, 489, 494, 836 d; J 163, 231
fluctuations of water table in relation to .. W 155, 294, 423
from snow .. W 294
of ground water—
Arizona ... W 2, 380; C 15; D 160; J 240, 279
California .. W 18, 58, 181, 234, 345 h; C 22
Colorado ... W 358; M 27
Connecticut ... W 597 b
Florida ... W 319
Georgia .. C 81
Hawaii .. C 92, 97
Idaho ... W 560 d, 774, 818
Kansas .. W 153; B 140
Nebraska ... B 140
Nevada ... W 375 d, 423
New Mexico .. W 275, 358; C 249
Texas ... W 358; GF 166
Utah ... W 7, 659 a
Washington ... W 425 e
Everglades, ground water in, in southern Florida C 57, 62; J 252, 258
Explosives, methods of using, in wells ... W 223, 255, 257
Exports of mineral waters. See Mineral waters.

F
Fairbanks, H. W., San Luis folio, Calif ... GF 101
Farm supplies of ground water ... W 255
Farnsworth, H. R., Geology and oil resources of the Elk Hills, Calif B 835
INDEX

Fath, E. A., Geology of the Bristow quadrangle, Okla B 759
Oil and gas fields of the Lost Soldier-Ferris district, Wyo B 756
Structure of the northern part of the Bristow quadrangle, Okla. B 661 b
Fault planes, water in .. W 114, 232; B 319

Faults:
ground water in relation to—
Arizona ... W 380, 796 f; C 15, 16
California ... W 142, 294, 338, 345 h, 519
Colorado ... P 148
Connecticut .. W 22, 597 b
Hawaii ... C 92, 98
Kansas .. W 6
Montana ... W 365, 423
Nevada ... W 380, 796 f; C 15, 16
New Jersey .. GF 167
New Mexico .. GF 199
Pennsylvania ... GF 167
Texas ... W 375 g; A 18 II b
Utah ... W 199, 277

springs in relation to—
Arizona ... W 380, 796 f; C 15, 16; J 13 b
California ... W 142, 294, 338, 345 h, 519
Connecticut .. W 22
Montana ... W 365, 423
Nevada ... GF 199
New Mexico .. GF 199
Texas ... A 18 II b
Utah ... W 199, 277; P 153
thermal springs in relation to W 142, 227, 338, 365, 485, 796 f;
A 14 II b; GF 199; C 15, 16
water table in relation to W 294, 345 h, 423, 489
Fayette sandstone, water in, in Texas W 375 g

Fenneman, N. M., Geology and mineral resources of the St. Louis
quadrangle, Mo.-III ... B 438
Geology of the Boulder district, Colo B 265
Oil fields of the Texas-Louisiana Gulf Coastal Plain B 282

Ferguson, G. E., Investigation of water resources in southeastern
Florida .. C 63
Surface water supply of the United States W 952, 972

Ferguson, H. G., Geology and ore deposits of the Manhattan
district, Nev ... B 723
Geology and ore deposits of the Mogollon mining district, N. Mex . B 787
Mogollon district, N. Mex B 715 l

Ferris, J. G., Ground-water investigation in Connecticut J 273
Ground-water observation wells D 207
Ground-water survey, United States Geological Survey—
State of Connecticut .. C 47

Inexpensive monthly water-stage recorder D 188
Memorandum concerning a pumping test at Gas City, Ind C 136
Summary on salt-water intrusion in New Haven, Conn D 151
Water levels and artesian pressure in the United States W 886, 906, 936, 944, 986
PUBLICATIONS RELATING TO GROUND WATER

Fidlar, M. M., Water levels and artesian pressure in the United States, 1937 .. J 840
Fiedler, A. G., Air in well supply J 72
Artesian water in Somervell County, Tex W 660
Au deep-well current meter W 596 a
Au deep-well current meter for locating leaks J 50
Cement in well construction J 61
Choosing the site and constructing the well J 71
Construction and protection of drilled wells D 43; J 105
Contamination of ground water J 166
Deep-well salinity exploration J 102
Exploring and repairing leaky artesian wells J 49
Fishing jobs and use of fishing tools J 77
Fishing jobs and use of fishing tools J 77
Geology and ground-water resources of Roswell artesian basin, N. Mex .. W 639
Ground-water area of the Mimbres Valley, N. Mex C 237
Ground water in New Mexico now subject to appropriation J 51
Ground-water resources of Long Island, N. Y C 271
Ground-water supplies .. J 184
Importance of well specifications J 59
Legal control of use of ground waters J 190, 224
Locating leakage in artesian wells J 46
Mud scow method of drilling J 92
New Mexico law on artesian water J 69
Occurrence of ground water with reference to contamination J 161
Principles of well construction J 70
Roswell artesian basin, N. Mex C 231, 236, 242; D 9
Sanitation of farm water supplies J 64
Utilization of the water resources of Roswell artesian basin, N. Mex C 240
Water levels and artesian pressure in the United States W 777, 817, 840, 845, 886, 907, 937
Water supply of Roswell artesian basin, N. Mex D 28
Well construction .. J 78
Well driller and the water works field J 67
Well drilling in relation to water supply J 123
Field assays of water, methods of making W 151, 398

See also Analyses; Assays.
Fiji Islands, analyses of water in B 330, 491, 616
Filter galleries. See Infiltration ditches and tunnels.
Filtration of water. See Purification.
Filtration tests, methods of making P 44
Finding water in deserts W 224, 423; B 308

See also Watering places on routes of travel.
Finishing wells in sand .. W 256, 293, 343

See also Well construction.
Finkle, F. C., Pumping underground water in southern California W 146
Finlay, G. I., Colorado Springs folio, Colo GF 203
Firing wells, methods of .. W 223, 255, 257
Fishel, V. C., Apparatus for testing permeability of unconsolidated sediments D 84
Channel storage method of determining effluent seepage J 159
Ground-water supplies in Kansas available for national defense C 152
INDEX

Fishel, V. C., Methods for determining permeability .. W 887
Pumping tests conducted at Kansas City, Kans .. J 369
Tests of permeability with low hydraulic gradients J 114, 131
Water levels and artesian pressure in the United States . . W 777, 817, 840, 845, 886, 906, 907, 908, 938
Water levels in wells in northern Virginia .. D 121, 130, 151
Fisher, Bernard, Water levels and artesian pressure in the United States . W 937, 940
Fisher, C. A., Geology and underground waters of the Roswell artesian
area, N. Mex .. W 158
Geology and water resources of the Bighorn Basin, Wyo P 53
Geology and water resources of the Great Falls region, Mont .. W 221
Nepesta folio, Colo .. GF 135
Fisher, D. J., Book Cliffs coal field in Emery and Grand Counties, Utah .. B 852
Fissility, ground water in relation to .. W 223, 232
Fissures, movement of water through .. W 489, 774, 818; A 19 II b; C 92, 98, 99
springs in relation to .. W 114; A 18 II b; B 199; C 451
Fleck, H., on flow of air through soils ... A 19 II b
Flood control by feeding into underground reservoirs C 21
Flood-plain deposits. See Alluvium.
Flooding of oil wells ... W 91, 257
Floods in relation to ground water ... W 153, 258, 345 a, 425 b; C 15, 20, 21; D 160; J 240, 279
Florida, areas, all of State .. W 114, 319; C 56, 60; J 134, 189
areas, Broward County ... C 62, 63, 65
central ... C 51
Coral Gables ... J 348
Dade County ... C 62, 65; J 348
Duval County ... B 298; J 321
eastern ... C 52, 54, 65
Everglades ... C 57, 62; D 180; J 252, 258, 319
Jacksonville ... B 298
Lake Okeechobee ... C 57
Miami area ... C 63, 65; J 343, 348, 352
Nassau County ... J 321
northeastern ... J 248, 353
northern ... J 138, 139, 181, 185
Orlando and vicinity ... C 64
Pensacola area ... D 128
St. Augustine ... W 67
Sarasota County ... C 58, 59; J 102, 121
Seminole County ... C 61
southeastern ... C 63; D 143; J 252, 258, 301, 319
southern ... C 54, 65; J 365
Sumter County ... B 298
Volusia County ... B 298
west-central and western ... C 53
artesian water in ... W 319, 773 c; C 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65; J 121, 134, 137, 138, 139, 189, 221, 248, 255, 258, 353
bibliography of ground water in ... W 114, 120, 163
cones of depression in ... J 321, 353
Florida, irrigation with ground water in C 60
mineral waters in W 114; B 32; MR 1883-1923
public water supplies in W 319, 596 g; C 51, 62; J 80, 301
quality of ground water inW 102, 319, 364, 596 g; B 33; C 51, 57, 58,
 .59, 60, 61; J 137, 173, 248, 252, 301, 343
quantity of ground water in W 319; C 62, 63; J 252
salt water in C 56, 58, 62; D 128, 143, 151, 180; J 80, 102, 134, 187, 181,
 .252, 258, 321, 343, 348, 352
spring discharge measurements in W 712, 727, 742, 757, 782, 802, 822,
 .852, 872, 892, 952, 972
springs in W 102, 114, 204, 242, 319, 452, 557, 642, 6^22, 697, 773 c;
 .A 14 II b; B 32; C 51, 53, 55; J 80
water levels in W 777, 817, 840, 845, 886, 907, 937, 945, 987
water table in W 319; C 62, 64; J 80, 138, 139, 181, 185
well records for W 57, 102, 149, 319; B 264, 298, 393; C 52, 53, 54, 57,
 .58, 59, 62; J 4; J 252, 258

Flow of air and water through porous media, methods of measuring. . A 19 II b
Flow of ground water. See Movements of ground water.
Flow of wells. See Wells; Artesian wells.
Flowage, zone of, ground water in relation to W 489; M 47
Flowing wells. See Artesian water; Artesian wells.
Fluctuations of water table. See Water table; specific States.
Fluorescein, bibliography of ... W 160
for determining movements of ground water W 160, 638 c; D 1
Fluoride in ground water—
Alabama ... C 3
 general ... MR 1911 II n; J 173
 Louisiana ... C 162, 163
 Oklahoma ... C 322
 Virginia ... C 437, 438; D 97; J 197, 295
 Wyoming ... B 47
Flushing of wells. See Well construction.
Flynn, B. H., The Sandusky, Maumee, Muskingum, and Miarri drainage
 areas, Ohio ... W 91
Flynn, M. S., The Sandusky, Maumee, Muskingum, and Miarri
drainage areas, Ohio ... W 91
Fly-off, proposed term for evaporation and transpiration J 298
Foaming and priming constituents of water, methods of calculating
 W 274, 398
Foaming of water in boilers, quality in relation to W 254, 256, 259, 274,
 .341, 398, 399; C 451
Foley, F. C., Cooperative ground-water investigations in Wyoming C 455
 Ground-water control through legislation (discussion) J 266
 Water levels and artesian pressure in the United States, 1941 W 940
Foliation planes, water in ... W 489; B 319
Follansbee, Robert, Surface water supply of the United States W 456, 959
Follett, C. R., Ground-water resources in the vicinity of Vernon, Tex ... C 409
Forbes, R. H., Agriculture in San Simon Valley, Ariz.-N. Mex W 425 a
 Agriculture in Sulphur Springs Valley, Ariz. W 320
Force pumps ... W 14
Forests, water table in relation to W 155
Fort Thompson formation, water in, in Florida C 57; J 258
INDEX 283

Fortier, Samuel, Seepage in northern Utah .. W 7
Fossil sea water. See Connate water.

Fossils in drillings from wells .. W 293; P 99 h; C 99

Foster, M. D., Base exchange and sulphate reduction in salty ground
waters along Atlantic and Gulf coasts J 254

Chemical character of the ground waters of the South Atlantic
 Coastal Plain ... J 183
Chemical character of the hot springs of Arkansas and Virginia ... J 68
Chemical composition of salty waters along the Atlantic and
 Gulf coasts ... J 296
Chemistry of ground water, in Hydrology (Physics of the Earth, IX)
 (chap. 13 E) ... J 255

Geochemical relations of ground waters in the Houston-
 Galveston area, Tex .. J 198
Ground-water resources of western Tennessee W 656
Ground waters of the Houston-Galveston area, Tex J 202
Quality of water in Ground-water resources of the El Paso area, Tex
 W 919

Salt-water encroachment in the Galveston area, Tex J 117
Springs of Virginia .. C 432

Water analyses, in Ground water in southeastern Pennsylvania... C 342
Water analyses, in Ground water in southwestern Pennsylvania... C 341

Foster, V. M., Artesian water resources of Mississippi C 191

Geology and ground-water resources of the coastal area of M Mississippi
 C 195

Salt-water problem in Coastal Plain of Mississippi D 151

Water levels and artesian pressure in the United States W 886, 907

Fountain springs, construction of W 145

Fox Hills formation, water in—
 Colorado ... W 9; M 27; P 32
 Kansas .. P 32
 Montana .. B 751 f
 Nebraska .. P 32
 North Dakota ... W 598; B 575, 777; GF 181
 South Dakota ... W 227; P 32; B 575; GF 209
 Wyoming .. P 32; B 796 a; GF 173

Fracture, zone of, ground water in relations to W 489; M 47; GF 149

France, bibliography of ground water in W 163

 hydrology in .. D 79
 quality of mineral water in .. MR 1916
 radioactive waters in .. MR 1913 ii h
 springs in, yield of .. A 14 ii b

Franconia sandstone, water in, in Minnesota GF 201

Frederickburg group, water in, in Texas A 21 vii

Freeman, G. D., Water levels and artesian pressure in the United States,
 1940 ... W 906

Freeman, W. B., Surface water supply of the United States W 247 288

Freezing of wells ... W 29, 256, 258

Frequency method of evaluating water levels J 313

Friction of ground water ... M 47

Frontier formation, water in, in Montana B 751 g
 water in, in Wyoming .. P 53; B 656, 756, 781 b
Frost, confining beds for artesian water produced byB 319
effect of, on ground-water supply ..W 145
Frye, J. C., Cable-tool test drilling near Wichita, Kans.D 119
Deep-seated solution in the Meade basin, Kans.-Okla.J 293
Geology and ground-water resources of Meade County, Kans.C 154
Geology and ground-water resources of the "Equus beds" Kans.J 214
Geology and ground-water resources of Thomas County, Kans.C 159
Ground water in the Meade artesian basin, KansC 142
Ground water in the oil-field areas of Ellis and Russell Counties, Kans.C 156
Ground-water resources in Atchison County, Kans.C 148
Ground-water supplies in Kansas available for national defenseC 151
Kansas mineral resources for wartime industriesC 152
Meade artesian basin, Kans ...D 132
Water levels and artesian pressure in the United StatesW 908, 938
Water supply of the Meade artesian basin, KansC 144

Fry-pan deposits, water in, in Texas ..A 18 II b
Fuller, M. L., Artesian waters of the Atlantic Coastal PlainJ 14
Bibliography of ground-water literature in 1905W 163
Bibliography of United States Geological Survey papers on underground
water ..W 120
Contributions to hydrology ..W 102, 110, 145
Controlling factors of artesian flows ...B 319
Ditney folio, Ind ...GF 84
Drainage by wells ...W 258
Failure of wells along lower Huron River, MichC 181
Flowing wells and municipal supplies in the southern peninsula of
Michigan ..W 182, 183
Freezing of wells and related phenomena ..W 258
Gaines folio, Pa.-N. Y. ...GF 92
Geology and underground waters of southern MinnesotaW 256
Geology of Long Island, N. Y. ..P 82
Ground-water problem in southeastern MichiganW 145
Hydrologic work of the United States Geological Survey in the
eastern United States ...J 5
Improvement of water in wells ..W 160
Large springs of Ozark region, Mo.-Ark ..W 145
Magnetic wells ..W 258
Patoka folio, Ind.-Ill ..GF 105
Peculiar mineral waters from crystalline rocksW 160
Production of mineral waters ..MR 1905
Protection of shallow wells in sandy depositsW 258
Records of deep wells ..B 264, 298
Representation of wells and springs on mapsW 160
Significance of the term "artesian" ..W 160
Total amount of free water in the earth's crustW 160
Triassic rocks of the Connecticut Valley ..W 110
Underground-water investigations in the United StatesJ 7
Underground-water papers, 1906 ..W 160
Underground waters for farm use ..W 255
Underground waters of eastern United StatesW 114
INDEX

Fuller, M. L., Underground waters of southwestern Ohio W 259
Uses of underground waters of southern Louisiana W 101

G
Gages for determining vacuum in pumps ... W 141
for recording water levels in wells .. D 127, 139, 155, 188
Gale, H. S., Geology and ground-water hydrology of the Mokelumne area,
Calif ... W 780
Geology and ground-water resources of the Balmorhea area, western
Texas ... W 849 c
Ground-water resources of the Balmorhea area, Tex. C 390
Potash in Death Valley, Calif .. B 540 n
Potash tests at Columbus Marsh, Nev B 540 n
Water resources of the Cowee and Pisgah quadrangles, N. C........ W 110
Water supply of Rangely oil district, Colo. B 360
Galena limestone, water in, in Illinois W 114; B 506; GF 81, 200
water in, in Iowa .. W 293; GF 145, 200
in Minnesota .. W 256
in Wisconsin .. W 114; GF 145
Gambrell, J. W., Water levels and artesian pressure in the United States
W 845, 886
Gardiner, J. H., Surface water supply of the United States...........
W 879, 899, 959, 979
Garrett, A. A., Chemical character of native and contaminated water in the
Long Beach-Santa Ana area, Calif ... C 30 f
Cooperative ground-water investigation in the Torrance-Santa Monica
area, Calif ... C 30 c
Partial chemical analyses of waters from coastal zone of Long Beach-
Santa Ana area, Calif ... C 26
Water levels and artesian pressure in the United States, 1942 W 949
Garrey, G. H., Economic geology of the Georgetown quadrangle, Colo.... P 63
Gases in ground water .. W 494; M 47; P 145; B 395, 658; J 39, 72
Geochemistry of ground water ... B 330, 491, 616, 695, 770; J 117, 198, 372
Geologic causes of fluctuations of ground-water levels W 155
Geologic work of ground water .. M 47; F 529, 606
Geology in relation to hydrology ... J 367
Geophysical surveys for ground water D 78; J 95, 174, 210, 310
in Hawaii ... C 97, 98; D 157, 158; J 175, 204
in Texas .. W 919; J 176
George, W. O., County reports on ground-water surveys in Texas by
Works Progress Administration ... C 384
County reports on ground-water surveys in Texas in cooperation with
Texas State Board of Water Engineers C 393
Georgia, areas, all of State .. W 102, 114 ; C 81
areas, Chatham County ... B 298
Coastal Plain ... W 341; B 138; D 129, 134; J 353
Decatur County .. B 298
Ellijay quadrangle .. GF 187
Fulton County ... B 298
Pierce County ... B 298
Quitman and vicinity .. W 110
Georgia, areas, Savannah and vicinityW 67; B 298; C 82, 83
southeastern ...C 83, 84
Tattnall County ..B 298
artesian water in . .W 67, 341; B 138; C 81, 82, 83, 84; D 104, 129,
134; J 221, 248, 353
bibliography of ground water inW 57, 114, 120, 149, 163; C 81
cones of depression inJ 353
drainage into wells inW 160
irrigation with ground water inW 341; C 81
mineral waters inW 114, 160; B 32; MR 1883-1928; GF 187
power from artesian wells inC 81
public water supplies inW 67, 102, 341, 912; B 138; C 81, 82
pumping in ..C 82
quality of ground water in . .W 102, 160, 341, 912; B32, 128; C81, 82,
83; D 104; J 253
salt water in ..C 83; D 151
spring discharge measurements in . .W 36, 127, 168, 743, 757, 782, 822,
852, 872, 892
springs in . .W 102, 114, 145, 197, 341, 557, 679 b, 819; A 14 ii b, B 32;
GF 187; C 81
thermal ...W 679 b, 819
water levels in ...W 845, 886, 907, 937, 945, 987
water table in ...D 134
well records forW 57, 67, 102, 149, 341; B 138, 264, 298; C 81, 84
Gering formation, water in, in NebraskaA 19 iv c; P 17
Germany, bibliography of ground water inW 163
deep wells in ..W 257
hydrology in .. D 79, 91
mineral waters in ..B 606; MR 1916
quality of water inB 330, 491, 529, 606, 616
radioactive water inMR 1913 ii h
Geyser springs ...W 114
construction of ..W 145
in Nevada ...W 365
Geyzers, analyses of water fromW 364; A 9 d; B 47, 330, 491, 616
in California ...W 181
in Yellowstone National ParkW 364; A 9 d, 14 ii b; 47, 395
radioactivity of water fromB 395; MR 1913 ii h
water yielded by ..A 14 ii b
Gila conglomerate, water in, in ArizonaW 320, 425 a, 796 f; GF 111; C 16
Gilbert, G. K., Pueblo folio, ColoGF 36
Underground water of Arkansas Valley, ColoA 17 ii f
Giles, J. M., progress of stream measurements for 1905W 173
Surface water supply of the United States, 1906W 209
Gilluly, James, Geology and mineral resources of the Baker
cquadrange, Oreg ...B 897
Geology and oil and gas prospects of northeastern ColoB 796 b
Geology and oil and gas prospects of part of the San Rafael
swell, Utah ...B 806 c
Some mining districts of eastern OregonB 846 a
Glacial deltas, water inW 145, 489
Glacial drift, water in—
Arkansas ...W 145; GF 140
INDEX

Glacial drift, water in, Connecticut ... W 114, 232, 374, 397, 449, 466, 470, 540, 597 b; C 41, 42, 43, 44, 45

Idaho .. W 818
Illinois .. A 17 n h; M 38; GF 67, 105, 185, 188, 195, 208, 220; C 131
Indiana .. W 21, 26, 113, 114, 254; A 18 iv b; M 53; GF 167, 105; C 134, 135
Iowa .. W 293
Kansas .. W 273; GF 206; C 142
Kentucky .. C 160; J 323
Maine .. W 145, 223; GF 149
Manitoba ... M 25
Massachusetts .. W 30, 31, 182, 183; M 53; GF 155, 206; C 182
Minnesota .. W 256; M 25; GF 117, 201, 210
Mississippi .. M 25
Missouri ... W 195; GF 206
Montana ... W 221, 400 b; B 691 e, 751 e
Nebraska .. W 12
New Jersey .. GF 157, 161
New York ... W 110, 114, 145; GF 157, 169, 190; C 273, 274; J 146
North Dakota .. W 598; A 17 n g; M 25; B 801; GF 117, 168; C 301, 302, 304, 328
Ohio .. W 114, 259; A 18 iv b, 19 iv b; GF 197; C 311, 312; D 120; J 126
Pennsylvania .. W 114; C 341, 342, 343, 344, 345, 346, 349, 351; D 26
South Dakota .. W 34, 90, 227; A 17 n g; GF 96, 97, 99, 100, 113, 114, 166, 165; C 302
Washington ... W 425 e; D 102
Wisconsin ... C 451

See also Till.

Glen Rose formation, water in, in Texas ... A 21 vii; GF 64
Glenn, L. C., Underground waters of South Carolina W 114
Underground waters of Tennessee and Kentucky west of Tennessee River and of an adjacent area in Illinois .. W 164
Water resources of Kentucky and Tennessee W 102, 144
Glossary of ground-water terms ... D. 6

See also Crystalline rocks.

Gold in ground water .. P 94; B 529, 625
Goldman, M. I., Structure and oil and gas resources of the Osage Reservation, Okla ... B 686 w, y
Goliad sand, water in, in Texas .. J 132
Gooch, F. A., Analyses of waters of Yellowstone National Park B 47
Goodell, E. B., Laws forbidding pollution of inland waters W 152
Gordon, C. H., Geology and underground waters of northeastern Texas .. W 276
Geology and underground waters of the Wichita region, north-central Texas .. W 317
Ore deposits of New Mexico ... P 68
Gould, C. N., Geology and water resources of Oklahoma W 148
Geology and water resources of the eastern portion of the Panhandle of Texas .. W 154
Geology and water resources of the western portion of the Panhandle of Texas ... W 191
Gould, L. O., Ground waters of Monroe County, N. Y...................C 273
Graham, J. B., Cooperative ground-water investigations in Wyoming ... C 455
Ground-water investigations in PennsylvaniaJ 335
Ground-water report for Philadelphia area (Pa.)J 358
Industrial ground-water suppliesC 351
Water levels and artesian pressure in the United States............W 946, 988
Grand Falls chert, water in, in KansasGF 148
water in, in Missouri ..GF 148
Grand Gulf formation, water in, in AlabamaC 1
water in, in MississippiW 159
Granger, A. E., Quicksilver deposits in San Luis Obispo County and
southwestern Monterey County, CalifB 922 r
Granite, water in . W 114, 16, 223, 222, 255, 256, 257, 277, 345 g,
374, 397, 489; A 18 II b; GF 45, 147, 149, 151, 158
See also Crystalline rocks.
Grant, U. S., Lancaster-Mineral Point folio, Wis.-Iowa-IllGF 145
Water resources of the Mineral Point quadrangle, Wis.........W 145
Graton, L. C., The ore deposits of New MexicoP 68
Gravel, drainage into wells inW 258
flow of water in, experiments with . W 112, 136, 140, 141, 153, 184, 258; P 44
in buried channels, water inW 273, 283; A 19 iv b
interbedded with lava, water inW 4; B 199
porosity of ..W 104, 136, 140; C 16
spreading flood water over ..C 21; J 279
walls of wells formed of ..W 256, 293, 343, 345 a, d, g, 375 a
water in ...W 6, 112, 114, 136, 153, 184, 223, 233, 255, 257, 258,
273, 319, 374, 397, 399, 425 b, 638 a, 796 f, 836 b;
P 44; C 18, 15, 16; J 279
See also Alluvium; Glacial drift; Porosity; Valley fill.
Gravel screens in wells ..W 256, 293, 343, 345 a, d, g, 375 a, 597 c
Graydon sandstone, water in, in MissouriW 195
Great plains. See High Plains; specific States
Greece, ancient, mineral water used inA 14 II b
Greene, F. C., Leavenworth-Smithville folio, Mo.-KansGF 206
Greenhorn limestone, water in, in NebraskaGF 156
water in, in South Dakota ..GF 156
See also Benton formation.
Greenlee, A. L., Method for determining transmissibility and storage coefficients by tests of multiple well systemsJ 311
North Dakota's ground-water problemsJ 328
Water levels and artesian pressure in the United StatesW 946, 988, 990
Gregory, H. E., Ground water in Hartford, Stanford, Salisbury, Willimantic, and Saybrook areas, ConnW 374
The Kaiparowits region, Utah and ArizonaP 164
The Navajo country—a geographic and hydrographic reconnaissance
...W 380
The San Juan country, Utah ..P 188
Underground water resources of ConnecticutW 232
Underground waters of ConnecticutW 102, 114
Gregory, W. M., Flowing wells and municipal water supplies in the southern peninsula of MichiganW 183
Grenada formation, water in, in TennesseeD 14
Greybull sand, water in, in Montana ..B 822 a
 water in, in Wyoming ...B 621 1
Ground-water level. See Water table.
Grunsky, C. E., Irrigation near Bakersfield, CalifW 17
 Irrigation near Fresno, CalifW 18
Guides to desert watering places. See Watering places.
Gulf Coastal Plain. See specific States.
Gunter, Herman, Artesian water supply of eastern and southern Florida. .C 54
 Artesian water supply of eastern FloridaC 52
 Underground water supply of west-central and west Florida .C 53
Guyton, W. F., Artificial recharge of glacial sand and gravel at
 Louisville, Ky ..J 362
 Coefficients of transmissibility and storage, Houston district, Tex. .J 242
 Conservation of ground water in the Louisville area, KyJ 349
 Depleted wells at Louisville (Ky.) recharged with city waterJ 330
 Geology and ground-water supply at Camp Van Dorn (Miss.)C 193
 Ground-water resources of the Houston district, TexW 889 d; C 396
 Ground-water resources of the Louisville area, KyC 160
 Pumping tests of the Carrizo sand in the Lufkin area, TexJ 294
 Quantitative studies of some artesian aquifers in TexasJ 347
 Well discharge; a method of computing the quantity of water derived
 from storage (discussion)J 342
Gypsum deposits, springs in ..W 148, 154
 500 b; B 6f7; C 381
Gypseous waterW 148 154, 273, 275, 276, 317, 320, 343, 375 g, 398, 489,
 water in ...W 148, 154, 343, 489, 500 b, 580 a; C 381
H
Hagen, G., on flow of water through soilsA 19 II b
Haiti, all of Republic ..C 72
 artesian water in ..C 72
 springs in ..C 72; J 36
 well records for ...C 72
Halberg, H. N., Well and test hole records for Providence, R. I.C 356
Hale, W. E., Geology and ground water (Pecos River Basin, N. Mex.)C 256
 Water levels and artesian pressure in the United StatesW 946, 988
Hale formation, water in, in ArkansasGF 154
 water in, in OklahomaGF 154
Hall, B. M., Operations at river stationsW 27, 36
 Water resources of GeorgiaW 197
Hall, C. M., Alexandria folio, S. DakGF 100
 Castleton-Fargo folio, N. Dak.-MinnGF 117
 De Smet folio, S. Dak ..GF 114
 Geology and water resources of James River Valley, S. DakW 90
Hall, C. W., Geology and underground waters of southern MinnesotaW 256
 Underground waters of MinnesotaW 102, 114
Hall, G. M., Ebb and flow spring near Greenbrier Cove, TennD 63
 Ebb and flow spring near Rogersville, TennJ 55
 "Fittifying" spring near Greenbrier Cove, TennJ 142
 Geology of Bighorn County and the Crow Indian Reservation, Mont. .B 856
 Ground water in Ordovician rocks near Woodstock, VaW 596 c
290 PUBLICATIONS RELATING TO GROUND WATER

Hall, G. M., Ground water in southeastern Pennsylvania C 342
Ground water in Yellowstone and Treasure Counties, Mont........W 599
Ground water resources of southeastern Pennsylvania D 35
Hall, M. R., Progress of stream measurements W 98, 127, 168
Surface water supply of southern Atlantic and eastern Gulf States,
1906 .. W 204
Water resources of Georgia W 197
Hall, W. E., Surface water supply of the United States, 1917W 452
Halpenny, L. C., Ground-water inventory in upper Gila River Valley, N.
Mex. and Ariz ... J 240
Ground-water levels and pumpage in Arizona, 1938-40 C 14
Queen Creek area, Maricopa and Pinal Counties, Ariz C 18
Water levels and artesian pressure in the United States, 1940 ... W 911
Water resources of Safford and Duncan-Virden Valleys, Ariz.-N. Mex.C 15
Water-stage recorder, self-starting D 139
Hamilton, D. K., Drillers’ logs of wells and test borings in the
Louisville area, Ky ... C 160 f
Ground water in the Louisville area, Ky C 160 b
Hamilton shale, water in, in Wisconsin C 451
Hamlin, Homer, Underflow tests along Los Angeles River, Calif .W 112
Water resources of the Salinas Valley, Calif.................. W 89
Hammond, G. A., Diamond-drill methods W 146
Hance, J. H., Potash in western saline deposits B 540 p
Hancock, E. T., Geology and coal resources of the Meeker quadrangle, Colo
B 812 c
Geology and oil and gas prospects of the Huntley field, Mont. ... B 711 g
Geology and oil and gas prospects of the Lake Basin field, Mont.. B 691 d
Geology of the Rock Creek oil field, Wyo B 806 d
Lance Creek oil and gas field, Wyo B 716 e
Mule Creek oil field, Wyo B 716 c
Upton-Thornton oil field, Wyo B 716 b
Hanna, F. W., Progress of stream measurements, 1905 W 170
Hannibal formation, water in, in Missouri W 195
Hard, H. A., Artesian water supply of Dakota sandstone J 41
Artesian water supply of the Dakota sandstone in North Dakota. W 520 e
Geology and water resources of the Edgeley and La Moure quadrangles,
N. Dak .. B 801
Harder, E. C., Iron-depositing bacteria and their geologic relations ... P 113
Hardison, C. H., Water levels and artesian pressure in the United States,
1937 .. W 840
Hardness of ground water W 232, 254, 259, 273, 320, 338, 341, 343, 398, 399, 559
Hare, R. F., Geology and water resources of Tularosa Basin, N. Mex. .W 343
Hares, C. J., Anticlines in Wyoming W 641 i
Geology and lignite resources of the Marmarth field, N. Dak... B 775
Harrell, M. A., Ground-water resources of the Holbrook region, Ariz
W 836 b; D 85
Harrington, A. W., Water levels and artesian pressure in the United States
777, 817, 840, 845, 886, 936
Harrington, G. L., Anvik-Andreafski region, Alaska B 683
Gold placers of the Anvik-Andreafski region, Alaska B 662 f
Tin mining in Seward Peninsula, Alaska B 692 g
INDEX

Harris, G. D., Underground waters of southern Louisiana. W 101
Harrold, L. L., Relation of stream flow to ground-water levels. J 116
Hastings, W. W., Public water supplies in eastern Texas. C 415
Quality of water, Pecos River basin, N. Mex. C 398
Hatchetigbee formation, water in, in Alabama. C 1
Hawaii, areas, all of Territory. J 27, 265
areas, Hawaii Island. W 318, 336, 616
Kahoolawe Island. C 98
Kau district. W 616
Kauai Island. W 318, 336
Lanai Island. W 318, 336, 373, 445; C 99; D 48, 157
Molokai Island. W 77; D 158
Oahu Island. W 318, 336, 373, 430, 445; C 91, 92, 94, 97;
D 50; J 109
artesian water in. W 318, 336, 373, 430, 596 a, 616; C 91, 92,
94, 95, 97, 99; D 50; J 109, 217, 265
bibliography of ground water in. W 163, 616; C 93
infiltration tunnels in. W 318, 445, 616; C 92, 97, 98, 99; J 165
irrigation with ground water in. W 77, 318, 336, 616; C 91, 92, 94, 97, 99;
J 109, 265
law relating to ground water in. W 596 a
public water supplies in. C 97, 99
pumping in. C 99
quality of ground water in. W 77, 616; C 92, 94, 97, 98, 99
quantity of ground water in. W 77, 616; C 91, 92, 97, 98, 99;
J 265
salt water in. W 77, 616; C 92, 94, 97, 98, 99; D 151; J 175, 204
spring discharge measurements in. W 318, 336, 373, 430, 445, 635, 575,
595, 615, 655, 675, 710, 740, 755, 770, 795, 815,
835, 865, 885, 905, 935, 965, 985; C 92, 98, 99
springs in. W 77, 616; C 92, 96, 98, 99; D 157
thermal. W 616
water levels in. W 777, 817, 840, 845, 855, 911, 941, 949, 991;
C 92, 94, 97, 98, 99
water table in. W 616; C 92, 95, 97, 98, 99; D 158, 169; J 27, 204, 265
well records for. W 318, 336, 373, 430, 616; C 91, 92, 94, 97, 98, 99
wells in, construction of. W 596 a; C 92, 97; J 165
yield of. W 77, 318, 336, 373, 616; C 91, 92, 97, 98, 99
Hawkins, R., Water supply of Livingston County, Mo. W 102
Haworth, Erasmus, Economic geology of Iola quadrangle, Kans. B 238
Underground waters of southwestern Kansas. W 6
Hawthorn formation, water in, in Florida. W 319; C 57, 58, 60, 61, 62;
J 134, 137, 258
water in, in South Carolina. B 867
Hay, Robert, Water resources of a portion of the Great Plains. A 16 II f
Well records in Nebraska, Colorado, and Kansas. B 131
Head of ground water. See Artesian water; Water table.
Heald, K. C., Geologic structure of northwestern Pawhuska
Geology of the Ingomar anticline, Mont. B 786 a
quadrangle, Okla. B 619 c
Heald, K. C., Oil and gas geology of the Foraker quadrangle, Okla .. B 641
Structure and oil and gas resources of the Osage Reservation, Okla .. B 686
Hem, J. D., Quality of water, in Ground-water resources of the Santa Cruz Basin, Ariz C 20
Water analyses, in Duncan-Virden Valley, Ariz, and New Mexico .. C 17
Water analyses, in Queen Creek area, Ariz C 18
Water analyses, in Records of wells and springs in Big Sandy Valley, Ariz .. C 13
Water analyses in Safford Valley, Graham County, Ariz ... C 16
Water analyses in Water resources of Safford and Duncan-Virden Valleys, Ariz, and New Mexico C 15
Hendricks, T. A., Geology and fuel resources of McAlester district, Okla ... B 874
Geology and mineral resources of western part of Arkansas coal field .. B 847
Henrixson, W. S., Underground water resources of Iowa ... W 293; C 137
Henrietta limestone, water in, in Missouri .. W 195
Henshaw, F. F., Surface water supply of Seward Peninsula, Alaska ... W 314
Surface water supply of the United States, part 10 ... W 310, 360, 440, 467, 480, 510, 580
Surface water supply of the United States, part 11 ... W 271, 391
Surface water supply of the United States, part 12 ... W 332, 394, 514, 574, 591, 614, 634, 654
Herald, F. A., Lignite in Fort Berthold Indian Reservation, N. Dak .. B 726
Heroy, W. B., Geography, geology, and mineral resources of Fort Hall Indian Reservation, Idaho ... B 713
Herrick, S. M., Water levels and artesian pressure in the United States, 1943 .. W 987
Hershey, H. G., Water levels and artesian pressure in the United States, 1943 .. W 988
Hess, F. L., Contact-metamorphic tungsten deposits of the United States ... B 725
Hess, R. H., Water analyses, in Geology and ground-water resources of Ford County, Kans C 153
Water analyses, in Geology and ground-water resources of Meade County, Kans C 154
Water analyses, in Geology and ground-water resources of Morton County, Kans C 149
Water analyses, in Geology and ground-water resources of Stanton County, Kans C 145
Heuser, J. F., Geology and ground-water resources of the Lufkin area, Tex .. W 849
Hewett, D. F., Anticlines in southern part of Big Horn Basin, Wyo ... B 656
Geology and oil and coal resources of the Oregon Basin, Wyo .. P 145
Geology and ore deposits of the Goodsprings quadrangle, Nev .. P 182
Ground water in Piute Valley, Nev .. D 3
Mineral resources of the region around Boulder Dam .. B 871
Warm springs of Georgia .. W 819
Hicks, W. B., Composition of muds from Columbus Marsh, Nev ... P 95
Evaporation of brine from Searles Lake, Calif .. P 98
Potash resources of Nebraska ... B 715
INDEX 293

High-level water W 616; C 92, 97, 98, 99
High Plains, ground water in W 489; A 21 IV c, 22 IV c
See also specific States.
Highbridge limestone, water in, in Kentucky W 233
Hill, J. M., Economic geology of Gilpin County and adjacent parts of Clear Creek County, Colo P 94
Mineral deposits of Santa Rita and Patagonia Mountains, Ariz ... B 575
Hill, R. T., Austin folio, Tex GF 76
Geography and geology of Black and Grand Prairies, Tex A 21 VII
Geology of the Edwards Plateau and Rio Grande Plain, Tex ... A 18 II b
Nueces folio, Tex GF 42
Hills, R. C., Elmofo folio, Colo GF 58
Spanish Peaks folio, Colo GF 71
Walsenburg folio, Colo GF 68
Hinchey, N. S., Large springs of Missouri C 200
Hinderlider, M. C., Progress of stream measurements for 1904 ... W 131, 183
Progress of stream measurements for 1905 W 173
Hinds, Henry, Colchester-Macomb folio, Ill GF 208
Leavenworth-Smithville folio, Mo.-Kans GF 206
History of ground-water hydrology J 106, 255
History of ground-water investigations, United States Geological Survey, prior to 1904 W 102; B 227
Holland, W. T., Inventory of unpublished hydrologic data W 837
Holland, drainage with windmills in W 20
ground water in, bibliography of W 163
hydrology in .. D 79, 92
Hollick, Arthur, New York City folio, N. Y.-N. J GF 83
Hollister, G. B., Water of a gravel-filled valley near Tully, N. Y W 145
Holly Springs formation, water in, in Tennessee D 14
Holmes, E. O., Water analyses, in Geology and ground-water resources of Finney and Gray Counties, Kans C 158
Water analyses, in Geology and ground-water resources of Hamilton and Kearny Counties, Kans C 155
Water analyses, in Geology and ground-water resources of Meade County, Kans .. C 154
Water analyses, in Geology and ground-water resources of Thomas County, Kans C 159
Hood, O. P., Tests of pumps and water lifts W 14
Hoots, H. W., Geology and oil and gas possibilities of the Bell Springs district, Wyo B 796 d
Geology of the Rock Creek oil field, Wyo B 806 d
Geology of western Texas and southeastern New Mexico B 780 b
Hopkins, O. B., Brenham salt dome, Tex B 661 g
Brooks, Steen, and Grand Saline salt domes, Tex B 736 e
Corsicana oil and gas field, Tex B 661 f
Oil and gas possibilities of the Hatchetigbee anticline, Ala B 661 h
Palestine salt dome, Tex B 661 g
Structure and oil and gas resources of the Osage Reservation, Okla ... B 686 s
Structure of the Madill-Denison area, Okla. and Tex B 735 g
Horton, A. H., Water levels and artesian pressure in the United States W 845, 886, 907, 937, 945, 987
Horton, R. E., Drainage into wells .. W 145
 Progress of stream measurements for 1905 W 170
 Surface streams of Long Island, N. Y P 44
 Weir experiments, coefficients, and formulas W 150, 200
Hostetter, J. F., Forms for pumpage inventory D 200
 Water levels and artesian pressure in the United States, 1943 W 991
Hot springs. See Springs, thermal.
Howard, C. S., Chemical character of water of Florida W 596 g
 Ground water in Yellowstone and Treasure Counties, Mont W 599
 Index of analyses of natural waters in the United States . W 560 c, 659 c
 Natural sodium bicarbonate waters in the United States J 47
 Quality of water, Pecos River Basin, N. Mex C 398
 Report of committee on the chemistry of natural waters J 173
 Water analyses, in Ground water in southeastern Pennsylvania .. C 342
 Water analyses, in Ground water in southwestern Pennsylvania ... C 341
Howe, Ernest, Ouray folio, Colo .. GF 153
 Silverton folio, Colo .. GF 120
Howe, M. A., Geologic importance of the lime-secreting algae J 170 e
Howell, R. W., Pumpkin Buttes coal field, Wyo B 806 a
Hoy, N. D., Geology and ground water of southern Florida J 319
Hoyt, J. C., Droughts and floods .. J 162
 Droughts of 1930-34 .. W 680
 Drought of 1936 .. W 820
 National aspects of the drought J 79
 Progress of stream measurements W 99, 131, 132, 170, 173, 174
Hoyt, W. G., Relations of rainfall and run-off in the United States .. W 772
Hubbard, G. D., Columbus folio, Ohio GF 197
Hudson shale, water in, in Michigan W 114
Hueco limestone, water in, in Texas GF 194
Huff, L. C., Frequency method of evaluating ground-water levels J 313
 Water levels and artesian pressure in the United States W 940, 948
Hunt, C. B., Geology and mineral resources of Chouteau, Hill, and Liberty
 Counties, Mont ... B 847 f
 Mount Taylor coal field (N. Mex.) B 860 b
Huronian quartzite, water in, in Wisconsin C 451
Hutson, W. F., Irrigation systems in Texas W 13
Hydraulic rams for lifting water W 1, 254, 256, 540; C 431
Hydrographic contours. See Maps showing contours of water table.
Hydrology—
 Arizona ... C 11, 15, 16; D 160; J 84, 240, 300
 California ... J 84, 97, 128
 hydrology, division of, early work of W 102; B 227; J 5
 general ... J 26, 33, 76, 93, 94, 106, 144, 163, 191, 255, 271, 387
 New Jersey ... J 90
 New Mexico ... J 84, 97
 Oregon ... J 84, 97, 128
 United States ... J 82, 96, 110, 127, 148, 171, 192, 205, 227, 247, 262
 Washington ... J 128
 western States ... J 40
Hydrolysis of ground water ... M 47
Hygrometric water ... M 47
INDEX

