Geology and Ground-Water Resources of the Gallatin Valley Gallatin County Montana

By O. M. HACKETT, F. N. VISHER, R. G. McMURTREY, and W. L. STEINHILBER

With a section on SURFACE-WATER RESOURCES

By FRANK STERMITZ and F. C. BONER

And a section on CHEMICAL QUALITY OF THE WATER

By R. A. KRIEGER

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1482

Prepared as part of the program of the Department of the Interior for development of the Missouri River basin

UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary

GEOLOGICAL SURVEY
Thomas B. Nolan, Director

The U.S. Geological Survey Library catalog card for this publication appears after page 282.

CONTENTS

Alledoned	Page 1
Abstract	
Introduction	
Purpose and scope of investigation	
Personnel and acknowledgments	
Previous geologic and hydrologic investigations	
Methods of investigation	
Well-numbering system	
Geography	
Location and extent of the area	
Topography and drainage	
Climate	
History	
Agriculture and industry	
Transportation	
Mineral resources	
Geology	
Sedimentary rocks	
Precambrian rocks	
Rocks of Paleozoic age	28
Cambrian system	29
Devonian, Mississippian, and Pennsylvanian systems	
Permian system	
Rocks of Mesozoic age	
Jurassic system	31
Cretaceous system	32
Rocks of Mesozoic and Cenozoic age Cretaceous and Tertiary systems	32 32
Rocks of Cenozoic age	
Tertiary system	
Subsurface unit	
Unit 1	
Unit 2 Undifferentiated Tertiary strata	39
Tertiary and Quaternary systems	39
Older alluvium	
Quaternary system	
Younger alluvium	
Terrace gravels in the Camp Creek Hills	
Alluvial-fan deposits	42
Steam-channel deposits	45
Loess	45
Colluzium	16

Coology Continued	Pag
Geology—Continued	4.0
Igneous rocks	
Structure	
Horseshoe Hills	
Bridger Range	
Gallatin and Madison Ranges	
Gallatin Valley	50
Effect of faults on the flow of water into and out	۰,
of the Gallatin Valley	
Summary of Cenozoic history	
Water resources	
Surface water, by Frank Stermitz and F. C. Boner	
Streams	
Gallatin River	
East Gallatin River	
Streams from the Gallatin Range	
Streams from the Bridger Range	
Other streams	
Estimates of surface-water inflow to Gallatin Valley	9′
Utilization	99
Ground water	100
Definition of terms	100
Determinations of aquifer properties	102
Aquifer properties as they affect the specific capacity of a well	105
Recharge	10′
Discharge	109
Configuration of the water table	118
Changes in storage	119
Water-level fluctuations caused by earthquakes and	
other disturbances	128
Water-resources inventory, water years 1952 and 1953	
Evaluation	
Analysis	
Water-resources inventory, water years 1935 through 1951	
Hydrologic units within the Gallatin Valley	
Valley floor	
Gateway subarea	
Belgrade subarea	
Central Park subarea	
Manhattan subarea	149
Upper East Gallatin subarea	151
Bozeman fan	158
Camp Creek Hills	157
Valley fringe	158
Dry Creek subarea	
Spring Hill subarea	
South Bridger subarea	
Fort Ellis subarea	159
South Gallatin subarea	159
Chemical quality of the water, by R. A. Krieger	
Geologic source and significance of the ions	

CONTENTS v

		Page
	cal quality of the water, by R. A. Krieger—Continued	100
	encentration and nature of dissolved constituentsemical quality in relation to hydrology	166 167
	itability of the water for irrigation.	168
	itability of the water for domestic use	175
	sion	176
	d references	179
	lata	183
Index		277
	ILLUSTRATIONS	
	[Plates in plate volume]	
PLATE	1. Topographic map of the Gallatin Valley, Mont., showing location wells, test holes, stream-gaging stations, and precipital stations.	
	 Map of the Gallatin Valley showing areal geology. Hydrograph of the discharge of Dry Creek at Andrus ranch, 1 Manhattan, water years 1952 and 1953. 	ıear
	4. Graphs showing daily amount of ground water consumed be cottonwood grove in the Gallatin Valley and of factors affect ground-water consumption.	-
	5. Map of the Gallatin Valley showing contour of the water to about April 1 and August 1, 1953.	able
	6. Map of the Gallatin Valley showing depth to water.	
	7. Map of the Gallatin Valley showing the difference in position the water table, April 1 and August 1, 1953.	of
	8. Monthly inventory of the surface-water resources of the Galla Valley.	atin
	9. Hydrographs of the water level in wells A1-4-25dc, D1-4-6d -9bal, -9ba2, -25aa2, -25aa3, and D2-4-13cc.	dc2,
=	 Maps showing chemical characteristics of the ground water in Gallatin Valley. 	the
:	11. Map showing chemical characteristics of the surface water in Gallatin Valley.	the
Figure	1. Well-numbering system	Page 10
	2. Map of the Gallatin Valley showing the principal topographic features, drainage, and hydrologic subdivisions	11
	3. Map of the Gallatin Valley showing the location of precipitation in tation stations and the distribution of precipitation in 1952	18
	4. Precipitation at Bozeman	19
	5. Map of the Gallatin Valley showing the location of irrigated land, 1952	24
	6. Map showing the relation of the Gallatin Valley to the Three	96

VI CONTENTS

strata	in the bluffs along the Madison River in the SE1/4
	sec. 3, T. 1 S., R. 2 E
	alluvium in the Gallatin Valley
10. Loess ma	antling upper Tertiary or Pleistocene gravel in the SW ¼ sec. 26, T. 1 S., R. 3 E
11. Small no	ormal faults in the Tertiary strata in the SW 4SE 4 T. 2 S., R. 6 E
12. Diagram	matic section showing vestiges of the monoclinal Tertiary strata in the Camp Creek Hills
	showing alternative hypotheses for the formation Belgrade trough
	gic cycle
	the Gallatin Valley showing location of stream-
Gallat 1953	aphs of the discharge of the Gallatin River near in Gateway and at Logan, water years 1952 and
	aphs of monthly surface-water inflow to, and out- rom, the Gallatin Valley, water years 1951-53
	aphs of annual surface-water inflow to, and outflow the Gallatin Valley, 1931-53
	aph of the discharge of Middle Cottonwood Creek Bozeman, water years 1952 and 1953
	howing theoretical drawdown in an "ideal" pumped
	aph of the water level in well AR-3-33da showing ect of recharge from infiltrating irrigation water
the ef	aph of the water level in well D2-5-16aa1 showing fect of recharge from infiltrating snowmelt and flow
the eff	aph of the water level in well D2-5-16aa1 showing ect of recharge from infiltrating precipitation and flow
24. Cottonwo	ood grove in the SW 4SE 4 sec. 22, T. 1 N., R. 4 E
25. Specimen	n hydrograph of the water level in well A1-4-22dc1
ing di total d Gatew and a month	for period July 1951 through September 1953, show- scharge of Gallatin River near Gallatin Gateway, diversions from Gallatin River between Gallatin ay and Central Park, total monthly precipitation verage monthly temperature at Belgrade, and by cumulative departure from the volume of satu- naterial as of the end of June 1952
-	sed in computing average specific yield of the l-water reservoir in the Gallatin Valley
	howing estimated cumulative departure, 1934-53, he volume of saturated material as of the end of 1952

VII

GURE 29	 Rating curve used in estimating midwinter cumulative de- partures from volume of saturated material as of the end
	of June 1952
3	O. Hydrographs of the water level in well A-4-25dc showing
	the effect of earthquakes and passing trains
	I. Geologic section near Logan
3:	Diagrammatic sections of the Gateway subarea showing two possible interpretations of subsurface geologic relation-
	ships
33	3. Graphs showing the cumulative departure from the volume
	of saturated material'as of the end of June 1952 in the
	Gateway, Belgrade, Central Park, and Manhattan sub-
	areas and in the Bozeman fan
34	1. Diagrammatic section of the Gateway subarea showing the
	theoretical changes in position of the water table that
	would result from increased consumptive use of ground
	water
3	5. Diagrammatic section of the northern part of the Belgrade
	subarea showing changes in position of the water table
	that would result from increased consumptive use of
	ground water
36	3. Hydrographs of the water level in wells A1-4-5da and A1-4-22dc1
3′	7. Hydrographs of the flow of the principal streams rising in the Central Park subarea.
38	3. Hydrograph of the water level in well A2-3-33da
	Hydrographs of the water level in wells D1-5-34cc2, D2-5-14ac, -16aa1, and -22ccd
4(). Graph showing classification of ground and surface waters
	of the Gallatin Valley for irrigation
	TABLES
_	
LE 1.	Daily temperatures at three stations in the Gallatin Valley,
_	May 1952 through January 1954
	Annual precipitation at Bozeman, 1869-1953
	Annual precipitation at Belgrade, 1941–53
	Monthly precipitation at 18 stations in the Gallatin Valley, 1952-53
5.	Monthly volume of precipitation on the Gallatin Valley in water years 1952 and 1953
6.	Descriptions of stream-gaging stations in the Gallatin Valley
7.	Monthly and annual runoff of streams in the Gallatin Valley
8.	Occasional measurements of the discharge of streams, ditches,
	and springs in the Gallatin Valley
9.	Differences in monthly and annual runoff at gaging stations on the Gallatin River during water years 1952 and 1953

VIII CONTENTS

TABLE 10.	Estimated annual inflow to the Gallatin Valley during water
	years 1931 through 1951
11.	Estimated monthly inflow to the Gallatin Valley, exclusive of the Gallatin River, during period November through Feb-
	ruary of water years 1931 through 1951
12.	Summary of aquifer-test data
	Inflow to, and outflow from, the Central Park subarea
	Daily consumption of ground water by cottonwood grove
	Daily precipitation near cottonwood grove
	Wind velocity near cottonwood grove
	Daily evaporation from a class-A pan near cottonwood grove
	Estimated ground-water discharge from the Gallatin Valley.
	Monthly changes in volume of saturated material in the
10.	Gallatin Valley
20.	Cumulative monthly departures from volume of saturated
_0.	material as of the end of June 1952
21.	Monthly changes in volume of ground water stored in the
	Gallatin Valley
22.	Estimated cumulative departures from volume of saturated
	material as of the end of June 1952
23.	Monthly and annual changes in surface-water supply of the
	Gallatin Valley, water years 1952 and 1953
24.	Estimated annual changes in surface-water supply of the
	Gallatin Valley, water years 1935 through 1951
25.	Monthly losses in flow of the Gallatin River between Cameron
	Bridge and Central Park
26.	Monthly gains and losses in flow of the East Gallatin River
	between Lux Siding and Penwell Bridge
27.	Chemical analyses of ground water in the Gallatin Valley
	Chemical analyses of surface water in the Gallatin Valley
	Changes in water quality in a downslope direction in the
	Bozeman fan
30.	Annual changes in total mineralization of ground water from
	shallow wells
31.	Chemical properties relating to suitability of ground water
	for irrigation in the Gallatin Valley
32.	Chemical properties relating to suitability of surface water
	for irrigation in the Gallatin Valley
33.	Logs of wells and test holes
34.	Water-level measurements by tape
35.	Water-level measurements from recorder chart
36.	Record of wells and springs

GEOLOGY AND GROUND-WATER RESOURCES OF THE GALLATIN VALLEY, GALLATIN COUNTY, MONTANA

By O. M. HACKETT, F. N. VISHER, R. G. McMurtrey and W. L. Steinhilber

ABSTRACT

The Gallatin Valley, an intermontane basin in southwestern Montana, has an area of about 540 square miles and is drained by the Gallatin River and its tributaries. Although much of the valley is semiarid, annual precipitation may average more than 20 inches near the Bridger and Gallatin Ranges, which border the valley on the east and south. Agriculture is the leading occupation. Much of the central part of the valley is irrigated, but most of the higher land along the margins of the valley is dry farmed. The extent to which the agricultural economy of the valley ultimately may be developed depends on the degree to which the valley's water resources are utilized.

The Three Forks structural basin, in which the Gallatin Valley is located, was formed as the result of crustal movements in early Tertiary time. Subsequently, the basin was filled to a depth of 4,000 feet or more with volcanic ash and with sand, silt, and clay eroded from the surrounding highlands. As the result of renewed crustal unrest in late Tertiary or early Quaternary time, the Tertiary strata were tilted eastward; where exposed in the Camp Creek Hills, in the western part of the Gallatin Valley, they form a homocline that dips 1° to 5° to the east. A major east-trending fold in the Tertiary strata in the northern part of the Camp Creek Hills is believed by the authors to mark a subjacent fault, referred to in the present report as the Central Park fault.

The Tertiary strata are divisible into three units, of which the lowest is known only from subsurface data. The subsurface unit probably is of early Oligocene age and is inferred by the authors to be at least 2,400 feet thick. From test drilling, it is known to consist, in part, of blue-green sandstone, claystone, and siltstone, and to contain a few beds of bentonite (?) and lignite. The lower of the exposed units, unit 1, probably includes strata of late Oligocene and early Miocene age and is about 900 feet thick in the Camp Creek Hills. Predominantly of lacustrine origin, this unit is composed largely of well-stratified volcanic ash, tuffaceous marl, siltstone, and sandstone and contains a few beds of limestone. Unit 2, probably of late Miocene and Pliocene age, is predominantly of fluvial and colluvial origin and is a little more than 400 feet thick in most places in the Camp Creek Hills. It consists of poorly stratified to massive, buff to tan, variously consolidated tuffaceous siltstone, claystone, sandstone, and conglomerate, and contains a few beds of gray ash. Whether the strata of Tertiary age that skirt the mountain ranges on the east and south sides of the Gallatin Valley are equivalent in age to, or younger than, those of the Camp Creek Hills could not be determined by the authors.

Post-Tertiary crustal movement, probably along the postulated Central Park fault, created a deep east-trending trough in the Tertiary strata between the Camp Creek Hills and the Bridger Range. Alluvium deposited by the Gallatin River and its tributaries during Quaternary time not only filled this trough but mantled the Tertiary strata throughout the lower part of the Gallatin Valley. Also, broad fans of alluvium were deposited on the lower slopes of the Bridger and Gallatin Ranges by streams heading in the mountains. The alluvium consists of cobbles and gravel intermixed with sand, silt, and clay.

The Gallatin River is the source of irrigation water for about three-fourths of the irrigated land in the valley. During the 2 periods of record (1889-92 and 1930-52) the annual flow into the Gallatin Valley, as measured near Gallatin Gateway, averaged 536,000 acre-feet. During the 1952 water year (October 1, 1951, through September 30, 1952) the discharge of the Gallatin River at Gallatin Gateway was 715,000 acre-feet, or about 73 percent of the total surface-water inflow to the valley (976,000 acre-feet). In the 1953 water year the discharge of the Gallatin River at Gallatin Gateway was 518,000 acre-feet, or about 70 percent of the total inflow to the valley (744,000 acre-feet). Nearly all the other inflow to the valley was contributed by streams draining the Gallatin and Bridger Ranges.

Although much ground water is available in the Gallatin Valley, this resource is largely undeveloped. The principal aquifer is the alluvium beneath the valley floor. This aquifer is characterized by generally high coefficients of transmissibility—100,000 to 300,000 gpd (gallons per day) per foot—and in many places would yield ample water for irrigation. The adjacent alluvial fans generally yield sufficient water for only stock and domestic use, but the more extensive fans probably would yield supplies sufficient for some irrigation. Low to moderate coefficients of transmissibility (7,000 to 65,000 gpd per foot) characterize the alluvial fans. The Tertiary strata have relatively low coefficients of transmissibility (generally less than 6,000 gpd per foot) and yield sufficient water for only stock and domestic use.

The ground-water reservoir is recharged principally by infiltrating irrigation water. Influent seepage from streams, particularly during the period of high runoff in the spring, is another important means of recharge. Ground water is discharged by seepage to the streams at the lower end of the valley and by evapotranspiration. The discharge of ground water as surface flow from the valley is estimated to be about 240,000 acre-feet per year. Recharge to the ground-water reservoir exceeds this amount by the unknown volume of ground water consumed through evapotranspiration.

Along the valley sides, ground water moves toward the valley floor, and in the Bozeman fan and beneath the valley floor it moves generally northward. In most of the area between the Gallatin and East Gallatin Rivers the water table is within 30 feet of the land surface throughout the year, and within much of this area it is within 10 feet of the surface.

Data indicate an increase of ground water in storage during the late spring and early summer months, and a decrease in storage during the rest of the year. Using a computed value of 15 percent for the specific yield, the writers calculated that ground-water storage increased by about 150,000 acre-feet during the period March through July in the 1952 water year and that it decreased by about 132,000 acre-feet during the other months of that year. In the 1953 water year, ground-water storage increased by 149,000

acre-feet during the period April through July and decreased by 167,000 acre-feet during the other months.

An inventory of the water resources in the Gallatin Valley shows that during the 1952 water year a total of 1,484,000 acre-feet of water entered the valley (976,000 acre-feet as surface water and 508,000 acre-feet as precipitation). Of the total, a net of 17,500 acre-feet was added to groundwater storage. During the same period, 437,000 acre-feet was used consumptively, and 1,030,000 acre-feet of water left the valley as surface flow. In the 1953 water year 1,103,000 acre-feet of water entered the valley (744,000 acre-feet as surface water and 359,000 acre-feet as precipitation). During the same period, 405,000 acre-feet was used consumptively, and 716,000 acre-feet left the valley as surface water. Of the total (1,121,000 acre-feet), 17,900 acre-feet was withdrawn from ground-water storage.

In this report the Gallatin Valley is subdivided into areas and subareas according to geologic and hydrologic characteristics. Each area and subarea is discussed in regard to its potential for development of ground water for large-scale use.

Theoretically, about 20,000 acre-feet of ground water per year could be pumped in the Gateway subarea and at least 100,000 acre-feet per year could be pumped in the Belgrade subarea without reducing the amount of ground water in storage. Ground water from the Belgrade subarea could be conveyed by ditches to the Manhattan subarea for irrigation.

In some places on the Bozeman fan, a supplemental supply of water for irrigation could be obtained from underground sources, but elsewhere on the fan the supply of ground water is sufficient only for domestic and stock needs.

Ground water for irrigation is not available in the Camp Creek Hills nor in the Dry Creek, South Bridger, Fort Ellis, and South Gallatin subareas. Available data indicate that the Upper East Gallatin and the Spring Hill subareas do not have large ground-water supplies, but additional information would be necessary before an accurate evaluation could be made.

If ground water were used to increase irrigation in the valley, the reduction in outflow from the valley would approximate the volume of water used consumptively. Maximum irrigation would involve (a) use of surface water for irrigation from the beginning of the irrigation season to the period of surface-water shortage; (b) artificial recharge of the ground-water reservoir in the Gateway and Belgrade subareas by spreading surplus surface water before and during the irrigation season; (c) use of ground water during the period of surface-water shortage for irrigation in the Gateway, Belgrade, Central Park, and Manhattan subareas, and the use of surface water in the remaining irrigated parts of the Gallatin Valley.

Calcium and bicarbonate are the principal dissolved constituents in ground water from deposits of Quaternary age in the Gallatin Valley. Generally, the water has a mineralization of about 150 to 400 ppm of dissolved solids, is hard, and contains iron in excess of 0.3 ppm. The chemical quality of water from the alluvium underlying the valley floor does not vary from place to place nor with depth; it resembles the quality of water from Quaternary deposits in the Bozeman fan and the valley-fringe area. However, water from the Tertiary strata does vary in quality from place to place as well as with depth. Sodium is a principal dissolved constituent in some water from Tertiary strata. In the northern part of the valley floor, water that entered a deep test hole from Tertiary strata and Precambrian rocks was of the

sodium chloride bicarbonate type and was more highly mineralized than water from wells tapping deposits of Quaternary or Tertiary age.

Water in streams in the lower Gallatin River drainage basin also is of the calcium bicarbonate type. At Logan, the only outlet for water from the basin, the maximum concentration of dissolved solids in the Gallatin River was 258 ppm in water samples collected at intervals throughout the 1952 water year.

Ground water in the Quaternary deposits and surface water are rated as excellent for irrigation because salinity, percent sodium, residual sodium carbonate, and boron are low. Most of the water from the Tertiary strata also is rated as excellent for irrigation, though salinity, percent sodium, residual sodium carbonate, and boron generally are greater than in water from the Quaternary deposits.

INTRODUCTION

PURPOSE AND SCOPE OF INVESTIGATION

Through the Montana State College, the U.S. Soil Conservation Service, and local organizations, such as the Gallatin Valley Water Users' Association, the residents of the Gallatin Valley urged that a detailed study be made of the water resources of their valley. Plans for such a study materialized in the fall of 1950 when, at the request of the U.S. Bureau of Reclamation, the U.S. Geological Survey agreed to evaluate the total water resources of the Gallatin Valley. The study was begun in April 1951 and completed in June 1954.

In making this study it was necessary to ascertain (a) the amount of water entering and leaving the valley; (b) the occurrence and availability of ground water; (c) the source, rate, and quantity of ground-water recharge; (d) the manner, rate, and quantity of ground-water discharge; (e) the seasonal, annual, and long-term changes in ground-water storage; (f) the direction of ground-water movement; (g) the chemical quality and the variations in quality of the water; and (h) the location of those parts of the valley where ground water could be utilized as a source of irrigation supply.

PERSONNEL AND ACKNOWLEDGMENTS

The investigation was under the direct supervision of F. A. Swenson, district geologist of the Ground Water Branch of the Geological Survey. Frank Stermitz, district engineer of the Surface Water Branch, supervised the collection of streamflow data. P. C. Benedict, regional engineer of the Quality of Water Branch, supervised the chemical-quality phase of the investigation.

In addition to the authors, several others of the Geological Survey participated in the study. M. D. Allison, geologist, and A. J. Rosier, hydraulic engineer, assisted with the fieldwork, and E. R. Jochens, chemist, initiated the quality-of-water studies. C. E. Erdmann, of the Conservation Division, and G. D. Robinson, of the Geologic Division, were especially helpful in the geologic phases of the investigation. The names "Camp Creek Hills" and "Salesville fault" were suggested by P. F. Fix.

An experimental geophysical investigation was made for the Geological Survey by Dart Wantland, Roxy Root, and R. D. Casey, of the Geophysical Section of the Engineering Geology Branch, U.S. Bureau of Reclamation.

The cooperation and assistance of the following agencies and organizations contributed to the progress of the investigation: U.S. Weather Bureau, U.S. Bureau of Reclamation, U.S. Soil Conservation Service, Montana State College at Bozeman, State Engineer's Office, Gallatin Valley Water Users' Association, Gallatin County Agent's Office, Gallatin County Commissioners, and officials of the city of Bozeman and the villages of Belgrade and Manhattan.

The writers are particularly indebted to the residents of the valley who gave information, permitted access to land and use of wells, and acted as observers at precipitation and stream-gaging stations. Valuable information was furnished by Harry and Bert VanDyken and P. T. Marsh, well drillers, and by the Montana Power Co. and the Gallatin Gateway Oil Co.

Unpublished maps of adjacent areas were made available by E. S. Perry, of the Montana School of Mines, and W. J. McMannis. Dr. McMannis, who had prepared his map in partial fulfillment of the requirements for the degree of doctor of philosophy at Princeton University, gave his permission for the inclusion of his representation of bedrock relationships along the west flank of the Bridger Range on the geologic map prepared for this report.

Special thanks are due O. W. Monson, of the Agricultural Engineering Department at Montana State College, for his counsel and active assistance throughout the investigation. Others who assisted are C. C. Bradley and E. R. Dodge, of the Montana State College staff, and A. R. Codd, of the U.S. Soil Conservation Service. During the 1953 field season, several valuable field consultations were held with Peter Verrall, who then was mapping the geology of the Horseshoe Hills in partial fulfillment of the requirements for the degree of doctor of philosophy at Princeton University.

PREVIOUS GEOLOGIC AND HYDROLOGIC INVESTIGATIONS

Peale (1896) mapped and described the general geology of the 60-minute Three Forks quadrangle, which includes the Gallatin Valley. He was the first geologist to describe the Tertiary strata of this area, naming them the Bozeman lake beds.

Iddings and Weed (1894) described the general geology of an area adjoining the Gallatin Valley on the east.

Douglass¹ discussed the relationships and extent of the Tertiary lake basins in western Montana. He included a generalized stratigraphic description of the Tertiary strata in the Madison Valley, which is adjacent to the Gallatin Valley, and dated these strata as Oligocene and Miocene on the basis of vertebrate fossils. Douglass (1903, 1909) also published additional descriptions of vertebrate fossils from the Tertiary strata in several western Montana lake basins, including the Three Forks basin of which the Gallatin Valley is a part.

Later, the age and stratigraphic relationships of the Tertiary strata in the Three Forks basin were determined more accurately by other investigators. Reports by Wood (1933, 1938), Wood and others (1941), Schultz and Falkenbach (1940, 1941, 1949), and Dorr (1956) are especially significant.

Pardee (1925) published a comprehensive review of the literature pertaining to the Tertiary geology of western Montana. Later (1950) he summarized the results of many years of study in a general account of the geology and Cenozoic history of western Montana. His discussion of the stratigraphy, history, and structure of the Tertiary strata is of particular interest.

A description of physiographic features in the Gallatin Valley and adjacent areas is included in a comprehensive report by Alden (1953) on the physiography and glacial geology of western Montana. Detailed investigations of areas adjacent to, or including parts of, the Gallatin Valley have been made by Berry (1943), Skeels (1939), Klemme,² and McMannis (1955). Each of the reports on these studies contains a geologic map and a detailed description of the stratigraphy and structural geology. Fix³ described the geologic structure of the Gallatin Valley with particular regard to regional structural relationships.

Several papers that deal with the regional stratigraphy of Montana include extensive reference to the Paleozoic section in the

¹ Douglass, Earl, 1899, The Neocene lake beds of western Montana and description of some new vertebrates from the Loup Fork: Unpublished master of science thesis, Univ. Montana, 27 p.

 $^{^2}$ Klemme, H. D., 1949, Geology of the Sixteen Mile Creek area, Montana: Unpublished doctor of philosophy dissertation, Princeton Univ., 197 p.

³ Fix, P. F., 1940, Structure of Gallatin Valley, Montana: Unpublished doctor of philosophy dissertation, Univ. Colorado, 68 p.

Horseshoe Hills along the north margin of the Gallatin Valley. Notable among these are papers on the Cambrian section by Deiss (1936), Berry (1943), Lochman (1950), and Hanson (1952) and on the Devonian section by Sloss and Laird (1946). The Precambrian rocks near Gallatin Gateway at the southern end of the valley are described in detail by Clabaugh (1952), with special reference to the occurrence of corundum.

Reed (1951) briefly described the mines and mineral resources of Gallatin County.

Murdock (1926) described irrigation and drainage in the Gallatin Valley as they existed before 1922. He discussed methods of relieving water shortages in the valley and the drainage of wet areas and also called attention to excessive water loss by seepage and evaporation. Murdock suggested that use of ground water for irrigation not only would provide additional water where needed but also would assist in the drainage of waterlogged land. His paper includes some data on ground-water levels in the valley.

A report by the U.S. Soil Conservation Service (1948) contains preliminary hydrologic information on the Gallatin Valley; it also proposes a program for a future hydrologic investigation. In a later report for the Soil Conservation Service, Long (1950) presented the results of a drainage investigation in the Central Park subarea at the north end of the valley. In addition to waterlevel data, logs of observation wells, and a water-table contour map, Long's report contains recommendations concerning drainage procedure.

Debler and Robertson (1937), in a report prepared for the Bureau of Reclamation, described reservoir sites on streams that enter the Gallatin Valley. The report includes preliminary designs and estimated costs of dams, an economic survey of the valley, and a partial land classification.

The Montana State Engineer's Office (1953a, b) published two reports on the water resources of Gallatin County. The first report presented the history of land and water use in irrigated areas and the second, detailed maps showing irrigated areas and sources of water supply.

In 1952 and 1953 the Bureau of Reclamation measured all water diverted by canals in the valley and the return surface flow from irrigation. The results were not yet available as of 1954. The Bureau also classified the land and made estimates of water shortages in the valley.

The soils of the Gallatin Valley were mapped and described by DeYoung and Smith (1936). The history of the Gallatin Valley, its settlements and institutions, is described in a publication by the Montana Institute of the Arts (1951).

METHODS OF INVESTIGATION

A rather comprehensive stream-gaging program was conducted by personnel of the Surface Water Branch of the Geological Survey to determine, within reasonable limits, the surface-water flow into, and out of, the valley during the time of the study. (See pl. 1.) The Gallatin River was gaged where it enters and leaves the valley and at three intermediate points. Gaging stations were maintained also on the 10 principal tributaries. Five of the gaging stations were among those regularly maintained by the Geological Survey; the others were established for this study. To serve as a basis for estimating the discharge of the numerous other streams having a fairly sustained flow of 1 cfs (cubic foot per second) or more, monthly discharge measurements and some miscellaneous gage readings were obtained. All streams contributing an appreciable amount of water to the valley were measured at least twice. Also, monthly measurements were made of the large spring-fed streams that rise within the vallev.

To obtain a record of the distribution of precipitation in the valley, 14 rain gages were installed in addition to the 4 permanent gages maintained by the Weather Bureau. (See pl. 1.) These additional stations were established with the cooperation and assistance of the Weather Bureau and were operated throughout 1952 and 1953. Eleven of the stations were serviced daily by volunteer observers from among the ranchers of the valley, and 3 accumulation gages were serviced monthly by personnel of the Geological Survey. The daily maximum and minimum temperatures also were recorded at three of the stations.

More than two-thirds of the wells and springs in the Gallatin Valley were inventoried and all available pertinent data were compiled (table 36). The well locations are shown on plate 1. Measurement of the water level in 123 wells was made monthly (table 34), and water-stage recorders were installed in 12 wells in order to record water-level fluctuations in detail (table 35).

Reconnaissance mapping of the principal geologic units exposed in the valley proper was begun in 1952 and completed the following year. The mapping was done on aerial photographs and adjusted to Geological Survey 15-minute topographic quadrangles by means of a sketchmaster. The final geologic map

(pl. 2), which was compiled from these sheets, includes not only the valley proper but also a marginal belt which was mapped to show the relationship of the valley fill to the consolidated rocks of the mountain flanks. The geology along the east margin of the valley was taken from a map of the Bridger Range by McMannis (1955).

Twenty test holes, ranging in depth from 25 to 1,000 feet and totaling 5,966 feet, were drilled under contract during the period 1951-53; their locations are shown on plate 1. Test drilling was the primary source of subsurface geologic data and provided much valuable information on the occurrence of ground water.

During the planning of the investigation, subsurface exploration by geophysical methods was proposed. It was thought that the seismic (refraction) method would locate the contact between the valley fill and the consolidated rocks of the basement complex and that resistivity surveying would determine the boundaries of the permeable water-bearing beds within the valley fill. Experiments using both methods were made in the summer and fall of 1951 (Wantland, 1951a, b). The seismic work proved to be of little value, however, partly because adequate control was lacking and partly because the method was poorly suited for depth determinations of the order needed. The resistivity work likewise proved to be of little value, probably because the geologic setting was so complicated. If adequate control had been available for verification of the results, geophysical methods of exploration probably would have proved worth while.

The hydrologic properties of water-bearing materials were determined by means of "single-well" pumping tests. Because this type of test can be made with ease, economy, and speed, it was possible to make about 100 such tests. In addition, "multiple-well" pumping tests were made at 4 sites. These latter tests served as a check on the results obtained from the single-well tests.

One hundred and three samples of water for chemical analysis were collected from selected wells, springs, test holes, and streams in all parts of the valley. The analytical results were used in rating the suitability of the water for irrigation and other uses, in correlating water quality with geologic source of the water, and in determining more fully the relationship between surface water and ground water.

WELL-NUMBERING SYSTEM

All wells referred to in this report were assigned numbers indicating their location within the system of land subdivision of

the U.S. Bureau of Land Management. (See fig. 1.) The first letter (capital) of the number indicates the quadrant of the principal meridian and base-line system in which the well is located; the letters begin with A in the northeast quadrant and proceed counterclockwise. The first numeral of the number denotes the township; the second, the range; and the third, the section in which the well is situated. Lowercased letters following the section number indicate, respectively, the quarter section, the quarter-quarter section, and the quarter-quarter section. These subdivisions of the section are designated a, b, c, and d and are assigned in counterclockwise direction, beginning

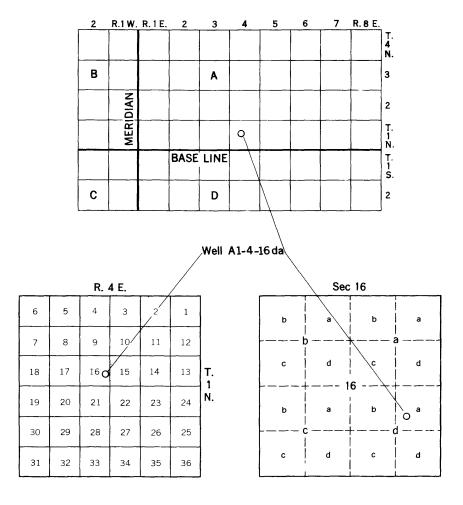


FIGURE 1 .-- Well-numbering system.

in the northeast quarter. If two or more wells are situated in the same tract, they are distinguished by numerals following the lowercased letters.

Springs, test holes, and precipitation stations also were assigned numbers according to the same system.

GEOGRAPHY

LOCATION AND EXTENT OF THE AREA

The Gallatin Valley is an intermontane basin in the Rocky Mountains of southwestern Montana. (See fig. 2.) It lies almost entirely within Gallatin County, is about 25 miles long and 20 miles wide, and has an area of about 540 square miles. A large

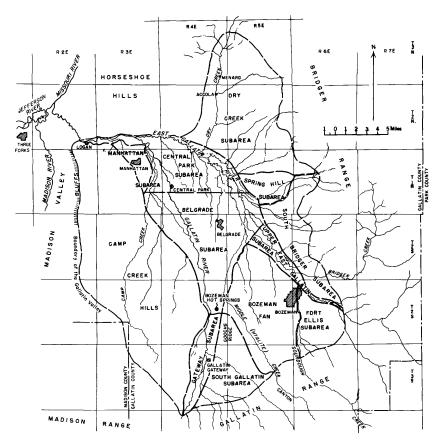


FIGURE 2.—Map of the Gallatin Valley showing the principal topographic features, drainage, and hydrologic subdivisions.

tributary valley, that of Dry Creek, projects to the northeast from the main valley. The Bridger and Gallatin Ranges flank the valley on the east and south, the Horseshoe Hills form the northern boundary, and the topographic divide between the Gallatin and Madison Rivers bounds the valley on the west.

TOPOGRAPHY AND DRAINAGE

Gallatin Canyon, at the upper end of the valley, is the principal inlet for surface water to the valley, and a gorge at Logan, at the lower end, is the only outlet.

The principal part of the Gallatin Valley is bounded on the west by the Gallatin River and on the north and east by the East Gallatin River, Bozeman Creek, and Sourdough Creek.⁴ It is shaped, in plan view, like a giant powderhorn having for its large end the southern border of the valley and for its apex the northwestern end of the valley. The land surface gradient of this part of the valley ranges from about 100 feet per mile at the extreme southern, or upper, end to less than 40 feet per mile near the northwestern, or lower, end. From a centrally located axis, this part of the valley slopes toward the Gallatin and East Gallatin Rivers at either side. Its surface is comparatively smooth, and it has little relief except for Goochs Ridge, which extends northward into the valley between Middle (Hyalite)⁵ and South Cottonwood Creeks. The altitude ranges from about 5,400 feet at the upper end of the valley to about 4,100 feet at the lower end.

Adjacent to the floor of the valley on the west are the Camp Creek Hills, remnants of a relatively high partly dissected surface or group of surfaces that sloped northeastward from the top of the bluffs along the Madison River toward the valley floor. The Camp Creek Hills taper from a maximum width of about 10 miles in their central part to a width of about 2 miles at their northern end. In the southern part of the valley their boundary with the valley floor is marked by a sharp east-facing escarpment; in the northern part of the valley the escarpment is replaced by a colluvial slope that grades into the Manhattan terrace. The western and southern parts of the Camp Creek Hills area are flat to rolling, but the eastern and northern parts are broken by many draws and small canyons.

⁴ According to a decision by the Board on Geographic Names dated Sept. 5, 1957, Bozeman Creek is formed by the junction of Sourdough and Spring Creeks and flows northward to the East Gallatin River. Sourdough Creek heads in Mystic Lake and flows northwesterly about 10 miles to join Spring Creek and form Bozeman Creek. Locally, however, the names "Sourdough Creek" and "Bozeman Creek" are applied to the entire stretch from Mystic Lake to the East Gallatin River. In this report, therefore, the entire stretch will be referred to as Sourdough (Bozeman) Creek.

⁵ According to a decision of the Board on Geographic Names dated Nov. 7, 1928, "Hyalite" is the official name of this creek, but, locally, it is also known as Middle Creek. In this report, it is referrred to as Middle (Hyalite) Creek.

The south and east sides of the Gallatin Valley are bordered by coalescing alluvial fans that slope rather steeply from the Gallatin and Bridger Ranges. The Gallatin Range averages about 9,000 to 10,000 feet in crest altitude. Between Middle (Hyalite) and Sourdough (Bozeman) Creeks a broad alluvial fan, the "Bozeman fan," extends out from this range and merges with the valley floor. The Bridger Range is linear and its crest trends north at an average altitude of 8,500 to 9,000 feet. The fans extending from the base of this range either terminate in an escarpment along the East Gallatin River or merge with the river alluvium.

On the north side of the valley is a sharp cliff cut by the Gallatin and East Gallatin Rivers where they impinge on the Horseshoe Hills, a series of northeast-trending ridges that rise about 1,000 feet above the valley floor.

An extension of the valley, the Dry Creek subarea, lies between the Horseshoe Hills and the Bridger Range. This subarea is rolling and cut by draws; it is continuous with, but somewhat wider than, the slopes bounding the southern part of the valley floor (fig. 2), and is considerably higher than the valley floor. Alluvial fans from the Bridger Range extend into the eastern part of the Dry Creek subarea.

The Fort Ellis subarea extends southeastward from Bozeman. Its surface, which also stands above the valley floor, is rolling and somewhat dissected. Alluvial fans from the Gallatin Range border this subarea on the south.

The Gallatin Valley is drained and watered by the Gallatin River and its tributaries. The Gallatin River rises in the northwest corner of Yellowstone National Park and flows northward through the Gallatin Canyon between the Gallatin and Madison Ranges. About 80 miles below its source the river enters the Gallatin Valley at a point known as the Gateway. It then arcs gently north-northwestward through the valley for a distance of about 28 miles. At Logan it passes through a small gorge and leaves the valley. Three miles downstream it joins the Madison and Jefferson Rivers to form the Missouri River. The few intermittent streams that head in the Camp Creek Hills drain directly into the Gallatin River.

The East Gallatin River is the main tributary of the Gallatin River. It rises about 10 miles east of Bozeman near Bozeman Pass, enters the valley about 5 miles east of Bozeman, and arcs northwestward to its confluence with the Gallatin River north of Manhattan. The entire east side of the valley, most of the south

and north sides, and most of the valley floor are drained by tributaries of the East Gallatin River. Therefore, despite its short length, the East Gallatin River becomes a major stream before it joins the Gallatin River.

Numerous short perennial streams of high gradient enter the valley from the Gallatin and Bridger Ranges. A relatively few small intermittent streams form in the Camp Creek Hills or enter the valley from the Horseshoe Hills. Several small spring-fed streams rise within the valley; most of these discharge into the East Gallatin River.

CLIMATE

The climate of the Gallatin Valley is characterized by long cold winters and short cool summers. Much of the valley is semiarid.

Extreme daily and seasonal fluctuations in temperature are common. The mean annual temperature at Bozeman is 42.0°F, the highest recorded temperature is 112°F, and the lowest recorded is 53°F below zero. The growing season at Bozeman is about 119 days; that in the lower part of the valley is shorter by several days to a few weeks, probably owing to downvalley movement of cool air. The average date of the last killing frost at Bozeman is May 22, and that of the first killing frost is September 18. Departures from this average are common, killing frosts having been recorded in all months of the growing season. The maximum and minimum daily temperatures recorded at three stations—near Manhattan, near Menard, and at Anceney—during the period May 1952 through January 1954 are given in table 1.

Precipitation in the Gallatin Valley is unevenly distributed. (See fig. 3.) The northern, central, and western parts of the valley receive much less precipitation than do the parts of the valley near the Bridger and Gallatin Ranges.

The average annual precipitation at Bozeman during the entire period of record, 1869-1953, is 18.16 inches. However, because the record before 1895 is fragmentary, the average of 17.81 inches for the period 1895-1953 probably is more nearly representative. (See fig. 4.) As shown by the graph of average monthly precipitation, nearly two-thirds of the precipitation at Bozeman falls during the period April to September. The precipitation in May and June amounts to about one-third of the annual precipitation. A secondary maximum, much less than that in the spring, usually occurs in September. The amount of precipitation from year to year, however, is characterized by

TABLE 1.—Daily temperatures at three stations in the Gallatin Valley, May 1952 through January 1954

[H, high; L, low]

1954	Jan.	L		11.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
		<u> </u>		444498000000000000000000000000000000000
	Dec.	J		7.1
		H		400000440004400440404004004004004000000
	Nov.	L		22001122111222222222222222222222222222
	Ż	H		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Ost.	J		2002
	Ö	Н		7.7. 6.09,
	.;	L		24423333333333333333333333333333333333
	Sept.	Н		8899472288888887722228888888888888888888
	ь.	ב		444484444444688864444444444448888888888
	Aug.	н		88888833 8877 8877 8877 8877 8877 8874 8874
		בו		25000000000000000000000000000000000000
53	July	Ħ		84888888888888888888888888888888888888
1953		17		7581780170461448844488844888888888888888888888888
	June	- н		024479 024479 024470 024470 024470 024470 034470 034470 0347
		7		32.22.23.23.23.23.23.23.23.23.23.23.23.2
	May	<u></u>	ê	00000000000000000000000000000000000000
		-	(near Manhattan	1
	Apr.	1	nha.	20000000000000000000000000000000000000
		#_	Ma	
	Mar.	7	lear	4747770210488404747474747474747474747474747474747
		H_		47.44.07.07.04.44.44.44.44.44.44.44.44.44.44.44.44.
	Feb.		A2-3-34bd	84 4 4 8 8 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	<u> </u>	#	2-3	288 288 288 288 288 288 288 288 288 288
	Jan.	7	n A	
		н	Station	: :44881444666668844444666688644446666688668686868686868686868686868686868
	Dec.	7	\$	11-123.888777777888338841919191919191919191919191919191919191
	<u> </u>	Н		252 264 264 264 264 264 264 264 26
	Nov.	Ľ		25 88 122 124 125 126 127 127 128 128 128 128 128 128 128 128
	ž	H		$\begin{smallmatrix} 0.000000004440000000000000000000000000$
	:	L		223 232 232 232 233 233 233 233 233 233
	Oct	Н		88888888888888888888888888888888888888
		J		22322223333322333223333323333333333333
2	Sept.	н		25
1952		٦		251 251 252 252 252 253 253 253 253 253
	Aug.	- н		88888888888888888888888888888888888888
		н		888 838 838 838 838 838 838 838 838 838
	July	ш		222.888.82.25.25.25.25.25.25.25.25.25.25.25.25.25
		יו		+ 4430 4450 2744 2450 2450 2450 2450 2450 2450 2450 24
	June			128 28 28 28 28 28 28 28 28 28 28 28 28 2
1				
	May	1		707022 664. 664. 664. 664. 664. 664. 664. 664.
	-	H_		<u></u>
	Day			
1	-		l ,	1.288.470.60.01.128.44.00.00.00.00.00.00.00.00.00.00.00.00.

Table 1.—Daily temperatures at three stations in the Gallatin Valley, May 1952 through January 1954—Continued

•	u	EOL	our,
	1954	1	L
	19	Ja	H
		Aug. Sept. Oct. Nov. Dec. Jan.	нгн
ļ		Ď	Н
ı		· ·	ı
Ì		No	H
			ר
		Oct	
١			H T H T H T H T H T H T H T H T H T H T
		Sept	
Ì		lug.	1
		7	Н -
		uly	
Ì	1953		_=
	_	une	1
			H
١		[ay	T
		Z	H
		pr.	ı
Ì		Ā	H
		ar.	ᆸ
-		M	H
١		b.	ı
		Fe	Н
		J.	ы
		Jaı	H
			ון
1		Ď	т н т н
١			1
		Nov	H
			د .
		Oct	
			нгнг
		sept	
١	1952		L
	19	Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July	
			H
Ì		luly	
			H
		June	긔
		_ <u>-</u> _	H
		May	1
		Σ	H
		Day	

Station A3-5-18da (near Menard)

1
01.028833323233332323333333333333333333333
8211757777777777777777777777777777777777
78888888888888888888888888888888888888
1021-12 1021-1
242777 : 5556665677 : 547274444444444444444444444444444444444
1345 1315 1315 1315 1315 1315 1315 1315
272388882717477222222222222221747474747222222222
449233333333333333333333333333333333333
88822888888888888888888888888888888888
021444444444444444444444444444444444444
24. 131. 131. 131. 131. 131. 131. 131. 13
444 444 444 444 444 444 444 444 444 44
899999999999999999999999999999999999999
0408684444444444644644644464464464464464464
473455556788887777577 4734556567888877775777577678888887577675777678888875777677777777
33412
744827772843828283828282828282828282828282828282
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#################
32296 22100 24 24 24 24 24 24 24 24 24 24 24 24 24
45523383838383838383838383838383838383838
88828222222222222222222222222222222222
24 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
948214123888889 : 0888718888 1
800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2784727478651888278787444
333331103333333333333333333333333333333
8179882821448988888888888888888888888888888
20102222222222222222222222222222222222
\$50,000,000,000,000,000,000,000,000,000,
0.000 0.000
401411882/284600194 :8887/8089 :FO8
210878958184848444
28.28.28.29.28.29.28.29.28.29.29.29.29.29.29.29.29.29.29.29.29.29.
888477038480774444448787888888888444444
\$52525355555555555555555555555555555555
4444444668844 988488888881984444
12888312888313298
47.88.80.80.40.40.80.80.80.80.80.80.80.80.80.80.80.80.80
: : : : : : : : : : : : : : : : : : :
320 320 320 320 330 330

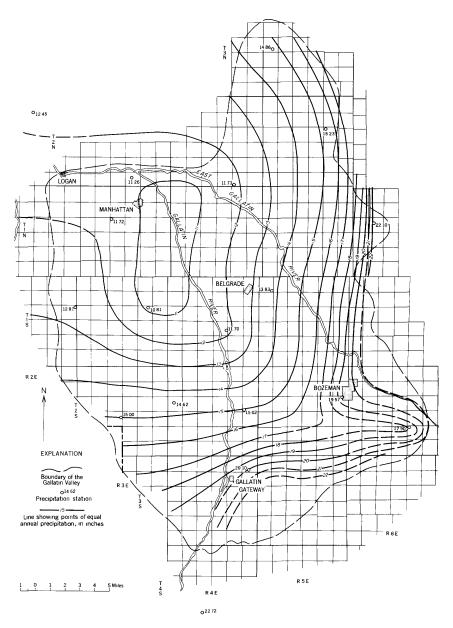


FIGURE 3.—Map of the Gallatin Valley showing the location of precipitation stations and the distribution of precipitation in 1952.

many departures from average. The precipitation trends during the period 1895-1953 are indicated by the graph showing the cumulative departure from average; above-average precipita-

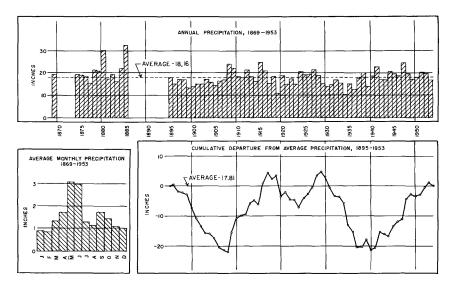


FIGURE 4.—Precipitation at Bozeman. From records of the U.S. Weather Bureau.

tion is represented by a rising line and below-average precipitation by a falling line.

The annual precipitation for the period of record at Bozeman and at Belgrade is given in tables 2 and 3, respectively; the monthly precipitation during the period 1952-53 for all stations is given in table 4.

The monthly volume of precipitation on the Gallatin Valley, excluding the Dry Creek subarea, during water years 1952 and

Year Inches	Year	Inches	Year	Inches	Year	Inches
1869	1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911		1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932	21.65 18.67 16.46 25.00 11.09 15.68 11.02 19.25 19.25 19.27 20.94 19.88 19.28 19.28 19.21 19.41	1933. 1934. 1935. 1936. 1937. 1938. 1939. 1940. 1941. 1942. 1943. 1944. 1945. 1946. 1947. 1948. 1949. 1950. 1951. 1952.	15.89 10.54 15.46 12.78 17.99 20.35 14.03 22.87 17.24 17.18 20.93 18.53 18.53 18.54 19.53 18.54 19.53 18.54 19.54 19.54 19.54

TABLE 2.—Annual precipitation at Bozeman, 1869-1953
[From records of the U.S. Weather Bureau]

Year	Inches	Year	Inches	Year	Inches	Year	Inches
1941	12.38 13.50	1945 1946 1947	12.12	1948 1949 1950	13.57	1951 1952 1953	13.83

TABLE 3.—Annual precipitation at Belgrade, 1941-53
[From records of the U.S. Weather Bureau]

1953 was computed by multiplying the monthly precipitation at each station by an area that was determined by the Theissen method of weighting (Theissen, 1911, p. 1082-1084) and then totaling the products thus obtained. (See table 5.) Because several of the stations were not in operation during the period October through December 1951, estimates of precipitation at these stations were made on the basis of measured precipitation at other stations in the valley.

HISTORY

The Lewis and Clark expedition visited the Gallatin Valley in 1805. The settlement of the valley was not begun, however, until the mining communities, established as a result of the discovery of gold in the early 1860's, created a demand for agricultural products. The first irrigation ditch was dug in 1864, and the arrival of the Northern Pacific Railway in 1883 gave added impetus to the settlement of the valley.

The population of Gallatin County in 1950 was 21,902, and most of the people lived in the valley. In addition to being the leading trading center, Bozeman is the county seat and the site of the Montana State College. Its population in 1950 was 11,325. Belgrade and Manhattan also are important trading centers.

AGRICULTURE AND INDUSTRY

Farming and livestock raising are the principal occupations in the Gallatin Valley. Most of the cropland on the valley floor, the Bozeman fan, and the Manhattan terrace is irrigated, as are about one-third of the Camp Creek Hills and scattered tracts in the eastern and northern parts of the valley. (See fig. 5.) According to data compiled by the Montana State Engineer's office (1953a, p. 27-30), 107,261 acres was irrigated in 1952. Irrigation water is diverted from the Gallatin River, the East Gallatin River, and their tributaries. Because the growing season is short, only small grains, forage crops, and vegetables such as peas and potatoes are grown. Most of the remaining area is dry farmed, wheat being the main crop. In general, individual dry farms are

Table 4.—Monthly precipitation at 18 stations in the Gallatin Valley, 1952-53

	Altitude							Precipita	Precipitation, in inches	ches					
Station and observer	(leet)	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
A1-3-16bb, Paul Biering	4,310	1952 1953	0.37	0.38	1.05	0.78	3.87	1.44	1.74	0.86	0.13	Trace	0.84	0.26	11.72 8.73
A1-6-16bd, C. W. Cramer	5,040	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$	1.32	1.53	2.14	$\frac{1.20}{2.41}$	6.21 5.70	2.85	2.26	1.02	1.27	.69	1.41	89.	$\frac{22.10}{21.49}$
A2-2-9aa, U.S. Weather Bureau, Trident	4,036	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$.43	.32	.97	1.23	4.22	2.17	1.87	.91	.23	.38	.50	.14	12.45 9.80
A2-3-34bd, Lyle Backlin	4,167	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$	1 .48	.34	1.13	1.30	4.04	$\frac{1.32}{2.56}$	1.88	.46	.21	Trace	.63	.23	$\frac{11.26}{10.03}$
A2-4-35cc, N. J. Irvine	4,305	$\left\{ \begin{array}{c} 1952 \\ 1953 \end{array} \right.$.58	1.02	1.15	1.22	3.95	.35	1.86	1.01	.50	.13	.92 .43	.40	$\frac{11.71}{11.50}$
A2-5-14bb, U.S. Geol. Survey	5,600	$\left\{ \begin{array}{c} 1952 \\ 1953 \end{array} \right.$.84	1.51	1.04	1.83	4.99	1.37	1.98	1.29	.52	.24	1.01	.44	$\frac{15.23}{15.79}$
A3-5-18da, Delmer Moore	5,053	$\left\{ \begin{array}{c} 1952 \\ 1953 \end{array} \right.$.90	.80	1.20	1.28	5.14	$\frac{1.58}{2.92}$	2.61	.54	.38	.39		.58	14.86 12.63
D1-2-13aa, U.S. Geol. Survey	4,840	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$	1.51	98. 89	.39	1.93	4.59	$\frac{1.61}{2.69}$	1.77	88	.51	.36	.65	.36	12.81 11.13
D1-3-14ab, H. I. Visser	4,470	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$.41	1 .28	.50	1.56	3.91	$\frac{1.42}{2.40}$	1.84	.52	.55	.00	.60	.40	10.81 10.62
D1-4-22da, George Nutter	4,550	$\left\{\begin{array}{c} 1952 \\ 1953 \end{array}\right.$.94 .45	.66	98.	1.89	1.60	$\frac{1.04}{2.11}$	1.30	.26	.54	.05	.52	.43	$\frac{11.70}{9.59}$
D1-5-6cd, U.S. Weather Bureau, Belgrade	4,450	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$.92	1.00	1.08	.80	4.47	1.65	2.14	.32	.36	.12	.70 .65	.32	13.83 12.04
D2-3-21ad, Nick Danhof	4,755	$\left\{egin{array}{c} 1952 \\ 1953 \end{array} ight.$.28	1.24	88.	1.21	5.38	$\frac{1.93}{2.18}$	1.86	1.02	.58	.05	77. 88.	.28	15.00 11.36
D2-4-13cc, L. B. Clary	4,735	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$.36	1.05	1,13	1.43	4.96	$\frac{1.61}{2.98}$	11.50	.83 Trace	.68	.10	.83	.32	$\frac{15.02}{12.85}$
18ac, Mrs. Harold Todd	4,910	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$	88.	96.	83	1.44	4.53	1.97	1.42	1.23	.59	.07	.55	.28	14.62 11.00

Table 4.—Monthly precipitation at 18 stations in the Gallatin Valley, 1952-53—Continued

	Altitude							Precipita	Precipitation, in inches	nches					
Station and observer	(feet)	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
D2-5-13ab, U.S. Weather Bureau, Bozeman	4,856	(1952 (1953	1.24	1.19	1.59	1.99	6.63	3.13	1.28	1.16	1.00	.21	1.29	.41 .68	19.57 16.40
D2-6-26bb, Williams Bros	5,090	1952	1.10	$\frac{1.15}{1.28}$	1.54	$\frac{1.80}{1.82}$	3.33	3.88	1,25	1.12	1.37	.26	1.29	1.12	$\frac{17.90}{18.26}$
D3-4-1cd, Donald Hart	5,015	$\left\{ egin{array}{c} 1952 \\ 1953 \end{array} ight.$	2.01	1.15	$\frac{1.28}{1.20}$	2.44	6.23	2.12	1.45	1.32	.66	1.04	1.02	.26	20.10 14.28
D4-4-28, U.S. Weather Bureau, Gallatin Gateway	5,425	1952	1.44	$\frac{1.17}{1.82}$	1.81	2.52	6.55	3.84	2.29	1.86	1.48	.41	1.20	$\frac{.52}{1.30}$	22.72 17.59
		2001	3	30.1	3		20:2	5	3	5	0±.,		Ŧ.	_	1.70

1 Estimated.

Table 5.—Monthly volume of precipitation on the Gallatin Valley in water years 1952 and 1953, in thousands of acre-feet

Month	Water year	
Month	1952	1953
October	77.0	3.5
November.	11.2	25.7
December	33.6	11.1
January	26.3	15.5
February	20.9	30.3
March	33.3	20.8
April	35 .3	50.5
May	135. 2	76.0
June	46.8	82 .3
[uly	48.8	10.5
August	26 .1	13.1
September	13.8	20.1
Total	508.3	359.4

much larger than irrigated farms, but their total area in the valley is smaller.

Throughout most of the valley, livestock is raised in conjunction with the growing of crops. Many of the cattle are sold for beef, but dairy herds also are important sources of income, and some sheep, hogs, and horses are raised.

Industry has a minor but important place in the development of the valley. Logging, an important activity in earlier years, has been resumed recently in the adjacent mountainous regions, and the new sawmill at Belgrade is the largest single industrial plant in the valley. Flour mills, livestock-commission yards, apiaries, a seed company, and a cheese factory are the other chief industrial enterprises. The headquarters for the Gallatin National Forest are at Bozeman, and a federally owned fish hatchery is situated at the mouth of Bridger Canyon, about 3 miles northeast of Bozeman. During the summer the tourist trade is important; many dude ranches are near the valley, and Yellowstone National Park is only a few hours' drive from Bozeman.

TRANSPORTATION

The Gallatin Valley is served by the main line of the Northern Pacific Railway and by a branch line of the Chicago, Milwaukee, St. Paul and Pacific Railroad. A transcontinental highway, U.S. 10, passes through Bozeman, Belgrade, Manhattan, and Logan; U.S. 191 connects Bozeman with points to the south. An adequate system of secondary roads covers the area. Gallatin Field,

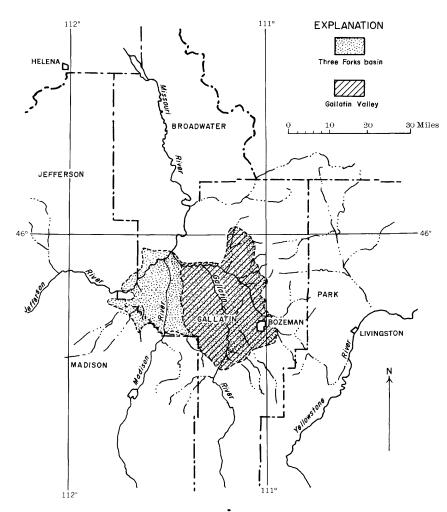


FIGURE 6.—Map showing the relation of the Gallatin Valley to the Three Forks basin.

peripheral mountains. In summarizing the age, lithology, thickness, and relationships of the Precambrian, Paleozoic, and Mesozoic rocks, the writers have drawn freely on reports by Peale (1896), Berry (1943), Deiss (1936), Gardner and others (1945), Sloss and Laird (1946), Lochman (1950), Sloss and Moritz (1951), Hanson (1952), and McMannis (1955).

PRECAMBRIAN ROCKS

Precambrian metamorphic and sedimentary rocks are the oldest rocks exposed in the valley. The metamorphic rocks, called GEOLOGY 27

Archean gneiss by Peale (1896, p. 3), are principally varieties of gneiss, though schist, quartzite, and, locally, marble also are present. Outcrops of metamorphic rocks at the south end of the Camp Creek Hills are thought by Clabaugh (1952, p. 61) to belong to the Pony series (Tansley and Schafer, 1933) of pre-Beltian age. Gneissic rocks are exposed along the base of the southern part of the Bridger Range, along much of the base of the Gallatin Range, and in the southern and southwestern parts of the Camp Creek Hills. Test holes D2-4-9bc and D1-3-36bc, drilled north of the Precambrian outcrop in the Camp Creek Hills, penetrated the Tertiary strata; the former was bottomed in Precambrian gneiss and the latter in what was thought to be weathered Precambrian gneiss. (See table 33.) Possibly the gneissic rocks underlie the Tertiary strata in most places in the southern part of the valley.

The Precambrian sedimentary rocks belong to the Belt series, which has not been subdivided into formations in the Gallatin Valley area. They consist mostly of arkosic sandstone and conglomerate, graywacke conglomerate, and slate; most of these rocks are dark colored, but some in the vicinity of Dry Creek are bright colored. The Belt series is exposed along the base of the Horseshoe Hills, along Dry Creek, and along the base of the northern part of the Bridger Range. The maximum exposed thickness is about 6,000 feet. Within the valley proper these rocks crop out along the south side of the Gallatin River in the stretch 1½ to 3 miles east of Logan. Test hole A2–3–33da was bottomed in strata of the Belt series. (See table 33.) The Belt series is believed by the authors to underlie the Tertiary strata in the northern part of the valley.

The Precambrian rocks in the valley are not considered a potential source of ground water; generally they are too far below the surface to be economically accessible to wells. The two test holes drilled to the gneissic rocks yielded small quantities of water, some of which may have been derived from weathered bedrock. Small quantities of water also may be present in fractures in the gneiss and in rocks of the Belt series.

ROCKS OF PALEOZOIC AGE

Marine rocks of Cambrian, Devonian, Mississippian, Pennsylvanian, and possibly Permian age are present in the Gallatin Valley and vicinity. These Paleozoic rocks crop out along the flanks of the Horseshoe Hills and the Gallatin and Bridger Ranges. They also locally underlie Tertiary and Quaternary de-

posits in the vicinity of Logan and in the Camp Creek Hills west of Gallatin Gateway.

No wells within the valley derive water from the Paleozoic rocks.

CAMBRIAN SYSTEM

The Cambrian system is represented by the Flathead quartzite, Wolsey shale, Meagher limestone, and Park shale, all of Middle Cambrian age, and the Pilgrim limestone and Snowy Range formation of Late Cambrian age. An unconformity separates the Cambrian rocks from the underlying Precambrian rocks, and there is a disconformity between the Cambrian rocks and the overlying Devonian system. Within the Cambrian system the contacts between formations are conformable and gradational.

The Flathead quartzite is a resistant, ridge-forming formation composed principally of pink and reddish-brown quartzite and sandstone. The average thickness of the Flathead is about 130 feet; however, in the Gallatin Range the Flathead thins to less than 100 feet.

The Wolsey shale, which overlies the Flathead quartzite, is a greenish-gray, black, and purple micaceous shale, interbedded in its lower part with quartzite and sandstone and in its upper part with limestone. Worm casts in the sandy layers characterize the basal part. The Wolsey weathers readily, and, where steeply dipping, usually forms a troughlike depression between outcrops of the Flathead quartzite and the Meagher limestone. The thickness of the Wolsey shale differs considerably from place to place but averages about 200 feet.

The Meagher limestone is a massive-appearing cliff-forming gray to brown limestone, interbedded with shale near its base. Parts of this formation are mottled. The Meagher limestone has a relatively uniform thickness of about 350 feet.

The Park shale is mostly green, brown, and maroon fissile shale, containing limestone layers in its basal part. Like the Wolsey shale, it weathers more readily than the immediately underlying and overlying formations. Its average thickness is about 200 feet.

The Pilgrim limestone is similar in general appearance to the Meagher limestone. It is a massive-appearing cliff-forming gray to brown limestone containing many layers of dark, mottled oolite and limestone conglomerate. It is about 400 feet thick. The term Maurice limestone also has been applied to this formation in the vicinity of the Gallatin Valley (Lochman, 1950, p. 2205).

GEOLOGY 29

Overlying the Pilgrim limestone is a mappable unit consisting, in its lower part, of strata of Late Cambrian age and, in its upper part, of strata of Devonian age. Sloss and Laird (1946) were the first to recognize the age of these strata and the presence of an erosional surface at the top of the Cambrian. Lochman (1950, p. 2212-2213) applied the term Snowy Range formation to the Late Cambrian strata, and Emmons and Calkins (1913) applied the term Maywood formation to the Devonian. Lochman described the Snowy Range formation as follows:

Within the Snowy Range formation two members can be recognized: the lower Dry Creek shale member of interbedded shales and calcareous sandstone * * * and the upper Sage pebble-conglomerate member of intercalated shales and limestone pebble conglomerates with a dense columnar limestone near the base * * *

The thickness of the Snowy Range formation was not ascertained, but it is known to vary considerably because the Sage pebble-conglomerate member was subjected to deep erosion before the overlying Maywood formation was deposited. However, the combined thickness of the Snowy Range and Maywood formations ranges from a little less than 100 to slightly more than 250 feet. Hanson (1952, p. 17-18) identified Lochman's Snowy Range formation as the Red Lion formation of Emmons and Calkins (1913).

DEVONIAN, MISSISSIPPIAN, AND PENNSYLVANIAN SYSTEMS

The Maywood formation of Devonian age consists of red shale and gray to yellow silty dolomite and limestone. Because it was deposited on the eroded surface of the Sage pebble-conglomerate member (Lochman, 1950, p. 2212) of the Snowy Range formation, it varies considerably in thickness but, combined with the Snowy Range formation, is nowhere much more than 250 feet thick.

The Jefferson limestone, also of Devonian age, rests conformably on the Maywood formation. It consists of gray and darkbrown limestone and dolomite and is characterized by a petroliferous odor when freshly broken. It forms massive-appearing cliffs which are distinguishable by their dark color from the other limestone cliffs within the area. The thickness of the formation averages about 550 feet.

The Three Forks shale of Late Devonian and Mississippian age conformably overlies the Jefferson limestone and, in general, is divisible into three units—a basal unit of varicolored shale and limestone capped with ledge-forming gray and yellow limestone; a central unit of green and purple shale; and an upper unit of gray limestone, yellow sandy limestone, and calcareous sandstone. Berry (1943, p. 14-15) applied the term Sappington

sandstone to the sandy limestone of the upper unit and considered it to be of Mississippian age. Sloss and Laird (1946) believed the Sappington to be of Devonian age and designated it as a local member of the Three Forks shale. The age of the Sappington is now considered to be Late Devonian and Mississippian. The average thickness of the Three Forks as a whole is about 200 feet.

The Madison group of Mississippian age lies unconformably on the Three Forks shale and includes the Lodgepole limestone, which is a well-laminated gray and yellow to brown limestone, and the Mission Canyon limestone, which is a massive light-gray limestone. The Madison group was not differentiated in this study. The thickness of the Madison in the vicinity of Gallatin Valley ranges from about 1,200 to 1,500 feet or more.

The Big Snowy group, which overlies the Madison group and underlies the Amsden formation in the Bridger Range (McMannis, 1955) was not recognized in the area mapped for this report.

The Amsden formation, in part of Mississippian age and in part of Pennsylvanian age, rests disconformably on the Madison group. The Amsden consists of a lower unit of red siltstone and limestone, which weathers readily, and an upper unit of light-yellow to gray dolomite which is interlayered with quartzite near the contact with the overlying Quadrant quartzite. The Amsden formation is about 400 feet thick in the Horseshoe Hills and about 200 feet thick in the Gallatin Range southeast of Bozeman.