I

Ice for domestic water supplies ... B 350
Ice manufacturing, quality of water for W 233
Ice-perched water holes .. C 118
Iceland, bibliography of ground water in W 120
quality of ground water in ... B 330, 491, 616
Idaho, areas, Big Lost River Valley D 17
areas, Boise .. GF 45
 Bruneau River Basin ... C 115
 Camas County .. C 116
 Craters of the Moon .. C 118; J 35, 52
 Curlew Valley .. W 333
 Egin Bench ... W 560 d, 818
 Elmore County ... C 116
 Fort Hall Indian Reservation ... B 713
 Goose Creek Basin ... C 112
 Idaho Falls ... C 117
 Island Park .. W 818
 Little Lost River Valley ... D 16
 Mackay region .. P 97
 Moscow Basin .. C 113
 Mud Lake Basin .. W 560 d, 818; C 111; D 47
 Nampa quadrangle ... GF 103
 Nez Perce County .. W 53, 54
 Pahsimeroi Valley .. C 114
 Pocatello Valley ... W 333
 Port Neuf quadrangle .. B 803
 Raft River Valley .. D 10
 Silver City quadrangle ... GF 104
 Snake River Plains .. W 774, 775, 818; B 199, 713; D 30, 53
 southeastern .. W 774; P 152
 southwestern .. W 78
 Spokane Valley ... W 889 b; D 118
 artesian water in ... W 54, 78, 560 d, 774, 818; B 199; GF 45, 103, 104;
 C 111, 113, 115, 116; D 16, 47
bibliography of ground water in ... W 120, 163
infiltration tunnels in ... W 54
irrigation with artesian water in ... W 560 d, 774, 818
 with other ground water in ... W 560 d, 774, 818; A 16 II e; P 152;
 GF 103, 104; C 116; D 10, 17, 47, 53
mineral waters in ... B 32; MR 1883-1916
pumping in ... J 263
quality of ground water in .. W 560 d, 774, 818; B 32; GF 45; C 111, 112, 114 115, 116
quantity of ground water in ... W 560 d, 818
salt water in ... B 669
spring measurements in ... W 85, 135, 393, 463, 483, 513, 533, 553, 570,
 573, 590, 593, 610, 613, 630, 633, 653, 673, 723, 738; 768, 774
Idaho, springs in. W 54, 78, 557, 679 b, 774, 818; A 14 II b; P 152; B 32, 199,
680, 718, 774, 808, 814, 854, 877; GF 45, 103, 104; C 112,
114, 115, 116; J 22, 34, 35, 52, 143, 147
thermal ... W 78, 679 b, 818; P 152; B 199, 680, 774, 808, 814, 884,
877; GF 45, 104; C 112, 115; J 34, 35, 147
temperature of ground water in W 78; B 32, 199; GF 104
water levels in W 775, 777, 886, 970, 940, 948, 990
water table in ... W 774, 775, 818, 889 b; GF 108; C 111, 114; D 30, 53, 118
well records for W 57, 149, 775, 818; P 152; B 199, 264, 298, 713;
GF 45, 104; C 112, 114, 115, 116
wells in, construction of W 78; C 116
Igneous contacts, water in ...
Igneous rocks, sodium caronate water in relation to W 320
See also Crystalline rocks; Lava.
Illinois, areas, all of State W 114; A 17 II h; M 38
areas, Belleville quadrangle GF 195
Boone County .. B 264
Breese quadrangle .. GF 195
Brown County .. B 298
Carlyle quadrangle ... GF 216
Centralia quadrangle .. GF 216
Chicago quadrangle ... GF 81
Colchester-Macomb quadrangle GF 208
Cook County .. B 298
Crawford County .. B 298
Danville quadrangle .. GF 67
DuPage County .. B 264
East St. Louis district .. C 131
Galena quadrangle ... GF 200
Gillespie quadrangle .. GF 220
Hancock County .. B 298
Henry County .. B 264
Herrin quadrangle ... GF 185
Lancaster quadrangle .. GF 145
La Salle County ... B 264, 298
Mineral Point quadrangle GF 145
Mount Olive quadrangle .. GF 220
Murphysboro quadrangle .. GF 185
New Athens quadrangle .. GF 213
Okawville quadrangle .. GF 213
Patak quadrangle ... GF 105
Peoria quadrangle ... B 506
Rockford area .. W 67
St. Louis quadrangle ... B 438
Schuyler County .. B 298
southern ... W 164
Springfield quadrangle .. GF 188
Tallula quadrangle ... GF 188
artesian water in. W 67; A 17 II h; M 38; B 438, 506; GF 67, 81, 195; C 131
bibliography of ground water in W 57, 114, 120, 149, 163, 164
mineral waters in ... W 114; B 32; MR 1883-1923
public water supplies in A 17 II h; M 38; B 506; GF 195; C 131
INDEX

Illinois, quality of ground water in ... W 164, 364; A 17 11 h; B 32, 438, 506; GF 81, 188, 195, 20; C 131
springs in ... W 114, 164, 363; A 14 11 b; B 32, 438; GF 106, 20; C 131
temperature of ground water in .. E 32, 506
water levels in ... W 946, 988
water table in ... B 506; GF 67; C 131
well records for ... W 57, 149, 164; A 17 11 h; M 38, 506; GF 67, 81, 105; B 264, 298, 438; GF 67, 81, 105; C 311
wells in, construction and cost of .. W 164

Illustrations: apparatus for —
determining color in water ... W 151
determining thorium in ground water .. B 395
making underflow measurements ... W 110, 140; P 44
measuring artesian wells .. C 92
measuring leaks in artesian wells .. W 596 a
area having ground-water discharge W 294
artesian reservoir, section of ... C 291
artesian springs ... W 34, 90; A 21 IV c
artesian water power .. W 598; C 81
augers for boring wells .. W 257, 495
bedding planes in limestone with water oozing therefrom W 254
blowing spring .. C 81
caves containing water .. W 114; A 21 IV c
dams, subsurface ... W 67
deposits made by hot springs ... W 378; P 53
devices for lifting water .. W 1
diamond drills .. W 257
“divining rods” ... W 416
drainage wells .. W 145
drilling rigs—
deeP-well ... P 32
hydraulic rotary .. W 257
jetting process .. W 30, 140, 257
oil-well ... W 113
portable ... W 257, 495
standard ... W 257
used in—
Arkansas ... P 46
California ... W 110, 140, 495
Georgia ... C 81
Great Plains ... A 21 IV c
Indiana ... W 254
Louisiana ... P 46
Michigan ... W 182
South Dakota .. A 18 IV c
Texas ... W 141
wash-process ... W 145
drilling tools ... W 257
drive point and screen ... W 257
driving outfit for tubular wells .. W 159
dynamometers ... W 20
Illustrations: electric resistivity logs of test wells C 406
evaporation pans ... W 294, 818
fault springs .. W 199
field assay kit .. W 151
filtration plants .. W 815
fissure springs .. W 489; A 21 vii
flowing wells—
Alabama .. C 1
Arizona .. A 21 iv a
California .. W 140, 294
Colorado .. W 240; A 21 iv a; P 32, 52
Florida .. W 319
Georgia .. W 341; C 81
Indiana .. W 254
Kansas .. W 6; A 21 iv c
Kentucky ... W 164
Michigan .. W 145, 182
Mississippi .. W 576
Nebraska ... W 29, 215, 216
Nevada ... W 365
New Mexico .. W 158, 343, 596 a
New York ... P 44
North Carolina .. C 291
North Dakota ... W 520 e, 598
Ohio .. A 19 iv b
Oklahoma ... W 500 b
South Dakota .. W 90; A 17 iv g, 21 iv b; P 32
Tennessee ... W 164
Texas .. W 13, 190; A 18 iv b; B 164
Washington .. W 55
geysers in Yellowstone National Park B 396
infiltration ditches in California ... A 21 iv a
interference of wells ... W 254
Jackson candle turbidimeter ... W 151
lakes produced by artesian water .. A 18 iv c
mud volcanoes in California .. W 225
perforators for well casings .. W 110, 140
pumping plants—
Arizona ... W 135, 320
California ... W 45, 495; C 22
Hawaii .. C 92
Mississippi ... W 576
New Mexico ... W 158
pumping rate and drawdown .. D 182
reservoirs for well water ... W 10, 15; 20, 154; B 319
sinkholes, Florida ... W 319
general ... W 67, 114, 343, 489; A 21 iv b, c; P 53, 65
Great Plains ... A 21 iv c
New Mexico ... W 343
Wyoming ... A 21 iv b; P 53, 65
siphon elevators .. W 1
<table>
<thead>
<tr>
<th>Illustrations: soil evaporation tanks</th>
<th>W 294, 659 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>solution channel on fault line</td>
<td>B 319</td>
</tr>
<tr>
<td>solution channels in limestone</td>
<td>W 254, 259, 374</td>
</tr>
<tr>
<td>spring mounds in N.Mexico</td>
<td>W 343</td>
</tr>
<tr>
<td>springs, artesian</td>
<td>W 34, 98; A 21 iv c</td>
</tr>
<tr>
<td>at outcrop of impervious floor</td>
<td>W 67, 489</td>
</tr>
<tr>
<td>blowing</td>
<td>C 81</td>
</tr>
<tr>
<td>hot</td>
<td>W 338, 418; A 9 d</td>
</tr>
<tr>
<td>large</td>
<td>W 221, 341; A 18 II b</td>
</tr>
<tr>
<td>-produced by faults</td>
<td>W 199</td>
</tr>
<tr>
<td>produced by fissures</td>
<td>A 21 vii</td>
</tr>
<tr>
<td>thermal</td>
<td>A 9 d</td>
</tr>
<tr>
<td>springs in, Alabama</td>
<td>C 1</td>
</tr>
<tr>
<td>Alaska</td>
<td>W 418</td>
</tr>
<tr>
<td>Arizona</td>
<td>W 380</td>
</tr>
<tr>
<td>Arkansas</td>
<td>W 557</td>
</tr>
<tr>
<td>California</td>
<td>W 338</td>
</tr>
<tr>
<td>Connecticut</td>
<td>W 540, 597 b</td>
</tr>
<tr>
<td>Florida</td>
<td>W 557</td>
</tr>
<tr>
<td>Georgia</td>
<td>W 341; C 81</td>
</tr>
<tr>
<td>Idaho</td>
<td>W 557</td>
</tr>
<tr>
<td>limestone</td>
<td>W 317; A 21 iv b</td>
</tr>
<tr>
<td>Michigan</td>
<td>W 182</td>
</tr>
<tr>
<td>Mississippi</td>
<td>W 576</td>
</tr>
<tr>
<td>Missouri</td>
<td>W 195, 557</td>
</tr>
<tr>
<td>Montana</td>
<td>W 221, 557</td>
</tr>
<tr>
<td>Nebraska</td>
<td>W 12</td>
</tr>
<tr>
<td>New Mexico</td>
<td>W 158, 343, 620</td>
</tr>
<tr>
<td>Oregon</td>
<td>W 557, 597 d</td>
</tr>
<tr>
<td>Texas</td>
<td>W 557; A 18 II b, 21 vii</td>
</tr>
<tr>
<td>Yellowstone National Park</td>
<td>A 9 d</td>
</tr>
<tr>
<td>stalactites deposited by ground water in Texas</td>
<td>A 18 II b</td>
</tr>
<tr>
<td>stock-watering places</td>
<td>W 154, 191</td>
</tr>
<tr>
<td>stovepipe casings</td>
<td>W 140</td>
</tr>
<tr>
<td>tablet case used in making assays of water</td>
<td>W 151</td>
</tr>
<tr>
<td>tank filled by artesian pressure</td>
<td>P 32</td>
</tr>
<tr>
<td>"tanks" for watering livestock</td>
<td>W 154; A 22 iv c</td>
</tr>
<tr>
<td>terraces formed by hot springs</td>
<td>A 9 d</td>
</tr>
<tr>
<td>transpiration tank</td>
<td>W 679 a; J 240</td>
</tr>
<tr>
<td>travertine deposited by hot springs in California</td>
<td>W 338</td>
</tr>
<tr>
<td>deposited by springs in N.Mexico</td>
<td>W 343</td>
</tr>
<tr>
<td>tufa deposited by ground water in Texas</td>
<td>A 18 II b</td>
</tr>
<tr>
<td>deposited by hot springs</td>
<td>W 338</td>
</tr>
<tr>
<td>underflow measurements</td>
<td>W 110, 140; P 44; C 81</td>
</tr>
<tr>
<td>underground streams</td>
<td>W 67, 114, 255; A 21 iv c; C 81</td>
</tr>
<tr>
<td>wash drilling</td>
<td>W 145</td>
</tr>
<tr>
<td>water holes in Colorado</td>
<td>P 52</td>
</tr>
<tr>
<td>water power from artesian wells</td>
<td>C 81</td>
</tr>
<tr>
<td>water-stage recorder</td>
<td>J 240</td>
</tr>
<tr>
<td>water wheels for lifting water</td>
<td>W 1, 4, 18, 319</td>
</tr>
<tr>
<td>well curbs</td>
<td>C 291</td>
</tr>
<tr>
<td>well derricks</td>
<td>P 58</td>
</tr>
</tbody>
</table>
Illustrations: well screens .. W 101, 141
well sweeps ... C 291
wells, combination dug and drilled A 22 iv c
in the desert ... W 224
natural ... W 6; A 21 iv c
polluted .. W 159, 255; C 291
windlass and well curb .. W 29
windmills .. W 1, 6, 8, 20, 29, 41, 42, 154, 191; A 21 iv c, 22 iv c
Dutch ... W 41
for watering livestock .. W 191; A 2 iv c, 22 iv c

See also Maps.

Improvement of water in wells W 160; C 92
Inclusions of water in rocks M 47
Incrustations on well screens W 256, 293
India, bibliography of ground water in W 120, 163
irrigation with ground water in W 1, 87; A 11 iv b
pumping in .. W 1, 14
pumps and other water lifts used in W 1, 14; A 12 iv c

Indian Territory. See Oklahoma.

Indiana, areas, all of State W 114; A 18 iv b
areas, Danville quadrangle GF 67
Delaware County .. B 298
Ditney quadrangle ... GF 84
Gas City .. C 136
glaciated portion .. M 53
Indianapolis area .. C 134
Jay County .. B 264
Marion and vicinity ... W 113
Martin County .. B 298
north-central .. W 254
northern ... W 21
Patoka quadrangle .. GF 105
Scottsburg ... C 135
southern ... W 26
Vanderburg County .. B 298
artesian water in .. W 21, 26, 114, 254; A 18 iv b; GF 67
bibliography of ground water in W 57, 114, 120, 149, 163
mineral waters in .. W 114; A 18 iv b; B 32; MS 1883-1923; GF 84
public water supplies in W 254; A 18 iv b; C 135
pumping tests in .. C 136
quality of ground water in W 254; A 18 iv b; B 32; GF 84
quantity of ground water in W 254
salt water in .. W 254; A 18 iv b
springs in ... W 114, 254; A 14 iv b, 18 iv b; F 32; GF 105
water levels in .. W 777, 817, 840, 845, 886, 906, 986, 944, 986
water table in .. W 254; GF 67; D 136
well records for .. W 21, 26, 57, 113, 149, 254; A 18 iv b; B 264, 298;
G 67, 84, 105
wells in, construction of .. W 254

Indications of ground water W 224, 423, 497, 499, 577, 578; B 308
Industrial use of ground water, importance of J 300, 305

See also Quality of ground water.
Industrial wastes, drainage of, into wells W 258
Infiltration. See Absorption.
Infiltration ditches and tunnels, construction of W 67, 116, 380, 494
 cost of .. W 116, 184; C 92
Infiltration ditches and tunnels in—
 Arizona .. W 104, 380; C 15, 20; D 160; J 240, 279
 California .. W 116; A 19 II b, 21 IV a; GF 193
 Colorado .. W 240
 Connecticut .. W 374, 397
 Hawaii .. W 318, 445, 616; C 92, 97, 98, 99; D 48, 50; J 109, 165
 Idaho .. W 54, 774
 Nebraska ... W 184
 New Mexico ... W 188, 275, 343, 380
 Ohio .. W 259
 Oregon ... B 252
 Utah ... W 199
 Virginia ... C 481
Influent seepage. See Absorption of water, from streams.
Instruments. See Apparatus.
Intake of ground water. See Absorption of water; Origin of ground water;
 Quantity of ground water.
 Interference of wells .. W 67, 122, 137, 184, 223, 494, 836 c; A 19 I b; M 27;
 GF 97; C 91, 136, 431, 451; D 55, 83; J 11, 241
 Interference with springs and streams, law relating to W 122
 Iodide in ground water .. W 233, 338; P 117; B 47; MB 1911 II n
 Ione formation, water in, in California ... W 375 a, 619; GF 138
 Iowa, areas, all of State .. W 114, 293; C 137
 areas, Blackhawk County ... B 298
 Cherokee County .. B 264
 Council Bluffs and vicinity ... P 32
 Des Moines County ... B 264
 Elk Point quadrangle .. GF 156
 Floyd County .. B 298
 Galena quadrangle .. GF 200
 Lancaster quadrangle .. GF 145
 Louisa County ... B 298
 Mahaska County ... B 298
 northwestern .. W f15; J 212
 Scott County .. P 264, 298
 Wapello County .. F 298
 Waterloo ... W 145
 artesian water in ... W 145, 293; P 32; GF 145, 156; C 137
 bibliography of ground water in ... W 57, 114, 120, 149, 163
 mineral waters in ... W 293; B 32; MR 1883-1883;
 pollution of ground water in .. W 293
 public water supplies in .. W 293; C 137
 quality of ground water in ... W 293, 364; B 32; GF 145, f°90; C 137
 salt water in .. D 151
 spring discharge measurements in ... W 855
 springs in .. W 145, 293; A 14 II b; B 32; GF 145, 156, 200
 temperature of ground water in ... W 215, 293
 water levels in ... W 777, 817, 840, 845, 886, 908, 937, 946, 988
Iowa, water table in ...J 206
well records for ...W 57, 149, 298; B 264, 298; GF 156
wells in, construction ofW 293
Ireland, D. M., Water levels and artesian pressure in the United States
 W 945, 946
Iron, field tests for ...W 151
in ground water ..W 254, 256, 259, 273, 338, 341, 398, 399; P 113; B 902;
MR 1911 II d, 1916; C 1, 341, 342; J 145, 164
Irrigation, artesian water for. See specific States.
effect of, on quality of ground waterW 9, 58, 774
on water table ..W 9, 58, 774
flood water in connection with ground water forW 320, 343
ground water for. See specific States.
hot springs for ..W 774, 818; GF 104
measurement of ground water for ..D 33
quality of ground water for ..W 260, 274, 320, 333, 335, 343, 375 g, 398, 836 d
subsurface ...W 818; A 13 III b
supplementary, ground water forW 275, 320
temperature of ground water forW 398
Irving, J. D., Geology and ore deposits of the Leadville district, Colo........P 148
Isochlors, in New England StatesW 144
in New York ...W 144
in Texas ..J 117
in Virginia ...C 431
Italy, bibliography of ground water inW 275, 320
quality of ground water in ..P 380, 491; 616

J
Jackson, D. D., Normal chlorine in New York and New EnglandW 144
Jackson coal measures, water in, in MichiganW 30
Jackson formation, water in—
Arkansas ..W 399
Florida ...W 319
Georgia ..W 341; C 81
Louisiana ...W 114
Mississippi ..W 159
Tennessee ..W 638 a; C 372
Jacob, C. C., Surface water supply of the United StatesV 440, 460, 479
Jacob, C. E., Coefficients of storage and transmissibilityJ 241
Correlation of ground-water levels and precipitation on Long Island,
N. Y. ..J 312, 341
Elasticity of the Lloyd sand, Long Island, N. YJ 246
Experiment on flow through a capillary tube (discussion)J 299
Flow of water in an elastic artesian aquiferJ 230
Fluctuations in artesian pressure produced by passing trainsJ 207
Ground-water resources of the Pensacola area, FlaD 128
Ground-water underflow in Croton Valley, N. YJ 194
Partial penetration of pumping wellD 201
Recovery method of determining permeabilityD 205
Water levels and artesian pressure in the United StatesV 817, 840, 845
Water table in the western and central parts of Long Island, N. Y; C 280
Jacob, C. E., Well discharge; a method of computing the quantity of water derived from storage (discussion) ... J 342
Jacobsen, C. L., Oklahoma water, quantity, occurrence, and quality of surface and ground waters ... C 323
Water levels and artesian pressure in the United States, 1943 W 989
Jameco gravel, water in, in New York P 44; C 274
Jameson, C. H., Ground-water resources of the Las Vegas artesian basin, Nev ... C 208
Japan, bibliography of ground water in W 163
Jarvis, C. S., Inventory of unpublished hydrologic data W 837
Java, quality of ground water in ... B 336, 491, 616
Jefferson City limestone, water in, in Missouri W 195
Jeffords, R. M., Ground-water conditions along the Ohio Valley at Parkersburg, W. Va ... C 449
Ground-water levels in West Virginia J 356
Recharge to water-bearing formations along the Ohio Valley J 333
Water for secondary recovery of petroleum in West Virginia J 357
Water levels and artesian pressure in the United States W 945, 987
Water levels determination under adverse conditions D 194
Johnson, B. L., Bibliography of ground-water literature in 1905 W 163
Coastal Plain of North Carolina ... C 291
Johnson, D. W., Law relating to ground water W 122
Johnson, G. A., Purification of public water supplies W 315
Johnson, H. R., Water resources of Antelope Valley, Calif W 278
Johnson, L. C., Underground water resources of Mississippi W 159
Underground waters of Mississippi .. W 102, 114
Johnson, W. D., The High Plains and their utilization A 21 IV c, 22 IV c
Johnston, W. D. Jr., Gold quartz veins of Grass Valley, Calif P 194
Ground water in the Paleozoic rocks of northern Alabama C 2
Joints, artesian water in ... W 160, 232; B 319
depth of ... W 160, 232
drilling in relation to ... V 223, 256
large springs issuing from ... W 221
pollution of water in .. W 258
springs in relation to ... W 221, 232
water in W 114, 145, 160, 221, 223, 232, 254, 258, 489, 578 b; B 319; GF 149
crystalline rocks .. W 160, 232, 489
gneiss ... W 223, 489
granite ... W 223, 489
lava ... W 560 d, 637 d, 774, F18; J 255
schist .. V 223, 489
slate .. V 223, 489
Jonas, A. I., Geology and mineral resources of the Middletown quadrangle, Pa ... B 840
Geology and mineral resources of York County, Pa C 347
Jones, D. S., Jr., Ground water in the Republican River Basin in Nebraska ... C 202, 203, 204
Jones, E. L., Manganese ore in Arizona B 710 d
Manganese ore in New Mexico ... B 710 b
Manganese ore in southeastern California B 710 e
Pine Creek district, Idaho .. B 710 a
Jones, G. D., Water levels and artesian pressure in the United States, 1942 .. W 946
Jones, P. H., Ground water and geologic structure of Natchitoches area, La ... J 331
Ground-water conditions of the Baton Rouge area, La C 170 a
Ground-water exploration at Alexandria, La J 345
Ground-water exploration in the Natchitoches area, W 968 c
Ground-water geology at Natchitoches, La C 169
Ground water in Louisiana J 373
Water levels and artesian pressure in the United States W 947, 989
Jordan sandstone, water in, in Iowa .. W 293
water in, in Minnesota ... W 256; GF 201
See also Potsdam sandstone; Cambrian formations.

Jurassic formation, water in—

Arizona .. W 380, 386 b
Colorado .. B 851; D 71
Kansas .. A 16 ii f; C 145
Montana .. B 822 a, 856
Nebraska .. A 16 ii f; GF 108
New Mexico .. W 380, 620; B 767; D 63
Oklahoma .. J 213
South Dakota ... P 32; GF 107, 127, 164
Utah ... W 380; P 56, 188; B 628, 711 a, 852, 863; D 71
Wyoming ... P 32, 56, 65; B 471, 543; GF 107, 108, 127, 150
See also specific formations.

Juvenile water .. W 160; B 319, 330, 491, 494, 616

K

Kaibab limestone, water in, in Arizona .. W 836 b
Kansas, areas, all of State W 273; A 11 ii c; C 142, 151
areas, Allen County ... B 298
Arkansas River Valley ... W 153, 154 a; C 153
Atchison County .. C 148
central .. A 21 iv c, 22 iv c; P 32
Ellis County ... C 156
Finney County .. C 158
Ford County .. C 141, 142; 153; D 11
Garden City and vicinity ... W 140, 153
Gray County .. C 158
Greeley County ... B 264
Hamilton County .. C 155
Independence quadrangle .. GF 159
Iola quadrangle ... B 238
Joplin district .. W 145; GF 148
Kansas City .. J 369
Kearny County ... C 155
Lakin quadrangle ... GF 212
Lansing ... C 143
Lawrence ... C 146
Leavenworth quadrangle ... GF 206
McPherson district .. C 142
Meade artesian basin .. W 6; A 21 iv c; C 42, 144; D 132; J 293
INDEX

Kansas, areas, Meade County ... C 154
Morton County .. C 149; D 154
Neosho River Valley .. C 157
northwestern ... A 16 II f
Parsons and vicinity ... C 157
Russell County .. C 156
St. Francis and vicinity ... W 258
Scott district .. C 142; J 248
south-central ... C 150
southwestern .. W 6
Stanton County .. C 142, 145; D 144
Syracuse quadrangle .. GF 212
Thomas County .. C 159
western .. A 21 IV c, 22 IV c; P 32
Wichita and vicinity .. W 345 a; D 119; P 214, 233
artesian water in .. W 6, 273; A 11 II f, 16 II f, 21 IV c; P 32; GF 148;
.. C 144, 148; D 132
bibliography of ground water in .. W 57, 120, 149, 163
irrigation with artesian water in .. C 144
with other ground water in ... W 5, 6, 8, 153, 258, 345 a, b; A 11 II c,
.. 16 II e, f, 21 IV c, 22 IV c; C 141, 144, 149; D 111, 132
mineral waters in ... P 32; B 32; MR 1888-1923; GF 148; 159, 206
public water supplies in .. W 273; P 32; GF 148; J 214
pumping in .. W 140, 153, 258, 345 a
pumping tests in ... J 369
quality of ground water in ... W 6, 145, 153, 273, 345 a; P 32; B 32, 238,
.. 330, 491, 530 b, 606, 616; GF 206; C 143, 145, 146, 149, 151, 153, 154, 155;
.. 156, 157, 158, 159
quantity of ground water in ... W 6, 153, 258, 345 a; C 152
salt water in ... W 273; B 238, 530 b, 669, 715 m; GF 206; D 151
springs in ... W 6, 145; A 14 II b, 16 II f, 21 IV c; B 32, 238; GF 148,
.. 159, 2f a; C 144
underflow measurements in ... W 153, 258
water levels in .. W 777, 817, 840, 845, 886, 908, 986, 946, 988
water table in ... W 6, 153, 258; C 144, 149; D 74, 111, 147, 166; J 214, 243
well records for ... W 57, 149, 153, 258, 273, 346 a; A 16 II f; P 32;
.. B 131, 264, 298, 669, 691 a; C 141, 143, 145, 146, 149, 153, 154, 155, 159
wells in, construction of ... W 258, 345 a
cost of ... W 345 a; A 11 II c; B 131
windmills in .. W 8, 41
Karst water. See Limestone, water in.
Kasel, R. G., Surface water supply of the United States, 1938 W 855
Katamorphism, zone of, ground water in relation to M 47
Kazmann, R. G., Coefficient of storage of a water-bearing formation.. D 206
Field applications of water transmissibility and storage coefficients. J 326
Ground water supplies for rice irrigation in the Grand Prairie
region, Ark .. C 20 e

- Physics of the divining rod (review) .. J 222
Predictions of drawdown in a well field D 182
Pumpage from wells, and water levels in the Memphis area D 204
Kazmann, R. G., Quantitative study of the well fields of the Mill Creek Valley water supply project, Ohio C 312

Water levels and artesian pressure in the United States..... W 909, 937, 939, 945, 947, 987, 989

Water supply of the Memphis area, Tenn C 378

Well discharge; a method of computing the quantity of water derived from storage J 342

Keith, Arthur, Gacney-Kings Mountain folio, S. C.-N. C GF 222

Mount Mitchell folio, N. C.-Tenn GF 124

Pisgah folio, N. C.-S. C GF 147

Roan Mountain, Tenn.-N. C GF 151

Washington quadrangle, D. C.-Md.-Va GF 70

Kelton, F. C., Geology and water resources of Sulphur Spring Valley, Ariz .. W 320

Kentucky, areas, all of State W 102, 114

areas, Allen County .. B 688

Blue Grass region .. W 233

Cretaceous area ... W 164

Estill County .. B 661 d

Irvin oil field .. B 661 d

Kenova quadrangle .. GF 184

Louisville .. C 160, 160 a, b, c, d, e; J 323, 330, 349

Metcalf^e County ... B 298

Middlesboro-Harlan region W 110

north-central .. W 233

west of Tennessee River W 164
test of Tennessee River

bibliography of ground water in W 57, 114, 120, 148, 163, 164, 233

conservation of ground water in C 160 d

ground water for air conditioning in C 160, 160 e, b; J 330, 349

industrial use of ground water in C 160, 160 a, b, d; J 330, 349

mineral waters in .. W 164, 233; B 32; MR 1883-1923

public water supplies in W 233; J 349

pumping in .. J 323, 349

quality of ground water in W 102, 164, 233, 364; B 32, 330, 491, 606, 616, 661 d; GF 184; C 160 c, e

quantity of ground water in W 233; C 160 d

salt water in .. B 661 d, 688; GF 184

springs in ... W 114, 233; A 14 II b; B 32, 661 d

data table in .. W 164, 233

well records for .. W 57, 102, 149, 164, 233; B 264, 298, 688; GF 184; C 160 f

wells in, construction of W 164

cost of ... W 164; B 131

Keokuk limestone, water in, in Illinois R 438; GF 208

water in, in Iowa ... W 293

in Missouri ... W 195; B 438

Kew, W. S. W., Geology and oil resources, Los Angeles and Ventura Counties, Calif ... B 753

Structure and oil resources of Simi Valley, southern California . B 691 m

Keweenawan formations, water in, in Wisconsin C 451

Keyes, C. R., Geology and underground water conditions of the Jornada del Muerto, N. Mex W 123
INDEX 30

Kinderhook formation, water in, in Illinois .. B 438
water in, in Iowa .. W 293
in Missouri ... B 438
Kindle, E. M., Niagara folio, N. Y .. GF 190
Water resources of the Catatonk area, N. Y .. W 145
Watkins Glen-Catatonk folio, N. Y ... GF 169
King, F. H., Movements of ground water ... A 19 II b
King, P. B., Geology of the Marathon region, Tex P 187
King, W. R., Surface water supply of the United States, part 2 W 642, 682,
697, 712
Surface water supply of the United States, part 3 W 666, 683, 698,
713, 728, 743, 758
Klaer, F. H., Jr., Ground-water conditions in the vicinity of Scottsburg,
Ind .. C 135
Ground water in the Cincinnati area, Ohio .. D 156
Ground-water investigation in Butler and Hamilton Counties, Ohio C 311
Ground-water problems in Ohio .. J 215
Municipal and industrial water supplies from wells in Butler and
Hamilton Counties, Ohio ... D 120, 156
Quantitative study of the well fields of the Mill Creek Valley water-
supply project, Ohio .. C 312
Water levels and artesian pressure in the United States W 840, 845,
886, 906, 907, 936, 937, 944, 956
Knapp, G. N., Philadelphia folio, Pa.-N. J.-Del .. GF 162
Underground waters in New Jersey .. W 114
Knappen, R. S., Geology and mineral resources of parts of Carbon,
Big Horn, Yellowstone, and Stillwater Counties, Mont B 822 a
Geology and mineral resources of the Aniakchak district, Alaska B 797 f
Knechtel, M. M., Coal resources of McConel County, Mont B 905
Geology and fuel resources, Lehigh district, Okla B 874 b
Geology and ground-water resources of the valley of Gila River and
San Simon Creek, Ariz ... W 796 f
Ground water in Gila and San Simon Valleys, Ariz D 82
Indian Hot Springs, Ariz ... J 136
Water supplies from wells in southeastern Utah and southwestern
Colorado .. D 71
Knobstone formation, water in, in Indiana .. W 114
Knopf, Adolph, Developments in the Aspen district, Colo B 785 a
Geology and ore deposits of the Pioche district, Nev P 171
Geology and ore deposits of the Rochester district, Nev B 762
Mother Lode system of California .. P 157
Kokomo limestone, water in, in Indiana .. W 254
Kümmel, H. B., Franklin Furnace folio, N. J .. GF 161
Passaic folio, N. J.-N. Y .. GF 157
Philadelphia folio, Pa.-N. J.-Del ... GF 161
Raritan folio, N. J ... GF 191
Trenton folio, N. J.-Pa .. GF 167

L

Lacustrine deposits, water in—
Arizona ... W 425 a, 796 f; C 12, 15, 16; D 160; J 240
Idaho .. W 774, 818
Lacustrine deposits, water in, Illinois ... GF 105
Indiana ... GF 105
Manitoba .. M 25
Michigan ... GF 205
Minnesota ... M 25
Montana ... V 221, 400 b
North Dakota .. M 25
Oregon .. W 22", 231, 637 d
Utah ... W 217, 277, 333
Washington ... W 425 e
Wisconsin ... V' 114; C 451

Lafayette formation, water in—
Arkansas ... W 399; P 46
Atlantic Coastal Plain ... B 138
Florida .. W 319
Georgia .. C 81
Kentucky .. W 164
Louisiana .. P 46
Maryland ... GF 13, 23, 152
Mississippi ... W 159
Missouri .. W 195
North Carolina .. C 291
Tennessee .. W 164
Virginia .. GF 13, 23; C 431

LaForge, Laurence, Ellijay folio, Ga.-N. C.-Tenn GF 187
Geology of the Boston area, Mass .. B 839
Water resources of the central and southwestern highlands of—
New Jersey ... W 110
Well and spring records for Massachusetts W 102

Lagrange formation, water in, in Kentucky W 164
water in, in Missouri .. W 195
in Tennessee .. W 164

Lake beds. See Lacustrine deposits.
Lakes, underground .. C 431
Lakota sandstone, water in, in Montana ... B 71 f; GF 138
water in, in Nebraska .. GF 85, 108; C 202, 204
in South Dakota .. A 21 lv b; P 32, 65; GF 85, 107, 108, 128, 164, 209, 219
in Wyoming .. A 21 lv b; P 32, 65; GF 107, 127, 128, 150

Lamar, W. L., Chemical character of natural waters J 187
Chemical character of public water supplies of Georgia J 253
Industrial quality of public water supplies in Georgia, 1940 W 912
Industrial utility of public water supplies in the United States 1932. W 658
Lamb, W. A., Surface water supply of the United States, 1912 W 326
Water levels and artesian pressure in the United States W 777, 817

Lamination planes, water in ... W 319, 489
LaMotte sandstone, water in, in Missouri W 195
Lance formation, water in, in Montana ... W 520 d, 599, 600; B 812 a, 831 b, 856
water in, in North Dakota .. W 598; B 575; GF 181
in South Dakota .. B 575
in Wyoming ... P 656, 796 a

Landes, Henry, Underground waters of Washington W 111
INDEX

Lane, A. C., Flowing wells and municipal water supplies in the southern peninsula of Michigan .. W 182, 183
Lower Michigan mineral waters .. W 31
Water resources of the lower peninsula of Michigan W 30
Laney, F. B., Genesis of the ores at Tonopah, Nev P 104
Geology and ore deposits of the Ducktown mining district, Term ... P 189
Ground-water supply at Moscow, Idaho C 113
Lang, J. W., Geology and ground water, Pecos River Basin, N. Mex .. C 256
Ground water in the High Plains in Texas W 889 c; C 811, 897, 416
Ground water in the Pecos River Basin in Texas C 402
Lang, W. B., Geology and ground-water conditions of the Pecos Riv*er Valley in the vicinity of Laguna Grande de la Sal, N. Mex B 785 b
Source of salt in ground water in the vicinity of Laguna Grande de la Sal, N. Mex .. D 103
Lansing formation, water in, in Kansas GF 206
water in, in Missouri .. GF 206
Laramie formation, water in
Colorado ... M 27; P 32; GF 71
Kansas .. P 32
Nebraska ... P 32; GF 87
South Dakota .. W 227; P 32
Wyoming ... P 32
LaRocque, G. A. Jr., Fluctuation of water level in Los Angeles Basin, Calif., during earthquakes .. J 237
Water levels and artesian pressure in the United States W 817, 840, 845, 949
Water levels in observation wells in Santa Barbara County, Calif. ... C 28
Water-table fluctuation in Spokane Valley, Wash.-Idaho W 889 b
Water wells and water levels in Carpinteria, Goleta, and Santa Ynez Valley areas, Calif ... C 30 d
Water wells and water levels in San Antonio, Santa Maria, and Cuyama Valleys, Calif ... C 30 d
Wells used for public supply at Spokane, Wash D 102
Larrison, G. K., Report of Water Commission of Hawaii C 91
Surface water supply of Hawaii ... W 430, 445
Water resources of Hawaii, 1912 ... W 836
Larsen, E. S., Contact-metamorphic tungsten deposits of the United States ... B 725 d
Geology and ore deposits of the Creede district, Colo B 718
Geology of the San Juan region of southwestern Colorado B 843
LaRue, E. C., Surface water supply of the United States W 212, 289
Lasky, S. G., Geology and ore deposits of the Bayard area, N. Mex ... B 870
Geology and ore deposits of the Lordsburg mining district, N. Mex. B 885
Latta, B. F., Geology and ground-water resources of Finney and Gray Counties, Kans .. C 158
Geology and ground-water resources of Stanton County, Kans .. C 145
Ground-water investigations in the Stanton district, Kans C 142
Ground-water resources of Stanton County, Kans D 144
Ground-water supplies in Kansas available for national defens... C 151
Water levels and artesian pressure in the United States W 886, 908, 938
Lava, artesian water in. W 4, 560 d, 818; B 199, 616; C 91, 92, 94, 97, 99; J 255
water in W 110, 160, 489, 557; P 319; J 255
Arizona W 499, 836 b; C 13; D 85
California W 219, 375 a; GF 138
Connecticut W 232, 374, 597 b
Hawaii. W 77, 616; C 91, 92, 94, 97, 98, 99; D 48, 50, 157; J 27, 109, 217
Idaho W 54, 560 d, 774; B 199, 818; C 111, 112, 117, 118; J 22, 143
Maine .. W 223
Nevada W 365
New Mexico W 620
Oregon W 220, 231, 637 d, 659 b; B 2-2; D 20, 24
Texas GF 64
Utah .. W 277
Virginia C 436
Washington W 4, 55, 118, 316, 425 e; GF 106
Lava tubes, water in W 774, 818; C 92, 29; 99; J 255
Laws, for filing well records W 78
relating to ground water—
Florida W 152; C 58
general W 122, 152; J 10, 182, 190, 220, 224, 267; 339
Hawaii W 122, 152, 182, 183
Michigan W 122, 152, 182, 183
New Mexico W 152; C 231, 238, 239; J 10, 51, 69, 118
New York J 190
South Dakota W 122; C 361
Washington W 55, 78, 122, 152
Wyoming W 122, 152; J 266
relating to pollution of ground water . W 122, 152
Lawson, A. C., San Francisco folio, Calif . GF 193
Lead in ground water W 254, 39?; B 47, 606
Leaks in artesian wells, methods of detecting ... W 118, 596 a, 796 a; A 5 c;
 C-92, 423
Lee, C. H., Geology and ground waters, western part of San Diego County,
Calif W 446
Ground-water resources of Indian Wells Valley, Calif C 22
Subterranean storage in San Bernardino Valley, Calif C 21
Water resources of part of Owens Valley, Calif W 294
Lee, W. T., Erosion by solution and fill B 760 c
Geologic reconnaissance of part of western Arizona B 352
Geology and water resources of Owens Valley, Calif W 181
Raton-Brilliant-Koehler folio, N. Mex GF 214
Underground waters of Gila Valley, Ariz W 104
Underground waters of Salt River Valley, Ariz W 136
Water resources of Beaver Valley, Utah W 217
Water resources of Rio Grande Valley in New Mexico and their
development W 188
Lee, Wallace, Geology of the Tullock Creek coal field, Mont B 749
Gillespie-Mount Olive folio, Ill GF 220
Leggette, R. M., Artesian water supply of Ogden, Utah D 65
Channel-storage method of determining effluent seepage J 159
Earthquakes instrumentally recorded in artesian wells J 124
Geology and ground-water resources of Ogden Valley, Utah W 796 d
INDEX

Leggette, R. M., Ground water for air conditioning on Long Island, N. Y. J 193
Ground water for public supply in western Pennsylvania J 234
Ground water in northwestern Pennsylvania C 343
Ground-water levels in observation wells, Soil Conservation Service, D 74
Ground water relieves 1934 drought emergency in Salt Lake City,

Utah ... J 135
Ground-water resources of northeastern Pennsylvania D 26
Ground-water supplies in the vicinity of Salt Lake City, Utah D 36
Ground waters of Monroe County, N. Y C 273
High-low float gage ... D 127
Interference of artesian wells on Long Island, N. Y J 177
Long-time records of ground-water levels on Long Island, N. Y... J 150
Observation wells, manual of methods D 60
Record of wells in Kings County, N. Y C 275, 279
Record of wells in Nassau County, N. Y C 277
Record of wells in Queen County, N. Y C 278
Record of wells in Suffolk County, N. Y C 276
Record of wells, springs, and ground-water levels, Conn C 41, 42, 43

44, 45, 46
Transmission of pressure in artesian aquifers J 115
Water levels and artesian pressure in the United States W 817, 840,
886, 906, 936

Withdrawal of ground water on Long Island, N. Y C 274

Legislation. See Law.
Leighton, M. O., Field assay of water W 151
Quality of water in Susquehanna River Basin W 108
Leith, C. K., Geology of the Lake Superior region M 52
Mesabi iron-bearing district of Minnesota M 43
Leona formation, water in, in Texas A 18 II b; GF 64
Leonard, A. G., Bismarck folio, N. Dak GF 181
Leverett, Frank, Ann Arbor folio, Mich GF 155
Danville folio, Ill.-Ind GF 67
Flowing wells and municipal water supplies in the southern peninsula
of Michigan .. V 182, 183
Flowing wells in northern Michigan W 160
Geological conditions of municipal and institutional
water supplies in Michigan J 8
Geology and mineral resources of the Cleveland district, Ohio ... B 818
Illinois glacial lobe .. M 38
Moraines and shore lines of the Lake Superior basin P 154 a
Pleistocene of Indiana and Michigan M 53
Underground waters of Illinois, Indiana, and Ohio W 114
Water resources of Illinois A 17 II h
Water resources of Indiana and Ohio A 18 IV b
Wells of northern Indiana W 21
Wells of southern Indiana W 26
Lexington limestone, water in, in Kentucky W 235
Limestone, caverns formed by ground water in W 233, 255, 259, 489;
B 760 c; C 81
drainage into wells in W 258
pollution of water in W 233, 255, 258; C 131
solution channels in ... W 233, 255, 259, 489
Limestone, turbidity of water in ..C 131
water in ..W 110, 114, 255, 257; A 5 e

See also specific formations.