The Quadrant quartzite of Pennsylvanian age is conformable to, and gradational with, the Amsden formation and consists almost wholly of white and pink to light-yellow massive quartzite or quartzitic sandstone. Dolomite, similar to that of the Amsden formation, generally is present at the base of the Quadrant, and in some places layers of brown chert are in the upper part. This formation is a prominent cliff former. It ranges in thickness from about 75 to 150 feet.

PERMIAN SYSTEM

Although the Phosphoria formation was not recognized among the Paleozoic rocks exposed in the area, it may be represented by layers of chert and quartzite on top of the Quadrant quartzite in the Dry Creek subarea. The Phosphoria is present in the Horseshoe Hills west of the Dry Creek subarea.

ROCKS OF MESOZOIC AGE

Rocks of Jurassic and Cretaceous age crop out along the northwest margin of the Dry Creek subarea and east and southeast

of the Fort Ellis subarea. They are not a source of ground water in the Gallatin Valley.

JURASSIC SYSTEM

The Jurassic system is represented by the marine Ellis group of Middle and Late Jurassic age and the continental Morrison formation of Late Jurassic age.

The Ellis group comprises the Sawtooth, Rierdon, and Swift formations but was mapped as a unit in this study. From a thickness of more than 300 feet southeast of Bozeman, the Ellis group thins northward to a thickness of about 20 feet near Menard. The Sawtooth formation rests disconformably on the Quadrant and is predominantly a gray to brown shale and limestone. It is the least conspicuous formation of the Ellis group in the Gallatin Valley. The Rierdon formation, conformable to the Sawtooth, is composed of distinctive brown oolitic limestone interbedded with shale. The Swift formation, separated by a disconformity from the Rierdon, is a glauconitic and calcareous brown sandstone and generally is conglomeratic at its base. This formation was not recognized in the vicinity of Menard, but where present elsewhere in the area it forms prominent cliffs.

The Morrison formation rests conformably on the Ellis group. It consists of varicolored red, brown, purple, and gray siltstone and shale interbedded with brown to yellow sandstone. In some places a few feet of coal and carbonaceous shale are present in the upper part of the unit. Because the Morrison weathers rapidly where exposed, its presence generally is marked by a red soil-covered slope below the more resistant basal unit of the overlying Kootenai formation. The thickness of the Morrison ranges from about 100 to 400 feet.

CRETACEOUS SYSTEM

The Cretaceous system is represented by the continental Kootenai formation, the marine Colorado shale, and the continental Livingston formation.

The Kootenai formation consists of three units. The basal unit is resistant quartzitic sandstone that generally is conglomeratic in its lower part. The middle unit is nonresistant red to purple shale, siltstone, and claystone; it includes also a bed of massive pinkish-gray limestone in the area southeast of the Fort Ellis subarea. The upper unit is a resistant, locally quartzitic sandstone; in the vicinity of Menard and in the Fort Ellis subarea, this unit contains a thin notably fossiliferous limestone bed near its top. The thickness of the Kootenai formation ranges

from about 400 to 700 feet. At least locally, the contact of the Kootenai with the underlying Morrison formation is a disconformity.

Only the lower part of the Colorado shale is exposed in the area. In the vicinity of Menard it consists only of black and gray shale and thin beds of rusty-colored sandstone, but in the area southeast of the Fort Ellis subarea it also contains massive greenish-gray sandstone.

ROCKS OF MESOZOIC AND CENOZOIC AGE CRETACEOUS AND TERTIARY SYSTEMS

The Livingston formation of Late Cretaceous and Paleozoic age crops out at the extreme north end of the Dry Creek subarea and also southeast of Bridger Canyon. It consists principally of andesitic tuff and volcanic conglomerate.

ROCKS OF CENOZOIC AGE

The Cenozoic rocks constitute the valley fill and are the primary source of ground water in the Gallatin Valley.

TERTIARY SYSTEM

Continental deposits of Tertiary age in the Three Forks structural basin were named Bozeman lake beds by Peale (1896, p. 3). However, the term "lake beds" now is considered to be a misnomer, because only part of the Tertiary section is of lacustrine origin. In this report, therefore, the deposits are referred to simply as Tertiary strata.

The Tertiary strata crop out in the Camp Creek Hills, the Dry Creek subarea, the Fort Ellis subarea, and along Goochs Ridge; except locally, they underlie the alluvium and alluvial fans throughout the valley. Where exposed along the margins of the Gallatin Valley, most of the strata of Tertiary age are moderately well cemented fanglomerate, consisting of poorly sorted locally derived rock fragments in a matrix of clay or calcareous silt and sand. Toward the center of the basin the Tertiary strata are finer grained and consist principally of tuffaceous siltstone and fine-grained tuffaceous sandstone, which in places are interbedded with marl, pure ash, crossbedded sandstone, and conglomerate. Most of the Tertiary strata are poorly consolidated, but some are well consolidated.

The complete thickness of the Tertiary strata is not exposed in the basin. Test holes A2-3-33da, D1-3-36bc, and D2-4-9bc, which bottomed in Precambrian rock, were drilled through 245, 836, and 515 feet of Tertiary strata, respectively. Other evidence,

however, indicates that the Tertiary strata are much thicker in the deepest part of the structural basin. Peale (1896, p. 3) estimated the maximum thickness of the Tertiary in the Gallatin Valley to be between 2,000 and 2,500 feet by assuming that the beds exposed in the bluffs overlooking the Madison River are older than the beds east of Bozeman and that the gentle eastward dip of the beds is not disturbed by faulting. A test hole drilled by the Montana Power Co. in the Madison Valley penetrated 1,182 feet of Tertiary strata older than the 1,300 feet of Tertiary strata exposed in the bluffs overlooking the Madison River; also, an oil test (Tom Tice 1, drilled by Ben Ryan) in the Madison Valley reportedly penetrated claystone and siltstone, probably of Tertiary age, at a depth of 2,000 feet. This additional subsurface information increases the estimated maximum thickness of the Tertiary strata in the Gallatin Valley to at least 4,000 feet.

Available subsurface information and exposures near Anceney indicate that the Tertiary strata rest on a surface of moderate relief. This surface probably was produced by erosion and modified by Tertiary and post-Tertiary faulting.

Peale (1896, p. 3) assigned a Neocene age to his Bozeman lake beds. Subsequently, Douglass (1903, p. 146-155) correlated the beds in the lower part of the bluffs on the east side of the Madison River with the White River formation of Oligocene age, and the beds in the upper part, which he called the Madison Valley beds, with the Loup Fork beds of late Miocene age. term Loup Fork beds has long since been discarded as having "vague significance" (Wood and others, 1941, p. 24), and the age assigned by Douglass to the Tertiary strata has been corrected and more closely defined by later investigators. Schultz and Falkenbach (1949, p. 80-83), who have studied oreodonts collected from Douglass' upper unit in the Madison Valley, consider this unit to include strata of both late Miocene and Pliocene ages. On the basis of a collection of vertebrate fossils from the same unit in the vicinity of Anceney, Dorr (1956, p. 73), considers the upper unit to be mostly of latest Miocene age. The age of Douglass' lower unit is less well established. The strata underlying the Madison Valley beds of Douglass (1903) at the base of the bluffs east of the Madison River have been termed the Leuciscus turneri beds and assigned a late Miocene age by Wood (1938, p. 291-292). On the other hand, the Tertiary strata in the bluffs west of the Madison River, in the Three Forks quadrangle, are reported by G. D. Robinson (written communication,

1956) to be of early Oligocene age, and, as the eastward dip of these beds carries them below the strata east of the river, possibly the lowermost beds exposed east of the river also are of early Oligocene age. However, since fossil evidence is lacking, it cannot be stated definitely that deposits of unquestionable late Oligocene and early Miocene age are present.

The Tertiary strata of the Gallatin Valley are here divided into three units, of which the lowest is present only in the subsurface. The other two crop out at the surface. The lower of the exposed units, unit 1, is predominantly lacustrine and corresponds lithologically to Douglass' White River beds. The upper, unit 2, is predominantly fluvial and colluvial and corresponds lithologically to Douglass' Madison Valley beds. In the Horseshoe Hills north of the Gallatin River, units 1 and 2 cannot be distinguished from each other and are referred to as undifferentiated Tertiary strata.

Many wells, particularly in the Camp Creek Hills and near the margins of the Gallatin Valley, derive water from strata of Tertiary age. Most of these wells tap predominantly fine-grained material that yields water slowly. A few, however, tap lenses of well-sorted sand and gravel that yield water freely. A large spring near Manhattan (A2-3-32db) derives water, at least in part, from fractures in the Tertiary strata.

SUBSURFACE UNIT

Test hole A1-2-29adc, drilled by the Montana Power Co., penetrated mainly gray sandstone, green and gray-green claystone, and siltstone in the lower half of the hole. The claystone is interbedded with a few thin beds of lignite. As cores from test hole A1-2-29adc indicated that the coarse sandstone grades upward into claystone, which is in sharp contact with the sandstone in a similar succession above, these deposits seem to be cyclic, at least in part. In the upper half of the hole, mainly sandstone containing some clayey layers and thin beds of bentonite(?) was penetrated. (See table 33 for log of test hole A1-2-29adc.) The authors believe that the uppermost bed penetrated by the test hole is stratigraphically 140 to 150 feet lower than the lowermost bed of unit 1, which is exposed in the bluffs on the east side of the Madison River in sec. 28, T. 1 N, R. 4 E. This interval may include the bentonitic beds that crop out west of the Madison River.

In the midthirties an oil test near test hole A1-2-29adc was drilled to a depth of a little more than 2,600 feet. The rocks

that were penetrated between the depths of 2,000 and 2,400 feet were reported to consist principally of conglomerate and varicolored shale, and a few coal layers were present between depths of 2,000 and 2,100 feet. From this it seems likely that the oil test was still in Tertiary strata at 2,400 feet.

The rocks penetrated by these deep test holes are stratigraphically lower than the rocks exposed in the bluffs along the Madison River and may be equivalent, in part, to beds of early Oligocene age that crop out in the Three Forks quadrangle west of the river. If the subsurface Tertiary strata extend into the Gallatin Valley and dip eastward, as do the exposed Tertiary strata in the Camp Creek Hills, they have not been reached by any of the test holes drilled in the central part of the Gallatin Valley.

UNIT 1

The full thickness of unit 1 crops out 5 to 6 miles south of Logan, in the basal part of the bluffs along the Madison River. Southward, the lower part of the unit is below river level, but the uppermost part crops out in the gullies that are cut into the covered slope at the base of the bluffs. Northward, only the upper part of the unit is exposed near the base of the bluffs. A part of unit 1 crops out for a distance of about 2 miles south of U.S. Highway 10 near Logan. Elsewhere in the valley the upper part of unit 1 is exposed along the upper reaches of Godfrey Creek, along Camp Creek north of Anceney, and in the Dry Creek subarea west of Menard.

Unit 1 is composed principally of well-stratified volcanic ash, tuffaceous marl and siltstone, tuffaceous fine- to medium-grained sandstone, and a few beds of limestone that stand out as resistant ledges where exposed to erosion. In some places conglomerate and poorly sorted crossbedded sandstone also are present. Unit 1 is predominantly white, cream, and light gray. Ripplemarks on the sandstone, the presence of limestone layers, the even stratification of the beds, and the presence of ostracodes throughout the unit indicate that unit 1 was deposited in a lacustrine environment. Several of the limestone beds contain gastropods-of those seen by the writers, the best preserved were those north of the old McCrea ranch, about 21/2 miles west of Menard. Douglass (1903) reported finding fish fossils in beds which are considered by the writers to be the upper part of unit 1 and which probably correspond to the Leuciscus turneri beds of Wood.

The base of unit 1 has been set arbitrarily at the base of the lowest bed exposed where the Madison River has cut through an anticline in the Tertiary strata, about 5 to 6 miles south of Logan. The contact between units 1 and 2 is marked by a local unconformity which is discernible in the bluffs along the Madison River. (See fig. 7.) Near the margins of the Three Forks basin,

FIGURE 7.—Local unconformity between units 1 and 2 of the Tertiary strata in the bluffs along the Madison River in the SE½ NE½ sec. 3, T. 1 S., R. 2 E. Photograph taken at same place as that taken by Douglass (1903, p. 200) who considered the unconformity to be the contact of the White River beds with the Loup Fork beds.

unit 1 contains a larger proportion of detrital material and is less well stratified than in the central part of the basin; its contact with unit 2 is gradational. For mapping, the contact in the marginal areas of the basin was placed at the top of the uppermost ostracode-bearing bed.

Near the south end of the bluffs along the Madison River and in the vicinity of Anceney, unit 1 rests on Precambrian gneissic rock. In the Horseshoe Hills, west of Menard, unit 1 rests on Paleozoic and Mesozoic rocks and contains a much larger proportion of limestone than elsewhere.

Section of unit 1, measured in the bluffs along the Madison River

[Beds 1 through 5 measured on the north slope of a prominent bluff in the SE¼NW¼ sec. 34, T. 1 N., R. 2 E., beginning at unconformity at top of unit 1; beds 6 through 16 measured in the NW¼NE¼ sec. 27, T. 1 N., R. 2 E. Bed 5 is common to both exposures]

Bed	Description	Thickness (feet)
1.	Ash, sandy, silty, gray; interbedded with prominent thin white marl beds containing many ostracodes and with layers, 3 to 12 in. thick, of fine-grained loosely cemented tuffaceous sandstone; ash contains numerous dark minerals	199
2.	Sandstone, very coarse grained and pebbly, crossbedded, ferruginous; contains abundant dark minerals	3
3.	Siltstone, gray-white, tuffaceous in places; interbedded with numerous thin layers of white ash and several beds of light-gray fine-grained calcareous sandstone averaging 1 in. in thickness; sandstone beds stand out as resistant bands on the weathered slope	177
4.	Ash, thinbedded, gray-white; interbedded with a few thin beds of siltstone; ash contains ostracodes	21
5.	Limestone, argillaceous, gray; weathers to chocolate- brown; forms a hard, resistant ledge that is useful as a marker horizon	10
6.	Ash, calcareous, sandy, massive, gray; weathers to brown; interbedded with layers of white to gray pure ash that are as much as 4 in. thick.	59
7.	Sandstone, medium-grained, calcareous, light-brown	141/2
8.	Siltstone, calcareous, brown	1/2
9.	Sandstone, pebbly, poorly sorted, calcareous, massive, dark- brown; partly crossbedded; contains a few lenses of conglomerate	18
10.		12
11.	Sandstone, poorly sorted, ferruginous, massive, loosely consolidated, light gray-brown	4
12.	Marl, tuffaceous, white; interbedded with calcareous white ash; marl contains ostracodes	11
13.	Limestone, coquinalike, conglomeratic, massive, gray-white; weathers to grayish brown; contains thin beds of white ash	2½
14.	Siltstone, tuffaceous, cream-colored; interbedded with fine- grained loosely cemented massive light-gray sandstone	78
15.	Covered. Probably tuffaceous siltstone interbedded with pure ash	250(?)
16.	brown to gray; consists principally of quartz, feldspar,	
	mica, and fragments of volcanic and gneissic rock	62
	Total	9211/2

UNIT 2

Unit 2 is exposed throughout the Camp Creek Hills, in much of the Dry Creek subarea, in draws cutting the alluvial fans along the Bridger Range north of Bozeman, on the north and south sides of the East Gallatin River east of Bozeman, and along Goochs Ridge.

Unit 2 is highly variable in composition but consists principally of poorly stratified massive buff to tan partly calcareous variously consolidated tuffaceous siltstone, claystone, sandstone, and conglomerate; it contains a few beds of gray pure ash and small lenses of marl and limestone. Although it is predominantly of fluvial and colluvial origin, the beds of marl and limestone indicate that some of the deposition occurred in ponds or small lakes. A bed of conglomerate and buff siltstone at the base of unit 2 projects as a ledge from the bluffs along the Madison River. About 100 feet above the base of unit 2 a distinctive bed of conglomerate, locally well cemented, is present in the northern part of the Camp Creek Hills. West of Manhattan, where erosion has removed the overlying material from this bed, it forms a continuous northeastward slope from the bluffs along the Madison River to the floor of the Gallatin Valley. Along the east and southeast margins of the valley, unit 2 grades into, and interfingers with, fanglomerates which extend out from the adjacent highlands. Vertebrate fossils collected from this unit have been described by Douglass (1903), Schultz and Falkenbach (1940, 1941), and Dorr (1956).

Section of unit 2, measured in the bluffs along the Madison River

[Beds 1 through 7 measured at head of large draw in the SW¼NW¼ sec. 2, T. 1 S., R. 2 E., beginning at base of a 32-ft layer of boulders, cobbles, and coarse gravel, which caps the bluffs; beds 8 through 15 measured on south-facing escarpment in the NE¼NW¼ sec. 26, T. 1 N., R. 2 E. Bed 8 is common to both exposures]

Bed	Description	$Thickness \ (feet)$
1.	Siltstone, sandy, tuffaceous, calcareous, cream to buff; interbedded with several beds of gray ash, 1 to 2 ft	
	thick, and a few beds of massive buff claystone	66
2.	Covered. Probably tuffaceous siltstone	43
3.	Claystone and siltstone, massive, buff; interbedded with	
	several very thin layers of gray ash	29
4.	Siltstone interbedded with claystone, cream-colored; con-	
	tains a few sand-size particles	27
5.	Sandstone, tuffaceous, very loosely cemented, green-gray; composed of fine to medium quartz grains, glass shards,	
	and very fine grains of magnetite	$1\frac{1}{2}$
6.	Sandstone, very fine grained, tuffaceous, layer of ash one- fourth inch thick at base; grades downward into tuffa-	
	ceous siltstone interbedded with claystone	13

Section of unit 2 measured in the bluffs along the Madison River-Continued

Bed	Description	Thickness (feet)
7.	Covered. Probably tuffaceous sandstone interbedded with	
	layers of gray ash	12
8.	Conglomerate, sandy, calcareous, gray; interfingers with coarse, pebbly sandstone. Angular to rounded cobbles and pebbles of the conglomerate are composed of gneiss, volcanic rocks, and quartz; the fine-grained constituents of the conglomerate are predominantly quartz, dark min-	
	erals, and garnet	32
9.	Siltstone, sandy, tuffaceous, calcareous, buff; grades down-	
	ward into fine-grained tuffaceous sandstone	2 9
10.	Sandstone, coarse-grained, tan; contains well-rounded peb- bles near top; interbedded with, and grading into, fine-	
	grained tan sandstone	44
11.	Siltstone, buff; grades downward into sandy siltstone	9
12 .	Sandstone, whitish-tan; grades downward from coarse- to	
	fine-grained sandstone	13
13.	Ash, massive, gray-white; contains coarse shards	10
14.	Conglomerate and coarse sandstone, tan	41/2
15.	Conglomerate of subrounded gravel in calcareous silt matrix; interfingers with brown siltstone and sandstone; forms a prominent persistent vertical ledge which is useful as a marker horizon; numerous bone fragments near basal part. (Probably same bed from which Douglass collected vertebrate fossils.)	40
	Unconformity at top of unit 1.	10
	Total	373

UNDIFFERENTIATED TERTIARY STRATA

Tertiary strata, which could not be differentiated into units 1 and 2, are exposed in the Horseshoe Hills as small outliers of lime-cemented fanglomerate resting unconformably on Precambrian and Paleozoic rocks. The fanglomerate consists of fragments of locally derived Paleozoic limestone. West of Nixon Gulch the fanglomerate grades upward into cliff-forming creamcolored limestone containing gastropod fossils. From a distance this limestone resembles limestone of Paleozoic age. The fanglomerate either is horizontal or dips very slightly southward toward the valley. The stratigraphic position of these Tertiary strata relative to units 1 and 2 is unknown.

TERTIARY AND QUATERNARY SYSTEMS

OLDER ALLUVIUM

A high benchlike fringe of alluvial-fan and stream-channel deposits skirts the Bridger and Gallatin Ranges. In the Dry Creek

and Fort Ellis subareas the surface of these deposits slopes toward, and merges with, the surface of older Tertiary strata, but elsewhere the sloping surface of these deposits terminates in an escarpment. In places, these deposits are deeply eroded.

The alluvial fans of this unit are composed of locally derived poorly sorted rock fragments in a matrix of sand, silt, and clay. Some of these deposits, which are lime cemented and variously consolidated, are referred to as fanglomerate. The rock fragments forming the fans that skirt the Gallatin Range generally are more rounded than those in the fans skirting the Bridger Range. The gneissic fragments in the fans are deeply weathered. Fanglomerate does not crop out along the Gallatin Range, but the overall thickness (possibly as much as 150 feet) of unconsolidated material there is so much greater than it is next to the Bridger Range as to suggest that fanglomerate may be present but is mantled by later deposits. The stream-channel alluvium consists of rounded cobbles. The contrast between stream-channel and alluvial-fan deposits is illustrated in figure 8.

As no fossils were found in any of these deposits, it was not possible to determine their age from paleontologic evidence. However, from their physiographic relationship to the deposits that underlie the floor of the Gallatin Valley, they are believed by the writers to be of either late Tertiary or early Pleistocene age, or both. It seems more likely that deposition of rock debris along the mountain front probably was more or less continuous from Tertiary into Quaternary time. Both the Bridger and Gallatin Ranges were glaciated, and it is likely that the coarse materials in these deposits were derived from the glaciers.

The fanglomerate along the front of the Bridger Range in the Pass Creek area of the Dry Creek subarea is tilted, but the undifferentiated Tertiary and Quaternary deposits elsewhere retain their valleyward primary dip.

The Tertiary strata exposed in the bluffs overlooking the Madison River are mantled by a veneer, 10 to 30 feet thick, of moderately well sorted well-rounded cobbles predominantly of quartzite. Pardee (1950, p. 403) suggested that these deposits represent deposition during the same cycle of erosion that formed the Flaxville plain of Alden (1932). If this is correct, these deposits may be of Pliocene or early Pleistocene age. These deposits were not mapped for this study.

Sufficient water for stock and domestic use generally can be obtained from the older alluvium.

A

 \boldsymbol{B}

FIGURE 8.—Older alluvium in the Gallatin Valley. A. Stream-channel deposits in the SE cor. of the SW4NE4 sec. 18, T. 3 S., R. 5 E. B. Alluvial-fan deposits in the NE cor. of the NW4SE4 sec. 14, T. 1 S., R. 5 E.

QUATERNARY SYSTEM

YOUNGER ALLUVIUM

Terrace gravels in the Camp Creek Hills

Deposits of probable Pleistocene age, derived from the destruction of higher lying gravel deposits and fanglomerate, are present at the surface in parts of the Camp Creek Hills. These deposits range in thickness from 10 to 40 feet, but they were not mapped for this study.

Remnants of a terrace formed by the Gallatin River are present along the east margin of the Camp Creek Hills. In the SE cor. of sec. 10, T. 2 S., R. 4 E., west of Sheds Bridge, the terrace is about 140 feet above river level, and in sec. 16, T. 1 N., R. 3 E., southwest of Manhattan, the terrace is about 140 to 160 feet above river level. The unconsolidated deposits underlying the terrace remnants are similar in composition to the alluvium along the Gallatin River. The entire thickness of the terrace deposits is not exposed, but west of Sheds Bridge it is at least 15 feet. These deposits were not mapped during this investigation.

Alluvial-fan deposits

Alluvial fans, probably of late Pleistocene age, extend into the Gallatin Valley from the foot of the slopes of the bordering Gallatin and Bridger Ranges. The most extensive of these, the Bozeman and Spring Hill fans, were deposited by streams that cut into fans of older alluvium higher on the slope. Along the Bridger Range, north of the Spring Hill fan, several younger fans have been deposited on pediments previously formed on older fans.

The younger alluvial fans are composed of a heterogeneous mixture of coarse- and fine-grained sediments. The proportion of gravel, cobbles, and scattered boulders to the silt and clay is not uniform in each fan; in general, however, the coarser material is predominant near the head of the fan and the finer material near the margins. Scattered throughout the alluvial fans are stringers of moderately clean sand and gravel which were deposited by the distributaries that built the fan; lenses of clay and gravel also are scattered throughout the alluvial fans. Each fan is composed of locally derived rock.

The alluvial-fan deposits thin in a downslope direction. Well D2-5-22ccd, on the Bozeman fan, was drilled through 165 feet of fan alluvium before entering strata of probable Tertiary age. Well D1-5-34cc2, 4 miles downslope from well D2-5-22ccd, was drilled through 131 feet of alluvial-fan deposits before entering Tertiary strata.

According to the degree of sorting and the amount of silt and clay present, the younger alluvial-fan deposits yield small to moderate quantities of water to wells. The stringers and lenses of gravel and sand are the source of most of the water.

Stream-channel deposits

The alluvium along the Gallatin River and under the extensive alluvial plain between the Gallatin and East Gallatin Rivers consists of cobbles and gravel intermixed with sand, clay, and silt. The upper 20 feet, as seen in gravel pits, is composed of clean and moderately well sorted cobbles and gravel. In the Central Park subarea, however, the upper 20 feet contains a higher proportion of silt and clay. Test drilling indicates that below a depth of 20 feet the alluvium consists predominantly of cobbles and pebbles, but that varying proportions of sand, silt, and clay are mixed with the coarse material, and lenses of sand, silt, and clay are present. Most of the cobbles, pebbles, and sand grains are fragments of gneiss and dark volcanic rocks derived from the Gallatin and Madison Ranges. In general, the ratio of fine- to coarse-grained material increases in a downstream direction. The character of the alluvium in the Belgrade area is shown in figure 9.

Available evidence indicates that the alluvium of the Gallatin River rests on Tertiary strata except where the river enters and leaves the valley. Test drilling between Gallatin Gateway and Sheds Bridge (SE1/4 sec. 10, T. 2 S., R. 4 E.) indicates that the alluvium is 70 to 80 feet thick. Northward from Sheds Bridge the alluvium thickens. The log of test hole A1-4-25dc, in the vicinity of Belgrade, indicates that the alluvium is at least 400 feet thick, and it is reported that an oil test (State well 1), a quarter of a mile north of Belgrade, was drilled through more than 800 feet of alluvium. Toward the north end of the valley, however, the alluvium is thinner. Test hole A1-4-15da2, about 4 miles north of Belgrade, penetrated 215 feet of alluvium before entering the underlying Tertiary strata. At the extreme north edge of the valley, test hole A1-4-5da penetrated 31 feet of material known to be alluvium and 104 feet of material of questionable Tertiary age before entering strata of known Tertiary age.

Except where silt and clay fills the voids between the coarse particles of sand and gravel, the alluvium yields copious amounts of water to wells. In the vicinity of Belgrade, at depths ranging from about 15 to 50 feet below the land surface, there is a layer of lime-cemented gravel which is a semiconfining layer for water in the underlying material.

FIGURE 9.—Younger alluvium in the Gallatin Valley. Stream-channel deposits in the SW1/4SE1/4 sec. 7, T. 1 S., R. 5 E.

The alluvium along the tributary streams entering the valley from the Bridger and Gallatin Ranges generally is composed of sand, gravel, and cobbles. The alluvium along the streams that head in the Bridger Range consists of fragments of Precambrian gneiss and arkose and of Paleozoic limestone and quartzite, but the alluvium along the streams that head in the Gallatin Range is similar in composition to the alluvium underlying the plain between the Gallatin and East Gallatin Rivers. The alluvium along these minor streams is probably no more than 20 or 30 feet thick, but in most places it yields water freely to wells.

Compared to the generally coarse alluvium of the Gallatin River and its tributaries from the mountains, the alluvium along the streams in the Camp Creek Hills, and to some extent along Dry Creek, is much finer grained because it was derived largely from fine-textured Tertiary strata. The yield of water from this material is low.

The alluvium directly underlying the plain between the Gallatin and East Gallatin Rivers is thought to be of late Pleistocene age, whereas that along the present stream courses is of Recent age. The Gallatin River appears to be at grade in its course

through the valley and, therefore, is no longer aggrading the alluvial plain. The character, extent, and thickness of the alluvium underlying the plain between the rivers indicate that the alluvium was deposited concurrently with the glaciation of the Gallatin and Madison Ranges.

LOESS

Buff calcareous silt, probably of eolian origin, mantles hills and slopes in many places in the Gallatin Valley. In some places it rests directly on Tertiary strata and in others on the terrace deposits or on the older or younger alluvial fans. Particle-size analyses show that 60 to 80 percent of the material is silt, 10 to 30 percent clay, and 3 to 15 percent sand. The few samples examined under the microscope were composed mostly of quartz grains, some mica, very little calcite and magnetite, and scattered glass shards. The loess is massive and vertically jointed; where cut through, it stands in vertical walls. (See fig. 10.) Generally, it is thicker on hilltops than on slopes.

The eolian origin of these deposits is indicated by their composition and distribution. The glass shards indicate that the loess

FIGURE 10.—Loess mantling upper Tertiary or Pleistocene gravel in the SW1/4SW1/4 sec. 26, T. 1 S., R. 3 E.

was derived at least in part from the Tertiary strata. Deposition probably began in late Pleistocene time and is still in progress in the Camp Creek Hills. The areal extent of the loess was not mapped during this study.

COLLUVIUM

Colluvium is the gravity-transported debris deposited at the foot of an escarpment or steep slope; as used in this report, the term also includes slope wash. The composition of colluvium depends upon the composition of the type of material exposed in the escarpment or slope from which the colluvium is derived.

The largest deposit of colluvium in the Gallatin Valley borders the Camp Creek Hills near Manhattan. Much of this deposit is silt and clay intermixed with a small amount of sand and gravel; south of Manhattan, waterlogging has resulted where the water table intersects the surface of the colluvium. Most of the other deposits of colluvium consist of coarse material overlying the upper margin of alluvial fans. All the colluvial deposits in the Gallatin Valley are considered to be of Recent age. Their areal extent was not mapped for this study.

IGNEOUS ROCKS

Thick sills are intruded into the rocks of Cambrian age in many places in the Gallatin Valley area. One, described as syenitic rock by Peale (1896, p. 4), is in the middle unit of the Flathead quartzite in the Horseshoe Hills west of Nixon Gulch, but traced eastward its position gradually changes in the section until it is near the base of the Wolsey shale in the vicinity of Dry Creek. Another thick sill lies near the contact of the Wolsey shale with the overlying Meagher limestone in the infaulted block of Paleozoic rock west of Gallatin Gateway. Clabaugh (1952, p. 67) described it as hornblende andesite porphyry. A sill whose petrologic classification was not determined is present in the Kootenai formation west of Menard. As the sills are broken by several transverse faults, intrusion must have occurred before the faulting took place.

A small body of basalt, considered by Peale to be of Miocene age, crops out in sec. 7, T. 3 S., R. 4 E., west of Gallatin Gateway.

STRUCTURE

The Gallatin Valley and the peripheral highland areas are characterized by diverse structural trends. Because the basement complex of the valley is buried beneath thick deposits of

Cenozoic age, valley structure must be considered in relation to that of the surrounding highland areas.

HORSESHOE HILLS

The low Horseshoe Hills bound the floor of the Gallatin Valley on the north and the Dry Creek subarea on the west. The exposed strata range in age from Precambrian to Tertiary, except that strata of known Ordovician, Silurian, and Triassic ages are not represented. Outliers of Tertiary deposits unconformably overlie many of the older rocks.

The Horseshoe Hills are for the most part a group of tight northeast-trending folds, which are overturned slightly to the southeast. The strata that form the north margin of the floor of the Gallatin Valley are part of the southeastern limb of a syncline that is the southernmost fold in the group.

The rocks adjacent to the valley floor form a group of north-east-plunging minor folds. Differential erosion of these folds has formed a series of zigzag ridges, the most prominent of which is underlain by the Madison group. This area has no extensive faults, though several small normal faults offset the Flathead quartzite, particularly in the troughs and at the crests of the minor folds.

At the west margin of the Dry Creek subarea, the older rocks are buried beneath Tertiary strata which fill the basin between the Horseshoe Hills and the Bridger Range. The rocks are tightly folded and extensively faulted. The principal faults appear to be normal, but south of Accola a small thrust cuts the Meagher limestone. Many of the minor normal faults and bedding-plane thrusts were not mapped for this study. The structural complexity in this part of the Horseshoe Hills probably is due to the intersection of the major structural trends of the Horseshoe Hills and the Bridger Range.

The rocks in the southern part of the Horseshoe Hills are in contact with the alluvium of the Gallatin and East Gallatin Rivers. Some of the pre-Tertiary rocks are exposed on the south side of the Gallatin River between sec. 33, T. 2 N., R. 3 E., and sec. 35, T. 2 N., R. 2 E. The river, in this locality, has cut a narrow channel across Precambrian and Paleozoic strata. The depth of this channel was determined by drilling two test holes (A2-2-35abl and A2-2-35ab2) in the narrow gorge near Logan. These test holes entered bedrock at depths of 22 and 23 feet, respectively.

Atwood (1916, p. 706) considered that the present course of the river at Logan was predetermined by its course during a previous cycle of erosion. Tertiary outliers in the Horseshoe Hills strengthen the theory that the Tertiary deposits overlapped the frontal slopes of the Horseshoe Hills and that the Gallatin River was superimposed from its course over the Tertiary strata to its present position.

BRIDGER RANGE

The Bridger Range, a high linear mountain range which bounds the Gallatin Valley on the east, extends from Bridger Creek to the head of Dry Creek. The mountains are composed of rocks that range in age from Precambrian to Cretaceous, but strata of Ordovician, Silurian, Permian, and Triassic ages are not known to be present. The Paleozoic rocks overlie Precambrian metamorphic rocks in the southern part of the Bridger Range and Precambrian rocks of the Belt series in the northern part (Mc-Mannis, 1955, p. 1393, 1416). The Paleozoic and Mesozoic rocks strike north-northwest, parallel to the axis of the range. They dip steeply to the east and in places are overturned to the east.

Several high-angle thrust faults transect the Bridger Range. Most of them have an eastward trend with local deviations to the southeast. McMannis (1955, p. 1416-1426) has shown the movement on these faults to be related to two phases of Laramide compression—strike-slip movement by east-west compression and underthrusting by later south-southwest north-northeast compression.

One of these faults, the Pass fault, is of particular significance. The western segment of the fault is believed by McMannis (1955, p. 1391, 1421) to be the contact between the Precambrian gneiss on the south and the Precambrian Belt series on the north. The coarse arkosic nature of the Belt rocks near the fault led him to conclude that deposition of the Belt series in this locality was fault controlled—that is, coarse arkosic material from the rising Archean block to the south was shed onto the subsiding northern block. He believed that later Laramide compression first caused strike-slip movement on this old fault, which was followed by underthrusting of the block of Archean-type rocks on the south.

Berry (1943, p. 7, 25) postulates a similar origin for the Belt series in the Jefferson River valley. According to Berry, the Belt rocks were deposited on the north side of a line of weakness along which thrust faulting (the Jefferson Canyon fault) later took place.

Peale (1893), Berry (1943), and McMannis (1955) are in essential agreement that the shoreline during Belt time trended

eastward across the Gallatin Valley, and both Berry and McMannis postulated that the shoreline marks either a fault or a zone of weakness in the basement complex.

Normal faulting along the west side of the Bridger Range is believed to have elevated the range with respect to the valley. Pardee (1950, p. 380) and McMannis (1955, p. 1427, 1428) presented evidence for normal faulting. Pardee believed the minimum relative downthrow along the fault system—called the Bridger frontal fault system—to be 3,000 feet.

GALLATIN AND MADISON RANGES

The Gallatin River canyon separates the Madison Range on the west from the Gallatin Range on the east. Structurally, however, the two ranges are segments of the same mountain unit. This unit bounds the Gallatin Valley on the south.

The mountains are composed of Precambrian gneiss and some infaulted blocks of Paleozoic and Mesozoic rocks. About 150 square miles are covered by andesitic lavas and breccias of probable late Eocene or early Oligocene age (Horberg, 1940, p. 283). The thickness of these extrusive rocks has been estimated by Peale (1896, p. 4) to be about 2,000 feet. Several porphyritic intrusives cut the Mesozoic rocks in the southern part of the mountains.

The Precambrian rocks are dominantly hornblende gneiss and garnetiferous feldspar-rich gneiss. These are cut by numerous pegmatites, quartz stringers, and quartz veins. The rocks are tightly folded and severely crumpled in places, yet a general east-west trend is recognizable.

Of three principal faults cutting across the mountains, only the northernmost, the Salesville fault, is in the Gallatin Valley. This fault, striking N. 50°-55° W., can be traced from sec. 10, T. 3 S., R. 3 E., to sec. 20, T. 3 S., R. 4 E., where it disappears beneath the Tertiary strata. Precambrian gneiss is in contact with Cambrian and Devonian strata along the fault line. Peale (1896, p. 5) believes this fault to be the same one that appears east of the Gallatin River in the foothills of the Gallatin Range, where Carboniferous strata are in contact with Precambrian gneiss. It is a high-angle fault; the exact dip of the fault plane is undetermined.

A clear-cut boundary does not exist between the Madison Range and Gallatin Valley because the foothills of the mountain range grade into the floor of the valley and there is no evidence of faulting between the foothills and the valley. The elevation of the surface of the gneiss in test holes D1-3-36bc and D2-4-9bc

is consistent with the projected slope on the gneissic surface in the Madison Range foothills. The Tertiary beds probably were deposited on a normal erosional surface developed on the gneiss.

Faulting may or may not be present along the front of the Gallatin Range. The available subsurface information is not sufficient for a determination.

GALLATIN VALLEY

The Tertiary strata in the Gallatin Valley form a homocline that dips from 1° to 5° in a generally eastward direction toward the Bridger Range. Local deviations are numerous. In the northern Camp Creek Hills the beds dip northeastward. Near the contact of the Precambrian rocks and the Tertiary strata in the southern Camp Creek Hills, the dip of the Tertiary strata reflects the slope of the underlying bedrock surface.

Several of the faults that transect those parts of the Bridger and Gallatin Ranges adjacent to the valley undoubtedly also cross the valley, and the basement complex is probably broken into blocks, especially near the Bridger frontal fault zone. Several linear features in the valley, such as the east escarpment of Goochs Ridge and a similar escarpment about a mile west of Sheds Bridge, suggest the possibility of structural control by post-Tertiary faulting; however, no definite evidence to support this hypothesis was found.

Hot water issuing from the Bozeman Hot Springs and that found during the drilling of test holes D2-4-9bc and D1-3-36bc, as well as the warm water produced by several wells in the southern Camp Creek Hills, indicate deep circulation of water, possibly along faults in the basement complex.

Small normal faults in the Tertiary strata are seen throughout the valley. Most of the observed faults are parallel to the general northward trend of the Bridger frontal fault system. The displacement along these faults generally is less than 1 foot; however, displacements of more than 20 feet have been noted and it seems likely that faults of even greater displacement are present. Figure 11 shows small faults in the Tertiary strata on the east side of South Church Street near the city limits of Bozeman. In the Camp Creek Hills, a gravel deposit is downfaulted against fine-grained Tertiary beds in the SW1/4SW1/4 sec. 26, T. 1 S., R. 3 E., along the south bank of the Lowline Canal. In an exposure along the Dry Creek road south of Menard, faults in the Tertiary strata are marked by layered clastic dikes. These small normal faults cut unit 2 and probably

FIGURE 11.—Small normal faults in the Tertiary strata in the SW4SE4 sec. 7, T. 2 S., R. 6 E.

are due to post-Miocene readjustment of the Tertiary strata to the faulting along the Bridger frontal fault zone.

The only major structural element which is transverse to the Bridger frontal fault system and for which direct evidence was found in the Tertiary strata is an east-trending monoclinal fold crossing the northern part of the valley. This fold, involving both units 1 and 2 of the Tertiary strata, is believed by the authors to reflect a subjacent fault (shown on pl. 2 as the Central Park fault) in the basement complex. The surface of the escarpment above the bluffs along the Madison River is capped with gravel at this location. The gravel cap north of the fold $(N\frac{1}{2}$ sec. 35, T. 1 S., R. 2 E.) has been elevated about 200 feet relative to the gravel cap south of the fold. The relationship of the gravel cap and the Tertiary strata is best seen on the north side of the flexure. The Tertiary strata here are truncated and the gravel bed is nonconformable, which indicates that some folding and erosion had taken place before deposition of the gravel. The fact that the gravel bed also is folded indicates reoccurring movement along this structure. As the flexure is traced eastward across the Camp Creek Hills the crest of the fold has

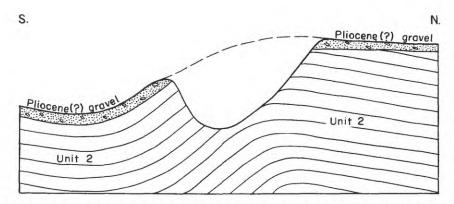


FIGURE 12.—Diagramatic section showing vestiges of the monoclinal fold in Tertiary strata in the Camp Creek Hills.

been eroded, and all that remains is a discontinuous ridge of south-dipping lime-cemented gravel. (See fig. 12.) This ridge arcs east-northeastward from the bluffs along the Madison River toward Central Park, but east of the Gallatin River the fold is concealed by alluvium.

Where covered by alluvium, the location of the fold has been determined from subsurface data. The drilling of test hole A1–4–19cb was terminated in alluvium at a depth of 301 feet. Well A1–3–14dd, 1 mile northwest of A1–4–19cb, entered Tertiary strata at a depth of 30 feet. The fold therefore must pass between test hole A1–4–19cb and well A1–3–14dd. To the east, test hole A1–4–15da2 is believed to be approximately on the fold; this test hole entered Tertiary strata at 215 feet. South of test hole A1–4–15da2 the Tertiary strata are at a much greater depth, and north of the test hole they are at a much shallower depth. East of this test hole the fold cannot be traced. It may coincide, however, with the south edge of unit 2 of the Tertiary strata at, and eastward from, the East Gallatin Cemetery (secs. 15–17, T. 1 N., R. 5 E.) and probably intersects the Bridger frontal fault zone in the vicinity of Spring Hill.

The postulated Central Park fault in the basement complex of the valley coincides approximately with the shoreline of the Belt sea, which shoreline was considered by Berry (1943) and Mc-Mannis (1955) to be fault controlled. If the high gravel-capped surface in the bluffs along the Madison River is of Pliocene or early Pleistocene age, as suggested by Pardee (1950, p. 403), then the folding of the Tertiary strata that accompanied movement along the Central Park fault must have occurred at least as

recently as late Pliocene time, and perhaps as recently as Pleistocene time. The south side of the Central Park fault is the downthrown side, though during deposition of the Belt series the north side was the downthrown side, a reversal of movement along the fault apparently having taken place. McMannis presented evidence of a similar reversal in the Bridger Range along what probably is a part of the same fault zone.

Elsewhere, also, the Pliocene (?) surface is broken by faulting. A west-northwest-trending escarpment west of the point at which Elk Creek enters the Madison River (about 9 miles west of Anceney) marks a fault; the gravel-capped surface south of the escarpment is about 160 feet lower than the surface north of the escarpment, and the Tertiary strata exposed in the bluffs facing the Madison River are deformed where the fault line intersects the bluffs. This break in the Pliocene (?) surface probably resulted from movement along the westward extension of the Salesville fault and would be another indication of relatively late movement along preexisting faults in the older rocks of the Three Forks basin.

Pleistocene sedimentation in the Belgrade subarea apparently was controlled by renewed movement along the Central Park fault. The relative downward movement of the Tertiary strata south of the fault has formed, in effect, a trough in which the coarse alluvium from the Gallatin River has been deposited. Whether actual ponding in this trough ever took place or whether the rate of deposition approximated the rate of subsidence is unknown. So far as could be determined from the test-hole samples, none of the test holes penetrated obviously layered sediments.

The anomalous position and extent of the Spring Hill fan in relation to contemporaneous fans that flank the Bridger Range at higher levels to the north and south suggest that deposition of this fan also may have been controlled by the Central Park fault.

On the basis of the available test-hole data, the surface of the Tertiary beds below the Bozeman fan does not seem to slope northward at a sufficient angle to account for the great thickness of gravel, in excess of 400 feet, penetrated by test hole A1-4-25dc north of Belgrade. Either the Tertiary strata are warped gently downward (fig. 13A) toward the Central Park fault, or a fault near the south margin of the Belgrade plain has dropped the Tertiary strata north of the fault so as to form, with the Central Park fault, a graben (fig. 13B). As no geologic evidence was found to support the presence of such a fault south

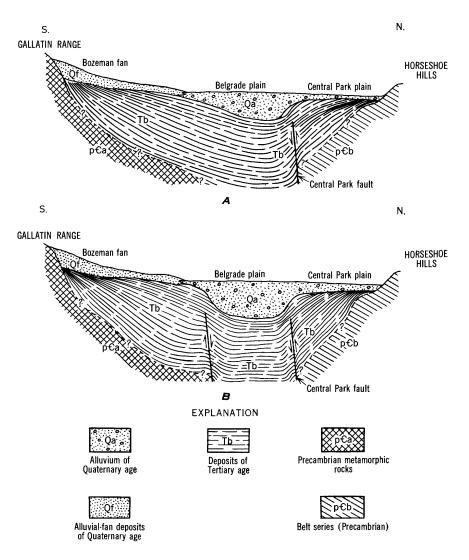


FIGURE 13.—Diagram showing alternative hypotheses for the formation of the Belgrade trough.

A. By downwarping of the Tertiary strata northward toward the Central Park fault. B. By down dropping of block between the Central Park fault and a fault south of Belgrade.

of Belgrade, it seems more likely that the Tertiary strata south of the Central Park fault are merely downwarped.

There is no evidence of a post-Tertiary channel leaving the valley other than that at Logan. Bedrock underlies the alluvium at Logan at a depth of about 20 feet. The fact that the altitude of this bedrock threshold at the valley outlet is considerably higher than the altitude of the base of the alluvium in the Bel-

grade trough is considered by the writers to be conclusive evidence that the Belgrade trough is a structural feature.

EFFECT OF FAULTS ON THE FLOW OF WATER INTO AND OUT OF THE GALLATIN VALLEY

Although some water probably enters and leaves the valley through faults in the pre-Tertiary rocks, there is no evidence that any of these faults is a conduit for a significant amount of water in relation to the total inflow to, and outflow from, the valley. Locally, however, streams that enter the valley are known to gain a large part of their flow from fault zones.

Ross Creek in the Bridger Range and South Cottonwood Creek in the Gallatin Range are two streams known to gain part of their flow from fault zones. Ross Creek rises where a major fault zone transects limestone of the Madison group, and it picks up most of its flow from springs along the fault zone. Several years ago the Montana State College abandoned its snow-measurement course across the crest of the Bridger Range from Ross Creek because the measurements could not be correlated with streamflow east of the Bridger Range. Much of the snow along the crest and on the east side of the range in the vicinity of Ross Peak undoubtedly percolates into the porous Paleozoic rocks, especially the fractured limestones, and is discharged into Ross Creek on the west side of the range. This accounts for the very high runoff (161 inches in 1952 and 178 inches in 1953) from the Ross Creek drainage basin, an area of 1.29 square miles.

A major fault crosses South Cottonwood Creek just above the site of the gaging station established for this study. Precambrian metamorphic rock on the north side of the fault is in juxtaposition with limestone of the Madison group on the south side. In early October 1952, a discharge of 18.05 cfs was measured at the gaging station and a discharge of only 6.41 cfs was measured above the fault, $2\frac{3}{4}$ miles upstream from the station. Therefore, at that time, the amount of water entering the stream from the fault was nearly 12 cfs, or about two-thirds of the volume passing the gaging station.

Undoubtedly, other streams from the Bridger and Gallatin Ranges also gain flow from fault zones. For example, McMannis (1955, p. 1423) mentioned that Lyman Creek, which furnishes part of the water supply for Bozeman, is fed by a spring at the junction of two faults.

SUMMARY OF CENOZOIC HISTORY

The Cenozoic history of the Gallatin Valley accords, in general, with the regional history as described by Pardee (1950) and McMannis (1955).

After the deposition of Cretaceous sediments, tectonic activity related to the Laramide orogeny began. There seem to have been several phases of folding and faulting in the area, which culminated in late Paleocene time with major mountain building. Then followed a long period of erosion, during which sediments derived from surrounding mountain ranges and from contemporary vulcanism began to accumulate in basins which were probably formed by tectonic movements. Deposition continued into Oligocene time, and a few thousand feet of Tertiary sediments accumulated in the gradually sinking basins. At that time the area must have been characterized by gently sloping low-lands separated by moderately low mountains. From middle Oligocene to late Miocene time, in the vicinity of the Gallatin Valley at least, the drainage was exterior and erosion prevailed over deposition.

Renewed crustal movement and volcanic activity in late Miocene time again interrupted the through drainage, and additional sediments were deposited in the basin. Faulting (along the Bridger frontal fault), beginning at this time and continuing intermittently through Pliocene and Pleistocene time, dropped the basin floor with respect to the Bridger Range, and tilted the Tertiary strata eastward.

During a period of relative stability an extensive erosion surface was developed, and the gravel cap at the top of the bluffs along the Madison River was formed. The truncation of eastward-dipping Tertiary strata by the surface upon which the gravel was deposited (p. 51) is evidence that the tilting of these strata began before the surface was formed. As the uppermost part of the Tertiary section exposed along the bluffs includes deposits of early Pliocene age, the terrace surface may be of middle or late Pliocene or earliest Pleistocene age.

In early and middle Pleistocene time, the Madison River cut a deep valley across the middle of the Three Forks basin, and the Gallatin River was superimposed at Logan. The present size and the large-scale structural features of the Gallatin Valley thus were determined. Also in early or middle Pleistocene time, renewed movement along the Central Park fault raised the strata north of the fault with respect to those south of the fault. In the Belgrade area, the downthrown block formed a trough in which

the alluvium of the Gallatin River began to accumulate. Concurrently, extensive alluvial fans were formed along the flanks of the Bridger and Gallatin Ranges, and the Camp Creek Hills were eroded and terraced.

During late Pleistocene time the then-existing alluvial fans were dissected and new fans were deposited; the Bozeman fan is one of these younger fans. Alluvium continued to accumulate in the Belgrade trough to a thickness of at least 400 feet.

Intermittent crustal movement in the Gallatin Valley area has continued to the present.

WATER RESOURCES

Ground water and surface water are components of a complex dynamic system termed the hydrologic cycle. Therefore, if they are to be evaluated, they must be considered not only in relation to each other but also in relation to the other components of the system.

Meinzer (1942, p. 1) described the hydrologic cycle as

the circulation of the water from the sea, through the atmosphere, to the land; and thence, with numerous delays, back to the sea by overland and subterranean routes, and in part, by way of the atmosphere \ast * *

The principal components of the hydrologic cycle are illustrated in figure 14. The cycle is very complex and the components are closely related. Surface water may seep into the underlying rock and become ground water, just as ground water

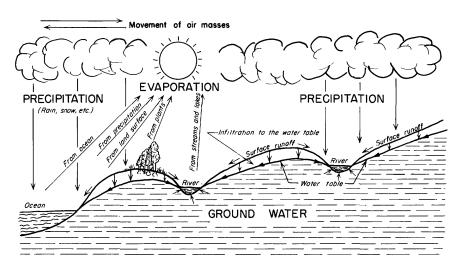


FIGURE 14.—Hydrologic cycle. Modified from U.S. Geological Survey Circular 114, figure 1a.

may return to the earth's surface through springs and effluent seepage to become surface water. Transpiration and evaporation may take place at any point in the cycle where water is exposed to the air or available to plants. Water that is stored temporarily as soil moisture may move downward to the water table and become ground water; also, ground water may move upward into the soil horizon when soil moisture becomes depleted.

The following sections describe the principal phases of the hydrologic cycle with which this report is concerned.

SURFACE WATER

By Frank Stermitz and F. C. Boner

At the time the study of the water resources of the Gallatin Valley was begun, permanent stream-gaging stations already were in operation on the Gallatin River near Gallatin Gateway and at Logan, and also on the East Gallatin River and on Bridger and Middle (Hyalite) Creeks. Beginning in May 1951, as part of the Gallatin Valley study, a number of additional gaging stations were established so as to obtain more complete information on the flow of surface water into the valley and on the movement of surface water within the valley. Pertinent data for all the stream-gaging stations are given in table 6; the station locations are shown both in figure 15 and on plate 1. Runoff records for these stations are given in table 7. In addition, occasional measurements were made at various other sites in the vallev. These measurements, together with descriptions of the sites, are given in table 8, and the locations of the sites are shown on plate 1.

The general pattern of runoff in the Gallatín Valley is typical of that throughout the Rocky Mountain region, where precipitation varies greatly with altitude and topography, and where the rapidity of snowmelt varies widely with exposure, cover, and altitude. Extensive diversion of surface water for irrigation and the resultant return flow affect all streams in their course across the valley. However, the year-to-year variation of surface outflow from the Gallatin Valley at Logan is not great. During the period August 1928 to September 1953, the highest annual runoff was 1,077,000 acre-feet in water year 1948 and the lowest was an estimated 328,200 acre-feet in water year 1934.

STREAMS

GALLATIN RIVER

In the 80-mile reach of the Gallatin River above the gaging station near Gallatin Gateway, the average gradient is about 40

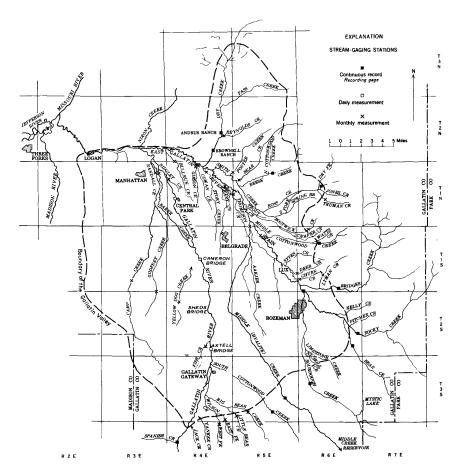


FIGURE 15.—Map of the Gallatin Valley showing location of stream-gaging stations.

feet per mile, the width of the valley is generally less than 1 mile, and only a few tributary streams are longer than 15 miles. Irrigation, which is confined to scattered hay meadows in the tributary valleys, has no appreciable effect on the regimen of the river.

Above the gaging station near Gallatin Gateway, the Gallatin River drains an area of 828 square miles. The inflow to the Gallatin Valley at this station was gaged for the first time in August 1889, and, except for July 1893, gaging was continued through June 1894. Although the Gallatin River was gaged for several subsequent years, the point of gaging was downstream from points where two large diversions were made, and hence, the measurements did not represent the total flow of the river into

TABLE 6.—Descriptions of stream-gaging stations in the Gallatin Valley [Gaging station: P, permanent; T, temporary. Type of gage: R, recording: S, staff; W, wire weight]

	Remarks		Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs. Measurements prior to continuous record: Aug. 2, 1951, 3, 4 cfs; Sept. 12, 1951, 2, 6 cfs.	Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs. Measurements prior to continuous record: Aug. 2, 1951, 2, 1 efs; Sept. 12, 1951, 2, 0 efs.	Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings. Measurements prior to confinituous record: Aug. 2, 1951, 7, 9 cfs; Sept. 12, 1951,
arge	Gage height (feet)	0.68	:	:	:
Minimum discharge	Cubic feet per second	1117	:	:	
Minim	Date	5.71 Jan. 19, 1935			
harge	Gage height (feet)	5.71	:	:	:
Maximum discharge	Cubic feet per second	6,910	:	:	
Maxim	Date	June 6, 1952			
Gage	Altitude of datum (feet)	1 5,167.7 June 6,			
6	Type	Я	:	:	ω •
Drain-	age area (square miles)	828	5.33	3.81	13.2
	Latitude Longitude	111°16′	111°10′20″	111°11′35″	111°08′25″
ion	Latitude	45°30′	45°31′25″ 111°10′20″	45°31′05″ 111°11′35″	45°32′35″
Location	Description	NE¼ sec. 18, T. 4 S., 4 R. 4 E. On left bank, 0.25 mile below mouth of Spanish Creek and 8 miles southwest of Gallatin Gateway.	SWM sec. 36, T. 3 S., R. 4E. I mile above confluence with West Fork and 4.5 miles south of Gallatin Gateway.	NE½ sec. 2, T. 4 S., R., 4 E. I. mileabove con- duence with East Fork and 4.5 miles south of Gallatin Gateway.	SW14 sec. 29, T. 3 S., R., 5 E. Above main diversion canal. I miles above confluence with Little Bear Creek and 4.5 miles southeast of Gallatin Gateway.
	Gaging station	Gallatin River near Gallatin Gateway (P).	Wilson (East Fork) Creek near Gallatin Gateway.	West Fork of Wilson Creek, near Gallatin Gateway.	Big Bear Creek near Gallatin Gateway.

Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings. Measurements prior to continuous record. Aug. 2, 1951, 1.6 ets. 695, 1.6, ets.			Monthly runoff derived from measurements at monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings.	Do.	
:	.73	:	:	:	:
· · · · · · · · · · · · · · · · · · ·	9.3	220	:	:	:
	2.52 Mar. 22, 26, 1952	6.90 Jan. 24, 26, 1952			
:	2.52	6.90	:	:	:
· · · · · · · · · · · · · · · · · · ·	283	6,530		:	<u> </u>
	June 5, 1952	June 7, 1952		:	
	1 5,689.5 June 5,	1 4,815.7 June 7,	:	:	
∞ •	æ	×	2 0	σ ₂	
8. 78. 8.	22.5			6.85	
111°09'45"	111°05′15″	111°12′	45°37'40" 111°13'00"	111°15′50″	111°18′
45°32′20″	45°32′20″	45°37′	45°37′40″	45°42′10″	45°45′
Little Bear Creek NW & sec. 31, T. 3 S., R. 45°32′20″ 111°09′45″ near Gallatin 5 E. 1.5 miles above Gateway. Gateway. Gallatin Gateway.	NEM see. 34. T. 3 S., R. 5 E. On left bank, 15 ft below Wortman ranch bridge and 6.5 miles southeast of Gallatin Gateway.	NW 14 sec. 35, T. 2 S., R. 45°37' 4 E. Near center of span on downstream side of bridge, 2 miles north of Gallatin Gateway and 20 miles above confluence with East Gallatin River.	Center of north line, sec. 34, T. 2 S., R. 4 E. About 0.5 mills above mouth and 2.5 miles north of Gallatin Gateway.	SW 1/2 sec. 5, T. 2 S., R. 4 E. 200 ft below confluence of 2 forks and 7.5 miles southwest of Belgrade.	NW4 sec. 24, T. 1 S., R. 3 E. At county road bridge, 25 ff above irrigation canal, 0.5 mile south of Church Hill, and 6.5 miles southwest of Belgrade.
Little Bear Creek near Gallatin Gateway.	South Cotton- wood Creek near Gallatin Gateway (T).	Gallatin River at Axtell Bridge near Gallatin Gateway (T).	Fish Creek near Gallatin Gateway.	Yellow Dog Creek near Belgrade.	Godfrey Creek near Belgrade.

See footnotes at end of table.

Table 6.—Descriptions of stream-gaging stations in the Gallatin Valley—Continued

	Remarks	Monthly runoff derived from measurements at monthly intervals and comparison of hydro- graphs, supplemented by weekly or daily gage readings.	Do.			Do.
arge	Gage height (feet)	<u> </u>	:	1.87	. 65	<u> </u>
Minimum discharge	Cubic feet per second		:	27	8.4	:
Minim	Date			7.00 Oct. 8,	5.22 Aug. 2,	
harge	Gage height (feet)		:	7.00		:
Maximum discharge	Cubic feet per per second	:	:	9,110	4,970	:
Maxim	Date			June 14, 1953	June 18, 1953	
Gage	Altitude of datum (feet)		:	6 4,496.1 June 14,	64,291.4 June 18,	
	Type	χ ₂	SO SO	×	Δ.	χ ₂
Drain-	age area (square miles)	6.32	:			
	Longitude	111°18′30″	111°17′55″	111°13′	111°16′	111°16′55″
ion	Latitude	45°42′05″ 111°18′30″	45°51′35″	45°45'	45°49′	45°51′00″
Location	Description	After June 10, 1952: SW4 sec. 36, T. 1 S. R. 3 E. At county road bridge, I mile north of Little Holies school and 8.5 miles southwest of Belgrade.	NW 4 sec. 12, T. 1 N., R. 3 E. At county road bridge, 0.3 mile above mouth and 1.5 miles east of Man- hattan.	NW¼ sec. 22, T. 1 S., R. 4 E. Near center of span on downer stream side of bridge, a miles southwest of Belgrade and 12 miles with East Gallatin River.	NEM sec. 19, T. I.N., 4 R. 4 E. Near right bank on downstream side of railroad bridge, 3 miles southeast of Manhattan and 5 miles above confluence with East Gallatin River.	SW14 sec. 7, T. 1 N., R. 45°51′00" 111°16′55" 4 E. At county road bridge above mouth and 2 miles east of Manhattan.
	Gaging station	Godfrey Creek near Belgrade— Continued.	Baker Creek near Manhattan	Gallatin River at Cameron Bridge near Belgrade (T).	Gallatin River at Central Park near Manhat- tan (T).	Ridgley Creek near Man- hattan.

Ď.	Do.	Measurement prior to continuous record: Sept. 11, 1951, 15, 1 cfs; Sept. 21, 1951, 14.0 cfs.	Measurements prior to continuous record: Sept. 11, 1951, 3.6 cfs.			
:	:	:		:	1.88	.31
	:	6.7	1.1	10	12	6.
		4.65 Nov. 7, 1952	3.40 Feb. 9, 10, 19- 25, 1953; Mar. 3, 4, 1953	2.41 Feb. 23, 24, 1953	6.09 Dec. 9, 1944	4.90 Mar. 23,
:		4.65	3.40	2.41	6.09	4.90
:	<u>;</u> ;	809	450	348	1,240	903
:		June 3, 1953	op	June 4, 1953	do	June 3, 1953
:		6 5,044.1	65, 183.4	1 5, 351.0 June 4,	6 4,701.6	
<u>α</u>	<u>α</u>	æ	e	æ	a	24
34.5	:	49.5	17.6	28.0	149	62.2
111°21′15″	111°18′15″	45°38'35" 110°55'35"	45°37'35" 110°55'45"	111°01′15″	45°42′05″ 111°01′40″	110°58′00″
45°42′55″ 111°21′15″	45°51′40″ 111°18′15″	45°38′35″	45°37′35″	45°34'40" 111°01'15"	45°42′05″	45°42′30″
Camp Creek near SE¼ sec. 28, T. 1 S., R. Belgrade. 3 E. At county road bridge at Arnold railroad siding, 9.5 miles southwest of Belgrade and 10 miles above mouth.	SEY sec. 2, T. 1 N., R. 3 E. At county road bridge, 1 mile east of Manhattan and 1.5 miles above mouth.	SEM sec. 24, T. 2 S., R. 6 E. On right bank, 0.3 mile downstream from highway bridge and 6 miles southeast of Bozeman.	NW¼ sec. 36, T. 2 S., R. 6 E. On left bank, 3 miles above mouth and 6 miles southeast of Bozeman.	SW ½ sec. 17, T. 3 S., R. 6 E. On left bank, 0.25 mile above socrans settling basin and 7 miles south of Bozeman.	SE¼ sec. 31, T. 1 S., R. 6 E. On lett bank, 100 ft above highway bridge, 500 ft below mouth of Sourdough Creek, 0.5 mile above mouth of Bridger Creek and 0.5 mile north of Bozeman.	NEMSEM sec. 34, T. 1 S., R. 6 E. On right bank, 3 miles above mouth and 3 miles northeast of Bozeman.
Camp Creek near Belgrade.	Randall Creek near Man- hattan.	Rocky Creek (East Gallatin River) near Bozeman (T).	Bear Creek near Bozeman (T).	Sourdough (Bozeman) Creek near Bozeman (T).	East Gallatin River at Bozeman (P).	Bridger Creek near Bozeman (P).

See footnotes at end of table.

Table 6.—Descriptions of stream-gaging stations in the Gallatin Valley—Continued

	Remarks	Monthly runoff derived from measurements at monthly intervals and comparison of hydro- graphs.	Monthly runoff derived from measurements at monthly intervals and comparison of hydrographs. Measurements prior to continuous record: Sept. 13, 1951, 0.6 cfs, Aug. 27, 1952, 0.6 cfs.	Monthly runoff derived from measurements at monthly intervals and comparison of hydro- graphs.	Monthly runoff derived from measurements at monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings. Measurements prior to confinuous record: July 12,	1951, 75.0 cfs; Aug. 3, 1951, 25.2 cfs; Sept. 5, 1951, 52.4 cfs.
arge	Gage height (feet)	:	:	:	:	:
Minimum discharge	Cubic feet per second	:	:		:	:
Minim	Date			:	:	:
harge	Gage height (feet)	:	:		:	2.32
Maximum discharge	Cubic feet per second		:	:	:	120
Maxim	Date			:		June 4, 1953
Gage	Altitude of datum (feet)			:		65,286.5 June 4,
8	Type		:		χ. 	
	age area (square miles)	175		:		4.35 R
	Latitude Longitude	45°43'30" 110°59'30"				110°59′50″
ion	Latitude	45°43′30″		:		45°45′50″
Location	Description	NW 14 sec. 28, T. 1 S., R. 6 E. About 0.25 mile above city of Bozeman diversion and about 1.5 miles above mouth.	Churn Creek near SW ¼ sec. 30, T. 1 S., R. Bozeman. 6 E. About 2 miles above mouth and 2 miles north of Bozeman.	NW ¼ sec. 30, T. 1 S., R. 6 E. At county road, 1 mile above mouth and 3 miles north of Bozeman.	SEM sec. 4, T. 1 S., R. 5 E. At Spain railroad siding and 3 miles east of Belgrade.	SW _M sec. 9, T. 1 S., R. 45°45′50" 110°59′50" 6 E. On left bank,
	Gaging station	Lyman Creek near Bozeman.	Churn Creek near Bozeman.	Deer Creek near Bozeman.	East Gallatin River near Belgrade.	Middle Cotton- wood Creek

	9 1.16 Flow regulated by Middle Creek Reservoir since March 1951.	Monthly runoff derived from measurements at monthly intervals and comparison of hydro- graphs. Measurement prior to continuous rec- ord: Oct. 8, 1952, 53.5 cfs.	Monthly runoff derived from measurements at monthly intervals and comparison of hydro-	graphs, suppulmented by weekly or daily gage readings. Measurement prior to continuous rec- ord: Sept. 14, 1951, 1.7 cfs.	Monthly runoff derived from measurements at monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings.	Do.	
	9 1.16	:	:		:	:	:
	4.	:	<u>:</u> :		:	<u>:</u>	2.
	9 2 . 10 Feb. 2, 1939				: :		1.86 Mar. 21–25, 1952
	9 2.10	:					1.86
	956	:	:		•	:	34
	June 14, 1898					:	June 3, 1953; July 5, 6, 1953
	15,539.6 June 14,				:	:	65, 194.9 June 3, 1953 July 5, 6, 19
	rd.	:	ω ••	-	ω	ž	x
	48.4		5.04		:	:	1.29 R
	111°03′	111°07′40″	45°47′00″ 111°01′10″		111°09′35″	45°51'00" 111°11'05"	45°50′30″ 110°59′25″
	45°34′	45°47′15″	45°47′00″		45°49′55″ 111°09′35″	45°51′00″	
100 ft from Forest Service trail, 0.8 mile from end of county road, and 5.5 miles northeast of Bozeman.	SEM sec. 23, T. 3 S., R. 5 E. On right bank, T. 5 miles south of Boseman and 20 miles above mouth.	SEM sec. 32, T. 1 N., R. 4547/15" 111°07'40" 5 E. At railroad bridge, 0.5 mile above mouth and 2.5 miles northeast of Belgrade.	NEW sec. 6, T. 1 S., R. 6 E. 0.25 mile above diversion dam and 7 miles east of Belgrade.		SE½ sec. 13, T. 1 N., R. 4 E. 0.5 mile above mouth and 4 miles north of Belgrade.	SE¼ sec. 11, T. 1 N., R. 4 E. 0.5 mile above mouth and 5 miles north of Bel- grade.	NW sec. 16, T. 1 N., R. 6 E. On left bank, 5 ft above county road bridge and 10 miles northeast of Belgrade.
near Bozeman (T).	Middle (Hyalite) Creek at Hyalite ranger station near Bozeman (P).	Middle (Hyalite) Creek near Belgrade.	Bostwick Creek near Belgrade.		Thompson Creek near Belgrade.	Ben Hart Creek near Belgrade.	Ross Creek near Belgrade (T).