Lindgren, Waldemar, Boise folio, IdahoGF 45
Clifton folio, Ariz ..GF 129
Colfax folio, Calif ..GF 66
Copper deposits of the Clifton-Morenci district, ArizP 43
Geology and gold deposits of the Cripple Creek district, Colo ..P 54
Geology and ore deposits of the Tintic mining district, UtahP 107
Nampa folio, Idaho-Oreg ..GF 103

Ore deposits of New Mexico ...P 68

Ore deposits of the Jerome and Bradshaw Mountains quad-angles,

Silver City folio, Idaho ...GF 104

Tertiary gravels of the Sierra Nevada of CaliforniaP 73
Truckee folio, Calif ..GF 39

Water resources of Molokai, Hawaiian IslandsW 77

Lines, E. F., Records of deep wells, 1904B 264
Lippincott, J. B., Development and application of water near San

Bernardino, Colton, and Riverside, CalifW 59, 60

Storage of water on Kings River, CalifW 58

Water problems of Santa Barbara, CalifW 116

Lissie gravel, water in, in Texas ..W 385; J 132
Lithium in ground water ..W 160, 259, 338; B 47; MR 1911 II n
Little, H. P., Colchester folio, Md ..D 151; J 276
Livestock, quality of water for ...D 142

Equipment for measuring depth to water0 142
Exploratory water-well drilling in the Houston district, Tex ..W 889 e;

C 406

Ground water in parts of the Texas Coastal PlainJ 132

Ground-water resources in the Houston district, TexC 338; D 46

Ground-water resources of El Paso, TexW 919

Ground-water resources of Kleberg County, TexW 773 d

Ground-water resources of the Big Spring area, TexW 913

Ground-water resources of the Houston-Galveston area, Tex ...D 39

Ground-water supply of Big Spring, TexC 404
Locating salt-water leaks in water wellsW 796 a
Natural flow from artesian well, San Antonio, TexC 401
Salt-water problems in the East Texas oil fieldsD 151
Salt-water problems in the Winter Garden area, TexH 151

Underground leakage from artesian wells in the Flowell area, Utah.C 423
Underground leakage from artesian wells in the Las Vegas area,

Nev ...W 349 d

Water levels and artesian pressure in the United StatesW 817, 840

Water resources of the Edwards limestone in San Antonio

area, Tex ..W 773 b

Lloyd, E. R., Lignite field of northwestern South DakotaB 627
Lloyd sand, water in, in New YorkP 44; C 274
Loam, water in ..W 159, 489
Locating water in deserts ..W 224, 423, 497, 498, 499, 577; B 308
INDEX

Loeltz, O. J., Water levels and artesian pressure in the United States .. W 886, 911, 941

Loess, turbidity of ground water due to water in—

Illinois .. W 164; GF 105, 188, 195, 213, 216; C 181
Indiana .. GF 105
Iowa .. W 293; GF 156
Kansas .. C 142, 155
Kentucky W 164
Minnesota W 256
Mississippi W 159, 576
Nebraska W 848; GF 156; C 207, 204; J 75
Ohio .. W 259
South Dakota GF 156
Tennessee W 164
Wisconsin C 451

Logan, W. N., Ground-water resources of Mississippi W 576
Logan sandstone, water in, in Ohio .. W 114
Logarithms for recomputing water analyses ... W 293
Logie, R. M., Water levels and artesian pressure in the United States, 1937 W 840
Lohman, S. W., Fluctuations of the ground-water table in Pennsylvania J 88
Gaging the ground-water reservoirs of Kansas ... C 142
Geology and ground-water resources of the Elizabeth City area, N. C W 778 a
Geology and ground-water resources of the “Equus beds” area, Kans J 214
Ground-water conditions in the vicinity of Lawrence, Kans C 146
Ground-water in north-central Pennsylvania ... C 346; D 98
Ground-water in northeastern Pennsylvania ... C 344; D 26
Ground-water in south-central Pennsylvania .. C 345; D 94
Ground-water in the Elizabeth City area, N. C .. J 108
Ground-water in the McPherson district, Kans .. C 142
Ground-water levels in Kansas .. D 147, 166
Ground-water levels in Pennsylvania in 1936 ... J 178
Ground-water resources of Pennsylvania .. C 349
Ground-water supplies for national defense in south-central Kansas C 150
Hydrology of the Wichita area, Kans .. J 233
Observation wells, manual of methods ... D 60
Replenishment of ground-water in Pennsylvania ... D 34
Report of Committee on Ground Water ... J 307, 340
Summary of salt-water intrusion in Kansas .. D 151
Water levels and artesian pressure in the United States W 777, 817, 840, 845, 886, 908, 938, 946, 48, 988, 990

Water supplies from wells for irrigation, Ford County, Kan C 141

Water supply for the State Penitentiary, Lansing, Kans C 143
Lohr, E. W., Geology and ground-water resources of the valley of the Gila River and San Simon Creek, Ariz W 796 f
Ground-water in Gila and San Simon Valleys, Ariz D 82
Lohr, E. W., Industrial utility of public water supplies in the United States, 1932 ..W 658
Longwell, C. R., Geology of the Muddy Mountains, NevB 798
Lonsdale, J. T., Geology and ground-water resources of Atacosa and Frio Counties, Tex ...W 676
Geology and ground-water resources of Webb County, TexW 778
Ground-water resources of Webb County, TexD 31
Underground water resources of Atacosa and Frio Counties, Tex...D 38
Lost rivers ...W 774, 818; A 18 iv b, 21 iv c; J 279
Loughlin, G. F., Geology and ore deposits of the Leadville mining district, Colo ..P 148
Geology and ore deposits of the Tintic mining district, UtahP 107
Indiana oolitic limestone ...B 811 c
Ore deposits of Utah ...P 111
Oxidized zinc ores of Leadville, ColoB 681
Louisiana, areas, Acadia ParishC 170; J 316
areas, Alexandria ...C 166; D 191; J 845
all of State ...W 114; C 162
Avoyelles Parish ...C 163
Baton Rouge area ...C 170 a
Bayou Rapides area ...J 345
Bossier Parish ...C 168
Caddo Parish ...C 168
Camp Polk ...J 354
central ...C 164
Coastal Plain ...B 282
Grant Parish ...C 165
Jefferson Davis ParishC 170; J 316
La Salle Parish ...C 165
Natchitoches area ...W 968 c; C 169; J 331
New Orleans ...J 305
North Camp Polk ...J 354
northern ...P 146; C 161
Rapides Parish ...C 163, 167
southern ...W 101
artesian water in ...W 101; P 46; C 161, 164, 166, 167, J 305
bibliography of ground water inW 114, 120, 149, 163
industrial use of ground water inJ 302, 303
mineral waters in ...W 114; P 46; B 32; MR 1883-1923
public water supplies in ...W 101; P 46; J 331
pumping in ...W 101; C 170 a; J 316
pumping tests in ...C 170 a
quality of ground water in ...W 101; P 46; B 330, 451, 530 b, 616;
quantity of ground water in ...C 163, 165, 166, 167, 168, 170 a
rice irrigation with ground water inW 101; C 162, 164; J 316, 373
salt water in ...B 282, 530 b, 669; D 151; J 305, 316
salt water in oil fields in ...B 282
springs in ...W 114; A 14 ii b; P 46; B 32; C 161
test drilling in ...D 191
water levels in ...W 845, 886, 909, 939, 947, 989
INDEX 315

Louisiana, water table in P 46; C 162, 166, 167, 170; J 305, 373
well records for . . W 101, 149; P 46; B 264, 298, 669; C 161, 163, 167, 168, 170
wells in, construction of :,...... P 46
cost of ... P 46; B 282
yield of*............................... C 170 a
Louisiana limestone, water in, in Missouri W 195
Love, S. K., Cation exchange in ground water contaminated with sea water
near Miami, Fla ... J 343
Chemical character of public water supplies in southeastern Florida.J 301
Ground water in southeastern Florida J 252
Investigation of water resources in southeastern Florida C 63
Water resources in southeastern Florida C 62
Lovering, T. S., Geology and ore deposits of the Breckenridge mining
district, Colo ... P 176
Geology and ore deposits of the Montezuma quadrangle, Colo P 178
Lower Magnesian limestone, water in, in Illinois A 17 II h; GF 81
water in, in Wisconsin .. W 14; C 451
See also New Richmond sandstone; Oneota limestone; Prairie du
Chien group; Shakopee dolomite.
Lowry, E. J., Ground-water survey, United States Geological Survey—
State of Connecticut .. C 48
Lucas dolomite, water in, in Michigan GF 205
Ludlow, J. M., Water levels and artesian pressure in the United States,
1943 .. W 986
Lugn, A. L-, Geology and ground-water resources of south-central
Nebraska ... W 779
Ground-water hydrology and Pleistocene geology of Platte Valley,
Nebr .. J 75
Ground-water levels in Platte Valley, Nebr D 49
Ground-water levels in Platte River Valley, Nebr D 49
Ground-water resources of south-central Nebraska D 64
Lupton, C. T., Anticlines in southern part of Big Horn, Basin, Wyo .. B 656
Bull Mountain coal field, Mont B 646
Geology and coal resources of Castle valley in Carbon, Emery, and
Sevier Counties, Utah B 628
Oil and gas near Basin, Wyo B 621
Oil and gas near Green River, Utah B 541 d
Lusk, R. G., Geology and oil and gas prospects of northeastern
Colorado ... B 796 b
Lynch, W. A., Ground water in Dimmit and Zavalla Counties, Tex D 51
Methods of locating salt-water leaks in water wells W 796 a
Lysimeters for measuring absorption of water W 155, 619; J 73

M

McCallie, S. W., Underground waters of Georgia W 114; C 81
Well and spring records for Georgia W 102
Well contamination at Quitman, Ga W 110
MacCarthy, G. R., Geophysical studies on Molokai, Hawaii D 158
McCashin, C. E., Surface water supply of the United States.. W 727, 728, 742, 783, 803, 858
McCombs, John, Methods of exploring and repairing leaky artesian wells on Oahu, Hawaii ... W 596 a
MacDonald, G. A., Geology and ground-water resources of Maui, Hawaii ... C 99
McDonald, H. R., Design and use of maximum-minimum water-level gage (comments) ... D 155
Geology and ground-water resources of the Verde River Valley, Ariz ... C 20 a
Ground-water levels and pumpage in Ariz., 1939-40 C 14
Ground-water resources of the Santa Cruz Basin, Ariz C 20
Measurements of discharge from wells with vertical pipes D 195
Safford Valley, Graham County, Ariz., records of wells and springs.. C 16
Water levels and artesian pressure in the United States... W 911, 941, 948, 949, 990
Water resources of Safford and Duncan-Virden Valleys, Ariz. and N. Mex .. C 15
McGee, W J, Potable waters of eastern United States A 14 III a
McGlashan, H. D., Surface water supply of the United States... W 331, 441, 460, 591, 721, 766, 831, 861, 881, 901
Water resources of California .. W 298, 300
McGuinness, C. L., Ground-water conditions in Michigan J 216
Ground-water resources of the Indianapolis area, Ind C 134
Importance of snow in relation to ground-water recharge J 270
Legal control of use of ground water J 339
Water levels and artesian pressure in the United States... W 845, 886, 906, 936, 944
Water supplies from wells in the Indianapolis area, Ind D 136
Work of the United States Geological Survey on ground-water supplies for war purposes .. J 364
McKnight, E. T., Geology of area between Green and Colorado Rivers, Utah .. B 908
Zinc and lead deposits of northern Arkansas B 853
McLaughlin, T. G., Geology and ground-water resources of Hamilton and Kearny Counties, Kans C 155
Geology and ground-water resources of Morton County, Kans.C 149; D 154
Ground water in the Stanton district, Kans C 142
Ground-water supplies in Kansas available for national defense ...C 151
Water levels and artesian pressure in the United States.W 886, 908, 938
McLeansboro formation, water in, in Illinois GF 213, 216, 220
McLouth, C. D,, Flowing wells and municipal water supplies of southern Michigan .. W 183
Maddren, A. G., Sulphur on Unalaska and Akun Islands and near Stepovak Bay, Alaska ... B 692 e
Magmatic water .. W 160, 489, 494; P 66, 178; B 319, 330, 431, 616, 922 1
Magnesium in ground water ... W 254, 259, 273, 338, 341, 343, 398, 520 d;
P 117; MR 1911 II n
Magnetism in ground water ... W 258; C 481
Magogy formation, water in, in Maryland GF 152, 182, 204
water in, in New Jersey .. C 215
Maher, J. C., Fluoride in ground water of Avoyelles and Rapides Parishes, La .. C 163
Ground water and geologic structure of Natchitoches, La J 331
INDEX

Maher, J. C., Ground water and its relation to Louisiana’s war effort J 302
Ground-water conditions at Alexandria, La .. C 166
Ground-water conditions in Jeff Davis and Acadia Parishes, La J 316
Ground-water exploration at Alexandria, La ... D 191; J 345
Ground-water exploration in the Natchitoches area, La W 968 c
Ground-water geology at Natchitoches, La ... C 169
Ground-water geology of Camp Polk and North Camp Polk, La J 354
Ground water in Grant and La Salle Parishes, La C 165
Ground-water investigations in Louisiana .. C 164
Ground-water levels in Louisiana during 1942 J 305
Ground-water resources of Jefferson Davis and Acadia Parishes, La C 170
Ground-water resources of Rapides Parish, La C 167
Ground-water supplies in Louisiana ... C 162
Salt-water problems in Louisiana, with special reference to the Colfax area .. D 151

Water levels and artesian pressure in the United States W 845, 886, 909, 937, 947

Water supplies and Louisiana’s war effort ... J 303
Mahoning sandstone, water in, in Pennsylvania GF 123, 224

Maine, areas, all of State .. W 102, 114, 258
areas, Augusta and vicinity .. W 145
Cumberland County ... B 298
Eastport quadrangle .. GF 192
Penobscot Bay quadrangle ... GF 149
Portsmouth-York region ... W 145; J 4
Rockland quadrangle .. GF 158
southern .. W 223
artesian water in .. W 145, 223, 258; GF 149, 158; J 4
bibliography of ground water in ... W 114, 120, 163
mineral waters in .. W 258; B 32; MR 1883-1927; GF 149
pollution of ground water in .. W 223
public water supplies in .. W 114, 223; GF 149
quality of ground water in ... W 102, 114, 144, 223, 258, 364; B 32, 330, 491, 616; GF 149
quantity of ground water in .. W 258
springs in .. W 102, 114, 223, 258, 364; A 14 n b; B 32; GF 149, 158, 192
water levels in .. W 986
well records for ... W 57, 102, 145, 149, 223; P 264, 298
wells in, construction of .. W 223
cost of .. W 223, 258
Malt making, quality of water for ... W 233, 254, 341, 398
Mangan, J. W., Hydrologic investigations, Pennsylvania C 348
Manganese in ground water .. W 338; B 47; MR 1911 n n; J 211
Manitoba, ground water in, quality of .. M 25
Mansfield, G. R., Geography, geology, and mineral resources of part of southeastern Idaho ... P 152

Geography, geology, and mineral resources of the Fort Hall Reservation, Idaho .. B 713
Geography, geology, and mineral resources of the Portneuf quadrangle, Idaho .. B 808
Nitrate deposits in the Amargosa region, southeastern California B 724
Phosphate resources of Florida .. B 934
Mansfield, G. R., Potash in the greensands of New JerseyB 727

Maps:

absorption areas—
Arizona ...C 20
Hawaii ..C 97
New Mexico ..B 874 a, b, c
Oklahoma ..A 21 a, b, c
South Dakota ..A 21 iv b
Texas ...W 375 g; A 21 vii
Wisconsin ...A 17 ii h; M 38
Wyoming ..A 21 iv b

areas irrigated with ground water—
Arizona ..W 425 a; C 20
California ..W 137, 138, 139, 142, 219, 225, 495
Hawaii ..C 99; J 265
New Mexico ..C 251

areas of artesian flow—
Alabama ...W 114, 796 f
Arizona ...W 425 a
Arkansas ...W 399; P 46
California ..W 89, 137, 138, 139, 142, 213, 219, 222, 225, 278, 398, 429, 519; C 21; J 9
Colorado ..W 240; P 32, 52; GF 36, 58, 68, 71, 135
Florida ...W 114; C 58; J 137
Georgia ...W 114, 341; C 81
Hawaii ..C 92, 97; J 265
Illinois ...A 17 ii h; M 38
Indiana ...W 254
Iowa ..W 215, 298; P 32; C 137
Kansas ...P 32; C 144
Maryland ..GF 23
Michigan ..W 182, 183; GF 155, 205
Minnesota ..W 256; GF 117
Mississippi ..W 159, 576
Montana ...GF 128
Nebraska ..W 215; A 19 iv c; P 17, 32; GF 85
Nevada ...W 425 d
New Mexico ..W 158; C 231, 236, 240; D 9
North Dakota ..W 520 e, 598; A 17 ii g; GF 117, 168 C 303
Ohio ..W 259
South Dakota ...W 90, 215; A 17 ii g; P 32, 65; GF 85, 96, 97, 99, 100, 107, 108, 113, 114, 128, 164, 165, 209, 219
Texas ...W 335, 375 g; A 21 vii; D 19, 38
Utah ...W 157, 277, 333
Virginia ...GF 23; C 431
Wyoming ..P 32, 63; GF 107, 127, 128, 150, 173

areas of black alkali water in ArizonaW 320
areas of colored ground water in ColoradoW 240
areas of ground-water discharge in NevadaW 375 d, 423, 425 d
contours of oil-water and gas-water surfaces in OklahomaB 658
Maps, contours of water table—

Arizona ... W 320; C 1If 20; J 279
California .. W 59, 137, 138, 139, 142, 219, 222, 294, 345 b, 398, 400 e, 446, 495, 519
Florida ... C 62, 63; J 252
Georgia .. W 907
Hawaii ... C 99
Idaho .. W 560 d, 774, 818; C 111, 116
Kansas ... C 144, 145, 146; J 155, 214
Kentucky ... C 160; J 323
Louisiana ... C 170
Montana ... W 345 g, 849 b
Nebraska ... W 848; C 203; J 229
New Mexico .. W 343; GF 207; C 243, 244, 249, 251, 252; D 125
New York ... P 44; C 280; J 341
Oklahoma ... J 223
Texas .. C 390
Washington ... W 425 e

depth to water-bearing formations—

Arkansas ... B 808
Colorado ... P 32, 52; GF 36, 58, 68, 71, 135
Iowa .. W 215; GF 156
Kansas .. P 32
Maryland ... B 13°; GF 136
Minnesota ... GF 117
Montana ... W 849 l; GF 128
Nebraska ... W 12, 215; P 32; GF 85, 156
North Dakota ... A 17 II g; GF 117
South Dakota .. W 34, 90, 215, 227, 423; A 17 II g, 21 IV b; P 32; GF 85, 97, 99, 100, 107, 108, 113, 114, 127, 128, 156. 164, 165
Texas .. A 21 VII
Wyoming ... A 21 IV b; P 32; GF 107, 127, 127, 150, 173

depth to water table—

Arizona ... W 320, 375 h, 425 a
California ... W 375 a, 400 e, 429, 495; C 30
Connecticut ... W 374, 397
Idaho .. W 774
Kansas ... W 6; C 155, 158; J 243
Nebraska ... W 425 b; A 19 IV c; P 17
Nevada ... W 375 d; 423, 467
New Mexico .. W 275, 343, 345 c, 422, 425 a; B 618, 870; GF 207; C 236, 240, 241, 245, 252
Oklahoma ... C 3°1; D 115
Oregon .. W 687 d
Texas .. W 913; J 242
Utah .. W 157, 199
Wyoming ... W 425 b

desert watering places—

Arizona ... W 380, 490 c, d, 498, 499
California ... W 224, 490 a, b, 467; B 308
Nevada ... W 244, 3°5; B 308
Maps, desert watering places, New Mexico W 343, 380
Utah ... W 277, 333

faults in relation to—
carbonated springs .. A 18 II b
flowing wells .. A 18 II b
ground-water levels ... W 345 h, 489
hot springs ... W 338, 489
springs ... W 338, 489, 557; A 18 II b
sulfur springs ... W 338
ground-water springs on Long Island, N. Y P 44

head of artesian water—
Arkansas .. P 46; D 18
Colorado ... P 52; GF 135, 186
Florida .. C 67; J 134, 137
Idaho .. C 113
Illinois ... W 164
Kansas ... A 21 IV c
Kentucky .. W 164
Louisiana ... P 46; C 166, 167
Michigan ... GF 205
Nebraska .. GF 85
North Dakota .. W 520 e; A 17 II g; GF 117
South Dakota .. W 90, 227; A 17 II g; GF 85, 96, 97, 99, 100, 108, 114, 165; C 361; J 152
Tennessee .. W 164
Texas ... C 388
Utah ... D 36
Wisconsin ... C 451

localities where irrigation with artesian water is practicable— A 17 II g

movement of ground water .. W 67; A 19 II b

piezometric surface—
Arizona ... C 20 e
Florida ... J 138, 221
Georgia ... J 221
Mississippi .. J 221
Texas ... W 678

Pleistocene lakes .. J 29
precipitation and runoff ... W 301, 312

quality of ground water—
bicarbonate and carbonate in Arizona W 320
chloride—
Arizona ... W 320
Connecticut ... W 144, 232
Florida .. C 67; J 252, 258, 301
Louisiana ... C 167
New Mexico ... W 275
New York ... W 275
Virginia ... C 431
fluoride in North Dakota ... C 308

hardness in—
Arizona ... W 320; C 20
Florida ... J 301
INDEX

Maps, hardness in, Iowa ... W 293
Michigan ... W 31
Minnesota ... W 256
United States .. W 559
Wisconsin ... C 451
potability in North Carolina ... C 81
relation to depth in Minnesota .. W 256
saline shallow water in Michigan W 30, 31
sulfate in Arizona .. W 320
in California .. W 398
in New Mexico .. W 275
total solids in Arizona ... W 320; C 20
in California .. W 187, 188, 189
relation of glacial drift to ground water W 21, 489; A 18 iv b; M 38
representation of wells and springs on W 160
sinkholes ... W 319
structure contours of water-bearing formations—
Colorado ... P 32, 52
District of Columbia ... GF 70, 152
Iowa .. W 114
Kansas ... P 32
Louisiana ... P 46
Maryland ... GF 24, 70, 152, 182
Montana .. B 847 f, 856
Nebraska ... V 12; P 32
North Dakota ... GF 168
South Dakota ... P 32
Texas .. W 335; A 21 vii
Utah ... B 863
Virginia ... GF 23, 70
Wyoming ... P 32
temperature in deep wells, rates of increase in A 18 iv c
temperature of ground water in Michigan W 182, 183
thickness of water-bearing deposits W 254, 256, 259, 4f9; GF 205
vegetation in relation to water supply—
Arizona .. W 320, 577
Nevada ... W 423, 577
New Mexico ... W 343, 577
Utah ... W 577
water table in California, fluctuations of W 345 h, 400 e, 446, 619
watering places on routes of travel—
Arizona ... W 380, 499
California .. W 224; B 308
Nevada ... W 224, 365; B 308
New Mexico ... V 343, 380
Utah ... W 277, 333
yields of flowing wells .. A 18 iv c
Maquoketa shale, water in, in Iowa W 293
water in, in Minnesota ... W 256
in Wisconsin ... C 451
Marl, water in, in Great Plains ... A 16 n f
water in, in New Jersey .. B 727
Marshall formation, water in, in Michigan .. W 30, 31, 114
Martin, G. C., Accident-Grantsville folio, Md.-Pa.-W. Va GF 160
Preliminary report on petroleum in Alaska B 719
Water resources of the Accident and Grantsville quadrangles,
Md.-Pa.-W. Va .. W 110
Water resources of the Frostburg and Flintstone quadrangles,
Md.-W. Va .. W 110
Water resources of the Pawpaw and Hancock quadrangles,
W. Va.-Md.-Pa ... W 145
Martin, Lawrence, Mineral resources of Johnstown, Pa., and vicinity ... B 447
Martin, W. F., Water resources of Hawaii, 1909-11 W 318
Maryland, areas, all of State ... W 114; C 171; J 1
areas, Accident quadrangle ... W 110; GF 160
Anne Arundel County .. B 298
Baltimore and vicinity .. W 114; B 138; J 355
Choptank quadrangle ... GF 182
Coastal Plain .. B 138
Dover quadrangle .. GF 187
Elkton quadrangle ... GF 211
Flintstone quadrangle ... W 110
Fredericksburg quadrangle ... GF 13
Frostburg quadrangle .. W 110
Grantsville quadrangle .. W 110; GF 160
Hancock quadrangle ... W 145; GF 179
Nomini quadrangle .. GF 23
Patuxent quadrangle ... GF 152
Pawpaw quadrangle ... W 145, 179
St. Marys County .. B 298
St. Marys quadrangle ... GF 136
Talbot County .. B 298
Tolchester quadrangle ... GF 204
Washington quadrangle ... GF 70
apristesian water in .. B 138; GF 23, 70, 136, 137, 152, 160, 179, 182, 204;
C 171; J 1
bibliography of ground water in ... W 114, 120, 149, 163
mineral waters in .. B 32; MR 1883-1923
public water supplies in .. P 138; C 171
quality of ground water in ... W 258; B 32, 138; GF 136, 137, 179, 204; C 171
salt water in .. W 258; D 151
springs in .. W 110, 114, 145; A 14 II b; B 32; GF 152, 160, 179, 204; C 171
water levels in .. W 817, 840, 845, 886, 907, 937, 945, 987
water table in .. J 116
well records for ... W 57, 114, 149; B 138, 298; GF 70, 152; C 171; J 1
Massachusetts, areas, all of State .. W 1C2, 114; J 329
areas, Aberjona Valley .. D 198
Brookline .. W 374, 397
Central Lowland .. W 110
Hampshire County ... B 298
Taconic quadrangle ... W 170
bibliography of ground water in ... W 114, 120, 163
industrial use of ground water in ... D 193
mineral waters in .. W 114; B 32; MR 1883-1923
Massachusetts, public water supplies in W 373, 397; D 193
quality of ground water in W 102, 110, 114, 144; B 32
quantity of ground water in D 193
salt water in .. W 114; D 151
springs in ... W 102, 114, 145, 679 b; A 14 II b; B 32, 839
thermal ... W 679 b
water levels in .. W 886, 906, 936 944, 986
water table in .. J 272, 329
well records for W 57, 102, 110, 149; B 264; 298; D 193; J 272
Matawan formation, water in, in Atlantic Coastal Plain B 138
water in, in Maryland* GF 182, 204
in New Jersey .. W 106; GF 167
in Pennsylvania .. W 106; GF 167
Mather, K. F., Geology and oil and gas prospects of northeastern
Colorado ... B 796 b
Oil fields of Allen County, Ky B 688
Structure and oil and gas resources of the Osage Reservation,
Okla ... B 686 m
Mathews, E. B., Surface and underground water resources of Maryland.C 171
Mathews, E. B., Tolchester folio, Md. GF 204
Matson, G. C., Corsicana oil and gas field, Tex B 661 f
Geology and ground waters of Florida W 319
Pollution of water in limestone W 258
Production of mineral waters in the United States MR 1910-1912
Water resources of the Blue Grass region, Ky W 233
Maxey, G. B., Ground-water resources of the Las Vegas artesian basin,
Nev ... C 208
Ground-water resources of the Louisville area, Ky C 160
Measurement of discharge from wells with vertical pipes D 195
Underground leakage from artesian wells in the Flowell area, Utah.C 423
Water levels and artesian pressure in the United States, 1942 ... W 948
Maysville formation, water in, in Kentucky W 233
water in, in Ohio W 259
Meacham, R. P., Springs of Virginia C 432
Medicinal properties of water W 31, 164, 195, 233, 254, 259, 298 335, 338,
341; A 14 II b; MR 1911 II, 1913 II h
Medina formation, water in, in Indiana W 114
water in, in Ohio A 19 rv b
Meeker, R. I., Surface water supply of the United States, 1906 W 209
Meeteetse sandstone, water in, in Wyoming B 656
Meinzer, O. E., Analysis of legal concepts of subflow and percolating
water (discussion) J 220
Artesian conditions in the United States D 101
Artesian water for irrigation in Little Bitterroot Valley, Mont ... W 400 b
Artesian water supply of the Dakota sandstone J 41
Artesian water supply of the Dakota sandstone in North Dakota. W 520 e
Bibliography and index of publications prepared by the United States
Geological Survey relating to ground water W 427
Bibliography of technical reports, articles, and memoranda, published
or otherwise released (by the Ground Water Division, United States
Geological Survey) .. D 116, 133, 161, 172
Channel storage method of determining effluent seepage J 159
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinzer, O. E., Coastal ground water, with special reference to Connecticut</td>
<td>W 537</td>
</tr>
<tr>
<td>Compressibility and elasticity of artesian aquifers</td>
<td>J 54</td>
</tr>
<tr>
<td>Control of artesian water supplies</td>
<td>J 118</td>
</tr>
<tr>
<td>Definitions of the different kinds of subterranean water</td>
<td>J 208</td>
</tr>
<tr>
<td>Depleted wells at Louisville, Ky., (foreword)</td>
<td>J 330</td>
</tr>
<tr>
<td>Effect of a sea-level canal on the ground-water level of Florida</td>
<td>J 185</td>
</tr>
<tr>
<td>Experiment on flow through a capillary tube (discussion)</td>
<td>J 299</td>
</tr>
<tr>
<td>Exploratory drilling for water and use of ground water for irrigation in Steptoe Valley, Nev</td>
<td>W 467</td>
</tr>
<tr>
<td>Formation of the Section of Hydrology of the American Geophysical Union</td>
<td>J 76</td>
</tr>
<tr>
<td>General principles of artificial ground-water recharge</td>
<td>J 359</td>
</tr>
<tr>
<td>Geologic reconnaissance of a region adjacent to Guantánamo Bay, Cuba</td>
<td>J 287</td>
</tr>
<tr>
<td>Geology and underground waters of southern Minnesota</td>
<td>W 256</td>
</tr>
<tr>
<td>Geology and water resources of Big Smoky, Clayton, and Alkali Spring Valleys, Nev</td>
<td>W 423</td>
</tr>
<tr>
<td>Geology and water resources of Estancia Valley, N. Mex</td>
<td>W 275</td>
</tr>
<tr>
<td>Geology and water resources of Sulphur Spring Valley, Ariz</td>
<td>W 320</td>
</tr>
<tr>
<td>Geology and water resources of the Kau district, Hawaii (chapter on ground water)</td>
<td>W 616</td>
</tr>
<tr>
<td>Geology and water resources of Tularosa Basin, N. Mex</td>
<td>W 343</td>
</tr>
<tr>
<td>Geology of large springs</td>
<td>J 45</td>
</tr>
<tr>
<td>Geology of No. 3 reservoir site of the Carlsbad irrigation project, N. Mex</td>
<td>W 580 a</td>
</tr>
<tr>
<td>Geophysical interpretation of ground-water levels</td>
<td>J 95</td>
</tr>
<tr>
<td>Glossary of terms pertaining to ground water and related subjects</td>
<td>D 6</td>
</tr>
<tr>
<td>Ground water, a vital national resource</td>
<td>J 300</td>
</tr>
<tr>
<td>Ground water, in Hydrology (Physics of the Earth, IX) J 255 (chap. 10)</td>
<td>J 267</td>
</tr>
<tr>
<td>Ground water</td>
<td>J 267</td>
</tr>
<tr>
<td>Ground water and ground-water hydrologists in Germany</td>
<td>D 91</td>
</tr>
<tr>
<td>Ground water and ground-water hydrology in Holland</td>
<td>D 92</td>
</tr>
<tr>
<td>Ground water for irrigation in Lodgepole Valley, Nebr.-Wyo</td>
<td>W 425 b</td>
</tr>
<tr>
<td>Ground water for irrigation near Wichita, Kans</td>
<td>W 345 a</td>
</tr>
<tr>
<td>Ground water for irrigation on the Great Plains</td>
<td>W 345 b</td>
</tr>
<tr>
<td>Ground-water geologist warns against water diviners</td>
<td>J 324</td>
</tr>
<tr>
<td>Ground water in Big Smoky Valley, Nev</td>
<td>W 375 d</td>
</tr>
<tr>
<td>Ground water in Juab, Millard, and Iron Counties, Utah</td>
<td>W 277</td>
</tr>
<tr>
<td>Ground water in Musselshell and Golden Counties, Mont</td>
<td>W 518</td>
</tr>
<tr>
<td>Ground water in Pahsimeroi Valley, Idaho</td>
<td>C 114</td>
</tr>
<tr>
<td>Ground water in Paradise Valley, Ariz</td>
<td>W 375 b</td>
</tr>
<tr>
<td>Ground water in Uinex Valley, Wash</td>
<td>W 425 e</td>
</tr>
<tr>
<td>Ground water in the Midwest drought area</td>
<td>J 120</td>
</tr>
<tr>
<td>Ground water in the Pomeraug Basin, Conn., with special reference to intake and discharge</td>
<td>W 597 b</td>
</tr>
<tr>
<td>Ground water in the United States</td>
<td>D 95</td>
</tr>
<tr>
<td>Ground water in the United States, a summary</td>
<td>W 386 d</td>
</tr>
<tr>
<td>Ground water in the United States of America</td>
<td>J 271</td>
</tr>
<tr>
<td>Ground water in the western part of the United States</td>
<td>J 40</td>
</tr>
<tr>
<td>Ground water in Yellowstone and Treasure Counties, Mont. (preface)</td>
<td>W 599</td>
</tr>
</tbody>
</table>
INDEX 325

Meinzer, O. E., Ground-water problems in the Hawaiian Islands J 27
Ground-water problems of the Coastal Plain J 125
Ground-water studies in the Southwest J 291
Ground waters of Estancia Valley, N. Mex. (preliminary report) . W 260
Hidrologia subterranea .. J 26
History and development of ground-water hydrology J 106
Hydrologic cycle and the historical development of hydrology, in
Hydrology (Physics of the Earth, IX) J 255 (chap. 1)
Hydrologic observations, especially concerning the ground-water
supply of London ... D 89
Hydrology in Europe ... D 79
Hydrology in relation to economic geology J 367
Importance of ground-water supply J 191
Improvements in ground-water development J 93
Instructions for the use of the well schedule J 269
Inter-relationship of underground and surface water investigations . D 27
Lake and ground-water levels J 112
Land subsidence caused by pumping J 168
Large springs in the United States W 557
Lectures on ground water J 33
Lower Gila region, Ariz., (preface) ... W 498
Map of the Pleistocene lakes of the Basin and Range province and
its significance .. J 29
Methods for estimating ground-water supplies J 89
Methods of estimating ground-water supplies, part 1, Outline of
available methods ... J 58
Methods of exploring and repairing leaky artesian wells (preface) W 596 a
Mohave Desert region, Calif. (preface) W 578
Movements of ground water J 144
Nation-wide program of observation wells J 130
Nation-wide program of water-level measurements D 59
Nation-wide system for designating wells D 76
Observation wells, manual of methods (introduction) D 60
Occurrence of ground water in the United States, with a discussion
of principles .. W 489
Ohio Valley well supplies subject to slow reduction of capacity... J 126
Origin of the thermal springs of Nevada, Utah, and Southern Idaho J 34
Our water supply ... J 163
Outline of ground-water hydrology, with definitions W 494
Papago country, Ariz., (preface) ... W 499
Permeability .. J 111
Plants as indicators of ground water W 577
Problems of the perennial yield of artesian aquifers J 344
Protection of ground-water supplies—conservation of ground water. J 327
Quantitative methods of estimating ground-water supplies J 24
Relation of ground-water conditions to leakage of reservoirs ... J 62
Relation of ground water to stream flow D 54
Releases by the Division of Ground Water (United States Geological
Survey) during the fiscal year ended June 30, 1939 D 116
Remarks on hydrologic terminology (discussion) J 298
Review of the work of W J McGee J 157
<table>
<thead>
<tr>
<th>Publication</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinzer, O. E., Role of hydraulic laboratories in geophysical research: Permeability, specific yield, etc.</td>
<td>D 117</td>
</tr>
<tr>
<td>Routes to desert watering places in California and Arizona (preface)</td>
<td>W 490 a</td>
</tr>
<tr>
<td>Salton Sea region, Calif., (preface)</td>
<td>W 497</td>
</tr>
<tr>
<td>Soft water in the Dakota sandstone</td>
<td>D 11; J 63</td>
</tr>
<tr>
<td>Soft-water supply of the Dakota sandstone, with special reference to Canton, S. Dak</td>
<td>W 597 c</td>
</tr>
<tr>
<td>Status of our knowledge regarding the hydraulics of ground water</td>
<td>J 236</td>
</tr>
<tr>
<td>Survey of the underground waters of Texas</td>
<td>D 19</td>
</tr>
<tr>
<td>Tests of permeability with low hydraulic gradients</td>
<td>J 114</td>
</tr>
<tr>
<td>The divining rod, a history of water witching (introductory note)</td>
<td>W 416</td>
</tr>
<tr>
<td>Typical quantitative analysis as applied to Lake Superior (discussion)</td>
<td>J 231</td>
</tr>
<tr>
<td>Underground water resources of Iowa</td>
<td>W 293; C 137</td>
</tr>
<tr>
<td>Value of geophysical methods in ground-water studies</td>
<td>J 174</td>
</tr>
<tr>
<td>Value of “geophysical” methods in hydrologic work</td>
<td>D 78; J 210</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States in 1937</td>
<td>D 99</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States (introduction)</td>
<td>W 777, 817, 840, 845, 886</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States, 1940 (introduction)</td>
<td>W 906, 907, 908, 909, 910, 911</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States, 1941 (introduction)</td>
<td>W 936, 937, 938, 939, 940, 941</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States, 1942 (introduction)</td>
<td>W 986, 987, 988, 989, 990, 991</td>
</tr>
<tr>
<td>Water resources of Butte, Mont</td>
<td>W 345 g</td>
</tr>
<tr>
<td>Water resources work of the State geological surveys</td>
<td>D 57</td>
</tr>
<tr>
<td>Water-supply conditions in the drought-stricken regions</td>
<td>J 119</td>
</tr>
<tr>
<td>Well water supplies</td>
<td>D 56</td>
</tr>
<tr>
<td>What becomes of the rain water</td>
<td>D 12</td>
</tr>
<tr>
<td>Work of geologists on water supplies for war purposes</td>
<td>J 314</td>
</tr>
<tr>
<td>Work of the International Commission on Subterranean Water in the Western Hemisphere</td>
<td>J 308</td>
</tr>
<tr>
<td>Work of the (United States) Geological Survey and cooperating State agencies on ground water for war purposes</td>
<td>J 309</td>
</tr>
<tr>
<td>Mendenhall, W. C., Conservation of underground water</td>
<td>W 234</td>
</tr>
<tr>
<td>Desert watering places in California and Nevada</td>
<td>W 224</td>
</tr>
<tr>
<td>Development of underground waters in the central Coastal Plain of southern California</td>
<td>W 138</td>
</tr>
<tr>
<td>Development of underground waters in the eastern Coastal Plain of southern California</td>
<td>W 137</td>
</tr>
<tr>
<td>Development of underground waters in the western Coastal Plain of southern California</td>
<td>W 139</td>
</tr>
<tr>
<td>Fluctuations of ground water levels in southern California</td>
<td>W 251, 331</td>
</tr>
<tr>
<td>Ground water in San Joaquin Valley, Calif</td>
<td>W 398</td>
</tr>
<tr>
<td>Ground-water levels in southern California</td>
<td>W 213</td>
</tr>
<tr>
<td>Ground-water problems in the West</td>
<td>J 9</td>
</tr>
<tr>
<td>Ground waters and irrigation enterprises in the foothill belt of southern California</td>
<td>W 219</td>
</tr>
</tbody>
</table>
INDEX

Mendenhall, W. C., Ground water of San Joaquin Valley, Calif. (preliminary report) ...W 222
Ground waters of the Indio region, Calif., with a sketch of the Colorado Desert ..W 225
Hydrology of San Bernardino Valley, Calif ...W 142
Underground water papers, 1910 ...W 258
Underground waters of southern California ...W 146
Merrill, F. J. H., New York City folio, N. Y.—N. J.GF 83
Mertie, J. B., Jr., Geology of the Eagle-Circle district, AlaskaB 816
Mineral deposits of the Rampart and Hot Springs districts, Alaska B 844 d
Nushagak district, Alaska ...B 903
Mesaverde formation, water in, in Arizona ...W 380
water in, in New Mexico ...W 380, 620; B 86 b
in Utah ...W 380
in Wyoming!............ .B 656, 702; GF 173
Mesnier, G. N., Water levels and artesian pressure in the United States .W 440, 845, 886
Mesozoic formations. See Cretaceous; Jurassic; Triassic; specific formations.
Meters for measuring underflow ...W 140, 141
Mexico, bibliography of ground water in ...W 163
quality of ground water in ...W 182, 183; B 529
Meyer, R. R., Water levels and artesian pressure in the United States .W 987
Miami oolite, water in, in Florida ...W 319; C 62; J 522, 258, 365
Michigan, areas, Albion and vicinity ...W 170
areas, all of State ...M 53
Ann Arbor quadrangle ...GF 155
Detroit quadrangle ...GF 205
Grosse Isle ...W 145
Lake Superior region ...M 52; J 231
northern peninsula ...W 114, 160
southeastern peninsula ...W 145
southern peninsula ...W 30, 102, 114, 145, 182, 183
artesian water in ...W 30, 102, 114, 182, 183; GF 155, 205; C 181
bibliography of ground water in ...W 57, 114, 120, 149, 163
drainage into wells in ...W 145, 160
laws relating to ground water in ...W 122, 152, 182, 183
mine waters in ...W 364
mineral waters in ...W 31, 114; B 32; MR 1883-1923; GF 155, 205
pollution of ground water in ...W 30, 31
public water supplies in ...W 30, 160, 182, 183; GF 155; J 8
quality of ground water in ...W 30, 31, 102, 145, 160, 182, 183, 364; B 32,
530 b, 606, 625; GF 155, 205; C 181, J 8
quantity of ground water in ...GF 205
salt water in ...W 30, 31; B 530 b, 669; GF 205
springs in ...W 31, 102, 114, 170, 182, 183; P 154 a; P 32; GF 205
temperature of ground water in ...W 30, 182, 183; B 32
water levels in ...W 777, 817, 840, 845, 886, 906, 936, 944, 986
water table in ...W 30, 182, 183; GF 155; J 216, 270
well records for ...W 57, 102, 149, 160, 182, 183; B 264, 298, 669;
C 181; J 8
wells in, construction of ...W 30, 182, 183
Michigan formation, water in, in Michigan ...W 30, 114
Midway formation, water in, in Georgia W 341
water in, in Mississippi .. W 159, 576
in Tennessee ... W 638 a
in Texas ... C 417

Military water supplies—
general .. J 309, 314, 366
Louisiana ... J 202, 203
Mississippi .. C 192, 193, 194
Saipan, Marianas Islands J 336
southwest Pacific ... J 368
United States ... D 177; J 364

Miller, B. F., Elkton-Wilmington folio, Md.-Del.-N. J.-PaGF 211
Miller, B. L., Choptank folio, Md............................... GF 182
Coastal Plain of North Carolina C 291
Dover folio, Del.-Md.-N. J. ... GF 137
Patsuxent folio, Md.-D. C .. GF 152
Philadelphia folio, Pa.-N. J.-Del GF 161
St. Marys folio, Md.-Va ... GF 136
Tolchester folio, Md. ... GF 204
Trenton folio, N. J.-Pa .. GF 167

Miller, W. J., Underground water resources of Iowa W 293
Millican formation, water in, in Texas GF 194
Mills, R. V. A., Evaporation and concentration of waters associated with petroleum and natural gas ... B 693
Evaporation of water at depth by natural gases J 17
Structure and oil and gas resources of the Osage Reservation, Okla B 686 t, v

Mineral springs—
Alaska .. W 418
California .. W 338
Georgia .. W 819
United States .. W 679 b
Virginia ... C 432, 433

Mineral waters, analyses of, bibliography of MR 1913 II h, 1916, 1921; D 55
bibiography of ... MR 1905, 1913 II h, 1916; C 81
chemical character of ... B 330, 491, 616
classification of .. W 293, 338
concentration of .. W 341; MR 1911 II n
definition of ... W 338; A 14 II b; B 330, 491, 616; MR 1883-1923
exports and imports of United States MR 1883-1923
history of ... A 14 II b; MR 1914
origin of .. A 14 II b
Pliny on .. A 14 II b
production of, in the United States MR 1883-1923
radioactivity in, bibliography of MR 1913 II h
therapeutic value of ... MR 1913 II h
statistics of ... B 32; MR 1883-1923
therapeutic properties of .. W 195, 259, 338; A 14 II b; MR 1911 II n,
1913 II h, 1916
trade in and value of, in the United States A 14 II b; M R1883-1923

See also specific States.
Minerals dissolved in ground water. See Analyses; Quality.

Mineş, water in., W 160, 345 g; M 52; P 25, 43, 54, 62, 66, 77, 157, 162, 194;
B 582, 677, 681, 715 l, 725 c, 782, 842, 846 a, 847 a, 853, 870, 877, 879, 884, 885, 886, 898; GF 112, 128. 129; C 2
water in, quality of., W 273, 345 g, 364; P 38, 42, 43, 62, 74, 144, 107, 115, 122, 139, 144, 148, 194; B 330, 491, 529, 606, 616, 625, 718
735 c, 759 c; GF 191
Minnekahta limestone, water in, in South Dakota, W 227; A 21 iv b;
GF 107; C 361
water in, in Wyoming .. GF 107
Minnelusa sandstone, water in, in South Dakota, W 227, 428; A 21 iv b; P 32, 65; GF 107, 127, 128, 164, 209, 219
water in, in Wyoming .. A 21 iv b; P 32, 65; GF 107, 127, 128, 150
Minnesota, areas, all of State W 102, 114
areas, Casselton-Fargo quadrangle GF 117
Hennepin County ... B 298
Herman-Morris quadrangle GF 210
Lake Superior region .. M 52
Mesabi district ... M 43
Minneapolis quadrangle GF 201
northwestern ... M 25
Otter Tail County ... B 298
Pine County ... B 298
Red River Valley ... A 11 II c; M 25
St. Paul quadrangle .. GF 201
southern ... W 256
southwestern .. P 32
Vermillion district .. M 45
artesian water in .. W 114, 256; A 11 II c; M 25; GF 117, 201, 210
bibliography of ground water in W 57, 114, 120, 149, 163; C 303
drainage wells in ... W 256
freezing of wells in ... W 256
irrigation with artesian water in A 11 II c; M 25
mineral waters in .. B 32; MR 1883-1923
public water supplies in W 193, 256
quality of ground water in W 102, 193, 256; M 25; B 32, 330, 491, 616;
625; GF 201
salt water in .. M 25
springs in .. W 102, 114, 256; B 32; GF 117, 201
water levels in ... W 908, 938, 946, 988
water table in .. W 256; C 303
well records for ... W 57, 102, 149, 193, 266; N 25; B 264,
298; GF 117, 201
wells in, construction of W 256
cost of .. A 11 II c
Miocene formations. See Tertiary; specific formations.
Miser, H. D., Asphalt deposits and oil conditions in southwestern
Arkansas ... B 691 j
Geologic structure of San Juan Canyon and adjacent country, Utah B 751 d
Geology of the De Queen and Caddo Gap quadrangles, Ark B 808
Hot Springs folio, Ark GF 215
Manganese carbonate in the Batesville district, Ark B 921 a
330 PUBLICATIONS RELATING TO GROUND WATER

Miser, H D., Mineral resources of the Waynesboro quadrangle, Tenn. ... W 538
San Juan Canyon, southeastern Utah ... C 371

Mississippi, areas, all of State ... W 102, 114, 159, 576
areas, Camp McCain .. C 192; J 346
Camp Shelby .. C 194; J 346
Camp Van Dorn .. C 193; J 346
George County ... C 195
Hancock County .. B 264, 298; C 195
Harrison County .. P 298; C 195
Jackson County .. B 264, 298; C 195
Jones County ... B 298
Marshall County ... B 298
Newton County ... B 298
Panola County ... B 298
Pearl River County ... C 195
Stone County ... C 195
western ... P 46
artesian water in ... W 159, 576; C 191; J 221
bibliography of ground water in ... W 114, 120, 163
mineral waters in ... W 114, 576; B 32; MR 1883-1923
public water supplies in ... W 576
quality of ground water in ... W 159, 364, 576; P 46; B 32; C 192
quantity of ground water in ... C 192, 193, 194
salt water in ... D 151
springs in ... W 114, 576; B 32
temperature of ground water in ... W 576
water levels in ... W 845, 886, 907, 937, 945, 987
water table in ... W 159, 576; C 191; D 124
well records for ... W 102, 149, 159, 576; P 46; B 264, 298; C 195
Mississippian formations. See Carboniferous; specific formations.

Missouri, areas, all of State ... W 102, 114, 195
areas, Camden County ... W 110
Joplin district ... W 102, 145; GF 148
Leavenworth quadrangle ... GF 206
Livingston ... W 102
Ozark region ... W 145
Randolph County ... B 264
St. Louis quadrangle ... B 438
Smithville quadrangle ... GF 206
artesian water in ... W 195; B 438; GF 148
bibliography of ground water in ... W 57, 120, 149, 163, 340
mineral waters in ... W 195; B 32; MR 1883-1923; GF 206
public water supplies in ... W 195; GF 148
quality of ground water in ... W 102, 145, 195, 364; B 32, 330, 438, 491,
606, 616; GF 206
salt water in ... GF 206
spring discharge measurements in ... W 99, 131, 173, 209, 526, 547, 566,
567, 586, 587, 606, 607, 626, 627, 646, 647, 667, 686, 687, 71; 702, 716,
717, 731, 732, 746, 747, 761, 762, 786, 787, 806, 807, 826, 827, 856,
857, 876, 877, 896, 897, 957, 977; C 200
INDEX

Missouri, springs in .. W 102, 110, 114, 145, 195, 364, 557; B 32, 438; GF 148, 206; C 200

water levels in .. W 777, 817, 840, 845, 886, 908, 938, 946, 988
water table in .. D 74
well records for .. W 57, 102, 149, 195; B 294, 298, 438
wells in, cost of .. W 195
Missouri group, water in, in Iowa W 293
water in, in Missouri W 195
Mitchell, Alexander, Water supply for the State Penitentiary, Lansing, Kans. C 143

Moenkopi formation, water in, in Arizona W 836 b
Moffit, F. H., Iniskin Bay district, Alaska B 739 c
Iniskin-Chinitna Peninsula and Snug Harbor district, Alaska B 789
Susloita Pass district, Alaska B 844
Molecular attraction in relation to ground water W 489; M 47

Monmouth formation, water in, in Delaware GF 137
water in, in Maryland GF 137, 182, 204
in New Jersey ... W 106
in Pennsylvania ... W 106
Monroe formation, water in, in Michigan W 30, 115
Montana, areas, Aladdin quadrangle GF 128

areas, Big Horn County B 856
Butte and vicinity B 345 g
Cat Creek oil field B 786 b
Crow Indian Reservation B 736 b, 856
Devils Basin oil field B 786 b
Ekakala lignite field B 751 f
Flathead County ... W 400 b; B 298
Flathead Lake .. W 849 b
Fort Benton quadrangle GF 55
Golden Valley County W 518
Great Falls region W 221
Ingomar anticline B 786 a
Lake Basin ... B 691 d
Little Belt Mountain quadrangle GF 56
Little Bitterroot Valley W 400 b
McCona County W 599; B 647
Missouri Valley .. D 2
Mizpah coal field B 906 c
Musselshell County W 518; B 647
Rosebud coal field B 847 b
Rosebud County .. W 550 d; 600
Silver Bow Basin W 345 g
southeastern .. F 32
Three Forks quadrangle GF 24
Townsend Valley W 539
Treasure County W 599
Tullock Creek coal field B 749
Yellowstone County W 599; B 647

artesian water in .. W 149, 221, 345 g, 400 b, 518, 539, 599, 600; B 646, 647, 751 g, 806 b, 822 a, 831 b, 847 b; GF 55, 128; J 39

bibliography of ground water in W 120, 163
Montana, irrigation with artesian water in ... W 400 b, 599
with other ground water in .. W 345 g, 400 b, 599
mineral waters in ... B 32; MR 1883-1925: GF 24, 56
public water supplies in ...

quality of ground water in .. W 221, 345 g, 364, 400 b, 518, 520 d, 539,
560 b, 599, 600; B 32, 529, 606; GF 56; D 2; J 275
quantity of ground water in .. W 345 g
salt water in ... B 691 d, 711 g, 751 c, g, 812 b
spring discharge measurements in .. W 130, 326
springs in .. W 221, 345 g, 400 b, 518, 539, 557, 599, 600, 679 b; P 78, 147 b;
B 32, 749, 751 c, e, g, 786 a, 806 b, 812 a, 822 a, 831 b 847 b, 856;
GF 24, 56
thermal .. W 364, 400 b, 679 1; GF 24, 56
temperature of ground water in .. W 400 b; B 3°; GF 24, 56
water levels in ... W 777, 817, 849, 845, 886, 910, 940, 990
water table in ... W 345 g, 400 b, 599, 600, 849 b; D 2
well records for .. W 57, 149, 221, 345 g, 400 b, 518, 539, 599, 600; B 264,
298, 691 d, 711 g, 751 c, 786 b, 86 c b, e, 812 b
wells in, construction of .. W 345 g, 400 b, 599, 600
cost of ... W 400 b, 599
Moore, R. B., Radioactivity of thermal waters of Yellowstone National
Park ... B 395
Moore, R. C., Ground-water resources of Kansas .. C 142
Kaiparowits region, Utah and Arizona ... P 164
Morgan, A. M., Changes in water levels in shallow wells in the
Roswell artesian area, N. Mex .. D 150
Changes in water levels in shallow wells near Roswell, N. Mex D 113
Cooperative ground-water investigations in Wyoming .. C 455, 456
Geology and ground water, Pecos River Basin, N. Mex C 256
Geology and shallow-water resources of the Roswell artesian basin,
N. Mex ... C 252
Shallow-water resources of the Roswell artesian basin, N. Mex D 105
Solution by ground waters in Pecos Valley, N. Mex .. J 245
Solution phenomena in the Pecos basin, N. Mex .. J 260
Water levels and artesian pressure in the United States .. W 840, 845,
886, 948, 990
Morocco, ground water in, bibliography of .. W 163
Morrison, R. B., Duncan-Virden Valley, Greenlee County, Ariz., and
Hidalgo County, N. Mex ... C 17
Electrical resistivity apparatus for testing well waters .. J 226
Ground-water resources of the Big Sandy Valley, Ariz C 12; D 140
Records of wells and springs in Big Sandy Valley,
Mohave County, Ariz .. C 18
Safford Valley, Graham County, Ariz., records of wells and springs C 16
Water resources of Safford and Duncan-Virden Valleys, Ariz. and
N. Mex .. C 15; D 160
Morrison formation, water in—
Arizona ... W 836 b
Colorado ... P 52
Montana ... W 599; B 586
New Mexico .. W 620
INDEX

Morrison formation, water in, South Dakota .. GF 107
Wyoming .. B 711; GF 107
Morrow formation, water in, in Arkansas .. W 145; GF 122
water in, in Oklahoma .. GF 122
"Mortar beds" water in, in Kansas .. W 273
Mossom, Stuart, Geology of Florida ... C 55
Moulton, G. F., Geology and mineral resources of parts of Carbon,
Big Horn, Yellowstone, and Stillwater Counties, Mont B 822 a
Geology of Big Horn County and the Crow Indian Reservation, Mont. B 856
Oil and gas fields of the Lost Soldier-Ferris district, Wyo B 756
Mounds produced by springs .. W 277, 320, 423
Mount Selman formation, water in, in Texas W 335, 375; GF 107

Movements of fluids through rigid media A 19 II b
Movements of ground water—
Alaska ... B 733
Arizona ... W 104, 136, 320, 375; C 15, 20; J 279
belts of cementation and of weathering .. M 47
California ... W 112, 140, 720; B 835
capillary pores ... W 489, 494; A 19 II b; M 47
Colorado ... M 27; C 31
crystalline rocks ... W 160, 232
debri-filled valleys ... W 222, 277, 320, 345 h, 398, 406 e, 423, 637 b
deep zones .. W 67, 254; M 47; B 529; J 83
granite ... W 160, 232; GF 158
Hawaii .. W 616; C 92, 99
Idaho ... W 774, 818
Indiana .. W 254
Kansas .. W 153, 258
Mississippi ... W 576
Montana ... W 600
Nebraska ... W 184
New Mexico .. W 141, 158, 275, 343; B 618, 637 b; C 31, 254, 255
New York ... W 140; P 44
North Carolina .. C 291
shallow zones .. W 254; B 629; C 451
subcapillary pores .. W 489, 494; M 47
super-capillary openings ... W 489, 494; M 47
Texas ... W 141; J 117
Utah ... D 36
Virginia .. C 481
Movements of ground water, absence of .. B 529; C 431
artesian ... B 96; J 86
ascending ... M 47; J 133, 144.159, 194
barometric conditions in relation to .. A 19 II c
decomposition as measure of ... W 232
deformation of rocks in relation to ... A 19 II b
descending ... M 47; J 73, 74, 114, 131, 133, 144. 159, 194
diagrams showing .. W 67, 232; M 47; B 606
direction of .. W 67, 114, 140, 184, 345 h; A 19 II b
dynamic changes in relation to ... A 19 II b
Movements of ground water, faults in relation to..................W 160, 232; A 19 II b
fissures in relation to ...W 160, 232; A 19 II b
fluorescein method of determiningW 160, 638 c; D 1
friction of rocks in relation toA 19 II b; M 47
general ..J 133, 144, 159, 194, 219, 220, 230, 236, 255, 268
law of ..W 67, 140; A 19 II b; M 47
measurements of ..W 110, 112, 140, 141, 153, 184, 258, 637 b, 638 c; P 44
chloride method ..W 67, 637 b, 638 c
electrolytic method ..W 67, 110, 112, 140, 638 c, 887; P 44; J 194
fluorescein method ..W 160, 638 c
molecular attraction in relation toW 489; M 47
precipitation in relation to ...P 44
pressure in relation to ...W 67, 140; A 19 II b; M 47
principles of ..W 67, 114, 140, 232, 494; A 19 II c, 21 IV c; M 47; B 606
rate of ..W 67, 112, 140, 141, 153, 159, 184, 258, 597 b; A 16 II f, 19 II b; M 47; P 44; C 431
rock consolidation in relation to ...A 19 II b
salines in Louisiana and Texas in relation toB 282
seepage from reservoirs in relation to ...P 44
settling of sediments in relation to ...A 19 II b
size of grain in relation to ...W 67, 104, 136; A 19 II b
temperature in relation to ...W 140; A 19 II b
thermal ..A 19 II b
topography in relation to ...W 67
Mud flow, water perched by ..C 99
Munford, M. J., Ground-water problems in North CarolinaJ 334
Selected well logs in the Coastal Plain of North CarolinaC 293
Water levels and artesian pressure in the United StatesW 945, 987
Municipal water supplies. See Public water supplies.
Munyan, A. C., Water levels and artesian pressure in the United StatesW 845, 907
Murphy, E. C., The windmill, its efficiency and economic useW 41, 42
Windmills for irrigation ..W 8
Murray, C. R., Test wells for irrigation near Deming, N. MexD 159
Water levels and artesian pressure in the United StatesW 911, 941, 949, 991
Myrick formation, water in, in TexasW 375 g; GF 64

N
Nacatoch formation, water in, in ArkansasW 114; P 46; B 691 j
water in, in Louisiana ..W 114
in Texas ..W 385
Nace, R. L., Ground-water investigations in West Virginia .. C 448, J 251, 256
Water levels and artesian pressure in the United States, 1941W 937
Nanafalia formation, water in, in AlabamaC 1
Napoleon sandstone, water in, in MichiganW 30, 114
Nashua marl, water in, in FloridaW 319
Natural gas in relation to ground waterB 658
Navarro formation, water in, in TexasW 276
INDEX

Nebraska, areas, all of State ... P 32; C 201
areas, Box Butte County ... W 969; D 162
Camp Clark quadrangle .. GF 87
Edgemont quadrangle .. GF 108
Elk Point quadrangle .. GF 156
Franklin County ... C 202
Frontier County ... C 204
Furnas County ... C 205
Goshen Hole quadrangle ... W 70
Grand Island ... W 836 e
Harlan County ... C 202
Kearney and vicinity ... A 21 iv a
Keith County ... W 848
Lincoln and vicinity ... P 32
Lodgepole Valley ... W 425 b
Missouri River Valley ... W 215
northeastern ... W 215
Nuckolls County ... C 202
Oelrichs quadrangle .. GF 85
Omaha and vicinity .. W 293; A 19 iv c; P 17, 32
O'Nell and vicinity .. C 205
Patrick quadrangle .. W 70
Platte River Valley ... W 679 a, 779, 848; A 21 iv a; D 49, 58; J 75
Red Willow County ... C 204
Republican River Valley ... W 216; C f02, 203, 204
Scotts Bluff County ... W 943 b; D 163
Scotts Bluff quadrangle ... GF 88
South Platte Valley .. W 184
south-central ... W 779; D 64
southeastern ... W 12
southern tier of counties .. W 216
southwestern ... A 16 ii f, 21 iv c, 22 iv c
Webster County .. C 202
west of 103d meridian ... A 19 iv c; P 17; J 229
artesian water in ... W 12, 29, 184, 215, 216, 425 b; A 16 ii f, 19 iv c;
P 17, 32; GF 85, 87, 88, 108, 156
bibliography of ground water in ... W 61, 120, 149, 163
infiltration tunnels in ... W 184
irrigation with ground water in .. W 5, 12, 29, 184, 216, 425 b; A 16 ii e,
f, 19 iv c, 21 iv c, 22 iv c; P 17; C 25; J 75, 267
mineral waters in ... B 32; MR 1905-1923
public water supplies in ... W 184, 425 b, 836 e
pumping in .. W 184, 425 b; C 205
quality of ground water in .. W 12, 29, 184, 215, 216, 425 b, 848, 943, 969;
P 32; GF 108
quantity of ground water in .. W 184, 679 a; D 64, 163
salt water in ... W 29; B 715 f
seepage in .. B 140
sheet water in .. W 29; A 16 ii f
springs in .. W 12, 39, 70, 184, 230; A 16 ii f, 19 iv c; P 17; E 32; GF
108, 156
temperature of ground water in .. W 215; B 32
Nebraska, underflow measurements in .. W 184
 water levels in W 777, 817, 840, 845, 886, 908, 938, 946, 988
 water table in W 12, 29, 184, 425 b, 772, 820, 848; A 21 iv a; C 201;
 D 49, 58; J 101, 129, 154, 229
 well records for W 12, 29, 61, 149, 215, 216, 425 b, 848, 943, 969; A 16 ii f;
 P 32; B 131, 264, 298, 691 a; GF 88, 108, 156; C 202, 203, 204, 205
 wells in, construction of W 184, 215, 258, 425 b
 cost of .. V r 29; B 131

Nellist, J. F., Flowing wells and municipal water supplies in the southern
 portion of the southern peninsula of Michigan W 182

Nevada, areas, Alkali Spring Valley .. W 423
 areas, Big Smoky Valley .. W 375 d, 423
 Clayton Valley .. W 423
 Columbus Marsh .. P 95 a; B 540 n
 Dixie salt marsh .. B 540 p
 Ely .. B 96
 Fourmile Flat ... B 540 p
 Goldfield .. B 303
 Goodsprings quadrangle P 162
 Humboldt River Valley W 425 d
 Ivanpah Valley .. W 450 c
 Las Vegas and vicinity W 239, 365, 489 d; P 871; C 208
 Manhattan district B 723
 Mesquite Valley .. W 450 c
 Pahrump Valley .. W 450 c
 Paradise Valley D 4
 Pioche district P 171
 Piute Valley .. D 3
 Quinn River Valley D 4
 Railroad Valley W 365; B 540 p
 Reese River Valley W 425 d
 Rochester district B 762
 Searchlight ... B 303
 Silver Peak Marsh B 530 r
 south-central.. W 224, 423; B 308
 southeastern ... W 365
 southern ... W 224, 365; B 308
 Steptoe Valley .. W 467
 artesian water in W 289, 365, 375 d, 423, 450 c, 849 d; B 871; C 208; D 4
 bibliography of ground water in W 120, 163
 irrigation with artesian water in W 375 d, 423, 425 d
 with other ground water in W 365, 375 d, 423, 450 c, 467
 mineral waters in B 32; MR 1883-1923
 public water supplies in W 224, 365, 423, 425 d
 pumping in ... W 375 d, 423
 quality of ground water in W 224, 364, 365, 375 d, 423, 425 d, 450 c,
 467; P 95 a; B 32, 529, 530 r, 540 n, p 606; C 203
 quantity of ground water in W 423
 salt water in W 423; B 530 r, 548 n, 669, 717
 spring discharge measurements in W 85, 133, 360, 389, 390, 440, 460;
 J 107
Nevada, springs in W 224, 364, 365, 375 d, 423, 450 c, 467, 557, 679 b; M 11; P 42, 73, 162, 171; B 32, 308, 723, 724, 725 d, 798; C 112; J 34, 107
thermal ..W 364, 365, 423, 467, 679 b; M 11; P 42, 73; E 308, 798; C 112; J 34, 107

temperature of ground water inW 365, 423; B 32
underground leakage from artesian wells inW 844 d
water table in ...W 365, 423, 425 d, 467; P 162; C 208
well records forW 61, 149, 224, 365, 423, 450 c, 467; P 95, 162; B 530 r, 540 n; C 208

cost of ..W 423; J 200
New Hampshire, areas, all of StateW 102, 114
areas, Portsmouth-York regionW 145
bibliography of ground water inW 114, 120, 163

cost of ...W 423; J 200
New Jersey, areas, all of StateW 114
areas, Asbury ParkC 213
Atlantic City ..C 212, 216; J 44
Atlantic County ...B 264
Camden ...C 215
Coastal Plain ..B 138
Dover quadrangleGF 137
Franklin Furnace quadrangleGF 161
Highlands ..W 110
Middlesex County ...C 218
Monmouth County ..F 264, 298
Parlin ...C 217; J 228
Passaic quadrangleGF 157
Passaic River ValleyC 214
Philadelphia districtW 106; GF 162
Raritan quadrangle ..GF 191
southern ..B 138
Trenton quadrangleGF 167
Wilmington quadrangleGF 211

cost of ...W 423; J 200
New Mexico, areas, all of StateW 295
areas, Socorro CountyC 284

artesian water in ..W 106; B 138; GF 157, 162; J 44
bibliography of ground water inW 61, 114, 120, 149, 163
industrial use of ground water inC 218
mineral waters in ..B 132; MR 1883-1923
quality of ground water inC 218
springs in ..W 106, 110, 374, 397; B 138; GF 162, 167; C 211, 212, 213, 214, 215, 216, 217, 218; J 32, 44
water levels in ..W 777, 817, 840, 845, 886, 906, 936, 944, 986
water table in ..C 217; J 99, 151

salt water in ..W 258; D 151; J 140, 210, 228, 350
springs in ..W 110, 114; B 32; GF 161, 167, 191
water levels in ..W 777, 817, 840, 845, 886, 906, 936, 944, 986
water table in ..C 217; J 99, 151
New Jersey, well records for ... W 61, 106, 114, 149; B 138, 294, 298, 727; GF 157, 161, 162; C 214, 215

New Mexico, areas, Albuquerque district ... W 188
areas, Animas Valley ... W 422
Belen district ... W 188
Brilliant quadrangle ... GF 214
Carlsbad irrigation project ... W 580 a
central ... W 260, 275
Curry County ... C 241
De Baca County ... C 234
Deming and vicinity ... W 345 c; B 618; GF 207; D 159
Duncan-Virden Valley ... W 911, 941; C 15, 17; D 146, 160, 171; J 240
eastern ... A 21 iv c, 22 iv c
Eddy County ... B 298
Encino Valley ... W 275
Estancia Valley ... W 260, 275
Gallup-Zuni basin ... B 767
Grant County ... W 422
Hachita Valley ... W 422
Hidalgo County ... W 911, 941; C 14, 15, 17; D 146, 160, 171; J 240
Jornada del Muerto ... W 123, 188
Koehler quadrangle ... GF 214
La Mesa district ... W 188
Lea County ... C 239, 244, 247, 250
Lordsburg mining district ... B 885
Luna County ... W 345 c, 637 b; B 618; GF 207
Mesilla district ... W 10, 140, 141, 188
Mimbres Valley ... W 345 c, 637 b; B 618; GF 207; C 237, 238, 243, 246, 551; D 15, 108
Mount Taylor coal field ... B 860 b
Navajo country ... W 380
northwestern ... W 380; B 485; D 68
Pecos River Valley ... W 158; C 248, 256, 2°7; J 245, 260
Pinos Wells Valley ... W 275
Playas Valley ... W 422
Portales Valley ... C 241, 245, 249; D 125, 149
Raton quadrangle ... GF 214
Rio Grande Valley ... W 10, 140, 141, 188; C 31, 254, 255; J 173
Rio Penasco Basin ... C 225
Roosevelt County ... C 241
Roswell artesian basin ... W 158, 596 a, 639; C 231, 236, 240, 242, 252;
 ... D 9, 28, 105, 113, 150
San Jose-Rio Puerco Valley ... C 232
Can Juan County ... B 716 g
San Luis Valley ... W 422
San Simon Valley ... W 425 a
Sandoval County ... W 620; D 5
Santa Fe district ... W 188
Silver City quadrangle ... GF 199
Socorro County ... C 233
south-central ... W 141, 343
southeastern ... B 760 c, 780 b
INDEX

New Mexico, areas, southern ... W 141
southern ... W 422, 425 a
Taylor Creek district .. B 725 g
Torrance County ... W 260, 275; B 298
Tularosa Basin ... W 343
Tyrone district .. P 122
Vaughn and vicinity .. V 275, 343
Virden Valley ... C 15; D 160
artesian water in .. W 123, 158, 188, 343, 380, 422, 596 a, 620, 639; B 767;
GF 199; C 231, 236, 240, 242, 248, 256; D 5, 9, 28; J 51
bibliography of ground water in .. W 61, 120, 149, 163
infiltration ditches in .. W 343; C 16
irrigation with artesian water W 158, 425 a, 620; C 231, 236 240, 242
with other ground water in W 5, 10, 140, 141, 158, 188, 260, 275,
343, 345 c, 380, 422, 425 a, 620, 637 b, 639, 911, 941; A 16 II e, 21
IV c, 22 IV c; B 618; C 14, 15, 17, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 249, 250, 251, 252, 256; D 146, 159, 160,
771; J 240
law relating to ground water in W 152; J 69
mineral waters in ... B 32; MR 1883-1923; C 17
public water supplies in W 343, 422, 620
pumping in .. W 10, 260, 275, 345 c
pumping tests in .. W 140, 141, 343, 345 c; B 618; C 15
quality of ground water in W 123, 158, 188, 260, 275, 343, 364, 422, 425
a, 620, 639, 839; B 32, 330, 491, 616, 618, 620, 839; GF 207; C 14, 17,
235, 239, 240, 241, 243, 244; J 173
quantity of ground water in W 141, 158, 188, 275, 343, 345 c, 422, 637 b;
B 618; GF 207; C 231, 236, 237, 238, 239, 240, 241, 245, 246 247, 252,
276; D 160
salt water in ... W 275, 343, 620; B 669, 715 m; C 248, 277; D 103
seepage in .. W 358; C 15
springs in .. W 158, 188, 343, 364, 380, 557, 620, 637 b, 677 b; P 68;
B 32, 618, 716 a, 860; C 159; C 235. 253, 257
thermal .. W 364, 620, 679 b; P 68; B 32; GF 199
water levels in ... W 777, 817, 840, 845, 866, 911, 941, 949, 991; C 14
water table in ... W 10, 188, 275, 343, 345 c, 422, 425 a, 620, 637 b; B 618;
GF 207; C 15, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250,
251, 252, 254, 255, 256; D 105, 108, 113, 148, 149, 150, 176; J 206, 240
well records for W 61, 149, 158, 188, 275, 343, 345 c, 380, 620, 637 b; B 264, 298, 435, 618, 726 e, 760 c, 780 b, 794; C 17, 235, 241, 247, 252, 256
wells in, construction of W 343; C 240
cost of .. W 10, 345 c
New Richmond sandstone, water in, in Iowa W 293
water in, in Minnesota .. W 256
See also Lower Magnesian limestone.
New South Wales, bibliography of ground water in W 163
quality of ground water in B 330, 491, 616
New York, areas, all of State W 102, 114
areas, Catatonk quadrangle W 145; GF 169
Coastal Plain ... B 138
Croton Valley ... J 194
Erie County .. B 298
New York areas, Gaines quadrangle ... GF 92
Ithaca .. W 110
Kings County .. C 275, 279
Long Island ... W 25, 110, 140, 155, 374, 397, 537; P 44; B 138; GF 138; C 271, 272, 274, 275, 276, 277, 278, 280; D 41, 92, 161, 199, 202; J 3, 146, 150, 169, 177, 193, 246, 249, 312, 341
Monroe County ... C 273
Nassau County .. C 277, 282
New York City .. W 25; GF 83
Niagara quadrangle ... GF 190
Passaic quadrangle ... GF 157
Queens County ... C 278
Shelter Island Heights ... D 100
southwestern ... B 899 b
Suffolk County ... C 276, 281
Taconic quadrangle ... W 110
Ticonderoga quadrangle ... W 110
Tully and vicinity ... W 145
Watkins Glen quadrangle ... W 110; GF 169
artesian water in ... W 110, 145; P 144; B 138; GF 169; C 273; J 3, 177
bibliography of ground water in ... W 61, 114, 120, 149, 163
industrial use of ground water in ... D 192, 202
laws relating to ground water in ... W 152; J 190
arteresian water in...... W 110, 145; P 44; B 138; GF 169; C 273; J 3, 177
GF 92, 169, 190
public water supplies in....... W 25, 110, 155, 374, 397; P 44; F 138; GF 83;
169, 190; C 273, 274; D 41, 100, 192, 202
pumping in ... D 192, 199, 202
quality of ground water in ... W 102, 108, 110, 144, 145, 364; P 44; B 32,
330, 491, 530 b, 616; MR 1916; GF 190; C 273, 275, 276, 278
quantity of ground water in ... W 25, 155; P 44; C 274; D 199
radioactive water in ... MR 1913 II h
salt water in ... B 530 b, 669, 899 a, b; C 271, 272; D 41, 100, 151; J 169
springs in ... W 102, 114, 145, 364, 679 b; P 44, 82; B 32; GF 169; C 273
thermal ... W 679 b
underflow on Long Island ... W 140, 155; P 44
water levels in W 777, 817, 840, 845, 886, 906, 936, 944, 986
water table in ... W 155; P 44; C 273, 275, 276, 277, 278, 279, 280, 281, 282;
D 41; J 150, 177, 193, 194, 312, 341
well records for ... W 61, 102, 110, 149; P 44, 82; B 138, 264, 273, 669, 899 a;
GF 157; C 273, 275, 276, 277, 278, 279, 280, 281, 282
New Zealand, bibliography of ground water in ... W 163; B 330, 491, 616
hot springs in .. A 9 d
quality of ground water in ... B 330, 491, 616
Newark horizon, water in, in Arkansas ... W 145
Newark sandstone, water in, in Connecticut ... W 110, 114, 232, 374
water in, in New Jersey .. W 106; GF 167, 191; C 218
in New York ... W 114
in Pennsylvania ... W 106, 114; B 828, 891; GF 162, 167
Newell, F. H., Progress of stream measurements .. W 75, 84; A 21 IV a
Public lands and their water supply .. A 16 II e
Report of progress of the Division of Hydrography B 131, 140
INDEX

Newell, F. H., Water supply for irrigation ... 13 III a
Newell, T. R., Surface water supply of the United States, 1932 W 738
Newsom, J. F., Santa Cruz folio, Calif .. GF 163
Niagara limestone, water in—
 Illinois ... W 114; B 506; GF 81, 200
 Indiana ... W 113, 114, 254
 Iowa .. W 293; GF 145, 200
 Michigan .. \^ 30, 114
 Ohio .. W 114, 259; A 19 iv b; B 661 a
 Wisconsin .. W 114; GF 145; C 451
Nicaragua, bibliography of ground water in W 163
Niobrara formation, water in, in Kansas .. W 273
 water in, in Nebraska ... W 216; C 202, 204
 in North Dakota ... W 597; C 302
 in South Dakota .. W 227; GF 100, 116; C 302
Nitrate in ground water W 256, 338; B 47, 330, 491, 616; MR 1911 II n
Nitroglycerin, use of, in wells .. W 223
Noble, L. F., Nitrate deposits in the Amargosa region, southeastern
 California .. B 724
Nolan, T. B., Geyser area near Beowawe, Nev J 107
 Good Hill mining district, Utah .. P 177
 Potash brines in Great Salt Lake Desert, Utah B 795 b
Normal carbonate in ground water .. W 254, 259, 273, 338, 341, 388; B 330,
 491, 616; MR 1911 II 1916
Normal chloride. See Chloride; Isochlors.
Norristown shale, water in, in New Jersey W 106
 water in, in Pennsylvania W 106
North Carolina, areas, all of State .. W 114
 areas, Coastal Plain .. B 138; C 291, 293
 Cowee quadrangle .. W 110
 Elizabeth City .. W 773 a; J 108
 Fort Caswell .. \^ 292
 Gaffney quadrangle .. GF 222
 Kings Mountain quadrangle GF 222
 Lenoir County .. B 298
 Moore County .. B 298
 Mount Mitchell quadrangle GF 124
 New Hanover County .. B 298
 Norfolk quadrangle .. GF 80
 Nottely River Basin .. B 735 f
 Pisgah quadrangle .. W 110; GF 147
 Roan Mountain quadrangle GF 151
 Valley River Basin .. B 735 f
 Wilmington and vicinity .. W 160
artesian water in ... B 138; GF 80; C 291
bibliography of ground water in .. W 61, 114, 120, 149, 163; C 291
iron in ground water in .. J 334
mineral waters in ... W 114; B 32; MR 1883-1923
public water supplies in .. B 138; C 271; J 108
quality of ground water in .. W 160, 258, 364; B 32, 138, 330, 491, 616;
 GF 80, 124; C 281; J 334
salt water in .. W 258, 773 a; J 108, 334
North Carolina, spring discharge measurements in .. W 893
springs in .. W 114, 364, 679 b; B 32, 735 f; GF 124, 147, 151, 222
thermal .. W 679 b
water levels in .. W 777, 817, 840, 845, 886, 907, 937, 945, 987
water table in .. D 74
well records for .. W 61, 114, 149; B 138, 264, 293; GF 80, 124; C 291, 293
North Dakota, areas, all of State W 520 e, 598; A 11 n c; C 301; J 328
areas, Bismarck quadrangle .. GF 181
Casselton-Fargo quadrangle .. A 17 n g; M 25
eastern .. A 17 n g; M 25
Eckelson quadrangle .. GF 168
Edgeley quadrangle .. W 520 e; B 801
Ellendale-Jamestown area .. W 889 a
James River Basin C 302
Jamestown quadrangle .. GF 168
La Moure quadrangle .. B 801
Marmarth lignite field .. B 775
Minot region .. B 906 b
Morton County ... B 757
Oakes area .. C 304
Red River Valley ... A 11 n c; M 25
Sheyenne River Basin .. C 302
southeastern .. A 17 n g
Standing Rock Indian Reservation ... B 575
Tower quadrangle .. GF 168
artesian water in .. W 520 e, 598, 889 a; A 11 n c, 17 n g; M 25; B 575,
691 g, 775, 801, 960 b, c; GF 117, 165; C 301, 303; D 141; J 2
bibliography of ground water in .. W 61, 120, 149, 163; C 303
irrigation with artesian water in .. W 598; A 11 n c, 16 n e, 17
n g; M 25; C 304
with other ground water in .. A 16 n e
mineral waters .. B 32; NR 1883-1923
public water supplies in .. W 598; C 302
quality of ground water in .. W 520 e, 560 b, 598, 889 a; A 17 n g; M 25;
B 32; GF 168; C 301, 302
salt water in .. M 25
springs in .. W 598; B 32, 575, 726, 775, 801; GF 117
water levels in .. W 817, 840, 845, 886, 908, 938, 946, 988
water table in .. C 302, 303; D 61, 109, 164; J 158
well records for .. W 61, 149, 520 e, 598; A 17 n g; M 25; B 298, 801;
GF 117, 168, 181; C 302; J 2
wells in, construction of ... W 598
cost of .. A 11 n c
Norton, W. H., Underground water resources of Iowa .. W 293; C 137
Underground waters of Iowa .. W 114
Water supplies at Waterloo, Iowa .. W 145
Nusbaum formation, water in, in Colorado .. GF 135
Nye, S. S., Geology and ground-water resources of Roswell artesian
basin, N. Mex .. W 639
Geology and ground-water resources of the Balmorhea area, western
Texas ... W 849 c
Ground-water resources of the Balmorhea area, Tex .. C 390
INDEX 343

Nye, S. S., Ground-water supply of northern Lea County, N. Mex........ C 244
Roswell artesian basin, N. Mex...C 236, 242
Shallow ground-water supplies in northern Lea County, N. Mex........ C 239
Utilization of the water resources of Roswell artesian basin, N. Mex....C 240
Water supply of the Roswell artesian basin, N. Mex.....................D 28
Oakland, G. L., Oklahoma water, quantity, occurrence, and quality of
surface and ground water..C 323
Oakville sandstone, water in, in Texas..................................W 375 g
Ocala limestone, water in, in Florida....................................W 375 g, 57, 58, 60, 61; D 143; J 80, 134, 137, 181, 185, 248, 256, 319, 321
water in, in Georgia ..C 83; D 129
Occlusion of sea water. See Connate water.
Odor of ground water..W 338
Ogallala formation, water in—
Colorado...P 32
Kansas...P 32; GF 212; C 141, 153, 154, 155, 158
Nebraska.................................W 425 b, 848; A 19 iv e; P 17, 32; GF 87; C 202, 204
New Mexico...C 241, 256
Oklahoma...C 321, 322; D 106, 115, 178; J 213
Texas...C 256; D 66; J 277
Wyoming...P 32; C 456
O'Harra, C. C., Aladdin folio, Wyo.-S. Dak.-Mont..........................GF 128
Belle Fourche folio, S. Dak..GF 164
Devils Tower folio, Wyo...GF 150
Ohio, areas, all of State...W 114; A 18 iv b, 19 iv b
areas, Butler County...C 311; D 120; J 215
Cincinnati area...C 311; D 82, 88, 120, 156; J 215
Cleveland gas field..B 661 a
Columbus quadrangle..GF 197
Hamilton County...C 311; D 120; J 215
Hocking County...B 298
Kenova quadrangle..GF 184
Maumee drainage basin...W 91
Miami drainage basin..W 91
Mill Creek Valley...C 311, 312; D 87, 88, 120; J 215
Muskogum drainage basin..W 91
Norwood trough...C 311; D 87, 88, 120; J 215
Sandusky drainage basin...W 91
southwestern...W 259
Summerfield quadrangle...B 720
Wayne County...B 298
Woodsfield quadrangle...B 720
artesian water in...W 114, 259; A 18 iv b, 19 iv b; GF 197
bibliography of ground water in...W 61, 114, 128, 149, 163
mineral waters in...W 114, 259; A 18 iv b; B 32; MF: 1883-1923
public water supplies in...W 91, 259; A 18 iv b, 19 iv b; C 311; D 87, 120; J 215
quality of ground water in..W 114, 259; A 18 iv b, 19 iv b; B 32, 330,
quantity of ground water in..C 312
salt water in..W 259; A 18 iv b; B 530 b, 661 a, 669, 673; GF 184
springs in...W 91, 114; A 14 iv b, 18 iv b; B 32, 720, 818; GF 197
Ohio, water levels in .. W 845, 886, 906, 936, 944, 986
water table in .. C 311; D 87, 88, 156
well records for ... W 61, 91, 149, 259; A 18 iv b, 19 iv b; B 194, 298, 669;
 GF 184
Ohio shale, water in, in Kentucky W 233
water in, in Ohio .. A 19 iv b
Oil, ground water in relation to P 145; B 653, 658, 661 d, 691 e, 716 d, 721,
 751 b, 756, 786 b, 812 b, 835
quality of ground water in relation to B 653, 661 d, 693, 786 b, 835;
 J 274, 275
Oil wells, pollution of ground water by W 113, 257
water in .. P 116, 117; B 282, 653, 658, 661 d
Oklahoma, areas, all of State C 323
areas, Beaver County .. D 173
Black Prairie .. A 21 vii
Bristow quadrangle .. B 661 b, 759
central .. W 148; A 21 iv c, 22 iv c
Cherokee Nation .. B 298
Chickasaw Nation .. B 298
Cimarron County .. C 32°; D 115, 189
Creek Nation .. B 298
Cushing oil and gas field B 658
Ellis County .. W 500 b
Enid and vicinity .. W 345 b, 520 b
Foraker quadrangle .. B 641 b
Grand Prairie .. A 21 vi
Jefferson County .. B 726 f
McAlester district ... B 874 a
Meade artesian basin .. J 293
Muskogee quadrangle ... GF 132
north-central .. B 691 c
Oklahoma City and vicinity W 345 d
Osage County .. B 641 b, 686, 751 b
Panhandle .. D 173; J 213, 223
Pawhuska quadrangle .. B 691 c
Quinlan-Scipio district .. B 874 c
Sulphur and vicinity .. W 209
Tahlequah quadrangle ... GF 122
Texas County .. C 321; D 106
western .. W 148; A 21 iv c, 22 iv c
Winslow quadrangle .. GF 154
artesian water in ... W 148, 500 b
bibliography of ground water in W 120, 163; C 323
irrigation with artesian water in W 500 b
with other ground water in W 5, 148, 345 b, d, 500 b; A 16 ii e,
 21 iv c, 22 iv c; C 281
mineral waters in ... B 32; MR 1883-1923
public water supplies in W 500 b, 520 b
pumping in .. W 345 b, d
quality of ground water in W 148, 345 b, d, 364, 500 b, 520 b, 606;
 C 331, 322; D 106
quantity of ground water in W 345 b, d, 520 b
Oklahoma, salt water in. .W 148, 500 b; B 669, 689, 715 m, 874 b, c; GF 122; W 151

spring discharge measurements in..................W 99, 26°, 247, 897
springs in ..W 148, 364; B 32; GF 122, 132
water levels inW 777, 817, 840, 845, 856, 909, 939, 947, 989
water table inC 321; D 74, 115, 123, 168, 173, 174, 184; J 223
well records for . .W 57, 61, 148, 149, 345 b, d, 500 b, 520 b; B 264, 298, 686, 716 d, 726 b, f, 736 a, 874 b, c; C 321; D 178

Oligocene formations. See Tertiary; specific formations.

Oneonta limestone, water in, in IowaW 293
water in, in MinnesotaW 256
in Wisconsin ..C 451

See also Lower Magnesian limestone.

Onion Creek marl, water in, in TexasA 18 n b
Onöndaga limestone, water in, in OhioW 114; A 19 iv b
water in, in PennsylvaniaC 344, 345, 346
Opeche formation, water in, in South DakotaGF 107
water in, in WyomingGF 107

Ordovician formations, water in—

<table>
<thead>
<tr>
<th>State</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>W 114; GF 175; C 2</td>
</tr>
<tr>
<td>Arkansas</td>
<td>W 114, 145</td>
</tr>
<tr>
<td>Colorado</td>
<td>P 32</td>
</tr>
<tr>
<td>Connecticut</td>
<td>W 374</td>
</tr>
<tr>
<td>Delaware</td>
<td>W 106</td>
</tr>
<tr>
<td>Georgia</td>
<td>W 114</td>
</tr>
<tr>
<td>Illinois</td>
<td>W 114; A 17 n h; M 38; B 438, 506; GF 81, 145, 185, 188, 200</td>
</tr>
<tr>
<td>Indiana</td>
<td>W 113, 114, 254; A 18 iv b</td>
</tr>
<tr>
<td>Iowa</td>
<td>W 114, 145, 293; GF 145, 200</td>
</tr>
<tr>
<td>Kansas</td>
<td>GF 148, 206; C 142, 147</td>
</tr>
<tr>
<td>Kentucky</td>
<td>W 114, 2°8; C 160 b</td>
</tr>
<tr>
<td>Maine</td>
<td>GF 158</td>
</tr>
<tr>
<td>Maryland</td>
<td>GF 179</td>
</tr>
<tr>
<td>Michigan</td>
<td>W 30, 114</td>
</tr>
<tr>
<td>Minnesota</td>
<td>W 114, 256</td>
</tr>
<tr>
<td>Missouri</td>
<td>W 114, 145, 195; B 438; GF 148</td>
</tr>
<tr>
<td>Nebraska</td>
<td>P 32</td>
</tr>
<tr>
<td>New York</td>
<td>W 114</td>
</tr>
<tr>
<td>North Carolina</td>
<td>GF 151</td>
</tr>
<tr>
<td>Ohio</td>
<td>W 114, 259; A 18 iv b, 19 iv b</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>C 323</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>W 106, 110, 114; GF 162, 170, 179; C 342, 345, 346, 347, 349</td>
</tr>
<tr>
<td>South Dakota</td>
<td>P 32</td>
</tr>
<tr>
<td>Tennessee</td>
<td>W 114, 677; GF 151; C 371</td>
</tr>
<tr>
<td>Virginia</td>
<td>W 114, 596 c; C 432, 433, 434, 435, 436</td>
</tr>
<tr>
<td>West Virginia</td>
<td>W 110, 114; GF 179; C 433</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>W 114, 145; GF 140, 145; C 451</td>
</tr>
<tr>
<td>Wyoming</td>
<td>P 32</td>
</tr>
</tbody>
</table>

See also specific formations.