See footnotes at end of table.

Table 6.—Descriptions of stream-gaging stations in the Gallatin Valley—Continued

	Location	tion		Drain-	3	Gage	Maxim	Maximum discharge	arge	Minimum discharge	m disch	arge	
ı	Description	Latitude	Longitude	age area (square miles)	Type	Altitude of datum (feet)	Date	Cubic feet per second	Gage height (feet)	Date	Cubic feet per second	Gage height (feet)	Remarks
SW14. 6 R. 6 abar ditel nort	SW¼ sec. 21, T. 1 N., R. 6 E. 100 ft above abandoned diversion ditch and 9.5 miles northeast of Belgrade.	45°49′25″	45°49′25″ 110°59′10″	2.94	:				:				Monthly runoff dervied from measurements at monthly intervals and comparison of hydrographs. Measurement prior to confinuous record: Sept. 14, 1951, 1.1 efs.
Reese Creek near Belgrade (T). R. stree cou	NE14 sec. 10, T. 1 N., R. 5 E. On left up- stream abutment of county bridge, 7 miles northeast of Belgrade.		45°51'35" 111°04'50"	22.0	et .	64, 505.2 June 3, 1953	June 3, 1953	175	3.55	3.55 July 31, 1951	4.0	1.93	
SE 1/2 R. ros abo mil gra	SE¼ sec. 7, T. 1 N., R. 5 E. At county road bridge, 300 ff above mouth and 5 miles north of Bel- grade.	45°51′00″	45°51'00" 111°08'55"	4.30 S 10	80 81				:		:	:	Monthly runoff derived from measurements at monthly intervals and comparison of hydro- graphs, supplemented by weekly or daily gage readings. Measurement prior to continuous rec- ord: Sept. 14, 1951, 2.7 cfs.
NEJ R. rog no	NEM sec. 12, T. 1 N., R. 4 E. At county road bridge, 5.5 miles north of Belgrade.				:		:	: :	:	:	:	:	Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs.
SEA do of of Mg	SE¼ sec. 23, T. 2 N., R. 4 E. On right downstream abutment of county bridge, 0.25 mile above mouth of Reynolds Creek and 8 miles northeast of Manhattan.	45°54′35″	45°54'35" 111'10'55"	96.4	æ	64,445.0 Apr. 7,	Apr. 7, 1952	308	4.03	:			

Do.	1.84 Replaced by station at Andrus ranch.	Monthly runoff derived from measurements at about monthly intervals and comparison of hydrographs, supplemented by weekly or daily gage readings.	Do.	Monthly runoff derived from measurements at about monthly intervals and comparison of hy- drographs, supplemented by weekly or daily gage readings. Measurement prior to continuous rec- ord: Sept. 20, 1951, 17.3 cfs.	Monthly runoff derived from measurements at about monthly intervals and comparison of hy- drographs, supplemented by weekly or daily gage readings.
:	1.84	:	:	:	:
:	7.	:	:	:	· :
:	2.44 Aug. 18,				
	2.44	:			:
:	89	:			:
	May 24, 1951		:		
:	x	* %	= 50	z z	: :20
		:			
	111°11'45"	111°12′25″	111°13′40″	111°13′50″	45°52'30" 111'16'10"
:	45°53′25″	45°51′40″	45°52′10″	45°52′15″	45°52′30″
SE¼ sec. 23, T. 2 N., R. 4 E. 0.1 mile above mouth and 8 miles northeast of Manhattan.	SW14 sec. 26, T. 2 N., R. 4 E. On right downstream abutment of county road bridge, about 1 mile below mouth of Reynolds Creek and 7 miles northeast of Man- hattan.	SE¼ sec. 3, T. 1 N., R. 4 E. 0.25 mile above mouth and 6 miles east of Man- hattan.	NE½ sec. 4, T. 1 N., R. 4 E. 100 ft above county road bridge, 300 ft above mouth and 5 miles east of Manhattan.	NE¼ sec. 4, T. 1 N., R. 4 E. 300 ft above mouth, 500 ft above county road bridge and 5 miles east of Manhattan.	SE¼ sec. 31, T. 2 N., E. 4 E. A teounty road bridge, I. 5 miles above mouth and 3.5 miles northeast of Manhattan.
Reynolds Creek near Man- hattan.	Dry Creek at Brownell ranch near Man- hattan (T).	Story Creek near Manhattan.	Cowan Creek near Man- tan.	Gibson Creek near Man- haftan.	Bullrun Creek near Man- hattan.

See footnotes at end of table.

Table 6.—Descriptions of stream-gaging stations in the Gallatin Valley—Continued

	Remarks		 Site and datum then in use. After Apr. 1, 1852. After Apr. 30, 1952.
	t) t	2.04	and datum r Apr. 1, 1 r Apr. 30,
charge	Gag heig 1 (fee	લ	Site Afte
um dis	Cubic Gage feet Gage per height second (feet)	130	9211
Minimum discharge	Date	8.40 July 19, 130	ਚੰ
arge	Gage height (feet)		djuste
Maximum discharge	Cubic feet per second	7,870	1929, una 5, 1952.
Maxim	Date	June 5, 1948	6 Datum of 1929, unadjusted. 7 After Apr. 5, 1952. 8 After June 10, 1952.
Gage	Altitude of datum Type (feet)	14, 082.3 June 5, 1948	6 Da
9	$_{ m Type}$	я	
Drain-	age area (square miles)	1,805	52. 52.
	Latitude Longitude	111°26′	3 After Mar. 31, 1952. 4 After June 9, 1952. 5 After Apr. 16, 1952.
tion	Latitude	45°53′	3 After 4 After 5 After
Location	Description	Gallatin River at NE½ sec. 35, T. 2 N., Logan (P). R. 2 E. On right bank at bridge, 0.5 mile west of Logan and 5 miles above confluence with Jeffrerson and Madison Rivers.	1 Datum of 1929, supplementary adjustment of 1940. 2 After Apr. 8, 1962.
	Gaging station	Gallatin River at Logan (P).	1 Datum of 19 adjustment of 1940 2 After Apr. 8

TABLE 7.—Monthly and annual runoff, in acre-feet, of streams in the Gallatin Valley [Annual runoff values rounded according to standard practice of U.S. Geological Survey. Values in italics were used in computing measured tributary inflow (table 23) [

(table 23)]	Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Annual	Gallatin River near Gallatin Gateway	0 24,600 19,700 17,800 19,700 27,400 129,000 187,000 46,800 36,100 612,000 0 25,000 24,600 24,600 28,800 117,000 117,000 186,300 34,700 638,000 638	0 18,400 12,300 17,700 29,900 89,800 155,000 29,200 18,200 18,200 18,200 18,200 18,200 18,200 18,300 24,500 51,100 28,200 24,500 51,100 28,200 24,500 591,000 51,100 22,500 24,500 591,000 51,100 22,500 24,500 591,000 24,500 591,000 22,500 18,200 24,500<	0 13,180 13,380 12,240 12,540 18,720 54,990 158,000 59,320 26,240 20,260 418,000 0 14,800 14,660 14,660 13,430 13,430 15,660 92,360 107,700 45,190 23,090 18,110 390,200 0 14,740 14,350 12,680 13,960 22,170 84,430 187,600 75,810 23,990 18,110 390,200 0 14,740 14,350 12,480 22,170 84,430 187,600 75,810 23,910 23,090 515,500 0 17,708 17,120 14,980 19,410 33,770 125,200 89,970 50,690 26,660 21,440 462,100	0 14,380 15,250 13,304 14,480 22,750 121,000 134,500 45,000 26,040 22,050 464,200 38,800 38,800 38,800 38,020 38,000 38,000 31,210 31,210 32,300 38,800 38,020 31,210 31,210 32,300 38,020 38,020 38,020 31,210 31,210 27,320 38,030 38,030 31,210 31,210 32,300 38,030 38,030 31,010 31,020 32,130 32,300 38,030 38,030 31,020 32,180 31,020 38,030 <th>0 16,840 17,750 15,310 16,460 17,820 67,110 155,300 96,370 37,280 28,430 513,200 0 16,740 15,340 18,192 18,400 47,540 166,700 188,800 69,600 30,830 26,290 557,400 0 22,560 18,340 17,720 18,400 24,740 154,600 13,000 142,630 32,670 667,600 0 22,560 18,490 17,260 36,800 224,300 42,630 30,160 667,600 0 19,540 18,490 17,260 35,880 135,000 120,400 48,840 28,140 24,600</th> <th>0 17,060 14,540 15,280 15,440 17,310 26,100 116,000 120,200 70,620 39,170 26,910 520,200 0 18,020 17,400 15,180 17,120 20,370 53,680 183,600 87,770 83,890 24,310 517,700</th>	0 16,840 17,750 15,310 16,460 17,820 67,110 155,300 96,370 37,280 28,430 513,200 0 16,740 15,340 18,192 18,400 47,540 166,700 188,800 69,600 30,830 26,290 557,400 0 22,560 18,340 17,720 18,400 24,740 154,600 13,000 142,630 32,670 667,600 0 22,560 18,490 17,260 36,800 224,300 42,630 30,160 667,600 0 19,540 18,490 17,260 35,880 135,000 120,400 48,840 28,140 24,600	0 17,060 14,540 15,280 15,440 17,310 26,100 116,000 120,200 70,620 39,170 26,910 520,200 0 18,020 17,400 15,180 17,120 20,370 53,680 183,600 87,770 83,890 24,310 517,700
	Jan.	Gallati	, 600 19, 700 700 24, 600 800 28, 800 600 20, 300	12,300 16,700 17,500 18,200	13,380 14,360 14,630 14,350 17,120	14,000 15,250 16,780 16,240 17,860	17,750 17,410 15,340 21,480 18,490	14,540 15,280 17,400 18,590
	Nov. I		23,800 39,100 29,800 35,000 27,300	20,800 18,300 19,300 17,850	14,800 16,060 14,690 15,900 19,780	16,350 16,450 23,610 20,280 22,180	20,040 21,740 19,400 24,130 23,040	21,000 24,580 22,550 19,460
	Water year ¹ Oct.		889 24,700 890 24,700 882 36,100 883 45,700	930 31 700 1931 14 600 1932 22 600 1933 19 370	1935 16,350 1936 18,560 1937 18,060 1938 17,890 1939 25,970	940 20.560 1941 21.710 1942 21.540 1943 21.920 1944 25.870	9945 24 500 1946 27 410 1947 24 940 1949 32 370 1949 28,910	1950 24,290 1951 28,690 1952 27,750 1953 24,690

See footnotes at end of table.

alley-Continued
in V
Gallat
the
\dot{i}
streams
of
acre-feet,
\dot{i}
runoff,
annual
and
7.—Monthly
TABLE 7

Water year 1	Oet.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
				Wilson (East Fork	Wilson (East Fork) Creek near Gallatin Gateway	ar Gallatin	Gateway					
1952. 1953.	160	134	128	117	101 83	101	206	1,070	2,080 1,050	480	238 182	163 146	4,980 2,840
				West For	k of Wilse	West Fork of Wilson Creek near Gallatin Gateway	ar Gallatiı	n Gateway					
1952. 1953.	99	101	103	98 86	77	75 105	160	767 165	1,010	301	184 123	125 95	3,100
				Big	Bear Cre	Big Bear Creek near Gallatin Gateway	llatin Gate	way					
1952. 1953. 1954.	292 291 497	280 253 548	264 230 407	228	184 163	160	241	3,930	3,330	1,240	514	357	13,040
				Litt	le Bear Cr	Little Bear Creek near Gallatin Gateway	allatin Gat	eway					
1952. 1953. 1964.	99 107 107	81 85 105	73 78 86	69	98	59	194	867 173	586	397	196	135	3,020 1,780
				South C	ottonwood	South Cottonwood Creek near Gallatin Gateway	r Gallatin	Gateway					
1951. 1952. 1953.	1,130	914	918	772 750	682 662	642	1,340	6,290	4,520 9,120 7,860	3,100 3,270 4,300	1,550 $I,700$ $I,520$	1,210 1,220 1,080	27,900
				allatin Ri	ver at Axt	Gallatin River at Axtell Bridge, near Gallatin Gateway	near Galla	tin Gatews	l A				
1950											000	- 0	

1]		1	1		1	1	
720,500 515,100		6,870		2,920	i	6,270 4,260		069,64	•	644,800 374,700	
24,250 19,500	:	674 669		333 192		419 309		5,810		15,160 16,850 12,230 6,770	
34,240 29,990		879 695		347		456 360		3,520		9,440 16,100 11,890 8,980	
74,990	:	1,040 639		474 382		591 570		4,960		44,040 14,420 38,040 35,830	
197,700		853 725		383 445		516 527		33,720 23,340		127,600 63,640 201,500 164,700	
215,700 48,450	ау	571	e)	419 240		676 341		37,240 3,810	Belgrade	213,200	
48,910 22,120	ıtin Gatewı	472	ar Belgrad	1,470	. Belgrade	2,060	Tanhattan	12,180 5,260	ridge, near	45,860	
18,370 18,700	Fish Creek near Gallatin Gateway	494	Yellow Dog Creek near Belgrade	153	Godfrey Creek near Belgrade	258 254	Baker Creek near Manhattan	5,220 5,850	Gallatin River at Cameron Bridge, near Belgrade	18,460	
16,660 17,140	Fish Creek	440	Yellow Do	134	Godfrey	222 233	Baker C	4,720 4,820	River at (17,710	
19,580 20,650		479		174		218 298	:	5,530	Gallatin	22,500	
19,440 21,270 22,150		522 527		209		214 311 218		7,240 6,070 6,010		19,950 23,660 20,810	
24,310 21,600 20,690		574		269		250 408 334		6,530		25,120 17,190 14,040	
$\begin{vmatrix} 26,380\\21,530\\18,840 \end{vmatrix}$		586		402		393 391 386		5,150 4,380		20,120 7,580 7,880	A of toble
											40
1952. 1953. 1954.		1952 1953 1054		1952		1952. 1953. 1964.		1952. 1953. 1954.		1950 1951 1952 1953 1954	Can footen
1952 1953 1954		1955 1955 1954		195 195 195		195 195 195		195 195 195		1950 1950 1950 1950	

See footnotes at end of table.

TABLE 7.—Monthly and annual runoff, in acre-feet, of streams in the Gallatin Valley—Continued

Rocky Creek (East Gallatin River) near Bozeman	Annual 470,200 310,600 2,398 2,398 2,3864 2,160	Sept. 8 323 323 832 833 833 833 833 833 833 8	Aug. 1,220 6,830 3,480 1,530 1,530 200 147 165	29,340 29,340 29,340 35,920 145 145 317 317	June 111,100 121,200 121,200 140,100 140,100 119 84 84 11,380 1,380	May mhattan 166,400 18,640 18,640 18,640 11,	Apr. rk, near M. 46,100 18,290 18,290 240 240 240 240 171 171 1,050 1399 1399 1399 1399 1399 1399 1399 139	Mar.	Feb.	Gallatin Gallatin Gallatin Gallatin 15,750 20,240 20,240 1116 1116 Rocky C	Dec. 16,070 20,560 17,910 17,910 195 74 195 46 1119	Nov. Nov. 19,930 119,930 10,890 10,890 189 189 189 189 189 189 189 189 189 189	00ct. 13,740 4,920 5,580 5,580 1137 74 741 1137 1137 1137 1137 1137 11	Water year 1 1950 1951 1952 1953 1954 1955 1954 1955 1955 1955 1955 1955
	28,470 23,420	742 785	867 912	1,470	3,230	9,990	8,140	654 848	574 555	608	690	750	754	1952. 1953.
	1,120	492	353	65	1,380	639	1,050	484 36	234 34	234	397 46 119	84		
169 84 46 41 34 484 1,050 639 1,380 65 353 492 153 117 119 84 46 34 36 139 117 104 89 165 95							Manhattan	reek near l	Randall C					
Randall Creek near Manhattan 397 234 484 1,050 639 1,380 65 353 492 1,580 1,38	5,364 2,160	883	200	317	363	361 158	3,130	65 145	107	67 116	87 103 74	149 189 71		
296 149 87 67 58 65 3,130 361 311 317 200 323 74 189 103 116 107 145 171 158 363 310 147 83 Randall Creek near Manhattan 169 84 46 41,050 639 11,380 65 353 492 153 117 110 89 165 95 165 95							Belgrade	reek near l	Camp C					
Camp Creek near Belgrade 296 149 87 67 58 65 3,130 361 311 317 200 323 74 71 169 103 116 147 83 74 71 169 639 1,380 65 353 492 169 84 46 41 36 117 104 89 165 95 153 117 119 89 165 95 95	3,598	301 79	115	258 145	84	325 236	385 240	307 274	239	313 262	393 234 195	393 276 154		
413 383 384 315 276 307 385 325 119 258 115 79 79 113 154 234 284 286 84 145 79 79 113 154 185 234 286 84 145 79 79 296 149 87 67 68 65 3 130 361 311 317 200 323 274 71 189 103 116 107 145 171 158 363 310 147 83 74 71 74 71 169 639 1,380 65 353 402 169 84 46 41 36 117 104 89 165 95 169 84 10 139 117 104 89 165 95							Kanhattan	reek near A	Ridgley C					
Ridgley Creek near Manhattan 413 3993 393 313 276 307 385 325 119 258 115 79 79 237 276 274 240 236 84 145 79 79 113 154 196 234 236 3130 361 379 79 296 149 87 67 58 65 3,130 361 311 317 200 323 274 71 189 63 310 147 83 274 71 169 639 1,380 65 353 402 169 84 1,050 639 117 104 89 165 95 169 84 48 1,050 639 117 104 89 165 95	470,200 310,600	4,170 10,710 7,100 2,510	1,220 6,830 3,480 1,530	41,990 2,490 29,340 35,920	111,100 43,810 121,200 140,100	166,400	46,100	16,370 17,760	14,750	15,750	16,070 20,560 17,910	19,930 14,420 10,890		
15.740 19.930 16.070 15.720 14.750 16.370 17.760 18.290 18.640 121.200 24.90 24.90 1.220 10.710 10.710 12.200 12.200 10.710 10.710 12.200 12.200 10.710 10.710 12.200 12.200 10.710 10.710 12.200 12.200 12.200 10.710 10.710 12.200 12.200 12.200 10.710 10.710 12.200 12.						anhattan	rk, near Ma	Central Par	River at C	Gallatin				
13,746 19,380 16,070 15,750 14,750 16,370 16,400 11,100 2,480 1,280 10,710 1,5700 15,750 15,750 15,700 17,760 18,290 18,640 140,100 35,920 1,530 2,510 1,530 1	Annual	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Water year 1

=
-
ಹ
2
•
N
0
щ
м
8
22
=
ř
충
Ψ
a
ŭ
Ö
u
-
-
**
•

					There	Tech Heat	To the same of the						
1952 1953	137	173	16	901	89 71	119	1,720	3,720 1,840	1,020	371 319	228 169	154 118	7,950 6,420
				Sourd	Sourdough (Bozeman) Creek near Bozeman	eman) Cre	ek near Bo	хетап					
1951 1952 1953	835	662	575	521	461	430	3,160	5,170 7,150 2,550	2,240 4,370 6,040	1,740 $1,410$ $2,510$	$I,060 \\ I,320 \\ I,550$	1,050 1,430 1,010	22,320 17,990
					East Galla	tin River	East Gallatin River at Bozeman	_					
1939 1940 1941 1942 1943	1,830 2,570 5,310 2,870 3,020	1,840 2,020 4,440 2,970 3,120	1,730 1,930 4,600 2,860 2,910	1,500 1,860 2,980 2,240 2,240	1,670 1,640 2,460 2,640 2,510	3,150 3,380 3,130 4,560 3,370	8,710 4,920 16,270 11,550 5,800	11,420 5,860 15,220 15,140 6,080	7,570 5,760 11,530 15,780 13,370	2,500 2,090 3,890 4,040 6,360	1,790 1,940 2,060 2,970 2,470	1,890 2,050 3,750 2,720 3,010	45,760 37,720 74,610 70,630 54,000
1945 1946 1947 1948 1949	www.44w	2,790 3,160 3,810 4,310 3,480	2,410 2,490 3,190 4,140 2,850	2,420 2,540 2,570 3,960 2,420	2,660 2,420 2,700 3,040	3,150 4,980 6,190 3,400 3,480	4,180 11,750 13,100 19,580 9,610	11,040 11,740 19,010 32,540 8,720	11,030 5,690 18,000 20,370 5,910	4,810 2,610 5,070 8,220 2,610	2,890 1,840 3,800 5,910 1,790	2,840 2,510 4,930 3,560 2,380	53,620 54,870 85,980 113,000 49,790
1950 1951 1952 1953 1954	3,070 3,560 3,710 3,160 2,910	2,600 3,040 3,310 2,960 2,790	2,380 2,950 2,950 2,720	2,080 2,510 2,410 2,790	3,080 2,860 2,460 2,510	3,780 3,190 2,660 3,390	8,520 10,330 19,460 5,230	13,170 20,850 27,170 12,340	8,960 7,760 9,920 20,420	4,170 3,590 4,520 3,750	3,600 2,760 2,540 2,880	3,220 3,140 3,530 2,790	58,630 66,540 85,710 65,090
					Bridger (Bridger Creek near Bozeman	Bozeman						
1946 1947 1948 1949 1950	430 657 1,050 686 474	417 736 888 564 458	307 637 962 464 278	303 447 940 336 183	349 560 579 371 422	1,110 1,550 1,688 494 460	5,530 4,170 7,690 3,570 2,450	5,980 12,420 18,490 4,450 7,230	3,120 6,950 10,110 2,300 5,790	2,200 3,500 1,130 1,950	506 1,090 1,690 326 1,060	398 1,380 904 324 623	19,420 32,800 47,490 15,020 21,380
1951 1952 1953 1954	720 653 486 471	791 595 378 399	749 382 323 331	495 256 419	445 254 346	635 341 540	3,090 7,190 1,580	9,860 13,510 7,710	3,680 4,490 14,290	1,240 1,740 2,420	754 747 875	585 510 550	23,040 30,670 29,920

See footnotes at end of table.

ntinued
ర్గ
alley—
Λ_0
Fallatin
9
, the
સ
streams
of
acre-feet,
\dot{i}
runoff,
annual
and
7.—Monthly
TABLE

196 184 172 150 172 149 627 714 545 397	Water year 1	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
196 184 173 149 172 149 248 762 479 397 246 208 184 166 150 172 172 149 248 762 479 394 2 26 208 2 530 2 540 2 597 3 110 22 530 17 120 27 130 27 130 2 1350 2 1350 2 1350 2 1340 2 1 134 83 3 136 2 777 2 2 450 2 1 1345 2 1 138 2 1 1357 1 1 964 1 1 2 1 2 10 3 136 2 777 2 2 450 2 1 1345 2 1 138 2 1 136 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1						Lyman (Greek near	Водетап						
Churn Creek near Bozeman 94 326 57 68	952		196 208	184	173 166	149 150	179	349 149	627 248	714	545 479	397	274	4,020
Deer Creek near Bozeman 4,280 3,780 3,530 2,540 2,770 2,520 2,570 2,	The second secon			7		Churn C	reek near	Bozeman						
A	1953					<u> </u>			94	326	57	89	24	
4,280 3,780 3,530 2,640 2,970 3,110 22,530 42,800 17,120 7,200 3,690 2,350 2,570 2,780 2,040 3,110 22,530 16,630 17,120 7,200 3,690 2,350 2,570 2,780 2,040 3,270 5,770 16,630 33,450 5,160 2,520 79 69 63 55 5 20 939 1,460 368 137 70 44 45 69 63 55 2 241 1,973 1,550 182 70 Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman Addia 2,7460 2,737 2,1458 2,1438 2,1438 2,1537 1,964 5,908 1,726 1,964 5,908 1,720 33,460 3,690 2,705						Deer C	reek near]	Bozeman						
4,280 3,780 2,640 2,640 2,970 3,110 22,530 42,800 17,120 7,200 3,690 2,640 2,520 2,570 2,780 2,770 16,630 33,450 5,160 2,520 2,350 2,570 2,570 16,630 33,450 5,160 2,520 Middle Cottonwood Creek near Bozeman Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman	953								45	109	14	9	9	
4,280 3,780 2,640 2,970 3,110 22,530 42,800 17,120 7,200 3,690 2,640 2,520 2,570 2,040 3,270 5,770 16,630 33,450 5,160 2,520 2,520 2,570 2,040 3,270 16,630 33,450 5,160 2,520 Middle Cottonwood Creek near Bozeman 79 69 63 55 52 70 939 1,460 368 137 70 Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman Middle (1,845) 21,438 21,537 1,904 5,903 17,256 10,084 2,705						Sast Gallat	in River n	ear Belgra	de					
Middle Cottonwood Creek near Bozeman 79 69 63 55 22 70 939 1,460 353 134 83 44 45 40 40 28 52 241 939 1,460 368 137 79 Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman 3,136 2,737 2,460 21,845 21,438 21,537 1,964 5,908 17,266 10,084 2,705	952 953 954		3,780 2,520 2,520	3,530 2,590 2,570	2,640	2,970	3,110	22,530 5,770	42,800 16,630	17,120	7,200 5,160	3,690	3,490	117,100 81,820
79 69 63 55 28 70 939 1,460 353 134 83 Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman Middle (2,737 2,2,460 21,845 21,438 21,537 1,964 5,908 17,266 10,084 2,705					Mid	dle Cotton	wood Creel	k near Boz	eman					
Middle (Hyalite) Creek at Hyalite Ranger Station, near Bozeman 3.136 2,737 2,737 2,1,845 21,438 21,537 1,964 5,908 17,266 10,084 2,705	951. 952. 953.		69	63	55 40	52	70	939	1,460	353 368 1,550	134 137 182	83 79 70	71 54 42	3,420
3.136 2.737 2.2,460 2.1,845 2.1,438 2.1,537 1,964 5,903 17,256 10,084 2,705 2,337				Middle	e (Hyalite)	Creek at 1	Hyalite Ra	nger Statie	on, near Bo	zeman				
	895. 896. 897.	<u>:</u>	<u></u>	2 2,460		21,438	21,537	1,964		17,256	: :	3,566	2,975 2,380	2 53 , 445

						1				1
2 97,820		37,710 27,020 31,330 34,880 35,030	38,550 31,490 45,940 47,060 44,490	44,000 41,430 54,410 65,920 40,100	41,830 36,500 349,460 342,920				3,200	
4,457	2,856	2 964 1,470 1,260 1,430 1,520 1,650	1,680 3,430 1,960 1,860 2,670	2,180 2,290 3,310 3,030 2,170	2,330 1,980 2,770 2,330		4,760		101	
4,562	3,382	2,520 1,530 1,570 2,260 2,080	2,070 1,820 2,740 2,820 2,750	2,780 2,950 3,760 4,590 2,130	3,380 4,070 4,000 5,360		4,680		165	
13,589 20,559	5,472	7,230 1,880 3,280 3,980 4,710	4,160 2,780 8,040 8,260 7,630	9,250 5,610 9,860 6,390 4,180	7,680 6,120 6,360 8,540		7,360		315	
24,159 29,982	² 16,066 15,055	13,910 5,280 9,430 10,980 7,770	12,020 7,370 10,830 14,190 13,970	11,990 9,200 14,280 15,830 9,830	12,170 7,330 13,340 13,740		8,090		1,660	
$^{10,883}_{29,285}$	2 9,039	6,590 7,270 8,460 8,170 8,590	10,440 6,790 7,340 7,770 8,060	8,330 6,920 12,640 17,860 8,710	6,090 6,880 11,280 5,450	rade	15,300	_	939	
2 4,844 2 5,355		1,100 3,900 1,240 2,100 2,570	1,870 1,900 4,050 4,050 1,300	1,280 4,680 2,280 7,290 3,120	1,810 1,360 3,240 1,480	Middle (Hyalite) Creek near Belgrade	7,160	ır Belgrade	464	
24,612		764 906 873 980 1,070	841 1,220 1,230 1,060 1,060	1,020 1,480 994 1,480 920	1,160 653 1,150 1,030	lite) Creek	889	Bostwick Creek near Belgrad	83 65	
2 3,055		637 690 696 742 833	750 1,060 1,010 1,160 1,160	1,100 1,410 1,410 916 1,060 1,250	1,160 992 1,060 845	iddle (Hya	258	Bostwick	69	
23,074		599 837 891 891 899 1,170	1,120 1,270 1,510 1,200 1,120	1,100 1,410 1,040 1,810 1,210	1,120 1,500 1,090 815	W	339		99 62	
23,689	21,840	708 1,060 1,030 861 1,350	1,020 1,070 1,900 1,270 1,260	1,170 1,610 1,370 1,860 1,840	1,390 1,740 1,370 700 863		974		89 41 26	
23,868	2,320	1,010 1,100 1,130 1,040 1,460	1,110 1,170 2,070 1,590 1,740	1,500 1,790 1,900 1,940 2,230	1,510 1,810 1,610 881 1,080				95 77 57	
2 4,544	2,987 22,951 2,580	1,170 1,310 1,300 1,350 1,780	1,470 1,610 3,260 1,830 1,830	2,300 2,080 2,060 2,780 2,510	2,030 2,060 2,190 1,750 1,750				95	
1898.	1900 1901 1902 1903 1904	1934. 1935. 1937. 1938. 1938.	1940. 1941. 1943. 1944.	1945. 1946. 1947. 1948. 1949.	1950 1951 1952 1953		1952		1952. 1953. 1954.	
189 189	1900 1902 1903 1904 1905	1934 1935 1936 1937 1938 1939	1940 1941 1942 1943 1944	1945 1946 1947 1948 1948	1950. 1951. 1952. 1953. 1954.	1	195		195 195 195	l

See footnotes at end of table.

-Continued
ulley—
ellatin V
re Ge
in t
streams
, of
acre-feet
i,
found
annual
and
Monthly
<u>[</u>
TABLE

							,		2000	i and	מינים לי בי	Danii	
Water year 1	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
					Thompson	n Creek ne	Thompson Creek near Belgrade	0					
1952. 1953. 1954.	2,400 2,340 2,280	2,140 2,060 2,080	1,840 1,700 1,910	1,660	1,380	1,450	2,830	2,300	1,960 2,010	2,140 2,100	2,320 2,380	2,420	24,840 21,590
					Ben Hart	Creek nea	Ben Hart Creek near Belgrade						
1952 1953 1954	2,220 2,050 1,780	2,080 2,030 1,790	1,890 1,910 1,840	1,740 2,060	1,550	1,570	1,960	2,340	1,700	1,920	1,950	1,960	22,880 22,590
					Ross C	Ross Creek near Belgrade	Selgrade						
1952 1952 1953	885	776	821 744	734 684	591	581	701	1,110	1,030 1,300 1,510	1,030 1,370 1,920	994 1,150 1,580	901 1,100 1,380	11,120
					Truman	Truman Creek near Belgrade	Belgrade						
1952	56	44	40	38	28	32	258 55	502	250	135	89 113	80	1,540 1,620
					Reese C	Reese Creek near Belgrade	Belgrade						
1951 1952 1953	449	417	405	363	311	361	1,220	2,730	997 1,730 4,590	442 842 1,130	355 457 571	394 415 450	9,700

Bear Creek near Belgrade

1952 1953 1954	188 189 181	186 163 195	152 167 193	196 246	166	184 245	432 230	212 163	186 204	224	200	182	2,510
					Foster C	Foster Creek near Belgrade	Belgrade						
								23	32	16	15	12	
				Dry C	Dry Creek at Andrus ranch, near Manhattan	drus ranch	, near Man	hattan					
1952. 1953.	1,180	1,100	1,070	1,050	980	996	4,560	2,030 1,240	1,350	1,220 1,460	956 1,290	1,090 1,290	17,580 15,850
					Reynolds (reek near	Reynolds Creek near Manhattan	_					
	89	65	14	68	29	2.2	09	92	127	92	92	95	982
				Dry Cr	Dry Creek at Brownell ranch, near Manhattan	wnell ranc	h, near Ma	nhattan					
1951							:		508	402	332	458	
					Story Cr	Story Creek near Manhattan	lanhattan						
1952. 1953. 1954.	1,480 1,120 1,000	1,290 $1,180$ 922	1,290 1,110 778	1,070	805	831 936	1,330	1,700	674 900	984 664	1,060 1,070	1,290	13,800 11,640
					Cowan C	reek near l	Cowan Creek near Manhattan						
1952	541 581 562	512 526 568	415 500 555	430 586	442 477	480 491	662 499	635	409 650	309 584	403 200	476	5,714 5,860
-													

See footnotes at end of table.

TABLE 7.—Monthly and annual runoff, in acre-feet, of streams in the Gallatin Valley—Continued

Water year 1 Oct. Nov. Dec. Jan. Feb. Mar. Apr.	952 1,080 952 1,020 795 575 659 942 942 953 1,110 1,110 1,110 1,110 1,01	952 829 873 922 954 827 805 953 534 637 741 746 706 869 1,080 1,080 1,080	Gallatin River at Logan	1893 2894 2895 2895 2895 2895 2800 27,700 24,600 25,000 35,000 346,300 1895 243,000 244,600 249,200 49,200 44,400 48,400 42,400 42,400 42,400 42,400 42,400 42,400 42,400 42,400 42,400 43,000 49,500 49,500 43,000 58,100 40,000 58,900	1898 37,900 40,100 39,700 43,000 23,300 23,300 23,300 23,300 23,300 23,300 27,900 46,100 1900 23,300 24,200 24,300 23,300 55,500 61,500 76,300 1901 23,300 23,300 23,300 23,300 23,500 67,900 1901 33,400 38,900 36,900 32,600 46,100 1902 33,400 38,900 36,900 30,600 41,700 36,600	1903 36.300 40,400 36.900 43.000 44.400 48.500 51.900 1904 41,700 41,700 36.900 28,400 30.100 29,400 69.600 1905 45,400 36,700 46,900 36,100 35,700 32,900 1906 36,700 36,900 36,900 36,100 35,700 32,900	54,700 52,800 44,900 40,300 28,900 48,900 53,110 41,600 44,400 45,100 33,200 43,000 42,700 63,700
Oct.			:	2 43,000 2 43,200 41,800	2 34,900 2 34,900 37,300 33,400	36,300 43,800 45,400 30,700	54,700

² 545,000 ² 328,200	395,600 469,200 447,900 609,800 559,300	596,400 480,700 820,200 899,500 711,100	667,200 709,400 928,100 1,077,000 712,300	709,600 714,600 1,030,000 716,200
$\begin{vmatrix} 2 & 27 & 400 \\ 14 & 190 \end{vmatrix}$	19,690 19,360 20,980 20,900 25,810	26,380 48,290 36,310 37,730 40,910	36,080 43,650 57,560 40,600 38,120	44,010 49,670 44,460 33,410
$\begin{vmatrix} 2 & 16,600 \\ 10,290 \end{vmatrix}$	14,350 13,750 15,940 19,840 18,340	20,090 21,960 21,470 32,350 23,160	25,570 26,790 33,620 47,670 23,860	40,570 38,420 35,830 29,570
2 14,800 9,960	19,190 10,480 19,750 58,300 24,340	18,650 20,220 51,680 81,700 79,640	70,960 38,030 84,740 65,460 32,610	75,280 28,580 70,220 55,870
137,000 16,660	103,200 41,150 84,030 163,000 80,630	117,600 58,400 193,300 252,000 184,600	148,500 114,300 228,500 262,900 103,500	151,000 78,090 197,200 211,700
2 10,760	43,960 124,400 80,440 116,300 97,350	132,400 65,010 128,500 131,600 69,020	75,830 122,600 166,200 226,700 144,000	75,700 155,300 279,100 63,290
42,300 25,530	37,490 59,250 47,340 46,520 58,790	57,980 42,740 96,970 82,470 48,140	39,660 81,770 67,220 90,870 77,900	57,560 62,490 118,600 47,870
39,600 38,950	34,020 46,670 35,140 34,620 53,080	45,200 43,360 46,500 64,960 46,960	42,680 55,430 51,170 54,120 53,090	47,910 53,270 43,630 47,560
25,800 35,570	27,540 22,140 36,370 31,050 24,490	34,210 33,510 38,780 40,650 36,080	40,500 39,420 40,950 51,250 35,790	40,800 44,710 39,180 40,940
2 39,970	27,670 33,830 25,190 33,540 40,140	33,990 38,010 40,270 41,010 41,000	46,930 43,170 44,450 54,020 44,050	35,780 39,610 42,620 50,260
$\begin{vmatrix} 37,500 \\ 240,580 \end{vmatrix}$	28,540 36,520 30,680 34,590 45,180	39,860 39,990 52,490 42,690 49,700	44,380 45,720 48,480 55,960 51,210	42,410 51,370 47,660 49,990 48,030
$\begin{vmatrix} 49,000 \\ 245,820 \end{vmatrix}$	19,500 36,510 28,920 26,630 50,620	35,600 35,760 53,340 49,100 49,940	46,930 49,560 53,710 61,760 56,230	49,240 54,420 55,900 47,900 43,030
39,000	20,490 25,180 23,140 24,480 40,500	34,900 33,450 60,580 43,280 41,950	49,130 49,010 51,540 65,400 51,960	49,360 58,680 55,520 37,840 35,990
19331934	1935 1936 1937 1938 1938	1940 1941 1942 1943 1944	1945 1946 1947 1948 1948	1950 1951 1952 1953 1954

1 Year ending September 30 of the date shown.
2 Estimated.
3 Does not include 2,660 acre-ft stored in Middle Creek Reservoir (completed in late 1960).

⁴ Does not include 280 acre-ft stored in Middle Creek Reservoir.
⁵ Includes 1,790 acre-ft released from storage in Middle Creek Reservoir.

 $\begin{tabular}{ll} \textbf{TABLE 8.--Occasional measurements of the discharge of streams, ditches, and} \\ springs in the Gallatin Valley \end{tabular}$

	• • • • • • • • • • • • • • • • • • • •	pringe in the			
Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
[Measured in SE1/4 s		S., R. 4 E., abou	ary of Gallatin River at 1.75 miles above mo Gateway]	uth and 6.5	miles south of
Aug. 26, 1952	0.2	45	Aug. 28, 1953	0.2	
[Measured in SW1/4	Yan sec. 3, T. 4	4 S., R. 4 E., at	tary of Gallatin River bout 2 miles above mo Gateway]	uth and 5.5	miles south of
Aug. 26, 1952	0.5	48	Aug. 28, 1953	0.2	
[Measu re d in NW¼	sec. 35, T.	3 S., R. 4 E., ab	cary of Gallatin River out 0.25 mile below mo allatin Gateway]	outh of We	st Fork and 3.5
June 3, 1952 June 12, 1952 July 16, 1952 Aug. 12, 1952 Sept. 10, 1952 Oct. 14, 1952 Nov. 11, 1952 Dec. 17, 1952 Jan. 20, 1953	55.6 48.8 7.0 3.2 2.3 2.8 4.6 3.9 4.0	45 56 58 53 42 37 32 35	Feb. 24, 1953. Mar. 18, 1953. Apr. 15, 1953. May 25, 1953. June 18, 1953. July 21, 1953. Aug. 10, 1953. Sept. 17, 1953.	3.8 4.8 3.9 5.9 29.3 4.6 1.8 2.3	32 33 40 44 47 54 58 51
[Measured in SE1/4	sec. 32, T.	3 S., R. 5 E., a	utary of Wilson Creek about 1 mile above gas llatin Gateway]	ging station	n and 5.5 miles
	Big :	Bear Creek, trib 3 S., R. 5 E., a	utary of Wilson Creek about 0.5 mile above g llatin Gateway]	aging stati	on and 5 miles
Oct. 3, 1952	3.6	42			
[Measured in NE1/4		l S., R. 5 E., 2.7	tributary of Gallatin R 5 miles above gaging s tin Gateway]		9.5 miles south
Oct. 3, 1952	6.4	41			
[Measured in SW1/4]	Spain-Ferr NW¼ sec. 7	, T. 1 S., R. 5 E	ion from Spain-Ferris d ., at U.S. Highway 10 rade]	litch 5 and 0.85 n	nile southeast of
July 7, 1953 Aug. 5, 1953	7.4 7.5		Sept. 1, 1953 Sept. 28, 1953	3.7 3.2	
[Measured in NW1/4		7, T. 1 S., R. 5 1	ion from Spain-Ferris d E., at U.S. Highway 10 rade]		aile southeast of
July 7, 1953	5.6		Sept. 1, 1953	0.4	

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

Date (cfs) (°F) Date (cfs) (°F)			opi myo	in the danat	in valley —Contin	ucu	
[Measured in SW4SW4 sec. 5, T. 1 S., R. 5 E., 1.6 miles east of Belgrade] Aug. 5, 1953	_	Date		Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
Spain-Ferris ditch 2, diversion from Spain-Ferris ditch 1 [Measured in SE1/4SW1/4 sec. 5, T. 1 S., R. 5 E., 2 miles east of Belgrade] Spain-Ferris ditch 1, diversion from Gallatin River in NW1/4 sec. 14, T. 2 S., R. 4 E. [Measured in SW1/4SE1/4 sec. 5, T. 1 S., R. 5 E., 2.1 miles east of Belgrade] Spain-Ferris ditch 1, diversion from Gallatin River in NW1/4 sec. 14, T. 2 S., R. 4 E. [Measured in SW1/4SE1/4 sec. 5, T. 1 S., R. 5 E., 2.1 miles east of Belgrade] Spain-Ferris ditch 1, diversion from Gallatin River in NW1/4 sec. 14, T. 2 S., R. 4 E. [Measured in SW1/4SE1/4 sec. 10, T. 2 S., R. 4 E., 250 ft below Sheds Bridge and 7.5 miles were gozeman] Spain-Ferris ditch 1, diversion from Gallatin River Spain-Ferris ditch 2, diversion from J. Spain-Ferris ditch 1, diversion from J.							.de]
[Measured in SE14/SW14/sec. 5, T. 1 S., R. 5 E., 2 miles east of Belgrade] [July 7, 1953	Aug. 5	, 1953	2.1		Sept. 1, 1953	0.4	
Spain-Ferris ditch 1, diversion from Gallatin River in NW¼ sec. 14, T. 2 S., R. 4 E. [Measured in SW¼SE¼ sec. 5, T. 1 S., R. 5 E., 2.1 miles east of Belgrade]							e,]
[Measured in SW4SE4 sec. 5, T. 1 S., R. 5 E., 2.1 miles east of Belgrade] [Muly 7, 1953	uly 7 Aug. 5	, 1953 , 1953			Sept. 1, 1953	0.1	
Mammoth ditch, diversion from Gallatin River							
Mammoth ditch, diversion from Gallatin River Measured in NW1/4SW1/4 sec. 1, T. 1 S., R. 4 E., at U.S. Highway 10 and 0.4 mile northw Belgrade Sept. 1, 1953	fuly 7 Aug. 5	, 1953 , 1953			Sept. 1, 1953 Sept. 28, 1953	8.6 6.5	
Mammoth ditch, diversion from Gallatin River	[Measu	red in SE¼	sec. 10, T.	2 S., R. 4 E., 2	50 ft below Sheds Br	idge and 7.	5 miles west o
[Measured in NW¼SW¼ sec. 1, T. 1 S., R. 4 E., at U.S. Highway 10 and 0.4 mile northw Belgrade] July 7, 1953	Apr. 2	, 1952	305				
J. S. Hoffman ditch 2, diversion from J. S. Hoffman ditch 1 [Measured in NE¼ NE¾ sec. 33, T. 1 N., R. 4 E., at U.S. Highway 10 and 2.9 miles northw Belgrade] July 7, 1953	[Measu	red in NW1/4	Mamn SW¼ sec. 1	l, T. 1 S., R. 4 E	L, at U.S. Highway 10	er) and 0.4 m	ile northwest o
Sept. 1, 1953 1.7	July 7 Aug. 5	, 1953 , 1953	10.3 10.3		Sept. 1, 1953 Sept. 28, 1953		
Aug. 5, 1953 2.1 Sept. 28, 1953 1.0 Sept. 1, 1953 1.0 Sept. 28, 1	[Measu	red in NE¼1	J. S. Hoffma NE¼ sec. 3	n ditch 2, diversi 3, T. 1 N., R. 4 E Belg	on from J. S. Hoffman E., at U.S. Highway 10 rade]	ditch 1 and 2.9 mi	les northwest o
[Measured in NE¼SE¼ sec. 34, T. 1 N., R. 4 E., at U.S. Highway 10 and 1.7 miles northw Belgrade] July 7, 1953 6.5 Sept. 1, 1953 1.9 Sept. 28, 1953 1.5 Sept. 2	July 7 Aug. 5	, 1953 , 1953			Sept. 1, 1953 Sept. 28, 1953		
Aug. 5, 1953 3.8	J. [Measu	S. Hoffman di red in NE¼S	itch 1, diver SE¼ sec. 34	, T. 1 N., R. 4 E	., at U.S. Highway 10	sec. 22, T. 1 and 1.7 mi	S., R. 4 E. les northwest o
[Measured in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 34, T. 1 N., R. 4 E., at U.S. Highway 10 and 1.65 miles northw	July 7 Aug. 5	, 1953 , 1953			Sept. 1, 1953 Sept. 28, 1953	1.9	
	[Mea su	red in SE¼S	J. B. Weave E¼ sec. 34,	T. 1 N., R. 4 E.	, at U.S. Highway 10	ditch 1 and 1.65 mi	les northwest o
July 7, 1953 2.5 Sept. 1, 1953 0.2 Aug. 5, 1953 4.3 Sept. 28, 1953 1.2					Sept. 1, 1953 Sept. 28, 1953	0.2	

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

		springs	in the Gallat	in valley—Contin	uea	
	Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
[Mea			2, T. 1 S., R. 4 I	latin River in NE1/4 sec E., at U.S. Highway 10 rade]		
July Aug.	7, 1953 5, 1953	22.0 16.8		Sept. 1, 1953 Sept. 28, 1953	6.4 3.6	
[Mea	Sured in SE¼N	tone-Weave W¼ sec. 34	4, T. 1 N., R. 4 I	ion from Stone-Weaver E., at U.S. Highway 10 rade]	ditch 1 and 2.3 mi	les northwest (
Sept.	1, 1953	0.2		Sept. 28, 1953	0.3	
[Mea			4, T. 1 N., R. 4 I	latin River in NW¼ se E., at U.S. Highway 10 rade]		
July Aug.	7, 1953 5, 1953	4.6 2.1		Sept. 1, 1953 Sept. 28, 1953	1.6 1.3	
			, T. 1 N., R. 4 E	man ditch in SW1/4 sec. L., at U.S. Highway 10 rade] Sept. 1, 1953 Sept. 28, 1953		
[Mea	sured in SW1/4	sec. 4, T. 1	S., R. 4 E., 200	in River ft below county road rade]	bridge and	3 miles west
Apr.	2, 1952	276				
			sec. 4, T. 1 , T. 1 N., R. 4 I	ditch), diversion from 1 S., R. 4 E. E., at U.S. Highway 10 rade]		
July Aug.	7, 1953 5, 1953	5.1 5.9		Sept. 1, 1953 Sept. 28, 1953	6.7 6.5	
			, T. 1 N., R. 4 E	tin River in SW4SE4 L, at U.S. Highway 10 rade]		
July Aug.	7, 1953 5, 1953	17.6 14.0		Sept. 1, 1953 Sept. 28, 1953	2.1 3.5	
[Mea	sured in SE¼ s	sec. 1, T. 1	N., R. 3 E., 50 f	in River it below county road brattan]	ridge and 1.	75 miles east

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

	springs	in the Gallat	in Valley—Contin	ued	
Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
Measured in NE¼ s	ec. 4, T. 2 S	3., R. 3 E., at Vi	ary of Gallatin River ncent School, 50 ft bel of Gallatin Gateway]	ow county	road bridge and
Sept. 20, 1951	0.5	49			
[Measured in NW1/4	sec. 2, T. 1	S., R. 3 E., at Bu	ary of Gallatin River ell railroad siding, 50 t ath of Manhattan]	ft above cou	nty road bridge
Sept. 20, 1951	16.3	51			
[Measured in NW1/4	sec. 1, T. 1	N., R. 3 E., 300	n River ft above railroad brid hattan]	lge and 1.5	miles northeas
Apr. 2, 1952	425				
Pir [Measured in SW1/4	tcher Creek, sec. 13, T.	tributary of Ro 2 S., R. 6 E., 0.4	ky Creek (East Gallati mile above mouth and	n River) d 5 miles ea	st of Bozeman
Sept. 13, 1951 Aug. 27, 1952	0.2	45 49	Aug. 26, 1953	0.3	
[Measured in SE¼ s	Kelly ec. 11, T. 2	Creek, tributary S., R. 6 E., 1.25	of East Gallatin River miles above mouth and	4.5 miles es	ast of Bozeman
Sept. 13, 1951 Aug. 27, 1952	0.4	43 49	Aug. 26, 1953	0.6	
I [Measured in NE1/4 s	Limestone C sec. 4, T. 3 S	l., R. 6 E., at aba	f Sourdough (Bozeman Indoned farm 2.25 miles of Bozeman]) Creek s above mou	th and 5.5 mile
Sept. 12, 1951 Aug. 26, 1952	0.7	41 52	Aug. 26, 1953	0.5	
[Measured in SE¼ s	Niche	ols Creek, tributs 5., R. 6 E., 1.5 m	ary of Limestone Creek iles above mouth and 5	.5 miles sou	th of Bozeman
Sept. 12, 1951 Aug. 26, 1952	0.2	41 51	Aug. 26, 1953	0.2	
[Measured in NE1/4	East G sec. 36, T. 1	S., R. 5 E., 10 f	butary of Gallatin Rive eet below county road man]	er bridge and	2 miles north o
Apr. 3, 1952	73.5				
			·	<u> </u>	<u> </u>

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

			in the Guital			
	Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
	[Measured			butary of Gallatin Rive . 5 E., 4.0 miles north		eman]
Apr.	3, 1952	79.2				
Mea	sured in SW1/4		1 S., R. 6 E.,	of East Gallatin River 1.5 miles above mouth eman]		les northeast (
Aug.	27, 1952	0.1				
Mea	sured in SE¼		1 S., R. 6 E <u>.</u> , 3.	y of East Gallatin River 5 miles above mouth eman]		les northe a st o
	13, 1951 27, 1952	0.5	46 51	Aug. 26, 1953	0.1	
West	R. 5 E., an	d tributary	of East Gallatin	rom East Gallatin Rive River in SW1/4 sec. 32 S., R. 5 E., 2.6 miles ea	, T. 1 N., F	R. 5 E.
	7, 1953 5, 1953			Sept. 1, 1953 Sept. 28, 1953	7.6 4.0	
	5, 1953	ditch, divers			4.0 sec. 10, T. 1	
luly	5, 1953	ditch, diverged in SE 1/4 S		Sept. 28, 1953	4.0 sec. 10, T. 1	
July Aug.	5, 1953 Arnold-Toohey [Measus 7, 1953 5, 1953	ditch, diversed in SE 1/4 S	onwood Creek, tr	Sept. 28, 1953 Sallatin River in SW¼ S., R. 5 E., 3.1 miles ea	sec. 10, T. 1 st of Belgra	de]
July Jug.	5, 1953 Arnold-Toohey [Measured of Measured of	ditch, diverged in SE 1/4 S 1.4 3.9 Middle Cotte sec. 10, T.	onwood Creek, tr	Sept. 28, 1953 sallatin River in SW ¹ / ₄ S., R. 5 E., 3.1 miles ea Sept. 1, 1953 ibutary of East Gallatin miles above gaging st	sec. 10, T. 1 st of Belgra	de]
July Aug.	5, 1953 Arnold-Toohey [Measured of Measured of	ditch, diverged in SE 1/4 S 1.4 3.9 Middle Cotte sec. 10, T.	onwood Creek, tr 1 S., R. 6 E., 1.1 of Box	Sept. 28, 1953 sallatin River in SW ¹ / ₄ S., R. 5 E., 3.1 miles ea Sept. 1, 1953 ibutary of East Gallatin miles above gaging st	4.0 sec. 10, T. 1 st of Belgra 2.0 n River ation and 6	miles northea
July Aug. [Mea	5, 1953 Arnold-Toohey [Measured of Measured of	ditch, diverged in SE 1/4 S 1.4 3.9 Middle Cotte sec. 10, T.	onwood Creek, tr 1 S., R. 6 E., 1.1 of Box	Sept. 28, 1953 Sallatin River in SW1/4 S., R. 5 E., 3.1 miles ea Sept. 1, 1953 ibutary of East Gallating miles above gaging statically statically above gaging statically above gaging static	4.0 sec. 10, T. 1 st of Belgra 2.0 n River ation and 6	miles northeas
July Aug. [Mea	5, 1953 Arnold-Toohey [Measured 7, 1953	7.8 ditch, diverged in SE 1/4 S 1.4 3.9 Middle Cotte sec. 10, T. 1	onwood Creek, tr 1 S., R. 6 E., 1.1 of Box 48 onwood Creek, tr S., R. 6 E., 0.5 n Boxe 48	Sept. 28, 1953 Sallatin River in SW1/4 S., R. 5 E., 3.1 miles ea Sept. 1, 1953 ibutary of East Gallating miles above gaging statically statically above gaging statically above gaging static	4.0 sec. 10, T. 1 st of Belgra 2.0 n River ation and 6	miles northeas

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
[Measured in NW1/4]		, T. 1 S., R. 6 E	Middle Cottonwood Cr ., 0.75 mile above mou man]		les northeast of
Aug. 27, 1952 Oct. 2, 1952	0.1	46 46	Aug. 26, 1953	0.1	
[Measured in NE1/4		1 S., R. 5 E.,	outary of East Gallatin at U.S. Highway 10 : rade]		es southeast of
Nov. 25, 1952	4.9		Dec. 5, 1952	0.6	
[Measured in SE¼ se			of Middle (Hyalite) Cro S. Highway 10 and 3 n		ast of Belgrade]
Sept. 20, 1951 Nov. 25, 1952	17.7 3.1	48.5	Dec. 5, 1952	0.5	
	SE¼ sec. 5, Gallat	T. 1 S., R. 5 E	outary of East Gallatin ., 0.5 mile above mout miles east of Belgrade	h of West	Branch of East
July 7, 1953 Aug. 5, 1953	46.9 27.5		Sept. 1, 1953 Sept. 28, 1953	48.2 45.7	
[Measured in SE¼ s			ary of Bostwick Creek as above mouth and 6 m	iles northe	ast of Bozeman]
Sept. 14, 1951 Aug. 27, 1952	0.2	45 53	Aug. 26, 1953	0.1	
[Measured in NE1/4		N., R. 5 E., 250	butary of Gallatin Rive of the low county road Belgrade]		3.5 miles north-
Apr. 3, 1952	141				
[Measured in SW1/4	sec. 2, T. 1	N., R. 4 E., 300	butary of Gallatin Riv ft above county road north of Belgrade]		mouth of Smith
Apr. 3, 1952	221				
[Measured in NE1/4		1 N., R. 6 E.,	ntary of Ross Creek 1.5 miles above mouth rade]	and 10 mi	les northeast of
Aug. 28, 1952	0.2	41	Aug. 28, 1953	0.1	

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (efs)	Temperature (°F)
Measured in SE1/4	sec. 4, T.	1 N., R. 6 E., 2	butary of Ross Creek 2 miles above mouth rade]	and 11 mil	es northeast o
Oct. 2, 1952	0.3	41			
Measured in NW1/4		N., R. 6 E., 1.	butary of Ross Creek 5 miles above mouth a rade]	nd 10.5 mil	es northeast o
Det. 2, 1952	0.6	41			
Measured in SW1/4	Dry sec. 9, T. 1 N	Fork Creek, tril I., R. 6 E., 1 mile	butary of Ross Creek above mouth and 10 m	iles northes	ast of Belgrade
Sept. 14, 1951 Aug. 28, 1952	0.2	45 45	Oct. 2, 1952 Aug. 28, 1953	0.1 .8	41
Measured in NE1/4	North Cosec. 18, T.	2 N., R. 6 E., 7	, tributary of Reese Crew miles above mouth a rade]	eek nd 12.5 mil	es northeast
					1
Oct. 1, 1952	0.8	40			
	North C	ottonwood Creek 2 N., R. 6 E.,	, tributary of Reese Cro 6 miles above mouth rade]	eek and 12 mil	es northeast (
Measured in NW1/	North C sec. 18, T.	ottonwood Creek 2 N., R. 6 E.,	6 miles above mouth	eek and 12 mil	es northeast
Measured in NW %	North C sec. 18, T.	ottonwood Creek 2 N., R. 6 E., Belg 40 ottonwood Creek 2 N., R. 5 E., 5	6 miles above mouth	and 12 mil	
Measured in NW 1/2 Oct. 1, 1952 Measured in SW 1/2 Oct. 25, 1951	North C sec. 13, T.	ottonwood Creek 2 N., R. 6 E., Belg 40 ottonwood Creek 2 N., R. 5 E., 5	6 miles above mouth rade] , tributary of Reese Cromiles above mouth a	and 12 mil	Avai
Measured in NW1/2 Oct. 1, 1952 Measured in SW1/4 Oct. 25, 1951 Aug. 28, 1952 Bright	North C sec. 13, T. 0.8 1.3 ditch, divers	ottonwood Creek 2 N., R. 6 E., Belg 40 ottonwood Creek 2 N., R. 5 E., 5 Belg 35 45	6 miles above mouth rade] ., tributary of Reese Cross miles above mouth a rade]	eek nd 11.5 mil	es northeast of 40
Measured in NW1/2 Oct. 1, 1952 Measured in SW1/2 Oct. 25, 1951 Aug. 28, 1952 Bright Measured in SE1/4 i	North C sec. 18, T. North C sec. 13, T. 0.8 1.3 ditch, diversec. 7, T. 1 N	ottonwood Creek 2 N., R. 6 E., Belg 40 ottonwood Creek 2 N., R. 5 E., 5 Belg 35 45	6 miles above mouth rade] c, tributary of Reese Cros miles above mouth a rade] Oct. 1, 1952 Aug. 28, 1953	eek nd 11.5 mil	es northeast of 40
[Measured in NW1/2] Oct. 1, 1952 [Measured in SW1/4] Oct. 25, 1951 Aug. 28, 1952 Bright [Measured in SE1/4 in SE1/	North C sec. 18, T. North C sec. 13, T. 0.8 1.3 ditch, diversec. 7, T. 1 N 0.9 2.9 Resec. 18, T.	ottonwood Creek 2 N., R. 6 E., Belg 40 ottonwood Creek 2 N., R. 5 E., 5 Belg 35 45 sion from Reese e., R. 5 E., 0.1 m 49 62	6 miles above mouth rade] 7, tributary of Reese Crossing and a rade of the control of the contr	eek nd 11.5 mil 0.4 1.5 5 miles nor	es northeast of 40 E. th of Belgrade 58

Table 8.—Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

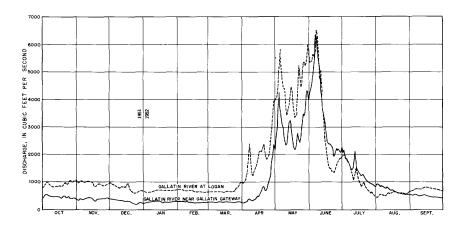

	oprings	in the Gana	in valley—Contin	ueu	
Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
[Measured in NE¼ s	Fo sec. 29, T. 2	oster Creek, tribu N., R. 5 E., at co	stary of Smith Creek ounty road bridge and	8.5 miles no	rth of Belgrade]
Oct. 25, 1951	0.6	40	Aug. 28, 1952	0.4	53
[Measured in I	NW4NW4	Spring 4, tribut sec. 14, T. 3 N.,	ary of Dry Creek R. 4 E., 12.5 miles nor	theast of Ma	nhattan]
Aug. 27, 1953	0.004				
[Measured in	NW¼NE¼	Spring 6, tribut sec. 22, T. 3 N.,	ary of Dry Creek R. 4 E., 11.5 miles nort	heast of Ma	nhattan]
Aug. 27, 1953	0.04				
. [Measured in	NE¼SW¼	Spring 5, tribut k sec. 15, T. 3 N.,	ary of Dry Creek R. 4 E., 12 miles north	east of Man	hattan]
Aug. 27, 1953	0.02	,			
[Measured in	NW4NE4	Spring 7, tribut 4 sec. 21, T. 3 N.	ary of Dry Creek , R. 4 E., 11 miles north	east of Man	hattan]
Aug. 27, 1953	0.04				
[Measured in	SW4SE4	Spring 8, tribut sec. 28, T. 3 N.,	ary to Dry Creek R. 4 E., 9.5 miles north	east of Man	hattan]
Aug. 27, 1953	0.1				
[Measured in	NE¼SE¼	Spring 9, tribut sec. 34, T. 3 N.,	ary to Dry Creek R. 4 E., 9.5 miles north	east of Man	hattan]
Aug. 27, 1953	0.02				
[Measured in NE 1/4	Dry sec. 3, T. 1	N., R. 4 E., 100	of East Gallatin River) ft below county road attan]	bridge and	6 miles east of
Dec. 4, 1952	17.0				
[Measured in SE¼ s	East G sec. 32, T. 2	? N., R. 4 E., 10	ibutary of Gallatin Rive 0 ft below county road anhattan]	er l bridge and	l 4 miles north-
Sept. 20, 1951	351	50	Apr. 3, 1952	393	
	·	·	·		

Table 8 .- Occasional measurements of the discharge of streams, ditches, and springs in the Gallatin Valley—Continued

	springs	in the Gallai	in Valley—Contin	uea	
Date	Discharge (cfs)	Temperature (°F)	Date	Discharge (cfs)	Temperature (°F)
[Measured in NE¼	East G sec. 36, T.	2 N., R. 3 E., 2	ibutary of Gallatin Riv 200 ft below mouth of Manhattan]	er Bullrun Cr	eek and 3 miles
Nov. 25, 1952	314		Dec. 4, 1952	301	
[Measured in SE¼	sec. 27, T. 2	N., R 3 E., 500	in River of the low county road hattan]	bridge and	2.5 miles north
Mar. 27, 1952	755				
[Measured			ry of Gallatin River 3 E., 2.5 miles northwe	est of Manha	attan]
Aug. 29, 1952 Mar. 5, 1953	10.7	54 33	Apr. 24, 1953	0.00	
[Measured	S in NE¼ sec	pring 2, tributar 2, 32, T. 2 N., R.	ry of Gallatin River 3 E., 2.75 miles northwe	est of Manh	attan]
Aug. 29, 1952 Mar. 5, 1953	22.6 9.0	53 53	Apr. 24, 1953 Aug. 12, 1953	8.3 18.6	55
[Measured in NE1/4		2 N., R. 3 E., at	y of Gallatin River abandoned fish hatch attan]	ery 2.75 mil	es northwest of
July 22, 1952 Aug. 29, 1952 Mar. 5, 1953	14.5	52 52	Apr. 24, 1953 Aug. 12, 1953		52

the Gallatin Valley. Gaging at the Gallatin Gateway station was resumed in June 1930. The average discharge for the 25 water years of complete record during the period 1889 to 1952 was 758 cfs and the median, 725 cfs. The mean discharge of 1,116 cfs in water year 1892 was the highest during the period of record, and 984 cfs during water year 1952 was the second highest. The lowest was in water year 1934, when the mean discharge was 409 cfs.

The general pattern of inflow at the Gallatin Gateway gaging station is fairly well illustrated by the hydrographs for water years 1952 and 1953. (See fig. 16.) From the beginning of the water year through March the gradual recession of streamflow is affected occasionally by rain, severe cold, or minor snowmelt. A rising trend beginning in April and culminating in a peak in

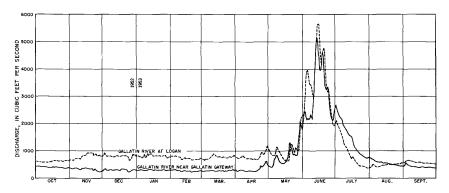


FIGURE 16.—Hydrographs of the discharge of the Gallatin River near Gallatin Gateway and at Logan, water years 1952 and 1953.

late May or early June is caused by concurrent precipitation and snowmelt. The pronounced recession that follows is affected slightly by occasional rains. The rise to a secondary peak on May 4, 1952, was somewhat unusual.