Ore deposits, ground water in relation to . .W 160, 273, 345 g; M 43, 45, 47; P 42, 43, 54, 66, 68, 74, 75, 77, 80, 104; 111; 115, 122; 144, 148, 169, 176; B 294, 529, 582, 606, 710 b, d, 718, 735 d, 750 b, c; 76?, 763, 902, 921 a, 922 b, g, k, l, r, 936 q; GF 112, 120, 129; J 297

See also Water table.
Oregon, areas, Butter Creek Basin .. C 333; D 69
areas, central .. B 252
Deschutes River Basin .. W 637 d
eastern .. B 846 a
Harney Basin ... W 231, 841; C 333; D 24, 62
Milton-Fillwater district ... C 333
Nampa quadrangle .. GF 103
south-central .. W 220
southeastern .. W 78, 231
The Dalles region ... W 659 b; C 333; D 20
upper Mackenzie Valley ... W 597 d
Walla Walla basin .. D 44
western .. W 597 d
Willamette Valley ... W 890; C 331, 333
Yamhill County .. D 21
artesian water in ... W 78, 220, 231, 841; F 252; GF 103
bibliography of ground water in ... W 120, 163
irrigation with ground water in .. W 220, 231, 637 d, 659 b, 841, 890;
A 16 II e; GF 103; C 331; D 24, 62
mineral waters in .. B 32; MR 1883-1923
public water supplies in ... C 332
quality of ground water in .. W 220, 231, 364, 659 b, 841; B 32; D 62
quantity of ground water in .. W 220, 231, 597 d, 637 d, 841
salt water in ... B 669
spring discharge measurements in W 214, 250, 251, 252, 271, 310, 360, 370,
390, 391, 394, 440, 460, 480, 510, 514, 530, 574, 594,
614, 634, 654, 691, 706, 720, 794, 834, 864, 884,
900, 904, 934, 964, 984
springs in ... W 78, 220, 231, 557, 597 d, 637 d, 659 b, 679 b, 841; A 14 II b;
M 11; B 32, 252; GF 103; C 332; D 24, 62, 135; J 147
thermal .. W 220, 231, 597 d, 679 b, 841; B 252; D 24, 62, 135; J 147
temperature of ground water in .. W 220, 231, 597 d; B 32, 252
water levels in ... W 777, 817, 840, 845, 886, 910, 940, 948, 990
water table in .. W 220, 231, 637 d; B 893; GF 103; D 24, 44
well records for .. W 61, 149, 220, 231, 637 d, 659 b; E 252, 264, 298
wells in, construction of ... W 78, 231; D 24
cost of .. W 220, 231
Organic matter in water .. W 889 e
Origin of ground water .. W 9, 67, 114, 142, 155, 158, 219, 222, 233, 254, 294,
343, 345 h, 375 a, b, d, 398, 399, 400 e, 423, 489, 494; 597 b, 600, 637 b,
638 c, 678; A 14 II b, 16 II f, 17 II g, 22 IV c; P 44, 90 h, 127; B 319, 529,
618; C 15, 16, 22, 92, 98, 99, 273; D 54, 160, 173; J 7; 34, 106, 255
C 15, 16, 22, 92, 98, 99, 273; D 54, 160, 173; J 7, 34, 106, 255
Descartes and other ancient writers, on A 14 II b
erroneous ideas in regard to .. W 254, 278
from deep fissures .. W 400 b
from interior of earth .. P 127; B 319
from oceans .. W 400 b
quality as indicator of ... B 319
See also Absorption; Quantity.
Origin of mineral springs ... W 338; R 14 II b
INDEX

Orinda formation, water in, in California GF 193
Orton, Edward, Rock waters of Ohio A 19 iv b
Osage group, water in, in Illinois B 438
water in, in Iowa ... W 293
in Missouri .. B 438
Otton, E. G., Ground-water supplies of the Ypsilanti Triangle area.
Mich .. C 182
Overbeck, R. M., Geology and mineral resources of the west coast of
Chichagof Island, Alaska B 692 b
Owen, G. T., Water levels and artesian pressure in the United States
W 817, 840, 845
Oxidation of ores, sulfates produced by W 273, 345 g
Oxidation of rocks, ground-water levels in relation to . P 94, 97, 148 169, 171,
177; B 529, 625, 677, 681, 710 a, 716, 735 d, e, 750 b, 763,
782, 787, 811 c, 814, 847 a, 853, 870, 922 g
Oxidation produced by ground water M 47; P 38, 43, 66, 68, 75, 77, 148;
B 692 e, 710 e, 718, 733, 811 c, 849 g, 893, 922 l

P

Pack, R. W., Sunset-Midway oil field, Calif P 116
Packers for wells. See Well construction.
Padgett, H. D., Jr., Geology and ground-water resources of the coastal area
of Mississippi ... C 195
Geology and ground-water resources of the Verde River Valley, Ariz
C 20 a
Pahasapa limestone, water in, in South Dakota W 227; P 32; GF 167, 128, 164
water in, in Wyoming P 32; B 716 b; GF 107, 128, 150
Paige, Sidney, Copper deposits of the Tyrone district, N. Mex P 122
Llano-Burnet folio, Tex GF 183
Silver City-folio, N. Mex GF 199
Palache, Charles, Franklin Furnace folio, N. J GF 161
Paleozoic formations. See specific formations.
Palm, H. W., Water levels and artesian pressure in the United States
W 817, 840
Palmer, Chase, California oil-field waters J 38
Deep well at Charleston, S. C P 90 h
Geochanical interpretation of water analyses B 479
Quality of the waters in the Blue Grass region, Ky W 233
Palmer, H. S., Ground water in the Norwalk, Suffield, and Glastonbury
areas, Conn ... W 470
Ground water in the Southington-Granby area, Conn W 466
Paluxy sand, water in, in Texas A 21 vii
Pamlico sand, water in, in Florida J 365
Pamunkey formation, water in, in Atlantic Coastal Plain B 138
water in, in Maryland .. B 138; GF 13, 23, 204
in Virginia .. W 114; B 138; GF 13, 23; C 481, 487, 441, 442
Panola formation, water in, in Kentucky W 233
Paper manufacturing, quality of water for W 254, 341, 398
Pardee, J. T., Deposits of manganese ore in Montana, Utah, Oregon and
Washington .. B 725 c
Geology and ground-water resources of Townsend Valley, Mont. W 539
PUBLICATIONS RELATING TO GROUND WATER

Pardee, J. T., Geology and mineral deposits of the Oblerville Indian Reservation, Wash. ... B 677
Ground water in the Missouri Valley near Townsend, Mont. D 2
Metalliferous deposits of the greater Helena mining region, Mont. . B 842
Montana earthquake of June 27, 1925 P 147 b

Park, C. F., Jr., Geology and ground-water resources of the Harney Basin, Oreg .. W 841; D 62
Geology and ore deposits of the Metaline quadrangle, Wash. P 202
Girdwood district, Alaska .. B 849 g
Mining districts of eastern Oregon B 846 a
Parker, F. S., Mizpah coal field, Mont B 906 c
Richey-Lambert coal field, Mont B 847 c

Parker, G. G., Effect of the Pleistocene epoch on the geology and ground water of southern Florida J 365
Geology and ground water of southern Florida J 319
Geology and ground water of the Everglades in southern Florida . J 258
Investigation of water resources in southeastern Florida C 63
Late Cenozoic geology of southern Florida C 65
Salt-water encroachment in limestone at Silver Bluff, Miami, Fla. . J 352
Salt-water encroachment in southern Florida J 348
Water levels and artesian pressure in the United States, 1943 W 987
Water resources in southeastern Florida C 62

Parker, G. L., Surface water supply of the United States W 362, 632, 884, 882, 884

Parker, H. N., Quality of some waters of the Coastal Plain of North Carolina ... C 81
Quality of water in Kansas ... W 273

Parkman sandstone, water in, in Montana B 856
water in, in Wyoming ... P 51; GF 141, 142

Parks, Bryan, Geology and mineral resources of the western part of the
Arkansas coal field .. B 847 e

Parks, E. M., Lignite field of northwestern South Dakota B 627

Parma sandstone, water in, in Michigan W 30, 114
Pascagoula formation, water in, in Mississippi W 155, 193, 194, 195

Patapsco formation, water in, in Maryland GF 204
in Pennsylvania .. C 342

Patuxent formation, water in, in Maryland GF 204
water in, in North Carolina C 291

Paulsen, C. G., Surface water supply of the United States, 1918, part 3 . W 473
Surface water supply of the United States, part 10 W 576, 590, 610, 630
Surface water supply of the United States, part 12 W 533, 573, 593, 613

Payette formation, water in, in Idaho GF 45

Peale, A. C., Bibliography of mineral waters MR 1905
Mineral springs of the United States B 32
Natural mineral waters of the United States A 14 II b
Production of mineral waters MR 1883-1900
Three Forks folio, Mont ... GF 24

Peay sand, water in, in Wyoming B 621 l, 656

Peedee sand, water, in North Carolina C 291
water in, in South Carolina B 867

Pendleton sandstone, water in, in Indiana W 254
INDEX

Pennsylvania, areas, all of State ... W 114; C 349; J 335
areas, Accident quadrangle .. GF 160
Allegheny River BasinC 348
Amity quadrangle ... B 300; GF 144
Barnesboro quadrangle ... W 110; B 531 c; GF 189
Belleville quadrangle .. B 855
Butler quadrangle .. B 873
central ... B 531 d
Chambersburg quadrangle .. W 110; GF 170
Coatesville quadrangle ... GF 223
Curwensville quadrangle .. W 110; B 531 d
Delaware River Basin ... C 348
Doylestown district ... B 828
Ebensburg quadrangle .. W 110; GF 133
Elders Ridge quadrangle .. B 123
Elkton quadrangle ... GF 211
Fairfield quadrangle .. GF 225
Gaines quadrangle .. GF 92
Gettysburg quadrangle .. GF 225
Grantsville quadrangle ... GF 160
Hancock quadrangle ... W 145; GF 179
Honeybrook quadrangle .. B 891
Houtzdale quadrangle ... B 531 d
Indiana quadrangle .. GF 102
Johnstown and vicinity ... B 447
Johnstown quadrangle ... GF 174
Mercersburg quadrangle ... W 110; GF 170
Middletown quadrangle .. B 840
Monongahela River Basin .. C 348
New Kensington quadrangle .. B 829
north-central ... C 346; D 98
northeast ... C 344; D 26
northwest ... C 343
Patton quadrangle .. W 110; B 531 c; GF 189
Pawpaw quadrangle .. GF 179
Philadelphia district ... W 106; B 138; GF 162; J 358
Phoenixville quadrangle .. B 891
Punxsutawney quadrangle .. B 531 d
Quakertown district .. B 828
Rogersville quadrangle ... GF 146
Somerset quadrangle ... GF 224
south-central ... C 345; D 94
southeast ... C 342; D 35
southwest ... C 341
Susquehanna River Basin .. C 348
Trenton quadrangle .. GF 167
Warren County ... B 298
Warren quadrangle .. GF 172
Washington County ... B 300
Waynesburg quadrangle .. W 110; GF 121
West Chester quadrangle .. GF 223
Windber quadrangle .. GF 224
Pennsylvania, areas, York County C 347
Zelienople quadrangle B 873
artesian water in W 106; B 138, 531 d; GF 102, 121, 133, 160, 179, 189;
C 341, 342, 343, 344, 346; D 26; J 20
bibliography of ground water in W 114; B 32; MR 1883-1923; GF 92
public water supplies in W 106, 110; B 447; GF 121, 123, 162, 167, 170,
189; C 342, 343, 344, 345, 346, 347, 349; J 234, 358
quality of ground water in W 105, 110, 364; B 32, 300, 447; GF 144,
179; C 341, 342, 343, 344, 345, 346, 349; D 26; J 173
quantity of ground water in C 345, 349; J 358
salt water in B 330, 669, 693, 829; GF 144; C 341, 343, 344
spring discharge measurements in W 741
springs in W 106, 114, 679 b, 741; A 14 II b; B 32, 300, 447, 828, 840,
891; GF 121, 123, 133, 160, 167, 170, 172, 174, 179, 189, 225;
C 341, 342, 343, 345, 346, 352
thermal ... W 679 b
temperature of ground water in C 447
water levels in W 777, 817, 840, 845, 886, 906, 936, 944, 986
water table in B 300; C 345, 346; D 34, 94, 98, 131; J 88, 178
well records for W 61, 106, 149; B 138, 264, 298, 531 d,
699, 829, 855, 873; GF 121, 123, 162; C 341 343, 344, 345, 346; D 35
wells in, construction of C 341
Pennsylvania formations; See Carboniferous; specific formations.
Pepper, J. F., Structure and gas possibilities of the Oriskany sandstone
in southwestern New York B 899 a
Perched ground water W 164, 233, 258, 320, 335, 489, 494, 560 d, 616, 818;
P 44, 46; C 92, 98, 99, 235; J 255
flowing wells from W 320, 494; C 99
Percolation. See Movements of ground water.
Perforation of casings W 110, 140, 257
Perkins, G. F., Underground waters of Vermont W 114
Well and spring records for Vermont W 102
Permeability of rocks W 67, 114, 489, 494, 596 f, 638 c, 679 a, £ 27; B 821 b;
D 84, 117; J 62, 89, 111, 114, 225
effect of compression on J 344
method of determining W 679 a, 887; D 205; J 42, 85, 131, 230, 241
conference on, report of J 307
Permian formations, water in
Arizona .. C 341, 342, 343, 344, 345, 346; D 26; J 173
Kansas .. C 341, 342, 343, 344, 345, 346; D 26; J 173
New Mexico .. C 341, 342, 343, 344, 345, 346; D 26; J 173
Oklahoma .. C 341, 342, 343, 344, 345, 346; D 26; J 173
Texas .. C 341, 342, 343, 344, 345, 346; D 26; J 173
Perry, T. O., Experiments with windmills W 20
Persalinity of ground water W 338
Persia, bibliography of ground water in W 163
Persian wheels for lifting water W 163
Peru, bibliography of ground water in W 163
Petroleum. See Oil.
Phalen, W. C., Ellijay folio, Ga.-N. C.-Tenn GF 187
Johnstown folio, Pa GF 174
Kenova folio, Ky.-W. Va.-Ohio GF 184
Phalen, W. C., Mineral resources of Johnstown, Pa., and vicinity B 447
Potash in bitterns of eastern United States B 530 b
Salt resources of the United States B 669
Philippine Islands, bibliography of ground water in W 163
quality of ground water in B 330, 491, 616
Phosphate in ground water .. W 338; B 47, 330, 491, 616; MR 1911 II n
Photography, quality of water for W 30
Phreatic water, definition of W 494; A 14 II a; J 344
Phreatophytes. See Vegetation.
Physiological effects of water MR 1911 n
Pierce, C. H., Water resources of Hawaii W 318, 336
Pierce, W. G., Geology and coal resources of the region south of Cody, Wyo B 921 b
Geology and mineral resources of north-central Chouteau, western Hill, and eastern Liberty Counties, Mont B 847 f
Rosebud coal field, Mont ... B 847 b
Pierre shale, water in—
Kansas .. W 273
Nebraska ... W 216
New Mexico .. GF 214
North Dakota ... W 55°; B 801
South Dakota ... W 227; GF 113, 114, 165
Pieistic or artesian water conditions J 344
Piney sandstone, water in, in Wyoming P 51
Piper, A. M., Characteristics of a satisfactory observation well D 75
Chemical character of native and contaminated waters in the
Long Beach-Santa Ana area, California C 30 f
Cooperative ground-water investigation in the Long Beach-
Santa Ana area, California ... C 29
Equipment for measuring depth to water D 142
Fluctuations in observation wells in the Mokelumne area, Calif ... J 100
Geologic features in the coastal zone of the Long Beach-
Santa Ana area, California .. C 30 d
Geology and ground-water hydrology of the Mokelumne area, Calif. W 780
Geology and ground-water resources of the Bruneau River Basin, Idaho ... C 115
Geology and ground-water resources of The Dalles region, Oreg. W 659
b; D 20
Geology and ground-water resources of the Harney basin, Oreg. W 841; D 62
Geology and water resources of the Goose Creek basin, Idaho.... C 112
Graphic procedure in geochemical interpretation of water analyses, J 372
Ground-water conditions along the Pacific coast with respect
to salt-water intrusion .. D 151
Ground water for irrigation in the Harney basin Oreg. D 24
Ground water for irrigation in Yamhill County, Oreg. D 21
Ground water for irrigation on Camas Prairie, Idaho C 116
Ground water for municipal supply at Idaho Falls, Idaho C 117
Ground water in north-central Tennessee W 640
Ground water in southwestern Pennsylvania C 341
Ground water in the Butter Creek area, Oreg. D 69
Ground water in the Walla Walla basin, Oreg.-Wash D 44
Ground-water problem in Oregon C 333
Piper, A. M., Ground-water projects in California, Oregon, and Washington

Ground-water resources of Willamette Valley, Oreg ... W 890; C 331
Ground-water supply at Moscow, Idaho ... C 113
Index of factual data from water wells in Los Angeles and Orange Counties, Calif ... C 24
Investigations in hydrologic laboratories ... J 74
Kah-ne-ta Spring and adjacent hot springs in Oregon .. D 135
Modified Wheatstone bridge assembly for water-well exploration J 281
Nation-wide system for designating wells (comments) .. D 81
Origin of artesian pressure .. J 56
Partial chemical analyses of waters from coastal zone of Long Beach-Santa Ana area, Calif., (foreword) ... C 26
Relation between moisture equivalent and specific retention of water-bearing materials ... J 103
Seepage loss and gain in the Mokelumne River, Calif .. D 52
State-wide numbering system for designating wells ... J 80
Underground water in Arizona, California, New Mexico, and Oregon J 97
Underground water problems in Arizona, California, New Mexico, and Oregon

and Oregon .. J 84
Water levels and artesian pressure in the United States .. W 777, 817, 840, 845, 886, 911, 941, 990
Water resources and watershed protection problems of Oregon municipalities C 332
Water resources of Santa Barbara County, Calif .. C 27
Water-table fluctuations in Spokane Valley, Wash.-Idaho ... W 889 b; D 118
Water wells in the coastal zone of the Long Beach-Santa Ana area, Calif C 25
Wells for public water supply at Spokane, Wash .. D 102

Pishel, M. A., Geology of the Standing Rock and Cheyenne River Indian Reservations, N. Dak.-S. Dak .. B 575

Piston pumps ... W 14
Pit flows ... W 277
Pitkin limestone, water in, in Arkansas .. W 145; GF 154
water in, in Oklahoma ... GF 154
Pittsburgh sandstone, water in, in Pennsylvania .. GF 123
Plains, marl, water in, in Colorado ... A 16 II f
water in, in Kansas .. A 16 II f
in Nebraska .. A 16 II f
Platteville limestone, water in, in Iowa .. W 293; GF 145
water in, in Minnesota ... W 256
in Wisconsin .. GF 145; C 451

See also Trenton limestone.

Plattsburg limestone, water in, in Kansas .. GF 206
water in, in Missouri ... GF 206
Pleasanton shale, water in, in Missouri ... W 195
Pleistocene deposits. See Glacial drift; Quaternary deposits; Valley fill.
Pliny, on mineral waters ... A 14 II b
Pliocene formations. See Tertiary; specific formations.
Plunger pumps .. W 14
Plutonic water. See Juvenile water; Magnetic water.
Pocono formation, water in, in Pennsylvania ... B 300; GF 224; C 341, 343, 344, 345, 346
INDEX

Poindexter, O. F., Ground-water supplies of the Ypsilanti Triangle area, Mich ... C 182
Water levels and artesian pressure in the United States ... W 840, 845
886, 906, 944

Poland, J. F., Chemical character of native and contaminated waters in the Long Beach-Santa Ana area, Calif C 30 f
Cooperative ground-water investigation in the Long Beach-Santa Ana area, Calif ... C 29
Cooperative ground-water investigation in the Torrance-Santa Monica area, Calif ... C 30 c
Electrical resistivity apparatus for testing well waters J 226
Geologic features in the coastal zone of the Long Beach-Santa Ana area, Calif ... C 30 d
Ground water, salt water, and ground recession in Santa Clara Valley, Calif ... J 225
Index of factual data from water wells in Los Angeles and Orange Counties, Calif ... C 24
Modified Wheatstone bridge assembly for water-well exploration . J 281
Partial chemical analyses of waters from coastal zone of Long Beach-Santa Ana area, Calif .. C 26
Saline contamination of coastal ground water in southern California, J 318
Variations in chemical composition of Los Angeles Basin ground waters ... J 325
Water levels and artesian pressure in the United States ... W 941, 949, 991
Water wells in the coastal zone of the Long Beach-Santa Ana area, Calif ... C 25
Withdrawals of ground water from the Long Beach-Santa Ana area, Calif ... C 30 e
Pollution of artesian water .. C 131
Pollution of cisterns ... W 255
Pollution of ground water, chloride as an indicator of ... W 114, 144, 223, 232, 256, 398; C 81
defective casings as cause of ... W 257, 259
fluorescein as an indicator of ... W 160; C 82
general W 110, 145, 160, 255, 293; A 14 II a; C 451; J 11, 161, 166, 184, 232
laws relating to ... W 122, 152
tests for .. W 144, 160, 193, 253; C 81, 82
Pollution of ground water by—
bacteria .. W 193, 256, 259, 335, 341, 398, 399; C 81, 82
drainage wells .. W 258
oil wells ... W 113
sea water .. W 232, 537, 596 a; C 83, 216, 440; D 151; J 117, 177, 193, 201, 202, 225, 228, 249, 296, 318, 321, 348, 852, 965
sewage ... W 232, 255, 293; C 81, 82
sinkholes .. W 255, 258
Pollution of ground water in—
Arkansas .. W 145
clay ... W 255
Connecticut .. W 232, 537
Florida ... J 80
Georgia .. C 81, 82
granite ... W 255
Pollution of ground water in, Hawaii C 97
Illinois ... C 131
Indiana ... W 113
Iowa .. W 293
joints ... W 258
Kentucky .. W 233
limestone ... W 255, 258; C 131
Maine .. W 223
Massachusetts .. W 114
Michigan .. W 30, 31
Minnesota ... W 193, 256
Mississippi ... W 159
Rhode Island .. W 114
sand ... W 255, 258
sandstone, shale, slate .. W 255
Texas ... W 335; J 117, 170
till ... W 255
Virginia ... W 596 c; C 431

See also Purification of ground water.

Pollution of springs .. W 255
Pollution of water, definition of term W 315
Pollution of wells ... W 110, 145, 160, 169, 223, 232, 255, 257, 293; C 81, 82;
 J 61, 64, 71, 105, 161, 166
“Ponded” ground water .. C 431
Pool springs ... W 221, 277, 365, 423
Porosity, methods of determining W 400 e, 596 f; A 19 II b
Porosity of
 crystalline rocks .. W 160, 232
 gravel ... W 104, 136, 140
 rocks .. W 67, 114, 160; A 19 II b
 sand ... W 67, 140, 294, 40 e; A 19 II b
 soil .. W 67; A 19 II b; C 431
 valley fill .. W 222, 294, 345 h, 398, 400 e
 water-bearing materials ... W 67, 104, 114, 136, 140, 160, 232, 249, 400 e,
 489, 596 f, 638 c; A 17 II f, 19 II b; M 47; C 1
 wet material above the water table A 17 II f, 19 II b
Port Hudson formation, water in, in Arkansas P 46
water in, in Louisiana .. P 46
Porter, E. A., Surface water supply of the United States W 360, 389, 390, 440
Porter, L., Jr., Water wells and water levels in San Antonio, Santa
Maria, and Cuyama Valleys, Calif .. C 30 b
Porto Rico. See Puerto Rico.
Ports, P. L., Natural gas resources available to Dallas, Texas B 716 d
Potability of ground water, mineral content in relation to W 341, 343, 398, 399
Potassium in ground water .. W 338, 343, 520 d; P 98 a, 117; B 530 b, r,
 540 n, p, 715 i; MR 1911 II n
Potomac group, water in—
 Atlantic Coastal Plain .. B 138
 Delaware ... B 138; GF 137
 District of Columbia .. P 138; GF 70
 Georgia ... W 341; C 81
 Maryland ... B 138; GF 13, 70, 137, 182, 204
 North Carolina ... C 291
Potomac group, water in, Virginia. W 114; B 138; GF 13, 70; C 431, 436, 437, 441, 442; J 250

Potsdam sandstone, water in, in Illinois. W 144; A 17 11 h; M 38; GF 81, 200

water in, in Iowa. W 293; GF 145, 200

in Wisconsin. W 114, 145; GF 140, 145; C 451

See also Cambrian formations; Dresbach sandstone; Jordan sandstone.

Pottsville formation, water in, in Illinois. GF 185, 220

water in, in Pennsylvania. B 300; C 341, 343, 344, 345, 346

Powell, J. W., Artesian irrigation on Great Plains. A 11 11 c

Power for pumping, hydraulic rams. W 256, 218; C 431

hydroelectric generators. W 146, 375 a, 398

internal-combustion engines. W 1, 146, 153, 320, 375 a, d, 398, 423, 425 d

producer-gas engines. W 153

steam engines. W 1, 146

various means. W 1, 14, 29

See also Windmills.

Power from artesian wells. W 87, 494; A 17 11 g; GF 168

Powers, H. A., Ground-water supply in the Kula and Makawao districts, Maui, Hawaii. D 48

Powers, Sidney, The Brooks, Steen, and Grand Saline salt domes, Tex. B 736 g

Structure and oil and gas resources of the Osage Reservation, Okla. 686 s

Structure of the Madill-Denison area, Okla. and Tex. B 736 a

Prairie du Chien group, water in, in Iowa. W 293

See also Lower Magnesian limestone.

Pre-Cambrian formations, water in—

Alabama. W 114

Arizona. W 320

Connecticut. W 114, 232, 374, 397

Delaware. GF 162

District of Columbia. W 114; GF 152

Georgia. W 114, 160; C 81

Iowa. W 114, 293

Maine. W 114, 145, 223, 255; GF 149

Maryland. W 114; GF 152, 204

Minnesota. W 114, 256; GF 117

Missouri. W 114, 195

Montana. W 345 g, 400 b

New Hampshire. W 114, 145

New Jersey. W 114; GF 157, 191

New Mexico. W 343, 620

New York. W 110, 114; GF 157

North Carolina. W 114; GF 124, 147, 151

North Dakota. GF 117

Pennsylvania. W 106, 114; GF 157, 162; C 342

Rhode Island. W 114

South Carolina. W 114; GF 147

Tennessee. GF 124, 151

Texas. GF 183, 194

Vermont. W 110

Virginia. W 114; C 434, 435, 436

West Virginia. W 114

Wisconsin. W 114; C 451

See also Crystalline rocks; specific formations.
Precipitation, absorption in relation to W 142, 153, 155, 219, 294, 345 h, 400 e, 638 e; P 44; C 11, 15, 20, 21; D 173; J 73, 240, 279
artesian flows in relation to ... C 91
fluctuations of water table in relation to W 142, 153, 155, 219, 345 g, h, 375 a, d, 400 e, 423; A 19 II b; P 44; C 15, 20
movements of ground water in relation to W 638 c; P 44
supplies of ground water in relation to W 137, 138, 139, 142, 153, 155, 219, 345 h, 400 e, 423, 494, 638 c; P 44; C 21
yields of springs in relation to W 277, 489; A 19 IV b
Preglacial valleys, water in ... W 145, 293
Pressey, H. A., New York City folio, N. Y.-N. J GF 88
Pressure head. See Artesian water.
Pressure of ground water, dissolved gases and solids in relation to ... M 47
Price, P. H., Ground-water investigations in West Virginia. J 251, 256; C 448
Primary alkalinity and primary salinity of water W 338; B 479
Priming of water in boilers ... W 274
Pritchett, H. C., Seepage loss and gain of the Mokelumne River, Calif... D 52
Prosser, C. S., Columbus folio, Ohio GF 197
Provinces of the United States in regard to ground water W 114, 489
Public water supplies, consumption of W 91, 195, 256, 315, 423; C 82; J 232, 364
cost of .. W 556, 423; C 82
for large cities, ground water for W 315, 83° d; J 93, 122
history of, in the United States W 315
importance of ... W 91
meters for ... J 300
ownership of .. W 51, 254; C 451
protection of ... J 327
purification of ... W 315, 496, 559
relative merits of surface and ground water for W 193, 223, 254, 256, 293; C 82
See also specific States.
Puerto Rico, bibliography of ground water in W 120
Pulliam formation, water in, in Texas GF 64
Pumping, land subsidence due to J 168, 225
movement of ground water in relation to W 638 c; P 44; J 86
variation of water table in relation to W 142, 155, 219, 345 h, 638 c, 679 a, 887; P 44; C 92, 99
Pumping for irrigation. See specific States.
Pumping tests .. W 140, 141, 153, 258, 320, 333, 345 c, 398, 425 b, 519, 619, 679 a, 887; B 618; C 136, 214, 241, 244, 245, 343; D 55, 96, 182, 201, 205; J 85, 101, 133, 194, 199, 230, 236, 241, 246, 294, 311, 326, 369
Pumps, centrifugal .. W 1, 184, 379, 375 a, 398
reciprocating .. W 14, 41, 398
various types .. W 1, 14
Pumps and other-lifting devices—
air lifts ... W 256, 343
bucket lifts ... W 14, 540
hydraulic rams .. W 1, 254, 256, 268, 540; C 431
siphons ... W 254, 320, 374, 397, 540
water wheels ... W 13, 29
INDEX

Pumps and other-lifting devices, windlasses ... W 254

Purdue, A. H., Asphalt deposits and oil conditions in southwestern Arkansas
B 808

Geology of the DeQueen and Caddo Gap quadrangles, Ark B 691 j

Hot Springs folio, Ark ... GF 215

Underground waters of northern Arkansas W 114

Water resources near contact between Paleozoic and Mississippi embayments, northern Arkansas .. W 145

Water resources of the Winslow quadrangle, Ark W 145

Well and spring records for Arkansas .. W 102

Winslow folio, Ark.-Okla ... GF 154

Purgatoire formation, water in, in Colorado GF 186

water in, in New Mexico ... GF 214

Purification of ground water—
cold-water softening ... W 254, 259, 293, 341, 398, 399

distillation .. W 254

exchange silicate softening .. W 559, 600

feed-water heating .. W 254, 259, 293, 341, 398, 399

filtration tests for ... P 44

history of, in the United States .. W 315

lime and soda-ash softening .. W 315, 559

mechanical filtration ... W 254, 259

methods of .. W 254, 259, 293, 315, 341, 398, 399, 379; C 451

natural filtration ... W 255, 258, 330, 479, 600

slow sand filtration .. W 254, 259, 315, 341, 398, 399

sterilization ... W 254, 315, 518

Purton, A. B., Surface water supply of the United States W 510, 529, 549, 750, 765, 860

Pynchon, W. H. C., Drilled wells of the Triassic area of the Connecticut Valley ... W 110

Quality of ground water, artesian head in relation to B 319

bacteriologic ... W 193, 254, 256, 259, 335, 341, 398, 399; C 81, 82

changes in ... W 160, 258; B 330, 491, 616

due to replacement of connate water .. W 160

due to weather ... W 258

chloride as indicator of .. W 144, 222, 256, 259; C 81

classification with regard to ... W 273, 274, 341, 398, 399; B 479, 606, 653

concentration processes in relation to .. W 320, 343, 473; B 653

dissociation theory of ... M 47

for air conditioning .. J 351

forecasting ... W 398, 577

improvement of, in wells ... W 160

regarding—

acidity .. W 254, 259, 273, 274, 293, 341, 345 g, 398; B 47, 330, 479, 491, 606, 616; C 1, 451

alkalinity .. W 151, 338; P 90 h, 117; B 47, 479, 606

aluminum .. W 273, 338; MR 1911 n n

ammonium ... W 240, 256; MR 1911 n n

antimony .. B 47

arsenic .. W 338; B 47; MR 1911 n n
Quality of ground water, regarding, barium. W 254, 338, 399; B 47;
MR 1911 n n
bicarbonate ... W 254, 259, 273, 338, 341, 398; P 117; MR 1911 n n;
J 47, 254, 255
bisulfate .. N R 1911 n n
borate .. W 338; B 47, 330, 491, 616; MR 1911 n n
bromide ... W 31, 233, 338, 398; P 117; B 47; MR 1911 n n
calciumpermanate B 47
calciumpotassium W 254, 259, 273, 338, 341, 398; P 117; MR 1911 n n
carbon dioxide .. W 273, 338; GF 206
carbonate ... W 254, 259, 273, 320, 338, 341, 343, 398; P 117;
B 330, 491, 616; MR 1911 n n, 1916
chloride ... W 30, 58, 77, 114, 144, 223, 232, 254, 256, 259;
273, 275, 320, 341, 398, 537; P 117; B 330, 491, 616; MR 1911 n n, 1916;
C 92, 94, 97, 98, 99; J 15, 197, 254, 255
color .. W 240, 254, 259, 338, 341, 398
copper ... W 399; B 47
fluoride .. B 47; MR 1911 n n; J 197
gases in solution M 47
gold .. P 94
gypsum .. W 273, 317, 320, 343, 398; C 381
hardness ... W 151, 232, 254, 259, 273, 320, 338, 341, 343, 398, 399, 559
hydrogen sulfide W 254 259, 338, 341, 398, 399; B 282, 398, 447;
MR 1911 n n; GF 174; C 1
iron .. B 282, 398, 447; MR 1911 n n; GF 174; C 1
hydroxide ... MR 1911 n n
iodide .. W 233, 338; P 117; B 47; MR 1911 n n
iron ... W 254, 256, 259, 273, 338, 341, 398, 399;
MR 1911 n n, 1916; GF 206; C 1
lead and fixed nitrogen W 256
lithium ... W 160, 259, 338; B 47; MR 1911 n n
magnesium ... W 254, 259, 273, 338, 341, 343, 398; P 117; MR 1911 n n
manganese ... W 338; B 47, MR 1911 n n
neutrality ... B 479, 606
nitrate .. W 256, 338; B 47, 330, 491, 616; MR 1511 n n; J 255
odor .. W 338
organic matter W 193, 254, 259, 341, 398
persalinity .. W 338
phosphate .. W 338; B 47, 330, 491, 616; MR 1911 n n
potassium .. W 338, 343; P 117; B 530 b, r, 540 n, p; MR 1911 n n
radioactivity .. W 338; B 395; MR 1913 n n
rubidium ... B 47
salinity ... W 320, 537; B 479, 606
See also specific States, salt water in.
silica .. W 240, 273, 338; F 330, 491, 616
silver .. P 94
sodium .. W 254, 259, 273, 338, 341, 398; P 117; MR 1911 n n;
J 47
specific gravity B 47
strontium ... W 338; B 47
sulfate .. W 254, 259, 273, 275, 338, 341, 343 g, 398; P 117; J 254
B 330, 491, 616, 653; MR 1911 n n, 1946
sulfide .. W 338, 345 g; P 117; MR 1911 n n, 1916
Quality of ground water, regarding, sulfite ... B 47
sulfuraria ... W 338
suspended matter .. W 254, 258, 259, 341, 398; C 131
thallium .. B 47
thiosulfites ... M R 1911 II n
thorium .. B 395
tin ... B 47
titanate .. B 47
turbidity .. W 341, 398; C 131
due to loess ... C 131
uranium .. B 395
zinc ... W 254, 273, 399; B 606

relation of, to—
carbonate deposits .. A 9 d
concentration .. M R 1911 II n
deposits of hot springs ... A 9 d
depth .. W 256, 275, 320, 341, 343, 398, 399, 518, 520 d, 597 c
diffusion .. M 47
geologic formations W 254, 256, 259, 273, 275, 293, 320, 375, 338, 341; 343, 345 g, 375 d, g, 398, 399, 423, 518, 576, 597 c;
A 14 ii b; P 90 h; B 479, 653; C 451
gypsum beds ... W 275
health ... W 31, 164, 195, 233, 254, 259, 293, 335, 338, 341, 343; 398;
A 14 ii b; P 46; MR 1911 n, 1913 II h
industries .. W 559; J 315
occluded sea water .. W 398
pressure ... M 47
reactions with adjacent materials ... W 520 d; M 330, 431, 616, 653
silica deposits ... A 9 d
sodium carbonate from igneous rocks .. W 320
in Cretaceous formations ... W 256, 343
soil alkali ... W 320, 343, 398, 423
sulfuraria .. W 338
temperature ... M 47
underground circulation ... W 320; M 47
vegetation ... W 34", 423, 577
volcanism .. B 320, 491, 616
water table ... W 320, 343
well casings .. W 293
sanitary .. W 144;
193, 232, 254, 255, 256, 259, 335, 341, 398, 399; C 81; 82
therapeutic .. W 31, 164, 195, 233, 254, 259, 293, 335, 338, 341, 398;
A 14 ii b; P 46; MR 1911 II r, 1913 II h

See also Analyses; Maps; Pollution; Purification, and Quality of water;
specific States.

Quality of mine water ... W 273, 345 g, 364; P 94; B 330, 491, 529, 666, 616, 625
in regard to acidity ... W 273, 345 g; P 104; B 735 d
relation of, to corrosion ... W 273
to destruction of fish .. W 273
Quality of water for, boiler use .. W 30, 233, 254, 256, 259, 274, 293, 320, 335, 341;
375 g, 398, 399, 446, 497, 500 b, 518, 520 b, 576, 658; C 451
brewing .. W 233 254, 341, 398
360 PUBLICATIONS RELATING TO GROUND WATER

coffee making ... W 399

cotton mills ... W 254, 398

distilling .. W 233, 254, 398

domestic use ... W 30, 254, 320, 335, 341, 343, 375 g, 398, 399, 497;

500 b, 518, 576; C 451; MR 1911 n n

drinking, relation of concentration to W 343, 398; J R 1911 n n

dyeing .. W 254, 341, 398

ice making ... W 233

industrial uses ... W 233, 254, 259, 274, 293, 341, 398, 559, 658

irrigation ... W 260, 274, 320, 333, 335, 343, 375 g, 398, 399,

429, 497, 500 b, 518, 620

livestock .. W 335, 343

medicinal use ... W 31, 164, 195, 233, 254, 259, 293, 335, 338, 341; 398

A 14 n b; P 46; MR 1911 n n, 1913 li h

paper making ... W 254, 341, 398

photography ... W 30

soap making .. W 233

starch making .. W 341, 398

sugar making ... W 30, 341, 398

tanning .. W 254, 341, 398

tea making .. W 399

woolen mills .. W 398

Quality of water for—

bleaching .. W 254, 398

Quality of water, with relation to—

boiler compounds W 254, 293, 398, 399, 658

corrosion of boilers W 254, 256, 259, 293, 398, 658

foaming in boilers W 254, 256, 259, 274, 341, 398, 399, 658; C 451

priming in boilers W 274, 658

scale formed in boiler W 233, 254, 256, 259, 274, 293, 341, 398, 399,

658; C 451

soap consumption W 256, 274

softening ... W 254, 274, 293, 315, 398

See also Analyses; Maps; Pollution; Purification; Quality of ground water.

Quantity of ground water, absorption method of determining W 155, 219,

294, 400 e, 423, 519, 579 b, 638 e c; C 21; J 17; 186, 279, 300

annual .. W 137, 138, 139, 142, 219, 222, 234, 235, 294, 345 g;

h, 375 a, d, 400 e, 423, 425 e, 597 b, 619, 637 b,

638 c, 774, 818; C 14, 15, 16, 21, 22, 92, 98, 99;

D 77, 146, 160 171, 173; J 170, 240, 279

discharge method of determining W 294, 423, 597 b, 638 e c; C 15, 16; D 8;

J 132, 170, 186, 300

for air conditioning J 351

for military supplies D 177

laid down with sediments A 19 n b

methods of measuring W 112, 136, 140, 142, 155, 294, 345 h;

400 e, 423, 597 b, 638 e c; C 23

total ... W 67, 114, 160, 234, 638 e c; M 47

transmission method of determining J 122, 170, 186, 300

used in the United States W 234; J 191

water spreading in relation to C 21

water-table method of determining W 142, 345 h, 400 e, 519, 638 e
Quantity of ground water—

alluvium W 104, 112, 136, 140, 153, 184, 188, 258, 345 g, h; 374, 375 a, 397, 399, 400 e

crystalline rocks W 160, 232, 345 g; A 19 II b

Dakota sandstone W 889 a; A 17 II g; P 52; B 2f5; J 191

debris-filled basins W 142, 219, 222, 275, 294, 343, 345 g, l. 375 a, 398, 400 e, 423; C 21, 22
earth's crust W 67, 114, 160, 2f4; M 47

gravel W 112, 136, 140, 153, 258, 375 a, 399, 400 e; P 44

sand W 25, 112, 114, 153, 255, 400 e; P 44

sandstone W 232; A 19 II b

slate ... W 258

soil ... W 294; A 19 II b

valley fill W 104, 136, 137, 138, 139, 142, 219, 222, 225, 275, 278, 294, 343, 345 g, h, 375 a, 398, 423, 425 a; B 618; C 21, 22; J 191

See also Absorption; Movements; Origin; specific States.

Quaternary deposits, water in— W 160, 232, 255, 256, 257, 293, 489; GF 162, 225; C 342

Quartzite, water in W 160, 232, 255, 293, 489; GF 162, 225; C 342

See also Alluvium; Glacial drift; Valley fill.
Queensland, ground water in, bibliography of W 163
Quicksand, sinking wells through W 30, 257, 375 d, 423

R

Racine limestone, water in, in Wisconsin GF 140
Radioactivity of ground water—
 Arkansas .. MR 1913 II h
 bibliography ... MR 1913 II h
 California ... W 338
 Europe .. MR 1913 II h
 measurement ... B 395; MR 1913 II h
 New York .. MR 1913 II h
 relation of, to temperature B 395
 thermal, in Europe B 395
 Yellowstone National Park B 395; MR 1913 II h

Rafter, G. W., Water resources of the State of New York, part 2 W 25
Rainfall. See Precipitation.