In the reach of the Gallatin River from the gaging station near Gallatin Gateway to the gaging station at Logan, the pattern of flow is modified by extensive diversions for irrigation; losses to, and gains from, the ground-water reservoir; and, to a lesser extent, runoff from within the valley. Comparison of the flow at the several gaging stations on the Gallatin River during water years 1952 and 1953 illustrates the usual downstream depletion during the irrigation season and other losses. (See table 9.) A rather consistent loss between the gaging stations at Cameron Bridge and Central Park is accounted for, at least in part, by discharge into Baker Creek and other distributary channels of the river originating between these two stations. In years of

TABLE 9.—Differences in monthly and annual runoff at gaging stations on the Gallatin River, in thousands of acre-feet, during water years 1962 and 1953

Gaging station	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
				W	Water year 1952	1952							
Near Gallatin Gateway At Axtell Bridge Gain (+) or loss (-) in flow	27.75 26.38 -1.37	22.55 24.31 +1.76	18.02 19.44 +1.42	$\frac{17.40}{19.58}$	$\frac{15.55}{16.66}$	17.30 18.37 +1.07	44.31 48.91 +4.60	186.80 215.70 +28.90	207.70 197.70 -10.00	85.42 74.99 -10.43	42.54 34.24 -8.30	29.21 24.25 -4.96	714.55 720.53 +5.98
At Axtell Bridge. At Cameron Bridge. Gain (+) or loss (-) in flow	26.38 20.12 -6.26	24.31 25.12 +.81	19.44 19.95 +.51	19.58 20.75 +1.17	16.66 17.71 +1.05	18.37 18.46 +.09	48.91 45.86 -3.05	215.70 213.20 -2.50	197.70 201.50 +3.80	74.99 38.04 -36.95	$\frac{34.24}{11.89}$ -22.35	24.25 12.23 -12.02	720.53 644.83 -75.70
At Cameron BridgeAt Central Park	20.12 13.74 -6.38	25.12 19.93 -5.19	19.95 16.07 -3.88	20.75 15.75 -5.00	17.71 14.75 -2.96	18.46 16.37 -2.09	45.86 46.10 +.24	213.20 166.40 -46.80	201.50 121.20 -80.30	38.04 29.34 -8.70	11.89 3.48 -8.41	12.23 7.10 -5.13	644.83 470.23 -174.60
At Central Park At Logan Gain (+) or loss (-) in flow	$\frac{13.74}{55.52}$ +41.78	19.93 55.90 +35.97	16.07 47.66 +31.59	15.75 42.62 +26.87	14.75 39.18 +24.43	16.37 43.63 +27.26	46.10 118.60 +72.50	$^{166.40}_{279.10}_{+112.70}$	121.20 197.20 +76.00	29.34 70.22 +40.88	3.48 35.83 +32.35	$^{7.10}_{44.46}$	$^{470.23}_{1,029.92}$ $^{+559.69}$
Total gain (+) or loss (-) in flow between Gallatin Gateway and Logan. Gain in flow due to tributary inflow Net gain (+) or loss (-) in flow due	+27.77	+33.35	+29.64	+25.22	+23.63	+26.33	+74.29 37.49	+92.30 73.10	-10.50	-15.20 23.41	-6.71 14.45	+15.25	+315.37 261.58
to changes in total water storage within the Gallatin Valley	+17.58	+24.58	+21.77	+18.21	+17.31	+19.67	+36.80	+19.20	-65.14	-38.61	-21.16	+3.58	+53.79
				A	Water year 1953	1953							
Near Gallatin Gateway At Axtell Bridge. Gain (+) or loss (-) in flow	24.69 21.53 -3.16	19.46 21.60 +2.14	19.00 21.27 +2.27	18.59 20.65 +2.06	15.18 17.14 +1.96	17.12 18.70 +1.58	20.37 22.12 +1.75	53.68 48.45 -5.23	183.60 196.70 $+13.10$	87.77 77.41 -10.36	33.89 29.99 -3.90	24.31 19.50 -4.81	517.66 515.06 -2.60
At Axtell Bridge. At Cameron Bridge. Gain (+) or loss (-) in flow	$^{21.53}_{7.58}$ $^{-13.95}$	21.60 17.19 -4.41	21.27 23.66 +2.39	20.65 22.50 +1.85	17.14 18.58 +1.44	18.70 19.79 +1.09	$\begin{array}{c} 22.12 \\ 20.55 \\ -1.57 \end{array}$	$\frac{48.45}{28.60}$ -19.85	$\begin{array}{c} 196.70 \\ 164.70 \\ -32.00 \end{array}$	77.41 35.83 -41.58	29.99 8.98 -21.01	19.50 6.77 -12.73	515.06 374.73 -140.33
At Cameron Bridge At Central Park. Gain (+) or loss (-) in flow	7.58 4.92 -2.66	17.19 14.42 -2.77	23.66 20.56 -3.10	22.50 20.24 -2.26	18.58 15.70 -2.88	19.79 17.76 -2.03	20.55 18.29 -2.26	28.60 18.64 -9.96	164.70 140.10 -24.60	35.83 35.92 +.09	8.98 1.53 -7.45	6.77 2.51 -4.26	374.73 310.59 - 64.14

$^{310.59}_{716.20}$ $^{+405.61}$	+13.15 +28.44 +30.99 +31.67 +25.76 +30.44 +27.50 +9.61 +28.10 -31.90 -4.32 +9.10 +198.54	226.68	-28.14
$^{2.51}_{33.41}$	+9.10	11.30	-2.20
$^{1.53}_{29.57}$	-4.32	34.32 77.59 29.80 16.86	+3.57 +20.78 +23.88 +24.38 +19.68 +22.66 +16.19 -24.71 -49.49 -61.70 -21.18 -2.20
35.92 55.87 +19.95	-31.90	29.80	-61.70
18.29 18.64 140.10 47.87 63.29 211.70 +29.58 +44.65 +71.60	+28.10	77.59	-49.49
18.64 63.29 +44.65	+9.61	34.32	-24.71
$^{18.29}_{47.87}$ $^{+29.58}$	+27.50	9.58 7.66 7.11 7.29 6.08 7.78 11.31	+16.19
17.76 47.56 +29.80	+30.44	7.78	+22.66
20.24 50.26 +30.02 +25.24	+25.76	6.08	+19.68
	+31.67	7.29	+24.38
20.56 49.99 +29.43	+30.99	7.11	+23.88
14.42 20.56 47.90 49.99 +33.48 +29.43	+28.44	7.66	+20.78
4.92 37.84 +32.92	+13.15		
At Central Park At Logan Gain (+) or loss (-) in flow	Total gain (+) or loss (-) in flow between Gallatin Gateway and Logan	Gain in flow due to tributary inflow	to changes in total water storage within the Gallatin Valley

low runoff the streambed at a few points between Cameron Bridge and Central Park is dry during much of the latter half of the irrigation season. The greater diversion for irrigation from the reach of river between the Axtell and the Cameron Bridges does not fully account for the apparent loss between these points. The loss is particularly evident in the 1953 water year and throughout the period of record, June through September, in the 1950 and 1951 water years.

The discharge of the Gallatin River at Logan for water years 1952 and 1953 (fig. 16) is typical of the outflow from the valley. Flow generally increases during October and continues to increase until the weather becomes severely cold. Flow during the winter usually decreases until snowmelt from the valley and foothills produces a rise in March or early April. A brief recession in flow generally precedes a rise in flow that results from snowmelt at higher elevations. Peak flow occurs in May or June concurrently with the peak flow at Gallatin Gateway, but often is somewhat lower in spite of the nearly synchronized peak flows of intervening tributaries. The discharge at Logan then decreases rapidly to a low in late July or early August. The rise in late August, which continues into the next water year, probably is the result of increasing ground-water discharge and decreasing evapotranspiration.

The average discharge of the Gallatin River at Logan for the years of complete record is 957 cfs. The median yearly discharge is 984 cfs.

Comparison of the hydrographs of the discharge of the Gallatin River near Gallatin Gateway and at Logan shows the relation of the monthly (fig. 17) and annual (fig. 18) runoff at these points. It is interesting to note the divergence between the two hydrographs after the drought years of the 1930's.

EAST GALLATIN RIVER

The East Gallatin River is a relatively short stream, but, because of its many tributaries, its flow increases rapidly in its course through the valley. Its tributaries include most of the streams from the Gallatin and Bridger Ranges and many springfed streams rising within the valley. Some of the streams that rise in the mountainous areas either sink into their alluvial fans or are diverted before reaching the East Gallatin River, but they contribute to the flow of the river through some of the shorter spring-fed streams that rise on the lower slopes of the fans.

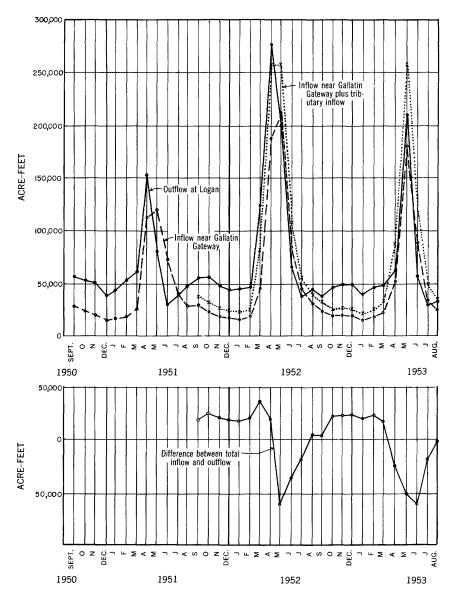


FIGURE 17.—Hydrographs of monthly surface-water inflow to, and outflow from, the Gallatin Valley, water years 1951-53.

STREAMS FROM THE GALLATIN RANGE

The principal streams that rise in the Gallatin Range and that make a major contribution to the water supply of the valley are Wilson, Big Bear, South Cottonwood, Middle (Hyalite), Sourdough (Bozeman), and Bear Creeks. Their yield per square mile of drainage area is high, averaging approximately the same as

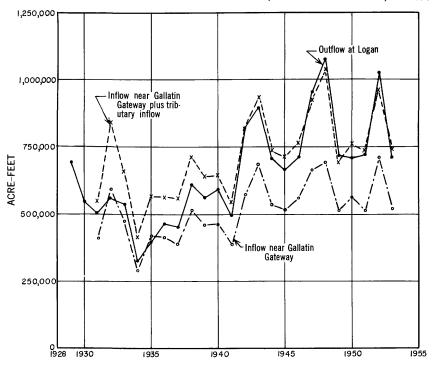


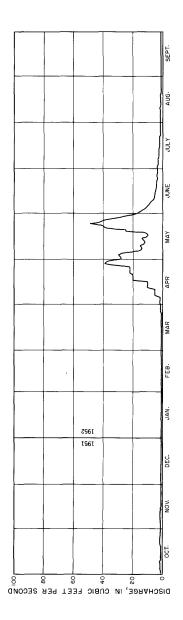
FIGURE 18.—Hydrographs of annual surface-water inflow to, and outflow from, the Gallatin Valley; estimated for period 1931-51, measured for period 1952-53.

that of the Gallatin River above Gallatin Gateway. Their combined flow during water year 1952 was nearly 132,000 acre-feet, or about half the measured tributary inflow to the Gallatin River within the valley.

STREAMS FROM THE BRIDGER RANGE

Bridger Creek, which drains a considerable part of the east slope as well as the narrow south edge of the Bridger Range, is a principal tributary of the East Gallatin River. Some water for irrigation is diverted from it before it enters the Gallatin Valley. Streams draining the west slope of the Bridger Range are fairly short and are characterized by more rapid snow runoff than are the streams draining the Gallatin Range. Ross Creek evidently receives a large part of its flow from outside its surface drainage area, presumably from an underground source. Although the surficial drainage area above the gaging station is only 1.29 square miles, the runoff was 161 inches in water year 1952 and 178 inches in water year 1953. Furthermore, the runoff pattern

lags behind the precipitation pattern. The other principal streams entering the Gallatin Valley from the Bridger Range are Reese, Middle Cottonwood, and Bear Creeks. The discharge of Middle Cottonwood Creek near Bozeman (fig. 19) is typical of runoff from the Bridger Range.


Insofar as their contribution to the surface-water supply of the valley is concerned, the streams draining the west slope of the Bridger Range are relatively unimportant because the flow of most of them either sinks into their alluvial fans or is diverted completely before reaching the East Gallatin River. These streams are important locally, however, as they are the only source of irrigation supply for some of the higher lying cropland.

Dry Creek, although it rises in the Bridger Range, is similar in its flow characteristics to streams rising in the foothills. (See pl. 3.) During water year 1952 the high flow occurred in early April and was followed by a lesser peak in late May. Thereafter the flow receded rapidly to a low point in mid-August. The slight rise to a firm flow of 17 to 19 cfs probably reflects inflow from springs or return flow from upstream irrigation.

OTHER STREAMS

The few streams rising in the Horseshoe Hills are intermittent and contribute little to the water supply of the Gallatin Valley. Streams rising in the Camp Creek Hills, which rim the west side of the Gallatin Valley, are similar in their flow characteristics to those rising in the Horseshoe Hills. Heavy rains or rapid snowmelt in the early spring produces appreciable runoff for a short time, but at other times the flow is negligible in the upper reaches of these streams. Many of them are perennial in their lower courses, however, because they receive return flow from irrigation. Ridgley, Bullrun, Gibson, Ben Hart, and Thompson Creeks are typical of streams rising in the lower part of the Gallatin Valley. The flow of these streams is derived largely from ground-water discharge and, in many places, is diverted for irrigation.

A complex system of diversion for irrigation has greatly modified the natural drainage pattern. Long-continued diversion during all seasons of the year has given many canals the appearance of natural stream channels, and many of the old channels have lost their identity as stream courses. A multiplicity and confusion of stream names has resulted. Stream names in this report are those commonly used in the area, though they may differ from the names used in water-right filings.

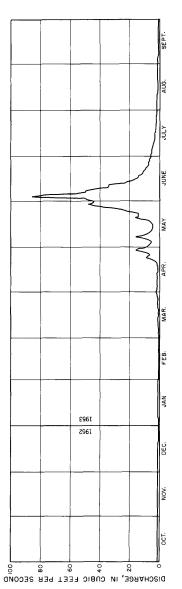


FIGURE 19.—Hydrograph of the discharge of Middle Cottonwood Creek near Bozeman, water years 1952 and 1953.

ESTIMATES OF SURFACE-WATER INFLOW TO GALLATIN VALLEY

Except for the runoff from a total of 44 square miles in water year 1952 and 39 square miles in water year 1953, all the runoff from the 1,265-square-mile area draining into the Gallatin Valley was gaged with reasonable completeness during the 2 years this study was in progress. The ungaged area consisted of scattered small wedge-shaped tracts along the east and northeast margins of the valley; the runoff from this ungaged area was estimated to be 400 acre-feet per square mile, or 17,600 acre-feet in water year 1952 and 15,600 acre-feet in water year 1953. Miscellaneous measurements and occasional gage readings that were made in water year 1953 on a few small streams and springs indicated that this estimated runoff was approximately correct.

For use in computing annual ground-water discharge during the period 1934-51, estimates of annual tributary inflow to the Gallatin Valley were made for the 21-year period preceding this study (table 10); estimates were also made of the monthly tributary inflow for the months November through February of each water year during the same period (table 11). Both the annual and monthly estimates of tributary inflow were based primarily on the relationship of the flow of individual streams or groups of streams to the total tributary inflow during water years 1952 and 1953. The discharge of the Gallatin River near Gallatin

Table 10.—Estimated annual inflow to the Gallatin Valley, in thousands of acre-feet, during water years 1931 through 1951

Water year	Gaged inflow near Gallatin Gateway	Estimated tributary inflow	Estimated total inflow
1931	407	160	567
1932	591	200	791
1933	470	190	660
1934	2 96	120	416
1935	420	150	570
1936	418	150	568
1937	390	170	560
1938	516	200	716
1939	462	180	642
1940	464	180	644
1941	386	160	546
1942	576	240	816
1943	690	240	930
1944	530	200	730
1945	513	200	713
1946	557	200	757
1947	668	280	948
1948	694	350	1,044
1949	516	180	696
1950	562	200	762
1951	520	210	730

Table 11.—Estimated monthly inflow to the Gallatin Valley, exclusive of the Gallatin River, during period November through February of water years 1931 through 1951, in thousands of acre-feet

Water year	November	December	January	February
1931	8	7	5	7
1932	7	7	7	6
1933	8	7	7	6
1934	7	7	7	6
1935	6	5	4	4
1936	6	6	5	5
1937	6	6	5	5
1938	6	5	5	5
1939	8	7	5	4
940	5	5	5	$\bar{4}$
1941		5	6	$ar{4}$
942		12	8	6
$19\overline{43}$		7	6	6
1944	1	7	6	5
1945		6	6	6
1946	1	8	7	6
1947		9	7	6
.948		12	11	6
1949		8	7	7
1950		ž l	6	7
1951	1	9	8	7

Gateway, precipitation records, and the results of snow surveys in the Middle (Hyalite) Creek basin also were used in making the estimates. The general uniformity of the numerical relationships of the individual months and those for the water year, particularly for water years 1940 through 1951, made the results seem reasonable.

The accuracy of the estimates of tributary inflow to the Gallatin Valley varies inversely with the extent of the ungaged area. The estimates for water years 1931 through 1934, when records for the Gallatin River near Gallatin Gateway and precipitation records were the only basis, are considered to be accurate within 30 percent. The estimates for water years 1935 through 1939, when the flow of Middle (Hyalite) Creek also was measured, are considered to be accurate within 25 percent. Establishment of a gaging station on the East Gallatin River at Bozeman in September 1939 again decreased the area from which runoff was not measured, and the estimates for water years 1940 through 1945 are considered to be accurate within about 20 percent. The collection of records on Bridger Creek near Bozeman, beginning in January 1946, may have improved further the accuracy of these estimates of tributary inflow for the water years 1946 through 1951.

The estimates of tributary inflow for individual months November through February (table 11) are considered to be accurate within the following percentages: For water years 1931 through 1939, 40 percent; water years 1940 through 1945, 30 percent; water years 1946 through 1951, 25 percent. However, the estimates of total tributary inflow during the period November through February of each water year may be accurate within about 20 percent.

Values for total surface-water inflow to the Gallatin Valley during water years 1931 through 1951 are shown in table 10 and figure 18. Because gaged discharges generally are considered to be accurate within 15 percent for individual months and within 10 percent for annual values, the values for total annual surface-water inflow (gaged plus estimated) probably are reliable within 15 percent.

UTILIZATION

Surface water is the principal source of irrigation supply in the Gallatin Valley. According to data collected by the Montana State Engineer (1953a, p. 27-30), 107,261 acres was under irrigation in 1952. A total of 72,433 acres received water from the Gallatin River, and 10,594 acres received water from tributaries of the Gallatin River, exclusive of the East Gallatin. A total of 3,424 acres received water from the East Gallatin, and 20,810 acres received water from its tributaries. Water shortages during the last half of the irrigation season are reported in nearly all years for farms having the later water rights. These shortages are aggravated during extremely dry years. The only existing storage facilities, except for municipal storage, are Middle Creek Reservoir, which can store about 8,000 acre-feet, and Mystic Lake, which can store about 1,100 acre-feet.

The city of Bozeman is supplied with water from Sourdough (Bozeman) Creek, which rises in the Gallatin Range, and from Lyman Creek, a short, partly spring-fed stream, which rises in the Bridger Range. Storage facilities are provided by Mystic Lake near the head of Sourdough (Bozeman) Creek, and by two reservoirs, one on Sourdough (Bozeman) Creek and one on Lyman Creek.

Sportsmen consider the streams of the Gallatin Valley to be excellent for trout fishing. The spring-fed streams in the north end of the valley provide a nesting place for ducks; also, because these streams remain relatively free of ice, many ducks winter in the area.

GROUND WATER

DEFINITION OF TERMS

Below a certain level within the earth the porous rocks generally are saturated with water under hydrostatic pressure. This water is known as ground water, and the water-bearing rocks (formations, groups of formations, or parts of formations) that will yield sufficient water to be a source of supply are referred to as aquifers. Aquifers are recharged chiefly by the infiltration of precipitation and by influent (losing) streams, and they discharge mostly through seeps and springs into effluent (gaining) streams. In some places water is withdrawn from the aquifers by pumping from wells and, where the water table is shallow, by vegetation having roots that penetrate to the zone of saturation or to the capillary fringe that extends above it.

Where ground water is unconfined, its upper surface is referred to as the water table and the water is said to occur under water-table conditions. Meinzer (1923b, p. 22, 32) defined the water table as the upper surface of a zone of saturation except where that surface is formed by an impermeable body. In general, the water table is not a level surface, but conforms, in subdued relief, to the irregularities of the overlying land surface; also, it fluctuates in response to changes in the ratio of ground-water recharge to discharge.

Where a zone of saturation is bounded above by a bed of relatively impermeable material and the water is confined under sufficient hydrostatic pressure to rise above the base of that confining bed, the aquifer is termed "artesian" and the confining bed is referred to as an aquiclude. The imaginary plane to which artesian water will rise in nonpumped wells is called a pressure-head-indicating surface, or piezometric surface, and may be either below or above the land surface. Like the water table, the piezometric surface is not a level surface, but, unlike the water table, it fluctuates not only with changes in the ratio of recharge to discharge but also with changes in pressure conditions within the aquifer.

Meinzer (1942, p. 390) stated:

The two properties of a rock material that most largely determine the behavior of its contained water and its productiveness as a water-bearing formation are its specific yield and its permeability. Both of these properties are determined by the character of the interstices and the resultant effects of molecular attraction. The specific yield relates to the storage capacity of the rocks; the permeability relates to their capacity to transmit water.

The specific yield of a water-bearing formation, as defined by Meinzer (1923b, p. 28), is the ratio of (1) the volume of water

that a saturated aquifer will yield by gravity to (2) the volume of the aguifer. It is, therefore, a measure of the quantity of water that a saturated aguifer will yield when drained by gravity. Under water-table conditions, the specific yield is practically equal to the coefficient of storage, which is a property of the aquifer that may be determined by making pumping tests. Unlike the term "specific yield," however, the coefficient of storage applies to both water-table and artesian aguifers and is defined as the volume of water (measured outside the aguifer) that an aguifer releases from, or takes into, storage per unit surface area of the aguifer per unit change in the component of head normal to that surface. For a water-table aquifer, the water released from storage is attributed largely to gravity drainage or refilling of the zone through which the water table moves and only in small part to compressibility of the water and aquifer material in the saturated zone. For an artesian aguifer, however, the water released from storage is attributed solely to compressibility of the water and aguifer material in the saturated zone.

The standard coefficient of permeability of a water-bearing formation, as used by the Geological Survey, is the rate of flow of water at 60°F, in gallons per day, through a cross section of 1 square foot, under a hydraulic gradient of 100 percent (1 foot per foot). A related coefficient, which has been called the field coefficient of permeability, was defined by Meinzer (1942, p. 452) as

the rate of flow of water, in gallons a day, under prevailing conditions, through each foot of thickness of a given aquifer in a width of 1 mile, for each foot per mile of hydraulic gradient.

The capacity of an aquifer to transmit water is termed "transmissibility." The coefficient of transmissibility, which for many purposes is a more useful unit than the field coefficient of permeability, was defined by Theis (1935, p. 520) and commonly is expressed by the Geological Survey as the number of gallons of water per day, at the prevailing water temperature, that is transmitted through each mile strip extending the full saturated thickness of the aquifer under a hydraulic gradient of 1 foot per mile.

The specific capacity of a well is its rate of discharge per unit of drawdown. The term is applied only to wells in which the drawdown varies approximately as the discharge. In such wells the specific capacity can be determined by dividing the discharge of the well, generally in gallons per minute (gpm) by the water-level drawdown, generally measured in feet.

DETERMINATIONS OF AQUIFER PROPERTIES

An aquifer test, or so-called "pumping test," is a field method whereby the main hydrologic properties of an aquifer can be determined. The coefficient of transmissibility of an aquifer can be computed from a test using a single pumped well ("single-well" test), whereas the coefficients of both transmissibility and storage can be computed from a test using a single pumped well and one or more observation wells ("multiple-well" test). If, in addition to the coefficient of transmissibility, the saturated thickness of the aquifer is known, the average coefficient of permeability of the water-bearing material can be computed.

Because a single-well test can be made without installing observation wells, this type of test was the principal method used in the determination of transmissibility coefficients in the Gallatin Valley. Altogether, about 100 such tests were made and the coefficient of transmissibility at 37 sites was computed (more than one test was made at several of the sites). As a check on the values thus obtained, tests involving the use of 3 or 4 observation wells in addition to the pumped well were made at 4 sites. These multiple-well tests served also as a random sampling of the coefficients of storage. The results of both types of tests are summarized in table 12.

The coefficient of transmissibility of known Tertiary strata was determined at six scattered points within the valley. Five of the values ranged from 300 to 6,000 gpd per foot but one was 17,000 gpd per foot. The results of two other tests indicated inconclusively that lenses of unconsolidated sand and gravel within the Tertiary strata may have considerably higher coefficients of transmissibility. One of these, a test on well A1-3-33dd, gave a value of 26,000 gpd per foot, but it was not known whether all or only part of the water was withdrawn from Tertiary strata. The other, a test of a sand layer between the depths of 249 and 260 feet in test hole A1-4-15da2, indicated a coefficient of transmissibility between 30,000 and 40,000 gpd per foot, but a more exact computation could not be made. Examination of exposed Tertiary strata and computations of the coefficient of permeability for the tests at sites D1-3-36bc, D1-4-25aa2, and D2-4-9bc have led to the conclusion that the Tertiary strata generally would yield sufficient water for domestic use and the watering of livestock but not for irrigation or other large-scale uses.

The coefficient of transmissibility of the Bozeman alluvial fan was determined at 6 sites and that of the Spring Hill fan at 2 sites. The wide range in values, 7,000 to 65,000 gpd per foot, indicates that the alluvial-fan deposits generally will yield ample water for domestic and livestock use but that only locally will it yield sufficient water for irrigation or other large-scale uses.

The coefficient of transmissibility of the alluvium of the Gallatin and East Gallatin Rivers was determined at 24 sites; it ranges from 38,000 to 670,000 gpd per foot and averages about 200,000 gpd per foot. A test made on a well (A1-5-10ba) tapping both the alluvium along Reese Creek and the underlying Tertiary strata yielded a transmissibility value of 24,000 gpd per foot.

AQUIFER PROPERTIES AS THEY AFFECT THE SPECIFIC CAPACITY OF A WELL

The specific capacity of a well depends not only on the wateryielding properties of the aquifer but also on the type and construction of the well. Theoretically, therefore, if a well has been designed and constructed perfectly (an "ideal" well), its specific capacity can be determined from known aquifer properties.

To illustrate this point, a graph has been prepared to show the theoretical drawdown in an ideal well that taps an aquifer of known characteristics. (See fig. 20.) In this graph, the coefficient of transmissibility (T) is plotted along the abscissa and the drawdown (s), for a pumping period (t) of 12 hours, is plotted along the ordinate. Three lines representing different values for the coefficient of storage (S) are plotted on the graph, each for a well having a radius (r) of 1 foot and yielding at a rate (Q) of 500 gpm. Thus, for example, at the end of a 12-hour pumping period an ideal well yielding 500 gpm and tapping an aquifer having T = 100,000 gpd per foot would have a drawdown of about 7.1 feet if S = 0.05, a drawdown of about 8.4 feet if S = 0.005, and a drawdown of about 9.7 feet if S =0.0005. Similarly, after a 12-hour pumping period an ideal well yielding 500 gpm and tapping an aquifer having T = 50,000 gpd per foot would have a drawdown of about 13.5 feet if S = 0.05, about 16 feet if S = 0.005, and about 18.5 feet if S = 0.0005.

In reality, actual drawdown exceeds theoretical drawdown even in the best designed and constructed wells and may be several times the theoretical drawdown in poorly designed and constructed wells.

The 4 multiple-well tests gave values ranging from 0.001 to 0.06 for the storage coefficient of the alluvial deposits in the Gallatin Valley. The smaller values (0.001 and 0.006) indicate that in at least a part of the areas "sampled" by the tests the water is confined. It is believed that the average coefficient of storage of

TABLE 12.—Summary of aquifer-test data

Remarks				Flow test of aquifer between	uepuis 01 149 anu 260 11.		Obervation wells at 25, 50, and 100 ft from pumped well.	Flow test of aquifer between depths of 117 and 180 ft. Observation wells at 200, 270, and 300 ft from pumped well.
Field coefficient of permeability (Pr) (god per square foot)		1 2,000		230	4,500		4,000	2,500
Thickness of aquifer (feet)		1.85		74	111		26 1 25 1 95	388
Coefficient of storage (S)						rea	0.006	.05
Coefficient of transmissibility (T) (gpd per foot)	Gateway subarea	380,000 170,000	Belgrade subarea	280,000 58,000 670,000 240,000 130,000 140,000 94,000	130,000 50,000 290,000 270,000 260,000 70,000	Central Park subares	3,700 110,000	480,000 180,000 480,000
Length of test (minutes)	Ga	100	Be	100 10 200 250 250 13 33 8,760	30 30 100 75	Cent	30 100 100	200
Yield (gpm)		64		74 265 224 520 62 62 250 220 1125	280 280 280 280 28 28		240 16 32 55	220
Depth of well at time of test (feet)		25.9 18.5		24 1118 1110 107 178 30 30.5	25.6 25 12.5 65 50 11.1		35 207 18 30 3	27
Aquifer		Alluvium		Alluvium. do Tertiary strata	Alluvium. do. do. do. do.		AlluviumAlluvium	
Well or test hole		D2-4-26de		A1-4-28da3 5-28db2 D1-4-lcb 2dd 9cb 15ab 25aa2	D1-5-5ad 9cd 30eb D2-4-11de 14sda2 14bb		A1-4-5da5dd	19eb

Manhattan subarea

Observation wells at 42, 85, and 154 ft from numbed	well.		Observation wells at 20, 40, 80, and 150 ff from pumped	well.							
7,800			009			70 10					
18			63			84					
0.001			90.0		ls		es		rea		2 Average for test.
140,000 140,000	130,000 120,000	Bozeman fan	64,000 300 4,500 36,000	2,700 26.000 50,000 65,000	Camp Creek Hills	26,000 6,000 1,200	Dry Creek subarea	24,000	Spring Hill subarea	7.000	2 Ave
300	100	-	10 30 30 1,440	30 98 180 115	Ca	30 20 20	Dra	16	Spr	30	
78	240 66		14 2.5 51 93	13.5 14.5 18 224		25 46 75		2		16 12	
77	27.6 15		28.2 255 33.2	200 16.4 19 155		99 113 600		25		11.6 25	
Alluviumdo.	op		Alluvium	Tertiary strata Alluviumdodo		Tertiary(?) strata Tertiary stratado		Alluvium and Tertiary strata.		Alluvium	
A1-3-4da	10ca		D1-5-26da	15aal 27cc 35dc		A1-3-33dd D1-3-36bc D2-4-9bc		A1-5-10ba		A1-5-21bc4	1 Estimated.

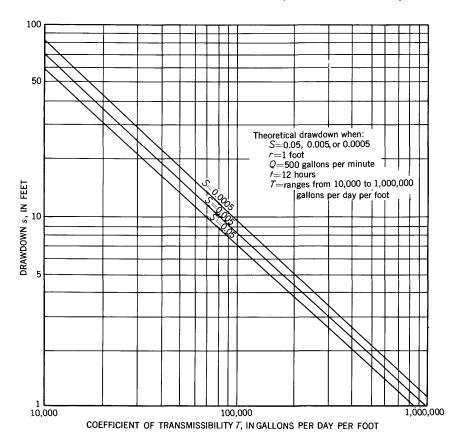


FIGURE 20.—Graph showing theoretical drawdown in an "ideal" pumped well.

the alluvium in the Gallatin Valley would be about 0.05 after 12 hours of pumping and at the end of many weeks of pumping it would be much larger.

When it is considered that the maximum saturated thickness of the alluvial-fan deposits is 80 to 100 feet, that the coefficient of transmissibility ranges from 7,000 to 65,000 gpd per foot, and that the coefficient of storage is about 0.05, or higher, it can readily be seen that the drawdown in wells pumped at a high rate would be great except where the coefficient of transmissibility is relatively high. However, the drawdown in wells tapping the alluvium of the Gallatin and East Gallatin Rivers would rarely be excessive, even if the actual drawdown were two or three times the theoretical drawdown, because the coefficient of transmissibility of that aquifer generally is greater than 100,000 gpd per foot.

RECHARGE

The ground-water reservoir underlying the Gallatin Valley is recharged principally by infiltrating stream and irrigation water and only in small part by direct infiltration of precipitation and snowmelt.

In at least part of their course across the valley, Middle (Hyalite) Creek and the Gallatin and East Gallatin Rivers are influent during part or all of the year and are a source of considerable recharge to the underlying and adjacent alluvium. The monthly loss from the Gallatin River between gaging stations at Cameron Bridge, near Belgrade, and Central Park, near Manhattan, for example, is estimated to have averaged at least 3,000 acre-feet per month during the 1953 water year. Smaller streams, where they emerge from the Bridger and Gallatin Ranges, lose much, if not all, of their flow by seepage into their alluvial fans.

In the irrigated parts of the valley, seepage from the many irrigation canals and laterals is the chief source of recharge to the ground-water reservoir. Infiltration of applied irrigation water, another source of recharge, is appreciable where the soil is highly permeable. The effect of application of irrigation water is illustrated by the hydrograph of the water level in well A2–3–33da, which was drilled into the alluvium near the outer edge of the Manhattan terrace. (See fig. 21.) Irrigation of fields upgradient from the well caused a rapid and substantial rise of the water level; when water was no longer applied, the water level in the well fell rapidly. Of the surface water that entered the valley during the 1952 and 1953 irrigation seasons, between 300,000 and 400,000 acre-feet is estimated to have been diverted for irrigation each season. Probably at least half this amount infiltrated to the water table.

The amount of recharge from precipitation depends on the volume, duration, intensity, and seasonal distribution of the precipitation, the slope of the land surface, the permeability and moisture-holding capacity of the soil, the consumptive use through evapotranspiration, and the capacity of the ground-water reservoir to store additional water.

Parts of the Gallatin Valley receive a substantial amount of recharge from direct precipitation and snowmelt during the spring. Recharge from infiltrating snowmelt and from increased streamflow due to snowmelt is illustrated by the hydrograph of the water level in well D2-5-16aal, which is on the Bozeman fan. (See fig. 22.) Daytime rises in temperature caused melting of

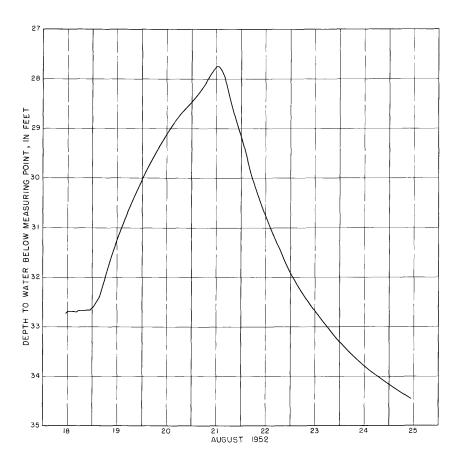


FIGURE 21.—Hydrograph of the water level in well A2-3-33da showing the effect of recharge from infiltrating irrigation water.

snow and consequent increases in streamflow, and nighttime cooler temperatures either slowed or stopped the snowmelt and reduced the streamflow. The highest daily water level lagged about 4 to 5 hours behind the highest daily temperature. In the higher part of the Bozeman fan, in particular, the water level in wells rises in response to precipitation. Recharge from direct infiltration of precipitation and to increased streamflow due to precipitation is illustrated by figure 23, which is a hydrograph of well D2-5-16aal during a period of substantial rainfall. Recharge from precipitation is greater in this part of the valley than elsewhere because of a combination of favorable factors: the volume of precipitation is greater than in the lower part of the valley, moisture requirements are less than in nonirrigated

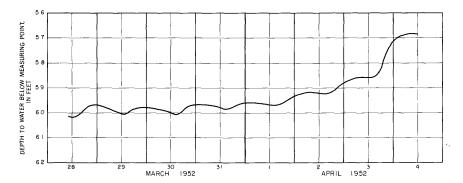


FIGURE 22.—Hydrograph of the water level in well D2-5-16aa1 showing the effect of recharge from infiltrating snowmelt and streamflow.

parts of the valley, spring snowmelt immediately precedes or coincides with the period of heaviest rainfall, and the soil generally is highly permeable.

DISCHARGE

Ground water is discharged by wells, springs, evaporation, transpiration, and effluent seepage into streams and drains.

Almost all the ground water pumped from wells in the Gallatin Valley is used for watering livestock and for domestic supply.

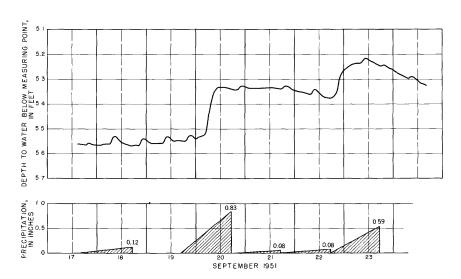


FIGURE 23.—Hydrograph of the water level in well D2-5-16aa1 showing the effect of recharge from infiltrating precipitation and streamflow.

Only one municipal supply, that for the town of Belgrade, is provided by wells. Total pumpage in the valley is minute compared to the total volume of ground water and, therefore, is relatively unimportant as a discharge factor. However, if irrigation or industrial use of ground water is increased materially in the future, discharge by pumping from wells then would become an important factor.

Evaporation of ground water occurs wherever the water table is near the land surface. Transpiration of ground water by phreatophytes (plants whose roots penetrate to the capillary fringe or to the zone of saturation) is another method of discharge. Evapotranspiration (evaporation plus transpiration) is large along stream courses and in poorly drained areas. In the Gallatin Valley the principal areas of ground-water discharge by evapotranspiration, aside from land bordering the stream courses, are an extensive waterlogged area north of Central Park between the Gallatin and East Gallatin Rivers, a small area just south of Manhattan along the road to Amsterdam, and the shallow drainageways on the Bozeman fan.

An attempt was made in the fall of 1952 and during the 1953 growing season to determine the amount of ground water discharged by evapotranspiration from a large part of the Central Park plain. Inflow to, and outflow from, a part of the plain were measured (table 13) and ground-water inflow was estimated. However, other variables were such that a reliable determination could not be made.

The amount of ground water consumed during the 1953 growing season by a typical grove of cottonwood trees 175 feet long and 150 feet wide (fig. 24) was measured by a method devised by White (1932, p. 61).

This method is based on the formula

$$q = y (24r \pm s)$$

in which

q = the quantity of ground water withdrawn by transpiration and evaporation during a 24-hour period, in inches;

y = the specific yield of the material in which the water table fluctuated during the same 24-hour period;

r = the hourly rate of water-table rise during a 4-hour period of darkness when ground-water withdrawals by transpiration and evaporation were negligible, in inches;

and

s= the net fall or rise of the water table during the same 24-hour period, in inches.

Well A1-4-22dcl, which is 9.1 feet deep and 36 inches in diameter, is near the middle of the cottonwood grove. A Stevens type-F weekly recording gage with a 12-inch float was installed

 $\begin{tabular}{ll} \textbf{TABLE 13.--Inflow to, and outflow from, the Central Park subarea} \\ \textbf{[Asterisk (*) indicates preliminary data supplied by U.S. Bureau of Reclamation]} \\ \end{tabular}$

			amount of flow ic feet per second)				
Stream or irrigation diversion	Fall 1952	July 7, 1953	Aug. 5, 1953	Sept. 1, 1953	Sept. 28, 1953		
	Inflow to ar	ea					
Spain-Ferris ditches:							
No. 4		7.4	7.5	3,.7	3.2		
No. 5		5.6	1.0	.4	.1		
No. 3			2.1	.4			
No. 1		5.0	4.2	8.6	6.5		
Mammoth ditch		10.3	10.3	2.2	9.5		
I. S. Hoffman ditches:		10.0	10.5	2.2			
No. 2		3.9	2.1	1.7	1.0		
No. 1		6.5	3.8	1.9	1.5		
J. B. Weaver ditches:	1000						
No. 2		2.5	4.3	.2	1.2		
No. 1		22.0	16.8	6.4	3.6		
Stone-Weaver ditches:							
No. 2				1.2	1.3		
No. 1 Barnes ditch, diversion from D. N.		4.6	2.1	1.6	1.3		
Hoffman ditch		4.8	2.6	7	.4		
West branch of East Gallatin River		16.2	7.8	7.6	4.0		
Arnold-Toohey ditch		1.4	3.9	2.0			
Middle (Hyalite) Creek		46.9	27.5	48.2	45.7		
East Gallatin River near Belgrade.		*115.0	*52.0	*36.0	*38.0		
East Gallatin River at Penwell		III AND AND	1 2 3 3	2177	1777		
Bridge							
Reese Creek		*36.0	*12.0	*11.0	*11.0		
Foster Creek		*.4	*.2	*.2	*.2		
Bear Creek	*17.0	*1.1	*2.3	*2.6	*2.8		
Dry CreekSpring Branch Creek	. *17.0	*26.0 *.6	*18.0	*21.0	*22.0 *1.0		
Trout Creek		*12.0	*.5 *7.7	*8.8	*10.9		
Smith Creek near East Gallatin	. 10.0	12.0	1.1	0.0	10.0		
School		*27.7	*10.9	*18.8	*20.0		
Smith Creek at mouth	. *41.9						
Total	. 123.9	356.3	199.9	184.9	175.6		
0	utflow from	area			l		
East Gallatin River below mouth							
of Bullrun Creek	. 301	*414.1	*271.2	*352.0	*345.6		
1	Difference						
Outflow minus inflow	. 177.1	57.8	71.3	167,1	170.0		

FIGURE 24.—Cottonwood grove in the SW1/4 SE1/4 sec. 22, T. 1 N., R. 4 E.

on this well to obtain smooth records of diurnal water-level fluctuations. (See fig. 25.) The values of r and s in the formula were determined from these records, and an aquifer test made on test hole A1-4-22dc4, also in the grove, gave a value of 0.05 for the storage coefficient used as y in the formula. The daily

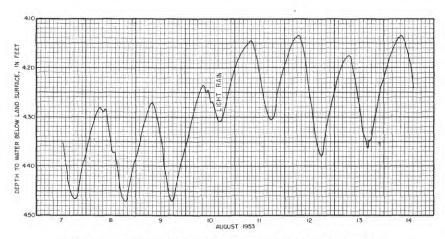


FIGURE 25.—Specimen hydrograph of the water level in well A1-4-22dc1.

consumption of ground water by the cottonwood grove (transpiration), as computed from the formula, is given in table 14 and shown graphically on plate 4. Consumption for the season totaled about 2 feet. The consumption would be greater if, as may be true, the storage coefficient is higher than the 0.05 indicated by the test.

Table 14.—Daily consumption of ground water, in inches, by cottonwood grove

	1953								
Day	June	July August		September	October				
1	(1)	(1)	0.28	0.22	0.11				
2	(1)	(1)	. 03	. 08	.01				
3	(1)	0.16	.19	(1)	.04				
4	(1)	.20	. 19	.13	. 07				
5	(1)	. 21	. 24	. 16	.06				
3	(1)	.21	.25	.15	. 10				
7	(1)	. 20	.25	.17	.07				
3	(1)	. 19	.25	.18	. 06				
)	0.04	. 25	.25	.19	.07				
)	. 12	.25	.10	(1)	.06				
1	.10	.25	.19	.16	.06				
2	.04	. 25	.27	.13	.03				
3	.12	.25	.20	.18	.06				
4	. 15	. 25	(1)	.15	. 05				
5 	.06	(1)	.24	.14	. 05				
6	. 14	(1)	. 20	.14	.04				
7 	. 16	. 2 9	.25	.14	.09				
8	.12	. 25	.17	.18	.03				
9	. 10	. 24	.24	.21	.07				
0	.01	.28	. 23	.11	07				
1	. 07	.23	(1)	.09	(1)				
2	.11	.25	(1)	.08	(1)				
3	. 11	. 26	(1)	.08	(1)				
4	.06	.27	(1)	.13	(1)				
5	.06	. 2 8	(1)	.17	(1)				
6	.12	.25	(1)	.13	(1)				
7	.12	.31	(1)	.15	(1)				
8	. 12	.28	(1)	.14	(1)				
9	16	.28	.14	.08	$\binom{1}{2}$				
0	(1)	.25	.16	.18	(1)				
1		.21	.23		(1)				

¹ Not determined.

Precipitation, relative humidity, temperature, wind velocity, evaporation, and hours of sunshine are factors that affect the transpiration rate of vegetation. Records of all but the hours of sunshine were kept at, or near, the cottonwood grove during most of the 1953 growing season and are shown graphically on plate 4. The total length of daylight (that is, the theoretical number of hours of sunshine rather than the actual hours of sunshine) is shown also.

Precipitation was measured by a recording rain gage near the grove (table 15). The CAA station, about 4 miles southeast of the grove, measured the relative humidity and both the maximum and minimum temperatures. An anemometer near the grove was used in measuring wind velocity (table 16) and a class—A evaporation pan was used in measuring evaporation (table 17). Both the anemometer and evaporation pan were read daily by Mr. Holdiman, a local resident.

Temperature, more than any other factor, seems to have had the greatest effect on the withdrawal of ground water by the cottonwood grove. A high relative humidity, however, significantly decreased the transpiration rate of the trees. If the wind velocity had been recorded for the daylight hours only, rather than for the entire day, possibly a better correlation between it and ground-water withdrawals would have been apparent. When precipitation was sufficient to wet the leaves of the trees,

Table 15.—Daily precipitation, in inches, near cottonwood grove

	1953								
Day	June	July August		Septembe r	October				
1	(1)	0.00	0.00	0.00	0.00				
2	(1)	.00	.08	.50	.20				
3	(1)	.00	.00	.00	.00				
4	(1)	.00	.07	.00	.00				
5	(1)	.00	.00	.00	.00				
6	(1)	.00	.00	.00	.00				
7	ò.07	.00	.00	.00	.00				
8	.02	.00	.00	.ŏŏ	.00				
9	.00	.00	.04	.00	.00				
0	.03	.00	.04	.00	.00				
1	.04	.00	.00	.00	.00				
2	.21	.00	.00	.00	.00				
3	.00	.00	.00	.00	.00				
4	.06	.00	.00	.00	.00				
5	.00	.14	.00	.00	.00				
6	.00	.00	.00	.00	.ŏc				
7	.02	.00	.00	.00	.00.				
8	.02	.00	.00	.00	.00				
9	.10	.00	.00	.00	.00				
0	.40	.00	.00	.00	. 10				
1	.00	.00	.00	.00	.30				
2	.00	.00	.00	.08	.00				
3	.18	.00	.00	.00	.00				
4	.00	.00	.00	.00	.00				
5	.09	.00	.00	.00	.00				
6	.00	.00	.00	.00	.00				
7	.00	.00	.00	.00	.00				
8	.00	.00	.00	.00	.00				
9	.00	.00	.00	.00	.00				
0	.00	.00	.00	.00	.00				
1	.00	.00	.00		.00				

¹ Not measured.

Table 16.—Wind velocity, in miles per day, near cottonwood grove

			19	53		
Day	Мау	June	July	August	September	October
1	(1)	41.5	100.0	29.3	40.5	54.7
2	(1)	130.4	49.5	69.7	145.9	98.9
3	(1)	107.6	64.7	50.0	45.0	95.0
4	(1)	22.8	55.1	83.7	28.6	(1)
5	(1)	142.4	57.1	28.9	48.9	2 6.7
6	(1)	39.0	46.5	47.3	42.0	44.4
7	79.6	69.3	40.0	60.8	50.3	40.3
8	191.9	80.3	51.8	115.7	84.8	42.3
9	95.3	43.2	47.7	82.2	24.8	44.7
10	163.0	61.0	48.0	88.2	39.6	51.6
11	155.4	62.6	42.5	35.0	22.0	47.0
12	230.8	50.1	45.2	77.0	41.9	37.0
13	73.8	116.4	72.1	43.6	50.2	17.3
l 4	73.9	89.5	92.3	53.7	31.0	79.0
5	55.8	35.8	63.4	64.2	31.6	15.8
6	56.9	84.5	18.4	62.5	74.4	26.9
17	67.2	69.1	45.1	38.0	82.7	43.8
.8	113.5	102.2	47.8	38.3	117.2	112.8
19	55.4	58.5	44.0	49.5	194.3	(1)
20	117.2	130.8	92.1	51.9	19.1	104.8
21	69.9	113.5	71.5	47.4	37.0	118.5
22	149.3	225.5	38.6	53.6	70.5	19.3
23	136.5	80.3	48.5	64.6	67.2	20.1
24	163.2	(1)	61.1	149.1	56.0	27.5
25	136.3	(1)	100.0	41.8	150.0	34.1
26	100.8	(1)	58.4	79.4	96.7	23.0
27	71.7	112.6	73.7	36.1	55.4	21.1
28	95.1	12.5	56.1	71.7	106.9	39.3
29	122.4	63.3	85.4	37.7	41.4	53.2
30	67.7	69.6	88.0	29.3	126.4	60.4
31	73.9		56.2	44.5		45.1
1						

¹ Not recorded.

ground-water withdrawals virtually ceased. This is illustrated by the fact that during a light rain the water level in the well began to rise earlier in the day than usual, and rose at the same rate as at night. (See fig. 25.)

A reconnaissance of the Gallatin Valley indicated that a total of about 15,000 acres of land is covered by cottonwoods and willows. If the consumptive use of ground water by this type of vegetation is about 2 feet of water per year, as was computed for the typical stand of cottonwoods (fig. 24), then the total consumptive use of ground water by such vegetation in the Gallatin Valley is about 30,000 acre-feet per year. However, if the specific yield determination used in the computation for the typical grove is low by a factor of as much as 2 or 3, the real order of magnitude of evapotranspiration may be more nearly 60,000 or 90,000 acre-feet per year.

TABLE 17.—Daily evaporation, in inches, from a class-A pan near cottonwood grove

	1953										
Day	May	June	July	August	September	October					
2	(1) (1)	(1)	0.24	$0.26 \\ .10$	0.14 .05	0.03 .12					
3	(1)	(1)	.21	.16	.06	.03					
1	(1)	(1)	(1)	.26	.15	.0					
5	(1)	(1)	(1)	.12	.12	.05					
3	(1)	(1)	(1)	.24	.16	.08					
7	0.25	(1)	(1)	.24	.07	. 03					
3	.11	(1)	(1)	. 29	.14	. 03 . 02					
₽	(1)	(1)	. (1)	. 16	.16	.02					
2	(1)	(1)		. 16	. 18	. 12					
<u>[</u>	(1)	(1)	.28	.22	.13	.0					
2	(1)	(1)	. 19 . 22	. 22	.13	. 03					
3	(1)	(1)	.22	.18	.11	. 03 . 03 . 02					
<u>+</u>		(1)	.38	.18	.09	.02					
5	(1)	(1)	.28	. 29	.21	.06					
· · · · · · · · · · · · · · · · · · ·			.16	. 15 . 07	.11	. 04 . 08					
7 3		0.24	.18	.07 $.22$.12	.00					
9	-3	.08	.22	.22	.19	.08					
)	- K	.17	(1)	.20	.07	(1)					
1	\(\idot\)	.21	77	.12	.11	\mathcal{L}					
2	\(\)	.35	\sim	$\overset{12}{.22}$.13	$\ddot{\kappa}$					
3	(1)	.24	$\frac{1}{1}$.17	.08	$\langle 1 \rangle$					
4	(1)	(1)	71	.25	.04	(1)					
5	(1)	(1)	30	.06	.15	(1)					
3	(1)	(1)	.24	.15	.10	(1)					
7	(1)	.10	.28	. 17	.09	(1)					
3	(1)	(1)	.28	. 15	.12	(1)					
€	(1)	. 26	.21	.09	.005	(1)					
) <u>.</u>	(1)	. 29	.31	.12	. 15	(1)					
1	(1)		.11	. 15		(1)					

¹ Not measured.

Ground water is discharged wherever the water table intersects the land surface. In the Gallatin Valley, discharge by both spring flow and effluent seepage occurs where alluvial-fan deposits thin above relatively impermeable underlying material or where drains and stream courses intersect the water table. Much of the ground-water discharge occurs in the Central Park subarea, north of an east-west line drawn through Central Park. The Gallatin and East Gallatin Rivers are effluent north of this line, and many streams rise in the area.

Estimates were made of the annual discharge of ground water as surface water during the period March 1934 through February 1953. (See table 18.) These estimates are based on an analysis of records of streamflow in the Gallatin Valley.

Because nearly all the inflow to the valley during July and August is diverted for irrigation and very little of the diverted

Table 18.—Estimated ground-water discharge, in thousands of acre-feet, from the Gallatin Valley

Year (March through	Measured discharge of Gallatin River at	Estimated average monthly ground-water	Average difference between monthly inflow and outflow during period	Estimated monthly water di	ground-	Estimated annual ground-
February)	Logan during August	discharge during summer	November through February	During winter	For the year	water discharge
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1934-35. 1935-36. 1936-37. 1937-38. 1938-39. 1940-41. 1941-42. 1942-43. 1943-44. 1944-45. 1945-46. 1946-47. 1947-48. 1948-49. 1949-50. 1950-51. 1951-52.	10 14 14 16 20 18 20 22 21 32 23 26 27 34 48 48 24	10 14 10 16 20 18 19 20 21 24 23 25 25 25 27 24 28	8 12 11 12 17 17 16 18 19 16 21 19 22 24 20 18 20 1 20 1 20,5	11 15 11 15 20 18 18 18 19 21 19 22 23 20 18 21	10 14 10 16 20 18 19 20 22 22 24 27 24 21 25 24	120 170 120 190 240 220 220 230 240 260 260 290 320 290 320 290 290

¹ Measured.

water returns as waste surface water to the valley streams, the outflow from the valley during these months largely represents ground-water discharge. If, however, the records of streamflow and precipitation indicated that not all surface-water inflow was diverted or that precipitation within the valley or return of waste water contributed substantially to the outflow, the measured flow of the Gallatin River at Logan during August (column 2) was adjusted accordingly in estimating the average monthly ground-water discharge during the summer (column 3). The estimates of ground-water discharge probably err on the low side.

During the cold-weather months, November through February, when precipitation contributes little or no runoff and evapotranspiration is of minor importance, the difference between inflow to, and outflow from, the valley consists largely of ground-water discharge. Differences between the inflow and outflow during the winter months were averaged (column 4) and then adjusted (column 5) on the basis of temperature and precipitation records.

The average of the monthly summer and winter ground-water discharges (column 6) was considered to represent the average monthly ground-water discharge for the year, and when multiplied by 12, was considered to represent the annual ground-

water discharge (column 7). The estimates of annual ground-water discharge range from 120,000 to 320,000 acre-feet and average about 240,000 acre-feet.

A different method of estimating ground-water discharge was used for the years March 1951 through February 1952 and March 1952 through February 1953. This method was based on a graph showing cumulative departure from the amount of ground water in storage on June 30, 1952. (See fig. 26.) The slope of the graph during the fall and winter months, when evapotranspiration is at a minimum, was used to determine the average monthly rate of ground-water discharge as surface flow. By this method, the amount of ground water discharged from the valley for those years was computed to be about 280,000 and 300,000 acre-feet, respectively. These values compare well with the values obtained for the same years by the streamflow method.

CONFIGURATION OF THE WATER TABLE

The water table is an irregular sloping surface that conforms roughly to the topography of the land surface. The configuration of the water table beneath a large part of the Gallatin Valley at the approximate low and high positions during 1953 (about April 1 and August 1, respectively) is shown by contour lines on plate 5. The configuration of the water table beneath the rest of the valley could not be shown because of the lack of sufficient data and because much of the ground water is confined.

Ground water moves in the direction of the hydraulic gradient, that is, at a right angle to the water-table contour lines. Along the sides of the Gallatin Valley, ground-water movement is toward the valley floor, and within the valley it is in a general northward direction. The rate of movement is proportional to the slope (hydraulic gradient) and to the permeability of the material.

The depths to water (about April 1, 1953) in wells in the Gallatin Valley are shown on plate 6 by numbers adjacent to the well symbols. As shown by the pattern on the same plate, the depth to water is less than 10 feet throughout most of the valley floor and the lower part of the Bozeman fan. However, in some places in these parts of the valley, the depth to water is as much as 50 feet. In the Camp Creek Hills the depth to water ranges from about 1 foot to as much as 600 feet. Along the south and east fringes of the valley and in the Dry Creek subarea it ranges from a few feet to 170 feet.

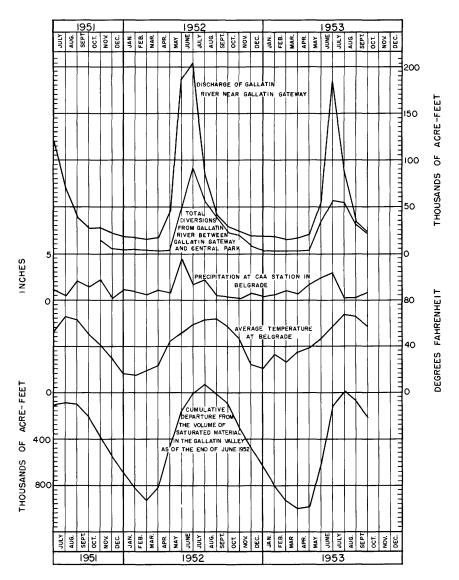


FIGURE 26.—Graphs for period July 1951 through September 1953, showing discharge of Gallatin River near Gallatin Gateway, total diversions from Gallatin River between Gallatin Gateway and Central Park, total monthly precipitation and average monthly temperature at Belgrade, and monthly cumulative departure from the volume of saturated material as of the end of June 1959

CHANGES IN STORAGE

The water table rises when recharge exceeds discharge and falls when discharge exceeds recharge. Changes in ground-water storage within the valley are reflected by fluctuations of the water level in wells. The difference between any two measurements of the water level in a well is a measure of the net amount of material that was saturated or drained in the vicinity of the well during the period between the measurements.

In estimating changes in ground-water storage for the valley as a whole, the valley was divided into hydrologic units (fig. 2), each having distinctive characteristics; the units were subdivided into polygonal areas, each having an observation well within it. The boundaries of the polygonal areas were determined by the Theissen method (Theissen, 1911, p. 1082-1084). The change in water level in each well, multiplied by the area of the polygon in which the well was situated, was considered to be the volume of material saturated or drained within the polygon during the period for which computed. The sum of the volumes for all the polygonal areas in a hydrologic unit was considered to be the total volume of material saturated or drained within the unit. In some instances, where observation wells were widely scattered and the polygonal areas were correspondingly large, the measured changes in water level were adjusted to conform more nearly to water-level changes in areas having similar hydrologic characteristics and for which more adequate information was available. Fortunately, observation-well coverage was adequate throughout the valley floor, where most of the change in storage takes place. The nonirrigated part of the Camp Creek Hills was not included in the computation because so little recharge is available to this area that the annual change in groundwater storage is insignificant.

The monthly changes in the volume of saturated material in the Gallatin Valley (excluding the Dry Creek subarea) for the period July 1951 through September 1953 are given in table 19, and the cumulative monthly departures from the volume of saturated material as of the end of June 1952 are given in table 20. A graph of the monthly cumulative departure from the volume of saturated material as of the end of June 1952 in the Gallatin Valley is shown in figure 26, together with graphs of the discharge of the Gallatin River at Gallatin Gateway, total diversions of water from the Gallatin River between Gallatin Gateway and Central Park, and precipitation and average temperature at Belgrade. The changes in the volume of ground water in storage (table 21) were computed by multiplying the changes in volume of saturated material by the average specific yield of the material (0.15).

TABLE 19.—Konthly changes in volume of saturated material in the Halley (exclusive of Dry Freek subarea), in thousands of acre-feet

[Ia, Gateway subarea; Ib, Belgrade subarea; Ic, Central Park subarea; Id, Manhattan subarea; Ie, Upper East Gallatin subarea; II, Bozeman fan; R, remainder of Gallatin Valley]

Sept.		-44.1 -6.9 -15.9 -35.3		-11.9 -34.8 -6.9 -3.7 -3.7 -20.0 -6.6 -87.9		$\begin{array}{c} -5.0 \\ -67.5 \\ -5.5 \\ -5.5 \\ -27.6 \\ -29.1 \\ -142.5 \end{array}$
Aug.		-15.4 -4.0 +2.0 -7.0		- 133.4 - 4.5 - 4.5 - 1.5 - 16.1 - 80.9		- 17.8 - 17.8 - 2.2 - 8.6 - 8.6 - 2.6 - 2.6 - 727.3
July		+11.5 -13.6 +18.9 +17.8		+++11.5 +76.7		10.9 +72.3 +10.6 +12.9 +12.8.2 +115.6
June				+113.7 +17.5 +29.1 +159.6		+55.8 +231.6 +7.0 +7.9 -16.8 +117.3 +93.3 +496.1
May				+213.5 +273.5 +27.2 +267.2 +45.5 +312.7		+ + 26.6 + 144.7 + 24.5 + 29.0 + 31.1 + 96.8 + 370.1
Apr.				+138.0 -4.6 +49.5 +156.4 +339.3		2.5.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Mar.	r 1951		r 1952	+32.3 +32.3 +57.1 +20.0 +110.2	r 1953	
Feb.	Water year 1951		Water year 1952	-54.7 -64.3 -24.4 -31.3 -116.7	Water year 1953	- 3.8 - 52.1 - 3.0 - 4.2 - 14.2 - 18.6 - 139.9
Jan.				$ \begin{array}{c} -71.3 \\ -7.0 \\ -22.5 \\ -19.9 \\ -120.7 \end{array} $		-8.4 -100.0 -2.2 -7.7 -7.7 -2.9 -23.1 -32.7
Dec.				-102.9 -8.0 -11.0 -24.6 -146.5	4	$\begin{array}{c} -10.7 \\ -56.6 \\ -7.5 \\ -6.7 \\ -2.9 \\ -25.6 \\ -344.2 \\ -144.2 \end{array}$
Nov.				-90.5 -6.2 -36.9 -31.6		-13.4 -77.5 -3.4 -2.1 -26.7 -47.3 -179.7
Oct.				-106.2 -7.1 -10.4 -40.0 -163.9		-14.4 -72.8 -6.7 -3.9 -2.9 -27.8 -27.8 -27.8
Area or subarea		la, Ib, Ic, Ie. Id. II. R. Total.	-	Ia. Ib. Ic. Ia. Ib, Ic, Ie. Id. II. R. Total.		Is. Ib. Ic. Id. II. R. Total.

TABLE 20.—Cumulative monthly departures from volume of saturated material in the Gallatin Valley (exclusive of Dry Creek subarea) as of the end of June 1952, in thousands of acre-feet

[Ia, Gateway subarea; Ib, Belgrade subarea; Ic, Central Park subarea; Id, Manhattan subarea; Ie, Upper East Gallatin subarea; II, Bozeman fan; R, remainder

			88-1769	1	0.00		7×80244700
	Sept.		-27.8 +.8 -41.1 -38.5 -106.6		-31.9 -26.2 -11.6 -7.1 -3.0 -32.1 +19.9 -92.0		-31.7 -56.8 -10.6 -10.4 -47.4 -211.6
	Aug.		-12.4 +4.8 -43.1 -31.5		-20.0 +8.6 -44.7 -12.0 -42.4 -42.2		+ 126.7 + 10.7 + 10.7 - 17.8 - 19.6 - 69.1
	July		-23.4 +3.3 -29.5 -50.4 -100.0		+++ 76251-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		1+1+1++ 7-88-9-7-7-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8
of Gallatin Valley]	June				-113.7 -17.5 -29.1 -159.6		1.1.2 1.1.2 1.22 1.22 1.22 1.22 1.23 1.23
	May				-327.2 -327.2 -44.7 -44.8 -472.3		$\begin{array}{c} -62.2 \\ -275.4 \\ -275.4 \\ -146.7 \\ -115.6 \\ -608.3 \end{array}$
(do (a) (m)	Apr.				-465.2 -40.1 -40.1 -105.1 -201.2 -811.6		$\begin{array}{c} -88.8 \\ -420.1 \\ -32.5 \\ -38.1 \\ -24.7 \\ -161.8 \\ -978.4 \end{array}$
Valley]	Mar.	ır 1951		ır 1952	-497.5 -40.7 -162.2 -221.4 -921.8	ır 1953	- 85.6 - 429.6 - 33.1 - 18.2 - 160.4 - 988.7
of Gallatin	Feb.	Water year 1951		Water year 1952	-442.8 -34.4 -137.8 -190.1 -805.1	Water year 1953	- 82.6 - 34.4 - 34.8 - 34.8 - 22.1 - 22.1 - 22.1 - 922.3
	Jan.				-371.5 -27.4 -115.3 -170.2 -684.4		-78.8 -333.1 -31.4 -30.6 -17.9 -185.3 -169.4 -796.5
	Dec.				268.6 -268.6 -19.4 -104.3 -145.6 -537.9		-70.4 -233.1 -29.2 -15.0 -112.2 -112.2 -136.7
	Nov.				-178.1 -13.2 -67.4 -114.0 -372.7		-59.7 -176.5 -21.7 -16.2 -16.2 -102.5 -475.3
o and and a	Oct.				-71.9 -6.1 -57.0 -73.8 -208.8		- 46.3 - 18.3 - 18.3 - 10.0 - 10.0 - 155.2 - 255.2
La, dacwaj subatca, 10,	Area or subarea		Ia, Ib, Ic, Ie Id III R Total		Ia. Ib. Ic. Ie. Id. Ib. Ic. Ie. Id. III. IV. Ic. Ie. III. IV. Ic. Ie. III. IV. IV. IV. IV. IV. IV. IV. IV. I		Ia. Ib. Id. Id. If. In. In. In. R. Total

TABLE 21.—Monthly	changes in volume of ground water stored in the	Gallatin
	Valley, in thousands of acre-feet	

	Water year						
Month	1951	1952 1953					
October November December January February March April May June July		-24.58 -24.78 -21.97 -18.11 -17.51 +16.53 +50.90 +46.90 +23.94 +11.51	$\begin{array}{c} -30.57 \\ -26.98 \\ -21.58 \\ -26.48 \\ -18.88 \\ -9.96 \\ +1.61 \\ +55.51 \\ +74.49 \\ +17.30 \end{array}$				
AugustSeptember	-3.67	$ \begin{array}{c c} -12.14 \\ -13.18 \end{array} $	-10.92 -21.40				

This value for specific yield is the average ratio of net gain in surface flow to net loss in volume of saturated material during a period when all precipitation was stored as snow and no ground water was used consumptively. During such a period, the net gain in surface flow was due wholly to discharge of ground water. Figure 27 is the graph used in computing the average specific yield of the ground-water reservoir in the Gallatin Valley.

The average monthly water-level fluctuations in the Gallatin Valley are illustrated by the same graph that shows monthly cumulative departure from the volume of saturated material as of the end of June 1952. (See fig. 26.) Under the existing water regimen in the valley, the pattern of fluctuation is unlikely to change from year to year, though the magnitude of seasonal changes will vary with the volume and duration of recharge. The difference between the water level on about April 1 and August 1, 1953 (the average lowest and highest positions, respectively, during that year) is shown on plate 7. It may readily be seen that the maximum change in water level occurs in the central part of the Belgrade subarea, that significant changes occur in the Gateway subarea, at the upper end of the Bozeman fan, and in the Manhattan subarea, but that elsewhere in the valley the change is relatively insignificant.