Rams, hydraulic .. W 1, 254, 256, 258, 540; C 431
Ransome, F. L., Bisbee folio, Ariz GF 112
 Copper deposits of Ray and Miami, Ariz P 115
 Geology and gold deposits of Cripple Creek district, Colo P 54
 Geology and ore deposits of Breckenridge district, Colo P 75
 Geology and ore deposits of Coeur d' Alene district, Idaho ... P 62
 Geology and ore deposits of Goldfield, Nev P 66
 Globe folio, Ariz .. GF 111
 Goldfield, Bullfrog, and other mining districts in southern Nevada ... B 303
 Manganese ore in Arizona B 710 d
 Ray folio, Ariz .. GF 217
 Silverton folio, Colo GF 120

Raritan formation, water in—
 Atlantic Coastal Plain B 138
 Maryland .. GF 204
 New Jersey ... W 106; GF 157, 162, 167; C 213, 215, 217, 218
 New York .. GF 157
 Pennsylvania ... W 106; GF 167

Rasmussen, W. C., Ground-water levels rise in North Dakota D 164
 Reconnaissance of possible well irrigation areas (in N. Dsk.) C 304
 Water levels and artesian pressure in the United States W 908, 938

Raymond, R. W., The divining rod MR 1882 k
Reaction coefficients in water analyses W 274
Recharge, artificial, of ground water—
 Florida .. J 363
 general .. D 165; J 359
 Kentucky ... J 362
 New Jersey .. J 360
 New York ... J 361

Recharge of ground water—
 Arizona .. C 11, 15, 20, 20 a; D 160; J 240, 279
 California ... D 52
 Colorado ... C 32
 Florida ... C 59; J 321
 general .. D 77, 165; J 58, 89, 167, 170, 240, 267, 279, 320
Recharge of ground water, Hawaii .. C 92, 98, 99
Kentucky .. J 323
New Mexico .. J 241, 248, 254, 255
New York .. J 193, 249
Pennsylvania ... C 348
southern High Plains .. J 180
southwestern States ... J 291
Texas ... D 51, 66; J 132, 203, 277
Utah .. C 424; D 36
Wyoming .. C 455
Reciprocating pumps ... W 14, 41, 398
Recovery of ground water. See Irrigation; Power for pumping; Public
water supplies; Pumps; Well construction; Wells.
Red beds, water in—
Colorado .. A 21 iv c; P 52
Kansas ... W 6, 273; A 21 iv c
Nebraska ... A 21 iv c
New Mexico .. W 123; A 21 IV c
Oklahoma ... W 148; A 21 iv c
Texas .. W 154, 191; A 21 iv c
Wyoming .. A 21 iv c

See also specific formations.
Red clastic series, water in, in Minnesota W 256; GF 201
Redbank formation, water in, in Atlantic Coastal Plain B 138
Redwall limestone, water in, in Arizona W 836 b
Reed, E. C., Ground water in the Republican River Basin in Nebraska
C 202, 203, 204
Reed, E. W., Geology and ground-water resources of the coastal area of
Mississippi .. C 195
Ground-water survey of area north of O’Neill, Holt County, Nebr. . C 205
Ground-water levels remain high in most areas of Oklahoma D 184
Oklahoma water, quantity, occurrence, and quality of surface and
ground water ... C 323
Results of detailed field work on the geology and ground-water
resources of Cimarron County, Okla ... D 189
Water levels and artesian pressure in the United States W 947, 989
Reed, J. C., Geology and ore deposits of the southwestern Arkansas
quicksilver district .. B 886 c
Mining districts of eastern Oregon ... B 846 a
Reeds, C. A., Water resources of the east St. Louis district, Ill. C 181
Reeside, J. B., Jr., Coal in San Juan County, N. Mex. B 716 g
Reeves, Frank, Absence of water in certain sandstones of the
Appalachian oil fields .. J 18
Geologic study of the Madden Dam project, Canal Zone B 821 b
Geology and possible oil and gas resources south of Bearpaw
Mountains, Mont .. B 751 c
Geology of the Cat Creek and Devils Basin oil fields, Mont B 786 b
Geology of the Ranger oil field, Tex .. B 736 e
Origin of the natural brines of oil fields J 19
Springs of Virginia .. C 432
Structure and oil and gas resources of the Osage Reservation, Okla
B 686 u
Reeves, Frank, Thermal springs of Virginia ..C 433
Thrust faulting and oil possibilities in the plains adjacent to Highwood
Mountain, Mont ...B 806 e
Renick, B. C., Additional ground-water supplies for the city of Fluid,
Okla ..B 520 b
Base exchange in ground water by silicates as illustrated in
Montana ..W 520 d
California oil-field waters ..J 43
Geochemical relations of ground water and associated natural gas
in the Lance formation, MontJ 39
Geology and artesian water prospects in the San Jose-Rio Puerco
Valley, N. Mex ..C 232
Geology and ground-water resources of central and southern Rosebud
County, Mont ..W 600
Geology and ground-water resources of the drainage basin of Rio
Penasco above Hope, N. MexC 235
Geology and ground-water resources of western Sandoval County,
N. Mex ...W 620
Geology of No. 3 reservoir site, Carlsbad irrigation project,
N. Mex ..W 580 a
Ground water in Sandoval County, N. MexD 5
Reservoirs, for well water ..W 1, 5, 20, 343
underground ...B 319
Residual soils, water in ...GF 124
Resistivity investigations. See Geophysical surveys.
Rhode Island, area, all of StateW 102, 114
areas, Providence ..C 335, 336
bibliography of ground water inW 114, 120, 163
mineral waters in ..W 114; B 32; MR 1885-1923
quality of ground water inW 102, 114, 144; B 32; C 355, 356
salt water in ..W 114
springs in ...W 102; A 14 II b; B 32
well records for ...W 61, 102, 149; B 264, 298; C 355, 356
Rice irrigation, with ground water, in ArkansasW 399; C 20 e; D 18
with ground water, in LouisianaW 101; C 162, 164; J 316, 373
in Texas ..V 71; C 413
Richards, R. W., Bull Mountain coal field, MontB 646
Richardson, G. B., Castle Rock folio, ColoGF 198
El Paso folio, Tex ..GF 198
Geology and coal, oil, and gas resources of New Kensington quadrangle,
Pa ..B 829
Geology and mineral resources of the Butler and Zelienople quadrangles,
Pa ...B 873
Geology and mineral resources of the Randolph quadrangle, Utah-
Wyo ...B 923
Indiana folio, Pa ...GF 102
Reconnaissance in trans-Pecos TexasC 381
Somerset-Windber folio, PaGF 224
Structure and oil and gas resources of the Osage Reservation,
Okla ...B 686 z
Subsurface structure in part of southwestern New YorkB 899 b
Underground water in Sanpete and central Sevier Valleys, UtahW 199
INDEX

Richardson, G. B., Underground water in the valley of Utah Lake and Jordan River, Utah .. W 157
Van Horn folio, Tex .. GF 194
Richmond formation, water in, in Kentucky .. W 238
water in, in Ohio .. W 259
Riddell, C. W., Exploratory drilling for water in Steptoe Valley, Nev. .. W 467
Riffenburg, H. B., Chemical character of ground waters of the northern Great Plains .. W. 560 b
Geology and ground-water resources of North Dakota W 598
Ripley formation, water in
Alabama ... C 4
Georgia ... W 341; C 81
Illinois .. W 164
Kentucky .. W 164
Mississippi .. W 159
Tennessee .. W 164, 638 a; C 87?: D 14, 25
Roberts, C. M., Progress report on the water resources of Providence, R. I .. C 355
Record of wells in Nassau County, N. Y .. C 282
Record of wells in Suffolk County, N. Y., Supplement 1 C 281
Well and test hole records for Providence, R. I C 356
Robinson, H. M., Geologic structure and oil and gas prospects of part of Jefferson County, Okla .. B 726 f
Structure and oil and gas resources of the Osage Reservation, Okla .. B 686 t, v, y
Structure of the Madill-Denison area, Okla. and Tex B 736 a
Robinson, J. W., Water levels and artesian pressure in the United States W 910, 948, 949, 990, 991
Robinson, T. W., Cooperative ground-water investigations in Wyoming C 455
Decline of artesian head in west-central South Dakota C 361; J 152
Earth tides shown by fluctuations of water levels in wells in New Mexico and Iowa .. J 206
Geology and ground-water conditions of the Pecos River Valley in the vicinity of Laguna Grande de la Sal, N. Mex C 248
Geology and ground-water hydrology of the Mokelumne area, Calif .. W 780
Geology and ground-water resources of the Harney Basin, Oreg. D 62
Geology and water resources of the Mokelumne area, Calif W 619
Ground-water conditions of the Dakota sandstone in northwestern Iowa ... J 212
Ground water for irrigation in the Harney Basin, Oreg D 24
Ground water in the San Luis Valley, Colo C 32
Ground water in the vicinity of Lodi, Calif D 13
Ground water in the Walla Walla basin, Oreg.-Wash D 44
Salt-water problems in Iowa and South Dakota D 151
Source of salt in ground water in the vicinity of Laguna Grande de la Sal, N. Mex .. D 103
Water levels and artesian pressure in the United States .. W 817, 886, 908, 910, 938, 946

Rogers, G. S., Chemical relations of oil-field waters in San Joaquin Valley, Calif .. B 653
Cleveland gas field, Ohio .. B 661 a
Rogers, G. S., Geology of the Tullock Creek coal field, Mont.B 749
Interpretation of water analyses by the geologistJ 16
Oil-field waters of the Gulf Coast J 23
Sunset-Midway oil-field, Calif., part 2, geochemical
relations of the oil, gas, and water P 117
Rose, N. A., Bibliography on electrical well loggingD 153
Exploratory water-well drilling in the Houston district, Tex. W 889 e; C 406
Ground water and the relation of geology to its occurrence
in the Houston district, Tex J 317
Ground-water resources of the Houston district, Tex. W 889 d; C 396, 413
Ground-water resources of the Texas City area, TexC 408
Occurrence of salt water in the Houston district, Tex D 151
Quantitative studies of some artesian aquifers in Texas J 347
Relation of phenomenal rise of water levels to a defective
gas well, Harris County, Tex J 337
Research in the field of ground water being conducted by oil
companies ... J 310
Ross, C. P., Copper deposits near Salmon, IdahoB 774
Coso quicksilver district in Inyo County, Calif B 936 q
Geologic study of the Madden Dam project, Canal ZoneB 821 b
Geology and ore deposits of the Aravaipa and Stanley mining districts,
Ariz .. B 763
Geology and ore deposits of the Wood River region, IdahoB 814
Geology and ore deposits of the Casto quadrangle, Idaho B 854
Geology and ore deposits of the Wood region, IdahoB 814
Lower Gila region, Ariz W 498
Quicksilver deposits of the Mayacamas and Sulphur Bank districts,
Calif .. B 922 l
Quicksilver deposits of the Mount Diablo district, Calif B 922 b
Routes to desert watering places in the lower Gila region, Ariz ..W 490 c
Water supply for Arlington County, Va D 7
Ross, C. S., Structure and oil and gas resources of the Osage Reservation, OklaB 686 u
Ross, D. W., Progress of stream measurements for 1904 W 135
Rothrock, E. P., Artesian conditions in west-central South Dakota...C 361
Ground waters in North Dakota, South Dakota, and Minnesota ...C 303
Rothrock, H. E., Geology and fuel resources of Quinton-Scipio district, Okla ..B 874 c
Roubidoux sandstone, water in, in Missouri W 195
Roundy, P. V., Geology and oil resources of the Elk Hills, Calif ..B 835
Structure and oil and gas resources of the Osage Reservation,
Okla .. B 686 u, z
Rubey, W. W., Subsurface study of the Pershing oil and gas field, Okla ..B 751 b
Rubidium in ground water .. B 47
Runoff, ground-water .. W 597 b; J 159, 255, 288
Russell, I. C., Ann Arbor folio, Mich GF 155
Artesian basins in Idaho and Oregon W 78
Geological history of Lake Lahontan, Nev M 11
Geological reconnaissance in central Washington B 108
Geology and water resources of central Oregon B 252
Geology and water resources of Nez Perce County, Idaho W 889 d; C 396, 413
Russell, I. C., Geology and water resources of the Snake River Plains of Idaho ... B 199
Ideals concerning municipal water supplies ... J 8
Reconnaissance in southeastern Washington ... W 4
Russia, bibliography of ground water in ... W 163
Rustler dolomite, water in, in Texas ... C 402

S
Sabine formation, water in, in Arkansas ... W 114; P 46
 in Louisiana ... W 114; P 46
 in Texas ... W 276
See also Rustler dolomite formation.
Sackett, R. L., Disposal of strawboard and oil-well wastes ... W 113
Sahara Desert, bibliography of ground water in ... W 163
St. Clair black shale, water in, in Michigan ... W 30
St. Lawrence formation, water in, in Iowa ... W 293
 in Minnesota ... W 256
St. Louis limestone, water in, in Illinois ... W 114
 in Indiana ... W 114
 in Iowa ... W 293
 in Missouri ... W 195
St. Marys formation, water in, in North Carolina ... C 291
 in Virginia ... C 431
See also Chesapeake group.
St. Peter sandstone, water in—
 Illinois. W 114; A 17 ft h; M 38; B 438, 506; GF 81, 188, 200, 278, 213, 216
 Indiana ... V 114, 254
 Iowa ... W 293; GF 145, 200; C 137
 Kansas ... GF 148, 206
 Kentucky ... W 233
 Minnesota ... W 276; GF 201
 Missouri ... W 195; B 438; GF 148, 206
 Nebraska ... P 32
 Ohio ... W 259
 Wisconsin ... W 114, 145; GF 140, 145; C 451
Saipan, Marianas Islands, ground water in ... J 336
Salina formation, water in, in Iowa ... W 293
 in Michigan ... W 30, 114
Saline water, definition of ... W 258
Salinity, of ground water ... W 338; B 473, 606, 693
 primary, secondary, and tertiary ... W 338; B 479
Salisbury, R. D., Franklin Furnace folio, N. J. ... GF 161
 New York City folio, N. Y.-N. J ... GF 83
 Passaic folio, N. J.-N. Y ... GF 157
 Philadelphia folio, Pa.-N. J.-Del ... GF 161
 Raritan folio, N. J ... GF 191
 Trenton folio, N. J.-Pa ... GF 167
Salt water, along Atlantic and Gulf coasts ... W 889 e; J 296
 disposal of, in oil fields ... J 310
 methods of locating in well ... W 796 a
 physiologic functions of ... W 144; MP 1911 II n
 relation of, to “domes” ... W 355; J 257
See also specific States.
Salton Sink, effect of, on artesian head .. W 225
Saltsburg sandstone, water in, in Pennsylvania GF 102
Samples of water, methods of collecting .. W 596 h; B 47
methods of collecting, for normal chloride determination W 144
Samples of well drillings, fossils in .. W 293; P 90 h
methods of collecting ... W 293; P 90 h
methods of examining .. W 293; P 90 h
Sand, H. H., Water supply of the Dakota sandstone W 889 a
Sand, absorption of water by .. W 258
confining beds for artesian water produced by P 44; B 319
drilling through .. W 258
dry, at great depths ... B 653, 661 d
finishing wells in .. W 258, 293, 343
flow of water in, experiments with .. W 140; A 19 II b
porosity of .. W 140; A 19 II b; C 16
water in .. W 25, 114, 140, 223, 233, 275, 257, 258,
319, 489; A 19 II b; P 44; B 19; GF 105
Sand hills, water in ... W 145, 273, 497
Sand plain, water in ... W 145, 256
Sand points in wells .. W 145, 256, 257
Sandstone, drainage into wells in ... W 258
movement of water through .. A 19 II b
water in ... W 110, 114, 255, 257, 489; A 5 c, 19 II b

See also specific formations.
Sanford, Samuel, Geology and ground waters of Florida W 319
Production of mineral waters ... MR 1906-1909
Records of deep wells, 1905 ... B 298
Saline artesian waters of Atlantic Coastal Plain W 258
Underground water resources of the Coastal Plain of Virginia C 431
Sanitary inspection of water supplies .. W 193, 255
Sanitation. See Analyses; Pollution; Purification; Quality.
Santa Fe formation, water in, in New Mexico C 31; D 5
Santa Rosa sandstone, water in, in Texas .. C 402
Sardeson, F. W., Herman-Morris folio, Minn GF 210
Minneapolis-St. Paul folio, Minn ... GF 201
Satanka formation, water in, in Wyoming ... C 456
Saunders, J. L., Surface water supply of the United States W 897, 957, 977
Savage, T. E, Murphysboro-Herrin folio, Ill GF 185
Tallula-Springfield folio, Ill ... GF 188
Sayre, A. N., Estimating safe yield as illustrated by the El Paso, Tex.,
ground-water investigation ... J 195
Geology and ground water, Pecos River Basin, N. Mex C 256
Geology and ground-water resources of Duval County, Tex W 776
Geology and ground-water resources of the Lufkin area, Tex W 849 a
Geology and water resources of Uvalde and Medina Counties, Tex W 678
Ground water in the Pecos River Basin in Texas C 402
Ground-water resources of Duval County, Tex D 40
Ground-water resources of the El Paso area, Tex W 919
Ground-water studies in Central America .. J 370
Ground-water supplies and dam sites in the James and Sheyenne
River Basins, N. Dak., and S. Dak ... C 302
<table>
<thead>
<tr>
<th>Page</th>
<th>Index Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 368</td>
<td>Military water supplies in the southwest Pacific area.</td>
</tr>
<tr>
<td>J 366</td>
<td>Military water supply.</td>
</tr>
<tr>
<td>J 97, 113, 172</td>
<td>Papers relating to ground-water hydrology.</td>
</tr>
<tr>
<td>J 278</td>
<td>Relation of drought of 1934 to ground-water supplies in James and Sheyenne River Basins, N. Dak., and S. Dak.</td>
</tr>
<tr>
<td>D 61</td>
<td>Relation of ground-water levels to temperature and precipitation at Harvey, N. Dak.</td>
</tr>
<tr>
<td>D 151</td>
<td>Salt-water problems in the El Paso, Tex., area.</td>
</tr>
<tr>
<td>J 301</td>
<td>Use of resistivity methods in location of salt-water bodies in the El Paso, Tex., area.</td>
</tr>
<tr>
<td>C 301</td>
<td>Water conservation and utilization, N. Dak.</td>
</tr>
<tr>
<td>W 777, 817, 840, 845, 886, 906, 909, 935, 939, 944</td>
<td>Water levels and artesian pressure in the United States.</td>
</tr>
<tr>
<td>W 233, 254, 256, 259, 274, 293, 341, 398, 939, 944</td>
<td>Scale formed in boilers by water.</td>
</tr>
<tr>
<td>D 151</td>
<td>Schaefer, E. J., Conditions affecting salt-water intrusion in the Atlantic City region, N. J.</td>
</tr>
<tr>
<td>GF 147</td>
<td>Schist, water in.</td>
</tr>
<tr>
<td>W 232, 489</td>
<td>Schistosity in relation to ground water.</td>
</tr>
<tr>
<td>B 395</td>
<td>Schlundt, Herman, Radioactivity of thermal waters of Yellowstone National Park.</td>
</tr>
<tr>
<td>D 175</td>
<td>Geological Survey investigates ground water in North Cimarron Valley (Okla.).</td>
</tr>
<tr>
<td>D 178</td>
<td>Geology and ground-water resources of Beaver County, Okla.</td>
</tr>
<tr>
<td>C 322</td>
<td>Geology and ground-water resources of Cimarron County, Okla.</td>
</tr>
<tr>
<td>D 106</td>
<td>Geology and ground-water resources of Texas County, Okla.</td>
</tr>
<tr>
<td>D 115</td>
<td>Ground water in Cimarron County, Okla.</td>
</tr>
<tr>
<td>D 173; J 213, 223</td>
<td>Ground water investigations in Oklahoma Panhandle.</td>
</tr>
<tr>
<td>D 123, 174</td>
<td>Ground-water levels in Oklahoma.</td>
</tr>
<tr>
<td>D 168</td>
<td>Ground-water table in Oklahoma.</td>
</tr>
<tr>
<td>D 189</td>
<td>Results of detailed field work on the geology and ground-water resources of Cimarron County, Okla.</td>
</tr>
<tr>
<td>D 151</td>
<td>Salt-water intrusion in Oklahoma.</td>
</tr>
<tr>
<td>D 126</td>
<td>Test drilling with hand tools.</td>
</tr>
<tr>
<td>W 840, 886, 909, 939</td>
<td>Water levels and artesian pressure in the United States.</td>
</tr>
<tr>
<td>B 847 a</td>
<td>Schrader, F. C., Contact mining district, Nev.</td>
</tr>
<tr>
<td>GF 159</td>
<td>Independence folio, Kans.</td>
</tr>
<tr>
<td>B 842</td>
<td>Metalliferous deposits of the greater Helena mining region, Mont.</td>
</tr>
<tr>
<td>B 582</td>
<td>Mineral deposits of Santa Rita and Patagonia Mountains, Ariz.</td>
</tr>
<tr>
<td>B 690 d</td>
<td>Quicksilver deposits of the Phoenix Mountains, Ariz.</td>
</tr>
</tbody>
</table>
Schultz, A. R., Geology and geography of Lincoln County, Wyo B 543
Oil possibilities in Baxter Basin, Wyo ...B 702
Phosphate and coal in southeastern Idaho and western Wyoming ... B 680
Underground waters of the Wisconsin district W 114
Water supplies of Wisconsin ... C 451
Schwennesen, A. T., Geology and water resources of the Gila and
San Carlos Valleys, Ariz ... W 450 a
Ground water for irrigation near Enid, Okla W 345 b
Ground water for irrigation near Oklahoma City, Okla W 345 d
Ground water in Animas, Playas, Hachita, and San Luis basins,
N. Mex .. W 422
Ground water in Quincy Valley, Wash .. W 425 e
Ground water in San Simon Valley, Ariz.-N. Mex W 425 a
Pumping tests in Luna County, N. Mex W 45 c; B 618
Scofield, C. S., Quality of water of the Rio Grande Basin, Tex W 839
Scott, M. J., Development of irrigation, in Ground-water resources of the
Santa Cruz Basin, Ariz ... C 20
History of the Santa Cruz Valley in Ground-water resources of the
Santa Cruz Basin, Ariz ... C 20
Water levels and artesian pressure in the United States W 949, 991
Screens in wells. See Well screens.
Sea water, confining beds for artesian water produced by B 319
effect of, on ground water near coast .. W 77, 144, 223, 345 h, 537, 616;
C 92, 97, 98, 99
encroachment of W 77, 144, 223, 345 h, 537, 616; C 92, 97, 98, 99
Sea water in rocks. See Connate water.
Sears, J. D., Geology and coal resources of the Gallup-Zuni bas'n,
N. Mex ... B 767
Geology and oil and gas prospects of part of Moffat County, Colo.,
and southern Sweetwater County, Wyo B 751 g
Geology of the Baxter Basin gas field, Wyo B 781 b
Secondary alkalinity of ground water W 338; P 90 l; B 479, 606
Secondary salinity of ground water. See Quality; Salinity; Sal' Water.
Sections of wells. See Well records.
Sedgwick, T. F., Report of Water Commission of Hawaii C 91
Sediments in ground water ... W 258
Sedimentary rocks, ground water in .. J 255
Seed-bag packers for wells ... W 54, 118; A 5 c
Seelheim, F., on flow of water through soils A 19 II b
Seepage from reservoirs, relation of, to movements of ground water in
California ... W 18, 58, 294
Colorado .. W 9, 50, 358
general ... W 597 a; P 44
Montana .. W 849 b
Nebraska .. B 140
Nevada ... W 423
New Jersey ... C 218
New Mexico ... W 358
Utah ... W 7, 157, 217
Sellards, E. H., Artesian water supply of eastern and southern Florida.... C 54
Artesian water supply of eastern Florida C 52
Underground water supply of central Florida C 51
Underground water supply of west-central and west Florida C 53
<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sellersburg limestone, water in</td>
<td>Indiana</td>
<td>W 254;</td>
</tr>
<tr>
<td>Selma chalk, water in</td>
<td>Alabama</td>
<td>C 1</td>
</tr>
<tr>
<td></td>
<td>Tennessee</td>
<td>W 638 a;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 372</td>
</tr>
<tr>
<td>Serpentine, water in</td>
<td></td>
<td>W 489;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GF 157</td>
</tr>
<tr>
<td>Settlement, fluctuation of water table</td>
<td></td>
<td>W 155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W 317</td>
</tr>
<tr>
<td>Seymour formation, water in</td>
<td>Texas</td>
<td>W 317</td>
</tr>
<tr>
<td>Shakopee dolomite, water in</td>
<td>Minnesota</td>
<td>W 256</td>
</tr>
<tr>
<td>Shale, drainage into wells in</td>
<td></td>
<td>W 258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W 110;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>232, 233,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254, 257,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>259, 425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. 489;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>596 c</td>
</tr>
<tr>
<td>Sharon conglomerate, water in</td>
<td>Ohio</td>
<td>A 19 iv b</td>
</tr>
<tr>
<td>Shattuck, G. B., Patuxent folio</td>
<td></td>
<td>GF 152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GF 136</td>
</tr>
<tr>
<td>Shaw, E. W., Belleville-Breese folio</td>
<td>Illinois</td>
<td>GF 195</td>
</tr>
<tr>
<td>Carlyle-Centralia folio, Ill</td>
<td></td>
<td>GF 216</td>
</tr>
<tr>
<td>Galena-Elizabeth folio, Ill.-Iowa</td>
<td></td>
<td>GF 200</td>
</tr>
<tr>
<td>Irvine oil field, Ky</td>
<td></td>
<td>B 661 d</td>
</tr>
<tr>
<td>Murphysboro-Herrin folio, Ill</td>
<td></td>
<td>GF 185</td>
</tr>
<tr>
<td>Natural-gas resources available to Dallas</td>
<td></td>
<td>B 716 d</td>
</tr>
<tr>
<td>Oil fields of Allen County, Ky</td>
<td></td>
<td>GF 213</td>
</tr>
<tr>
<td>Talulla-Springfield folio, Ill</td>
<td></td>
<td>B 688</td>
</tr>
<tr>
<td>Sheet water</td>
<td></td>
<td>W 29, 154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 16 ii f</td>
</tr>
<tr>
<td>Shell marl, water in</td>
<td></td>
<td>W 319, 489</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 62;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J 258</td>
</tr>
<tr>
<td>Shenandoah limestone, water in</td>
<td>Pennsylvania</td>
<td>GF 162</td>
</tr>
<tr>
<td>Shepard, E. M., Springs of Decaturville</td>
<td>Missouri</td>
<td>W 110</td>
</tr>
<tr>
<td>Underground waters of Missouri</td>
<td></td>
<td>W 114, 195</td>
</tr>
<tr>
<td>Well and spring records for Missouri</td>
<td></td>
<td>W 102</td>
</tr>
<tr>
<td>Sherzer, W. H., Detroit folio</td>
<td>Michigan</td>
<td>GF 205</td>
</tr>
<tr>
<td>Shinarump conglomerate, water in</td>
<td>Arizona</td>
<td>W 836 b</td>
</tr>
<tr>
<td>Shooting of wells</td>
<td></td>
<td>W 223, 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>Siebenthal, C. E., Geology and water</td>
<td></td>
<td>W 240</td>
</tr>
<tr>
<td>resources of the San Luis Valley, Colo</td>
<td></td>
<td>B 364</td>
</tr>
<tr>
<td>Geology of the Laramie Basin, Wyo</td>
<td></td>
<td>GF 148</td>
</tr>
<tr>
<td>Joplin district folio, Mo.-Kans</td>
<td></td>
<td>GF 173</td>
</tr>
<tr>
<td>Laramie-Sherman folio, Wyo</td>
<td></td>
<td>B 606</td>
</tr>
<tr>
<td>Origin of the zinc and lead deposits</td>
<td></td>
<td>W 240, 273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>338; M 52;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 330, 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>616</td>
</tr>
<tr>
<td>Silica in ground water</td>
<td></td>
<td>W 400 b;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>Sills, relation of, to springs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W 114;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145, 233;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 688</td>
</tr>
<tr>
<td>Silurian formations, water in—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td></td>
<td>W 114;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GF 175;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 2</td>
</tr>
<tr>
<td>Arkansas</td>
<td></td>
<td>W 114;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 808</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td>W 114;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 81</td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td>W 114;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 17 ii h;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 38;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 506</td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
<td>W 113, 114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254; A 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv b</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td>W 114, 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>293</td>
</tr>
<tr>
<td>Kentucky</td>
<td></td>
<td>W 114, 233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 688</td>
</tr>
<tr>
<td>Maine</td>
<td></td>
<td>GF 149</td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td>W 110;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GF 179</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td>W 30, 31,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114, 182,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>183; GF 205</td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
<td>W 114, 256</td>
</tr>
<tr>
<td>Missouri</td>
<td></td>
<td>W 114, 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195</td>
</tr>
</tbody>
</table>
PUBLICATIONS RELATING TO GROUND WATER

Silurian formations, water in, New York .. W 114; C 273
Ohio .. W 91, 114, 259; A 18 iv b, 19 iv n; B 818; GF 197
Pennsylvania W 110, 114; GF 179; C 344, 345, 346, 349
Tennessee .. W 114, 677; C 371
Virginia .. W 114; C 433, 434, 436
West Virginia W 114; GF 179; C 433
Wisconsin W 114; GF 140; C 461

See also specific formations.

Silver in ground water .. P 94; B 529, 625
Simpson, H. E., Geology and ground-water resources of North Dakota. .W 598
Underground water resources of Iowa W 293; C 137
Singing wells in Nebraska ... W 29
Sinkholes, absorption of water by W 319; A 16 II f; C 55, 81; J 260, 293
in gypseous deposits .. W 343; A 21 iv c
natural wells produced by A 21 iv c
pollution by W 233, 255, 258; C 131
Sinking of wells. See Well construction.
Sinnott, Allen, Cooperative ground-water investigation in
Torrance-Santa Monica area, Calif .. C 30 c
Withdrawals of ground water from the Long Beach-Santa Ana area,
Calif .. C 30 e
Sioux quartzite, water in, in Iowa .. W 293
water in, in Minnesota .. W 256
Siphon action in drainage wells W 145, 258
Siphons in wells .. W 254, 320, 374, 397, 540
Sizing tests for water-bearing materials P 44
Slate, water in W 228, 255, 258, 498
Slichter, C. S., Approximate method of measuring flow of wells W 110
California or “stovepipe” method of well construction W 110
Description of underflow meter W 110
Ground waters of Rio Grande Valley, Tex.-N. Mex.................. W 141
Measurements of underflow W 140
Motions of underground waters W 67
Theoretical investigation of the motion of ground waters ...A 19 II c
Underflow in Arkansas Valley in western Kansas W 153
Underflow of the South Platte Valley (Colo. and Nebr.) W 184
Underground water resources of Long Island, N. Y P 44
Smith, A. G., Report of water commission of Hawaii C 91
Smith, E. A., Underground water in Alabama W 114
Underground water resources of Alabama C 1
Well and spring records for Alabama W 102
Smith, G. O., Artesian water in crystalline rocks J 4
Ellensburg folio, Wash ... GF 86
Geology and water resources of a portion of Yakima County, Wash.W 55
Mount Stuart folio, Wash ... GF 106
Penobscot Bay folio, Maine GF 149
Water from glacial gravels near Augusta, Maine W 145
Water resources of the Portsmouth-York region, N. H.-Maine ... W 145
Smith, P. S., Mineral industry of Alaska in 1924 B 783 a
Smith, W. S. T., Edgemont folio, S. Dak.-Nebr GF 108
Joplin district folio, Mo.-Kan GF 148
Water Resources of the Joplin district, Mo.-Kan W 145
Well and spring records for Joplin and vicinity, Mo W 102
INDEX

Soap consumption by water ... W 256, 274
Soap making, quality of water in relation to W 233
Sodium in ground water ... W 236, 254, 259, 278, 338, 341;
398, 520 d; P 117; B 47; I^R 1911 II n
Softening of water .. W 254, 274, 293, 315, 398, 520 c, 559, 596 g
Soil causing perched water W 616; C 92, 99
Solids in ground water. See Analyses; Quality.
Solution, depressions caused by, in Kansas and Oklahoma J 293
Solution caverns, water in W 114; B 319; J 260, 293
Solutions comprising ground water, theories and laws relating to. B 606; M 47
Solutions for water analysis W 236
Source of ground water. See Absorption of water; Origin of ground water.
South Australia, bibliography of ground water in W 163
South Carolina, areas, Aiken County B 298
 areas, all of State .. W 114
 Barnwell County .. B 298
 Charleston .. P 90 h; B 298
 Coastal Plain B 138, 867
 Gaffney quadrangle GF 222
 Hampton County B 298
 Kings Mountain quadrangle GF 222
 Lee County .. B 298
 Orangeburg County B 298
 Pisgah quadrangle GF 147
 artesian water in B 138
 bibliography of ground water in W 61, 114, 120, 149, 163
 mineral waters in B 32; M^P 1883-1923
 public water supplies in B 138
 quality of ground water in W 258, 364; P 90 h; B 32, 138
 salt water in .. W 258; P 90 h
 springs in ... W 114; A 14 II b; B 32; GF 147, 222
 water levels in W 777, 817, 840, 845, 886, 907, 927, 945, 987
 water table in D 74
 well records for W 61, 114, 149; P 90 h; B 138, 298, 867
South Dakota, areas, Aberdeen quadrangle GF 165
 areas Aladdin quadrangle GF 128
 Alexander quadrangle GF 100
 all of State ... V^ 227; P 32
 Armstrong County B 575
 Beadle County B 298
 Belle Fourche quadrangle GF 164
 Black Hills region W 428; A 21 iv b; P 65
 Byron quadrangle GF 165
 Canton .. W 597 c; D 11; J 63
 Cheyenne River Indian Reservation B 575
 Corson County B 575
 Deadwood quadrangle GF 219
 De Smet quadrangle GF 114
 Dewey County ... B 575
 eastern .. A 17 II g, 18 IV c
 Edgemont quadrangle GF 108
 Elk Point quadrangle GF 156
 Harney quadrangle GF 219
374 PUBLICATIONS RELATING TO GROUND WATER

South Dakota, areas, Hermosa quadrangle GF 219
Huron quadrangle ... GF 113
James River Valley ... W 90; C 302
Miner County .. B 298
Mitchell quadrangle .. GF 99
Newcastle quadrangle ... GF 107
Newell quadrangle .. GF 209
Northville quadrangle .. GF 165
northeaster .. B 627
Oelrichs quadrangle ... GF 85
Olivet quadrangle ... GF 96
Parker quadrangle ... GF 97
Rapid quadrangle ... GF 219
Redfield quadrangle .. GF 165
Sheyenne River Basin .. C 302
southeastern .. W 34, 90, 215
southwestern .. A 21 IV b
Standing Rock Indian Reservation B 575
Sundance quadrangle .. GF 127
west-central ... C 361
Ziebach County .. B 575

artesian water in ... W 34, 90, 227, 428, 597 c, 889 a; A 17 II g, 18 IV c, 21 IV b; P 32, 65; B 575; GF 85, 96, 97, 100, 107, 108, 113, 114, 128, 156, 164, 165, 209, 219; C 303, 367; J 2, 63, 152
bibliography of ground water in ... W 61, 120, 149, 163; C 303
irrigation with artesian and other ground water in A 16 II e, 17 II g, 18 IV c
law relating to ground water in ... W 122; C 131
mineral waters in .. B 32; FR 1883-1923
public water supplies in W 597 c; C 302; D 11; J 63
quality of ground water in ... W 227, 597 c, 889 a; A 17 II g, 21 IV b; P 32; B 32; GF 97, 99, 100, 107, 108, 113, 164, 165; C 302, 361; D 11; J 63
salt water in .. D 151
springs in ... W 34, 90, 145, 679 b; A 14 II b, 21 IV b; B 32, 57f, 627; GF 99, 100, 108, 113, 114, 156
thermal ... W 145, 679 b; A 21 IV b; P 32
water levels in .. W 817, 840, 845, 886, 908, 938, 946, 988
water table in ... C 305; 303; J 153
well records for .. W 34, 61, 90, 149, 227, 597 c; A 17 II g, 18 IV c, 21 IV b; P 32, 65; B 264, 298, 691 a; GF 96, 99, 100, 107, 108, 113, 114, 156, 164, 165; C 302, 361; J 2
wells in, construction of ... W 34, 227, 597 c; A 17 II g; GF 96
Southwest Pacific, ground water for military use in .. J 368
Spain, bibliography of ground water in .. W 163
Sparta sand, water in, in Tennessee C 373
water in, in Texas .. W 849 a; C 407
in Louisiana ... W 968 c; C 169; J 331
Spearfish formation, water in, in South Dakota .. GF 107
water in, in Wyoming ... GF 107
Specific capacity of wells ... W 140, 141, 153, 320 e, 400 b, 425 b, 494, 887, A 19 II b; P 44; C 82; D 117
Specific gravity of ground water ... B 47, 319
Specific yield ... W 489, 494, 596 f, 679 a, 760, 887; J 101, 103
INDEX

Significance of geologic conditions in Naval Petroleum Reserve No. 3, Wyo ... P 163
Wasatch Pleatau coal field, Utah B 819
Spencer, A. C., Cooper deposits of the Encampment district, Wyo P 25
Franklin Furnace folio, N. J. GF 161
Geology and ore deposits of Ely, Nev P 96
Spergen limestone, water in, in Missouri W 195
Spicer, H. C., Rock temperatures, and depths to normal boiling point of water in the United States J 141
Spieker, E. M., Geology and coal resources of the Salina Canyon district, Utah .. B 796 c
Spreading of flood waters in California C 21
Spring alcoves, origin of .. W 774; J 143
Spring discharge measurements. See specific States.
Spring-stream valleys in Great Plains A 22 iv e
Springs, acid .. C 1
algae at ... W 338; A 9 d
alluvium and bedrock contacts causing W 380
artesian. W 255, 278, 338, 494, 557, 796 f; A 21 iv c; C 13, 16, 72, 431; J 136
barriers causing ... W 320, 343, 423, 489
blowing .. C 81
carbonated ... W 338; P 63, 152; B 662 f, 683, 797 f
changes in character of water from W 557; B 3°7, 491, 616
classification of ... W 114, 223, 255, 338, 365, 557; A 14 ii b; J 21
coal beds causing ... B 447, 627
deposits of ... W 338; A 9 d; P 53, 68, 73, 152, B 330, 491, 616, 662 f, 669, 680, 683, 692 e, 717, 75° d, 822 a
faults in relation to ... W 142, 199, 232, 277, 338, 365, 380, 423, 499, 557, 599; A 14 ii b, 18 ii b; P 73, 187; B 751 c, 803; GF 199; C 13; J-136
fissure ... W 114, 255, 494, 557; A 18 ii b; B 199; C 451
fluctuations in discharge of W 277, 557
fountain, artificial .. W 145
geyser .. W 114, 365, 494
gravity .. W 255, 494
impervious floors causing W 67, 380, 616; C 92, 98, 99
improvement of .. W 255, 380; B 252; C 431
iron ... W 338; P 152; B 818
irrigation water from ... W 277, 365; GF 104; C 13, 16, 19
joints in relation to .. W 221, 232, 494
joints in sandstone causing W 221
large .. W 27, 28, 36, 37, 85, 98, 99, 127, 130, 131, 145, 155, 168, 173, 177, 209, 214, 221, 251, 271, 277, 288, 300, 319, 326, 332, 338, 360, 362, 365, 370, 391, 394, 557, 597 d, 616, 637 d, 774, 818; A 14 ii b; 18 ii b: P 78, 154 a; B 131, 140, 641 i, 713, 798, 822 a, 855, 923; C 55, 99, 253, 390; J 22, 45, 50, 143
magnesic .. W 338
mineralization of water from W 418; C 13, 17, 19
mounds produced by ... W 277, 320, 343, 375, 423, 494
ocherous deposits of .. B 330, 491, 616
origin of ... W 338, 494, 557, 836 d; A 14 ii b
perched .. W 233, 616; C 92, 98, 99, 431
periodic or ebbing and flowing W 145, 365, 494, 836 d; C 435; J 91
376 PUBLICATIONS RELATING TO GROUND WATER

Springs, pollution of .. W 255; C 431
laws relating to ... W 122, 152
pool ... W 221, 277, 3°6, 423, 494
radioactivity of ... B 395; MR 1913 M h
relation to stream flow .. D 54
salt ... W 148, 154, 338, 343; M 25; P 152; B 669, 795 b; GF 12°, 129; C 72
seeage .. W 255, 494
siliceous deposits of .. W 338; A 9 d; B 3°0, 491, 616
sills in relation to ... W 557; A 14 II a; D 54, 95
submarine ... W 319
sulfur ... W 148, 217, 338; P 152; B 641 i, 661 g, 692 e, 711 h, 797 f,
816, 818, 921 b; GF 101, 154; C 72; J 36
symbols for, on maps .. W 160
tar ... C 1
therapeutic value of waters from A 14 II b; MR 1911 II n, 1916
travertine deposited by .. W 338, 423; A 9 b; P 152; B 330, 491, 616, 662 f,
680, 683, 711 d, 808, 822 a, 844 e, 877, 922 k
tubular .. W 255 494
vegetation of .. W 277, 338; A 9 d
volcanes in relation to ... W 181
yield of, in United States .. A 14 II b; B 32
See also specific States.

Springs, thermal, artesian wells in relation to W 400 b
boiling points at various elevations in relation to W 338
definition of .. W 494; A 14 II b
distribution of .. W 145, 679 b; A 14 II b
duration of .. W 145
faults in relation to ... W 277, 338, 365, 380, 487; A 14 II b
origin of heat in ... W 338, 418, 620, 819; A 14 II b; C 433
radioactivity of .. B 395; MR 1913 II h
topography in relation to .. A 14 II b
variations in temperature of W 489, 819; A 14 II b
volcanism in relation to ... W 181, 679 b; B 3°0, 491, 616
See also specific States.

Spurr, J. E., Economic geology of the Georgetown quadrangle, Colo. . P 63
Geology of the Tonopah mining district, Nev.............. P 42
Stabler, Herman, Fluorescein an aid in tracing waters underground........ D 1
Ground water in San Joaquin Valley, Calif.................. W 398
Pumping tests, in Ground water in the San Jacinto and Temecula
Basins, Calif .. W 429
Significance of geologic conditions in Naval Petroleum
Reserve No. 3, Wyo .. P 163
Stream waters of western United States W 274
Stafford, H. M., Water levels and artesian pressure in the United States W 991
Stanley, T. B., Jr., Ground-water investigations in Louisiana C 164
Ground-water resources of Jefferson Davis and Acadia Parishes, La . C 170
Water levels and artesian pressure in the United States W 886, 909
Starch making, quality of water for W 341, 398
Stauffer, C. R., Columbus folio, Ohio GF 197
Steam making. See Quality of water.
INDEX 877

Stearns, H. T., Building of Oahu (Hawaii) ... J 109

"Craters of the Moon" in Idaho .. J 52
Craters of the Moon National Monument, Idaho C 118; J 35
Deep-well pumping in Idaho ... J 263
Future ground-water supplies for Honolulu, Hawaii D 50
Geologic map and guide of the island of Oahu, Hawaii C 96
Geology and ground-water resources of the island of Maui, Hawaii C 99
Geology and ground-water resources of the island of Oahu, Hawaii (supplement) C 97
Geology and ground-water resources of the islands of Lanai and Kahoolawe, Hawaii .. C 98
Geology and ground-water resources of the Snake River Plain, Idaho V 774; D 53

Geology and water resources of the Kau district, Hawaii W 616
Geology and water resources of the middle Deschutes River Basin, Oreg. W 637 d

Geology and water resources of the Mokelumne area, Calif W 619
Geology and water resources of the Mud Lake region, Idaho W 818
Geology and water resources of the upper McKenzie Valley, Oreg W 597 d

Ground-water conditions in the Territory of Hawaii in 1941 D 169
Ground water for irrigation in Raft River Valley, Idaho D 10
Ground water in Big Lost River Valley, Idaho D 17
Ground water in Little Lost River Valley, Idaho D 16
Ground water in the vicinity of Lodi, Calif D 13
Ground-water resources of the Hawaiian Islands J 265

Hydrology of lava-rock terranes, in Hydrology (Physics of the Earth, IX) J 255 (chap. 15)

Lava Beds National Monument, Calif ... J 264
Occurrence of ground water in the Hawaiian Islands J 217
Origin of large springs and their alcoves along Snake River in southern Idaho .. J 143

Record of earthquake made by automatic recorders of wells in California J 53
Records of drilled wells on the island of Oahu, Hawaii C 94
Records of wells on Snake River Plain, Idaho W 775
Salt-water invasion in Hawaii ... D 151
Thermal springs in the United States ... W 679 b
Water for the invasion of Saipan (Marianas Islands) J 336

Water levels and artesian pressure in the United States W 777, 817,
840, 845, 886, 911, 941, 949, 991

Water resources of the Mud Lake basin, Idaho C 111; D 47
Water supply on the Snake River Plains, Idaho D 30

Stearns, N. D., Bibliography and index of geology and water supply of the island of Oahu, Hawaii C 98
Geology and ground-water hydrology at Fort Caswell, N. C C 292
Ground water in the Pomperaug Basin, Conn W 597 b
Laboratory tests of water-bearing materials J 42
Physical properties of water-bearing materials W 596 f

Remarkable intermittent spring (in Wyoming) J 91
Stearns, N. D., Thermal springs in the United States 679
Wells for the water of Hawaii ... J 165
Stebinger, Eugene, Oil and gas geology of the Birch Creek-Sun River
area, Mont .. B 691 e
Steidtmann, Edward, Geology of the York tin deposits, Alaska B 733
Stephenson, E. L., Use of resistivity methods in location of salt-water
bodies in the El Paso, Tex., area J 176
Stephenson, L. W., Coastal Plain of North Carolina C 291
Deep well at Charleston, S. C P 90 h
Geology and ground water of northeastern Arkansas W 399
Ground-water resources of Mississippi W 576
Underground waters of the Coastal Plain of Georgia W 341
Water supply of Savannah, Ga .. C 82
Sterrett, D. B., Gaffney-Kings Mountain folio, S. C.-N. C............. GF 222
Stevens, G. C., Surface water supply of the United States, 1912 W 331
Stevens, J. C., Surface water supply of Nebraska W 230
Surface water supply of the North Pacific Coast drainage, 1906 W 214
Surface water supply of the United States, 1907-08 W 250, 252
Steward, W. G., Geology and ground-water resources of the
Snake River Plain, Idaho ... W 774; D 53
Records of wells on Snake River Plain, Idaho W 775
Water-supply on the Snake River Plains, Idaho D 30
Stewart, C. W., Water levels and artesian pressure in the United States
W 845, 886
Stewart, J. E., Surface water supply of Hawaii, 1920-21 W 535
Stock, quality of water for ... W 335, 343
Stockton formation, water in, in New Jersey GF 167
water in, in Pennsylvania .. B 828, 891; GF 167; C 342
Stone, R. W., Elders Ridge folio, Pa GF 123
Gypsum deposits of the United States B 697
Water resources of the Elders Ridge quadrangle, Pa W 110
Waynesburg folio, Pa ... GF 121
Storage, coefficient of ... D 206; J 294, 311, 326, 342
Storage of well water ... W 1, 5, 20, 184, 343, 599, 600
Storrs, H. A., Cost of power for pumping irrigation water W 146
Stose, G. W., Apishapa folio, Colo GF 186
Coatsville-West Chester folio, Pa.-Del................................ GF 223
Fairfield-Gettysburg folio, Pa ... GF 225
Geology and mineral resources of the Honeybrook and Phoerixville
quadangles, Pa ... B 891
Geology and mineral resources of the Middletown quadrangle, Pa... B 840
Geology and mineral resources of York County, Pa C 347
Mercersburg-Chambersburg folio, Pa GF 170
Pawpaw-Hancock folio, Md.-W. Va.-Pa GF 179
Water resources of the Chambersburg and Mercersburg quadrangles,
Pa .. W 110
Water resources of the Pawpaw and Hancock quadrangles, W. Va.,
Md., and Pa ... W 145
Stovall, J. W., Geology and ground-water resources of Cimarron County,
Okla ... C 322
Ground water in Cimarron County, Okla D 115
Stovepipe well casings ... W 110, 140, 255, 257, 495
Strainers in wells. See Well screens.