A long-term record of water-level fluctuations is important because a progressive decline or rise of the water table over a period of several years could have a pronounced effect on water use and the agricultural economy of the Gallatin Valley. No measurements of water-level fluctuations in the Gallatin Valley were made before the period of this investigation. However, the trend

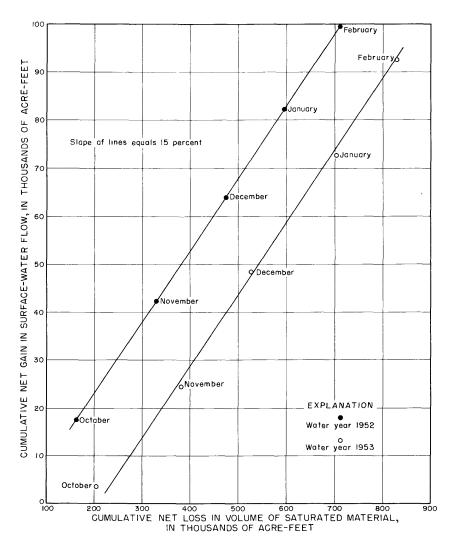


FIGURE 27.—Graph used in computing average specific yield of the ground-water reservoir in the Gallatin Valley.

and magnitude of the annual water-level fluctuations during the 17-year period preceding this investigation were inferred by estimating the cumulative departure (at the beginning of August and at the end of December in each year of the period) from the volume of saturated material as of the end of June 1952. (See table 22 and fig. 28.)

The estimates for the end of December (column 2, table 22) were obtained by using the estimates of average winter groundwater discharge (column 5, table 18) and a rating curve based

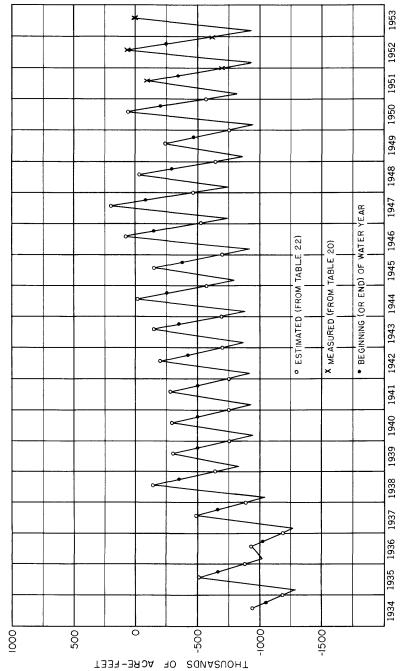


FIGURE 28.—Graph showing estimated cumulative departure, 1984-58, from the volume of saturated material as of the end of June 1952.

Table 22.—Estimated cumulative departures from volume of saturated material as of the end of June 1952, in thousands of acre-feet

Year (March through February)	Estimated cumulative departure, at end of December, from the volume of saturated material as of the end of June 1952	Estimated change in volume of saturated material, August through December	Estimated cumulative departure, at beginning of August, from volume of saturated material as of the end of June 1952						
(1)	(2)	(3)	(4)						
1934-35 1935-36 1936-37 1937-38 1938-39 1939-40 1940-41 1941-42 1942-43 1943-44 1944-45 1945-46 1946-47 1947-48 1948-49 1949-40 1950-51	-570 -700 -530 -470 -640	-250 -360 -250 -400 -500 -460 -460 -480 -550 -550 -610 -670 -610 -530 -630	-930 -520 -930 -480 -140 -300 -280 -200 -150 -20 -150 +80 +200 -30 -30 -30 -30 -60						

on the ratio of monthly ground-water discharge to the corresponding cumulative departures from volume of saturated material during the period November 1951 through February 1952 (fig. 29). The estimates for the beginning of August (column 4, table 22) were obtained by subtracting the estimated change in volume of saturated material. August through December (column 3, table 22), from the estimated cumulative departure at the end of December (column 2, table 22). The estimated change in volume of saturated material, August through December, was obtained by multiplying the estimated annual ground-water discharge (column 7, table 18) by the ratio (2.1) of the volume of material drained during the period August through December 1951 (602,200 acre-feet) to the volume of ground water discharged during the year March 1951 to February 1952 (290,000 acre-feet). The cumulative departure in volume of saturated material at the beginning of March (fig. 28) was approximated by extending the line that connects the August and December departures.

Figure 28 indicates that the lowest water level in the period 1934-53 was in 1935. The fluctuation in 1952 was the greatest annual fluctuation during the 19-year period and was about two-thirds of the difference between the lowest and highest water

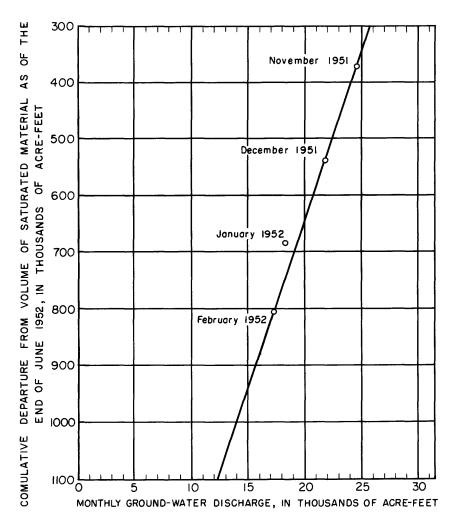


FIGURE 29.—Rating curve used in estimating midwinter cumulative departures from volume of saturated material as of the end of June 1952.

level during the period. The period 1929-36 was one of deficient precipitation, and near the end of this period, as illustrated by figure 28, the water table was low. As the water level in August 1934 was about the same as that in March 1953, the water level in August, after several years of deficient precipitation, probably would not be lower than the water level recorded in March 1953.

The effect on the water table of a period of deficient precipitation is especially important with regard to potential groundwater development because of the decrease in ground-water storage and the increase in depth to water that may result.

WATER-LEVEL FLUCTUATIONS CAUSED BY EARTHQUAKES AND OTHER DISTURBANCES

During this investigation several earthquakes caused fluctuations of the water level in wells A1-4-25dc and D2-4-9bc, each of which was equipped with a water-level recording gage. The effect of two earthquakes, one in Siberia and the other in Mexico, are illustrated by hydrographs of the water level in well A1-4-25dc. (See fig. 30.) The water level in this well was affected also by the passing of trains on the freight line of the Northern Pacific Railway, about 150 feet from the well. Minor water-level fluctuations caused by the passing of automobiles and trucks were recorded by the gage on well A1-4-5da, located about 20 feet from the county road.

WATER-RESOURCES INVENTORY, WATER YEARS 1952 AND 1953 EVALUATION

The hydrologic data collected in the Gallatin Valley during the 1952 and 1953 water years were used in making a monthly inventory of the total water resources of the valley. The Dry Creek subarea was not included in the inventory, however, because too few data on changes in ground-water storage were collected in that part of the valley. The results of the inventory are given in table 23 and are shown graphically on plate 8.

The Gallatin Valley is well suited for an inventory of this type because nearly all the components of the inventory could be measured with reasonable accuracy. Surface-water inflow to the valley was measured at gaging stations situated around the margin of the valley; precipitation was measured at stations scattered throughout the valley; the net discharge from, and recharge to, the ground-water reservoir underlying the valley were computed from measurements of the water level in numerous wells; and surface-water outflow was measured at Logan, the valley's only outlet.

Because the accretions to the surface-water supply of the valley must balance the depletions, the difference between the measured accretions (surface-water inflow, precipitation, and net ground-water discharge) and the measured depletions (net ground-water recharge and surface-water outflow) is equal to the net difference between the unmeasured accretions and unmeasured depletions. The unmeasured accretions consist of subsurface inflow and snowmelt; the unmeasured depletions consist

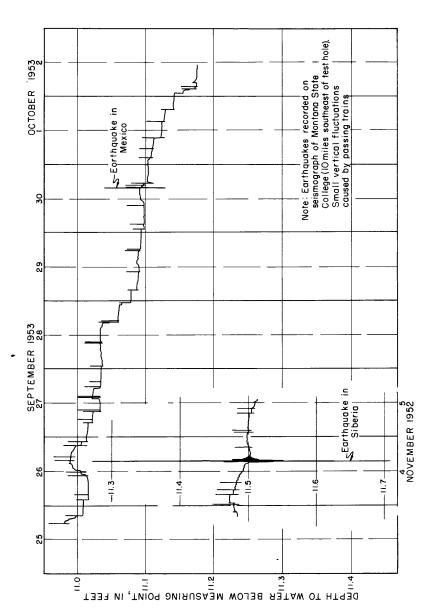


FIGURE 30.—Hydrographs of the water level in well AI-4-25dc showing the effect of earthquakes and passing trains.

¹ Does not include partial record for Churn, Deer, and Foster Creeks in the 1953 water year.

Table 23.—Monthly and annual changes in surface-water supply of the Gallatin Valley, water years 1952 and 1953, in thousands of acre-feet

U G	COL	JOGI, GROUN	D- Y	VATER RESOURCES, GA	ALL	ATIN VALLEY, MONT
Total depletions of surface- water supply of Callarin Valley (total depletions within valley plus surface-water outflow)				139.52 67.30 81.46 68.82 60.28 60.16 109.50 399.14 157.63 95.23 95.23		68.34 79.80 67.86 67.86 70.44 70.44 82.18 82.18 128.07 74.77 17.77
Total accretions to surface- water supply of Callatin Valley (total surface- water inflow plus total secretions within valley)		-	139.52 67.30 81.46 68.88 60.28 60.16 10.25 10.39 11.47 11,672.00		68.34 79.80 67.86 67.86 70.44 70.44 128.07 77.11 1,77.11	
(-) seol to (+) ais yeV niding within YelleV midalisti			+17.58 +24.58 +24.58 +21.77 +18.21 +19.67 +19.69 +19.60 +19.60 -65.14 -65.14 -73.19 +3.58		++20.78 ++20.78 ++24.38 ++19.68 ++16.19 24.71 11.70 21.11 21.11 21.11 21.11	
Depletions occurring within Gallatin Valley		IstoT		84.00 11.40 33.80 26.20 21.10 16.53 50.90 116.00 1116.00 1116.00 1116.00 1116.00 123.40 59.40 59.40 59.40 642.08		30.50 31.90 8.80 17.60 29.50 8.10 131.79 72.20 45.20 45.20 43.70
	-pu	Net loss to grou water reservoir (ground-water recharge)		16.53 50.90 46.90 23.94 11.51		1.61 55.51 74.49 17.30
	Se3	Evapotranspiration and net increases in soil moisture and snow storage		84.00 111.40 333.80 26.20 21.10 21.10 69.10 88.00 75.90 23.40 492.30		30.50 31.90 8.80 17.60 29.50 8.10 32.70 45.20 45.20 45.20 45.40 45.40
Accretions occurring within Gallatin Valley		IntoT		101.58 35.98 44.41 38.41 38.20 135.20 48.80 48.80 48.80 56.98		34.07 52.68 32.68 41.98 41.98 41.08 50.50 76.00 82.30 10.50 24.02 41.50 526.17
	sunim tlamwond evapotranstique evapotrant and net increase in soil ince increase		Water year 1952	52.40 52.40 52.40	53	
	Met gains from ground-water reservoir (ground-water discharge)			24.58 24.78 21.97 18.11 17.51 12.14 13.18	er year 1953	30.57 26.98 21.58 21.58 26.48 18.88 9.96 10.92 21.40
		Precipitation		77.00 111.20 33.60 33.60 26.30 26.30 33.33 135.20 48.80 26.10 26.10 13.80 508.30	Water	3.50 11.10 11.10 15.50 20.80 20.80 76.00 82.30 10.50 13.10 359.40
Net gain (+) or loss (-) in surface flow		-	++++++++++++++++++++++++++++++++++++++		++20.78 ++20.78 ++24.38 ++24.38 ++19.68 ++16.19 -24.71 -21.18 -21.18	
Measured surface-water outflow from Gallatin Valley (Gallatin River at Logan)			55.52 55.90 47.66 42.62 39.18 43.63 1118.60 279.10 70.22 35.83 35.83 44.46		37.84 47.90 49.99 50.26 40.94 47.56 63.29 21.70 55.87 28.57 33.41	
Surface-water inflow to Gallatin Valley	latoT		-	37.94 31.32 25.89 24.41 21.87 23.96 81.80 81.80 259.10 269.34 108.83 56.99 976.13		34.27 27.12 26.11 25.88 21.26 24.90 31.68 88.00 261.19 117.57 50.744.34
	bənessunU teributsines of Gallatin River (bətamitsə)			0.68 .539 .539 .539 .547 .43 .492 .788 .17.60		0.65 2.50 2.36 2.36 2.36 2.36 2.36 1.16 1.16 1.16 1.16
	Measured	to səiratudirT Gallatin 1 19viA		9 .51 8 .18 8 .18 7 .34 6 .54 6 .54 6 .51 34 .96 50 .96 51 .89 13 .49 10 .89 243 .98		8,93 7.13 6.62 6.79 6.79 7.25 77.25 27.75 10.52 10.52 10.52
		Gallatin River near Gallatin Gateway		27.75 22.55 18.02 17.40 17.40 17.30 17.30 17.30 186.80 20.70 85.42 42.54 42.54 714.55		24.69 19.46 19.00 18.59 17.12 20.37 20.37 23.88 183.68 183.77 33.89 24.31
Иэпе Л				October November November January January Rebruary March April July July September September Total		October November Docember January February March April June July August August February Ture Ture Ture Ture Ture Ture

of subsurface outflow, evaporation, transpiration, storage as snow, and net increases in soil moisture. The inventory shows that the unmeasured accretions exceeded the unmeasured depletions in only 2 months (March and April 1952) of the 2-year period.

Subsurface inflow and outflow are believed to be negligible. The only subsurface materials that conceivably might transmit a significant volume of water to, or from, the valley are the Tertiary strata that separate the Gallatin and Madison Valleys, the alluvium beneath the floor of the inlet and outlet canyons of the valley, and fractured rocks in the basement complex.

As the water table in the Camp Creek Hills stands above the water table in both the Madison and Gallatin Valleys, ground water cannot move out of the Gallatin Valley into the Madison Valley, nor can ground water move from the Madison Valley into the Gallatin Valley.

The thickness of the alluvium at the inlet gaging station is not definitely known but probably is about 40 feet. This thickness is based on evidence that the alluvium probably is less than 20 feet thick at other places in the canyon and that it is about 80 feet thick at Gallatin Gateway, about 8 miles downstream from the gaging station. The width of the alluvial surface at the gaging station is about 0.1 mile, and the gradient of the stream is about 30 feet per mile. Therefore, if it is assumed that the coefficient of permeability is 10,000 gpd per square foot, the maximum underflow at the inlet gaging station would be only 1,300 acre-feet per year.

Two wells, A2-2-35abl and -35ab2, were drilled near the outlet gaging station and penetrated, respectively, 22 and 23 feet of alluvium before entering limestone bedrock. (See fig. 31.) As

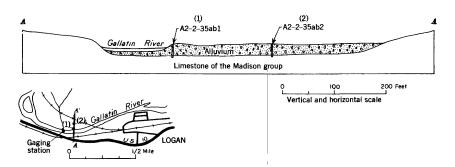


FIGURE 31.—Geologic section near Logan.

these wells, drilled in September 1952, reached no water, apparently all underflow at that time was restricted to the alluvium underlying the riverbed. At the time of spring runoff, however, more of the alluvium probably transmits underflow. Although the river crosses several limestone formations at Logan, the formations are not known to be very cavernous in that vicinity, and loss of water into them is believed to be small. Underflow through the alluvium plus loss to the limestone formations is considered to be well within the error of measurements at the Logan gaging station.

Thermal water issuing from springs and flowing wells in the valley suggests that the basement rocks may be broken in places by joints or faults. Although water conceivably enters or leaves the valley through such conduits, no evidence indicates that any large amounts of water are conveyed by them. The difference between amounts of water entering and those leaving the valley through openings in the basement rocks probably is so small as to be of no importance.

In the cold-weather months the unmeasured depletions consist largely of snow storage and evaporation of snowmelt, and in the warm-weather months largely of evapotranspiration and increases in the moisture content of the soil. Unmeasured accretions consist largely of snowmelt that results in increased runoff.

ANALYSIS

During the period October 1951 through February 1952 ground-water recharge was slight, and, as ground-water discharge continued, there was a decrease in the volume of saturated material within the valley and a gain in surface-water flow. Most of the precipitation occurred as snow, much of which was discharged from the valley by evaporation. Surface-water outflow from the valley during this period consisted largely of water that entered the valley as surface-water inflow and of water discharged from the ground-water reservoir.

During March and April 1952 soil moisture was replenished and the ground-water reservoir received considerable recharge from melting snow and precipitation. Surface-water outflow from the valley still exceeded surface-water inflow, however, because precipitation and snowmelt added to the runoff.

In May 1952 the ground-water reservoir was replenished further, in part by the infiltration of surface water diverted for irrigation and in part by precipitation. Much water was consumed by evapotranspiration. It was the month of greatest accretion to the total water supply of the valley and also the month of greatest surface-water outflow from the valley.

During June and July 1952, ground-water storage continued to increase in spite of withdrawals by evapotranspiration and discharge as surface flow. Much of the surface-water inflow to the valley was diverted for irrigation, and part of the diverted water infiltrated to the zone of saturation. Nearly all the precipitation either evaporated or replenished soil moisture; little or none infiltrated to the water table and little or none left the valley as surface-water outflow. For the first time in the 2-year period, surface-water outflow was less than surface-water inflow.

In August 1952, despite continued recharge to the ground-water reservoir, discharge of ground water exceeded recharge. As surface-water inflow to the valley was entirely consumed within the valley, surface-water outflow from the valley consisted wholly of pickup from the ground-water reservoir and continued to be less than surface-water inflow.

During the period September 1952 to March 1953 ground-water discharge exceeded recharge. Replenishment of soil moisture and evapotranspiration exceeded precipitation, the difference being largely accounted for by discharge from the ground-water reservoir. Surface-water outflow from the valley was greater than surface-water inflow throughout this period, the increase consisting almost wholly of ground-water discharge.

Beginning in April 1953 and continuing through the next July, the ground-water reservoir was filled to a level only slightly below that of July 1952. Apparently most of the recharge resulted from the infiltration of rainfall and applied irrigation water. In contrast to the previous spring, direct recharge from melting snow was insignificant. Except during April, surfacewater outflow from the valley was less than surface-water inflow.

In August and September 1953, discharge of ground water again exceeded recharge. Most of the precipitation and surfacewater inflow to the valley were disposed of by evapotranspiration and the replenishment of soil moisture; surface-water outflow from the valley consisted almost wholly of ground water discharged from storage.

Despite the constantly varying ratio of ground-water recharge to discharge, the volume of ground water in storage in the Gallatin Valley at the end of the 2-year period almost exactly equaled the volume in storage at the beginning. Although precipitation, particularly as snowmelt, sometimes is significant as a source of recharge to the ground-water reservoir, surface-water inflow

to the valley, diverted for irrigation, is by far the principal source of recharge. Even though surface-water inflow was insufficient for existing irrigation requirements, surface-water outflow from the valley during the 2-year period was slightly greater than surface-water inflow.

WATER-RESOURCES INVENTORY, WATER YEARS 1935 THROUGH 1951

Estimates of the annual changes in the surface-water supply of the valley for the 17 water years preceding the 2-year period of the monthly inventory are given in table 24. In this table, the estimates of surface-water inflow to the valley are those given in table 10, and the values for surface-water outflow are the measurements of the flow of the Gallatin River at Logan, as given in table 7.

The estimated values for precipitation were derived as follows: The ratio was determined between (a) total precipitation on the valley as measured in water years 1952 and 1953 (table 5) and (b) precipitation during those same years at the Bozeman and Belgrade stations of the U. S. Weather Bureau (tables 2 and 3). The annual precipitation by water years at the Bozeman station during the period 1934-40 and the averaged annual precipitation by water years at the Bozeman and Belgrade stations for the period 1940-51 were multiplied by this ratio. The results probably are accurate within about 20 percent.

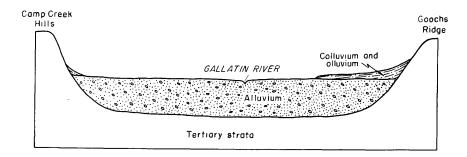
The values for the net gains from, or losses to the groundwater reservoir are the differences between successive October 1 points on the graph in figure 29 multiplied by 0.15 (the specific yield for the valley as a whole). Net depletions, excluding net loss to the ground-water reservoir, were computed by subtracting (a) surface-water outflow from the valley plus net losses of surface water to the ground-water reservoir from (b) surfacewater inflow to the valley plus precipitation on the valley plus net gains in surface-water flow derived from the ground-water reservoir. As pointed out on page 132, depletions other than losses to the ground-water reservoir consist largely of evapotranspiration, increase in soil moisture, and storage as snow. The magnitude of evapotranspiration, the largest of these depletions, is affected by such factors as volume of water available, temperature, wind velocity, relative humidity, hours of sunshine, and length of the growing season. Although an attempt was made to establish a constant relationship between the magnitude of evapotranspiration and the factors affecting it, none was found.

TABLE 24.—Estimated annual changes in surface-water supply of the Gallatin Valley, water years 1985 through 1951, in thou-

sands of acre-feet	Total depletions of aurikee-water supply our Geallatin Valley (total depletions within valley plus surface-valley plus surface-water outflow)		006	970	1,096	1,045	1,034 1,034	1,246	1,490	1,200	1,103	1,167	1,468	1,646	1,143	1,182	1,123
	ply er ecre-	006	970	1,096	1,045	1,034	1,246	1,490	1,200	1,103	1,167	1,468	1,646	1,143	1,182	1,123	
	seol ro (+) nisg təN nidtiw yairnəso (-) YəlləV nitallatə		-174	-112	- 106	æ: 1	1 1 8 5	+4	-30	- 19	-46	-48	-20	+33	+16	- 52	1 15
	hin	latoT	504	522	486	486	438 525	426	290	489	436	458	540	269	431	472	408
	Depletions occurring within Gallatin Valley	Vet loss to ground-water reservoir (ground-water recharge)	22	53	20	:	010	11	5	18		35	01	: : : : : : : : : : : : : : : : : : : :		40	:
	Depletion G	Net depletions, excluding loss to ground-water reservoir	447	469	436	486	438 520	415	585	471	436	423	530	269	431	432	408
	Accretions occurring within Gallatin Valley	letoT	330	410	380	$\frac{403}{202}$	390 460	430	260	470	390	410	520	602	447	420	393
		mori tais del ground-water reservoir reservoir (ground-water (egradosip			:	73	9				20			32	27		23
		noitatiqiəər¶	330	410	380	380	390 460	430	260	470	370	410	520	570	420	420	370
	seof to (+) aing 15M 1915 artes are restricted with		-174	-112	- 106	83	1 48	4	-30	- 19	-46	- 48	120	+33	+16	- 52	-15
	jey ow	396	448	610	559	596 481	820	006	711	299	602	928	1,077	712	710	715	
	ot w	570	260	716	642	644 546	816	930	730		757	948	1,044	969	762	730	
		Water year			1938	1939	1940	1942.	1943	1944	1945	1946	1947	1948	1949	1950	1951

It is probable, therefore, that the relationship is complex and not easily resolved.

HYDROLOGIC UNITS WITHIN THE GALLATIN VALLEY VALLEY FLOOR


The floor of the Gallatin Valley is underlain by alluvium deposited by the Gallatin and East Gallatin Rivers. In this report, the valley floor has been subdivided arbitrarily into five subareas—the Gateway, Belgrade, Central Park, Manhattan, and Upper East Gallatin (fig. 2).

GATEWAY SUBAREA

The Gateway subarea extends northward from the inlet at the south end of the valley to the vicinity of Bozeman Hot Springs, a distance of about 10 miles, and comprises an area of about 16 square miles. Most wells in this subarea are 10 to 40 feet deep, though near the margins some of the wells are considerably deeper.

The alluvium of the Gallatin River in this subarea ranges in width from about 11/2 miles to 2 miles and is bordered along its east margin by a narrow terracelike belt of stream deposits and colluvium derived from Goochs Ridge. The alluvium was deposited in a trench cut by the Gallatin River into relatively impermeable Tertiary strata. The subsurface configuration of the trench is not known, but in cross section probably appears as represented by one of the sketches in figure 32. A well (D3-4-3ca) near Gallatin Gateway was drilled through 80 feet of alluvium before entering Tertiary strata, and test hole D2-4-11dc, 1 mile north of the downstream boundary of the subarea, penetrated 68 feet of alluvium before entering Tertiary strata. The average thickness of the alluvium in the subarea, however, is estimated to be about 55 feet. No evidence indicates that the alluvium is other than uniformly coarse and permeable. coefficient of transmissibility, as determined by aquifer tests, was 380,000 gpd per foot at well D2-4-26dc and 170,000 gpd per foot at well D3-4-11bdb. A similar test made at well D2-4-11dc, just north of the subarea but in the same aquifer, gave a coefficient of transmissibility of 270,000 gpd per foot.

The main sources of recharge are the irrigation canals that cross the subarea and the streams that enter it from the highlands on either side. During years of heavy snowfall, if the soil is not frozen, spring snowmelt also is an important source of recharge. The ground water moves downvalley and toward the

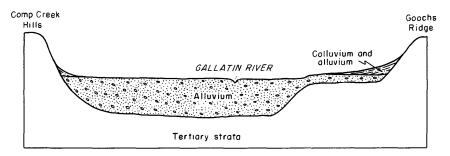


FIGURE 32.—Diagrammatic sections of the Gateway subarea showing two possible interpretations of subsurface geologic relationships.

Gallatin River. Most of it either discharges into the Gallatin River or leaves the subarea as underflow to the adjoining Belgrade subarea; a small amount discharges into a few small streams, principally Fish Creek, on the alluvial plain southwest of Axtell Bridge; and the remainder is discharged by evapotranspiration, especially along the Gallatin River.

At present the water table is between 10 and 15 feet below the land surface throughout much of the Gateway subarea. During a period of dry years, however, the ground-water level undoubtedly would decline. For example, if annual recharge over a period of years were only half the present rate, decline of the water table east of the Gallatin River probably would average about 10 feet, and at the extreme east margin of the subarea it would be as much as 20 feet. West of the river the decline probably would not be as great. However, as the flow of the Gallatin River where it enters this subarea is dependably large and as several major irrigation canals either cross or skirt the area, it is unlikely that recharge would be deficient for a succession of years.

A graph showing the cumulative departure from the volume of saturated material as of the end of June 1952 in the Gateway subarea (fig. 33) indicates that ground-water discharge exceeded ground-water recharge during all the months of water year 1953 except May and June, when recharge exceeded discharge. From the spring of 1952 to the spring of 1953, ground-water discharge from the Gateway subarea as surface water is estimated to have

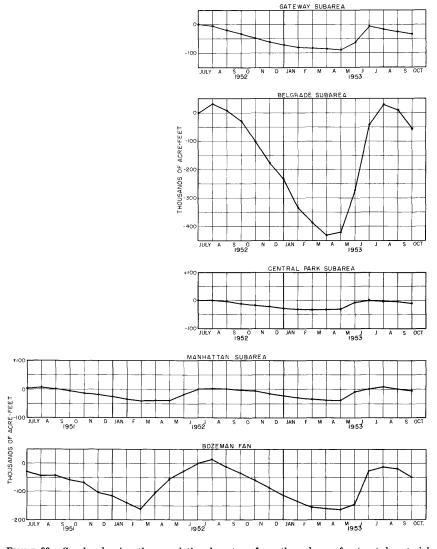


FIGURE 33.—Graphs showing the cumulative departure from the volume of saturated material as of the end of June 1952 in the Gateway, Belgrade, Central Park, and Manhattan subareas and in the Bozeman fan.

been at least 25,000 acre-feet. This estimate is based on the gain in flow of the Gallatin River between the Gallatin Gateway and Axtell Bridge gaging stations during November and December 1952 and January and February 1953 (table 9), which were months of negligible gain from surface runoff and months in which no diversions were made. However, because ground-water discharge from the Gallatin Valley as a whole during that year was somewhat above average for the preceding 18-year period (table 18), it is assumed that the volume of ground water discharged as surface water from the Gateway subarea that year was above average in about the same ratio as was that from the valley as a whole. Therefore, the average annual dicharge of ground water from the Gateway subarea as surface water is estimated to be about 20,000 acre-feet. Because, in general, average annual recharge equals average annual discharge, the average annual recharge to the Gateway subarea is at least 20,000 acrefeet plus the volume of ground water discharged by evapotranspiration within the subarea and by underflow downvalley to the Belgrade subarea.

Thus, the average annual volume of ground water theoretically available for additional consumptive use in the Gateway subarea is at least 20,000 acre-feet. If this or a lesser amount were consumptively used, the annual flow of surface water across the north boundary of the subarea would be reduced by an equivalent amount but would not be less than the annual flow of surface water into the subarea. If much more than 20,000 acre-feet were pumped each year and no part of the pumped water returned to the zone of saturation, the water table eventually would be lowered to a level below that of the river. Recharge from the river would result, and surface-water outflow from the subarea would be less than inflow.

Pumping of ground water on a large scale in the Gateway subarea would lower the water table, of course, and thereby tend to relieve waterlogging in poorly drained places. The hypothetical effect on the water-table position that would result from increased consumptive use of ground water is illustrated in figure 34. In an aquifer that discharges principally by seepage into a stream, such as the alluvium in the Gateway subarea, the lowering of the water level in wells tapping the aquifer would be in proportion to the initial height of the water level in the well above the level of the surface of the stream. In reality, however, the position of the water table would be affected by factors other than the volume of withdrawals. Some recharge may now be rejected,

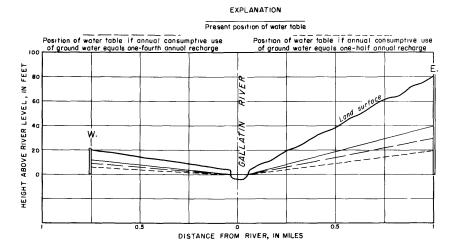


FIGURE 34.—Diagrammatic section of the Gateway subarea showing the theoretical changes in position of the water table that would result from increased consumptive use of ground water.

and additional pumping might salvage some of it, so that the decline would not be so great as might otherwise be expected.

BELGRADE SUBAREA

Northward from Bozeman Hot Springs, the surface of the alluvium of the Gallatin River broadens into an extensive plain that merges on the southeast with the alluvium of Middle (Hyalite) Creek and on the east with the alluvium of the East Gallatin River. (See pl. 2.) The Belgrade subarea comprises about 67 square miles. Its northern boundary is the east-west county road half a mile south of Central Park.

The alluvium underlying the Belgrade subarea is the principal ground-water reservoir in the Gallatin Valley. Most of this alluvium was deposited by the Gallatin River and consists of cobbles and coarse gravel, intermixed with varying amounts of sand, silt, and clay.

The alluvium thickens to the north. In test hole D2-4-11dc, near the south boundary of the subarea, it was 68 feet thick, and in test hole D1-4-25aa2, about 4 miles north, it was 137 feet thick. Test hole A1-4-25dc, about 5 miles farther north, was drilled in alluvium to a depth of 400 feet without penetrating strata of Tertiary age. Although, locally, layers of clay and silt reduce its permeability, the alluvium generally is rather permeable and fairly homogeneous. The coefficient of transmissibility of the alluvium in this subarea was determined by aquifer tests

at 13 sites. The values obtained at 9 of the sites were between 94,000 and 290,000 gpd per foot and averaged 200,000 gpd per foot. At 3 of the sites it was less than 70,000 gpd per foot and at 1 it was 670,000 gpd per foot.

One of the smaller values, 58,000 gpd per foot, was obtained at test hole A1-5-28db2, which was drilled into the alluvium of the East Gallatin River. This value confirms the inference, based on examination of test-hole samples, that the alluvium of the East Gallatin River is less permeable than that of the Gallatin River. Another of the smaller values was obtained from test hole D1-5-9cd, which was drilled into alluvium deposited by either or both the East Gallatin River and Middle (Hyalite) Creek. The coefficient of transmissibility obtained at this site was 50,000 gpd per foot, but it represented only 11 feet of saturated material. The coefficient of permeability, therefore, was about 4,500 gpd per square foot, which is the same as the coefficient of permeability computed for the 58-foot thickness of saturated material in test hole D2-4-11dc. Underlying the 11foot water-bearing zone in test hole D1-5-9cd was an impermeable layer, possibly lime-cemented silt. The alluvium beneath the impermeable layer also yielded water, but no satisfactory test of its hydrologic properties was made; thus, although the coefficient of transmissibility of the entire saturated section is not known, it probably is considerably more than that for the 11foot zone. A value of 70,000 gpd per foot for the coefficient of transmissibility was obtained from well D2-4-14bb, which was only 11.1 feet deep. This coefficient of transmissibility probably is representative of only part of the alluvium, especially in view of the much larger value, 270,000 gpd per foot, obtained from nearby test hole D2-4-11dc.

The largest coefficient of transmissibility, 670,000 gpd per foot, was obtained at well D1-4-1cb and was more than double that obtained from any other test in this subarea. The flatness of the water table in the vicinity of the well (pl. 5) also indicates a high transmissibility. As no description of the water-bearing material was available for study, the reason for the high transmissibility could not be determined. The gravel penetrated in the drilling of the somewhat deeper well D1-4-2dd, only half a mile south of well D1-4-1cb, was very silty and when tested was found to have a coefficient of transmissibility of 130,000 gpd per foot. As no geologic evidence indicates that the saturated thickness of the alluvium changes substantially between these wells, it seems likely that the higher coefficient of transmissibility at well D1-

4-1cb is due to greater permeability of the water-bearing material. In general, it is probable that the coefficient of transmissibility is greatest in the north-central part of this subarea where the alluvium is thickest. However, as no well in the Belgrade subarea north of well D1-4-25aa2 is known to have been drilled through the entire thickness of the alluvium, transmissibility values from tests in that part of the subarea would not necessarily represent the transmissibility of the full thickness of the alluvium.

The coefficient of transmissibility of the part of the Tertiary section tested at test hole D1-4-25aa2 was 17,000 gpd per foot, which is much lower than any of the values for the alluvium.

Seepage from irrigation canals and applied irrigation water, influent seepage from the Gallatin River, and ground-water underflow from upgradient areas are the principal sources of recharge to the alluvium of the Belgrade subarea, though influent seepage from the East Gallatin River also is significant. Recharge by precipitation is of minor importance. Water in the zone of saturation moves in a generally northward direction and is discharged by underflow to the adjoining Central Park subarea. Some, however, is discharged into the Gallatin and East Gallatin Rivers and into Middle (Hyalite) Creek, and some is discharged by evapotranspiration where the water table is close to the surface.

Recharge to the Belgrade subarea during water year 1953 began to exceed discharge in April and continued to do so through July; discharge exceeded recharge in all the other months of the year. (See fig. 33.) From the spring of 1952 to the spring of 1953 about 135,000 acre-feet of ground water was discharged from the Belgrade subarea as surface-water flow and as groundwater underflow to downgradient subareas. This estimate is based on the average monthly rate of decrease in ground-water storage in the Belgrade subarea during the period November 1952 through February 1953 (fig. 33), when recharge to the subarea consisted only of underflow from the adjacent upgradient subareas and when discharge of ground water by evapotranspiration was negligible. Because ground-water discharge as surface-water flow was above normal that year, the average annual discharge by this means plus that by underflow is estimated to be at least 100,000 acre-feet. Therefore, average annual recharge within the subarea is at least 100,000 acre-feet plus an amount equal to the volume of ground water discharged by evapotranspiration.

The Gallatin River is influent in the reach from Cameron Bridge (sec. 22, T. 1 S., R. 4 E.) northward to a mile beyond Irving Bridge (sec. 4, T. 1 S., R. 4 E.). Streamflow loss in this reach during the period November 1952 through April 1953, when the only significant diversion was into Baker Creek, was about 12,700 acre-feet. (See table 25.) If the ratio (0.10) between total streamflow losses (12,700 acre-feet) and the flow at Cameron Bridge for the same period (122,400 acre-feet) was applied to the flow at Cameron Bridge for 1952 (628,000 acre-feet) and for 1953 (369,000 acre-feet), recharge to the ground water by influent seepage from the Gallatin River was about 63,000 acre-feet in 1952 and about 37,000 acre-feet in 1953.

Table 25.—Monthly losses in flow of the Gallatin River between Cameron Bridge and Central Park, in acre-feet

Month	Cameron Bridge (Gallatin River near Belgrade)	Baker Creek	Irving Bridge ¹	Central Park (Gallatin River near Manhattan)	Gain (+) or loss (-) between Cameron and Irving Bridges	Gain (+) or loss (-) between Irving Bridge and Central Park	Total loss
	1	2	3	4	1-(2+3)	3 -4	
1952							
November December	$\frac{17,200}{23,700}$	1,390 1,110	15,700 20,700	14,400 20,600	-100 -1,900	$-1,300 \\ -100$	$\frac{1,400}{2,000}$
1953			·				
January February March April Total	22,500 18,600 19,800 20,600 122,400	790 670 650 770 5,380	19,000 15,800 16,500 20,100 107,800	20,200 15,700 17,800 18,300 107,000	-2,700 -2,100 -2,600 +300	+1,200 -100 +1,300 -1,800	2,700 2,200 2,600 1,800 12,700

¹ Preliminary data from U.S. Bureau of Reclamation.

The East Gallatin River between Lux Siding (sec. 23, T. 1 S., R. 5 E.) and Penwell Bridge (sec. 29, T. 1 N., R. 5 E.) also is influent during part of the year. (See table 26.) Middle (Hyalite) Creek (measured in sec. 32, T. 1 N., R. 5 E.) and Churn Creek drain (measured in sec. 23, T. 1 S., R. 5 E.) are tributaries of the East Gallatin. During the period December 1952 through June 1953, the East Gallatin River in that reach lost about 9,500 acre-feet by influent seepage and during the remainder of 1953 it gained in flow.

In this subarea the water table generally is highest near the end of July or in early August (fig. 33), at which time the water table is less than 20 feet below the land surface in most of the

Table 26.—Monthly gains and losses in flow of the East Gallatin River between Lux Siding and Penwell Bridge, in acre-feet

[Preliminary data from U.S. Bureau of Reclamation]

Month	East Gallatin River near Lux Siding	Churn Creek drain	Middle (Hyalite) Creek	East Gallatin River at Penwell Bridge	Gain (+) or loss (-)
	1	2	3	4	4-(1+2+3)
1952 November December	3,800 4,120	111 69	485 2 8	4,890 3,650	$^{+490}_{-570}$
January. February. March. April. May. June. July. August. September. October. November.	7,170 21,300 36,200 7,150 4,220	128 160 236 252 325 726 24 40 39 45	103 378 928 1,460 4,120 7,400 2,030 2,230 2,460 2,320 1,570	3,900 2,660 4,910 7,560 22,600 131,000 9,380 6,810 7,180 6,530 5,680	$\begin{array}{c} -460 \\ -460 \\ -350 \\ -1,300 \\ -3,100 \\ 1-3,300 \\ +180 \\ +320 \\ +840 \\ +480 \\ +360 \end{array}$

¹ Estimated

area. The depth to the water table is somewhat greater in the vicinity of Belgrade than elsewhere; even at its highest position during the year, it may be as much as 40 feet below the land surface. The difference between the highest and lowest positions of the water table ranges from about 10 feet or less along the margins of the area to more than 40 feet in the vicinity of Belgrade. (See pl. 7.) Water-level fluctuations in selected wells are illustrated on plate 9. Near the margins of the Belgrade subarea most of the wells are 20 to 60 feet deep, whereas in the vicinity of Belgrade wells are 60 to 200 feet deep.

In this subarea some of the ground water occurs under watertable conditions and the remainder under artesian conditions. It is thought, however, that confinement of water is only local in extent. Water-level data suggest the presence, in part of the area, of a relatively impermeable layer that retards infiltrating recharge and creates, thereby, a temporarily perched zone of saturation. Test drilling, together with additional information on water-level fluctuations, is needed to determine the exact nature and extent of the indicated condition.

In drilling test hole D1-4-25aa2, artesian water was encountered in the Tertiary strata at a depth of 149 to 223 feet. The water was under about 13 feet of head at the land surface. Avail-

able evidence, however, indicates that the Tertiary strata would not yield sufficient water for irrigation.

Consumptive use of part or all of the 100,000 acre-feet per year of ground water estimated to be theoretically available for use in the Belgrade subarea would cause a lowering of the water table and a corresponding decrease in the volume of natural ground-water discharge from the subarea. If it is assumed that 100,000 acre-feet of the ground water added to storage within the subarea is discharged annually along the northern boundary of the subarea, consumptive use of 25,000 acre-feet of ground water within the subarea theoretically would cause a 9-foot lowering of the water level in a well 2 miles south of the northern boundary and an 18-foot lowering in a well 3.5 miles south of the northern boundary. (See fig. 35.) Correspondingly larger declines of the water level would occur if annual consumptive use of ground water were greater. If net withdrawals became great enough, the point at which the Gallatin River becomes influent would migrate southward, and the East Gallatin River, instead of gaining in flow, would become a losing stream. Discharge of ground water by evapotranspiration and by springs

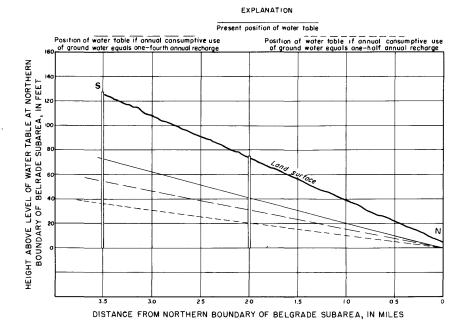


FIGURE 35.—Diagrammatic section of the northern part of the Belgrade subarea showing changes in position of the water table that would result from increased consumptive use of ground water.

and effluent streams in the Central Park subarea also would be reduced if withdrawals of ground water in the Belgrade subarea resulted in a reduction of underflow into the Central Park subarea.

A succession of dry years would lessen recharge and have similar effects on the position of the water table and the amount of ground-water discharge from the subarea. However, as a result of reduction in recharge alone, the summertime position of the water table probably would not drop lower than the wintertime low reached in the early months of 1952 and 1953.

CENTRAL PARK SUBAREA

The Central Park subarea is that part of the valley floor extending northward from the Belgrade subarea. It has an area of about 40 square miles. It is characterized by a high water table, and much of it is swampy throughout the year.

Compared with the alluvium of the Belgrade subarea, that of the Central Park subarea is finer grained and better sorted. Test drilling indicates that the alluvium north of the postulated east trending Central Park fault, near the south margin of the subarea, is much thinner than that south of the fault. Test hole A1–4–19cb, about a fourth of a mile south of the fault, was drilled to a depth of 301 feet without completely penetrating the alluvium, and test hole A1–4–15da2, almost on the fault, entered Tertiary strata at a depth of 215 feet. In contrast, test hole A1–4–5da, about 2 miles north of the fault, penetrated only 31 feet of alluvium before entering material thought to be of Tertiary age.

The coefficient of transmissibility of the alluvium was determined at five sites. At test hole A1-4-22dc the coefficient was 480,000 gpd per foot, and at test hole A1-4-19cb it was 480,000 gpd per foot for the material between depths of 5 and 94 feet and 180,000 gpd per foot for the material between depths of 117 and 180 feet; these coefficients assume that the 2 zones are effectively separated at least so far as the duration of the tests is concerned. The coefficient of permeability of the 2 water-bearing zones in test hole A1-4-19cb was 5,500 and 2,900 gpd per square foot, respectively. Three values for the coefficient of transmissibility of the alluvium north of the Central Park fault were 38,000, 100,000, and 110,000 gpd per foot, and computed coefficients of permeability were 1,500, 4,000, and 4,000 gpd per square foot, respectively. The thinning of the alluvium northward from the Central Park fault is reflected by the lower transmissibility. The coefficient of transmissibility of Tertiary strata penetrated by test hole A1-4-15da2 was 3.700 gpd per foot.

The Central Park subarea contains the largest tract of poorly drained land in the Gallatin Valley. Throughout nearly all the subarea the water table is less than 5 feet below the land surface, and most wells are less than 25 feet deep. Typical hydrographs of the water-level fluctuations in wells are shown in figure 36.

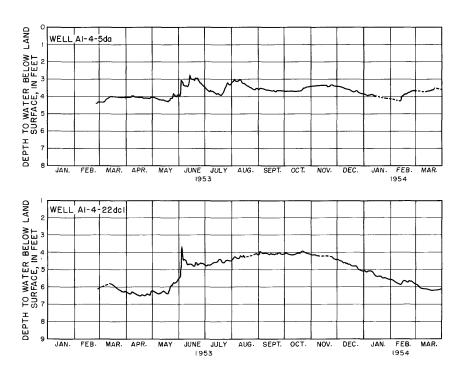


FIGURE 36.—Hydrographs of the water level in wells A1-4-5da and A1-4-22dc1.

The ground-water reservoir in the part of the subarea between the Gallatin and East Gallatin Rivers is recharged principally by underflow from the Belgrade plain. The bottom land west of the Gallatin River is recharged mainly by underflow from that part of the Belgrade subarea west of the Gallatin River, the Camp Creek Hills, and the Manhattan terrace; the bottom land east of the East Gallatin River is recharged by underflow from the Dry Creek subarea and the Spring Hill fan.

In the Central Park subarea, more ground water is discharged at the surface than in any other part of the Gallatin Valley. Because the alluvium north of the Central Park fault cannot transmit all the water entering the subarea by underflow (estimated to be 300,000 acre-feet per year), some of the ground water is

forced to the surface, where it is discharged by spring flow and effluent seepage into streams and by evapotranspiration. It is estimated that 70,000 acre-feet of water is discharged annually to the principal spring-fed streams that rise in this subarea. (See fig. 37; table 7, p. 69.) Because Thompson Creek is least affected by extraneous influences, the hydrograph of its flow illustrates best the seasonal streamflow pattern of the spring-fed

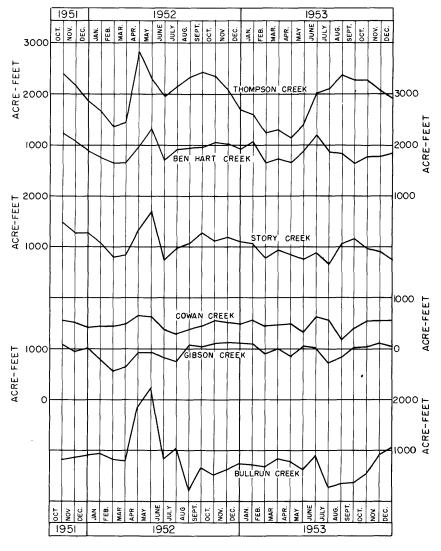


FIGURE 37.—Hydrographs of the flow of the principal streams rising in the Central Park subarea.

streams. Except for the comparatively minute amount of ground water that leaves by underflow through the outlet of the Gallatin Valley at Logan, all the ground water that is transmitted by the alluvium in this subarea is discharged eventually by seepage into the Gallatin or East Gallatin Rivers.

The graph showing cumulative departure from the volume of saturated material as of the end of June 1952 (fig. 33) indicates that net recharge characterized the period March through June and that net discharge characterized the other months of the year. The magnitude of the changes in volume of saturated material is far less than in the Belgrade subarea.

Although increased consumptive use of ground water in upgradient parts of the Gallatin Valley would result in some reduction of ground-water underflow into the Central Park subarea, it is unlikely that the water table would be lowered significantly in more than the extreme southern part of the subarea.

Even though underflow into the subarea were considerably less, the alluvium north of the Central Park fault probably still would be incapable of transmitting all of it. Therefore, lowering of the water table north of the fault can be effected only by artificially increasing discharge. Pumping of ground water for the express purpose of lowering the water table is not considered feasible because so many wells would be needed. Surface drains probably would be much more effective and would cost less than wells. Two types of drainage measures may be practicable one, the construction of interception drains, as recommended by the U.S. Soil Conservation Service (Long, 1950, p. 11), and the other, the deepening and straightening of existing streams and construction of new drains parallel to the present streams. Some drains of the interception type have been constructed. Under the existing pattern of water use, deepening of present streambeds would lower the water table about as much as the amount of deepening.

No foreseeable increase in consumptive use of ground water in the Central Park subarea would lower the water table appreciably, nor would a succession of dry years.

MANHATTAN SUBAREA

The Manhattan terrace is separated from the alluvial plain of the Gallatin River by a low north- and east-facing escarpment along its outer edge and from the higher Camp Creek Hills by a colluvial slope along its southwestern border. It comprises about 8 square miles.

Only a few feet of gravel overlies Precambrian bedrock in the face of the escarpment at the northwest corner of the subarea, but the gravel apparently thickens eastward to a point north of Manhattan. Test hole A2-3-33da penetrated 55 feet of alluvium before entering fanglomerate of Tertiary (?) age, and well A1-3-4da, about two-thirds of a mile northwest of Manhattan, was drilled through 38 feet of alluvium before entering material of Tertiary(?) age. Southeast of Manhattan, near the terrace escarpment, a 30-foot thickness of alluvium was penetrated in the drilling of well A1-3-14dd. This range in thickness indicates probable channeling of the Tertiary strata before the alluvium was deposited. The average thickness of the alluvium is estimated to be between 30 and 45 feet. The coefficient of transmissibility of the alluvium was determined at 4 sites and ranged from 120,000 to 140,000 gpd per foot. As the saturated alluvium is known to be thin, these values indicate that the alluvium is highly permeable.

The fanglomerate penetrated by test hole A2-3-33da crops out in draws along the north-facing part of the terrace escarpment. Fractures in this material yield water to spring A2-3-32ac and supply water to nearby wells.

Artesian water was found between the depths of 215 and 300 feet in test hole A2-3-33da. The water, which rose to within 12 feet of the land surface, was derived from Tertiary strata that immediately overlie rocks of the Belt series. Unfortunately the water contained too much hydrogen sulfide and sodium salts to be fit even for irrigation.

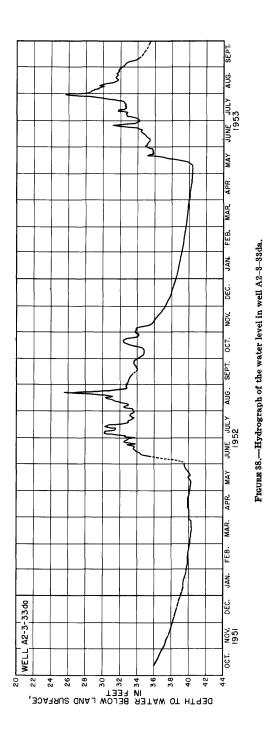
The graph showing cumulative departure from the volume of saturated material as of the end of June 1952 in the Manhattan subarea (fig. 33) indicates that in both 1952 and 1953 net recharge to the alluvium began in May and continued through July and that discharge exceeded recharge the remainder of the year.

The ground-water reservoir in the subarea is recharged almost wholly by seepage from irrigation canals that skirt the inner edge of the terrace, and from applied irrigation water. The water used for irrigation, though diverted from surface streams, is largely return flow from irrigation in the Belgrade subarea and in the Camp Creek Hills, and, therefore, is a dependable source of supply. Discharge is mainly by underflow to the bottom land adjacent to the terrace escarpment, where it is picked up by the Gallatin River and tributary drains. Water is discharged also by evapotranspiration, mostly from a small waterlogged area south of Manhattan, and through a series of springs in the draws

along the north-facing part of the terrace escarpment. Discharge of ground water from the Manhattan subarea, exclusive of that discharged by evapotranspiration, is estimated to have been 14,000 acre-feet between the spring of 1952 and the spring of 1953; the average annual discharge probably is about 10,000 acre-feet. The average annual recharge exceeds this average annual discharge by the amount discharged by evapotranspiration.

Fluctuations in the discharge of springs A2-3-32ac, -32ad, and -33ba reflect the changes in volume of saturated material, and, thus, the dependence of the flow on recharge from irrigation water. Discharge from springs A2-3-32ad and -32ac, the 2 largest springs, fluctuated from 22.6 and 14.5 cfs, respectively, in August 1952, to 8.3 and 3.9 cfs, respectively, in April 1953.

During the summer the water table in much of the area is within 10 to 20 feet of the land surface. Wells range from 10 to 105 feet in depth. The water-level fluctuations in well A2-3-33da (fig. 38) are somewhat greater than in most other wells in this subarea because of the proximity of the well to the terrace escarpment.


Waterlogging in the area south of Manhattan is caused by excessive recharge. Lining the Moreland Canal in the reach adjacent to the area would reduce recharge, and a ditch in the waterlogged area would help drain ground water. Additional investigation would be necessary to determine the feasibility and relative effectiveness of these measures, singly or in combination.

The alluvium underlying the Manhattan subarea is sufficiently permeable to yield water freely, but in most of the subarea is too thin to supply sufficient water for irrigation. At the peak of the irrigation season, when water shortages are sometimes acute in other parts of the valley, return flow from irrigation in the Belgrade subarea supplies much of the irrigation water used in the Manhattan subarea. This supply could be supplemented by pumping ground water into the existing canals where they traverse the Belgrade subarea.

UPPER EAST GALLATIN SUBAREA

The Upper East Gallatin subarea consists of the flood plain of the East Gallatin River from the river's point of entry into the valley northwestward for about 11 miles. The subarea is about a quarter of a mile wide at its upper end and broadens to about $2\frac{1}{2}$ miles at its lower end where it adjoins the Belgrade subarea. It comprises abut 10 square miles.

Well D2-6-10dc, near the upper end of the subarea, is reported to have been drilled through 29 feet of alluvium before entering

red clay of probable Tertiary age. Test hole D1-5-9cd, near the lower end, was drilled to a depth of 162 feet in the alluvium without reaching the underlying Tertiary strata. In this test hole the alluvium is poorly sorted and contains more silt and clay than the alluvium of the Gallatin River. Because Bear and Bridger Creeks, tributaries to the East Gallatin River in its upper reach, drain areas partly underlain by relatively fine grained easily eroded formations of Cretaceous age, they probably transported to the East Gallatin River much of the fine-grained material in the alluvium.

Although several aquifer tests were made in this subarea, the coefficient of transmissibility could not be determined from the data obtained.

The alluvium is recharged by infiltrating precipitation, by underflow from adjacent areas, and, in the upper reach of the subarea, by seepage from the East Gallatin River and its tributaries. Ground water is discharged by evapotranspiration, seepage into the East Gallatin River in the lower reach of the subarea, and underflow to the Belgrade subarea.

The water table is within 10 feet of the land surface during most of the year. Most wells are less than 30 feet deep, and the range of water-level fluctuations is small.

Although existing data indicate that the alluvium will not yield large quantities of water to wells, additional data should be gathered in order to evaluate accurately the ground-water resources of this subarea.

BOZEMAN FAN

An alluvial fan composed of material derived from the Gallatin Range slopes northward from the mouth of Hyalite Canyon where Middle (Hyalite) Creek enters the Gallatin Valley (sec. 14, T. 3 S., R. 5 E). The fan is bounded on the southwest by Goochs Ridge and on the east by Sourdough (Bozeman) Creek; along its northwest margin it merges with the floor of the valley and on its northeast margin with the flood plain of the East Gallatin River. The area of the fan is about 56 square miles.

The alluvium composing the fan is the principal aquifer in this area. The logs of test holes D1-5-34cc2, D2-4-14ac, and -22cd indicate that the alluvial-fan deposits thin from nearly 200 feet near the head of the fan to a hundred feet or less near the toe of the fan where it grades into, or interfingers with, the alluvium of the Gallatin and East Gallatin Rivers. The coefficient of transmissibility of the alluvial-fan deposits, determined at 6 sites, ranged from 26,000 to 65,000 gpd per foot and averaged

about 48,000 gpd per foot. The range in values reflects variations in permeability and thickness of the saturated material.

Even where they are drilled into the more permeable, thicker sections of water-bearing alluvial-fan deposits, wells yielding more than 500 gpm should not be expected. Alluvial deposits filling the channels of former distributaries that built the fan are the most likely sources of ground-water supplies. These deposits cross the fan from head to toe and can be located by careful test drilling. Most of the wells on the Bozeman fan are less than 35 feet deep (many are dug wells) and few are more than 75 feet deep. However, when wells D2-6-19cb1 and -19cb2 were drilled about 1 mile south of Bozeman, sufficient water for domestic use reportedly was not obtained until the wells reached depths of 80 and 155 feet, respectively. It is probable that the upper part of the alluvial-fan deposits is not water bearing in the vicinity of these wells because of the draining effect of nearby Sourdough (Bozeman) Creek.

Test hole D2-5-22ccd was drilled through 165 feet of alluvial-fan deposits and 835 feet into the underlying Tertiary strata, and test hole D1-5-34cc2 was drilled through 127 feet of alluvial-fan deposits and 123 feet into Tertiary strata. The Tertiary strata penetrated by both test holes were relatively impermeable. Well D2-6-7ac, drilled in 1936 for the city of Bozeman to augment its water supply, penetrated clay, sand, and gravel to a depth of 304 feet. Although this material, probably mostly of Tertiary age, initially yielded 450 to 500 gpm, the sustained yield, which was much less, was insufficient and the well was abandoned. All available evidence, therefore, indicates that the Tertiary strata underlying the Bozeman fan would not yield sufficient water for irrigation.

Streamflow, irrigation water, and precipitation are the principal sources of recharge on the Bozeman fan. Sourdough (Bozeman) and Middle (Hyalite) Creeks, near where they enter the valley, are sources of recharge, particularly during the months of high streamflow and low ground-water level in the spring. Seepage from the numerous irrigation ditches crossing the surface of the fan, and infiltrating irrigation water applied to the fields, are generally the main sources of recharge during most of the summer. In some years when irrigation water is in short supply, however, the recharge from these sources is correspondingly less.

In this part of the Gallatin Valley precipitation is somewhat greater than elsewhere. Generally much of the winter precipitation is stored as snow; snowmelt and relatively high rainfall in the spring produce appreciable recharge. This was especially true in the 1952 water year. In October 1951 heavy snowfall mantled the Bozeman fan before the soil was frozen. During the succeeding months the average temperature was lower than usual and the abnormally heavy precipitation, nearly twice the average, accumulated as snow on the unfrozen ground. Higher temperatures in March and April caused the snow to melt, but there was little runoff because most of the water infiltrated to the water table. The resultant rise in the water level is shown in figure 33 by the graph for the Bozeman fan. By May, before any significant recharge from streamflow and irrigation water occurred, the increase in saturated material already was 65 percent of the total for the year. During the same period, the volume of saturated material beneath the floor of the Gallatin Valley increased only 32 percent of the total increase for the year.

Precipitation was a much less important source of recharge in the 1953 water year. During the period October 1952 through February 1953, precipitation was only 72 percent of average. There was no snow cover on the Bozeman fan and the soil was frozen. In consequence, recharge by snowmelt was insignificant and net recharge did not begin until May, when streamflow and irrigation water became effective recharge factors. Recharge followed a somewhat similar pattern throughout the remainder of the valley. The great difference in the amount of recharge from precipitation and snowmelt in the 2 water years indicates that this type of recharge cannot be depended upon to occur in any particular year.

Discharge of ground water from the Bozeman fan is by effluent seepage to streams, by underflow to adjacent areas downvalley, and by evapotranspiration. Middle (Hyalite) and Sourdough (Bozeman) Creeks, the only streams that completely cross the Bozeman fan, are effluent in the lower parts of their courses across the fan. Several small streams rise about 3 miles north of the head of the fan and drain northward into either Middle (Hyalite) Creek or the East Gallatin River. During the irrigation season most of the water in the streams draining the Bozeman fan is diverted for irrigation. Evapotranspiration is greatest along the streams and drains. Underflow from the Bozeman fan enters the alluvium underlying the Belgrade plain and the flood plain of the East Gallatin River.

At the head of the fan, where the land is steeply sloping, and at the toe of the fan, where the surface is dissected and drainage is adequate, the water table is more than 30 feet below the land surface. Elsewhere on the fan, the water table is less than 10 feet below the land surface and in many places is less than 5 feet. Near the head of the fan, the water level in wells fluctuates as much as 25 feet, but throughout the remainder of the fan the fluctuations are less than 10 feet. (See fig. 39.)

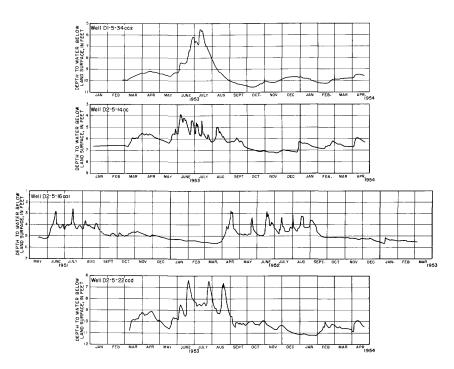


FIGURE 39.—Hydrographs of the water level in wells D1-5-34cc2, D2-5-14ac, -16aa1, and -22ccd.

At best, the aquifer underlying the Bozeman fan would yield only sufficient water for irrigating gardens or for supplemental irrigation of larger fields. If the ground-water resources of the Bozeman fan were to be developed to the extent that the flow of streams draining the fan was reduced significantly, less water would be available for irrigation by diversion from these streams. Such an eventuality should be given careful thought if large withdrawals of ground water on the Bozeman fan are planned. Underflow from the Bozeman fan to the Belgrade subarea also would be reduced if consumptive use were increased considerably.

CAMP CREEK HILLS

The area of the Camp Creek Hills is about 160 square miles. Tertiary strata are exposed throughout the area except at the south end, where Precambrian gneissic rocks crop out; near Logan, where Paleozoic and Precambrian rocks crop out; and in the places where the Tertiary strata are overlain by a thin mantle of terrace gravel, alluvium, colluvium, or loess. The thickness of the Tertiary strata, where penetrated by test holes D1-3-36bc and D2-4-9bc, is 836 and 515 feet, respectively. The alluvium, which overlies the Tertiary strata along the east-central margins of the Camp Creek Hills, probably is no more than about 20 feet thick. Most wells on the higher surfaces in the Camp Creek Hills are between 200 and 600 feet deep, whereas those on the lower surfaces and along the draws are correspondingly shallow.

Although the Tertiary strata as a whole are relatively impermeable, they form the principal aquifer in the area, and wells drilled into the more pervious layers yield sufficient water for stock and domestic use. The coefficient of transmissibility as determined by tests at test holes D1-3-36bc and D2-4-9bc, was 6,000 and 1,200 gpd per foot, respectively. Another aquifer test, at well A1-3-33dd, gave a coefficient of transmissibility of 26,000 gpd per foot, but it is probable that the water-yielding beds consisted in part of alluvium.

In the Camp Creek Hills, ground water occurs under both water-table and artesian conditions. Because insufficient water-level data were available, maps showing the contour of the water table or piezometric surfaces in this area were not prepared. It is probable, however, that ground water in the Camp Creek Hills moves eastward and northeastward toward the valley floor—that is, in the direction of the dip of the Tertiary strata.

As precipitation on the Camp Creek Hills generally is less than that required to satisfy the evapotranspiration requirements, only a small amount infiltrates to the zone of saturation. In the lower, irrigated part of the area, seepage from irrigation canals and irrigated fields is a significant source of recharge, but, because the many draws and shallow canyons effect good drainage, the water table has not risen appreciably. If much additional water were used for irrigation in this part of the Camp Creek Hills, however, the low-lying land along the east margin of the irrigated area might become waterlogged.

Available evidence indicates that the Tertiary strata in the Camp Creek Hills are incapable of yielding more than enough water for domestic and stock supply.

VALLEY FRINGE

Bordering the valley floor on the northeast and east are the Dry Creek, Spring Hill, and South Bridger subareas, and bordering the Bozeman fan on the east is the Fort Ellis subarea and on the southwest the South Gallatin subarea. These five subareas are referred to collectively as the valley fringe.

DRY CREEK SUBAREA

Most of the Dry Creek subarea, an area of about 89 square miles, is underlain by Tertiary strata. Along the stream courses the Tertiary strata are mantled by alluvium; along the east margin of the area they are mantled by alluvial fans from the Bridger Range. The entire area has been dissected by Dry Creek, its tributaries, and other tributaries of the East Gallatin River.

Insofar as can be determined from a reconnaissance of this subarea, the hydrologic properties of the Tertiary strata seem to be similar to those of Tertiary strata in other parts of the valley. The stream alluvium and alluvial fans seem to consist of coarse and moderately permeable material, but because the latter are dissected by draws and small canyons, they probably are well drained and contain little ground water.

Although a few wells tap the Tertiary strata, most wells in the Dry Creek subarea tap either alluvium along the stream courses or alluvial-fan deposits. Springs along the mountain front are a source of water on several ranches. Ground water moves toward Dry Creek except at the south end of the subarea, where the direction of movement is southwestward toward the valley floor.

Streamflow from the Bridger Range and precipitation along the east margin of the subarea are the chief sources of recharge. Ground water discharges principally as streamflow, but along several of the streams, such as Bear and Reese Creeks, extensive bottom-land areas are waterlogged.

Because the Tertiary strata are relatively impermeable and the alluvial fans contain little water, it is probable that large yields of ground water cannot be obtained in the Dry Creek subarea.

SPRING HILL SUBAREA

The Spring Hill subarea is an alluvial fan having an area of about 11 square miles. This fan is of later origin than the other fans in the valley fringe, and its surface is smooth and undis-

sected. The lower end of the fan merges with the flood plain of the East Gallatin River. As no test holes were drilled into the alluvial fan, little is known of its thickness and subsurface characteristics. The coefficient of transmissibility, as determined at wells A1–5–21bc4 and –26cd, was 7,000 and 30,000 gpd per foot, respectively. These values, however, may not be representative of the full thickness of alluvial-fan deposits because the wells used in making the tests were very shallow.

Runoff from the Bridger Range and precipitation near the mountain front are the principal sources of recharge. The ground water moves toward the valley floor, and that not lost by evapotranspiration either discharges into Smith Creek or percolates into the alluvium of the East Gallatin River.

Additional information is needed before the ground-water supply in the Spring Hill subarea can be evaluated accurately.

SOUTH BRIDGER SUBAREA

The South Bridger subarea consists of remnants of a rather high dissected surface that fringes the Bridger Range between the Spring Hill fan and the valley of the East Gallatin River. North of Bridger Creek alluvial-fan deposits are the surficial material, whereas, south of Bridger Creek, Tertiary strata are at the surface. Both parts of the subarea are well drained and it is likely that supplies of water sufficient for irrigation cannot be developed. The subarea comprises about 33 square miles.

FORT ELLIS SUBAREA

In general, the geologic and hydrologic characteristics of the Fort Ellis subarea are similar to those of the Dry Creek subarea. It is probable, on the basis of available evidence, that the ground-water reservoir would not yield more than enough water for stock and domestic supply. The Fort Ellis subarea is about 18 square miles in extent.

SOUTH GALLATIN SUBAREA

The South Gallatin subarea comprises about 29 square miles and consists of remnants of high-lying alluvial fans that rest on Tertiary strata. A prominent fingerlike ridge, Goochs Ridge, extends northward into the valley. The alluvial-fan deposits are so well drained that they contain little or no water, and the Tertiary strata, as in other parts of the valley, yield water sufficient only for stock and domestic use.