Stratified drift, water in ... W 110
water in, in Connecticut ... W 222, 374, 497
See also Glacial drift.

Stream deposits. See Alluvium; Valley fill.

Streams, artesian head in relation to GF 156
diversion of, by underground channels A 21 iv c
ground water in relation to ... W 9, 10, 18, 58, 67, 199, 234, 294, 375 d, 423, 494, 637 b; A 14 II a, 19 II b; D 54, 77; J 159, 167, 238, 239 underground ... W 233, 258, 494; A 18 iv b, 21 iv c; C 81, 431
water table in relation to ... W 155, 637 b

Stringfield, V. T., Apparatus for testing the permeability of unconsolidated sediments .. D 84

Artesian water in the coastal area of Georgia and northeastern Florida
J 248

Artesian water in the Florida Peninsula W 773c; J 137
Effect of a sea-level canal on the ground-water level of Florida ... J 185
Effect of air-conditioning demand on well-water availability ... J 351
Exploration of artesian wells in Sarasota County, Fla. C 59
Florida's water supply and canal ... J 139
Ground water in Seminole County, Fla ... C 61
Ground water in the Lake Okeechobee area, Fla C 57
Ground water in the southeastern States ... J 221
Ground-water investigations in Florida ... C 60
Ground-water resources in Florida ... C 56
Ground-water resources of Sarasota County, Fla C 58
Ground-water supplies in Florida ... J 189
Ground-water supplies in Louisiana ... C 162
Ground-water supplies not in danger of exhaustion J 338
Limited effect on water supplies expected from Florida canal J 138
Methods of exploring artesian wells in Florida ... J 121
Observation wells, manual of methods ... D 60
Piezometric surface of artesian water in the Florida Peninsula J 134
Salt-water contamination of ground water in the Coastal Plain of the southeastern States ... D 151

Water levels and artesian pressure in the United States
W 777, 817, 840, 845

Strontium in ground water ... W 338; B 47

Structural valleys. See Debris-filled basins.

Stuart, W. T., Conservation of ground water in the Louisville area, Ky C 160 a
Ground-water resources of the Louisville area, Ky C 160
Ground-water resources of the Santa Cruz Basin, Ariz C 20
Ground-water supply at Louisville, Ky ... J 323
Safford Valley, Graham County, Ariz., records of wells and springs C 16

Water levels and artesian pressure in the United States ... W 949, 986

Water resources of Safford and Duncan-Viriden Valleys, and
N. Mex ... C 15

Stubbs, S. A., Ground-water resources of the Pensacola area, Fla D 128

Subalkalinity of ground water ... W 338

Subcapillary openings ... W 494; M 47

Subirrigation ... A 13 iii b
PUBLICATIONS RELATING TO GROUND WATER

Sublett, H. E., Chemical analyses of water from wells in the Louisville area, Ky .. C 160 c, e
Conservation of ground water in the Louisville area, Ky C 160 d

Subterranean water, work of International Commission on J 308
Sucking wells ... W 258
Sugar making, quality of water for W 30, 341, 398
Sulfate, field tests for ... W 151
in ground water .. W 254, 259, 273, 275, 338, 341, 343, 345 g, 398; P 116, 117; B 330, 491, 616, 717, 786 b, 818; MR 1911 II n, 1916
Sulfide enrichment, ground water in relation to B 529, 625; P 54
Sulfide, in ground water ... W 338, 345 g; P 116, 117; B 812 b, 818, 822 a; MR 1911 II n, 1916; GF 206
in rocks, ground-water levels in relation to B 529, 625
Sulfite in ground water .. B 47
Sulfuraria in ground water .. W 338
Sundance formation, water in, in Montana W 599; R 736 b, 822 a, 856
in South Dakota .. GF 107
in Wyoming ... B 711 h; GF 107
Sunderland formation, water in, in Maryland GF 152
Sundstrom, R. W., Ground water in Texas, list of published and unpublished reports .. C 410
Ground-water resources in the vicinity of Vernon, Tex C 409
Ground-water supplies of the Atlantic City region, N. J C 216
Observation wells, manual of methods D 60
Public water supplies in eastern Texas C 415
Published reports on Texas, ground-water resources C 403
Water levels and artesian pressure in the United States W 840, 845, 886, 909, 939, 947, 989
Supai formation, water in, in Arizona W 836 b
Supercapillary openings ... W 494; M 47
Suspended matter in ground water W 254, 258, 259, 341, 398; C 131
field tests for .. W 151
Suwanee formation, water in, in Florida J 258
water in, in Georgia ... C 83
Swamps, water table in relation to W 258
Swartz, C. K., Pawpaw-Hancock folio, Md.-W. Va.-Pa GF 179
Swartz, J. H., Geophysical investigations in the Hawaiian Islands J 204
Geophysical investigations on Lanai, Hawaii C 98
Geophysical studies in the Hanawi area, Maui Hawaii D 157
Resistivity studies of salt-water boundaries in the Hawaiian Islands . J 175
Resistivity survey of Schofield Plateau, Oahu, Hawaii C 97
Swenson, H. A., Chemical character of public water supplies in southeastern Florida ... J 301
Switzerland, bibliography of ground water in W 163
quality of ground water in B 330, 491, 616
radioactive waters in .. MR 1913 II h
Sylvania-sandstone, water in, in Michigan V 30; GF 205
Symbols for wells and springs on maps W 160
<table>
<thead>
<tr>
<th>T</th>
<th>INDEX</th>
<th>381</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taff, J. A., Muskogee folio, Okla</td>
<td>... GF 132</td>
<td></td>
</tr>
<tr>
<td>Tahlequah folio, Okla-Ark</td>
<td>... GF 122</td>
<td></td>
</tr>
<tr>
<td>Talbot, A. N., Corrections in determinations of flow from vertical well casings</td>
<td>W 110</td>
<td></td>
</tr>
<tr>
<td>Talbot formation, water in, in Delaware</td>
<td>... GF 137</td>
<td></td>
</tr>
<tr>
<td>water in, in Maryland</td>
<td>... GF 152</td>
<td></td>
</tr>
<tr>
<td>Tallahatta buhrstone, water in, in Mississippi</td>
<td>... 159</td>
<td></td>
</tr>
<tr>
<td>Tamiami limestone, water in, in Florida</td>
<td>... C 65; J 258, 365</td>
<td></td>
</tr>
<tr>
<td>Tampa formation, water in, in Florida</td>
<td>... W 319, 778 c; C 57, 58, 60, 62; J 80, 134, 137, 252, 258</td>
<td></td>
</tr>
<tr>
<td>Tanning, quality of water for</td>
<td>... W 254, 341, 398</td>
<td></td>
</tr>
<tr>
<td>Tar springs in Alabama</td>
<td>... C 1</td>
<td></td>
</tr>
<tr>
<td>Tarr, R. S., Water resources of the Watkins Glen quadrangle, N. Y</td>
<td>... W 110</td>
<td></td>
</tr>
<tr>
<td>Watkins Glen-Catatonk folio, N. Y</td>
<td>... GF 169</td>
<td></td>
</tr>
<tr>
<td>Tasmania, bibliography of ground water in</td>
<td>... W 163</td>
<td></td>
</tr>
<tr>
<td>Taylor, F. B., Niagara folio, N. Y</td>
<td>... GF 190</td>
<td></td>
</tr>
<tr>
<td>Pleistocene of Indiana and Michigan and the history of the Great Lakes</td>
<td>... M 53</td>
<td></td>
</tr>
<tr>
<td>Water resources of the Taconic quadrangle, N. Y-Mass.-Vt</td>
<td>... W 110</td>
<td></td>
</tr>
<tr>
<td>Taylor, G. C., Jr., Factual data pertaining to wells and springs in the Columbia Basin project area, Wash</td>
<td>... C 446</td>
<td></td>
</tr>
<tr>
<td>Ground-water conditions in the middle Rio Grande Valley, N. Mex</td>
<td>... C 254</td>
<td></td>
</tr>
<tr>
<td>Ground-water supply of Mimbres Valley, N. Mex</td>
<td>... D 108</td>
<td></td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States</td>
<td>... W 845, 910, 940, 948</td>
<td></td>
</tr>
<tr>
<td>Taylor, G. H., Absorption of precipitation and its penetration to the zone of saturation</td>
<td>... J 73</td>
<td></td>
</tr>
<tr>
<td>Artesian water in the vicinity of Woods Cross, Utah</td>
<td>... D 83</td>
<td></td>
</tr>
<tr>
<td>Artesian water levels in the vicinity of Lehi, Utah</td>
<td>... W 849 c; D 90</td>
<td></td>
</tr>
<tr>
<td>Artesian water supply of Ogden, Utah</td>
<td>... D 65</td>
<td></td>
</tr>
<tr>
<td>Earthquakes instrumentally recorded in artesian wells</td>
<td>... J 124</td>
<td></td>
</tr>
<tr>
<td>Fluctuations of ground-water levels in Utah</td>
<td>... J 156</td>
<td></td>
</tr>
<tr>
<td>Geology and ground-water resources of Cedar City and Parowan Valleys, Iron County, Utah</td>
<td>... W 993; D 179</td>
<td></td>
</tr>
<tr>
<td>Geology and ground-water resources of Ogden Valley, Utah</td>
<td>... W 796 d</td>
<td></td>
</tr>
<tr>
<td>Geology and water resources of the Mokelumne area, Calif</td>
<td>... W 619</td>
<td></td>
</tr>
<tr>
<td>Ground water in the vicinity of Lodi, Calif</td>
<td>... D 13</td>
<td></td>
</tr>
<tr>
<td>Ground water in Utah</td>
<td>... J 179</td>
<td></td>
</tr>
<tr>
<td>Ground-water investigations in Utah to June 30, 1936</td>
<td>... C 421</td>
<td></td>
</tr>
<tr>
<td>Ground-water levels in five wells in Utah</td>
<td>... D 138</td>
<td></td>
</tr>
<tr>
<td>Ground-water levels in Utah</td>
<td>... D 86, 93, 115, 122, 137</td>
<td></td>
</tr>
<tr>
<td>Ground water relieves 1934 drought emergency in Salt Lake City, Utah</td>
<td>... J 135</td>
<td></td>
</tr>
<tr>
<td>Ground-water supplies in the vicinity of Salt Lake City, Utah</td>
<td>... D 36</td>
<td></td>
</tr>
<tr>
<td>Mercury manometer pressure gage</td>
<td>... D 45, 72</td>
<td></td>
</tr>
<tr>
<td>Soil pipe test plug and mercury manometer</td>
<td>... D 32</td>
<td></td>
</tr>
<tr>
<td>Transmission of pressure in artesian aquifers</td>
<td>... J 115</td>
<td></td>
</tr>
<tr>
<td>Venturi flume</td>
<td>... D 33</td>
<td></td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States</td>
<td>... V 777, 817, 840, 845, 886</td>
<td></td>
</tr>
<tr>
<td>Work of the Division of Ground Water in Utah</td>
<td>... D 110</td>
<td></td>
</tr>
</tbody>
</table>
Taylor, L. H., Progress of stream measurements for 1902W 85
Taylor, T. U., Irrigation systems of TexasW 71
Operations at river stations .. W 28, 37
Progress of stream measurements W 84, 132, 174
Underground waters of the Coastal Plain of TexasW 190
Water powers of Texas ... W 105
Temperature, artesian flows influenced byW 400 b; A 5 c; B 319
changes of, fluctuations of water table in relation toW 155; M 47; P 44
movements of ground water in relation to A 19 II b; B 319
of artesian waterW 55, 78, 240, 400 b; A 18 IV c; B 199, 319, 701,
711 d, 796 f; GF 45; C 1, 361; J 2

affected by artificial recharge J 193, 249
causes that raise ... W 308; A 14 II b
density in relation to ... B 319
dissolved gases in relation to M 47
dissolved solids in relation to M 47
for air conditioning .. J 351
irrigation in relation to ... W 398
measurement of .. C 447
radioactivity in relation to .. B 395
variations in ... W 520 f; A 14 II b
volcanism in relation to ... B 330, 491, 616

See also specific States.

Tennessee, areas, all of State W 102, 114
areas, Ducktown district .. P 139
Memphis ... W 638 a; C 372, 373; D 14, 204; J 65
Mount Mitchell quadrangle .. GF 124
north-central .. W 640
Roan Mountain quadrangle ... GF 151
south-central ... W 677
Waynesboro quadrangle .. C 371
west of Tennessee River ... W 164
western ... W 656; D 25
artesian water in ... W 164, 638 a, 640, 656; C 372; J 65
bibliography of ground water in W 114, 120, 149, 163, 164
industrial use of ground water in C 373; D 204
mine waters in .. W 364; B 529
mineral waters in ... W 164; B 32; MR 1883-1923
public water supplies in .. W 638 a; C 371; D 25, 204; J 65
pumping in ... C 372, 373; D 204
quality of ground water in .. W 164, 364, 638 a, 640, 656, 677; B 32, 330,
491, 529, 616; GF 124; C 371, 372, 373
quantity of ground water in W 638 a; C 373
spring discharge measurements in W 473, 663, 698, 713, 728, 743, 758,
783, 803, 853
springs in .. W 114, 164, 364, 638 a, 640; A 14 II b; B 32; GF 124, 151;
C 371; D 63; J 55, 142
water levels in ... W 817, 840, 845, 886, 907, 937, 945, 987
water table in ... W 164
INDEX

Tennessee, well records for .. W 61, 102, 149, 164, 638 a, 640, 677; B 264, 298; GF 124
wells in, construction and cost of W 164
Tensleep sandstone, water in, in Montana W 599; B 736 b, f, 92 a, 856
water in, in Wyoming .. P 51, 58; B 656, 711 h; GF 141, 142
Terry, J. M., Water levels and artesian pressure in the United States .. W 817, 840

Tertiary alkalinity of ground water W 338; B 479
Tertiary formations, water in—

Alabama .. W 114; B 61 h; C 1
Alaska .. B 861
Antigua ... C 71
Arizona ... W 380, 499, 836 b
Arkansas ... W 114, 145, 399; P 46; B 691 j
California ... W 225, 375 a, 446, 519, B 721; GF 66, 138
Colorado ... A 16 II f, 17 II f, 21 IV c, 22 IV c; M 27; P 22, 52; B 581 c; GF 71, 135, 198, 214; C 32
Delaware .. W 114; B 138; GF 137, 162; C 171
District of Columbia .. GF 162; C 171
Florida ... W 114, 319; C 51, 52, 53, 54, 55, 56, 57, 58, 60, 62; J 134, 137, 252, 258, 319, 321
Georgia ... W 114, 341; B 138; C 81; D 129, 138
Hawaii .. W 616; C 92, 98, 99
Idaho .. W 53, 54, 78, 274, 818; B 199; GF 45 103, 104; C 112, 115
Illinois ... W 114, 164; A 17 II h; M 38
Indiana ... W 114
Kansas ... W 6, 273, 346 a; A 16 II f, 21 IV c, 22 IV c; P 32; C 141, 142, 144, 145, 148, 153, 154, 155, 156, 159; J 214
Kentucky .. W 114, 164
Louisiana .. W 101, 114; P 46; C 163, 165, 166, 167, 170 a; J 345, 354
Maryland ... W 114; B 138; GF 13, 23, 136, 137, 152, 152, 204; C 171
Mississippi ... W 114, 159, 576; C 193, 194, 195; J 346
Missouri .. W 114, 195
Montana ... W 518, 520 d, 539, 599, 600; B 856, 905
Nebraska ... W 12, 70, 215, 216, 425 b, 848, 943, 969; A 16 r f, 19 IV c, 21 IV c, 22 IV c; P 17, 32; GF 87, 88; C 202, 204; D 162
Nevada ... W 423
New Jersey .. W 114; B 138; GF 137, 162; C 212, 215, 216
New Mexico .. W 380, 620; A 21 IV c, 22 IV c; GF 214; C 237, 239, 241, 244, 247; D 68
New York .. D 41
North Carolina .. W 114, 773 a; B 138; GF 80; C 291, 293
North Dakota .. W 598; GF 181; J 328
Oklahoma ... W 148, 345 b, 500 b, 520 b; A 21 IV c, 22 IV c; C 321, 323; D 106, 115, 178; J 223
Oregon .. W 53, 54, 78, 220, 231, 637 d; B 252; GF 103
Pennsylvania ... W 144; GF 162
St. Croix, Virgin Islands ... J 289
South Carolina ... W 114; B 138, 867
South Dakota .. W 227; P 32; B 627
Tennessee .. W 114, 164, 638 a, 656; C 37; D 14, 25
Tertiary formations, water in Texas... W 154, 190, 191, 276, 335, 375 g, 678, 778, 849 a, 889 c, d, e, 913, 919; A 21 iv c; 21 vii, 22 iv c; F 661 g; GF 64; C 407, 417, 418; D 19, 31, 38, 40, 51, 66; J 292, 317 Utah B 56; B 285 f Virginia ... W 114; B 138; GF 13, 23, 80, 136; C 431, 434, 436, 437; J 332 Washington W 53, 54, 55, 111, 118, 316, 425 e; B 108; GF 86, 106 Wyoming ... W 70; A 21 iv c, 22 iv c; P 32, 51, 56; B 255 f, 364, 425 b, 543, 702; GF 173; C 456

See also specific formations.

Tertiary salinity in ground water W 33f: B 479; J 258

Texas, areas, all of State A 11 ii c; C 400; D 19

areas, Andrews County .. C 384
Arkansas County .. C 384
Armstrong County .. C 384
Atascosa County .. W 676; C 393; D 38
Austin and vicinity .. W 84, 132, 174; B 131
Austin County .. C 384
Austin quadrangle .. GF 76
Bailey County .. C 384
Balcones fault zone .. C 414
Balmorhea area .. W 849 c; C 390, 393
Baytown district .. C 414
Bee County .. C 393
Bexar County .. B 298
Big Spring .. W 913; C 404, 414
Black Prairie .. A 21 vii
Blanco County .. C 383
Brazoria County .. C 384, 393
Brenham salt dome .. B 661 g
Brooks County .. C 393
Brown County .. C 384
Burleson County .. C 384
Barnet quadrangle .. GF 183
Calhoun County .. C 384
Callahan County .. C 384
Cameron County .. B 298
Camp County .. C 393
Carrizo Springs and vicinity W 66; B 164
Carson County .. C 384
Cass County .. C 393
Castro County .. C 383
Chambers County .. C 393
Cherokee County .. C 384
Childress County .. C 384
Coastal Plain .. W 190, 375; B 282; J 132
Coleman County .. C 384
Collingsworth County C 384
Colorado County .. C 384
Comal County .. C 384
Corsicana .. B 661 f
Crosby County .. C 384
Dallam County .. C 384
Texas, areas, Dallas County ...B 238; C 393
Dawson County ..C 393
Deaf Smith County ..C 393
De Witt County ...C 384
Dimmit County ...B 298; C 393; D 51
Donley County ...C 393
Duval County ..W 776
eastern ..P 46; B 902; C 414, 415; D 40
Eastland County ..C 384
Ector County ...C 384
Edwards County ..C 384
Edwards Plateau ..A 18 II b
El Paso and vicinity ..W 140, 141, 343, 919; C 414; J 176, 195
El Paso quadrangle ..GF 166
Fayette County ...C 393
Floyd County ..C 384, 393
Foard County ...C 384
Fort Bend County ..B 298; C 384, 393
Fort Stockton and vicinity ..W 132
Franklin County ..C 393
Freestone County ..C 384
Frio County ..W 676; D 38
Gaines County ...C 393
Galveston County ...C 393, 414; J 117
Gillespie County ..C 384
Glasscock County ..W 913; C 384
Goliad County ..W 384
Gonzales County ..C 384
Grand Prairie ..A 21 vii
Gregg County ..C 384; 393, 418
Grimes County ...C 393
Guadalupe County ...B 238; C 384
Hale County ...C 384, 393
Hansford County ..C 384
Hardeman County ..C 384
Hardin County ...C 393
Harris County ...B 294; C 393
Harrison County ..C 393; 407
Hartley County ...C 384
Hays County ...B 238; C 393
Henderson County ..C 384
Hidalgo County ..C 393
High Plains ..W 889 c; A 21 iv c, 22 iv c; C 391, 395, 397, 405, 411, 414, 416; J 277
Hockley County ..C 393
Hopkins County ..C 393
Houston County ..C 393
Houston district ..W 889 c, d, e; C 388, 393, 394, 396, 406, 413, 414; D 46; J 242, 317
Houston-Galveston area ...D 39; J 198, 202
Howard County ...W 913; C 384
<table>
<thead>
<tr>
<th>Texas, areas, Irion County</th>
<th>(C \ 384)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Jasper County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Jeff Davis County</td>
<td>(W \ 849) e</td>
</tr>
<tr>
<td>Jefferson County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Jim Hogg County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Jim Wells County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Johnson County</td>
<td>(B \ 298)</td>
</tr>
<tr>
<td>Karnes County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Kendall County</td>
<td>(E \ 298; C \ 384)</td>
</tr>
<tr>
<td>Kenedy County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Kinney County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Kleberg County</td>
<td>(W \ 773) d</td>
</tr>
<tr>
<td>Knox County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Lamb County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Lampasas County</td>
<td>(B \ 298)</td>
</tr>
<tr>
<td>La Salle County</td>
<td>(W \ 375) g</td>
</tr>
<tr>
<td>Lavaca County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Lee County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Leon County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Liberty County</td>
<td>(C \ 393, 418)</td>
</tr>
<tr>
<td>Live Oak County</td>
<td>(C \ 384, 393)</td>
</tr>
<tr>
<td>Llano quadrangle</td>
<td>(GF \ 183)</td>
</tr>
<tr>
<td>Loving County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>lower Rio Grande region</td>
<td>(B \ 287)</td>
</tr>
<tr>
<td>Lubbock County</td>
<td>(C \ 384, 393)</td>
</tr>
<tr>
<td>Lufkin area</td>
<td>(W \ 849) a; (C \ 414; J \ 294)</td>
</tr>
<tr>
<td>McMullen County</td>
<td>(W \ 375) g</td>
</tr>
<tr>
<td>Marathon area</td>
<td>(P \ 187)</td>
</tr>
<tr>
<td>Marion County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Martin County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Mason County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Matagorda County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Maverick County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Medina County</td>
<td>(W \ 678; B \ 298)</td>
</tr>
<tr>
<td>Midland County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Milam County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Mineral Wells area</td>
<td>(D \ 55)</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Morris County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Nacogdoches County</td>
<td>(C \ 384, 399, 414)</td>
</tr>
<tr>
<td>Newton County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>north-central</td>
<td>(W \ 317)</td>
</tr>
<tr>
<td>northeastern</td>
<td>(W \ 276)</td>
</tr>
<tr>
<td>Nueces County</td>
<td>(B \ 297; C \ 384, 393)</td>
</tr>
<tr>
<td>Nueces quadrangle</td>
<td>(GF \ 42)</td>
</tr>
<tr>
<td>Ochiltree County</td>
<td>(C \ 384)</td>
</tr>
<tr>
<td>Oldham County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Orange County</td>
<td>(C \ 393)</td>
</tr>
<tr>
<td>Palo Pinto County</td>
<td>(B \ 621) e</td>
</tr>
<tr>
<td>Panhandle, eastern part of</td>
<td>(W \ 154)</td>
</tr>
<tr>
<td>western part of</td>
<td>(W \ 191)</td>
</tr>
</tbody>
</table>
INDEX

Texas, areas, Panola County .. C 384
Parker County .. B 298
Parmer County .. C 384
Pecos County ... C 393
Pecos River Basin ... C 256, 398, 402, 414
Potter County .. C 384
Rains County ... C 393
Randall County .. C 384
Reeves County (Balmorhea area) .. W 849 c; C 393
Refugio County .. C 384
Rio Grande Plain ... W 141, 839; A 18 II b
Roberts County ... B 298; C 384
Robertson County .. C 384
Rusk County .. C 384, 393, 399
Sabine County .. C 393
San Angelo and vicinity ... W 132
San Antonio area ... W 773 b; A 18 II b
San Augustine County ... C 393
San Patricio County ... C 384
San Saba County ... C 384
Shelby County ... C 384, 399
Smith County .. C 384
Somervell County .. W 660
southern .. A 18 II b
Steen dome ... B 736 g
Sterling County ... C 384
Stevens County ... C 384
Swisher County ... C 383
Taylor County ... C 384
Terry County .. C 393
Texas City .. C 408, 414
Titus County .. C 393
Tom Green County ... C 393
Toyahville and vicinity .. W 132
trans-Pecos region .. W 140, 141, 143; GF 166; C 381
Travis County .. C 393
Tyler ... C 412
Upshur County ... C 393
Uvalde County ... W 678
Uvalde quadrangle ... GF 64
Val Verde County .. C 384
Van Horn quadrangle .. GF 194
Vernon and vicinity .. C 409
Victoria County .. C 393
Waller County .. C 393
Ward County .. C 393
Washington County ... C 393
Webb County ... W 778; D 31
Wells Creek district ... B 661 g
western ... A 21 IV c, 22 IV c; B 780 b
Wharton County ... C 393
Wichita region ... W 317
Texas, areas, Williamson County ... B 298; C 393
Wilson County ... C 384
Winkler County ... C 384
Winter Garden district ... C 414
Wood County ... C 393
Yoakum County ... C 393
Zavala County ... B 298; C 393; D 51

artesian water in W 13, 18, 44, 71, 105, 190, 191, 276, 335, 357, 375 g, 660, 773 b, d, 849 a; A 11 II c, 18 II b, 21 VII; B 164; GF 42, 64, 75, 194; C 256, 381, 392, 401, 402, 408; D 19, 19, 46, J 132, 202
bibliography of ground water in W 61, 120, 149, 163; C 403, 401, 414
conservation of ground water in ... C 400
development of ground water in ... C 400
gypsum springs in ... W 154
irrigation with artesian water in W 13, 71, 375 g

large flowing well in ... C 401
leakage of gas in well in .. J 337
mineral waters in W 66; B 32; MR 1833-1923; D 55
public water supplies in W 13, 190, 335, 343, 889 d, 919; A 18 b
pumping in W 13, 140, 141, 411, 416, 418; J 294, 317
pumping tests in ... J 347
quality of ground water in W 66, 141, 190, 276, 317, 335, 343, 364, 375 g, 660, 773 d, 839, 849 a, 913, 919; A 18 II b, 21 VII; P 46; D 32; GF 166, 194; C 381, 388, 390, 396, 398, 399, 402, 407, 413, 415, 417, 418;

quantity of ground water in W 141, 660; C 256, 405, 407, 409, 411, 412, 413, 417, 418; J 132, 170, 186
rice irrigation with ground water in W 71; C 413
salt water in W 154, 317, 335, 364, 375 g; B 228, 669, 715 m; 736 e, 785 b;
C 381, 382; D 19, 140, 151; J 117, 132, 170, 176, 202
spring discharge measurements in W 28, 37, 64, 84, 132, 174, 288, 508, 528, 548, 568, 587, 588, 608, 628, 646, 668, 688, 688, 703, 718, 738, 748, 765, 788, 808, 828, 850, 858, 878, 898, 958, 977, 978
springs in W 71, 105, 154, 190, 191, 317, 335, 557, 679 b, 773 b, 849 e; A 18 II b, 18 II b; P 187; B 32, 131, 140, 661 g, 736 g, 902; GF 42, 64, 183;
C 381, 386, 390, 397; D 19; J 292
thermal W 679 b
temperature of ground water in .. C 413, 418
test well drilling in .. C 406
underflow measurements in ... W 141
water levels in W 777, 817, 840, 845, 886, 909, 919, 939, 947, 989
well records for W 13, 61, 149, 190, 276, 317, 335, 343, 375 g, 676, 773 d, 777 d, 849 a, c, 913, 919; A 18 II b, 21 VII; P 46; B 264, 28°, 699, 736 a, e, g, 780 b, 837; GF 166; C 256, 381, 390, 399, 407, 415, 417, 418; J 188
wells in, construction of ... W 660, 676, 773 d, 889 e
INDEX

Texas, wells in, cost of ... A 11 ii c; B 282
yield of .. C 415
Thallium in ground water ... B 41
Thies, C. V., Decline of ground-water level in Portales Valley,
N. Mex., 1932-41 .. D 149
Decline of ground-water levels in New Mexico, 1930-41 D 148
Decline of water level in Portales Valley, N. Mex D 125
Earth tides expressed in fluctuations of the water level in
* artesian wells in New Mexico ... J 209
Effect of a well on the flow of a nearby stream J 238
Equation for lines of flow in vicinity of discharging artesian well ... J 86
Geology and ground-water, Pecos River Basin, N. Mex C 256
Ground-water conditions in the middle Rio Grande Valley, N. Mex... C 254
Ground-water hydrology of areas in the Pecos Valley, N. Mex C 257
Ground water in Curry and Roosevelt Counties, N. Mex C 241
Ground water in south-central Tennessee W 677
Ground water in the middle Rio Grande Valley, N. Mex C 255
Ground water in the southern High Plains D 66
Ground-water recharge in the southern High Plains J 180
Ground-water supply of Lea County, N. Mex., (progress report) .C 247, 250
Ground-water supply of Mimbres Valley, N. Mex.,
(progress report) ... C 251; D 108
Ground-water supply of Portales Valley, N. Mex.,
(progress report) ... C 245, 249
Method for determining transmissibility- and storage-coefficients
by tests of multiple well systems (discussion) J 311
Origin of water in Major Johnson Springs, N. Mex C 253
Relation between the lowering of the piezometric surface and
the discharge of a well using ground-water storage J 133
Significance and nature of the cone of depression in ground-
water bodies .. J 199
Sources of water derived from wells J 219
Water in wells in New Mexico during 1941 D 176
Water levels and artesian pressure in the United States W 777, 817, 941, 949
Therapeutic properties of water .. W 31, 164, 195, 233, 254, 259, 295; 335, 338,
341, 398; A 14 ii b; P 46; MR 1911 ii r. 1913 ii b
Thermal movements of ground water A 19 ii b
Thermal springs. See Springs, thermal; specific States.
Thiem method of determining permeability W 679 a. 887; J 85
Thom, W. T., Jr., Geology of Big Horn County and the Crow Indian
Reservation, Mont .. B 856
Oil and gas prospects in the Crow Indian Reservation, Mont .. B 736 b
Significance of geologic conditions in Naval Petroleum Reserve
No. 3, Wyo ... P 163
Thomas, A. O., Underground water resources of Iowa W 293
Thomas, H. E., Artesian water in the vicinity of Woods Cross, Utah .. D 83
Artesian water levels in the vicinity of Lehi, Utah W f36 c; D 90
Fluctuations in ground-water levels J 218
Geology and ground-water hydrology of the Mokelumne area, Calif. W 780
Geology and ground-water resources of Cedar City and Parowan
Valleys, Iron County, Utah ... W f48; D 179
<table>
<thead>
<tr>
<th>Publication</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology and water resources of Tooele Valley, Tooele County, Utah</td>
<td>Thomas, H. E.</td>
<td>D 186</td>
</tr>
<tr>
<td>Ground-water dams created by faulting in Hurricane fault zone, Utah</td>
<td></td>
<td>J 244</td>
</tr>
<tr>
<td>Ground water in the Walla Walla basin, Oreg.-Wash</td>
<td></td>
<td>D 44</td>
</tr>
<tr>
<td>Ground-water investigations in Utah to June 30, 1936</td>
<td></td>
<td>C 421</td>
</tr>
<tr>
<td>Ground-water levels in Utah</td>
<td></td>
<td>D 86, 93, 112, 122, 145, 167</td>
</tr>
<tr>
<td>Ground-water resources of Salt Lake City, Utah</td>
<td></td>
<td>D 183</td>
</tr>
<tr>
<td>Manganese in a thermal spring in west-central Utah</td>
<td></td>
<td>J 211</td>
</tr>
<tr>
<td>Ogden Valley artesian reservoir, Utah</td>
<td></td>
<td>C 424; D 170</td>
</tr>
<tr>
<td>Saline ground-water conditions in Utah</td>
<td></td>
<td>D 151</td>
</tr>
<tr>
<td>Water levels and artesian pressure in the United States</td>
<td></td>
<td>W 777, 817, 840, 845, 886, 910, 940</td>
</tr>
<tr>
<td>Administrative control of underground water; physical and legal aspects</td>
<td>Thompson, D. G.</td>
<td>J 182</td>
</tr>
<tr>
<td>Artificial recharge of ground water</td>
<td></td>
<td>D 165</td>
</tr>
<tr>
<td>Effect of a sea-level canal on the ground-water level of Florida</td>
<td></td>
<td>J 185</td>
</tr>
<tr>
<td>Geologic studies on Long Island with respect to ground-water supplies</td>
<td></td>
<td>J 146, 169</td>
</tr>
<tr>
<td>Ground water for irrigation near Gage, Okla</td>
<td></td>
<td>W 500 b</td>
</tr>
<tr>
<td>Ground water in Lanfair Valley, Calif</td>
<td></td>
<td>W 450 b</td>
</tr>
<tr>
<td>Ground-water investigation in Butler and Hamilton Counties, Ohio</td>
<td></td>
<td>C 311</td>
</tr>
<tr>
<td>Ground-water levels in Grand Prairie region, Ark</td>
<td></td>
<td>D 23</td>
</tr>
<tr>
<td>Ground-water problems in the southeastern States</td>
<td></td>
<td>J 81</td>
</tr>
<tr>
<td>Ground-water problems on the barrier beaches of New Jersey</td>
<td></td>
<td>J 44</td>
</tr>
<tr>
<td>Ground-water resources of Florida</td>
<td></td>
<td>C 56</td>
</tr>
<tr>
<td>Ground-water resources of Long Island, N. Y., (investigation of 1932)</td>
<td></td>
<td>C 271</td>
</tr>
<tr>
<td>Ground-water supplies for rice irrigation in the Grand Prairie region,</td>
<td></td>
<td>C 20 e; D 18</td>
</tr>
<tr>
<td>Ground-water supplies in the vicinity of Asbury Park, N. J</td>
<td></td>
<td>C 213</td>
</tr>
<tr>
<td>Ground-water supplies of the Atlantic City region, N. J</td>
<td></td>
<td>C 212</td>
</tr>
<tr>
<td>Ground-water supplies of Mill Creek Valley and the Norwood Trough, Ohio</td>
<td></td>
<td>D 87, 88</td>
</tr>
<tr>
<td>Ground-water supplies of the Camden area, N. J</td>
<td></td>
<td>C 215</td>
</tr>
<tr>
<td>Ground-water supplies of the Passaic River Valley, N. J</td>
<td></td>
<td>C 214</td>
</tr>
<tr>
<td>Investigation of ground-water resources of Long Island, N. Y. (1933)</td>
<td></td>
<td>D 41</td>
</tr>
<tr>
<td>Investigation of the ground-water resources of Long Island, N. Y.</td>
<td></td>
<td>C 272</td>
</tr>
<tr>
<td>Mohave Desert region, Calif</td>
<td></td>
<td>W 578</td>
</tr>
<tr>
<td>Municipal and industrial water supplies from wells in Butler and Hamilton</td>
<td></td>
<td>D 120</td>
</tr>
<tr>
<td>Origin of artesian pressure, a discussion</td>
<td></td>
<td>J 66</td>
</tr>
<tr>
<td>Problems of ground-water supply in Florida</td>
<td></td>
<td>J 80</td>
</tr>
<tr>
<td>Problems relating to fluctuations of ground-water level</td>
<td></td>
<td>J 149</td>
</tr>
<tr>
<td>Problems relating to legal control of use of ground water</td>
<td></td>
<td>J 190</td>
</tr>
<tr>
<td>Quantities of ground water available for public and industrial supplies</td>
<td></td>
<td>C 211</td>
</tr>
<tr>
<td>Relations between ground-water hydrology and oceanography</td>
<td></td>
<td>J 94</td>
</tr>
<tr>
<td>Report of the committee on underground waters</td>
<td></td>
<td>J 82, 96, 110, 127, 148, 171, 192, 205, 227, 247, 262</td>
</tr>
</tbody>
</table>
INDEX

Thompson, D. G., Routes to desert watering places in the Mohave Desert region, Calif. ... 4 490 b
Salt water in seacoast and island wells J 104
Source of ground-water supply for Atlantic City, N. J. J 32
Studies of ground water in New Jersey J 90
Submergence of a pump .. J 60
Subsurface water in research on agricultural watersheds (discussion) J 268
Symposium on ground-water levels ... D 73
Ten years of ground-water records in the Grand Prairie region, Ark J 196
Watch well supplies ... J 232
Water levels and artesian pressure in the United States. . W 777, 817, 840, 845, 886, 909
Withdrawal of ground water on Long Island, N. Y C 274
Thomson, M. T., Water levels and artesian pressure in the United States W 817, 840
Thorium in ground water ... B 395
Tides, fluctuations of ground-water levels caused by W 155, 232, 659 b, 886 d; P 44; GF 193; C 92, 99, 212, 216; J 207, 209, 230

See also Water table.

Till, drainage into wells in—
Connecticut . W 232, 374, 397, 449, 466, 470, 540, 597 b; C 41, 42, 43, 44, 45
general .. W 114, 255, 257, 258, 489
Illinois .. GF 187, 213, 216
Iowa ... W 293
Maine .. W 233; GF 149
Minnesota .. W 256
Montana .. W 400 b
Nebraska .. GF 156
North Dakota ... W 593
South Dakota .. GF 96, 97, 100, 113, 114, 156

See also Glacial drift.

Tilton, J. L., Underground water resources of Iowa W 293
Tin in ground water ... B 47
Titanate in ground water ... B 47
Todd, J. E., Aberdeen-Redfield folio, S. Dak GF 165
Alexandria folio, S. Dak ... GF 100
De Smet folio, S. Dak .. GF 114
Elk Point folio, S. Dak.-Nebr.-Iowa .. GF 156
Geology and water resources of southeastern South Dakota .. W 34
Geology and water resources of the lower James River Valley, S. Dak. W 90
Huron folio, S. Dak .. GF 113
Mitchell folio, S. Dak ... GF 99
Olivet folio, S. Dak .. GF 96
Parker folio, S. Dak .. GF 97
Tolman, C. F., Ground water, salt-water infiltration, and ground-surface recession in Santa Clara Valley, Calif J 225
Top water in relation to oil .. B 658
Topography, thermal springs in relation to W 67, 159, 254, 374; A 19 π b
water table in relation to ... W 67, 159, 254, 374; A 19 π b
Torchlight sand, water in, in Wyoming B 656
Torpedoing of wells .. W 233, 255, 257
Transmissibility, coefficient of .. D 205; J 294, 311, 326, 342
Transmission constant ... W 67, 140
Transpiration ... W 7, 153, 294, 320, 375 d, 423, 577, 638 c, 836 d; C 15, 20, 22; D 8, 169; P 231, 240
Trap rock, water in ... W 110, 160, 223, 232, 374, 449, 489; B 319
Trask, P. D., Hydrological investigative work by petroleum companies .. J 83
Trautwine, J. C., on flow of water through soils .. A 19 ii b
Traverse formation, water in, in Michigan .. W 30, 114; GF 205
Travertine deposited by ground water ... W 338, 343, 423; A 9 d, 18 ii b; P 170 e; B 330, 491, 616, 711 d, 808, 877; C 131, 235
Travis Peak sand, water in, in Texas .. GF 42
Trent formation, water in, in North Carolina .. C 291

Trenton limestone, water in—
Illinois .. B 506; GF 81
Indiana ... W 114, 254
Iowa ... W 293
Michigan .. W 114
Ohio .. W 114; A 19 iv b; GF 197
Wisconsin ... W 114; C 451

See also Platteville limestone.

Triassic formations, water in—
Arizona .. W 380, 836 b; B 435
Colorado ... A 16 ii f, 17 ii f, P 52
Connecticut .. W 110, 114, 232, 374, 449, 466, 670, 540, 597 b
Kansas ... A 16 ii f; C 145
Massachusetts .. W 110
Montana ... B 856
Nebraska .. A 16 ii f
New Jersey ... W 114; GF 157, 167, 191
New Mexico .. W 380; B 435, 620; C 241
New York ... W 114; GF 157
North Carolina ... W 114
Oklahoma .. J 213
Pennsylvania W 106, 114; B 828, 840, 891; GF 162, 167, 225; C 342, 347, 349
South Dakota .. GF 107, 164
Texas ... W 154, 191, 913; B 780 b
Utah .. W 380
Virginia ... W 114, 258; C 434, 436
Wyoming ... B 364; GF 107, 150, 173

See also specific formations.