CHEMICAL QUALITY OF THE WATER

By R. A. KRIEGER

The chemical quality of the water in the Gallatin Valley was determined from the analyses of 58 samples of ground water and 45 of surface water. The ground-water samples were collected between July 1951 and September 1953 from wells, test holes, and springs. Surface-water samples were collected from May 1949 to September 1952 from the Gallatin River and most of its important tributaries.

The locations of the sampling points for both ground and surface waters are shown on plates 10 and 11. In addition, the chemical characteristics of the water are shown by means of patterns as devised by Stiff (1951). The chemical analyses the ground- and surface-water samples are given in tables 27 and 28, respectively.

GEOLOGIC SOURCE AND SIGNIFICANCE OF THE IONS

The water samples were analyzed chemically to determine the concentration of the mineral constituents that affect the usability of the water. Characteristics of the water, such as pH and specific conductance, also were determined. The importance of the principal ions and some of the characteristics is discussed below.

Calcium is dissolved principally from limestone, dolomite, gypsum, and gypsiferous shales; magnesium is dissolved mainly from dolomite. Water that has leached these rocks may contain as much as several hundred parts per million of calcium and magnesium, whereas water that has leached granitic or other highly siliceous rocks may contain less than 10 ppm of calcium and magnesium. Calcium and magnesium cause hardness in water and scale in hot-water pipes and boilers. However, if present in suitable proportion, they are desirable in irrigation water because they counteract the harmful effects of sodium on the soil.

Sodium and potassium are dissolved from nearly all rocks. If ground water is connate or from rocks of marine origin, it may contain several thousand parts per million of sodium and can be classed as a brine. Sodium often is the predominant cation of surface waters in arid regions. Although sodium in water generally is of little importance to domestic users, it is of major importance to irrigationists because, if sodium constitutes a major part of the cations in an irrigation water, the soil may be damaged and become impervious to water. The relation between

sodium and other cations is expressed as the percent sodium, which is computed by dividing the concentration of sodium in equivalents per million by the sum of the equivalents of the four principal cations—sodium, potassium, calcium, and magnesium—and multiplying the quotient by 100. Because potassium usually is present in low concentrations in natural water, it is of little significance.

Carbonate and bicarbonate are dissolved from limestone, dolomite, and other carbonate rocks. Carbon dioxide in water aids in the solution of calcium and magnesium carbonates from rocks and soils. Carbonate, if present at all, is generally low in concentration. Water from hard, insoluble rocks, such as granite, may contain only a small amount of bicarbonate, but water from limestone may contain several hundred parts per million. Carbonate and bicarbonate are important in irrigation water because of the possible effect of residual sodium carbonate on the soil.

Sulfate is dissolved mainly from gypsum and gypsiferous deposits. Also, it is derived from deposits of sodium sulfate and from the oxidation of sulfides. In combination with calcium, sulfate forms a hard scale in hot-water pipes and boilers.

Chloride is dissolved from nearly all rocks and soils; however, except when present in large amounts, it generally does not affect the use of the water. A high chloride concentration in water indicates the presence of brines, marine-deposited minerals, or pollution of the water from animal or industrial wastes. Drainage from irrigated land in arid regions often contains a high concentration of chloride.

Although fluoride is present in many rocks, the concentration in natural water usually is much less than that of chloride. Fluoride in drinking water may affect the teeth of children. There is evidence that children's teeth decay less when the fluoride concentration in the water supply is about 1.0 ppm; however, mottling of the tooth enamel may result if, during the period of formation of the permanent teeth, the drinking water has a fluoride concentration exceeding about 1.5 ppm (Am. Water Works Assoc., 1950, p. 381).

Nitrate in natural water usually is not dissolved from rock materials as are most of the other constituents. Rather, nitrate is the end product of the aerobic stabilization of nitrogenous organic matter, and high concentrations of nitrate may indicate contamination of the water from sewage or from plant and animal wastes. If fed to babies, water containing more than about

TABLE 27.—Chemical analyses of ground water in the Gallatin Valley

		Ha						
	eonatoubnoo onioeq8 (O°52 ta eonmoroim)							
	- 1	Percent sodiun						
ion]	Noncarbonate tardness as CaCOs							
mill	Hardness as CaCO3							
Results in parts per	solved lids	Residue on evaporation O°081 ta						
	Diss	betalvolaO						
		Boron (B)						
		(sON) etsatiN						
rnary		(H) abiroulA						
rocks; T. strata of Tertiary age; and Q, deposits of Quaternary age.		Chloride (Cl)						
its of	(4OS) etallus							
lepos	Carbonate (CO ₃)							
Ġ,	Bicarbonate (HCO3)							
; and	Potassium (K)							
ry age	(sN) muiboS							
Fertia	(gM) muisənzaM							
Jo 1	(sD) muiola							
trata	Iron (Fe)							
Ŧ,	(SOiE) goilie							
ocks;	Temperature (°F)							
ieologic source: P, Precambrian r	uo	Date of collect						
ource: P,	guil	Depth at samp time (feet)						
Geologic s		osuos sigolosD						
_								

Valley floor

Location

6.6.	·	ن نن ند	en :1	6.0	ن نن نن	ထပ်းပဲ	ထတ်		ယ် က်	က် က်၊	- 0	60,01
503 7.9 620 7.5 464 7.7	23	777	20 4	2000	200	787	<u>44</u>	202	227	27.0	5 7 S	100
40 8 11 8 8 8	8 11	ro ro ro	- L- C	15	544	9	$\frac{14}{5}$	13	13	77	မ မ	14
130	111	25 26 26 26 26 26 26 26 26 26 26 26 26 26	13	13	000	13	11	0 81	20	m O 1	2 ₀	282
229 312 229	260	232 233 235	172	223	24 84 64 64	187 182	200 200 200	114 273	253 241	196 202	165 173	172
313 398 288	162	278	210			238 234	264 262	154	308	245	464 212	216 198
: : :	330	286	: : :	336	1000	::	: :	350	: :	248	: :	
		: : :	100 .	2		===	∞ –	: 		:	::	
0.03	0	996	0 :	ا ا آ	. 22	0.0	00	0.0.	0.0	o o	.i.o.	:00 :
1.5			4 :	0.82 4.02	4.80 4.0.01	3.5	2.5 4.0	.7	11.8		1.6	.6.4
0.52			· :	-i.c.	16.U	-:-:	α <u></u>	0		-:0.	10.	.0.0
0,00	10.0	1000	i .				0.0	0.10	010	0.0	0	. 2.2.
808	10101	• • • • • • • • • • • • • • • • • • •	. 64		330 336 336	20 20	40		——		5	
344	39 1.0	84°8	22 :	£ 45	33 13 16	4 4	58 51 51	. 56	253	118	33	37
000			:		388	· 			00	00	x 0	:00
277 332 264				264	416 456	212 204	242 241	331	311 291	235	107	175
		01 00 0 00 01 00		. 8	13 8.0	0, to	33.7	9.60 4.1-	4 4	80 80 80 44	 	217
13 13	11 6.7	10 10 10 61 65 60	5.6	2025	400 421	5.9	15 5.6	3.6	18	6.5	135 4.9	9.6
17 26 19	21 6.0	119	132	19	58 8 4.8	12		6.4 20	198	13	12.4	13.
		655	:		22 5.2 14						. 94 16	. 25
		2.6		:::	: : :	03	88.3	\$ 0	. 4.	82.4	20. 20.	23
			:			01:0	^-			oı ~		. 4
48 25 56 29 56 29	31 30	16 19 16 19	19 24	27 38 57 38	200 200 200 200 200 200 200 200 200 200	51 25	51 27 22 23	19 24 17 15	22.5	51 49 23	±0 60 : 18	1te
		:									- :	: :
$\frac{1952}{1951}$											_ ,_	1953
		23,3										8
Dec.	Aug.	Aug. July	Nov	Aug.	Sept.	Sept.	Sept.	Jan. Sept.	Sept.	Sept.	Sept.	Aug.
: 2	-	. : :		: :	:::	::	- : :	::	: :	: :		: :
207.		123.	400	170	250. 450.	110.	65.2 65.2	158.	~_			435.
A1-4-5da T	15da2 T	19eb Q	25de Q		T T and P.	00	~~	Q	D1-5-9cd	D2-4-11de	14dacz D3-4-3°h1	3ca T(?)
: :	2		::	70	·	: :	۔ ۔ م	a2 .	:	::	1	
5da	15dz	19cl	25d	D87	000	-1cb 1dc	6dd 13b	25a	-9cd	-11d	14d -3ab	3ca
4				<u>,</u>	5	1-4		,	-i-j-	2-4-	4	•
A			-	₹ ₹	4	Q		į	<u> </u>	Ä	Ë	Y

Sozeman far

CIII	E IVI I C	AL GUALITI OF THE	2 W A	. 1 1510	
6: 4013000		777788787 78 71919719118 71		က်က်က်က်က	
552 548 548 546 558 523 8 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		512 7.7 398 7.5 599 7.5 599 7.7 857 8.1 7415 8.6 7415 8.6 538 8.1 309 7.8 519 8.1		426 7. 451 7. 339 7. 354 7. 468 7.	
1				262246	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		40 16 0 35 0 23 0 49 0 62 25 32 25 32 0 9 0 53 0 24 0 53 0 24 0 24		0 0 6 7 7 5 13	
: :					
261 257 258 235 235 154 170 170 92 124 118			215 123 235 112 266 17 305 138 124 109		221 241 218 172 180 217
343 338 202 290 290 214 140 172		318 280 280 4080 368 597 364 506 506		246 261 238 182 212 212 286	
33.		366 218			
0.0223333330000000000000000000000000000		0.08 01:00:122 00:00:122 00:00:00:00:00:00:00:00:00:00:00:00:00:		0.0 .00 .00 .00 .00 .00 .00	
0 :4:12:18 :		2.7.4.2.1.1.2.1.2.2.1.2.2.1.2.2.1.2		4.8 2.8 1.2 4.1 4.0 4.0	
0 :4		2.0 1.1 1.0 1.0 1.0 1.0 1.0 8.3 8.4		0.1.1.1.0.4;	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		26 26 26 26 26 26 26 26 26 26 26 26 26		0.5 1.5 2.0 1.5 10	
27 27 27 27 27 27 27 27 27 27 27 27 27 2		20 655 116 116 777 118 118		200000	
0 :000000 :0		000004000 00		000000	
334 334 337 209 301 219 1138 1159	Camp Creek Hills	213 199 301 198 172 104 104 316 325 177 169	Valley-fringe area	269 2582 258 258 201 217 258	
622242662 6 1709264007 6		6.00 41 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		22.1.3	
18 19 19 26 8.8 8.8 8.1 6.9 10 4.4 4.4 3.8	np Cr	20 334 334 119 119 119 119 119	ley-fri	25.7 2.9 2.1 4.0 15.0	
22 119 117 111 118 13 8.9 8.9	Caı	20 113 119 288.4 288.4 288.4 4.6 4.6	Val	20 17 15 14 15 16	
69 67 67 67 69 69 28 35		53 63 63 31 60 60 60 41 41 41		56 69 47 61	
0 1.2 0 64 0 64 0 64 0 64 0 64 0 64 0 64 0 64		.0000000		2.6 4 4 1.4 0.07	
		2.1 .00 16 33 		6 4 5	
25 25 25 25 25 25 25 25 25 25 25 25 25 2	i	32 54 50 61 61 47 42 32 36 36		210.0.4.08	
1951 1952 1952 1952 1952 1952 1953 1953		1951 1952 1951 1952 1952 1951 1951 1951		1951 1951 1951 1951	
22, 11, 11, 11, 11, 11, 11, 11, 11, 11,		22, 1 22, 1 22, 1 11, 11, 11, 11, 11, 11, 11, 11, 11,		23, 1 21, 19 23, 11	
Sept. Sept. Sept. Sept. Nov. Sept. Jan. Feb. Sept. Sep		Sept. Sept. Sept. June Aug. Sept. July July July July Aug.		Sept.	
1		68.3 00 00 22.5 50 oring.			
30 250 265 16 145 510 32		1 25 65 55 55 55		255 225 225 6.	
O		29aa. T or Q. 29aa. T or Q. 29aa. T or Q. 29aa. T or Q. 36bc. T or Q. 29bc. T or Q. T or Q. 22da. T or Q. 22da.			
4 T Q		T or Q. T or Q. T T and T and (or) P.		55 555 555	
D1-5-22cd 34cc2 D2-5-14ac 22ccd D3-5-3da		22da1 29aa. 32ac. 16aa. 36bc. 11aa. 9bc.		Sebi Sebi Sebi Sebi Sebi Sebi Sebi Sebi	
34 2 34 34 34 34 34 34 34 34 34 34 34 34 34		A1-3-22da1 29aa. A2-3-32ac. D1-3-16aa 36bc. D2-3-11aa. D2-4-9bc.		A1-5-23cc. A1-6-18cbi 18cbi A3-5-28dd D1-5-12ad D2-6-22cb	
D1-5-22cd Q 34cc2 T D2-5-14ac Q 15aa1 D3-5-3da Q		A1-3-22da1 29aa D2-3-32ac D1-3-16aa 36bc D2-3-11aa D2-4-9bc		A1-5-23cc A1-6-18cb1 18cb2. A3-5-28dd D1-5-12ad	

TABLE 28.—Chemical analyses of surface water in the Gallatin Valley

[Results in parts per million]

	ı														
$H_{\mathbf{q}}$	6.0	7.87.0 5.05.0	9000	6.6	4.8	7.7	7.3	7.8	6.6	7.9 8.4	8.5	8.1	8.2	8.5	7.5
Specific conductance (O°32 ta sofmorsim)	196 240	272 172	233	265 148	407	298	183 294	284	175 214	373 302	300	351	384	401	208 7.
Percent sodium		- - - -	00-	202	7	9	6	9	20	36	9	11	13	7	9
Noncarbonate hardness as CaCOs	10	200	842	12	_	24	30	22	es 00		22	19	18	29	
Hardness as CaCO3	100	151 143 82 82	114	113	204	143	151	138	100	191	148	158	173	204	100
Dissolved solids (Tesidue on evapo- (D°081 at noitar	124	172 171 108			236	186	116	188		$\frac{227}{192}$	200	228	262	250	132
Boron (B)	0.09		.04		.02	90.	04	.03	.12	· : :	.10	90.	.14	.04	.0
(sON) etertiN	0.5	1 6.23.23		1.0 8.	2.2	œ	×1.0	.2	1.5	2.6	7.	1.1	3.0	9.	1.0
(H) abitoulH	0	-:2:-:			2,	ω.	1.63	6,	2	33	.2	85	ε.	65	-:
(ID) abitoldO	0.0	 800	1.0	20.0	7.0	1.5	1.5	1.0	1.0	2.0	1.5	10	7.5	1.5	
Sulfate (SO4)	8.0	31 19 19	325	330	8.0	35	18 35	34	18	900	34	33	39	46	8.0
Carbonate (CO3)	00	000	000	00	7	0	0	0	00	20,	9	0	0	~	0
Bicarbonate (HCO3)	110	041 123 48;	115 110 72	118	234	145	92	142	90	130	142	170	189	199	121
Potassium (K)		မန်တစ်သုံ 			2.6	2.3	w 4	12.1	0.00		1.6	4.1	4.0	2.0	3.1 1.7
(sN) muibod		⊕ - π ·	89	13	7.4	4.5	70.4	4.2		12.7	4.6	9.4	12	7.4	
Magnesium (Mg)		∞ <u>;</u> -7;;∞	7~~		20	9.2	6.5	8.6		12	10	10	13	18	6.2
(aO) muiolaO	36	339	845	233	49	42	523	41		50 37	42	46	48	53	02 27
Iron (Fe)	0.05	888		 25.5	.04	 -	.05			22	.04	.04	.02	.0	-02
Silica (SiO2)		152		1.9.1	17	16	18	15	14	16	17	21	21	10	20
Temperature (9F)	:::	36	145	: : :	59	-12	:49	147		360	51	49	51	:	
Date of collection	6-24-49 8-18-49	8-18-49 6-24-49	9-20-49 9-20-51 6-24-49	10-30-49 5-27-49	9- 8-52	9-20-51	6-25-49 8-19-49	9-23-51	5-27-49	8-19-49 10-30-49	9-20-51	do	op	9-21-51	9-22-51 45 20
Discharge (cfs)			328					862			182	ē.	16.3	14.0	:
Location	Gallatin River at Yellowstone Park boundary Do	Gallatin River, Red Cliff Camp Gallatin River at Squaw Creek Bridge	մ : բն	S, T. 4 S., R. 4 F	IN W 74 Sec. 10, 1. 5	DOWNING CARLA 272 HINES WEST OF BUELLIN SWASWA SEC. 33, T. I. N., R. 3 E.	, R. 4 E.	R. 4 E.	Canavin Liver at Central Fark L.K. Dringe in SW4NEM sec. 19, T. 1 N., R. 4 E. Do.		~ ~	School in R. 3 E.	SEMSW M	allatin sec. 24,	sourdough (Bozeman) Creek near Bozeman in NW 48E14 sec. 30, T. 2 S., R. 6 E
11.lq no .oN		0,00		10	- 0	0 0	n 9	2 :	:	9				0 9	 or

7.2	7.5	8.4	8.2	7.5	7.6	7.7	8.0	887878777788 477700007867788
377 7.	379 7.	306	1408.	218 7	256 7.	280 7.	$\frac{374}{417} \frac{8.0}{8.0}$	3553 3883 3881 3874 3874 3874 3874 3874 3874 3874 3874
-6	12	_	7	က	0	4	0 0	8 0 1 1 2 1 1 1 1 2 1 2 1 2 1 3 2 3 3 3 3 3
6	0	17	0	2	7	0	49	001 100 100 100 100 100 100 100 100 100
184	180	166	63	109	136	144	194 208	173 183 188 178 178 188 182 110 105 142 186 188
236	236	178	96	140	152	176	$\begin{array}{c} 224 \\ 258 \end{array}$	222 258 233 233 241 155 1155 242 242 242 242 242
.02	.03	.05	.05	.01	90.	40.	.07	8888888898888
2.0	ı.	1.1	4.	2.	7.	1.1	8.1 9.	21-22-23-23-1-1-2 21-23-23-23-23-23-23-23-23-23-23-23-23-23-
2.	2.	.1	1.	<u>-:</u>	7:	Τ.	બંહ	
3.0	2.0	1.0	rc.	1.0	r.	1.0	2.5	8444444114764 7.7.7.7.000000000000000000000000000000
			0.	0.	0.	0.	0	
0 28	0 15	6 18	0	9 0	0	0	0 0 24	9 30 9 30 9 30 9 35 9 35 9 30 9 34 9 30 9 35 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30
214	231	170	82	130	157	177	232 246	196 193 196 196 197 202 202 198 128 119 119 157 210 210
2.5	œ	4.	1.9	1.8	4.	rċ.	3.0	8.1.1 <u>22.2</u> 8.3
8.9	11	3.	2.4	1.6	2.	2.5	9.3	10 10 11 11 11 12 12 12 5.5 5.7 14 16
4	9.5	16	4.4	7.1	12	7.1	15 16	46 14 46 14
	57	40	18	32	35 12	46	53	94000000000000000000000000000000000000
.04	.04	.02	40.	90.	.04	90.	22	22222222E222
9	9.0	9.0	20	8.5	5.4	12	12	012120 012120 012144410 020
46 16	4	53	42.	41	46	:	20	57 1655 710
						:	i	222222222
9-21-51	op	9-22-51	9-20-51	9–23–51	9-21-51	do.	do 9-20-5	do d
_	<u> </u>	-		:		÷	9.3	
25	11		38	:	15	:	0.1 <u>1</u>	351 749 890 1700 1660 1650 4,260 4,260 1,610 1,610
East Gallatin River at Bozeman in SW4 SE4 sec. 31, T. 1 S., R. 6 E.	Bridger Creek at mouth of Bridger Canyon in SEMNWM sec. 34, T. 1 S., R. 6 E.	Lyman Creek near Bozeman in NW 4 sec. 28, T. 1 S., R. 6 E.	Middle (Hyalite) Creek in Hyalite Canyon in SE\(\text{SE}\(\text{K} \) sec. 23, T. 3 S., R. 5 E.	Bostwick Creek north of Walker School in NW4SE14 sec. 6, T. 1 S., R. 6 E	Ross Creek near Springhill in NW 1/4 sec. 16, T. 1 N., R. 6 E.	Bear Creek 1½ miles west of Reese Creek School in SE½SW¼ sec. 33, T. 2 N., R. 5 E	arm ir E. sec. 4	East Callatin River in SEASW 45 sec. 33, T. 2 N. R. 4 E. Gallatin River at Logan Do.
17	18	19	20	21	22	23	24	27

¹ Mean daily discharge.

45 ppm of nitrate may cause cyanosis (Comly, 1945, p. 112-116).

Boron is important in determining the suitability of water for irrigation. It is one of the essential elements for plant growth, but its beneficial concentration is very low. Toxic effects may be noticed on some plants if the irrigation water has more than about 0.3 ppm of boron,

Specific conductance is a measure of the ability of a solution to conduct an electrical current. As the concentration of dissolved material increases, the electrical resistance of the water decreases and the specific conductance of the water increases. Thus, specific conductance is an approximate measure of the total amount of dissolved mineral matter in a water.

CONCENTRATION AND NATURE OF DISSOLVED CONSTITUENTS

The shallow wells and test holes in the Gallatin Valley produce water from stream alluvium and alluvial-fan deposits of Quaternary age or from strata of Tertiary age. Most of the deeper wells and test holes derive water from the Tertiary strata, but a few springs and test holes may derive some water from Precambrian rocks. Because the chemical compositions of the water from Bozeman Hot Spring (D2-4-14dac2) and the test holes that tap Precambrian rocks are different, a wide field is provided for speculation as to the source of the ions in solution in those waters. (See table 27.)

Wells drilled in the valley floor derive water from either the Quaternary deposits or Tertiary strata, or both. The chemical characteristics of most samples are shown on plate 10A. Water from the Quaternary deposits was relatively low in dissolved solids and was of the calcium bicarbonate type. The concentration of dissolved solids ranged from 154 to 398 ppm. The magnesium and sulfate percentages of the anhydrous residue of water from wells near Manhattan are slightly higher than those of water from wells in the upstream part of the area. Analyses of water from test holes D1-5-9cd, A1-4-19cb, and -25dc, which penetrate thick alluvial deposits, show that the mineralization of the water is uniform with depth. Wells A1-4-5da, -15da2, D2-4-11dc, and D3-4-3ca, tapping strata of Tertiary age, produce water that is very similar in quality to water from wells in Quaternary deposits. However, the water from Tertiary strata in test hole A2-3-33da increases in mineralization with depth and is of the sodium chloride bicarbonate type.

In the Bozeman fan, most of the samples were from wells tapping Quaternary deposits. (See pl. 10B.) Dissolved solids ranged from 157 to 343 ppm, and calcium and bicarbonate were the major constituents. The concentration of dissolved minerals is independent of well depth but increases downslope. (See table 29.) The increase in mineralization may be attributed to recharge to the aquifer by infiltrating irrigation water and to longer contact of the ground water with the aquifer in the downslope areas.

Table 29.—Changes in water quality in a downslope direction in the Bozeman fan

Location of well or test hole	Sampling date	Depth (feet)	Dissolved solids (ppm)	Percent sodium
D3-5-3da	Sept. 22, 1951 Aug. 28, 1953	32.1 32.1	172 157	7 9
D2-5-22ccd	Jan. 9, 1952 Nov. 6, 1952	$egin{array}{c} 145 \ 265 \ 16.4 \ \end{array}$	214 202 290	8 11 7
D1-5-22cd		30.1 30.1	343 257	13 13

In the Camp Creek Hills ground water in the Tertiary strata varies in quality not only from place to place but also vertically in the same well. (See pl. 10C.) Correlation of chemical quality with geology would require detailed information on the mineral composition and stratigraphy of the Tertiary strata. However, the variation in quality is relatively unimportant because the water from most of the wells was relatively low in dissolved solids and was suitable for many uses.

Ground water in the valley-fringe area was very similar in chemical type and in concentration of dissolved solids to water from the Quaternary deposits in other parts of the Gallatin Valley. (See pl. 10D.)

CHEMICAL QUALITY IN RELATION TO HYDROLOGY

The quality of surface water is closely related to that of the ground water because infiltration of surface water is a principal source of ground-water recharge in the upper part of the valley, and because seepage into streams is a major source of surface water in the lower part of the valley. (See pls. 10, 11.) Surface water in the valley is of the calcium bicarbonate type. In the lower part of the valley, where streams are effluent, the total mineralization of the surface water is but slightly greater than in the upstream part of the valley, where the streams are influent.

The quality of surface water in September 1951, during a period of low flow, is shown by patterns on plate 11.

Four shallow wells in the alluvium were sampled annually in the period 1951-53 to ascertain changes in water quality. Total mineralization of water from three of the wells changed only slightly. (See table 30.) Specific conductance of the water from well A1-4-5dd ranged from 464 to 620 micromhos. In the spring when runoff is high the surface water contains a little less dissolved material than in late summer and fall when streamflow is low. Although there is no analytical proof, the mineralization of the ground water in places where water levels are directly affected by streamflow probably varies somewhat in response to the salinity of the surface water.

Table 30.—Annual changes in total mineralization of ground water from shallow wells

Well	Depth (feet)	Date	Specific conductance (micromhos at 25°C)
D3-4-3abl	11	Sept. 22, 1951 Sept. 9, 1952 Aug 28, 1953	337 345 349
A1-4-5dd	18.0	Sept. 21, 1951 Sept. 9 1952 Aug 28 1953	620 464 523
D3-5-3da	32.1	Sept. 21, 1951 Sept. 9 1952 Aug 28 1953 Sept. 22, 1951 Sept. 9, 1952 Aug 28 1953	266 263 251
D1-5-22ed		Sept. 23, 1951 Sept. 9, 1952 Sept. 11, 1953	552 548 546

SUITABILITY OF THE WATER FOR IRRIGATION

The suitability of any water for irrigation depends on the amount and kind of dissolved minerals or "salts" in the water in relation to certain other factors. (See tables 31, 32.) The dissolved salts affect the ability of the plant to take in water and nutrients. The normal osmotic gradient between the soil solution and the root cells is reversed if the soil solution is highly saline; thus, a plant may wilt from lack of moisture even though soil moisture seems to be adequate. A plant may be more easily injured by saline water during germination and early seedling stage than when older. Irrigation water of high salinity adds to the soluble salts in the soil and should be avoided; however, such water can be used if the texture of the soil is coarse, internal drainage is good, and salt-tolerant crops are planted. If the only

water available is saline, more water than is necessary for plant use should be applied to flush the salts from the soil and to prevent their accumulation. Generally, water having a specific conductance of less than 750 micromhos can be used safely on all soils. As salinity increases, the water becomes less suitable for irrigation; and when the specific conductance is greater than about 5,000 micromhos, the water generally is unsuitable for irrigation (Thorne and Thorne, 1951, p. 11).

Sodium has a detrimental effect on the soil because it deflocculates soil colloids. The deflocculating effect of sodium is controlled by the ratio of the concentrations of calcium and magnesium to sodium. Therefore, the percent sodium is important for determining the suitability of water for irrigation.

Wilcox (1948, p. 5-6) proposed a diagram for rating the suitability of irrigation water on the basis of specific conductance and percent sodium. This diagram, as revised by Thorne and Thorne (1951, p. 9-12), was used in rating the water of the Gallatin Valley. (See fig. 40.) The following interpretation of the revised diagram is adapted from Thorne and Thorne:

Class

Water can be used safely on all soils.

Water can be expected to cause salt problems where drainage is poor and leaching of residual salts from previous irrigation is not consistently practiced.

Water can be used on crops of medium to high salt tolerance, on soils of good permeability, and with irrigation practices that provide some leaching.

Water can be used successfully only if applied to crops of high salt tolerance, on permeable and well-drained soils, and with carefully devised and conducted irrigation and soil-management

Water is generally unsuitable and should be used for irrigation only in special situations.

Group Rating

There should be no difficulty from sodium accumulation in soils.

Where soils are of fine texture and do not contain gypsum or lime, В where drainage is poor, and where small quantities of water are applied with each irrigation, there may be some evidence of sodium accumulation but usually not enough to injure soils or crops seriously. Serious sodium accumulation may occur in waters high in carbonate or bicarbonate.

Serious alkali formation should not occur in permeable soils (sands to silt loams), unless poor drainage, residual carbonate in water, or limited water use are problems. Fine-textured soils

must be managed with care.

D Some alkali formation should be expected in all soils irrigated with group D water. Sandy or permeable soils high in gypsum might be irrigated with such water without highly injurious sodium accumulations. Loams or finer textured soils irrigated for some time with 3D or 4D water and then irrigated with water of low salt content would probably puddle and require gypsum for reclamation.

Generally unsatisfactory for irrigation.

Note.-1C, 1D, and 1E waters often can be improved in quality by treating with gypsum to reduce the percent sodium.

TABLE 31.—Chemical properties relating to suitability of ground water for irrigation in the Gallatin Valley [Geologic source: P. Precambrian rocks; T. strata of Tertiary age; and Q, deposits of Quaternary age]

	ine con- sicrompos sicrompos SoC)	np i
	muibos lsub estanodr (mq	go
	muibos tus	Perc
,	(B) and	Boro (p
on fra	Chloride (C1)	
	Sulfate (\$OS)	
	Car- bonate (CO3)	lion
ndon (a	Bicar- bonate (HCO3)	per mil
	Potas- sium (K)	valents
	muiboS (LN)	Equi
	-ysM muisən (yM)	
	Calcium (SD)	
1.000 (mm; nom) - 0 mm; (mm; nom) (nom) (n	to e Inection	Dati
	ta at mpling (1991) om	128 I
	ogic source	Geol
	Location	

Valley floor

553 553 554 554 555 553 553 553
7.7.7.7.7.3.3088888888888888888888888888
1188881122227777 001246 001246 001246 001246 00124 001
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.08 0.09 0.09 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.
11.83 22.72 22.72 22.72 22.72 22.72 23.72 24.73 25.73
888888888888888888888888888888888888888
444884488999 8 2887884448994411 88877 883
00 00 00 00 00 00 00 00 00 00 00 00 00
00 81 113 82 82 82 83 83 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.04440 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000
Dec. 29, 1952 Sept. 21, 1951 Sept. 28, 1953 Apr. 18, 1953 Apr. 18, 1953 Apr. 28, 1953 Aug. 28, 1953 Aug. 28, 1951 Sept. 29, 1951 Sept. 29, 1952 Sept. 29, 1952 Sept. 29, 1953 Sept. 29, 1953 Sept. 21, 1953 Sept. 21, 1953 Sept. 21, 1953 Sept. 21, 1953 Sept. 21, 1953 Sept. 22, 1951 Sept. 28, 1953 Sept. 28, 1953
18.0 18.0 315 315 317 3102 3101 1702 1703 1703 1704 1707 1107 1107 1107 1107 1107 1107
Н Э Н Э Э Э <u>ЭННН</u> ЭЭЭЭЭ Э Э <u>Н</u> Э Н
A1-4-5da. 5dd. 15da. 15da. 19eb. Q. A1-5-28db2. Q. A2-3-33da. Q. Q. D1-4-1cb. Q. D1-4-1cb. Q. D1-4-1cb. Q. D1-5-9cd. D2-4-11dc. Q. D2-4-11dc. Q. D3-4-3ab1. Q. A3-3-3ab. Q. A3-3-3ab. Q. A3-3-3ab. A4-3ab. A4-3-3ab.

Bozeman fan

552 546 546 546 538 338 470 253 266 266 266		512 398 599 498 857 615 741 741 309 309		426 451 412 339 354 468
0.25 .31 .82 .35 .35 .39 .19 .42		0.00 23 1.00 1.49 60 60 60		e 888888
13 14 19 11 11 17 8 18 7 7		16 35 23 23 49 32 93 19 53 30		25 4 E
0.02 .02 .03 .03 .01 .01		0.08 .10 .10 .12 .13 .30 .30 .21 .21 .24 .09		0.0
0.06 .06 .06 .03 .03 .04 .07		0.73 .37 .34 2.12 .87 .71 .10		0.0 .04 .06 .08 .28
0.56 .42 .35 .02 .02 .02 .02 .02		0.98 .65 1.12 1.73 2.42 1.60 1.71 .37		0.04 .19 .02 .02 .02
8:888888888		000000000000000000000000000000000000000		888888
5.47 5.47 5.52 3.52 8.59 3.59 2.26 2.61		3.49 3.26 3.28 2.82 1.70 5.33 3.36		4.41 4.62 4.23 3.29 3.56 4.23
0.16 .15 .13 .11 .10 .10 .07		0.14 .24 .36 .38 .04 .04 .33		0.05 .03 .04 .05
0.78 .78 .83 .35 .35 .35 .35 .37 .37	lills	0.87 1.48 2.65 2.65 1.52 3.30 1.00 1.00	area	0.25 .13 .09 .17 .17
1.78 1.57 1.36 1.88 1.10 1.15 1.44 .44	Camp Creek Hills	1.66 1.06 1.56 2.33 2.33 1.46 1.91 2.53	Valley-fringe area	1.63 1.38 1.27 1.19 1.25 1.30
3.44 3.59 3.59 3.22 2.25 1.40 1.75	Camp	2.64 1.40 1.55 2.99 2.99 4.64 2.07 2.07	Valley	2.79 3.09 2.25 3.04
Sept. 23, 1951 Sept. 9, 1862 Sept. 11, 1953 Oct. 15, 1952 Nov. 6, 1952 Sept. 22, 1951 Jan. 9, 1962 Sept. 25, 1953 Sept. 9, 1952 Aug. 28, 1953		Sept. 22, 1951 3. do. 1835 Sept. 2, 1952 Sept. 2, 1952 Sept. 2, 1952 Aug. 15, 1952 Sept. 3, 1952 July 11, 1951 July 11, 1951 July 22, 1951 Sept. 8, 1952		Sept. 23, 1951 Sept. 21, 1951 dodo Sept. 23, 1951 Sept. 22, 1951
30.1 250.250.16.4 116.4 130.32.1		28. 3. 310. 310. 310. 310. 320. 320. 32. 570. 37. 570. 37. 57. 57. 57. 57. 57. 57. 57. 57. 57. 5		55. 72. 26. 70.8.
о наодн о р о		T or Q (T or Q T and (or) F		Q(?) Q(?) T(?) T(?)
D1-5-22ed 34ce2 D2-5-14ac 15aa1 22ecd D3-5-3da		A1-3-22da1 29aa A2-3-23ac D1-3-16aa D2-3-11aa D2-4-9bc		A1-5-230c A1-6-18cb1 18cb2 A3-5-28dd D1-5-12ad D2-6-22cb

TABLE 32.—Chemical properties relating to suitability of surface water for irrigation in the Gallatin Valley

	,								•					,			
Specific con- ductance sodmoraim) (O°52 4s		196 240 275	172 172 281	239 150 265	148 407	298	$\begin{array}{c} 183 \\ 294 \end{array}$	284	175 214 373 302	300	351	384	401	208	377	379	306
Residual sodium carbonate (epm)		8888	388	888	888	00.	8.8.	00.	8888	00.	00.	00.	00.		00.	.17	
muibos tasored		1100	ာ တ	2010	702	9	6 23	9	20 15 8 16	9	11	13	-	9	6	12	
Boron (B)		0.09	.05	.04	.08	90.	40.	.03		.10	90.	.14	.04	1 0.	.02	.03	.05
Chloride (C1)		0.03	385	2,8	88	.04	8.6	.03	2,8,5,6	.04	.28	.21	÷0.	10.	80.	90.	.03
Sulfate (4OS)	Equivalents per million	0.17	6.04.6	, 5 E E	.17	.73	.38	.71	.38 .63 .81	.71	69.	.81	96.	.17	.58	.31	.38
Carbonate (CO3)		886.8	97.	888	28.53	00.	8.8	99.	8888	.20	00.	00.	.23	00.	00.	00.	.20
Bicar- bonate (HCO ₃₎		2.29	1.38	1.21	3.83	2.38	1.51	2.33	1.48 1.84 3.47 2.13	2.33	2.79	3.10	3.26	1.98	3.51	3.79	2.79
Potas- muis (K)		25.53		.0.03 .02 .55	03	90.	23 19	.05	\$ 55.55 5.55 5.55 5.55 5.55 5.55 5.55 5.	.04	.10	.10	.05	.04	90.	.02	.01
muibod (gN)		0	• • •	0.15	.32	.20	:	.18		.20	.41	.52	.32	.14	.39	.48	.02
-ysM muisən (yM)		9.6 18:		5.58 5.58 5.58	1.63	92.	.91	.71	.53 1.32 .99	98.	98.	1.06	1.44	.65	1.14	92.	1.32
Calcium (Ca)		1.35	1.95	1.70	1.00	2.10	1.15	2.05	1.00 1.35 2.50 1.85	2.10	2.30	2.40	2.64	1.35	2.54	2.84	2.00
Date of collection		June 24, 1949 Aug. 18, 1949 Oct. 30, 1949	24,5	Sept. 20, 1951 June 24, 1949 Oct. 30, 1949	8,	Sept. 20, 1951	June 25, 1949 Aug. 19, 1949	Sept. 23, 1951	May 27, 1949 June 25, 1949 Aug. 19, 1949 Oct. 30, 1949	Sept. 20, 1951	do	op	Sept. 21, 1951	Sept. 22, 1951	Sept. 21, 1951	do	Sept. 22, 1951
Location		Gallatin River at Yellowstone Park boundary Do. 10 to 10 to 20 Cite Comments	t Squar t Spani	Do Gallatin River below Spanish Creek		Lowline Canal 25 miles west of Buell in 5 W 14 Sec. 33, T. 1 N. R. 3 E.	E	R. 4 E.	Samon Niver av Central I N., R. 4 E. S. V. N. E. Sec. 19, T. 1 N., R. 4 E. Do Do Do Do	sec. 12, T. 1 N., R. 3 E.	Camp Creek at vincent School in SW 4 NE 4		F. 2 S., R.	T. 2 S., R.	E. Bridger Can	T. 1 S., R. 6	T. 1 S., R. 6 E.
Mo. on pl. 11			4 6 4	. s	920		-				2 :						1 61
1							•	- ·	- '					-		-	-

140	218	256	280	374	/T#	353	203	381	387	393	390	229	219	301	393	398	
80.	90.	00.	.02	89	90.	8.8	BÖ.	35	38	88	0.	- 8	00.	9	00.	80.	
7	က	0	₹	100	י מ	∞ ;	O.	125	1:	10	12	6	<u>Б</u>	11	17	15	
.05	.01	00.	.04	.0.	70.	80.0	77.	9,6	3.5	0.7	90	00.	.02	00.	0.5	•0·	
.01	.03	.01	.03	.07) 	01.	. 13	.13	Ξ-	:::	.13	.04	.03	.11	.14	11.	
.04	.12	.10	.02	122	ne.	4.	.62	.71	5.5	73	.71	.33	.31	.46	09	.62	
00.	00.	90.	00.	00.	8.	.13	.30		38	200	00	8.	00.	00.	.10	.17	
1.34	2.13	2.57	2.90	3.80	4.03	3.21	3.16	3.21	0. 10 0. 00 0. 00	3.6	3.24	2.00	1.95	2.57	3.44	3.49	-
.05	.05	.01	.01	.03	8 0. ——	90.		.51	94. 84.	2.7	12.	22	.22	34	. 59	.68	
.10	.07	.01	.11	.21	.40	.32	.43										
-36	.58	76.	.58	1.24	1.32	1.16	1.16	1.10	90.0	1.03	1.19	.65	.60	.84	1.22	1.17	
.90	1.60	1.75	2.30	2.64	2.84	2.30	2.50	2.50	00.20	50.00	2.45	1.55	1.50	2.00	2.50	2.59	
20, 1951	23, 1951	1, 1951	:		20, 1951	:	:	3, 1951									
Sept. 2	Sept. 2	Sept. 21, 1951	do	op		do	do	Dec.									
Middle (Hyalite) Cree SE 4 SE 4 SE 6 23, 7	SEX sec. 6, T. 18., R. 6 E.	T. 1 N., R. 6 E.	Bear Creek 1½ miles west of Reese Creek School in SELKSWK sec. 33, T. 2 N., R. 5 E.	Dry Creek at Fartnell Iarn 34, T. 2 N., R. 4 E.	_	T. 2 N. R. 4 E.	_	Do	Ďo	T.00	D	D0	000	000	D00	Do	
20	77	77	3 3	7.7	252	ì	27	i									

- ▲ Water from Tertiary strata and Precambrian rocks, undifferentiated
- Water from Tertiary strata
- O Water from Tertiary strata and Quaternary deposits, undifferentiated

 Area in which water from Quaternary deposits plots
- Spring water
 - Area in which surface water plots

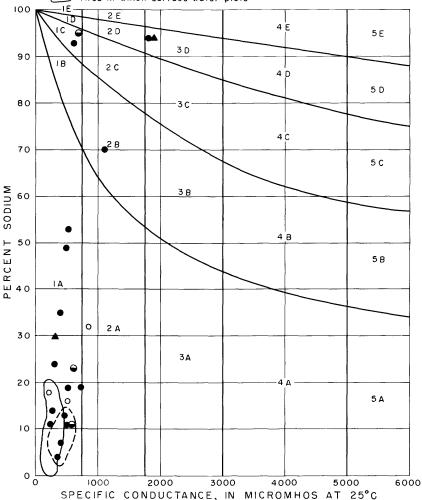


FIGURE 40.—Graph showing classification of ground and surface waters of the Gallatin Valley for irrigation. After Thorne and Thorne, 1951.

As irrigation water high in bicarbonate and carbonate is concentrated by evapotranspiration, calcium and magnesium may precipitate as carbonates, and an increase in percent sodium may result. The carbonate and bicarbonate content of the water in excess of the calcium and magnesium content, expressed in equivalents per million, is "residual sodium carbonate" (Eaton, 1950, p. 123-133). Water containing residual sodium carbonate raises the pH of the soil and dissolves organic matter, perhaps to the extent that the soil condition known as "black alkali" may develop. Wilcox, Blair, and Bower (1954, p. 259-266) found that waters containing less than 1.25 epm (equivalents per million) of residual sodium carbonate are probably safe for irrigation, those containing from 1.25 to 2.50 epm are marginal, and those containing more than 2.50 epm are not suitable. These limits are tentative and may be modified by the degree of leaching of the soil and by other factors. Ground water from Quaternary deposits and surface water had little or no residual sodium carbonate; however, water from Tertiary strata had significant amounts. (See tables 31, 32.)

Boron is an essential minor element for plant growth; however, its beneficial effects are limited to a narrow range in concentration (Scofield, 1936, p. 275-287).

Permissible limits for concentration of boron in several classes of water for irrigation

	Limits for concentration of boron (ppm)			
Class of water	Sensitive plants	Semitolerant plants	Tolerant plants	
Excellent. Good. Permissible Doubtful Unsuitable	<0.33 0.3367 .67-1.00 1.00-1.25 >1.25	<0.67 .67-1.33 1.33-2.00 2.00-2.50 >2.50	<1.00 1.00-2.00 2.00-3.00 3.00-3.75 >3.75	

The most sensitive plants include nut, citrus, and deciduous trees; semitolerant plants include most truck crops, cereals, and cotton; tolerant plants include lettuce, alfalfa, beets, asparagus, and date palms.

Water from all sources in the valley had less than 0.34 ppm of boron except water from test hole A2-3-33da, which contained 5.7, 12, and 12 ppm at depths of 190, 250, and 450 feet, respectively.

SUITABILITY OF THE WATER FOR DOMESTIC USE

Concentration limits of important chemical constituents in drinking water for use on carriers subject to Federal quarantine regulations have been established by the U. S. Public Health Service (1946). The American Water Works Association by resolu-

tion adopted the standards for public water supplies. Some of the chemical constituents, the concentration of which preferably should not exceed those shown below, are as follows:

Constituent	$Concentration \ (ppm)$
Fluoride	1.5
Iron and manganese together	.3
Magnesium	125
Chloride	250
Sulfate	250
Dissolved solids	¹ 500

^{1 1,000} ppm permitted if water of better quality is not available.

The concentration of 1.5 ppm for fluoride was exceeded in water from only 3 ground-water sources. (See table 27.) Although manganese was not determined, concentrations of iron exceeded 0.3 ppm in most of the ground-water samples. Excessive concentrations of iron will stain fixtures, utensils, and laundry. Magnesium and sulfate concentration limits were not exceeded in any of the ground-water samples, but water from well A2–3–33da contained more than 250 ppm of chloride. Dissolved solids exceeded 1,000 ppm in water from only the deeper part of test hole A2–3–33da. Concentrations of none of the constituents in surface-water samples exceeded those shown above. (See table 28.)

A sample from the shallow part of test hole D1-3-36bc contained 110 ppm of nitrate; this test hole was near a barn and the water may have been contaminated by animal wastes.

Hardness of water can be detected in the domestic use of water by the scum or curd formed by soap. Hard water wastes soap and detergent and forms deposits on textiles, utensils, and heating equipment. Generally, water having a hardness of less than 120 ppm (as CaCO₃) need not be softened, that between 120 and 200 ppm may require softening, and that exceeding 200 ppm requires softening for most uses. Hardness of ground water in the Gallatin Valley ranged from 10 to 312 ppm; most of the water would need to be softened to be entirely satisfactory. Hardness of surface waters ranged from 63 to 208 ppm.

CONCLUSION

Throughout the Gallatin Valley, water for domestic and livestock use is obtained from ground-water sources. Although ground water is pumped in a few places for municipal and smallscale industrial use, large withdrawals are not made anywhere in the valley. If integrated with full use of the surface-water resources of the valley, full development of the ground-water resources would not only overcome, in large measure, the existing shortages of surface water but also would make possible the extension of irrigation to some lands now dry farmed. In parts of the valley, the supply of ground water is sufficient to fill the demands of large-scale industries.

Theoretically, the amount of ground water that could be pumped annually in the Gallatin Valley and used consumptively is equal to the average annual recharge to the ground-water reservoir. If less than this amount is pumped and used consumptively, natural discharge from the ground-water reservoir would be reduced by an amount equal to the net use, but, if the full amount is pumped and used consumptively, natural discharge eventually would cease. Under present conditions some of the surface water available for recharge to the ground-water reservoir in Gallatin Valley at times of high runoff is rejected. Thus, a large volume of water leaves the valley each spring without any use having been made of it. Development of the ground-water resources of the valley would increase the amount of space available for storage of additional water within the reservoir and thereby would increase the capacity of the reservoir to store a greater part of the available recharge. Within limits, therefore, the greater the withdrawal from the reservoir, the greater the recharge to it.

In the Gallatin Valley under natural conditions there was an approximate balance between recharge to, and discharge from, the ground-water reservoir. Development of agriculture was accompanied by an increased and, eventually, full use of the available supply of surface water during the growing season. The artificial recharge to the ground-water reservoir resulting from the use of surface water so altered the water regimen that a new state of equilibrium was reached. If, in the future, the ground-water resources of the valley are developed, the regimen again will be affected.

The average annual discharge of ground water from the Gallatin Valley, exclusive of that discharged by evapotranspiration, is about 240,000 acre-feet.

Increase in the consumptive use of ground water within the valley would reduce natural discharge from the valley by an amount equal to the volume used. Because the principal areas of ground-water discharge by evapotranspiration would be the last to be affected by withdrawals of ground water, nearly all the ground-water use would be reflected by a corresponding reduction in surface-water outflow from the valley. The reduction would be caused in part by a diminution of ground-water dis-

charge into streams and in part by loss of surplus surface water to ground-water storage, and would occur principally during the latter part of the irrigation season.

If, in making plans for further development of the ground-water resources of the Gallatin Valley, plans were made also for augmenting the recharge to the ground-water reservoir, the volume of ground water that could be used consumptively each year without exhausting the supply would be increased. A sound basis for "managing" the ground-water reservoir by water spreading would be afforded by the annual forecasts of runoff in the drainage basin of the Gallatin River and periodic measurements of water levels in selected wells. The many borrow pits, gravel pits, and irrigation installations are means by which the ground-water reservoir could be filled when surface water is available for artificial recharge.

If, instead of developing the ground-water resources of the valley, surface-water reservoirs are constructed as a means of storing additional water for irrigation, the added recharge to the ground-water reservoir from the increased spreading of surface water would cause an increase in the amount of waterlogged land in the valley. Much of the land now waterlogged could be drained by open ditches if they were cut into the gravel that underlies the waterlogged soil. Other measures that would help to relieve waterlogging would be consolidation of irrigation canals and the lining of reaches of canals where leakage occurs.

Maximum use of the water resources of the Gallatin Valley would involve, in general terms, use of surface water for irrigation from the beginning of the irrigation season until the supply becomes short. Then, in those parts of the valley where the ground-water supply is adequate, use of ground water would supplant that of surface water, and the remaining available supply of surface water would be sufficient for continued irrigation in other parts of the valley. During the part of the year when the surface-water supply exceeded the demand, the ground-water reservoir should be recharged artificially by surface water that otherwise would be lost from the valley.

A factor, not mentioned previously, in determining the feasibility of developing ground water for irrigation is the initial cost of the wells and the subsequent maintenance and pumping costs. The factors involved in computing pumping costs, together with other factors of interest to the individual water user, are discussed by Wood (1950). Furthermore, the generally close interrelationship of ground water and surface water emphasizes the

need for clarification of the legal status of each in relation to the other, in order that existing rights can be protected and that full development of the water resources will not be impeded.

SELECTED REFERENCES

- Alden, W. C., 1932, Physiography and glacial geology of eastern Montana and adjacent areas: U.S. Geol. Survey Prof. Paper 174.
- American Society of Civil Engineers, 1949, Hydrology handbook: Am. Soc. Civil Engineers, Manual Eng. Practice 28.
- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., 451 p.
- Atwood, W. W., 1916, The physiographic conditions at Butte, Mont., and Bingham Canyon, Utah, when copper ores in these districts were enriched: Econ. Geology, v. 11, p. 697-740.
- Bennison, E. W., 1947, Ground water, its development, uses and conservation: St. Paul, Minn., Edward E. Johnson, Inc., 509 p.
- Berry, G. W., 1943, Stratigraphy and structure at Three Forks, Mont.: Geol. Soc. America Bull., v. 54, p. 1-29.
- Blaney, H. F., 1951, Consumptive use of water: Am. Soc. Civil Engineers Proc., Irrigation Div., v. 77, Separate 91.
- Clabaugh, S. E., 1952, Corundum deposits of Montana: U.S. Geol. Survey Bull. 983, p. 58-77.
- Comly, H. H., 1945, Cyanosis in infants caused by nitrates in well water: Am. Med. Assoc. Jour., v. 129, p. 112-116.
- Debler, E. B., and Robertson, R. R., 1937, Report on Gallatin Valley investigations, Montana: U.S. Bur. Reclamation open-file report, 129 p.
- Deiss, Charles, 1936, Revision of type Cambrian formations and sections of Montana and Yellowstone National Park: Geol. Soc. America Bull., v. 47, p. 1257-1342.
- DeYoung, William, and Smith, L. H., 1936, Soil survey of the Gallatin Valley area, Montana: U.S. Dept. Agriculture, Bur. Chemistry and Soils Bull. 16, ser. 1931.
- Dorf, Erling, and Lochman, Christina, 1940, Upper Cambrian formations in southern Montana: Geol. Soc. America Bull., v. 51, p. 541-556.
- Dorr, J. A., Jr., 1956, Anceney local mammal fauna, latest Miocene, Madison Valley formation: Jour. Paleontology, v. 3, p. 62-74.
- Douglass, Earl, 1903, New vertebrates from the Montana Tertiary: Pittsburgh, Pa., Carnegie Mus. Annals 2, p. 145-199.
- Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Soil Sci., v. 69, p. 123-133.
- Emmons, W. H., and Calkins, F. C., 1913, Geology and ore deposits of the Philipsburg quadrangle, Montana: U.S. Geol. Survey Prof. Paper 78.
- Fenneman, N. M., 1931, Physiography of Western United States: New York, McGraw-Hill, p. 183-224.
- Ferris, J. G., 1949, Ground water, in Wisler, C. O., and Brater, E. F., Hydrology: New York, John Wiley & Sons, p. 198-272.

- Gardner, L. S., Hendricks, T. A., Hadley, H. D., and Rogers, C. P., Jr., 1945, Stratigraphic sections of Paleozoic and Mesozoic rocks in south-central Montana: U.S. Geol. Survey Oil and Gas Inv. Prelim. Chart 18.
- Hanson, A. M., 1952, Cambrian stratigraphy in southwestern Montana: Montana Bur. Mines and Geology Mem. 33.
- Haynes, W. P., 1916, The Lombard overthrust and related geological features: Jour. Geology, v. 24, p. 269-290.
- Horberg, Leland, 1940, Geomorphic problems and glacial geology of the Yellowstone Valley, Park County, Mont.: Jour. Geology, v. 48, p. 275-303.
- Iddings, J. P., and Weed, W. H., 1894, Description of the Livingston quadrangle, Montana: U.S. Geol. Survey Geol. Atlas, Folio 1.
- Imlay, R. W., Gardner, L. S., Rogers, C. P., Jr., and Hadley, H. D., 1948, Marine Jurassic formations of Montana: U.S. Geol. Survey Oil and Gas Inv. Prelim. Chart 32.
- Lochman, Christina, 1950, Status of Dry Creek shale of central Montana: Am. Assoc. Petroleum Geologists Bull., v. 34, p. 2200-2222.
- Long, W. F., 1950, Survey report on Central Park drainage project, Three Rivers Soil Conservation District in Gallatin County, Mont.: U.S. Dept. Agriculture, Soil Conserv. Service, Great Plains Region, Lincoln, Nebr., open-file report, 18 p.
- McMannis, W. J., 1955, Geology of the Bridger Range, Montana: Geol. Soc. America Bull., v. 66, p. 1385-1430.
- Meinzer, O. E., 1923a, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply Paper 489.

- Montana Institute of the Arts, 1951, Historical map of Gallatin County, Mont.: Bozeman, Mont., Br. History Group, Montana Inst. Arts.
- Montana State Engineer, 1953a, History of land and water use on irrigated acres, Gallatin County, Mont., part 1: Helena, Mont., State Engineer's Office.
- Moritz, C. A., 1951, Triassic and Jurassic stratigraphy of southwestern Montana: Am. Assoc. Petroleum Geologists Bull., v. 35, p. 1781-1814.
- Murdock, H. E., 1926, Irrigation and drainage problems in the Gallatin Valley: Montana Univ. Agr. Eng. Sta. Bull. 195.
- Pardee, J. T., 1913, Coal in the Tertiary lake beds of southwestern Montana: U.S. Geol. Survey Bull. 531-G, p. 229-244.

- Peale, A. C., 1893, The Paleozoic section in the vicinity of Three Forks, Mont.: U.S. Geol. Survey Bull. 110.

- Peale, A. C., 1896, Description of the Three Forks quadrangle, Montana: U.S. Geol. Survey Geol. Atlas, Folio 24.
- Reed, G. C., 1951, Mines and mineral deposits (except fuels), Gallatin County, Mont.; U.S. Bur. Mines Inf. Circ. 7607.
- Schultz, C. B., and Falkenbach, C. H., 1940, Merycochoerinae, a new subfamily of oreodonts: Am. Mus. Nat. History Bull., v. 77, p. 213-306.

- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1935, p. 275-287.
- Skeels, D. C., 1939, Structural geology of the Trail Creek-Canyon Mountain area, Montana: Jour. Geology, v. 47, p. 816-840.
- Sloss, L. L., and Laird, W. M., 1946, Devonian stratigraphy of central and northwestern Montana: U.S. Geol. Survey Oil and Gas. Inv. Prelim. Chart 25.
- Sloss, L. L., and Moritz, C. A., 1951, Paleozoic stratigraphy of southwestern Montana: Am. Assoc. Petroleum Geologists Bull., v. 35, p. 2135-2169.
- Stearns, N. D., 1927, Laboratory tests on physical properties of water-bearing materials: U.S. Geol. Survey Water-Supply Paper 596-F, p. 121-176.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. Petroleum Technology, Tech. Note 84.
- Tansley, Wilfred, and Schafer, P. A., 1933, in Tansley, Wilfred, Schafer,
 P. A., and Hart, L. H., A geological reconnaissance of the Tobacco Root
 Mountains, Madison County, Mont.: Montana Bur. Mines and Geology
 Mem. 9.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., 16th Ann. Mtg., pt. 2, p. 519-524.
- Theissen, A. H., 1911, Precipitation averages for large areas: Monthly Weather Rev., v. 39, p. 1082-1084.
- Thomas, H. E., and Wilson, M. T., 1952, Determination of total evaportranspiration by the inflow-outflow method: U.S. Geol. Survey open-file report.
- Thorne, J. P., and Thorne, D. W., 1951, Irrigation waters of Utah: Utah Agr. Expt. Sta. Bull. 346.
- U.S. Public Health Service, 1946, Drinking-water standards: [U.S.] Public Health Repts., v. 61, no. 11, p. 371-384.
- U.S. Soil Conservation Service, 1948, Preliminary examination report on water supply and distribution investigation, Gallatin Valley area, Gallatin County, Mont.: U.S. Dept. Agriculture, Soil Conserv. Service, Region 5, Lincoln, Nebr., open-file report, 17 p.
- Wantland, Dart, 1951a, Seismic investigations in connection with United States Geological Survey ground-water studies in the Gallatin River valley, Montana: U.S. Bur. Reclamation Geology Rept. G-115.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods, with a section on direct laboratory methods and bibliography on permeability

- and laminar flow, by V. C. Fishel: U.S. Geol. Survey Water-Supply Paper 887.
- White, W. N., 1932, A method of estimating ground-water supplies based on discharge by plants and evaporation from soil—results of investigation in Escalante Valley, Utah: U.S. Geol. Survey Water-Supply Paper 659-A.
- Wilcox, L. V., 1948, The quality of water for irrigation use: U.S. Dept. Agriculture Tech. Bull. 962.
- Wilcox, L. V., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Sci., v. 77, p. 259-266.
- Wood, H. E., II, 1933, A fossil rhinoceros (*Diceratherium armatum*) from Gallatin County, Mont.: U.S. Natl. Mus. Proc., v. 82, p. 1-4.
- Wood, H. E., II, and others, 1941, Nomenclature and correlation of the North American continental Tertiary: Geol. Soc. America Bull. v. 52, p. 1-48.
- Wood, I. D., 1950, Pumping for irrigation: U.S. Dept. Agriculture, Soil Conserv. Service Tech. Paper 89.

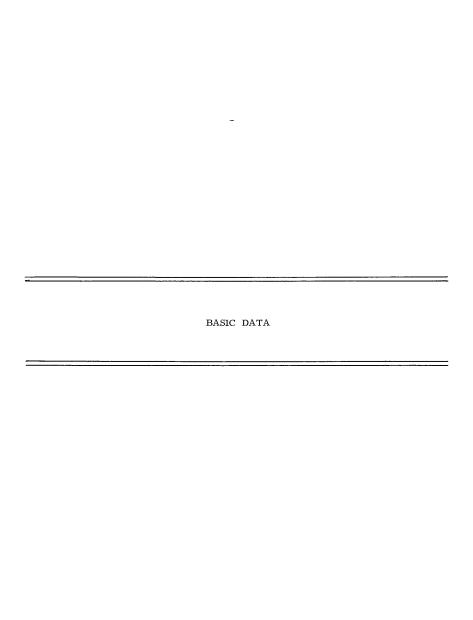


Table 33.—Logs of wells and test holes

[Interpretative information supplied by authors is enclosed in brackets]

interpretative information supplied by authors is enclosed	III DI ackets	
	Thickness	Depth
	(feet)	(feet)
A1-2-29adc		
[Drilled by Montana Power Co. (Rice No. 1). Logged by U. S. G	eological Su	rvey]
	T	
No record	95	95
Tertiary:		
Sand, very fine to medium, angular to subangular; composed of		
quartz, feldspar, garnet, gneiss, obsidian, dark volcanics, and pale-green clayey siltstone.	5	100
Sand, very fine to medium; contains some coarser grains and a		100
few siltstone fragments	25	125
Sand, poorly sorted; contains pebbles and some light-green		
claystone and siltstone fragments	25	150
Siltstone, light-green; contains some claystone	. 5	155
Sand, very fine to very coarse, subangular to subrounded;	1	
contains few fragments of light-green claystone and siltstone	. 10	165
Sand, poorly sorted, subangular; composed of quartz, feldspar,		
obsidian, and red and black volcanic rocks	. 15	180
Sand, poorly sorted, greenish due to green quartz grains;		
contains pebbles and green siltstone fragments ¹		200
Sand, poorly sorted, interbedded with green siltstone		230 238
Siltstone interbedded with green claystone		253
Bentonite(?), light-green; swells and slakes rapidly in water		255
Claystone interbedded with green siltstone		260
Sand and gravel, poorly sorted		272
Siltstone, sandy, green		276
Bentonite(?)	. 3	279
Sand and gravel, poorly sorted		282
Siltstone, sandy, green; interbedded with thin layers of sand		296
Sand, poorly sorted; contains pebbles		302
Claystone, green		308
Sand, fine to medium, angular, greenish		310
Claystone, green		311
Sand, poorly sorted Siltstone interbedded with sand.	7	318
Sand, angular, poorly sorted		334 350
Siltstone, clayey, green.		372
Sand; contains some gravel		375
Siltstone, green		377
Sand; contains some gravel		384
Siltstone, pale-green streaked with light-brown	. 8	392
Sand, poorly sorted, angular; contains pebbles		398
Claystone, cream with pale-green tinge, tuffaceous(?)		400
Sand, angular, poorly sorted, light-green		404
Claystone, tuffaceous, cream-colored	. 5	409
Sand, fine to medium, poorly sorted, gray; contains some well-		400
developed quartz crystals		438 443
Claystone interbedded with siltstone		443
Claystone, green		455
Sand, fine to medium, poorly sorted, gray		459
Siltstone, green.		463
Sand, fine to medium, poorly sorted, gray		468
Siltstone, sandy, pale-green		480
		488
Sand, fine, gray	· •	100

The remainder of the log has been adjusted to an electric log, which begins at this point.

Table 33.-Logs of wells and test holes-Continued

	Thickness (feet)	Depth (feet)
A1-2-29adc—Continued	<u> </u>	
Tertiary—Continued		
Sand, poorly sorted, angular, gray; composed of quartz,		
feldspar, gneiss, and some dark volcanic grains	4	505
Siltstone, light-green	5	510
Sand, poorly sorted, angular, gray	3	513
Siltstone, sandy; interbedded with gray-green claystone	8	521
Sand, poorly sorted, angular, gray	4	525
Siltstone, gray-green	6	531
Sand, poorly sorted, angular, gray		535
Sand, silty, interbedded with siltstone	17	552
Claystone interbedded with bentonite(?) and siltstone		564
Sand, poorly sorted, angular, gray		566
Claystone interbedded with gray-green siltstone		573
Sand, medium-grained, angular, poorly sorted		578
Siltstone, claystone, and pale-green sandy siltstone	22	600
Sand, fine to medium, subangular, light-gray; composed of		
quartz, feldspar, gneiss, and muscovite; this is the deepest		CO 4
sand containing dark volcanic rocks		604
Claystone interbedded with silty fine sand, pale-green		613 620
Sand, fine to medium, subangular, light-gray		633
Claystone interbedded with siltstone, pale-green,		635
Siltstone interbedded with claystone and thin layers of sand,	1 1	000
pale-green,	47	682
Sand, fine to medium, subangular, light-gray	ł .	685
Siltstone, clayey, light-green		690
Claystone, silty, micaceous, gray-green; grades downward to gray, medium, friable sandstone composed of quartz,		
feldspar, and biotite	6	696
Claystone, greenish-gray	1	697
Sandstone, coarse-grained, porous, gray		697.5
and sandy siltstone	13.5	711
Sandstone, porous, poorly sorted, angular, gray; contains	_	716
pebblesd. fine main dead to the fine m		716 726
Claystone, green; grades downward to fine-grained sandstone	10	120
Sandstone, coarse-grained, calcareous, hard, gray; contains pebbles.	2	728
Sandstone, coarse-grained, porous, friable, gray	1	742
Siltstone, green		746
Claystone, gray-green		754
Sandstone, poorly sorted, silty, clayey, gray	1	760
Sandstone, fine-grained, gray; grades downward to medium-		
grained sandstone	6	766
Sandstone, medium-grained, gray; grades downward to fine-		
grained sandstone	2	768
Sandstone, fine-grained, gray	4	772
Claystone, green; grades downward to fine-grained sandstone	4	776
Sandstone, fine-grained, gray	3	779
Sandstone, coarse-grained, porous, gray		782
Sandstone, coarse-grained, porous, gray, interbedded with thin layers of claystone		788
Conglomerate; composed of well-rounded pebbles of quartz and		700 0
muscovite-quartz gneiss; green		788.3
Siltstone, sandy, micaceous	9.7	798
Sandstone, medium-grained, calcareous, micaceous (the		001
mica flakes are arranged in layers)		801
Sandstone, coarse-grained, porous, gray		811
Claystone, green		813
Siltstone, sandy; grades downward to coarse-grained sandstone.	1 7	820

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A1-2-29adc—Continued		
Tertiary—Continued		
Siltstone, green		825
Mudstone, carbonaceous, dark-gray; contains thin coal seams	3	828
Sandstone, coarse-grained, porous, gray		832
Sandstone, medium-grained, hard, calcareous, gray		836
Claystone, green		842
Sandstone, silty, poorly sorted, gray	5	847 856
at 850 ft	3	859
Claystone, silty, green	1	871
Sandstone, poorly sorted, gray		880
Siltstone, clayey and sandy, gray-green. Sandstone alternating with sandy siltstone and claystone. Each		895
bed averages about 2–5 ft in thickness	157	1,052
Siltstone, green, maroon-streaked	1	1,058
Sandstone, coarse-grained, porous, gray; composed of quartz,		
feldspar, muscovite and biotite	4	1,062
Claystone, green, maroon-streaked		1,064
Sandstone, coarse-grained, porous, friable, gray	7	1,071
Siltstone, green		1,076
Sandstone, coarse-grained, gray	4	1,080
Claystone, green		1,084
Sandstone, silty, poorly sorted		1,089
Siltstone, micaceous, green; contains sand	1	1,100
Sandstone, gray		1,106
Siltstone, sandy, green, maroon-streaked		1,112
Sandstone, coarse-grained, gray	4	1,116
Claystone interbedded with siltstone, green	9	1,125
8-in. coal seam at 1, 126 ft	5	1,130
Sandstone, coarse-grained, micaceous, gray	2	1,132
Claystone, gray. Sandstone, coarse- to medium-grained, porous, friable, gray;	2	1,134
composed of quartz, feldspar, and mica		1, 136
Claystone, gray; grades downward to sandy siltstone	0	1, 144
Sandstone, predominantly coarse-grained, porous, friable, gray; composed of quartz, feldspar, and mica	10	1, 154
Siltstone, clayey, gray		1, 160
Sandstone, medium-grained, gray; grades downward to a gray		1, 100
claystone	5	1, 165
Siltstone interbedded with claystone, gray-green		1, 182
A1-3-4da [Drilled by commercial driller]		
		r
Soil [alluvium]	1	3
Gravel	. 4	7
Clay (no water)	. 13	20
Gravel	18	38
Hardpan and clay [Tertiary?]	. 42	80
A1-3-14dd [Drilled by commercial driller]		
r		
Gravel	30	30
Hardpan [calcareous, siltstone; Tertiary]	30	60
Siltstone, harder than above	7	67
Siltstone	2	69
Hardpan	1	70
Sandstone, fine-grained	5	75

Table 33.-Logs of wells and test holes-Continued

	Thickness (feet)	Depth (feet)
A1-3-29aa	(/	(/
[Drilled by commerical driller]		
Dirt	15	15
Gravel	78	93
Sandrock, soft	6	99
Sandrock, hard	1	100
Clay, soft, yellow	150	250
QuicksandQuicksand	18	268
Clay, soft	12	280
Sand, fine; pumped dry in $2\frac{1}{2}$ hr		287
Clay		299
Sand		306
Clay	4_	310
A1-4-5da		
[Drilled by contractor for the U. S. Geological Survey, Princip		aring
zone, 5-31 ft. Depth to water December 1952, 4	ft]	
Quaternary (alluvium):		
Loam, silty	5	
Gravel, calcareous (comprised largely of dark-colored		
volcanic and metamorphic rocks; also contains a few		
fragments of dolomite and quartzite)	10	15
Gravel, silty, calcareous	3	18
Sand and gravel, silty, calcareous, tuffaceous(?); contains limestone fragments	13	31
Tertiary(?):	13	3.
Silt and clay, sandy, calcareous, tuffaceous(?), light-tan;		
contains pebbles	4	35
Sand, medium, silty, calcareous, light-tan; contains pebbles	10	45
Silt, sandy, calcareous, light-tan; contains pebbles and a few		
marly fragments. Pebbles and sand are comprised of		
volcanic rock fragments, quartz, limestone, and magnetite	32	7
Sand, silty, calcareous, light-tan; contains pebbles	30	107
Silt, sandy, calcareous, light-tan; contains scattered pebbles		
and siltstone fragments	16	123
Sand, silty, fine, calcareous, light-tan; contains pebbles	12	135
Tertiary:		
Siltstone, sandy, calcareous, tuffaceous, buff; contains a		
small amount of sand and gravel	22	157
Sandstone, medium-grained, silty, calcareous, gray; contains		100
pebbles. Sand grains are subrounded	11	168
Sandstone interbedded with calcareous conglomerate, grayish-	İ	
brown, Sand grains and pebbles are subangular to subrounded	39	20'
A1-4-15da2	al waten be	a min a
[Drilled by contractor for the U. S. Geological Survey. Princip zones, 4-80 ft and 249-260 ft. Depth to water for upper zone,	4 ft: for lo	wer
	110, 101 10	,,,,,
zone only,3 ft]		
Quaternary (alluvium):		
Soil, silty	1	1
Gravel, fine, and coarse to very coarse sand; some dark-	22	23
brown siltGravel, poorly sorted.	5	28
Sand, very fine to fine, silty, light-brown; some coarse sand	3	20
and gravel	7	35
Gravel and coarse sand	5	40
	1	
Sand, very fine to fine, silty, light-brown; little fine gravel		

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A1-4-15da2—Continued	•	
Quaternary (alluvium)—Continued		
Gravel, fine, and coarse sand; some very fine sand and brown		
silt	4	49
Sand, very fine to coarse, silty, brown	6	55
Gravel, fine, and coarse sand; some brown silt	20	75
Gravel, cobbles, and coarse sand	5	80
Sand, medium to coarse; contains pebbles and brown silt	14	94
Sand and gravel, poorly sorted; some brown silt and clay	9	103
Sand, medium to very fine, silty, brown	9	112
and silt	12	124
Sand, medium to very coarse, silty	6	130
Silt and clay, light-brown; some sand	6	136
Sand and gravel; small amount of silt	7	143
Sand, fine, silty, light-brown; some coarse sand and gravel	10	153
Gravel and sand, poorly sorted; some dark-brown silt	30	183
Sand, poorly sorted; small amount of dark-brown silt and clay. Sand, coarse, clean, dark-colored; some Tertiary rock	22	205
fragments	10	215
Clay, slightly silty, buff; contains mica	15	230
calcareous tuffaceous siltstone	5	235
siltstone	9	244
Gravel, sandy, silty	2	246
Siltstone, calcareous, tuffaceous, buff	3	249
Sand, poorly sorted, coarser grains predominant; some silt Siltstone, slightly sandy, tuffaceous, calcareous, buff; inter-	11	260
bedded with buff claystone	45	305
Claystone, silty, calcareous, buff	10	315

A1-4-19cb

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zones, 5-94 ft and 117-180 ft. Depth to water for upper zone, 5 ft. Water level for lower zone, 3 ft above land surface]

Quaternary (alluvium):		
Soil	1	1
Gravel, sandy, poorly sorted, dark-colored	14	15
Sand, medium to very coarse, poorly sorted	15	30
Sand and gravel, poorly sorted; some brown silt	5	35
Sand and gravel, poorly sorted, dark-colored	20	55
Sand, medium to very coarse, dark-colored	5	60
Sand, poorly sorted; contains pebbles	10	70
Gravel and sand, poorly sorted, clean	24	94
Clay, calcareous, light-brown to cream; fragments of very		
slightly tuffaceous calcareous siltstone; some marl	ļ	
fragments	13	107
Sand and gravel, poorly sorted, dark-colored	16	123
Sand, medium to very coarse	2	125
Sand and gravel, poorly sorted	5	130
Sand and gravel, poorly sorted, silty, brown	5	135
Sand, poorly sorted, very clean	5	140
Sand and gravel, poorly sorted, clean; contains a few large		
pebbles and cobbles	45	185
Sand, silty; contains pebbles	10	195

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A1-4-19cb—Continued		
Quaternary (alluvium)—Continued		I
Sand, medium to coarse; fragments of light-brown calcareous		
bentonitic(?) claystone	5	200
Silt and clay, sandy, greenish-gray; contains fragments of		
kaolinite(?) and some small glass shards		210
Sand and gravel, poorly sorted		220
Sand, very fine to very coarse; some silt		225
Sand and gravel, poorly sorted; some silt		270
Silt, sandy, clayey, brown		280
Sand and gravel, silty, brown		285
Sand, poorly sorted; very little brown silt	7	292
Sand, poorly sorted; contains a few pebbles, some silt, and	9	301
a little clay	9	301
A1-4-22dc4		
[Drilled by contractor for the U. S. Geological Survey. Depth	to water, 3 f	t]
Quaternary (alluvium):	I	
Soil, silty	4	4
Gravel and coarse sand; some brown calcareous silt	11	15
Gravel, coarse, sandy; very little brown calcareous silt	. 5	20
Sand, coarse; contains pebbles, brown silt, and fine sand	15	35
Sand, medium to coarse; some silt	i 8	1 43
		
A1-4-25dc		
	al water-bear	ing
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa	al water-bear	ing
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed	al water-bear ter, 10 ft]	
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft]	50
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft]	50 90
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120	50 90 210
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120	50 90 210 240
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30	50 90 210 240 278
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25	50 90 210 240 275 300
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78	50 90 210 240 275 300 378
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6	50 90 210 240 275 300 378 384
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6	50 90 210 240 275 300 378 384
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 210 240 275 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks Gravel; contains sand lenses. Gravel, sandy. Sand, medium to coarse; contains pebbles. Gravel, sandy. Gravel, sandy. Gravel, sandy Sand, medium, silty. Gravel, sandy Sand, medium, silty. Gravel, sandy Drilled by commercial driller]	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(24(27; 300 37; 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 210 24(27; 300 37; 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	500 900 2100 2400 275 3000 378 384 4000
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 210 240 275 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks Gravel; contains sand lenses Gravel, sandy Sand, medium to coarse; contains pebbles Gravel, sandy A1-5-9bb [Drilled by commercial driller] Topsoil Gravel [alluvium]. Water at 25 ft Clay, sandy, yellow. More water A1-5-28db2	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(24(27; 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(24(27; 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks. Gravel; contains sand lenses	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 210 240 275 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(24(27; 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 210 240 275 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(24(27; 300 378 384 400
A1-4-25dc [Drilled by contractor for the U. S. Geological Survey. Princip zone, 10-55 ft; saturated from 60-400 ft. Depth to wa Gravel, sandy, silty, calcareous; contains cobbles; composed of volcanic and metamorphic rocks	al water-bear ter, 10 ft] 50 40 120 30 35 25 78 6 16	50 90 21(1 24(2 27; 300 378 388 400

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A1-5-28db2—Continued		
Quaternary (alluvium)—Continued		
Silt and clay, calcareous, gray; coarse gravel	5	15
Silt and clay, calcareous, yellow-buff; coarse sand and fine	İ	
gravel. Sand and gravel composed of fragments of Tertiary		1
beds, Paleozoic limestone and gneiss	10	25
Gravel and yellow-buff calcareous silt and clay	10	35
Silt, yellow-buff, and poorly sorted sand	10 5	45
Silt, calcareous, buff; some sand and gravel	9	59
Sand, gravel, and buff calcareous silt	26	85
Sand, medium, well-sorted; some buff calcareous silt	5	90
Sand and silt, calcareous, buff; some fine gravel; small		
amount of clay	25	115
Gravel and sand; buff silt	35	150
Silt and clay, calcareous, buff; some gravel and sand	5	155
Sand, coarse, and fine gravel; silt	5	160
Silt and clay, calcareous, buff; sand and gravel	10	170
Sand and fine gravel; calcareous silt	25 6	195
Gravel, coarse; sand and silt	3	204
Gravel, coarse; sand; brown calcareous silt	6	210
A1-6-18cb1		
[Drilled by commercial driller]		
Soil	5	
Gravel, tight	15	20
Water sand	5	25
Clay, sandy	45	70
Sand and boulders	3	73
A2-2-35ab1		
[Drilled by contractor for the U. S. Geological Su	rvey]	
Quaternary (alluvium):		
Soil	2	
Gravel and cobbles	20	2:
Mississippian (Madison group): Limestone, brown	4	2
A2-2-35ab2		
	m	
[Drilled by contractor for the U. S. Geological Su Quaternary (alluvium):	rveyj	
Soil	2	l
Gravel and cobbles	19	2
Gravel, clayey, and cobbles	2	2
Mississippian (Madison group): Limestone, brown	4	2
A2-2-35ad1		
[Drilled by commercial driller]		
10 / 11 : 11 0	1	1
[Quaternary (colluvium)]: Gravel		3
[Tertiary(?)]: Soapstone, ivory-colored [probably claystone] [Mississippian (Madison group?)]: Solid rock	30 50	110

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A2-2-35ad2	,	
[Drilled by commercial driller]		
Unconsolidated depositsSolid rock, dark-colored	28 64	28 92
A2-2-36bb)Y	
[Drilled by commercial driller]		
[Quaternary (alluvium)]: Gravel	15	15
[Devonian (Jefferson limestone?)]: Solid rock, very dark colored;		
hard to drill	122	137
A2-2-36bc		
[Drilled by commercial driller]	,	
[Quaternary (alluvium)]: Gravel	17	17
limestone?)]: Red hardpan, fairly soft rock	62	79
A2-3-23cb		
[Drilled by commercial driller]	9 1	9
Topsoil	9	9
Shale; very little water at 24 ft	31	40
Red rock	25	65
Shale, blue-gray	45	110
Sandstone, gray		142
Soapstone, light-gray	8 2	150 152
Sandstone, light-colored (almost white); water rose to 80 ft [Cambrian (Flathead quartzite?)];	2	132
Hard rock	6	152,6
A2-3-33da		
[Drilled by contractor for the U. S. Geological Survey. Princip zones, 32-73 ft and 215-300 ft. Depth to water for upper zone lower zone only, 12 ft]		aring
Quaternary (alluvium):		
Silt	1	1
metamorphic rock fragments	14	15
a few limestone pebbles		40
Gravel, sandy, fine	10	50
Gravel, sandy and silty, fine Tertiary (fanglomerate?):	5	55
Gravel, sandy, calcareous; contains cobbles of limestone and quartzite	18	73
Tertiary:	1 1	
Volcanic ash, pure, cream-gray	2	75
Volcanic ash pure cream-gray	3 2	78 80
Volcanic ash, pure, cream-gray	4	UU
volcanic ash	60	140
volcanic ash Tertiary (fanglomerate): Gravel and cobbles, angular, in a matrix of greenish silt and	60	140
volcanic ash Tertiary (fanglomerate):	60	140

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
A2-3-33da—Continued		
Tertiary (fanglomerate):—Continued Sand, medium, angular to subangular, dark-brown. Composed predominantly of limestone; also contains some chert, a few		
crystal-quartz grains, and pyrite cubes and octahedra	20 5	23 24
Sand, medium to coarse, dark-brown. Composed of limestone, chert, and quartz containing a little pyrite	20	26
Sand and gravel, intermixed	40	30
zone	20	32
calcite on seams	87	40
gray	15	42
gray	28	45
A2-3-34ca [Drilled by commercial driller]		
Gravel	25	2
ClayGravel	10 17	3 5
D1-3-13bb		
[Drilled by commercial driller]		
Topsoil. Gravel	17 44	1
Hardpan.	13	7
Gravel	37	11
D1-3-13bc		
[Drilled by commercial driller] Dirt and clay		1
Gravel, tightly packed, dry	14 112	12
Sand and gravel; small amount of water	5	13
Clay, sandy, dirty; little water	12	14
Sand, dirty (quicksand)	12	15
Quicksand	15 5	17 17
Sand, coarse, clean, saturated	60	23
D1-3-13ca2	L	
[Drilled by commercial driller]		
Topsoil	24	2
Gravel	3	2
Clay and gravel	8	3
Gravel and sand	67	10
[Drilled by commercial driller]		
Topsoil and clay	17	1
Gravel and silt intermixed	147	16

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D1-3-24ba		
[Drilled by commerical driller]		
Topsoil	5	
Gravel	18	2
Clay	22	4
Quicksand	13	5
Sand and clay	92	15
(?)	22	17

D1-3-36bc

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zone, 16-100 ft. Depth to water, 16 ft]

zone, 16-100 it. Depth to water, 16 it]		
Quaternary (colluvium):		
Silt, sandy, calcareous, tuffaceous, buff; contains pebbles	23	23
Tertiary (unit T ₂ ?):	20	
Gravel, sandy, silty. Gravel is composed of pebbles derived		
from Tertiary beds and volcanic rocks	9	32
Silt, sandy, calcareous, buff; contains pebbles	33	65
Gravel, silty. Gravel is composed of volcanic and metamorphic	30	00
rocks and fragments of Tertiary beds	20	85
Sand, silty, poorly sorted, calcareous	7	92
Gravel, sandy; contains fragments of buff claystone	8	100
Tertiary (unit T ₂):	١	100
Silt, sandy, calcareous, tuffaceous, buff; contains fragments		
of marl	25	125
Clay, calcareous, tuffaceous, light-brown; contains fragments	20	120
of siltstone	30	155
Silt, sandy, clayey, calcareous, tuffaceous, buff	19	174
Gravel, sandy, calcareous, tuffaceous	6	180
Silt, sandy, clayey, tuffaceous, buff	45	225
Sand, silty, poorly sorted	7	232
Silt, sandy, calcareous, tuffaceous, buff	16	248
Gravel, sandy.	4	252
Siltstone, sandy, calcareous, tuffaceous, buff	28	280
Volcanic ash, gray	4	284
Gravel, sandy and silty.	21	305
Sand and silt, calcareous; contains numerous dark minerals	18	323
Tertiary (unit T_1 ?):	10	020
Siltstone, sandy, calcareous, tuffaceous, buff; interbedded with		
tan laminated claystone	31	354
Sand, poorly sorted; contains pebbles.	9	363
Siltstone, clayey, calcareous, tuffaceous, buff	22	385
	43	428
Sand, poorly sorted	30	458
Claystone, silty, slightly calcareous, buff,	30	430
Tertiary (unit T ₁):	3	461
Volcanic ash, calcareous	42	503
Clay and claystone, silty, calcareous, tuffaceous, tan	i	
Clay and claystone, silty, calcareous, light-green	55	558
Claystone, silty, pyritic, bluish-green	32	590
Clay and claystone, pyritic, dark-blue; fossiliferous(ostracodes	105	705
at 715 ft)	135	725
Sand, poorly sorted, composed chiefly of quartz, garnet, dark	2.	7.40
minerals, calcite, and pyrite grains	24	749
Clay, silty, dark-blue; contains gypsum fragments, which		
probably occur in thin layers	44	793
Clay and claystone, dark-blue, fossiliferous (ostracodes at	0.5	0.50
820 and 835 ft); contains siltstone fragments	6 6	859

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D1-3-36bc—Continued		
Precambrian(?):		
Sand, angular, bluish; contains pebbles. Sand is composed		
chiefly of quartz, feldspar, and gneiss fragments. This	1	
material is probably derived from weathered Precambrian		0.00
gneiss	23	882
D1-4-1cd		
[Drilled by commercial driller]		
Soil	2	2
Gravel, loose. Water at 28 ft	26	28
Sand, water-bearing		32
Gravel, tight; contains some sand. Struck second water at 54 ft		
and it raised to 47.4 ft from the surface		120
Sand, clean. More water		124
Gravel, tight; contains some sand		190
Sand, clean. More water	6	19

D1-4-2dd

200

Gravel, tight.....

[Drilled by commercial driller. Samples examined by U. S. Geological Survey personnel]

Gravel and sand; some calcareous silt	12	12
Sand and gravel; little light-gray calcareous silt	22	34
Gravel and sand; some light-brown silt	44	78
Silt, light-brown; some gravel and sand	17	95
Gravel and sand; varying amounts of light-brown silt		178

D1-4-6ddc2

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zones, 14-65 ft and 150-240 ft. Depth to water for upper zone, 15 ft; for lower zone only, 28 ft]

Quaternary (alluvium):		
Silt, calcareous, light-gray; some clay and sand	5	5
Silt, calcareous, light-gray; some fine sand	10	15
Silt, calcareous, light-gray; some sand and gravel	5	20
Silt, calcareous, gray; some medium sand	5	25
Sand, silty, slightly calcareous, gray; some fine gravel	8	33
Gravel and sand; some gray silt	7	40
Sand, coarse; some gray silt	5	45
Sand, very fine to fine; some gray silt	5	50
Gravel, brown sand and silt	10	60
Sand, coarse, and fine gravel; some light-brown silt	26	86
Sand, fine to medium, silty, light-brown	6	92
Gravel and sand; light-brown silt and clay	6	98
Sand, coarse, and gravel; light-brown silt	5	103
Sand, well sorted, medium, gray-brown	15	118
Sand and gravel; some light-brown silt	28	146
Silt, light-brown; very fine to fine sand; some gravel	5	151
Sand, medium to very coarse, and fine gravel; some light-	1	
brown silt	10	161
Sand, coarse, and gravel; very fine sand in silt matrix, light-		
brown	25	186
Sand, very fine, and light-brown silt; some gravel and clay	32	218

Table 33.-Logs of wells and test holes-Continued

	Thickness (feet)	Depth (feet)
DI-4-6ddc2—Continued		
Quaternary (alluvium):—Continued		
Sand, well-sorted, fine to medium; contains numerous grains of magnetite.	4	222
Silt, clayey, light-brown; some coarse sand and gravel	18	240
Gravel, fine, and medium to coarse sand; light-brown silt	6	246
Gravel, medium to coarse, and sand; silt and clay matrix Note: Fragments of metamorphic and volcanic rocks and quartz are the predominant constituents of the sand and gravel.	9	255

D1-4-9ba1

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zones, 12-45 ft and 50-97 ft. Depth to water for upper zone 11 ft; for lower zone only, 23 ft]

Quaternary (alluvium):		
Sand, coarse to fine; contains pebbles and some cobbles	20	20
Sand, very coarse to coarse; contains pebbles, very fine sand,	ļ	
and some brown silt	15	35
Gravel, fine, and coarse sand	3	38
Gravel, medium to fine, sandy; some brown silt	7	45
Clay, sandy, light-brown	2	47
Sand, coarse to fine; contains pebbles and some silt	14	61
Gravel and sand, poorly sorted; some brown silt and clay	25	86
Sand and gravel, poorly sorted, angular to subrounded;		
some brown silt	11.5	97.5
Note: Fragments of metamorphic rocks and some of	I	
volcanic rocks are the principal constituents of the		
sand and gravel.	1	

D1-4-25aa2

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zones, 5-50 ft and 149-223 ft. Depth to water for upper zone, 5 ft; water level for lower zone only, 13 ft above land surface]

Quaternary (alluvium):		
Soil	3	3
Gravel and cobbles of limestone, and metamorphic and volcanic		
rocks; contains some gray-brown calcareous silt	13	16
Gravel and sand, poorly sorted, dark-gray; some gray-brown		
calcareous silt	14	30
Sand, very fine to medium, dark	13	43
Gravel, fine; some sand and silt	3	46
Sand, very fine to medium, dark	3	49
Quaternary (fan alluvium?):		
Gravel, sandy, silty, tan to brown; contains several thin lenses	:	
of sand and silt. Gravel composed of volcanic and metamor-		
phic rocks	52	101
Silt and very fine sand, light-brown	3	104
Sand, silty, poorly sorted, very fine to very coarse, tan;		
contains pebbles	33	137
Tertiary:		
Silt, clayey, tan; contains fragments of claystone and tan		
calcareous tuffaceous siltstone; some gray ash fragments	12	149
Sand, poorly sorted, calcareous, tan; some fragments of		
calcareous cemented sandstone	8	157
Sand, fine to very fine, and silt	6	163

Table 33. - Logs of wells and test holes - Continued

	Thickness (feet)	Depth (feet)
D1-4-25aa2—Continued		
Fertiary:—Continued		
Gravel, poorly sorted, rounded, sandy; little light-brown silt	15	178
Sand, poorly sorted, fine to coarse, gray; some tan silt in		
places; fragments of calcareous tuffaceous siltstone and	43	221
claystone		
Sand, gray, and fragments of calcareous cemented sandstone	2	223
Siltstone, tuffaceous, calcareous, tan; interbedded with buff		
claystone	57	280

D1-4-25aa3

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zone, 5-50 ft. Depth to water, 5 ft]

Quaternary:		_
Soil	5. 5	5.5
Gravel, dark; some large pebbles and cobbles	9.5	15
Sand and gravel, dark	13	28
Sand and gravel; some brown silt		34
Sand and some gravel, clean	16	50
Sand, silty, brown	. 5	50.5

D1-4-34bd

[Drilled by commercial driller]

Quaternary: Sand and gravel	16	16
[Tertiary(?)]: Clay, yellow and brown	22	38

D1-5-9cd

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zone, 14-70 ft. Depth to water, 14 ft]

10	10
5	15
15	30
5	35
15	50
10	60
5	65
45	110
45	155
7	162
	5 15 5 15 10 5 45

D1-5-18cc

[Drilled by commercial driller]

Sand and gravel	49	49
Hardpan		49.5
Gravel		50

Table 33.-Logs of wells and test holes-Continued

	Thickness (feet)	Depth (feet)
D1-5-32ca		
[Drilled by commercial driller]		
Clay	5	5
Gravel	18	23
Clay and hardpan	19	42
Hardpan. Water	10	52

D1-5-34cc2

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zones, 10-39 ft, 60-83 ft, and 103-120 ft. Depth to water for top zone, 10 ft]

Quaternary (fan alluvium):		
Silt, buff	9	9
Gravel, silty, sandy; composed chiefly of volcanic and metamorphic rocks	30	39
Clay, sandy, silty, buff	23	62
Sand, poorly sorted; contains pebbles. The sand is composed		
chiefly of quartz with some biotite	21	83
Silt, clayey, buff	20	103
Gravel, silty; contains pebbles	12	115
Sand, medium to fine, silty; contains pebbles	12	127
Certiary:	İ	
Volcanic ash, gray	4	131
Siltstone, sandy, calcareous, tuffaceous, buff	9	140
Sand, medium to coarse, silty; contains pebbles	14	154
Siltstone, sandy, calcareous, tuffaceous, buff	90	244
Gravel; composed of volcanic and metamorphic rocks	3	247
Silt, buff; contains pebbles	3	250

D1-5-36ddc

[Drilled by commercial driller]

Topsoil and dirt	20	20
Gravel, sand, boulders. Water at 30 ft	73	93

D2-4-4aa

[Drilled by commercial driller]		
Soil	7	7
Gravel		34

D2-4-9bc

[Đrilled by contractor for the U. S. Geological Survey. Principal water-bearing zones: 85-100 ft, 185-200 ft, 433-459 ft, 497-542 ft, and 555-595 ft. Depth to water for top zone, 85 ft]

Quaternary (loess?): Silt, clayey, calcareous, buff to gray Quaternary (terrace deposits?):	. 18	18
Silt, sandy, calcareous, tan; contains pebbles	. 12	30
metamorphic and volcanic rocks	30	60
Tertiary (unit T ₂ ?): Silt, sandy, tan	10	70
Gravel, sandy; contains well-rounded cobbles.		81
Sand and gravel, coarse; some silicified wood fragments	19	100
Tertiary (unit T ₂):		
Sand; contains fragments of tan tuffaceous siltstone	25	125
Silt, sandy, tuffaceous, buff-tan	15	140
Siltstone, sandy, calcareous, tuffaceous, buff; contains		
silicified wood at 170 ft and bone fragments at 180 ft	45	185

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D2-4-9bc—Continued		
Tertiary (unit T ₂)—Continued		
Sand, silty, calcareous, gray	6	191
Silt, sandy, tuffaceous, buff to gray; contains pebbles	9	200
Siltstone, sandy, calcareous, tuffaceous, buff	19	219
Volcanic ash, gray	4	223
Siltstone, slightly sandy, calcareous, tuffaceous, buff	76	299
Volcanic ash, buff to gray	2	301
Siltstone, sandy, calcareous, tuffaceous, buff; interbedded		
with light-brown laminated claystone; contains some scattered		
fragments of gray volcanic ash	87	388
Sandstone, moderately cemented, fine, gray	4	392
Tertiary (unit T ₁ ?):		
Bentonite, greenish-cream; contains some fragments of		
clayey siltstone	10	402
Claystone, sandy, silty, calcareous, tan; interbedded with		
thin layers of volcanic ash	31	433
Sand, poorly sorted, dark; contains pebbles. Sand is composed		
of quartz, hornblende, feldspar, garnet, magnetite, mica,		
and a few rounded grains of volcanic rock	26	459
Clay, silty, light-blue	11	470
Silt, clayey, bluish-gray	10	480
Clay, silty, light-blue	17	497
Sand, medium, gray; composed of quartz, feldspar, garnet,		
biotite, and hornblende	19	516
Sand interbedded with clay, pyritic, blue	26	542
Silt, clayey, pyritic, bluish-gray	13	555
Sand, poorly sorted, angular, bluish-green	20	575
Precambrian (Archean? type):		
Sand and clay, bluish-green (probably weathered gneiss). Sand		
is composed of angular grains of quartz, garnet, feldspar		
(microcline), biotite, and hornblende	20	595
Precambrian (Archean type): Gneiss, coarsely crystalline,	-	-
greenish	5	600

D2-4-11dc

[Drilled by contractor for the U. S. Geological Survey. Principal water-bearing zone, 10-68 ft. Depth to water, 10 ft]

Quaternary (alluvium):		
Gravel, poorly sorted, sandy, in a matrix of gray calcareous micaceous silt. Gravel is composed of fragments of dark volcanic rocks, gneiss, and some limestone	5	5
sition of sand and gravel is similar to that of the gravel from 0-5 ft; contains varying amounts of limestone		
fragments	49	54
Gravel, sandy, in a silt matrix	6	60
Sand, poorly sorted, gray; contains gray silt	8	68
Tertiary (unit T ₂ ?):		
Claystone interbedded with siltstone, calcareous, light-brown	5	73
Sand, poorly sorted, dark; contains pebbles	5	78
contains some bentonite(?)	22	100
marl and claystone	5	105
Siltstone, light-brown; contains a few thin lenses of sand Sand, silty, slightly calcareous, light-brown; composed	40	145
chiefly of well-sorted frosted quartz grains	5	150

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D2-4-15da		
[Drilled by commercial driller]		
Gravel	19	19
Clay, yellow. A little water	28	47
Clay	63	110
Sandrock	10	120
D2-5-1dd2		
[Drilled by commercial driller]		
Gravel	14	14
Clay	42	56
Gravel. Some water	1.5	57.5
Clay and some gravel. Water at 64 ft	6.5	64
. D2-5-2aa		
[Drilled by commercial driller]		
Topsoil	8	8
Sand and gravel, dirty. Some water	47	55
Clay	10	65
Sand and gravel, dirty. Some water	3	68
Clay, sandy	6 4	74
Sand and gravel. Water	4	78
D2-5-14ac		
[Drilled by contractor for the U.S. Geological Survey. Princip zone, 6.5-115 ft. Depth to water, 6.5 ft]	al water-be	aring
Quaternary (fan alluvium):		
Loam	4	4
Gravel, sandy, calcareous; gravel is composed of subangular		
to subrounded fragments of gneiss and volcanic rocks	6	10
Gravel, sandy and silty, calcareous	15	25
Sand; contains pebbles	2	27
Gravel, medium, sandy	28 2	55 57
Sand; contains pebbles	10	67
Gravel, medium, sandy	, 5	67.5
Gravel, medium, sandy	27, 5	95
Gravel, sandy and slightly silty	20	115
Gravel, sandy, silty, and clayey. The amount of clay		
increases downward	30	145
Sand, fine, silty, interbedded with brown clay	10	155
Tertiary(?):		
Sand, silty, clayey; contains pebbles	30	185
Silt, clayey; interbedded with silty clay	25	210
Sand, silty; contains pebbles	4	214
Gravel, sandy; contains cobbles	2 8	216 224
Sand; contains pebbles	41	265
Silt and clay, buff; contains magnetite from 250-265ft	41	203
D2-5-22ccd		
[Drilled by contractor for the U. S. Geological Survey. Princip zones, 7-25 ft and 90-165 ft. Depth to water,		aring
Quaternary (fan alluvium):		
Loam, silty, light brownish-gray	3	3
Gravel, sandy, calcareous; composed of subrounded		
metamorphic and volcanic rocks	22	25

Table 33,—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D2-5-22ccd—Continued		
Quaternary (fan alluvium)—Continued		
Gravel, sandy, silty	25	50
Gravel, silt, and sand; contains some cobbles	15	65
Sand, silty, brown; contains pebbles	9	74
Gravel, medium, sandy, silty	16	90
Sand, silty, brown; contains pebbles	. 5	95
Gravel, sandy, silty	. 30	125
Note: Fragments of volcanic rocks are more numerous than those of metamorphic rocks from 3 to 125 ft.		
Gravel, silty, interbedded with sandy gravel; basal 5 ft are		
notably micaceous; gravel is composed chiefly of fragments	1	
of metamorphic rocks, but contains some fragments of	1	
volcanic rocks	40	165
Tertiary(?):		
Silt, sand, and clay, buff-gray. Sand contains well-rounded		
quartz grains	33	198
Gravel, sandy, silty	4	202
Sand, very fine to fine, silty	1	215
Clay and silt, buff to gray; contains rounded pebbles		230
	5	235
Gravel, fine, silty, sandy	1	3
Silt and sand; contains cobbles	22	257 265
Gravel, silty; contains cobbles	1	
Sand, fine, interbedded with sandy gravel	30	295
Silt, sandy at top, clayey near base, light-brown	38	333
Sand, silty, fine; contains lenses of clay. Sand is composed		
of spherical quartz grains and a large amount of magnetite	25	358
Sand, very fine to medium, calcareous, dark-brown; contains		
magnetite and well-rounded quartz grains	12	370
Tertiary:		
Silt, sandy, calcareous; interbedded with clay light-brown;		
contains some fragments of light-brown calcareous tuffaceous		ļ
siltstone, also silicified wood fragments at 377 ft	55	425
Silt, sandy; interbedded with cream-colored marl; contains		
some tuffaceous siltstone	30	455
Siltstone, sandy, calcareous, tuffaceous, buff	22	477
Clay, light-brown; contains silicified bone fragments		482
Siltstone, sandy, calcareous, tuffaceous, buff; interbedded		
with light-brown clay	30	512
Silt, tuffaceous; intermixed with clay		526
Siltstone, sandy, calcareous, tuffaceous, buff; contains		
some pebbles of red and black volcanic rocks	. 70	596
Bentonite(?), tan to light-brown	1	598
Silt, tan; interbedded with thin layers of marl		605
Silt, slightly tuffaceous, tan		635
		000
Silt, slightly tuffaceous, tan; interbedded with thin layers	. 5	640
of clay	1	670
Silt, slightly tuffaceous, tan	1	689
Siltstone, sandy, calcareous, tuffaceous, buff		
Sandstone, poorly sorted, calcareous		692
Volcanic ash, pure, grayish-buff	. 1	693
Sandstone, calcareous; contains pebbles		700
Siltstone, sandy, calcareous, tuffaceous, buff	. 20	720
Siltstone, sandy, calcareous, tuffaceous, buff; interbedded		
with thin layers of clay	35	755
Siltstone, calcareous, tuffaceous, buff; contains pebbles	44	799
Sand, silty, poorly sorted, subangular; contains pebbles and		
much magnetite	4	803
Siltstone, sandy, calcareous, tuffaceous, buff		810
Siltstone, clayey, calcareous, tuffaceous, buff		865

BASIC DATA

Table 33.-Logs of wells and test holes-Continued

	Thickness (feet)	Depth (feet)
D2-5-22ccd—Continued		
Tertiary—Continued		
Tuff, silicified, grayish	. 2	867
Volcanic ash, light-gray	. 2	869
Sand, fine to coarse, poorly sorted, silty, calcareous, dark- brown.	19	888
Siltstone	2	890
Volcanic ash, pure	1	891
Claystone	1	892
Sand, poorly sorted, silty, calcareous, dark-brown; contains		
pebbles		900
Silt and clay, sandy, tan; contains pebbles	45	945
Sand and gravel, subangular; composed chiefly of fragments of volcanic rocks	13	958
Silt and clay, sandy, tan, slightly tuffaceous; contains pebbles	42	1,000
		1,000
D 2-5-3 5dc		
[Drilled by commercial driller]		
Gravel, loose	30	30
Gravel and some sand	. 10	40
Gravel	. 20	60
Gravel and sand	. 30	90
Sand	10	100
Hardpan, clay, and sand streaks	40	140 148
Sand and silt, yellow	4	152
Sand	1	155
D2-6-7-ac	· · · · · · · · · · · · · · · · · · ·	
[Drilled by commercial driller]		
Soil		7
Boulders		21
Clay, yellowBoulders	. 3	24 30
Clay		33
Gravel	2	35
Clay	3	38
	4	42
Gravel	. 7	49
Clay		50
ClayGravel		
Clay	. 1 11	61
Clay	. 1 11 5	66
Clay Gravel Shale Gravel Clay	1 11 5 9	66 75
Clay Gravel Gravel Clay Gravel	1 11 5 9	66 75 90
Clay. Gravel. Shale. Gravel. Clay Clay Clay	1 11 5 9 15	66 75 90 124
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard.	1 11 5 9 15 34	66 75 90 124 135
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard. Shale.	1 11 5 9 15 34 11	66 75 90 124 135 175
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard. Shale. Boulders and conglomerate	1 11 5 9 15 34 11 40	66 75 90 124 135
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard. Shale. Boulders and conglomerate Shale, tough.	1 11 5 9 15 34 11 40 19	66 75 90 124 135 175 194
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard. Shale. Boulders and conglomerate	1 11 5 9 15 34 11 40 19 8	66 75 90 124 135 175 194 202
Clay Gravel Shale Gravel Clay Gravel Clay Sandstone, hard. Shale Boulders and conglomerate. Shale, tough. Conglomerate.	1 11 5 9 15 34 11 40 19 8 10	66 75 90 124 135 175 194 202 212
Clay Gravel Shale Gravel Clay Clay Sandstone, hard Shale Boulders and conglomerate Shale, tough Conglomerate Shale, tough	1 11 5 9 15 34 11 40 19 8 10	66 75 90 124 135 175 194 202 212 225
Clay Gravel Shale Gravel Clay Gravel Clay Sandstone, hard Shale Boulders and conglomerate Shale, tough. Conglomerate Shale, tough. Boulders and conglomerate Shale, tough. Conglomerate Shale, tough. Conglomerate Shale, tough. Conglomerate Conglomerate Conglomerate Conglomerate Conglomerate	1 11 5 9 15 34 11 40 19 8 10 13 21 14 38	66 75 90 124 135 175 194 202 212 246 260 298
Clay. Gravel. Shale. Gravel. Clay. Gravel. Clay. Sandstone, hard. Shale. Boulders and conglomerate Shale, tough. Conglomerate Shale, tough Boulders and conglomerate Shale, tough Sonders and conglomerate Shale, tough	1 11 5 9 15 34 11 40 19 8 10 13 21 14 38	66 75 90 124 135 175 194 202 212 225 246 260

Table 33.—Logs of wells and test holes—Continued

— Marylanda — — — — — — — — — — — — — — — — — — —	Thickness (feet)	Depth (feet)
D2-6-7da		
[Drilled by commercial driller]		
Clay	25	25
Gravel	15	40
Clay and some sand. Water	48	88
Gravel. Water	9	97
Chayal Little water	7 ?	104 104+
Gravel, Little water		1047
D2-6-10dc		
[Drilled by commercial driller]		
Soil, black	9	9
Sand and gravel	12	21
Sand, gravel, and silt	8 3	29 32
	·	
D2-6-18db		
[Drilled by commercial driller]		
Gravel	13	13
Clay. No water	19	32
Gravel. No water	6 17	38 55
Hardpan. Some water.	1/	55
D2-6-19aa1		
[Drilled by commercial driller]		
Clay, sandy	51	51
Sand	7	58
D2-6-19aa2		
${ m D2 ext{-}6 ext{-}19aa2}$ [Drilled by commercial driller]		
[Drilled by commercial driller] [Tertiary(?)]:		
[Drilled by commercial driller] [Tertiary(?)]: Silt.	19.5	19.5
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel.	10.5	30
[Drilled by commercial driller] [Tertiary(?)]: Silt.		
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel.	10.5	30
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel.	10.5	30
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1	10.5	30
[Drilled by commercial driller] [Tertiary(?)]: Silt	10.5 70	30 100 7 12
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel	10.5 70	30 100
[Drilled by commercial driller] [Tertiary(?)]: Silt	10.5 70	30 100 7 12
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow. D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Ge	10.5 70 7 5 68	30 100 7 12 80
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Gepersonnel]	10.5 70 7 5 68	30 100 7 12 80
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Ge	10.5 70 7 5 68	30 100 7 12 80
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow. D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Gepersonnel] [Quaternary (alluvium)]: Clay. Gravel.	10.5 70 7 5 68 cological Sur	30 100 7 12 80
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Gepersonnel] [Quaternary (alluvium)]: Clay Gravel. Silt and fine sand, light-brown; some clay. Little water	10.5 70 7 5 68 eological Surv	30 100 7 12 80 vey
[Drilled by commercial driller] [Tertiary(?)]: Silt. Gravel. Silt, brown; some sand and gravel. D2-6-19cb1 [Drilled by commercial driller] Topsoil. Gravel. Sand, soft, yellow D2-6-19cb2 [Drilled by commercial driller. Samples examined by U. S. Gepersonnel] [Quaternary (alluvium)]: Clay. Gravel. Silt and fine sand, light-brown; some clay. Little water. [Tertiary(?)]:	10.5 70 7 5 68 eological Sur-	30 100 7 12 80 vey
[Drilled by commercial driller] [Tertiary(?)]: Silt	10.5 70 7 5 68 eological Survival 11 10 104	30 100 7 12 80 vey
[Drilled by commercial driller] [Tertiary(?)]: Silt	10.5 70 7 5 68 eological Sur-	30 100 7 12 80 vey
[Drilled by commercial driller] [Tertiary(?)]: Silt	10.5 70 7 5 68 eological Survival 11 10 104	30 100 7 12 80 vey

BASIC DATA

Table 33.—Logs of wells and test holes—Continued

	Thickness (feet)	Depth (feet)
D3-4-26ba2		<u> </u>
[Drilled by commercial driller]		
Gravel and boulders. No water	17	1'
Clay, soft, pinkish. No water	32	4:
Clay, hard. No water	2	5
Silt and clay, buff ("Lake beds")		14
[Drilled by commercial driller]		
Rock and gravel	41	4
Clay, soft [probably Tertiary]	4	4.
Gravel	15	6
D3-6-6dd1		
[Drilled by commercial driller]		
Gravel	20	20
Quicksand, gray	145	16
Sand	3	168

Table 34.—Water-level measurements by tape, in feet below land-surface datum

Date	Water		Date	Water		Date	Water
Date	level		Date	level		Date	level
			A1-3-2cdc2				
7.1 04 1054	1 2 21		- 1050	- 10		. 1050	14.01
July 31, 1951	3, 81	June	9, 1952	5, 19		1, 1953	14.31 13.86
Aug. 28 Sept. 26	4. 93 5. 65	June Aug.	5	3.02 4.61	May June	8	4.46
Nov. 1	5. 56	Sept.	1	4. 78	July	2	4.00
Dec. 3	6.56	Oct.	3	5. 12	Aug.	4	3.61
Jan. 8, 1952	8, 73	Nov.	17	6.00	Sept.	1	5.01
Feb. 6	11.80	Dec.	3,,,,,,	7.28	Oct.	2	6.96
Mar. 5	13.98	Jan.	7, 1953	8,66	Nov.	5	6, 20
Apr. 4	13.86	Feb.	4	12.13	Dec.	1	7, 42
May 5	15.07	Mar.	4	13.43	Jan.	5, 1954	10.74
			A1-3-4da				
May 21, 1951	32, 85	June	9, 1952	21,46	June	2, 1953	18.56
May 31	30.94	June	26	14.21	July	2	12.38
July 5	11.05	July	31,	13.27	Aug.	3	7.63
Aug. 2	8.66	Sept.	·3	11.07	Sept.	2	11.06
Aug. 28	9.59	Oct.	1	13.16	Oct.	1	13.93
Sept. 26	14.36	Nov.	17	19.09	Nov.	5	18.07
Nov. 2	20,61	Dec.	2,	21, 54	Dec.	1	21, 48
Jan. 7, 1952 Feb. 6	28, 01 29, 59	Jan. Feb.	3, 1953	25, 82 28, 66	Jan. Feb.	5, 1954 3	25. 29 27. 70
Mar. 5	32.03	Mar.	2 4	30.59		3	29.77
Apr. 4	31.30	Apr.	1	31, 82	Apr.	1	31, 23
May 5	32, 40	May	8	30, 98			
	I	- <u>-</u>	A1-3-9bbb				L
Apr. 24, 1951	64.71	Mar.	5, 1952	58. 21	May	8, 1953	62, 80
May 31	65.31	May	5	65.84	June	2	58. 10
July 5	54.79	June	9	62.71	July	2,	51.02
Aug. 2	44.85	June	28	54.08 46.08	Aug.	3	45. 18 43. 41
Aug. 28 Sept. 26	44.44 48.09	Aug. Sept.	1 3	47. 21	Sept. Oct.	1	44, 50
Nov, 2	53,61	Oct.	1	45.42	Nov.	5	48.84
Dec. 3	56.82	Feb.	2, 1953	60.48	Dec.	1	51.72
Jan. 7, 1952	57.41	Mar.	4	62.24	Jan.	5, 1954	55. 72
Feb. 6	57.22	Apr.	1	63.68			
			A1-3-10bd				
Sept. 24, 1952	2.81	June	1, 1953	4.75	Oct.	1, 1953	2, 58
Feb. 2, 1953	6. 21	July	2	2.98	Nov.	5	3.42
Mar. 4	6.98	Aug.	3	2.63	Dec.	1	3,95
Apr. 1	7.38	Sept.	1	3,05	Jan.	5, 1954	5, 17
May 1	8.05						
			A1-3-12aa				
Aug. 26, 1952	3.56	Feb.	4, 1953	2, 75	Aug.	4, 1953	3, 27
Sept. 1	3.24	Mar.	5	2, 66	Sept.	4	3. 21
Oct. 1	3.32	Apr.	3	2.64	Oct.	2	3,42
Nov. 1	3.14	May	8	2, 58	Nov.	4	3,03
Nov. 25	2.74	June	1	1.96		1	2.61
Jan. 7, 1953	2.62	July	2	1.64	Jan.	4, 1954	3.70

Table 34.—Water-level measurements by tape, in feet below land-surface datum-Cont.

Date	Water level		Date	Water level		Date	Water level
		· · · · · · · · · · · · · · · · · · ·	A1-3-23bb	······			
Aug. 2, 1951	0.40	May	5, 1952	0.41	May	1, 1953	0.60
Aug. 28	.30	June	9	1.28	June	2	.74
Sept. 26	.17	June	28	1.43	July	2	. 59
Nov. 2	Frozen	Aug.	1	. 63	Aug.	3	.94
Dec. 3	Frozen	Sept.	3	. 61	Sept.	2	. 66
Jan. 7, 1952 Feb. 4	Frozen	Oct.	1	. 75	Oct.	1	.65 .51
Feb. 4	Frozen Frozen	Feb. Mar.	2, 1953 4	.72 .65	Nov. Dec.	5	.46
Apr. 4	. 39	Apr.	1	. 62	Jan.	5, 1954	.58
<u></u>		11p1.			oun.	0, 1001	
			A1-3-26cd1				
June 27, 1951	5.76	May	5, 1952	6.03	Apr.	1, 1953	6.63
July 5	5. 78	June	9	5.96	May	1	6.68
Aug. 2	5. 73	June	28	7.94	June	2	6. 15
Aug. 28 Sept. 26	5.65 5.54	Aug.	1 3	6.04 6.20	July	3	5, 82 5, 98
Nov. 2	5. 66	Sept. Oct.	1	6. 22	Aug. Sept.	2	5.95
Dec. 3	6.02	Nov.	17	6.48	Oct.	1	6.38
Jan. 7, 1952	6.46	Dec.	3	6.51	Nov.	5	6.32
Feb. 4	6.54	Jan.	2, 1953	6,67	Dec.	2	6.35
Mar. 5	6.64	Feb.	2	6.50	Jan.	5, 1954	6.43
Apr. 4	5.74	Mar.	4	6, 73			
			A1-4-3bb				
Apr. 24, 1951	19.45	Apr.	4, 1952	19.60	Mar.	5, 1953	19.10
May 31	19. 77	May	6	17.74	Apr.	2	20.02
July 5	12, 61	June	9.	15.73	May	8	20.90
Aug. 2	10.54	June	28	9.68	June	1	20.34
Aug. 28	10.67	Aug.	5	8.19	July	2	9.64
Sept. 26	15.49	Sept.	1	8.63	Aug.	4	10,59
Nov. 3	17.26	Oct.	3	12.54	Sept.	1,	8.69
Dec. 3	18. 26	Nov.	17	16.51	Oct.	2	8.59
Jan. 8, 1952	18, 63	Dec.	3	16.85	Nov.	4	13.05
Feb. 6	19.25 19.95	Jan. Feb.	7, 1953 4	17.92 18.91	Dec. Jan.	1 4. 1954	16.04 17.94
Wa1. J	19.95	reb.	4	10. 91	Jan.	4, 1554	17.54
			A1-4-5ad				
May 31, 1951	3.36	May	6, 1952	3, 23	Apr.	2, 1953	3,56
July 5	3. 27	June	9	3.19	May	8	3.52
Aug. 2	2.65	June	26	2.68	June	1	3.48
Aug. 28	3.08	Aug.	5	2.81	July	2	3.09
Sept. 26	2.85	Sept.	1	3.40	Aug.	1	2.79
Nov. 3	2, 69	Oct.	3	3.48	Sept.	4	3.05
Dec. 3	2.70 2.81	Nov. Dec.	17	3.55 3.63	Oct. Nov.	4	3. 31 2. 95
Feb. 6	3.39	Jan.	3 7, 1953	Frozen	Dec.	1	2, 93
Mar. 5	3.58	Feb.	4	3, 43	Jan.	4, 1954	3. 39
Apr. 7	2.45	Mar.	5	3.64		-, -302	2.00
		L	A1-4-5ba				
T.1						00 1051	
July 5, 1951	2.99 3.71	Aug.	28, 1951	3,68	Sept.	26, 1951	3.03
Aug. 2	3, (1	L	l		L		

A1-4-5da

[No measurements by tape; for measurements from recorder chart, see table 35]

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

				*				
	Date	Water level		Date	Water level		Date	Water level
				A1-4-6ab				
May	31, 1951	5. 90	May	6, 1952	4,63	Apr.	3, 1953	5, 21
July	5	4.67	June	9	4.67	May	8	5, 16
Aug.	2	5.07	June	27	4.48	June	1	5.37
Aug.	28	4.66	Aug.	5	3. 12	July	2	4.49
Sept.		4. 22	Sept.	3	4.07	Aug.	4	3, 82
Nov.	3	4, 40	Oct.	3	3. 45 3. 74	Sept.	4	3, 88 4, 75
Dec. Jan.	3 8, 1952	4, 94 5, 12	Nov. Dec.	3	4.61	Oct. Nov.	4	5, 38
Feb.	6	5, 17	Jan.	7, 1953	5. 86	Dec.	1	5.84
Mar.	5	5. 26	Feb.	4	5. 40	Jan.	4, 1954	5.90
Apr.	4	5.18	Mar.	5	5,82			
				A1-4-6bc				
Aug.	9, 1951	5. 97	June	9, 1952	8.83	May	8, 1953	10.28
Aug.	28	7, 73	Aug.	5	4.82	June	1	10.20
Sept.	26	9.41	Sept.	3	7.82	July	2	2,01
Nov.	2	10.00	Oct.	3	9.57	Aug.	4	4.57
Dec.	3	10.16	Nov.	17	10.37	Sept.	4	7.02
Jan.	8, 1952	10.21	Dec.	3	10.32	Oct.	2	8.81
Feb.	6	10. 43	Jan.	7, 1953	10.48	Nov.	4	9.83
Mar.	5	10.51	Feb.	4	10.38	Dec.	1	10.24
Apr. May	3 6	9.74 9.88	Mar. Apr.	5 3	10.55 10.37	Jan.	4, 1954	10.42
May		3.00	Apr.	3	10.31	L		
				A1-4-7aa				
May	31, 1951	2,02	May	6, 1952	4.40	Apr.	2, 1953	4.60
July	5	3.54	June	9	4.30	May	8	4.40
Aug.	2	3, 42	June	26	1.10	June	1	. 59
Aug. Sept.	28 26	2. 52 3. 5.1	Aug.	5, 1	3.02	July	2 1	4. 41 1. 73
Nov.	2	3. 78	Sept. Oct.	3	1, 85 3, 23	Aug. Sept.	4	4.87
Dec.	3	4. 25	Nov.	17	2. 75	Oct.	2	4.31
Jan.	8, 1952	4, 29	Dec.	3	4.32	Nov.	4	4.14
Feb.	6	Frozen	Jan.	7, 1953	4.95	Dec.	1	3.80
Mar.	5	Frozen	Feb.	4	4.74	Jan.	4, 1954	4.80
Apr.	7	3, 97	Mar.	5	4.98	L		
				A1-4-8ba				
May	31, 1951	0.64	Nov.	2, 1951	Frozen	Apr.	7, 1952	0.46
July	5	.18	Dec.	3	Frozen	May	6	2.16
Aug.	2	2, 72	Jan.	8, 1952	Frozen	June	9	2.42
Aug. Sept.	28 26	. 39	Feb.	6 5	Frozen Frozen	Oct.	3	2, 28
sept.	20	. 21	Mar.		Frozen	IL		
		—	4	A1-4-10aa				
July	6, 1951	3, 32	June	6, 1952	2.72	Apr.	3, 1953	3.24
Aug.	2	3.30	June	27	3. 24	May	8	3, 18
Aug.	28	3.02	Aug.	5	3.50	June	1	1.87
Sept. Nov.	1	2.96 3.72	Sept. Oct.	3 3	3.32 3.49	July Aug.	2 4	3, 22 3, 38
Dec.	3	2.70	Nov.	17	3.49	Sept.	4	3, 30
Jan.	7, 1952	3.18	Dec.	3		Oct.	5	3, 36
Feb.	6	3.07	Jan.	7, 1953	3. 22 3. 31	Nov.	4	3.05
Mar Apr	5	3.27	Feb.	4	3.08	Dec.	I	2, 99
Apr. May	7 6	2, 91 2, 31	Mar.	5,	3.27	Jan.	4, 1954	3, 12
		1 2.01	i <u>l</u>		L	IL		L

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Date	Water level		Date	Water level		Date	Water level
			A1-4-13ac	i			
May 31, 1951	2, 50	May	6, 1952	1.02	Apr.	1, 1953	3.56
July 6	3.79	June	6	1.32	May	8	3, 36
Aug. 2	3.94	June	27	2.93	June	4	1.10
Aug. 29 Sept. 26	3, 29 3, 32	Aug. Sept.	4 2	3.56 3.39	July Aug.	2 5	3.04 3.64
Nov. 1	3, 43	Oct.	3	3. 46	Sept.	4	3, 43
Dec. 3	3, 39	Nov.	17	3. 49	Oct.	2	3, 51
Jan. 8, 1952	3,68	Dec.	3	3, 40	Nov.	4	3.37
Feb. 6	3.76	Jan.	5, 1953	3.64	Dec.	2	3.37
Mar. 5	3.82	Feb.	4	3, 53	Jan.	4, 1954	3, 59
Apr. 2	3, 32	Mar.	5	3.64	i		
			A1-4-15ba				
July 6, 1951	5.43	June	6, 1952	4.46	Apr.	2, 1953	4. 26
Aug. 2	5.35	June	27	4.91	May	8	4.09
Aug. 28	5.34	Aug.	5	5.08	June	4	3.61
Sept. 26 Nov. 1	4.95	Sept.	3	5. 22	July	2	5.07 5.24
Nov. 1 Dec. 4	4.56 4.48	Oct. Nov.	2 17	5, 08 5, 00	Aug. Sept.	4 4.	5. 24
Jan. 7, 1952	Plugged	Dec.	3	4.69	Oct.	5	5, 12
Feb. 6	4.44	Jan.	7, 1953	4.57	Nov.	4	4.89
Mar. 5	4.61	Feb.	4	4, 23	Dec.	2	4.74
Apr. 7	3.70	Mar.	5	4.42	Jan.	4, 1954	4.79
May 6	4.28						
			A1-4-15da	11			
July 6, 1951	3.81	June	27, 1952	3.15	May	8, 1953	3.26
Aug. 2	3.57	Aug.	5	3.49	June	4	2.28
Aug. 28	3.12	Sept.	3	3. 20	July	2	2.58
Sept. 26	2.90	Oct.	2	3. 11	Aug.	4	3, 51
Nov. 1 Dec. 3	2.74 2.74	Nov.	17	3. 28	Sept.	4	3, 23
Dec. 3 Jan. 7, 1952	2. 74	Dec. Jan.	3	3.00 3.15	Oct. Nov.	5 4	3. 17 3. 04
Apr. 7	2. 26	Feb.	4	3.04	Dec.	2	3.04
May 6	3, 30	Mar.	5	3.24	Jan.	4, 1954	3, 23
June 6	3.38	Apr.	2	3.31		,	
			A1-4-15da	2			
May 20, 1953	4.64	Aug.	4, 1953	3, 74	Nov.	4, 1953	3, 31
June 4	2.60	Sept.	4	3, 51	Dec.	2	3.33
July 2	3.08	Oct.	5	3, 42	Jan.	4, 1954	3, 48
			A1-4-16bb				
July 6, 1951	3.40	May	6, 1952	2.99	Apr.	2, 1953	3, 42
Aug. 2	3.45	June	27	3.66	May	8	3.38
Aug. 28	3. 12	Aug.	5	3.69	June	4	2.47
Sept. 26	3. 24	Sept.	3	3. 23	July	2	3.45
Nov. 1 Dec. 4.	3.11 3.08	Oct. Nov.	2 17	3, 05 3, 38	Aug.	44	3.11 3.06
Jan. 8, 1952	3.78	Dec.	2	2.41	Sept. Oct.	5	4.00
Feb. 6	3.90	Jan.	7, 1953	2. 96	Nov.	4	3.78
Mar. 5	4.01	Feb.	4	3.06	Dec.	2	3.96
Apr. 7	2.11	Mar.	5	3.84	Jan.	4, 1954	4.02

Table 34.—Water-level measurements by tape, in feet below land-surface datum-Cont.

	Date	Water level	Date	Water level	Date	Water level
			A1-4-21do	2		
July Aug. Aug.	6, 1951 2 28	. 80	Sept. 26, 1951 Nov. 1 Aug. 5, 1952		Oct. 2, 1952 Aug. 6, 1953	1.18 1.62

A1-4-22dc1

				A1-4-22d	e I					
[Dept	[Depth to water Aug. 7, 1951, 3.98 ft. No other measurements by tape; for measurements from recorder chart, see table 35]									
				A1-4-22d	d			*****		
July	6, 1951	4, 53	June	6, 1952	5, 19	Apr.	2, 1953	7, 39		
Aug.	2	4, 08		27	4.49		8	7, 13		
Aug.	28	3.63	Aug.	5	4.08	June	4	4.47		
Sept.	26	3.74	Sept.	3	3.89	July	2	4.89		
Nov.	1	4.37	Oct.	2	3.99	Aug.	4	4.24		
Dec.	3	5. 13	Nov.	17	4.31	Sept.	4	4.12		
Jan.	8, 1952		Dec.	3	4.67	Oct.	5	4.25		
Feb.	6	6.58	Jan.	7, 1953	5.75	Nov.	4	4.37		
Apr.	7	5. 97		4	6.26	Dec.	2	4.84		
May	6	6.76	Mar.	5	7.03	Jan.	4, 1954	5. 72		
				A1-4-24de	=					
July	6, 1951	3.94	Sept.	26, 1951	3.16	Dec.	3, 1951	3.74		
·Aug.	2	3.69	1	1	3.34	Mar.	5, 1952	5.41		
Aug.	29	3, 19	}							
				A1-4-25b	i					
\mathbf{J} uly	6, 1951	3.19	June	2, 1952	5.68	Apr.	1, 1953	7.54		
Aug.	2	2.66	June	27	2.99	May	8	7.40		
Aug.	29	2.34	Aug.	1	2.29	June	4	3.68		
Sept.		2, 49	Sept.	3	2, 72	July	2	3. 26		
Nov.	3	2.93		3	2.99	Aug.	5	2.43		
Dec.	3	4.13		17	3.31		4	2.63		
Jan.	8, 1952	5.41	Dec.	3	3.89		2	2.98		
Feb.	6	6.79		2, 1953	5, 16	Nov.	4	2.91		
Mar.	5	7.61	1 .	4	6.17	Dec.	1	3.46		
Apr.	1	7.43	Mar.	5	7, 26	Jan.	4, 1954	5.07		
May	2	6.92				<u> </u>				
				A1-4-25do	2					

A1-4-25dc

[No measurements by tape; for measurements from recorder chart, see table 35] A1-4-29ab

July	6, 1951	3.28	June	10, 1952	4.55	Apr.	3, 1953	5,41
Aug.	2	2.98	June	26	4.74	May	1	5.41
$\operatorname{Aug}_{\bullet}$	28	2.28	Aug.	5	4.61	June	4	4.32
Sept.	26	2.59	Sept.	3	4.64	July	2	4.43
Nov.	1	2.92	Oct.	2	4.43	Aug.	6	4,21
Dec.	3	3.31	Nov.	17	4.58	Sept.	4	4.09
Jan.	8, 1952	3.97	Dec.	2	•4.67	Oct.	5	4,07
Feb.	6	4.16	Jan.	7, 1953	5.01	Nov.	5	4.09

3

5.19

5.40

Dec.

Jan.

2

4, 1954...

4.54

4.63

4.16

4.16

Apr. May

Feb.

Mar.