Trinity formation, water in—
Arkansas .. P 46; B 691 j, 808
Colorado ... A 16 ii f
Kansas ... A 16 ii f
Nebraska .. A 16 ii f
Texas ... W 276, 913; A 21 vii; B 780 b; GF 42, 76, 183

Trowbridge, A. C., Galena-Elizabeth folio, Ill.-Iowa .. GF 200

Tertiary and Quaternary geology of the lower Rio Grande region, Tex GF 200

B 837
INDEX

Troxell, H. C., Diurnal fluctuation in the ground water, and flow of Santa Ana River, Calif ...J 160
Ground-water supply in the valley of Santa Ana River, Calif ..C 23
Tufa deposited by ground waterW 338, 343, 423; A 9 d, 18 II b; B 330, 491, 616; C 131
Tuff, water in ..W 375 a, 489, 637 d; GF 138; C 92, 99
Tunnels for recovering ground water. See Infiltration ditches and tunnels.
Turbidimeters for testing water ..W 151
Turbidity of ground water ..W 341, 399; C 131
due to loess ..C 131
in limestone ..C 131
Turkestan, bibliography of ground water inW 163
Turner, H. W., Marysville folio, CalifGF 11
Turner, S. F., County reports on ground-water surveys in Texas by Works Progress Administration ..C 384
County reports on ground-water surveys in Texas, in cooperation with Texas State Board of Water EngineersC 393
Design and use of maximum-minimum water-level gageD 155
Distribution of Texas ground-water publications (progress report) ..C 387
Duncan-Virden Valley, Greenlee County, Ariz., and Hidalgo County, N. Mex ..C 17
Geological survey of Texas ground waters (progress report)J 188
Ground-water conditions and pumpage in Arizona in 1943D 196
Ground-water conditions in Arizona in 1941D 171
Ground water in Dimmit and Zavala Counties, TexD 51
Ground water in parts of the Texas Coastal PlainJ 132
Ground-water inventory in upper Gila River Valley, N. Mex. and Ariz ...J 240
Ground-water investigations by the United States Geological Survey in cooperation with the State of Arizona ..C 11
Ground-water levels and pumpage in Arizona in 1939-40C 14
Ground-water levels in Arizona in 1939-40D 146
Ground-water resources of Texas, their conservation and development ..C 400
Ground-water resources of the Houston district, Tex. (progress report) ...C 388
Ground-water resources of the Houston-Galveston area, TexD 39
Ground-water resources of the Santa Cruz River Basin, Ariz .C 20; D 185
Inventory of wells and springs, Tex. (progress report)C 386
Investigating ground-water resourcesJ 170
Mineral-water supply of the Mineral Wells area, TexD 55
Observation wells, manual of methodsD 60
Progress report (on cooperative water-level surveys in Texas)C 389
Pumpage from wells in southern Arizona in 1944D 203
Queen Creek area, Maricopa and Pinal Counties, ArizC 18
Report on cooperative ground-water investigationsC 19
Review of the States' cooperation in ground-water observation and investigation ..J 290
Safford Valley, Graham County, Ariz., records of wells and springs ..C 16
Salt-water encroachment in the Galveston area, TexJ 117
Salt-water problems in Arizona ..D 151
Turner, S. F., State-wide inventory of ground-water resources, Tex. C 385
Surveys by Works Progress Administration, county reports on wells and springs, Tex .. C 383
Value of long-time records of ground water ... J 186
Water-level recovery curve, form .. D 96
Water levels and artesian pressure in the United States. W 840, 845, 886, 917, 941, 949, 991
Water resources of Safford and Duncan-Virden Valleys, Ariz. and N. Mex C 15; D 160
Water-stage recorder, self-starting .. D 139
Tuscaloosa formation, water in, in Alabama ... C 1
Tuscan tuff, water in, in California .. W 375 a; GF 138

Udden, J. A., Belleville-Breese folio, Ill .. GF 195
Geology and mineral resources of the Peoria quadrangle, Ill B 506
Umpleby, J. B., Geology and ore deposits of the Mackay region, Idaho. P 97
Geology and ore deposits of the Wood River region, Idaho B 814
Underflow dams. See Dams.
Underflow ditches. See Infiltration ditches and tunnels.
Underflow measurements. See Infiltration ditches and tunnels.
Underflow meters. See Infiltration ditches and tunnels.
Underflow measurements ... W 112
methods for making ... W 112, 140, 638 c; P 44
Underflow meters .. W 112, 140, 141; P 44
See also Movements of ground water.
Underground dams. See Dams.
Underground streams ... W 233, 258, 494; A 18 iv b, 21 iv c; C 81, 431
Uniformity coefficient of water-bearing materials W 67; P 44
United States, ground-water conditions in D 181
water levels in ... W 777, 817, 840, 845, 886, 906, 907, 911, 920, 909, 910, 911, 936, 937, 938, 939, 940, 941, 944, 945, 946, 947, 948, 949, 986; 987, 988, 989, 990, 991
See also specific States.
United States Geological Survey, ground-water work of W 427, 991; B 227; D 116, 133, 161, 172, 187, 198, 209; J 5
United States history, ground water in relation to A 14 ft a
Unklesbay, A. G., Artificial recharge of artesian limestone at Orlando, Fla. J 363
Ground-water conditions in Orlando and vicinity, Fla C 64
Unkpapa sandstone, water in, in South Dakota P 65
water in, in Wyoming ... P 65
Upham, Warren, Glacial Lake Agassiz .. M 25
INDEX

Upson, J. E., Water levels and artesian pressure in the United States
W 910, 919, 949, 991

Water levels in observation wells in Santa Barbara County Calif. . . . C 28
Water resources of Santa Barbara County, Calif C 27
Water wells and water levels in Carpinteria, Goleta, and Santa Ynez Valley areas, Calif C 30 a
Water wells and water levels in San Antonio, Santa Maria, and Cuyama Valleys, Calif C 30 b

Uranium in ground water B 395
Utah, areas, all of State C 422
areas, Bear River Valley W 333
Beaver Valley W 217
Blue Spring Valley W 333
Box Elder County W 333
Cedar City Valley W 993; D 179
central Sevier Valley W 333
Curlew Valley W 333
east-central B 628
Escalante Desert W 277, 659 a; D 8; J 48
Fish Springs Valley W 277
Flowell area C 423
Grand County B 541 d, 908
Grouse Creek Valley W 333
Hansel Valley W 333
Hurricane fault zone J 244
Iron County W 277, 998
Jordan River Valley W 157; D 36, 183
Juab County W 277
Lehi and vicinity W 836 c; D 90
Millard County W 277
Moab district B 841; D 71
Navajo country W 380
northern W 7, 333
Ogden Valley W 796 d; C 424; D 65, 170
Park Valley W 333
Parowan Valley W 277, 993; D 179
Pavant Valley W 277
Randolph quadrangle B 923
Round Valley W 277
Rush Valley W 333
Salt Lake City D 183
Salt Lake County P 298; J 135
Salt Valley anticline B 863
San Juan country B 188; B 908
San Juan River Valley W 538
Sanpete Valley W 199
San Rafael Swell B 806 c
Sevier County B 796 c
Sevier Valley W 199, 277
Skull Valley W 333
Snake Valley W 277
southeastern W 380; D 71
Utah, areas, Tintic district ..P 107
Tintic Valley ...W 277
Tooele County ..W 333
Tooele Valley ...D 186
Utah Lake Valley ..W 157
White River Valley ..W 277
Willow Wash ..B 725 d
Woods Cross ...D 83
artesian water in. .W 157, 199, 217, 277, 333, 796 d, 836 c; B 751 d, 796 c;
C 423, 424; D 36, 65, 71, 83, 90, 170, 183, 186
bibliography of ground water in............................W 120, 163
dams for ground water inW 199
evaporation in ...W 7, 659 a
guides to watering places in................................W 277, 333
infiltration tunnels in ..B 192
irrigation with artesian water inW 157, 217, 277, 333, 659 a, 836 c; 423
with other ground water inW 217, 277, 333, 395
leakage from artesian wells inC 423
mine waters in ...W 364
mineral waters in ..B 32; MR 1883-1916
public water supplies inD 36; J 135
quality of ground water in. .W 157, 199, 217, 277, 333, 364; B 32; D 36
quantity of ground water inW 659 a
salt water in ..B 711 a, 785 b, 863; D 151
seepage water in ..W 7
spring discharge measurements in. .W 133, 212, 359, 360, 329, 390, 440
460, 479, 510, 529, 549, 750, 765, 860; B 32
springs inW 157, 199, 217, 277, 333, 364, 538, 557, 679 b; P 80, 153
164, 188; B 32, 725 c, 795 b, 819, 841, 865, 908, 923; J 34, 211
thermalW 217, 277, 333, 364, 679 b; P 153; J 34, 211
water levels inW 777, 817, 840, 845, 886, 910, 940, 948, 990, 993
water table in. .W 157, 199, 217, 277, 333, 836 c; C 421, 424; D 8, 36, 86,
90, 93, 110, 112, 122, 137, 138, 145, 167, 179; J 115, 124, 156, 179
well records forW 61, 149, 157, 199, 217, 277, 333, 380; F 188; B 264,
298, 541 d, 751 d, 87 e, 841, 863
wells in, cost of ..W 277; J 200
Utica shale, water in, in Michigan ..D 95
water in, in Ohio ...W 259
Utilization of ground water ..V
INDEX

Valley fill, water in—
 Arizona W 104, 136, 320, 375 b, 380, 425 a, 499, 796 f; B 352;
 GF 111, 112; C 12, 13, 15, 16; D 82; J 240, 279
 California W 89, 137, 138, 139, 142, 219, 222, 225, 278, 294 375 a, h;
 398, 400 e, 446, 496, 519; GF 163, 198; C 21, 22
 Colorado W 240; C 32
 Idaho W 78; C 114
 Montana W 345 g, 400 b
 Nevada W 365, 375 d, 423; B 530 r
 New Mexico W 123, 158, 188, 260, 275, 343, 345 c, 425 a, c20, 637 b;
 B 618; GF 199, 207; C 231 236, 237, 238, 240, 241, 252
 Oregon W 78, 220, 231; B 255; D 24, 62
 Texas W 343; GF 166, 194; C 381; D 31
 Utah W 157, 199, 217, 277, 333

See also Debris-filled basins.

Valves in pumps .. W 14

Vanderwilt, J. W., Geology and mineral deposits of the Snowmass
 Mountain area, Colo ... B 884

Van Hise, C. R-, Geology of the Lake Superior region M 52
 Treatise on metamorphism M 47

Van Horn, F. R., Geology and mineral resources of the Cleveland district,
 Ohio ... B 818

Van Orstrand, C. E., Apparatus for measurement of temperatures in deep
 wells .. C 447

Vaughan, T. W., Austin folio, Tex GF 76
 Geology and underground waters of the Edwards Plateau and Rio
 Grande Plain, Tex .. A 18 II b
 Geology of the ground waters of Antigua, B. W. I................. C 71
 Michigan water supplies J 8
 Nueces folio, Tex ... GF 42
 Rio Grande coal fields of Texas B 164
 Uvalde folio, Tex ... GF 64

Veatch, A. C., Coal and oil in Uinta County, Wyo B 285
 Fluctuations of water levels in wells W 155
 Geography and geology of southwestern Wyoming P 56
 Geology and underground water resources of northern Louisiana .. C 161
 Geology and underground water resources of northern Louisiana and
 southern Arkansas .. P 46

Peculiar artesian conditions on Long Island, N. Y................ J 3
 Records of deep wells, 1904 B 264
 Underground water resources of Long Island, N. Y................ P 44
 Underground waters of Louisiana and southern Arkansas W 114

Veatch, F. M., Surface water supply of the United States.W 902, 904, 964, 984

Veatch, J. O., Underground waters of the Coastal Plain of Georgia ... W 341
 Vegetation, algae in ground water W 338
 as indicator of ground water.W 294, 375 d, 423, 467, 489, 494, 497, 499, 577
 carbonate in water in relation to A 9 d
 crenothrix in ground water W 338
 discharge of water by.... W 7, 153, 294, 320, 375 d, 423, 489, 494, 577,
 638 c, 796 f; C 11, 15, 20, 22; D 160; J 240
 ground water in relation to W 30, 224, 277, 294, 320, 343, 375 d, 380,
 423, 489, 494, 577, 638 c; B 308; C 15
Vegetation, hot springs in relation to A 9 d
quality of ground water in relation to W 343, 423, 577
sulfuraria in ground water W 338
water table in relation to W 320, 343, 423, 489, 494, 577; C 15
zones of ground water in relation to W 320, 577
Veins, artesian water in B 319
Velocity of ground water. See Movements of ground water; Underflow measurements.
Vermont, areas, all of State W 102, 114
areas, Taconic quadrangle W 110
ticanderoga quadrangle W 114
artesian water in W 114
bibliography of ground water in W 114, 120, 163
mineral waters in W 114; B 32; MR 1883-1923
public water supplies in W 102, 114
quality of ground water in W 102, 114, 144; B 32
springs in W 102, 114; A 14 Hill; B 32
water levels in W 936
well records for W 102, 110, 149; B 298
Vertical drainage. See Drainage into wells.
Vesicles in rocks, artesian water in B 319; C 92
Vicksburg group, water in, in Florida W 319; C 51, 52, 53, 54
water in, in Georgia W 341; C 81
in Mississippi W 159, 576
Virginia, areas, all of State W 114
areas, Arlington County D 7
Coastal Plain B 138; C 431, 437, 439, 440, 441, 442; J 197, 235
eastern C 438; D 190; J 1
Fall Zone C 438
Franklin J 250
Fredericksburg quadrangle GF 13
Great Valley C 432
Isle of Wight County D 97
Manassas and vicinity W 258
Nomini quadrangle GF 23
Norfolk area C 438
Norfolk quadrangle GF 80
northern C 434, 436
St. Marys quadrangle GF 186
Shenandoah County W 596 c
Shenandoah Valley C 435
Southampton County D 97
southeastern C 442; J 332
Sussex County D 97
Washington quadrangle GF 70
Woodstock area W 596 c
artesian water in W 596 c; B 138; GF 23, 70, 80; C 431, 437, 438, 440;
D 97; J 1, 197, 295
bibliography of ground water in W 61, 114, 120, 149, 163
industrial use of ground water in J 322
infiltration tunnels in C 431
mineral waters in B 32; MR 1883-1923; C 431
INDEX

Virginia, public water supplies in GF 80; C 431, 435, 436; D 7; J 322
quality of ground water in.......... W 258, 364, 596 c; B 32; GF 80; C 431, 432,
433, 435, 436, 437, 438, 439, 440, 442; D 97; J 68, 197, 295
quantity of ground water in C 439, 442
salt water in W 258; B 669, C 431, 435, 440; D 151
spring discharge measurements in........ W 643, 661, 663, 682, 697, 712,
713, 726, 727, 742, 757, 782, 802, 822, 852, 872, 892, 952, 972
springs in W 114, 364, 596 c, 679 b; A 14 II b; B 32; C 431, 432, 433,
435; J 68
thermal W 364, 679 b; C 432, 433; J 68
water levels in W 777, 817, 840, 845, 907, 937, 945, 987
water table in......... W 820; C 431, 442; D 22, 29, 37, 42, 107, 121, 130, 152,
190; J 87
well records for W 61, 114, 149, 258, 596 c; B 138, 298, 596 c. 669; GF 70,
80; C 431, 435, 436, 438, 439, 441, 442; J 1
wells in, construction and cost of C 431
yield of .. C 438, 439
Viscosity of water, coefficient of W 67, 494, 887; A 19 II b; D 84, 182
Vitruvius, on origin of ground water A 14 II b
Voedisch, F. W., Water levels and artesian pressure in the United States
W 840, 845; 886

Volcanic rocks See Lava.
Volcanism, quality of ground water in relation to B 330, 491, 616
thermal springs in relation to W 181; B 330, 491, 616
Von Hein, G. H., Water levels and artesian pressure in the United States
W 886, 938

W
Waite, H. A., Decline in ground-water levels in Scott County, Kans J 243
Geology and ground-water resources of Ford County, Kans. C 153
Geology and ground-water resources of Scotts Bluff County, Nebr W 943
Ground water in Keith County, Nebr W 848
Ground water in the Republican River Basin in Nebraska C 202, 203, 204
Ground water in the San Luis Valley, Colo C 32
Ground water in the Scott district, Kans C 142
Ground water in the southern High Plains D 66
Ground water level survey in Nebraska C 201
Ground-water resources of Scotts Bluff County, Nebr. D 163
Ground-water resources of the Arkansas Valley in Ford County, Kans.
D 111

Ground water supplies in Kansas available for national defense...... C 151
Occurrence of ground water in Ford County, Kans C 142
Water levels and artesian pressure in the United States W 845, 886,
908, 938, 946, 988
Wall Creek sandstone, water in, in Wyoming.......... B 471 a, 670, 756, 806 d
Wallace, D. S., Surface water supply of the United States W 757, 782, 802,
822, 852, 872, 892, 952, 972; C 62
Waring, G. A., Features of the geology of northeastern Brazil J 285
Geology and its relation to ground-water supplies in Ground-water
resources of the Santa Cruz Basin, Ariz C 20
Geology and water resources of a portion of south-central Oregon . W 220
Waring, G. A., Geology and water resources of a portion of south-central Washington ... W 316
Geology and water resources of the Harney basin region, Oreg ... W 231
Geology of the Anthracite Ridge coal district, Alaska ... B 861
Geology of the island of Trinidad, British West Indies ... J 286
Ground water in Pahrump, Mesquite, and Ivanpah Valleys, Nev. and Calif. W 450 c
Ground water in Reese River Valley and adjacent areas, Nev ... W 425 d
Ground water in San Jacinto and Temecula basins, Calif ... W 429
Ground water in the Meriden area, Conn ... W 449
Ground water resources of Mississippi ... W 576
Ground water resources of northwestern New Mexico ... D 68
Irrigation in northeastern Brazil ... J 282
Mineral springs of Alaska ... W 418
Reef formations of the northeast coast of Brazil ... J 284
Springs of California ... W 338
Superimento d’agua no nordeste do Brasil ... J 283
Thermal springs in the United States ... W 679 b
Two thermal springs in Idaho and Oregon ... J 147
Water supplies from wells in southeastern Utah and southwestern Colorado D 71
Wells on the public range .. J 200
Warm springs. See Springs, thermal.
Warren, M. A., Artesian water in southeastern Georgia .. C 83, 84
Artesian water in the coastal area of Georgia ... D 129, 134
Artesian water in the coastal area of Georgia and northeast Florida J 248
Artesian water in the coastal area of Georgia with special reference to salt-water encroachment in the Savannah area D 151
Perennial yield of artesian water in coastal area of Georgia and northeastern Florida J 353
Water levels and artesian pressure in the United States W 845, 886, 907, 937, 945, 987
Warsaw formation, water in, in Missouri ... W 195
Wasatch formation, water in, in Montana ... B 856
 water in, in New Mexico .. W 620
 in Utah .. B 796 c
 in Wyoming ... B 285
Washburne, C. W., Chlorides in field waters ... J 15
Washing down test pipe .. W 141
Washington, H. S., Composition of the earth’s crust ... P 127
Washington, areas, all of State .. W 111
 areas, Benton County .. B 298
 Big Bend country ... W 425 e; B 108
 Columbia River Basin .. C 446
 Columbia River Plains .. W 316
 east-central .. W 118
 Ellensburg quadrangle .. GF 86
 Grant County ... W 425 e
 Horse Heaven Plateau ... W 316
 Jefferson County ... B 298
 Mount Stuart quadrangle .. GF 106
Washington, areas, Quincy Valley	W 425 e
Reservation Valley	W 318
south-central	W 316
southeastern	W 4
Spokane Valley	W 889 b; D 102, 118
Sunnyside Valley	W 316
Walla Walla basin	D 44
Walla Walla County	B 298
Yakima and vicinity	W 55, 75
artesian water in	W 4, 55, 75, 118, 316; B 108; GF 86, 106
bibliography of ground water in	W 120, 163
irrigation with artesian water in	W 55
with other ground water in	W 55, 316, 425 e; A 16 II e
laws relating to ground water in	W 55, 78, 122, 152
mineral waters in	B 32; MR 1883-1923
public water supplies	W 111; D 102
pumping in	W 425 e
quality of ground water in	W 111, 364, 425 e; B 32; C 446
quantity of ground water in	W 425 e
spring discharge measurements in	W 332, 362, 394, 632, 634, 834, 864, 882, 884, 902, 904, 964, 984
springs in	W 111, 118, 294, 316, 425 e, 557, 679 b; A 14 II b; B 32; GF 86, 106; C 446
thermal	W 679 b
stock-watering places in	W 316
temperature of artesian water in	W 55
water levels in	W 777, 817, 840, 845, 886, 910, 940, 948, 990
water table in	W 316, 425 e, 889 b; D 44, 74, 118
well records for	W 55, 61, 111, 118, 149, 316; B 264, 298; GF 86, 106; C 446
wells in, construction of	W 118
Washington limestone, water in, in Pennsylvania	GF 121
Washita formation, water in, in Texas	W 276
Waste-filled basins. See Debris-filled basins.	
Waste of ground water. See Conservation.	
Water-bearing material, effective size of	W 67, 140, 596 f; P 44
uniformity coefficient of granular materials in	W 59 f; P 44
Water finders	W 416; MR 1882 k; J 324
Water level, instruments for measuring	D 127, 139; 142, 153, 155, 188, 194; J 60, 170, 226, 227, 259
Water levels. See specific States.	
Water rights. See Law relating to ground water.	
Water spreading in California	C 21
Water-stage recorders used in wells	W 155; A 19 II b; D 127, 139, 142, 188
Water supplies. See Irrigation; Public water supplies.	
Water table, definition of	W 67, 489, 494, 836 d
fluctuations of	W 10, 12, 18, 29, 30, 58, 67, 137, 138, 139, 142, 153, 155, 164, 213, 219, 232, 251, 256, 258, 294, 319, 320, 331, 343, 345 g, h, 375 a, 400 e, 423, 446, 489, 495, 597 b, 619, 637 b, 680, 774, 818; A 19 II b, 21 IV a, M 47; P 44; GF 120, 193; C 15, 16, 21, 92, 98, 99, 431, 451; D 27; J 338
air in soil in relation to	A 19 II b
barometric pressure in relation to	W 155, 258, 638 c, 836 d; A 19 II b; M 47; P 44
Water table, fluctuations of, capillarity in relation to W 155
causes of .. W 155, 597 l, 386 d; M 47
dams in relation to W 155, 597 a; P 44
deforestation in relation to W 155
denudation and valley filling in relation to M 47
discharge of ground water in relation to W 155, 294, 597 b, 638 c
earthquakes causing W 619; C 92; J 218, 237
evaporation in relation to W 294, 423, 597 b; C 15; J 240
human agencies in relation to W 155; M 47
irrigation in relation to W 142, 155, 219, 345 h, 774; C 15
precipitation in relation to W 137, 138, 139, 142, 219, 345 h, 375 a, 400 e, 597 b, 911, 941; A 19 g b; P 44; C 15
principles of ... W 155; B 529; D 59, 73, 96; J 10, 57, 112, 123, 133, 144, 149, 157, 158, 160, 162, 186, 199 238, 239, 268
pumping in relation to W 142, 155, 219, 345 h, 911, 941; P 44; C 14; J 168
quantity of ground water indicated by W 345 h, 400 e, 597 b, 638 c
railroad trains in relation to W 155, 619, 638 c; J 207
streams in relation to W 155, 597 b, 849 b; C 15
temperature in relation to W 155; M 47; P 44
tides in relation to W 155, 232, 836 d; P 44; GF 193; C 92, 99; J 209
uplift and subsidence in relation to M 47
perched .. W 164, 238, 258, 320, 335, 494, 616; P 44, 46; C 431
relation of, artesian head to W 256, 293, 494; A 5 c; C 451
discharge of ground water to W 155, 294, 320, 423, 597 b, 638 a; C 22
faults to ... W 345 h, 423
oil and gas to .. B 658; J 337
ore deposits to .. M 47; P 68, 80, 94, 96, 97, 107, 111, 115, 122, 139, 148, 169, 177; B 529, 625, 677, 691, 710 b, d, 715 l, 718, 725 c, 735 e, 750 b, 762, 782, 787, 814, 842, 846 a, 847 a, 849 g, 853, 870, 877, 879, 884, 885, 902, 922g; GF 112, 120, 129
sulfide to ... B 529, 625
topography to .. W 67, 159, 254-374; A 19 II b
vegetation to .. W 294, 320, 343, 423, 577, 638 c
shape of ... W 67, 494; A 19 II b
Water wheels for lifting water W 1, 4, 13, 29
Water witching ... W 255, 278, 416; P 128 d; MP 1882 a; J 222
Watering places on routes of travel—
Arizona .. W 380, 490 c, d, 498, 499; B 352
California .. W 242, 497; B 308
Nevada .. W 224, 365; B 308
New Mexico ... W 345, 380
Utah .. W 277, 333
Waverly shale water in, in Indiana W 114
water in, in Kentucky W 28
Waynesburg sandstone, water in, in Pennsylvania GF 121
Weather effects of, on wells. See Water table; Wells.
Weathered rocks, water in W 114
Weathering produced by ground water M 47; P 96
Weed, W. H., Fort Benton folio, Mont GF 55
Geology and ore deposits of the Butte district, Mont P 74
INDEX

Weed, W. H., Hot springs of southern United States W 145
Little Belt Mountains folio, Mont ... GF 56
Travertine and siliceous sinter of hot springs A 9 d
Weeks, F. D., Underground waters of New York W 114
Well and spring records for New York W 102
Wegemann, C. H., Geology of Big Horn County and the Crow Indian
Reservation, Mont ... B 856
Oil and gas in Palo Pinto County, Tex B 621 e
Powder River oil field, Wyo ... B 471 a
Pumpkin Buttes coal field, Wyo ... B 806 a
Salt Creek oil field, Wyo ... B 670
Weidman, Samuel, Water supplies of Wisconsin C 451
Weirs, coefficients, formulas, and tables relating to experiments with portable .. W 150, 200
Well casings ... W 145; J 64, 105
cement ... W 255, 293
corrosion of ... W 293
decay of ... C 131
double ... W 227
effect of mineralized water on .. W 293; C 21
magnetization of ... W 258
methods of inserting .. W 223, 257, 293
perforation of ... W 110, 140, 257
pulling of ... W 257
steel ... W 293
stovepipe ... W 110, 140, 255, 257, 446, 495, 498
straightening of ... W 257
types of ... W 233, 255, 257, 494
uses of ... W 223, 257, 293
wrought iron ... W 223, 257, 293
Well construction, accidents in ... W 257, 293
artesian ... W 118, 227, 257; A 5 c, 17 II g; C 451
augers for ... W 231, 257, 375 a, 495; P 46; D 126
boring method of .. W 257, 293
California method of .. W 110, 140, 220, 231, 255, 257, 446, 467, 495, 498; J 92
calx drills for ... W 255, 257
cement for ... J 61, 105
chilled-shot drills for ... W 257
churn drills for .. W 232, 257
controlling flows in ... W 118; A 5 c
core drills for ... W 257; P 46
crooked holes in .. W 256, 257, 293
deep drilling methods of ... W 257, 293
detecting flows in .. W 118, A 5 c
diamond drills for .. W 146, 255, 257
digging method of ... W 232, 254
double casing used in .. W 227
drainage by ... W 258
driving method of .. W 140, 145, 232, 254, 255, 257; A 19 II b; P 46; C 431
Well construction, explosives used in .. W 255, 257
finishing methods of .. W 255, 257
fishing tools for ... J 77
gravel screens developed in ... W 255, 257, 293, 343, 345 g, 597 c
history of .. W 257; J 306
hollow-rod method of .. W 257
hydraulic method of .. W 257
jetting method of .. W 101, 164, 231, 254, 255, 256, 257; P 46; C 431
methods of .. W 257; D 43; J 67, 70, 71, 78, 105, 184, 306
oil well, to exclude water from .. B 658
oil well rigs used in ... W 257; B 282
on alkali flats .. B 530 r
packers used in .. W 54, 118, 160, 257, 293; A 5 c; C 451
percussion drills for .. W 257; C 431
perforators used in .. W 110, 140, 257
portable rigs for ... W 257; D 126
pumping method of .. W 255, 257, 345 g
quicksand interfering with .. W 30, 257, 375 d, 423
rotary drills for .. W 101, 232, 255, 257; P 46, 90 h; C 431
“sand bucket” method of ... W 231, 258
sand pumping in connection with ... W 231, 256, 258, 293, 343, 597 c; P 46
seed-bag packers used in ... W 54, 118; A 5 c
specifications for .. J 59, 70, 71, 78, 184, 233
standard drills for .. W 255, 257
steel-shot drills for .. W 255, 257
stove-pipe method of ... W 110, 140, 220, 231, 255, 257
tapering of holes in .. W 256
See also specific States.

Well data, symbols for, on maps .. W 160
Well discharge, dome method of measuring ... W 67, 110, 157, 218, 240; D 195
Well drilling. See Well construction.

Well drillings, fossils in ... W 293, 489; P 90 h
interpretation of ... W 293, 489; P 90 h; C 451
methods of collecting ... W 489; P 90 h; B 264, 298; C 451
methods of examining .. W 293, 489; P 90 h
Well drills, manufacturers of .. W 257
Well packers .. W 54, 118, 160, 257, 293; A 5 c; C 451
Well records, correlation by means of .. W 293; P 90 h
forecasting ground water by means of .. W 293
importance of ... B 264
methods of making and obtaining ... W 293; B 264; D 60, 153; J 186, 269
preservation of .. W 78, 256
See also specific States.

Well screens, construction of .. W 101, 597 c
efficiency of ... W 110, 375 a
gravel ... W 255, 256, 293, 343, 345 a, g, 375 a, 597 c
incrustation of ... W 256, 293
load produced by clogging of ... W 9
methods of using .. W 257
natural ... W 256, 293, 343, 345 g, 375 a
Porcher type of ... W 141
INDEX 405

Well screens, sand points as ... W 145
 types of .. W 71, 255, 257, 275 a; P 46
Well sweeps ... W 1
Wells, F. G., Artesian water supply of Memphis and other parts of western Tennessee .. D 25
 Artesian water supply of Memphis, Tenn ... W 638 a; C 372; D 14; J 65
 Geologic studies on Long Island with respect to ground-water supplies J 146, 169
 Geology and ore deposits of the southwestern Arkansas quicksilver district .. B 886 c
 Ground-water resources of western Tennessee W 656
 Investigation of ground-water resources of Long Island, N. Y........ D 41
Wells, R. C., Evaporation and concentration of water associated with petroleum and natural gas B 693
 Evaporation of water at depth by natural gases J 17
 Sodium sulfate, its sources and uses B 717
Wells, barometric effects on .. W 29, 155, 195, 215, 216, 256, 258, 317, 836 d; A 19 ii b; M 47; P 44; B 19, 319; GF 156; C 92
 barometric effects on, bibliography of W 155
 blowing, in —
 Arizona ... W 258
 Arkansas .. W 258
 Colorado ... A 16 II f
 Georgia .. W 258; C 81
 Indiana ... W 258
 Iowa .. W 258
 Kansas ... A 16 II f
 Louisiana .. W 101, 258
 Michigan .. W 30, 258; GF 205
 Minnesota .. W 256, 258
 Mississippi ... W 576
 Missouri .. W 195, 258
 Nebraska .. W 29, 215, 216, 218; A 16 II f
 New York .. W 258; P 44
 Oregon .. W 258
 South Carolina ... W 258
 Texas ... W 258
 Washington ... W 258, 316
 Wisconsin ... W 258
 breathing .. W 215, 258
 chlorination of ... D 43; J 64, 76, 71, 78, 105, 184
 classification of ... W 255, 494; C 97
 cleaning of ... W 67, 255, 257
 to develop gravel screens .. W 256, 293, 243, 345 a, g
 clogging of .. W 8, 14, 256, 257, 293
 combined with cisterns .. W 255
 connected ... W 223, 293
 construction of. See Well construction.
 cost of .. W 110, 255, 257
 drilled by jetting process .. W 255, 277
Wells, cost of, drilled in crystalline rocks ... W 160, 258
drilled in shale .. W 258

See also specific States.
deep, bibliography of .. W 57, 61

list of .. W 58, 61, 149, 257, 489
diameters of, yield and efficiency in relation to W 293

drainage into .. W 145, 160, 256, 258, 293, 774, 818; C 64; J 363

explosives used in ... W 253, 255, 257

freezing of .. W 29, 256, 258

horizontal type of. See Infiltration ditches and tunnels.
improvement of water in .. W 160

interference of .. A 19 II b; M 27; GF 97;

C 431, 451; J 11, 115, 177

Lanai-type ... C 97, 98

magnetism in ... V 258; C 431

Maui-type .. C 92, 97, 98, 99; J 165

measurement of depth of .. W 257

natural, caused by sinkholes .. A 21 iv c; C 2

Oahu-type .. C 97

observation .. D 59, 60, 75, 76, 207; J 186

packing of .. W 54, 118, 160, 257, 293; A 5 c; C 451

rise of water in, methods of measuring rate of W 140, 155, A 19 II b

roaring, and singing ... W 29

screening of. See Well screens.
siphons in .. W 254, 320, 374, 397

specific capacity of ... W 140, 141, 153, 258, 400 b, 425; 494, 520 e;
P 44; C 82; J 195

sucking ... W 258

yield of, depth in relation to ... W 160, 222
diameter in relation to .. W 293

fluctuations in .. W 256, 258

methods for measuring ... W 67, 110, 150, 157, 200, 219, 240, 320

methods of increasing ... W 255, 257, 343

principles of .. W 67, 140, 293; A 19 II b; D 56; J 24, 195, 219

temperature of water in relation to .. W 215, 255, 258

weather in relation to ... W 215, 255, 258

See also Artesian water; Artesian wells; Well casings; Well construction;

Well screens; specific States.

Wenzel, L. K., Artesian water conservation in North Dakota has beneficial
effects ... D 141

Decline of ground-water level in central Nebraska D 58

Durchflussmenge und physikalische Erscheinungen in natürlichen un

Kunstlichen Bodenschichten ... J 288

Effect of a well on the flow of a nearby stream (discussion) J 259

Geology and ground-water resources of Scotts Bluff County, Nebr.. W 943

Geology and ground-water resources of south-central Nebras-ka... W 779

Ground water, in Hydrology (Physics of the Earth, IX)........ J 255 (chap. 10)

Ground water as a source of public water supplies J 122

Ground-water conditions in the United States, monthly reports on.... D 181

Ground water in Keith County, Nebr .. W 848

Ground-water levels declined in North Dakota in 1938 D 109

Ground-water levels in Platte River Valley, Nebr................................. D 49
INDEX

Wenzel, L. K., Ground-water resources of Scotts Bluff County, Nebr. D 168
Ground-water resources of south-central Nebr. D 64
Local overdevelopment of groundwater supplies, with special reference to Grand Island, Nebr. .. W 836 e
Method for determining transmissibility and storage-coefficients by tests of multiple well systems ... J 311
Methods for determining permeability of water-bearing materials W 887
Notes on salt-water problems .. D 151
Observation wells, manual of methods ... D 60
Present status of our knowledge regarding the hydraulics of ground water J 236
Recent investigation of Thiem's method for determining permeability of water-bearing materials .. J 85
Recovery of ground-water levels in Nebraska in 1935 J 154
Replenishment of underground reservoirs ... J 320
Salt-water problems and methods of investigation (introductory) D 151
Several methods of studying fluctuations of ground-water levels J 158
Specific yield determined from a Thiem's pumping test J 101
Statewide program of periodic measurements of ground-water level in Nebraska ... J 129
Substantial replenishment creates generally favorable outlook for ground-water supplies .. J 304
Subsurface water in research on agricultural watersheds (discussion) J 268
Thiem method for determining permeability of water-bearing materials W 679 e
Water levels and artesian pressure in the United States W 777, 817, 840, 845, 886
Water levels and artesian pressure in the United States in 1937 D 99
Water levels and artesian pressure in the United States, 1940 W 906, 907, 908, 909, 910, 911
Water levels and artesian pressure in the United States, 1941 W 936, 937, 938, 939, 940, 941
Water levels and artesian pressure in the United States, 1942 W 944, 945, 946, 947, 948, 949
Water levels and artesian pressure in the United States, 1943 W 956, 957, 958, 959, 960, 961
Water supply of the Dakota sandstone .. W 889 a
Well discharge, a method of computing the quantity of water derived from storage ... J 342
Wesbrook, F. F., Quality of surface waters in Minnesota W 193
West Indies, bibliography of ground water in W 163
ground water in—
Antigua ... C 71
Cuba ... W 110
Guantanamo area, Cuba ... J 287
St. Croix, Virgin Islands ... J 289
Trinidad, British West Indies ... J 286
West Virginia, areas, Accident quadrangle ... GF 160
areas, all of State .. W 114; C 448; J 251, 256, 356
Cabell County .. B 298
Flintstone quadrangle ... W 110
Frostburg quadrangle .. W 110
408 PUBLICATIONS RELATING TO GROUND WATER

West Virginia, areas, Hancock quadrangle W 145; GF 179
Kenova quadrangle .. GF 184
Nicholas quadrangle .. W 145
Ohio River Valley .. C 449; J 333
Parkersburg and vicinity ... C 449
Pawpaw quadrangle .. W 145; GF 179

artesian water in .. GF 160, 179; J 20
bibliography of ground water in W 61, 114, 120, 149, 163
ground water for industrial use in J 333
mineral waters in .. W 114; B 32; MR 1883-1923
public water supplies in ... C 449; J 251, 333
quality of ground water in .. C 449; J 367
quantity of ground water in C 449; J 357
salt water in .. B 530 b, 669, 693; GF 184
springs in ... W 114, 145, 679 b; A 14 II b; B 32; GF 160, 179; C 433
temperature of ground water in C 447
water levels in .. W 937, 945, 987
water table in ... J 356
well records for .. W 61, 149; B 264, 298, 669; GF 184

Westendick, F. C., Artesian water in the Florida Peninsula............. J 137
Westgate, L. G., Geology and ore deposits of the Pioche district, Nev. .P 171
Geology and ore deposits of the Wood River region, Idaho.............. B 814
White, D. E., Antimony deposits of the Wildrose Canyon area, Calif. .B 922 k
White, W. F., Jr., Chemical analyses of surface waters of Pennsylvania. C 352
Quality of water, Pecos River Basin, N. Mex. C 398
White, W. N., County reports on ground-water surveys in Texas by Works Progress Administration C 384

County reports on ground-water surveys in Texas, in cooperation with
Texas State Board of Water Engineers C 393
Discharge method of estimating ground-water supplies J 48
Exploratory water-well drilling in Houston district, Tex. .W 889 e; C 406
Geology and ground-water resources of the Balmorhea area, western
Texas ... W 849 c
Geology and ground-water resources of the Lufkin area, Tex W 849 a
Ground water (in certain parts of Texas) C 414
Ground water in Dimmit and Zavala Counties, Tex D 51
Ground water in Mimbres Valley, N. Mex. D 15
Ground water in Texas and principles governing the occurrence of
ground water .. C 392
Ground water in Texas, list of published and unpublished reports .. C 410
Ground water in High Plains in Texas .W 889 c; C 391, 395, 397, 405, 411
Ground-water problems in the southern High Plains J 203
Ground-water resources in the vicinity of Vernon, Tex................. C 409
Ground-water resources of the Balmorhea area, Tex C 390
Ground-water resources of the Houston district, Tex W 889 d; C 388, 374, 396; D 46

Ground-water resources of the Houston-Galveston area, Tex....... D 39
Ground-water supply of Mimbres Valley, N. Mex. .W 67 b; C 238, 243, 246
Investigation in the Escalante Desert, Utah, on discharge method of
estimating water supplies .. D 8
<table>
<thead>
<tr>
<th>Author</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>White, W. N.</td>
<td>Method of estimating ground-water supplies based on discharge by plants and evaporation from soil W 659 a</td>
</tr>
<tr>
<td>Williams, E. L.</td>
<td>Surface water supply of the United States W 526, 547, 566, 567</td>
</tr>
<tr>
<td>Williams, H. M.</td>
<td>American irrigation engineering A 13 III b</td>
</tr>
<tr>
<td>Wilson, W. T.</td>
<td>Water levels and artesian pressure in the United States W 845, 886</td>
</tr>
<tr>
<td>Winchester, D. E.</td>
<td>Geology of Alamosa Creek Valley, N. Mex., with special reference to the occurrence of oil and gas B 716 a</td>
</tr>
<tr>
<td></td>
<td>Lignite field of northwestern South Dakota B 627</td>
</tr>
<tr>
<td></td>
<td>Winchester limestone, water in, in Kentucky W 233</td>
</tr>
<tr>
<td></td>
<td>Windmills, “angle of weather” in brake adjusters for W 20 classification of W 20 cost of W 29 efficiency of W 41 experiments with W 20, 41, 42 for drainage in Holland W 20 for pumping W 1, 8, 12, 13, 14, 20, 29, 41, 42, 269, 270, 343; A 19 IV c, 22 IV c; P 17; GF 103</td>
</tr>
</tbody>
</table>
Windmills, testing of ... W 5, 20, 41, 42
types of .. W 2f, 29, 41, 42
Wingate sandstone, water in, in Arizona W 836 b
Winslow formation, water in, in Oklahoma GF 132, 154
Wiringa, L. O., Records of wells and water analyses for Caddo and
Bossier Parishes, La ... C 168
Wisconsin, areas, all of State W 114; C 451
areas, Lancaster quadrangle GF 145
Manitowoc County .. B 298
Milwaukee quadrangle .. GF 140
Mineral Point quadrangle W 145; GF 145
artesian water in ... GF 140, 145; C 451
bibliography of ground water in W 61, 114, 120, 149, 163
mineral waters in ... W 114; B 32; MR 1883-1923; GF 140; C 451
public water supplies in GF 140; C 451
quality of ground water in B 32; GF 140; C 451
springs in ... W 114, 145; A 14 II b; B 32; GF 140, 145; C 451
water levels in ... W 777, 817, 840, 845, 886, 908, 938, 946, 988
water table in ... C 451; D 74
well records for ... W 61, 149; B 264, 298; GF 140; C 451
wells in, construction of C 451
Wissahickon gneiss, water in, in Delaware GF 223
water in, in Pennsylvania W 106; GF 223; C 342
Wolff, H. C., Underflow near St. Francis, Kans W 258
underflow of South Platte Valley (Colo. and Nebr.) W 184
Wolff, J. E., Franklin Furnace folio, N. J GF 161
Wollny, E., on flow of water and air through soils A 19 II b
Wood, B. D., Publications (of United States Geological Survey) relating to
water resources, 1885-1913 W 340
Woodbine sand, water in, in Arkansas B 808
water in, in Texas ... W 276; A 21 VII
Woodring, W. P., Geology and oil resources of the Elk Hills, Calif .. B 835
Woodruff, E. G., Geology and petroleum resources of the De Beque oil
fields, Colo ... B 530 c
Woolen mills, quality of water for W 398
Woolsey, L. H., Bull Mountain coal field, Mont B 647
Worts, G. F., Jr., Water levels and artesian pressure in the United
States, 1942 .. W 949
Water levels in observation wells in Santa Barbara County, Calif .. C 28
Water wells and water levels in Carpinteria, Goleta, and Santa Ynez
Valley areas, Calif ... C 30 a
Water wells and water levels in San Antonio, Santa Maria, and
Cuyama Valleys, Calif .. C 30 b
Wyoming, areas, Aladdin quadrangle GF 123
areas, Albany County .. B 806 d
Bald Mountain quadrangle GF 141
Basin and vicinity ... B 621 l
Baxter Basin .. P 702, 781 b
Bighorn Basin ... P 58; B 656
Bighorn County ... B 621 l
Bighorn Mountains ... P 51
Black Hills region ... A 21 IV b; P 65
Wyoming, areas, Carbon County .. B 796 d, 804, 806 d
Carpenter area ... C 456
central .. B 641 i
Cheyenne area .. C 455, 456
Cloud Peak quadrangle ... GF 142
Dayton quadrangle .. GF 141
Devils Tower quadrangle ... GF 150
eastern ... A 21 iv c, 22 iv c; P 32
Egbert-Pine Bluffs area ... C 455, 456
Fort McKinney quadrangle ... GF 142
Fremont County .. B 641 i
Goshen Hole quadrangle .. W 70
Grass Creek Basin quadrangle .. B 716 e
Lance Creek oil and gas field ... GF 107
Laramie area .. C 455, 456
Laramie Basin ... B 364
Laramie quadrangle ... GF 173
Lincoln County ... B 543
Lodgepole Valley .. W 425 b
Lost Soldier-Ferris district ... B 756
Meeteetse quadrangle .. P 145
Natrona County ... B 641 i
Naval Petroleum Reserve No. 3 P 163
Newcastle quadrangle ... GF 107
northeastern ... B 796 a
Oregon Basin quadrangle .. P 145
Patrick quadrangle .. W 70
Pine Bluff area .. J 266
Powder River oil field ... B 471 a
Randolph quadrangle .. B 923
Salt Creek oil field .. B 670
Salt Creek-Teapot Dome area .. P 163
Sherman quadrangle ... GF 173
southeastern ... B 364
southwestern ... P 53
Sundance quadrangle .. GF 127
Thermopolis .. J 6
Uinta County ... B 285
Yellowstone National Park ... W 364; A 9 d, 14 ii i; B 47, 395
 artesian water in ... W 425 b; A 21 iv b; P 32, 51, 53, 65; B 285, 364, 543,
 641 i, 656, 702, 711 h, 781 b, 796 a; GF 107, 127, 128, 141, 142, 150, 173
 bibliography of ground water in W 61, 120, 149, 163
 irrigation with ground water in W 425 b; A 21 iv c, 22 iv-c
 mineral waters in .. P 53; B 32, 641 i; M 1883-1923
 pumping in .. W 425 b
 quality of ground water in .. W 364, 425 b; A 9 d, 21 iv b; P 32; B 32, 47,
 285, 364, 471 a, 641 i, 656; GF 107, 173
quantity of ground water in ... C 455
salt water in .. W 364; B 439, 711 e, h
spring discharge measurements in W 456
Wyoming, springs in W 70, 364, 679 b; A 9 d, 14 n b; P 53, 145; P 32, 47, 364, 395, 641 i, 656, 680, 702, 711 h, 717, 781 b, 796 d, 806 a, 921 b; GF 173; J 6, 25, 91
thermal W 364, 679 b; A 9 d; P 53; B 32, 47, 395, 641 i, 680, £21 b; J 6, 25
water levels in ... W 910, 940, 948, 990
water table in ... W 425 b; C 456; J 266
well records for ... W 61, 149; A 21 iv b; P 32, 56, 65; B 268, 364, 621 i, 702, 711 e, 716 b, c, 736 d, 781 b, 796 d, 804; GF 107, 173

Y

Yakima basalt, water in, in Washington. See Lava, water in.
Yates, R. G., Coso quicksilver district in Inyo County, Calif. B 936 q
Quicksilver deposits in San Luis Obispo County and southwestern
Monterey County, Calif ... B 922 r
Yegua formation, water in, in Texas W 355, 375 g, 849 a
Yellowstone National Park, quality of water in....... W 364; A 9 d; B 32, 47
radioactive waters in .. B 395; M R 1913 11 h
springs and geysers in W 364; A 9 d, 14 n b; B 47, 395
Yield of wells. See Wells.
Yonker, C. C., Water levels and artesian pressure in the United States
W 817, 840, 845, 886
Yorktown formation, water in, in North Carolina C 291
water in, in Virginia .. C 431
See also Chesapeake group.

Z

Zinc in ground water .. W 254, 273, 399; B 606
Zone of flowage, ground water in relation to W 489, 494; M 47
Zone of fracture, ground water in relation to W 489, 494; M 47
Zone of saturation ... W 335, 489, 494
Zones, deep, of ground water W 67, 489, 494; A 14 n b; M 47