BASIC DATA

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Date	Water	Ι.		Water	<u> </u>	Data	Water
Date	level	1	Date	level		Date	level
			A1-4-36dc				
June 27, 1952	29.64	Sept.	2, 1952	26.42	Nov.	12, 1952	28. 11
Aug. 4	26.47	Sept.	29	26.31	Dec.	3	29.65
			A1-5-5da				
May 28, 1951	6.16	Nov.	2, 1951	8.08	June	29, 1952	6. 74
July 6	6, 64 7, 10	Dec. Jan.	4 11, 1952	8.36 8.52	Aug.	1 27	7.54 8.00
Aug. 28	7.17	May	6	5.74	Oct.	3	8.10
Sept. 29	7.84	June	2	5.76			
		•	A1-5-6bd				
May 14, 1951	33.78	Nov.	1, 1951	34.94	May	6, 1952	30.44
May 31	33.67	Dec.	3	34.42	June	6	30.54
July 6	33. 29	Jan.	7, 1952	34. 72	June	29	31.19
Aug. 2	32.96 33.64	Feb. Mar.	6	34. 91	Aug.	4	31.78
Sept. 26	34.34	Apr.	6 7	35.63 34.60	Sept. Oct.	3	32, 90 33, 41
	1	I					
			A1-5-6cc				
May 15, 1951	22, 22	Apr.	7, 1952	22.80	Mar.	3, 1953	21.88
May 31	21.90	May	6	21.54	Apr.	1	21.73
July 6 Aug. 2	22, 10 22, 56	June June	6	20.90 21.09	May June	8 4	21.68 21.06
Aug. 29	21.96	Aug.	4	20. 59	July	2	22, 15
Sept. 26	23.00	Sept.	1	20.80	Aug.	5	21, 19
Nov. 1	22.92	Oct.	3	21.92	Sept.	4	21.62
Dec. 3	22.61	Nov.	17	22.14	Oct.	5	21.91
Jan. 11, 1952	22. 73	Dec.	3	22.30	Nov.	5	21.77
Feb. 6	22. 92 23. 21	Jan. Feb.	5, 1953 2	21.00 21.07	Dec. Jan.	2 4. 1954	21.83 21.02
	30.2-1	1 00.	~		ou	-,	
			A1-5-8ad		_		
May 29, 1952	9.19	Apr.	3, 1953	10.47	Sept.	4, 1953	10, 21
June 29	9.75	May	8	10.45	Oct.	1	10.94
Aug. 1	10.17	June	4	10.20	Nov.	5	10.14
Oct. 3	10.40	July Aug.	2 5	9.97 10.00	Dec. Jan.	3 4, 1954	10.64 10.71
Mar. 3	10.50	mug.	9	10.00	Jan.	1, 1001	10.11
			A1-5-16bc	1			
Aug. 2, 1951	. 12.89	Oct.	3, 1952	11, 10	June	4, 1953	13.68
Aug. 28	. 14.29	Nov.	17	12.72	July	2	13.20
Apr. 1, 1952	15.61	Dec.	3	13.10	Aug.	5	12.74
May 1	. 11.18 9.75	Jan. Feb.	2, 1953 2	12.98	Sept.	4	12.93 12.93
June 29	9. 13	Mar.	5	13. 11 14. 08	Oct. Nov.	5	12, 93
Aug. 1	9. 30	Apr.	3	14. 25	Dec.	3	13.81
Sept. 3	10.03	May	8	13.98	Jan.	4, 1954	14.06
		<u> </u>					

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

July Aug.		level		Date	Water level		Date	Water level			
	A1-5-19bc										
Δ 11.0	6, 1951	2.84	June	6, 1952	2.64	Apr.	1, 1953	2.75			
	2	2,63	June	27	2.63	May	8	2.70			
	29	2.14	Aug.	4	2,53	June	4	2.40			
-	26	1, 93	Sept.	2	2, 28	July	2	2, 58			
Nov.	1	1.92	Oct.	3	2.18	Aug.	5	2.41			
Dec.	3	2, 29	Nov.	17	2.23 2.17	Sept.	4	2.14 2.08			
Jan. Feb.	8, 1952 6	2.58 2.77	Dec. Jan.	3 5, 1953	2. 71	Oct. Nov.	2 4	2,00			
Mar.	5	2, 86	Feb.	4	2.67	Dec.	2	2. 20			
Apr.	2	2.63	Mar.	5	2.76	Jan.	4, 1954	2.55			
May	2	2.54	mar.	·	2. 10	Jun.	1, 1001	2,00			
				A1-5-21bc4		l	I				
Dec.	4, 1951	7.75	June	2, 1952	3, 94	Sept.	3, 1952	5. 11			
Apr.	1, 1952	8.42	June	29	4, 53	Oct.	3	5. 49			
May	1	5. 39	Aug.	1	4. 98	001.	9	0, 10			
				A1-5-26cd		L					
Sept. 2	28, 1951	6.52	Mar.	5, 1952,	6, 61	June	29, 1952	6. 49			
Dec.	3	6.36	Apr.	1	6. 55	Aug.	1	6. 76			
Jan.	8, 1952	6.52	May	1	6.14	Sept.	2	6,56			
Feb.	6	6.53	June	2	6.16	Sept.	29	6,62			
				A1-5-30dd							
July	7, 1951	2.68	June	6, 1952	2, 16	Apr.	2, 1953	2.94			
Aug.	2	2.65	June	27	2.40	May	8	2.86			
	29	2.29	Aug.	1	2. 43	June	4	1,43			
	26	2.15	Sept.	2	2, 17	July	2	2, 52			
Nov.	3	2.14	Oct.	3	2, 13	Aug.	4	2.56			
Dec. Jan.	3 8, 1952	2. 29 2. 48	Nov. Dec.	10	2.03 2.18	Sept.	42	2.29 2.35			
Feb.	6	2, 48	Jan.	2, 1953	2, 63	Nov.	4	2. 28			
Mar.	5	3, 19	Feb.	4	2.70	Dec.	2	2. 41			
Apr.	1	2, 81	Mar.	5	3.08	Jan.	4, 1954	2.70			
May	6	2.21	•				,	-•			
	1	II		A1-5-35aa	-						
Sept. 2	28, 1951	12.45	May	1, 1952	8, 22	Aug.	1, 1952	10,82			
Dec.	3	11.33	June	2	8.07	Sept.	2	10.54			
Jan.	8, 1952	11.54	June	29	10.03		29	10.05			
	•			A1-5-35ca							
	28, 1951	8.39	June	2, 1952	5, 78	Apr.	1, 1953	8. 19			
	28	11.49	June	29	7.60	May	1	8.38			
	26	11.59	Aug.	1	8, 40	June	1	7. 28			
	11	11.31	Sept.	2	8.51	July	1	7.74			
Dec.	3 8, 1952	11.68	Sept.	29	8, 23 8, 09	Aug.	1	8.76 9.23			
Jan. Feb.	6	11.91 12.25	Nov. Dec.	11	8.09	Sept.	1	9, 23 9, 25			
Mar.	5	12. 25	Jan.	2, 1953	8. 43	Nov.	5	9.25			
Apr.	1	12.63	Feb.	2, 1903	8, 38	Dec.	1	9. 24			
May	ī	4.47	Mar.	3	8.74	Jan.	4, 1954	9.37			

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Tabl	le 34 .— <i>Water-1</i>	evel meast	remen	ts by tape, in	feet below	land-	surface datur	n—Cont.
	Date	Water level	I	Date	Water level		Date	Water level
				A2-3-33da				
[]	No measuremen	nts by tape	; for r	measurements	from rec	order	chart, see ta	ble 35]
				A2-3-36ac				
Aug.	9, 1951	7.38 7.51	June Aug.	27, 1952	7. 54 7. 80	May June	8, 1953 1	7. 99 7. 82
Sept.	29 26	8.00	Sept.	5 3	8,06	July	2	7. 63
Nov.	2	8.52	Oct.	3	8, 18	Aug.	4	7. 70
Apr.	3, 1952	6.87	Feb.	4, 1953	8.06	Sept.	4	7.82
May	6	7.30	Mar.	5	8, 25	Nov.	4	8.06
June	9	7.06	Apr.	3	8,08			
				A2-4-2dd				
May	28, 1951	10.96	Jan.	11, 1952	11,16	Aug.	4, 1952	11, 12
July	5	11.01	Feb.	6	11, 22	Sept.	2	11.08
Aug.	2	11.01	Mar.	6	11.26	Oct.	1	11, 11
Aug.	29	10,81	Apr.	2	10.56	Nov.	10	11, 17
Sept.		11.05	May	2	10,26	Dec.	1	11.28
Nov.	2	10.98	June	9	10.68	Jan.	5, 1953	11.20
Dec.	4	11. 27	June	28	10.64			
				A2-4-12cc				
May	15, 1951	6.47	Dec.	4, 1951	6, 38	June	28, 1952	5, 97
May	31	6.82	Jan.	11, 1952	6.43	Aug.	4	6.37
July	5	7.11	Feb.	6	6.78	Sept.	2	5.87
Aug.	2	7.30	Mar.	6	6.82	Oct.	1	6.15
Aug.	29	7, 27	Apr.	2	6.15	Nov.	10	5.91
Sept.	29	7.06	May	2	5.21	Dec.	1	5, 58
Nov.	3	6,79	June	9	5,68	Jan.	5, 1953	6.09
				A2-4-23da			-	
May	14, 1951	13, 58	Apr.	2, 1952	14.39	Mar.	3, 1953	14.85
May	31	14.00	May	2	13. 10	Apr.	1	14.58
July	5	14.41	June	9	13.60	May	2	14.49
Aug.	2	14.80	June	28	13.87	June	1	13, 55
Aug.	29	14. 77	Aug.	4	14.44	July	2	13.87
Sept.	29	14.54	Sept.		15.04	Aug.	1	14.70
Nov.	3	14.60	Oct.	1	14.79	Sept.	1	15.00
Dec. Jan.	4	14.88	Nov.	10	14, 46	Oct.	1	14.87
Feb.	11, 1952	14.53 15.12	Dec. Jan.	1 5, 1953	13.92	Nov. Dec.	4	15.06 15.05
Mar.	6	15. 33	Feb.	2	14.66 14.64	Jan.	4, 1954	15.03
		L	1.	A2-4-24bb		L		
7.0	15 1051	00 1=1	la. ·		00.0=	T TO	C 1050	0.4.4.
May	15, 1951	36.17		29, 1951	36,85	Feb.	6, 1952	34, 41
May	31	33.37	Nov.	3	32,00	Mar.	6	36.31
July	5	32.86	Dec.	4	29,88	Apr.	2	36.76
Aug.	2 29	29, 22 31, 65	Jan.	11, 1952	30.73	May	2	35. 15
		1,	1	A2-4-26ba	1			
7.0	14 1051	00.001	1 4			Lat	0 1051	10.05
May	14, 1951	20.23	Aug.	2, 1951	18.84	Nov.		19.97
May July	5	20.60 18.06	Aug.	29	18.04 19.41		3 11 1952	20.41 19.73
oury	9	10.00	Bept.	29	19.41	Jan.	11, 1952	19.13

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Date	Water	1	Date	Water level		Date	Water level
	TOVEL	A2-	4-26ba1—Con				
Feb. 6, 1952	20.29	Oct.	1 1059	20.07	June	1, 1953	19.86
Feb. 6, 1952 Mar. 6		Nov.	1, 1952 10	19.80	July	2	18.65
Apr. 2	21.04	Dec.	1	19.40	Aug.	1	18.28
May 2	18.80	Jan.	5, 1953	20.00	Sept.	1	19.31
June 9	19.20	Feb.	2	20.81	Oct.	1	19.58
June 28	19.20	Mar.	3	21.15	Nov.	4	19.86
Aug. 4	18.71	Apr.	1	21.02	Dec.	1,	20.33
Sept. 2	19.64	May	2	21.07	Jan.	4, 1954	20.71
			A2-4-31cc				
May 31, 1951	5.00	Dec.	3, 1951	\mathbf{Dry}	June	9, 1952	6.50
July 5	4.69	Jan.	8, 1952	Dry	June	27	2.11
Aug. 2	3.00	Feb.	6	Dry	Aug.	5	3.12
Aug. 28	5.14	Mar.	5	Dry	Sept.	3	5.91
Sept. 26	6.85	Apr.	3	6.44	Aug.	4, 1953	3.19
Nov. 3	6.81	May	6	6.46	!		
			A2-4-36cc				
May 15, 1951	12, 90	Aug.	29, 1951	12.83	11	7, 1952	12.82
May 31	13.17	Sept.	26	12.87	May	6	12; 28
July 6	12.93	Nov.	1	12, 81	June	6	12.08
Aug. 2	12.71	Dec.	3	12.84	Oct.	3	12.18
			A2-5-6ac1				
May 28, 1951	7.10	Nov.	2, 1951	7. 13	June	9, 1952	7.13
July 5	7.11	Dec.	4	7.31	June	28	6.77
Aug. 2	7. 29	Jan.	11, 1952	7.34	Aug.	4	7, 28
Aug. 29 Sept. 29	7. 19	Mar. May	6	7.43 7.05	Aug. Oct.	3	7.05 7.19
Берт. 20	1. 23	May	1	1.00	Oct.	3	7, 10
		•	A2-5-8bc				
May 28, 1951	24.99	Jan.	11, 1952	27, 91	Aug.	4, 1952	25.02
July 5	25.99	Feb.	6	28.78	Sept.	2	24.31
Aug. 2	26.59	Mar.	6	29.17	Oct.	3	25.09
Aug. 28 Sept. 29	26.31 27.55	Apr. May	7	28.84 22.34	Nov. Dec.	3	22, 53 25, 78
Nov. 3	27.55	June	9	23.70	Jan.	5, 1953	26.80
Dec. 4	27.59	June	29	25.34		-,	
			A2-5-18ba				
May 16, 1951	6.27	Nov.	2, 1951	3.74	May	2, 1952	2, 85
May 31	5.40	Dec.	4	5.54	June	9	3, 32
July 5	4.88	Jan.	11, 1952	5.73	June	28	1.79
Aug. 2	3.46	Feb.	6	5.82	Aug.	4	4.18
Aug. 28	3.02	1	6	5.91	Sept.	2	3.02
Sept. 29	3, 32	Apr.	7	5, 80	Oct.	3	4. 80
			A2-5-18bc				
May 16, 1951	8.12	Sept.	29, 1951	8.45	Mar.	6, 1952	8,97
May 31	7.73	Nov.	2	8.81	Apr.	7	8.56
July 5	8.30	Dec.	4	9.09	May	2	7.56
Aug. 2	9.07	Jan.	11, 1952	9.18	June	9	7.91
Aug. 28	8.80	Feb.	6	8.29	June	28	7,13

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level		Date	Water level		Date	Water level
		<u>,</u>	A2	-5-18bc—Con	tinued			
Aug.	4, 1952	7.74	Oct.	3, 1952	7.87	Nov.	10, 1952	7,65
Sept.	2	8.30		-,			,	
				A2-5-20ad				
May	28, 1951	27, 83	June	29, 1952	25.76	May	2, 1953	29, 21
July	5	28.41	Aug.	4	26.39	June	1	29.39
Aug.	2	2 8.66	Sept.	2	26.97	July	2	28, 86
Aug.	28	28. 91	Oct.	3	27.21	Aug.	1	26.13
Sept. Nov.	29	28. 93 29. 10	Nov.	10	27.62 27.93	Sept.	1	26.73 26.98
Dec.	4	29. 10	Dec. Jan.	3 5, 1953	28, 62	Oct. Nov.	5	27.45
Jan.	11, 1952	29. 47	Feb.	2	28, 44	Dec.	1	27. 72
May	1	27.63	!	3	29.03	Jan.	4, 1954	28. 32
June	9	25. 33	Apr.	1	28.98		-,	
	*			A2-5-30bb				
May	15, 1951	76, 08	Aug.	28, 1951	75, 84	Jan.	11, 1952	75, 87
May	31	75.95	Sept.	29	75.98	Apr.	7	75. 75
July	5	74. 81	Nov.	2	76.04	May	6	75.67
Aug.	2	75.80	Dec.	4	75.74	Oct.	3	75.32
			I	A2-5-33bd		·····		
May	28, 1951	12, 71	Sept.	29, 1951	20.06	Feb.	6, 1952	21, 53
July	6	16.69	Nov.	2	20.91	Mar.	6	21.78
Aug.	2	18.56		4	20.83	Apr.	7	20.30
Aug.	28	20.56	Jan.	11, 1952	20.92			-0.00
	***************************************			A2-5-35ba		I		
May	14, 1951	13, 03	Δ	29, 1951	12. 59	T	11, 1952	19 15
May	31	12. 47	Aug. Sept.	29	12. 70	Jan. Apr.	4	13, 15 12, 79
July	5	13. 13		2	12. 93	Oct.	1	12.74
Aug.	2	13.48	Dec.	4	13.09	001.	* *************************************	12.11
		<u></u>	L	A3-5-28dd		l		,
May	15, 1951	27.67	Doo	4 1051	22 50	Tuna	28 1052	14 10
May	28	23.02	Dec. Jan.	4, 1951 11, 1952	23. 59 28. 46	June Aug.	28, 1952	14, 12 19, 34
July	5	11.70	Feb.	6	30. 14	Sept.	2	20.63
Aug.	2	16.84	Mar.	6	30. 71	Oct.	1	22, 32
Aug.	28	16.96	Apr.	4	29.80	Nov.	10	19.34
	29	18.38	May	1	30,68	Dec.	1	22. 14
Nov.	2	19.21	June	9	15.31	Jan.	5, 1953	25.33
***************************************		· · · · · · · · · · · · · · · · · · ·		D1-4-1cb			-	
July	28, 1952	39. 73	Jan.	7, 1953	50,71	Aug.	4, 1953	39, 37
Aug.	4	39. 73	Feb.	3	54. 73	Sept.	4, 1955	37.40
Aug.	18	38.54	Mar.	4	58. 26	Oct.	2	38.13
Sept.	2	38.07	Apr.	3	61.14	Nov.	5	40.98
Sept.	10	38. 12	May	8	60.08	Dec.	3	43.58
Sept.	29	38. 59	June	4	55. 10	Jan.	5, 1954	49.04
Oct.	7	39. 14	July	2	46.35		2, 2002	

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level	Da	ite	Water level	D	ate	Water level	
	<u></u>	!		D1-4-2ab					
May	8, 1951	50.74	May	2, 1952	50, 93	Dec.	2, 1952	38.10	
May	31	48.12	June	10	45, 38	Jan.	7, 1953	43.85	
July	5	37.84	June	27	42.05	Feb.	3	47.45	
Aug.	2	33.94	July	9	36.75	Mar.	4	50.41	
Aug.	28	30.14	July	18	34.30	Apr.	3	52.73	
Sept.	26	31, 19	July	28	33, 90	May	8	52.11	
Nov.	1	35.68	Aug.	5	33, 54	June	4	37.88	
Dec.	3	40.71	Aug.	18	32, 27	July	2	39.85	
Jan.	8, 1952	43.16	Aug.	25	32, 13	Aug.	4	35.74	
Feb.	5	43.63	Sept.	2	32, 82	Sept.	4	32.84	
Mar.	5	45.41	Sept.	10	32, 53	Oct.	2	33.70	
Apr.	4	53.98	Sept.	29	32.65	Nov.	5	35.84	
Apr.	11	53.05	Oct.	7	33.30	Dec.	3	38.51	
Apr.	15	52.47	Nov.	17	36.05	Jan.	5, 1954	43.07	
D1-4-6bb									
May	9, 1951	8, 20	Mar.	5, 1952	Dry	Apr.	1, 1953	8,00	
May	31	6.64	Apr.	4	Dry	May	8	7.60	
July	5	2, 74	May	5	Dry	June	3	5.69	
Aug.	2	3, 43	June	9	1.65	July	2	2.84	
Aug.	28	4.81	June	28	3.90	Aug.	6	4.14	
Sept.	26	5.88	Aug.	5	3.15	Sept.	4	4.62	
Nov.	2	6, 09	Sept.	3	4.07	Oct.	5	6.63	
Dec.	5	Frozen	Oct.	3	5, 10	Nov.	5	7.02	
Jan.	7, 1952	Frozen	Feb.	4, 1953	Dry	Dec.	2	7.64	
Feb.	6	Dry	Mar.	4	Dry	l			
				D1-4-6ddc	1	•			
Aug.	9, 1951	5. 59	June	9, 1952	3,00	Apr.	1, 1953	18.05	
Aug.	28	9. 19	June	28	5.49	May	8	18.60	
Sept.	26	10.44	Aug.	5	5,60	June	3	15, 31	
Nov.	1	12.74	Sept.	3	5. 87	July	2	5.20	
Dec.	3	13. 85	Oct.	3	7.88	Aug.	6	7.69	
Jan.	7, 1952	17. 15	Nov.	17	10.00	Sept.	4	7.95	
Feb.	6	17.53	Dec.	3	13, 72	Oct.	5	11.44	
Mar.	5	19. 26	Jan.	2, 1953	14.84	1	5	11.96	
Apr.	4	20.51	Feb.	4	15.61	Dec.	2	13.25	
Мау	5	12.59	1 .	4	16.92	Jan.	4, 1954	15.18	
		l	L			L			

D1-4-6ddc2

[No measurements by tape; for measurements from recorder chart, see table 35]

D1-4-9ba1

[No measurements by tape; for measurements from recorder chart, see table 35]

			_
D1	-4-	9ba	12

Apr.	25, 1953	4.57	July	3, 1953	2.51	Aug. 28, 1953	4.57
May	2	4.68	July	10		Sept. 4	4.38
May	9	4.55	July	24	3.56	Sept. 11	4.34
May	16	5.23	Aug.	7	3.89	Sept. 18	4.69
May	23	5.03	Aug.	14		Sept. 25	5.05
June	6	2.46	Aug.	21		Oct. 2	5.22

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water		Date	Water		Date	Water
	<u> </u>	level	<u> </u>		level			level
			D1-	4-9ba2—Cont	inued			
Oct.	8, 1953	5.24	Dec.	28, 1953	4.41	Feb.	24, 1954	4.69
Oct.	15	4.80	Jan.	4, 1954	4.41	Mar.		4.84
Oct.	29	3. 60	Jan.	11	4.67	L.	10	4.77
Nov.	12	4.24	Jan.	21	4.68	Mar.		5.04
Nov.	20	3.81	Jan.	27	4.18	Mar.		5.29
Nov. Dec.	25	3.89 3.97	Feb.	3	4.44 4.76	Apr.	7	4.88 4.91
Dec.	8	4,10	Feb.	10 17	4.67	Apr.	22	5.16
Dec.	21	4.39	reb.	* ' • • • • • • • • • • • • • • • • • •		Tipi.	22	0.10
			L			L		
				D1-4-12bb				
Apr.	24, 1952	66.70	Sept.	3, 1952	28, 50	Apr.	9, 1953	67, 35
June	10	45.48	Sept.	10	28.71	May	4	65.75
June	27	40.82	Sept.	29	31.01	June	4	62.36
July	9	34.64	Nov.	7	31.87	July	2	34.50
July	18	31.70	Nov.	12	37.33	Aug.	5	24.48 23.61
July	28 5	31.70 31.37	Dec. Jan.	3 6, 1953	42.52 52.95	Sept. Oct.	23	32.72
Aug.	18	29.48	Feb.	3	56.53	Dec.	3	38, 55
Aug.	27	28. 64	Mar.	5	61.86	Jan.	4, 1954	48.10
			1		LB		1	
				D1-4-13ad				
July	28, 1952	11.87	Jan.	7, 1953	3 6. 5 9	Sept.	9, 1953	13.35
Aug.	5	8.47	Feb.	3	43.70	Oct.	2	16.32
Aug.	18	11.00	Mar.	5	47.80	Nov.	5	21.26
Aug.	27	10.44	Apr.	3	51.80	Dec.	2	26.59
Sept.	2	10.43	May	8	50. 31	Jan.	5, 1954	34.57
Sept.	10	10.48	June	4	45.71	Feb.	3	40.70
Sept.	29 7	11. 44 13. 52	July Aug.	9	17.96 12.42	Mar. Mar.	31	46.32 50.60
		10. 02	riug.	***************************************	12. 12	mar.	01	
			,	D1-4-13bb				
July	11, 1951	19 .3 1	Aug.	28, 1951	10.61	Dec.	4, 1951	17.03
Aug.	2	8, 52	Nov.	2	16, 21			
				D1-4-15ab				
Apr.	23, 1952	22, 93	Feb.	4, 1953	23, 78	Aug.	5, 1953	5.71
June	9	13.33	Mar.	5	24.09	Sept.	4	6.92
June	28	3.74	Apr.	3	23.90	Oct.	2	10.11
Aug.	6	5.02	May	4	26.24	Nov.	6	11.86
Sept.	8	7. 27	June	4	20.90	Dec.	2	14.64
Oct.	3	9,06	July	2	5, 21	Jan.	6, 1954	18, 21
				D1-4-15cd				
Apr.	23, 1951	7. 22	Nov.	2, 1951	4.41	May	5, 1952	8.01
May	31	4.91	Dec.	4	5. 28	June	9	5.17
July	6	3. 10	Jan.	7, 1952	5. 14	June	28	3.01
Aug.	1	3.46	Feb.	5	5, 23	Aug.	6	2.76
Aug.	30	3.68	Mar.	6	5. 48	Sept.	8	5. 29
Oct.	1	4. 12	Apr.	7	4, 88	Oct.	10	6.50

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date Water level		Date		Water level	Date		Water level
				D1-4-17bb				
July	13, 1951	3.59	June	9, 1952	10.82	Apr.	3, 1953	15.93
Aug.	1	4.03	June	28	3.86	May	4	15.86
Aug.	30	4.07	Aug.	6	5, 91	June	3	17.00
Oct.	1	8.09	Sept.	8	4.43	July	2	10.12
Nov.	2	9.10	Oct.	3	7.11	Aug.	6	4.03
Dec.	4	11.78	Nov.	10	9. 24	Sept.	4	4.76
Jan.	7, 1952	14.62	Dec.	1	9. 79	Oct.	5	7.14
Feb.	5	14.91	Jan.	2, 1953	11.38	Nov.	5	8.20
Mar.	·7	15.23	Feb.	4	13.04	Dec.	2	10.24
Apr.	7	15.52	Mar.	4	15.71	Jan.	4, 1954	12.11
May	5	17.90						
				D1-4-25aa	1			
Apr.	18, 1951	13.00	Apr.	7, 1952	11.36	Mar.	5, 1953	15.45
May	31	11.14	May	5	11.05	Apr.	3	17.16
July	6	3.85	June	4	5.30	May	4	15.46
Aug.	1	4.65	June	27	3.70	June	2	10.91
Aug.	30	7.86	Aug.	6	5.61	July	2	7.63
Oct.	1	8.27	Sept.	4	8.04	Aug.	4	5.09
Nov.	2	8.81	Sept.	30	9.61	Sept.	9	8.53
Dec.	4	11.39	Nov.	10	11.29	Oct.	2	9.54
Jan.	7, 1952	11.52	Dec.	1	12.10	Nov.	4	10.14
Feb.	5	11.74	Jan.	6, 1953	13, 11	Dec.	2	11.67
Mar.	6	11.91	Feb.	3	13.48	Jan.	4, 1954	13.34

♥ D1-4-25aa2

[No measurements by tape; for measurements from recorder chart, see table 35]

D1-4-25aa3

[No measurements by tape: for measurements from recorder chart, see table 35]

[N	o measuremer	its by tape;	form	neasurements	from reco	order o	chart, see ta	ble 35]
				D1-4-25ba	1			
Apr.	19, 1951	12.85	Mar.	6, 1952	9.72	Apr.	3, 1953	15.27
May	31	8, 29	Apr.	7	18.50	May	4	13.04
July	6	1, 20	May	5	10.40	June	2	10.11
Aug.	1	2.49	June	24	5.69	July	2	2.71
Aug.	30	3. 72	June	27	1.61	Aug.	4	2.22
Oct.	1	4.24	Aug.	6	3.12	Sept.	9	4.39
Nov.	2	6.30	Sept.	4	4.18	Oct.	2	4.85
Dec.	4	8.92	Sept.	30	6.08	Nov.	4	6.26
Jan.	7, 1952	9. 11	Feb.	3, 1953	13, 12	Dec.	2	8.68
Feb.	5	9.51	Mar.	5	14. 27	Jan.	4, 1954	11.14
				D1-4-26bb	b			
Aug.	1, 1951	3, 40	Feb.	4, 1952	Dry	June	4, 1952	5, 65
Aug.	30	4.86	Mar.	6	Dry	June	27	3.32
Oct.	1	4, 98		7	Dry	Aug.	6	3.80
Nov.	2	5, 13		5	Dry	Aug.	5, 1953	3.18
Dec.	4	Dry			Ĭ	"		

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Date	Water level	Date	Water level	Date	Water level
		D1-4-27b		-	
Apr. 19, 1951	9.52	Apr. 7, 1952	7. 25	Mar. 4, 1953	10.58
May 31	8.33	May 5	1 1	Apr. 3	10.40
July 6	8.22	June 9	. 3. 93	May 4	9, 98
Aug. 1	8.45	June 28		June 4	7. 90
Aug. 30	9,36	Aug. 6		July 4	6.46
Oct. 1	10.17	Sept. 8		Aug. 1	8, 15
Nov. 2	10.81	Oct. 3		Sept. 2	8.72
Dec. 4	10.49	Nov. 10		Oct. 5	9.39
Jan. 7, 1952	10.44	Dec. 1	9.82	Nov. 6	9.48
Feb. 5	10.53	Jan. 2, 1953	. 10.46 . 10.40	Dec. 2 Jan. 6, 1954	10.28 10.40
Mar. 7	10,72	Feb. 4	. 10. 40	Jan. 6, 1954	10.40
		D1-5-4db	1		
Apr. 24, 1951	15.80	Apr. 4, 1952	. 17.02	Mar. 4, 1953	14.04
May 31	11,80	May 6		Apr. 2	15.05
July 5	11.96	1		May 8	14.72
Aug. 1	9,69	June 29	. 5.60	June 4	6.44
Aug. 28	10.92	Aug. 1		July 2	7.21
Sept. 26	11.49	Sept. 2		Aug. 4	6.81
Nov. 1	12.62	Sept. 29	8.44	Sept. 4	7.53
Dec. 3	14. 25	Nov. 12	9.61 10.18	Oct. 2	8.56 9.21
Jan. 8, 1952 Feb. 6	14.44	Dec. 3 Jan. 5, 1953	10.18	Nov. 5 Dec. 3	11. 26
Mar. 5	15.24 15.86	Jan. 5, 1953 Feb. 2	12.03	Jan. 5, 1954	12.72
Ma1. 0	13.00		1 12.00	Jun. 0, 1004	12.12
	,	D1-5-6de		<u></u>	···
May 3, 1951	38.15	June 27, 1952	2416	Feb. 2, 1953	33.43
May 31	37.11	July 9		Mar. 4	35.61
July 5	29.71	July 18		Apr. 2	37.44
Aug. 1	24.82	July 28		May 8	36.88
Aug. 28	22.34	Aug. 4		June 4	35.38
Sept. 26 Nov. 1	21.07 25.54	Sept. 2 Sept. 10	1 1	July 2 Aug. 4	27.56 20.91
Dec. 3	27, 29	Sept. 10 Sept. 29	1 1	Aug. 4	21. 27
Jan. 8, 1952	28. 87	Nov. 7		Oct. 2	22.41
Feb. 6	31. 28		3	Nov. 5	23. 84
May 6	35. 44			Dec. 3	26.42
June 6	29.42	Jan. 5, 1953	. 30.05	Jan. 5, 1954	30. 21
		D1-5-8ab			
Aug. 3, 1951	3.96	Jan. 8, 1952	. Dry	June 6, 1952	2, 73
Aug. 28	3. 14			June 29	2.11
Sept. 26	3.92	Mar. 5		Aug. 1	2.63
Nov. 1	4.43			Sept. 2	2.59
Dec. 3	Dry	May 6	. Dry	Sept. 29	2, 79
		D1-5-9ac			
July 16, 1951	18.57	Jan. 8, 1952	17.52	Sept. 29, 1952	12,48
Aug. 1		May 6		Nov. 12	14.40
Aug. 28	1	June 6		Dec. 3	14.78
Sept. 26	14.94	June 29		Jan. 5, 1953	16.46
Nov. 1		Aug. 1	1	Feb. 2	17.77
Dec. 3	17.26	Sept. 2	11.90	Mar. 4	19.72

508919 O-60--15

Table 34.—Water-level measurements by tape, in feet below land-surface datum-Cont.

	Date	Water level]	Date	Water level		Date	Water level
			D1.	-5-9ac—Cont	inued			
Apr.	2, 1953	22.55	Aug.	4, 1953	13.14	Nov.	5, 1953	14.59
Мау	8	22.28	Sept.	4	12.70	Dec.	3	16.10
June	4	7.70	Oct.	2	13.61	Jan.	5, 1954	18.18
July	2	14.89	L			<u></u>	l	
			ī	D1-5-19cd				
Feb.	3, 1953	9.79	June	2, 1953	10.24	Oct.	2, 1953	8. 29
Mar.	5	11, 64	July	2	7. 12	Nov.	4	8.39
Apr. May	3 4	12.63 12.60	Aug. Sept.	4 9	5.30 6.96	Feb.	24, 1954	11.74
			l	D1-5-21dde	d	!		
Aug.	2, 1951	6.87	Jan.	8, 1952	Dry	June	4, 1952	5.19
Aug.	29	6, 25	Feb.	6	Dry	June	27	5.82
Sept.	26	Dry	Mar.	5	Dry	Aug.	6	5.80
Nov. Dec.	2 4	Dry Dry	Apr. May	1 5	Dry 5 . 33	Sept.	4 5, 1953	6.38 5.61
			1	D1-5-23db			,1	
May	15, 1951	5, 30	Apr.	1, 1952	7. 19	Mar.	3, 1953	7.19
May	31	6.10	May	1	2.53	Apr.	1	6.71
July	5	6.38	June	2	4.71	May	2	6.57
Aug.	1	6.61	June	29	6.30	June	1	4.17
Aug.	28	7. 07	Aug.	1	6.54	July	2	6.31
Sept. Nov.	26	7.47 7.24	Sept.	2 29	7.34 7.54	Aug. Sept.	1	5. 98 7. 43
Dec.	3	7. 28	Nov.	10	7. 56	Oct.	1	7.94
Jan.	8, 1952	7. 41	Dec.	1	7. 33	Nov.	5	7.87
Feb.	5	6, 21	Jan.	2, 1953	7. 45	Dec.	1	7.75
Mar.	5	7. 29	Feb.	2	7, 15	Jan.	5, 1954	7.69
				D1-5-26da		,		
July	17, 1951	11. 57	Mar.	5, 1952	12.39	Aug.	1, 1952	11.81
Dec.	3	11.79	Apr.	1	11. 25	Sept.	2	11.37
Jan. Feb.	8, 1952 5	11.91 12.22	May June	1	10.41 10.57	Sept.	8, 1953	12.41 10.60
	0	12. 22	buile		10.01	riug.	0, 1000	10.00
	···-			D1-5-27aa				
Aug.	3, 1951	9.50	Feb.	6, 1952	Dry	June	29, 1952	7.94
Aug. Sept.	29	9. 28 10. 78	Mar. Apr.	5	Dry Dry	Aug.	6 4	9.61 10.01
Nov.	3	11.70	May	5	9. 4 9	Sept.	2	10.01
Dec.	4	Dry	June	4	8, 27	Aug.	5, 1953	10.44
Jan.	8, 1952	Dry						
				D1-5-30aa	l			
Apr.	18, 1951	10.29	Nov.	2, 1951	8.21	Sept.		5.82
May	31	10.74	Dec.	4	8.48	Feb.	3, 1953	9.67
July	6	3.88	Jan.	7, 1952	8,76	Mar.	5	11.27
Aug. Aug.	30	3.70 6.47	Feb. Mar.	5 6	8.96 9.13	Apr. May	3 4	12.01 12.73
Oct.	1	7.13		7	8,21	June	2	11.78

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

D1-5-30cd D1-5-30cd D1-5-	Date	Water level		Date	Water level		Date	Water level
D1-5-30cd D1-5-30cd D1-5-			D1	-5-30aa—Cor	ntinued			
D1-5-30cd D1-5	July 2, 1953	5.70	Oct.	2, 1953	6.31	Dec.	3, 1953	8,98
D1-5-30cd D1-5-5-30cd D1-5-5-30cd D1-5-5-30cd D1-5-5-30c	Aug. 4		Nov.	4	7.34	Jan.	4, 1954	10.10
1	Sept. 9	4.17			i		1	
Nay 31				D1-5-30cd				
Nay 31	May 17, 1951	8.48	Feb.	5, 1952	6.14	Apr.	3, 1953	9. 7
1		8.92	May	5	4.40	May	4	10.2
Nov. 1		4.70		9	4. 30	June	2	9.5
Sept. 1	Aug. 1	4.26	June	29	3. 77	July	4	4. 5
Sov. 2 6.08 Sept. 30 5.00 Oct. 2 4.8 Sec. 4 5.72 Feb. 3, 1953 7.29 Nov. 4 5. D1-5-33dd D1-5-35ca Apr. 7, 1953 7. Mar. 5 7.1952 4.14 Apr. 3, 1953 7. Mar. 7, 1952 6.48 Aug. 5 6.56 Mar. 7, 1952 6.81 Aug. 5 Aug. 4 5. D2 D1-5-34cc2 Nov. 1 5.95 Sept. 9 Dry D1-5-35ca1 D1-5-35ca1 D1-5-35ca1 D1-5-35cd1 D1-5-35cd1 D1-5-35cd1 D1-5-35cd1 </td <td>Aug. 30</td> <td>4.13</td> <td>Aug.</td> <td>5</td> <td>4. 18</td> <td>Aug.</td> <td>4</td> <td>3.9</td>	Aug. 30	4.13	Aug.	5	4. 18	Aug.	4	3.9
D1-5-33dd D1-5-33dd Dec. 3, 1953 7, 29	Oct. 1	5.36	Sept.	4		Sept.		4. 3:
D1-5-33dd D1-5-33dd D1-5-33dd D1-5-33dd D1-5-33dd D1-5-33dd D1-5-33dd D1-5-34cc2 [No measurements by tape; for measurements from recorder chart, see table 35] D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl D1-5-35cdl	Nov. 2	6.08	Sept.					4.9
D1-5-33dd D1-5-33dd D1-5-33dd D1-5-33dd D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D1-5-35cal D		1	Feb.			1		5.2
Apr. 7, 1952	Jan. 7, 1952	5. 99	Mar.	5	8.34	Dec.	3	6.0
1				D1-5-33dd	1			
The state of the	July 6 1951	2.80	Apr.	7. 1952	4.14	Feb.	3. 1953	7.7
1	•			-				7.6
Now 1	•				4,60	Apr.	3	7.0
Sept. Aug. 5 Sept. 4 Sept. 7 Sept. 4 Sept. 30			1			1 ~	4	7.0
Sept. 30 7, 80 Aug. 4 5.	Nov. 1	6.48	Aug.	5	6,56	June	2	7.1
Dec. 4 Dry Sept. 9 Dry Sept. 9 Dry	Dec. 4	7.38	Sept.	4	7,60	July	4	2.9
D1-5-34cc2 D1-5-34cc2 D1-5-35ca1	Jan. 7, 1952	6.81	Sept.	30	7. 80	Aug.	4	5.7
D1-5-34cc2 [No measurements by tape; for measurements from recorder chart, see table 35] D1-5-35ca1 uly 7, 1951 5.73 Dec. 4, 1951 6.23 June 29, 1952 4. ug. 1 6.42 Jan. 7, 1952 6.42 Aug. 5 5. ug. 29 6.65 Feb. 4 5.95 Sept. 4 5. uct. 1 6.58 May 2 3.94 Sept. 30 5. ov. 1 6.07 June 4 4.29 D1-5-35cd1 uly 6, 1951 5.44 Oct. 1, 1951 5.23 Jan. 7, 1952 5. ug. 1 5.39 Nov. 1 5.23 Mar. 6 5.	Feb. 5	. 7. 36	Dec.	4	Dry	Sept.	9	Dry
No measurements by tape; for measurements from recorder chart, see table 35 D1-5-35cal Uly 7, 1951 5.73 Dec. 4, 1951 6.23 June 29, 1952 4. Uly 7, 1952 6.42 Jan. 7, 1952 6.42 Aug. 5. 5. Sept. 4. 6.58 May 2 3.94 Sept. 30 5. Sept. 30 5. Sept. 4. Sept. 30 5. Sept. 4. Sept. 30 5. Sept. 4. Sept. 30 5. Sept. 30	Mar. 6	7.42	Jan.	6, 1953	Dry	<u> </u>		
D1-5-35ca1 uly 7, 1951 5.73 Dec. 4, 1951 6.23 June 29, 1952 4. uug. 1 6.42 Jan. 7, 1952 6.42 Aug. 5 5. uug. 29 6.65 Feb. 4 5.95 Sept. 4 6. uct. 1 6.58 May 2 3.94 Sept. 30 5. D1-5-35cd1 uly 6, 1951 5.44 Oct. 1, 1951 5.23 Jan. 7, 1952 5. uug. 1 5.39 Nov. 1 5.23 Mar. 6 5.				D1-5-34cc2				
Uly 7, 1951 5. 73 Dec. 4, 1951 6. 23 June 29, 1952 4. 20 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 23 June 29, 1952 5. 25 June 29, 1952 5. 25 June 29, 1952 5. 25 June 29, 1952 5. 20 J	[No measureme	nts by tape	for m	easurements	from rec	order o	chart, see ta	ble 35]
aug. 1 6. 42 Jan. 7, 1952 6. 42 Aug. 5 5 aug. 29 6. 65 Feb. 4 5. 95 Sept. 4 6 bot. 1 6. 58 May 2 3. 94 Sept. 30 5 June 4 4. 29 D1-5-35cd1 aug. 6, 1951 5. 44 Oct. 1, 1951 5. 23 Jan. 7, 1952 5 aug. 1 5. 39 Nov. 1 5. 23 Mar. 6 5				D1-5-35ca	1			
aug. 1 6. 42 Jan. 7, 1952 6. 42 Aug. 5 5 aug. 29 6. 65 Feb. 4 5. 95 Sept. 4 6 bov. 1 6. 07 June 4 3. 94 Sept. 30 5 D1-5-35cd1 aug. 6, 1951 5. 44 Oct. 1, 1951 5. 23 Jan. 7, 1952 5 aug. 1 5. 39 Nov. 1 5. 23 Mar. 6 5	July 7, 1951	5. 73	Dec.	4, 1951	6.23	June	29, 1952	4.7
Lug. 29		. 6.42	Jan.		6.42	Aug.	5	5. 1
D1-5-35cdl uly 6, 1951 5. 44 Oct. 1, 1951 5. 23 Jan. 7, 1952 5. 39 Nov. 1 5. 39 Mar. 6 5.	•	. 6 .6 5	Feb.	4	5.95	Sept.	4	6.1
D1-5-35cd1 uly 6, 1951 5. 44 Oct. 1, 1951 5. 23 Jan. 7, 1952 5. ug. 1 5. 23 Mar. 6 5.	Oct. 1	. 6. 58	May	2	3.94	Sept.	30	5.9
uly 6, 1951 5. 44 Oct. 1, 1951 5. 23 Jan. 7, 1952 5. ug. 1 5. 39 Nov. 1 5. 23 Mar. 6 5.	Nov. 1	6.07	June	4	4. 29	1		
ug. 1 5. 39 Nov. 1 5. 23 Mar. 6 5.				D1-5-35cc	11			
ug. 1 5.39 Nov. 1 5.23 Mar. 6 5.	July 6, 1951	5.44	Oct.	1, 1951	5. 2 3	Jan.	7, 1952	5. 1
· · · · · · · · · · · · · · · · · · ·	•				5, 23	Mar.	6	5. 1
	•		Dec.	4	5.07			
D1-5-35cd2	······································				<u> </u>			L

4, 1952....

6, 1953....

3

2

4.41

4.38

4, 28

4.36

4.15

4.22

4.21

July

Aug.

Sept.

Oct.

Nov.

Dec.

Jan.

4, 1953...

4

4

3

4, 1954...

4.42

4.85

4.48

4.61

4.37

4.24

4.36

508919 O-60-16

May 27, 1952......

June 4.....

June 29.....

Sept. 30

Nov. 10

Aug.

Sept.

3. 93 Dec.

Jan.

Feb.

Mar.

Apr.

June

4. 26

4.38

4.73

4.77

4.70 May

4.45

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level]	Date	Water level		Date	Water level
				D1-5-36dd	ld			
July	6, 1951	4.60	June	4, 1952	4. 39	Apr.	3, 1953	5.47
Aug.	1	4.31	June	29	4.35	May	4	5.42
Aug.	29	4.27	Aug.	5	4. 21	June	3	5.42 5.35
Oct. Nov.	1	4.41 4.50	Sept. Sept.	4 30	4.12 4.24	July Aug.	4	4, 52
Dec.	4	4.60	Nov.	10	4.90	Sept.	4	4.58
Jan.	7, 1952	4.75	Dec.	4	5. 21	Oct.	2	4.61
Feb.	5	4.89	Jan.	6, 1953	5.41	Nov.	4	4.74
Mar.	6	5, 09	Feb.	3	5.41	Dec.	1	4.92
Apr.	7	4.98	Mar.	5	5, 51	Jan.	4, 1954	5,05
May	2	4.81		,,		L		
				D2-3-4ac				
May	16, 1951	6.37	Apr.	2, 1952	6.45	Mar.	4, 1953	6.64
May	31	6.31	May	1	3, 22	Apr.	1	6.50
July	6	4.94	June	2	3, 46	May	1	7.12
Aug.	1 29	4.87 6.26	June Aug.	30	2.54 4.01	June July	3	2.55 3.50
Oct.	1	6.31	Sept.	3	3.72	Aug.	3	4.69
Nov.	2	6.42	Oct.	1	2.85	Sept.	2	6.11
Dec.	4	7.06	Nov.	5	4.33	Oct.	1	7.27
Jan.	7, 1952	6.89	Dec.	1	4.98	Nov.	6	5.87
Feb.	5	8.73	Jan.	2, 1953	4.70	Dec.	1	6.47
Mar.	7	9.01	Feb.	2	5. 36	Jan.	6, 1954	7. 53
				D2-4-1ba1				
June	29, 1951	3, 54	Apr.	7, 1952	Dry	Apr.	3, 1953	Dry
Aug.	1	6.02	May	2	Dry	May	4	Dry
Aug.	29	7.54	June	4	9. 58	June	2	Dry
Oct. Nov.	1 1	7.47 Dry	June Aug.	29 5	1.83 5.46	July Aug.	4	5, 24 4, 98
Dec.	4	Dry	Sept.	4	7.84	Sept.	9	8, 75
Jan.	7, 1952	Dry	Sept.	30	9. 79	Oct.	2	9.96
Feb.	5	Dry	Mar.	5	Dry	Nov.	4	12,50
Mar.	6	Dry						
				D2-4-9bc			·	
	[For	r measure	ments	from recorde	er chart, s	ee tabl	le 35]	
June	3, 1953	22.79	Oct.	1, 1953	21,01	Feb.	4, 1954	21.12
July	3	22. 21	Nov.	6	20.72	Mar.	3	21.49
Aug.	3	21.42	Dec.	1	20.47	Mar.	31	21.78
Sept.	2	21.22	Jan.	6, 1954	20.72	L		
				D2-4-10dd	I			
May	14, 1951	8.18	Feb.	5, 1952	8,64	Nov.	10, 1952	5,08
May	30	6.23	Mar.	7	8.89	Dec.	1	5,96
July	6	2.53	Apr.	7	6,98	Jan.	2, 1953 2	7.17 7.87
Aug.	1 29.	2.48 3.62	May June	1	6.99 5.20	Feb. Mar.	4	8.42
Oct.	1	4.11	July	28	2.58	Apr.	1	8.54
Nov.	1	5.76	Aug.	1	2.29	May	1	8.60
Dec.	4	7.20	Sept.	3	3.98	June	3	6.98
Jan.	7, 1952	6.79	Oct.	1	4.98	July	3	3.17

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level	J	Date	Water level		Date	Water level
			D2	-4-10dd—Con	tinued			
Aug.	1, 1953	2.64	Oct.	1, 1953	5.82	Dec.	2, 1953	6.59
Sept.	2	4.67	Nov.	6	6,44	Jan.	6, 1954	7.96
			r	D2-4-11cd	1			
May	14, 1951	6.34	Apr.	7, 1952	5, 34	ι.	4, 1953	6,65
May	30	5. 86	May	1	5. 77	Apr.	1	6,58
July Aug.	6 1	4.31 4.50	June June	28	4.55 4.67	May June	1 3	6.00 4.37
Aug.	29	5.61	Aug.	1	4. 21	July	3	3.98
Oct.	1	5.82	Sept.	3	4.79	Aug.	1	4.68
Nov.	1	6.31	Oct.	1	4.83	Sept.	2	5.14
Dec.	2	6.52	Nov.	10	7. 23	Oct.	1	6.36
Jan.	7, 1952	5.48	Dec.	1	7.11	Nov.	6	5.95
Feb.	5	6.76	Jan.	2, 1953	6.70	Dec.	2	6.33
Mar.	7	6.97	Feb.	2	6.91	Jan.	6, 1954	6.74
				D2-4-13aa				<u>_</u>
June	29, 1951	3, 80	Jan.	7, 1952	Dry	June	27, 1952	5.55
Aug.	1	5, 81	Feb.	4	Dry	Aug.	1	5. 38
Aug.	29	5. 95	Mar.	7	Dry	Sept.	3	5. 56 E. 40
Oct. Nov.	1	6.49 7.13	Apr. May	4	Dry 5.04	Sept. Aug.	1, 1953	5.40 6.36
Dec.	4	Dry	June	2	2. 52	riug.	1, 1300	0,30
		k		D2-4-13cc				
June	21, 1947	3, 30	June	21, 1950	4.68	Mar.	7, 1952	8, 53
Sept.	10	3.88	July	27	4.02	Apr.	4	7.74
Oct.	20	6.10	Sept.	28	4.91	May	5	5.41
Dec.	31	7. 95	Oct.	31	6.17	June	4	4.92
Feb.	10, 1948	8.50	Jan.	5, 1951	7, 77	June	27	2.54
Sept.	1	5.77 5.96	Feb. Mar.	2	8, 20	Aug.	6	4.09
Sept.	23 27	6.48	Mar.	28	8.48 7.06	Sept. Sept.	5 29	4,80 5,60
Dec.	1	7.78	May	2	7.04	Nov.	7	6.74
Jan.	4, 1949	7.72	May	26	5.74	Dec.	3	7.26
Mar.	2	8.18	May	30	5.99	Jan.	6, 1953	8.12
Mar.		7.58	June	12	6.00	Feb.	3	8, 25
Apr.	14	7.46	July	6	4.62	Mar.	3	7.74
May	17	6.65	July	11	3.98	Apr.	2	8.20
June	15	4.34	July	31	3. 47	May	4	7.90
July Oct.	27	3.83	Aug.	129	3.66	June	2 3	6.68
Nov.	18	4.83 7.27	Aug. Sept.	3	3.77 3.12	July Aug.	3	3.10 4.39
Jan.	4, 1950	7. 75	Oct.	1	5. 98	Sept.	2	5, 50
Feb.	14	8.48	Nov.	1	6.38	Oct.	1	4.81
Mar.	8	8.07	Dec.	4	7.35		6	6.52
Apr.	12	7. 29	Jan.	11, 1952	7.63	Dec.	2	7, 22
May	1	7.68	Feb.	4	8.44	Jan.	5, 1954	8.04
June	5	6.45						
			r	D2-4-17aa		r		
May	15, 1951	17.94	Aug.	1, 1951	13.84	Nov.	1, 1951	14.54
May	30	18.06	Aug.	29	12.89	Dec.	7 1052	14.73
July	6	14.83	Oct.	1	13.87	Jan.	7, 1952	15.42

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

D2-4-17aa—Continued Feb. 5, 1952		Date	Water level		Date	Water level		Date	Water level
Feb. 5, 1952			20,02				L		
Mar				D2	-4-17aa—Cor	itinued			
Apr. 7.	Feb.	5, 1952	16.75	Oct.	1, 1952	13.82	June	3, 1953	16.99
May 1	Mar.	7		Nov.					
June 2.									
June 28.							_		
Aug. 1				,	,		,	,	
D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-4-25bd D2-5-2bd D2									
May 22, 1951 19,50 June 4, 1952 18,98 June 2, 1953 19,57	_						t		
May 22, 1951.					···				
May 15, 1951 12, 94 May 5, 1952 8, 66 Apr. 1, 1, 1953 15, 24 Aug. 1 1, 7, 66 Sept. 5 17, 01 Sept. 5 17, 01 Sept. 5 17, 01 Sept. 2 17, 18 Sept. 2 17, 18 Sept. 2 17, 18 Sept. 2 17, 18 Sept. 2 17, 83 Sept. 3 16, 61 Sept. 2 16, 61 Sept. 2 16, 62 Sept. 2 18, 63 Sept. 3 19, 19, 76 Sept. 3 19, 76 Sept. 3 19, 76 Sept. 3 19, 79 Sept. 4 7, 72 July 4 7, 72 Sept.<					D2-4-25bd				
July 6 15, 94 Aug. 6 18, 22 Aug. 3 16, 92 Aug. 1 17, 66 Sept. 5 17, 01 Sept. 2 17, 83 Aug. 29 17, 17 Oct. 9 17, 76 Oct. 5 16, 45 Sept. 28 17, 73 Feb. 3, 1953. 20, 68 Nov. 6 18, 72 Dec. 4 18, 69 Mar. 3 20, 26 Dec. 2 19, 23 Apr. 4, 1952. 20, 32 Apr. 2 0.02 5 Dec. 2 19, 23 May 5 18, 72 May 4 20, 25 Dec. 2 19, 23 May 5 19, 24 Apr. 2 12, 24 May 4 20, 25 May 15, 1951. 12, 94 May 5, 1952. 8, 66 Apr. 1, 1953. 15, 24 July 6 7, 70	May	22, 1951	19, 50	June	4, 1952	18, 98	June	2, 1953	
Aug. 29. 17. 16 Sept. 5. 17. 01 Sept. 2 17. 83 Aug. 29. 17. 11 Oct. 9. 17. 76 Oct. 5 16. 45 Sept. 28. 17. 73 Feb. 3, 1953. 20. 68 Nov. 6 18. 72 Dec. 4 1952. 20. 32 Apr. 2 20. 32 Jan. 5, 1954. 19. 76 May 5 18. 72 May 4 20. 55 Jan. 5, 1954. 19. 76 May 15, 1951. 12. 94 July 6 7. 70 June 9 8. 09 May 2 2. 14. 72 Aug. 29. 9. 76 Aug. 5 7. 74 July 2 3. 11. 81 Aug. 29. 9. 76 Aug. 5 7. 74 July 4 7. 61 Aug. 5 7. 79 Dec. 3 11. 98 Sept. 30. 9. 95 Aug. 3 7. 92 Nov. 1 1. 11. 17 Nov. 10 11. 32 Sept. 4 7. 72 Dec. 3 11. 98 Dec. 4 12. 84 Nov. 16 15. 95 Jan. 4, 1954. 14. 67 Apr. 7 13. 38 Dec. 1 12. 91 Jan. 4, 1954. 14. 67 Apr. 7 13. 31 Sept. 30. 9. 57 Jan. 4, 1954. 14. 67 Aug. 2 2. 84 Apr. 5 15. 95 Jan. 4, 1954. 14. 67 Aug. 2 2. 20. 32 Apr. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19		1							
Aug. 29 17, 11 Oct. 9 17, 76 Oct. 5 16, 45 Sept. 28 17, 73 Feb. 3, 1953 20, 68 Nov. 6 18, 79 Dec. 4 18, 69 Mar. 3 20, 26 Dec. 2 19, 23 Apr. 4, 1952 20, 32 Apr. 2 20, 32 Jan. 5, 1954 19, 76 D2-5-2dd May 15, 1951 12, 94 May 4 20, 55 D2-5-2dd May 15, 1951 12, 94 June 9 8, 66 Apr. 1, 1953 15, 24 July 6 7, 70 June 9 8, 09 May 2 14, 72 Aug. 2 8, 06 June 29 7, 16 June 3 11, 81 Aug. 29 9, 76 Aug. 5 7, 47 Oct. 1 9, 83 Sept. 30 9, 57 Aug. 3 7, 92 Nov. 1 11, 17 Nov. 10 11, 32 Sept. 4 7, 72 Dec. 3 11, 198 Dec. 4 12, 84 Oct. 1 9, 56 Jan. 7, 1952 12, 13 Jan. 6, 1953 14, 83 Nov. 5 11, 53 Feb. 5 14, 05 Mar. 6 16, 24 Mar. 5 15, 00 Mar. 6 16, 24 Mar. 5 15, 00 Dec. 1 13, 18 D2-5-5ba D2-5-5ba D2-5-5ba D2-5-9cc1 Apr. 7, 1951									
Sept. 28 17, 73 Feb. 3, 1953 20, 68 Nov. 6 18, 72 Dec. 4 18, 69 Mar. 3 20, 26 Dec. 2 19, 23 Apr. 4, 1952 20, 32 Apr. 2 20, 32 Jan. 5, 1954 19, 76 D2-5-2dd D2-5-2dd D2-5-2dd D2-5-2dd May 15, 1951 12, 94 May 5, 1952 8, 66 Apr. 1, 1953 15, 24 July 6 7, 70 June 9 8, 09 May 2 14, 72 Aug. 2 8, 06 June 29 7, 16 June 3 11, 81 Aug. 29 9, 76 Aug. 5 7, 47 July 4 7, 61 Aug. 3 9, 57 Aug. 5 7, 47 July 4 7, 72 Dec. 3 11, 98 Dec. 4 12, 84 Nov. 5 11, 53 Feb. 5 14, 05 Feb. 3 15, 00 Dec. 1 12, 91 Mar. 6 16, 24 Mar. 5 15, 95 Jan. 4, 1954	_			_					
Dec. 4	_						l.		
Apr. 4, 1952 20. 32 Apr. 2 20. 32 Jan. 5, 1954 19. 76 May 5	-						}		
May 5									
D2-5-2dd May	-						Jan.	0, 1904	19. 10
May 15, 1951 12, 94 May 5, 1952 8, 66 Apr. 1, 1953 15, 24 July 6 7, 70 June 9 8, 09 May 2 14, 72 Aug. 2 8, 06 June 29 7, 16 June 3 11, 81 Aug. 29 9, 76 Aug. 5 7, 47 Oct. 1 9, 83 Sept. 30 9, 57 Nov. 1 11, 17 Nov. 10 11, 32 Sept. 4 7, 72 Dec. 3 11, 98 Dec. 4 12, 84 Jan. 7, 1952 12, 13 Jan. 6, 1953 14, 83 Feb. 5 14, 05 Feb. 3 15, 00 Mar. 6 16, 24 Apr. 7 13, 38 D2-5-5ba D2-	- Iviay	J	10. 12	May	Ŧ	20.00	L		
July 6 7 70 June 9 8.09 May 2 14.72 Aug. 2 8.06 June 29 7.16 June 3 11.81 Aug. 29 9.76 Aug. 5 7.47 July 4 7.61 Oct. 1 9.83 Sept. 30 9.57 Aug. 3 7.92 Nov. 1 11.17 Nov. 10 11.32 Sept. 4 7.72 Dec. 3 11.98 Dec. 4 12.84 Oct. 1 9.56 Jan. 7, 1952 12.13 Jan. 6, 1953 14.83 Nov. 5 11.53 Mar. 6 16.24 Mar. 5 15.00 Dec. 1 12.91 Mar. 7 13.38 Dec. 3 4.85 May 4 5.14 Aug. 1 2.84 June 2 4.94 Mar. 5 4.86 Apr. 3, 1953 5.08 Aug. 29 2.95 Aug. 5 4.72 June 2 5.34 Nov. 1 3.27 Sept. 30 4.59 Aug. 4 4.98 Dec. 4 3.49					D2-5-2dd				
July 6 7 70 June 9 8.09 May 2 14.72 Aug. 2 8.06 June 29 7.16 June 3 11.81 Aug. 29 9.76 Aug. 5 7.47 July 4 7.61 Oct. 1 9.83 Sept. 30 9.57 Aug. 3 7.92 Nov. 1 11.17 Nov. 10 11.32 Sept. 4 7.72 Dec. 3 11.98 Dec. 4 12.84 Oct. 1 9.56 Jan. 7, 1952 12.13 Jan. 6, 1953 14.83 Nov. 5 11.53 Mar. 6 16.24 Mar. 5 15.00 Dec. 1 12.91 Mar. 7 13.38 Dec. 3 4.85 May 4 5.14 Aug. 1 2.84 June 2 4.94 Mar. 5 4.86 Apr. 3, 1953 5.08 Aug. 29 2.95 Aug. 5 4.72 June 2 5.34 Nov. 1 3.27 Sept. 30 4.59 Aug. 4 4.98 Dec. 4 3.49	May	15, 1951	12.94	May	5, 1952	8.66	Apr.	1, 1953	15, 24
Aug. 29 9.76 Aug. 5 7, 47 July 4 7, 61 Oct. 1 9.83 Sept. 30 9.57 Aug. 3 7, 92 Nov. 1 11.17 Nov. 10 11.32 Sept. 4 7, 72 Dec. 3 11.98 Dec. 4 12.84 Oct. 1 9.56 Jan. 7, 1952 12.13 Jan. 6, 1953 14.83 Nov. 5 11.53 Feb. 5 14.05 Feb. 3 15.00 Dec. 1 12.91 Mar. 6 16.24 Mar. 5 15.95 Jan. 4, 1954 14.67 D2-5-5ba	July	6	7. 70			8.09			14.72
Oct. 1 9.83 Sept. 30 9.57 Aug. 3 7.92 Nov. 1 11.17 Nov. 10 11.32 Sept. 4 7.72 Dec. 3 11.98 Dec. 4 12.84 Oct. 1 9.56 Jan. 7, 1952 12.13 Jan. 6, 1953 14.83 Nov. 5 11.53 Feb. 5 14.05 Feb. 3 15.00 Dec. 1 12.91 Mar. 6 16.24 Mar. 5 15.95 Jan. 4, 1954 14.67 D2-5-5ba									

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

Date	Water level		Date	Water level		Date	Water level
			D2-5-13bb				
29, 1951	4.98	Feb.		5, 83	Aug.	1	3.09 3.66
27	4.94 4.89	Apr. May	4 1	5. 50 4. 99	Sept.	29	4.03 4.80 3.93
	29, 1951 1 28 27	29, 1951 2. 80 1	29, 1951 2, 80 Jan. 1 4, 98 Feb. 28 5, 07 Mar. 27 4, 94 Apr.	1evel D2-5-13bb 29, 1951 2.80 Jan. 7, 1952 4.98 28 5.07 27 4.94 1 4.89 May 1	D2-5-13bb D2-5	D2-5-13bb D2-5-13bb 29, 1951 2, 80 Jan. 7, 1952 5, 28 June 1 4, 98 Feb. 4 5, 83 Aug. 28 5, 07 Mar. 6 6, 45 Sept. 27 4, 94 Apr. 4 5, 50 Sept. 1 4, 89 May 1 4, 99 Aug.	D2-5-13bb D2-5-13bb 29, 1951

D2-5-14ac

[No measurements by tape: for measurements from recorder chart, see table 35]

[N	lo measuremen	ts by tape;	for m	leasurements	from reco	rder o	hart, see ta	ble 35]
				D2-5-14dd	l			
June	29, 1951	4, 41	Jan.	7, 1952	Dry	June	27, 1952	2. 56
Aug.	2	4.21	Feb.	4	Dry	Aug.	1	3.02
Aug.			Mar.	6	Dry	Sept.	3	4.93
Sept.	27		Apr.	4	Dry	Sept.	29	6.28
Nov.	1		May	1	5.29	Aug.	3, 1953	4.05
Dec.	3	Dry	June	2	4. 79			
				D2-5-15aa	1			
Apr.	17, 1951	3, 36	Nov.	1. 1951	3, 04	June	2, 1952	2,73
May	30			3	4,02	1	27	1.15
July	5	1	Jan.	7, 1952	4, 22	Aug.	1	2, 82
Aug.	1	3, 19		5	4, 31	Sept.		3.44
Aug.	28	1.84	May	1	3.06		29	3,88
	27	3, 22				1	·	
	[Fo	r measure	ments	from recorde	er chart, s	ee tab	le 3 5]	
June	2, 1953	4. 75	Sept.	2, 1953	3. 95	Dec.	2, 1953	5. 13
July	3	3.76	Oct.	5	4. 92	Jan.	5, 1954	5.33
Aug.	3	4.68	Nov.	6	5.09			
				D2-5-21da				
Мау	22, 1951	5. 99	Apr.	7, 1952	5. 11	Mar.	3, 1953	6.82
May	30	6.21	May	7	5.69	Apr.	2	6.04
July	5	2.70	June	2	5. 23	May	4	6.19
Aug.	1	5.40	June	27	3.07	June	2	6.30
Aug.	28			6	3.88	July	3	3.85
Sept.		1 1		5	5. 64	Aug.	3	5, 58
Nov.	2	5.98		29	6.12	Sept.	2	5.63
Dec.	3	6.07	ı	10	6.34	Oct.	5	6.09
Jan.	7, 1952		ı	2	6.61	Nov.	6	6.31
Feb.	4			6, 1953	6.89	Dec.	2	6.44
Mar.	7	7. 25	Feb.	3	6.62	Jan.	5, 1954	6.90

D2-5-22ccd

[No measurements by tape; for measurements from recorder chart, see table 35]

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level		Date	Water level	Ι	Date	Water level
				D2-5-25cb	1			
May	10, 1951	5.19	May	5, 1952	5.01	Apr.	2, 1953	5.86
May	30	5. 51	June	4	5, 02	May	4	5. 79
July	5	4.88	June	27	4.81	June	2	5. 79
Aug.	1	4.96	Aug.	6	4. 49	July	3	5.75
Aug.	28	5.54	Sept.	5	5. 70	Aug.	3	5. 28 6. 32
Sept. Nov.	28	5. 41 5. 24	Sept.	7	5. 76 5. 66	Sept.	2 5	5. 94
Dec.	3	5. 16	Dec.	2	5. 72	Nov.	6	5. 90
Jan.	11, 1952	5, 35	Jan.	6, 1953	5. 32	Dec.	2	5. 89
Feb.	4	5.64	Feb.	3	5, 82	Jan.	5, 1954	5, 83
Apr.	7	5.07	Mar.	3	6.04		,	
	U-1000001		L	D2-5-26cc	2			
 May	14, 1951	2, 00	June	4, 1952	1. 73	Sept.	5, 1952	1, 80
Apr.	7, 1952	1.58	June	27	1.49	Sept.	29	2.34
May	7	2.06	Aug.	6	1.68	Aug.	3, 1953	1.61
				D2-5-29ac				
Aug.	13, 1951	4.70	Mar.	3, 1953	6.33	Sept.	2, 1953	5.64
Sept.	28	5, 09	Apr.	2	5,63	Oct.	5	4.81
Nov.	2	5. 22	May	4	5.48	Nov.	6	4.90
Dec.	4	5.95	June	2	5.09	Dec.	2	6.09
Jan.	11, 1952	6.13	July	3	5.00	Jan.	5, 1954	6.10
Feb.	3, 1953	5. 87	Aug.	3	5. 19			
				D2-5-33db1				
May	14, 1951	8,62	Sept.	29, 1951	9. 55	Mar.	7, 1952	11.22
May	30	6.34	Nov.	2	8.73	Apr.	7	9.62
Aug.	1	9.61	Dec.	4	9. 91	May	5	7.34
Aug.	29	9.19	Jan.	11, 1952	10. 10			
				D2-5-34ba				
May	15, 1951	4. 14	Apr.	7, 1952	4. 10	Mar.	3, 1953	4. 82
May	30	4.68	May	7	3. 71	Apr.	2	3.47
July	5	2.00	June	4	3.63	May	4	3, 88
Aug.	1	3.40	June	27	2.39	June	2	3.91
Aug. Sept.	28	3.62 3.29	Aug. Sept.	6 5	2. 83 4. 29	July	3	3.84 3.05
Nov.	2	2. 89	Sept.	29	4. 23	Aug. Sept.	2	4.05
Dec.	3	4. 29	Nov.	7	3.89	Oct.	5	3, 58
Jan.	7, 1952	4. 57	Dec.	2	3. 97	Nov.	6	3, 58
Feb.	4	4.71	Jan.	6, 1953	4. 40	Dec.	2	3. 28
Mar.	7	5.58	Feb.	3	4.09	Jan.	5, 1954	4.41
	1	- · · · · ·		D2-5-34cd				
Apr.	23, 1951	11.37	Nov.	2, 1951	10.07	May	5, 1952	5. 10
May	30	8. 92	Dec.	4	10.03	June	4	2.48
July	5	2. 21	Jan.	11, 1952	Frozen	June	27	1.46
Aug.	1	3.46	Feb.	4	Frozen	Aug.	6	2,68
	29	5.41	Mar.	7	Frozen	Sept.	5	3.48
Aug.								

Table 34.—Water-level measurements by tape, in feet below land-surface datum-Cont.

Date	Water level		Date	Water level		Date	Water level
			D2-5-35dc				
May 14, 1951	35, 68	May	5, 1952	31.03	Apr.	2, 1953	37.80
May 30	35. 78	June	4	26.79	May	4	39, 56
July 5	26. 27	June	27	21.52	June	2	39, 39
Aug. 1	22. 93	Aug.	6	16.15	July	3	28.76
Aug. 28	20.15 21.08	Sept.	5 2 9	15. 31 17. 29	Aug.	3 2	21.50 17.17
Sept. 28 Nov. 2	24.06	Sept.	7	22. 11	Sept.	5	20.84
Dec. 3	28.78	Dec.	2	25. 27	Nov.	6	22.58
Jan. 11, 1952	29,63	Jan.	6, 1953	28.50	Dec.	2	26.43
Feb. 4	2 9. 92	Feb.	3	32. 23	Jan.	5, 1954	28. 9 0
Apr. 7	27.48	Mar.	3	34.99			
			D2-6-18cb				
Aug. 3, 1951	2, 32	Jan.	7, 1952	2.54	June	4, 1952	1.51
Aug. 28	1.38	Feb.	4	2.93	June	26	1.72
Sept. 27	1.63	Mar.	6	3.12	Aug.	4	2.26
Nov. 2	1.54	Apr.	1	2.39	Sept.	1	1.42
Dec. 4	2, 26	May	5	2, 26	Oct.	2	2, 22
			D2-6-20ab				
Aug. 15, 1951	40.35	Oct.	2, 1952	38.61	June	2, 1953	38.88
Aug. 28	40.17	Nov.	10	38.75	July	3	38.80
Sept. 27	40.84	Dec.	3	38.85	Aug.	3	38.87
Nov. 2	41.52	Jan.	5, 1953	38.6 9	Sept.	4	39.00
May 2, 1952	20.59	Feb.	3	39.90	Oct.	5	39.08
June 4 June 27	39.54	Mar.	5	40.68	Nov.	5	38.64
Aug. 4	38.50 38.17	Apr. May	2	39. 74 39. 41	Dec. Jan.	2 6, 1954	38.99 39.10
Sept. 5	38, 42	Iviay	2	33, 41	van.	0, 1001	00.10
			D2-6-22cb				
Aug. 15, 1951	37.00	Nov.	2, 1951	39, 57	Jan.	7, 1952	44. 26
Aug. 28	38. 52	Dec.	3	43. 13	Feb.	4	44, 42
Sept. 27	39. 24	200.	•		2 00.		
		I	D2-6-26cb	l			
Aug. 6, 1951	30, 29	June	4, 1952	24, 78	Apr.	2, 1953	26, 25
Aug. 28	29. 42	June	27	27.54	May	2, 1855	26. 23
Sept. 27	29.18	Aug.	4	24, 27	June	2	26.21
Nov. 2	31.71	Sept.	5	23. 28	July	3	25.62
Dec. 3	30.56	Oct.	2	22.92	Aug.	3	26.33
Jan. 7, 1952	31.74	Nov.	10	23, 49	Sept.	4	26.49
Feb. 4	31.81	Dec.	3	23, 80	Oct.	5	26.68
Mar. 7	32. 78 33. 44	Jan. Feb.	6, 1953 3	24.04 25.11	Nov. Dec.	5	27.51 28.06
May 1	25. 71	Mar.	5	26.12	Jan.	2 6, 1954	28.77
			D2-6-27aa				
M 25 1251	2.50						
May 25, 1951 May 29	3.50 2.53	Aug.	28, 1951	3.94	Jan.	7, 1952	Frozen
July 5	2.53 2.80	Sept. Nov.	27	3.37 Frozen	Feb. Mar.	4	Frozen Frozen
Aug. 1	4.21		3	2.31		7 4	2.18
g			~	2.01	1 1	***********	2,10

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Water			Water	 	\T	Water
Date	level		Date	level		Date	level
		D2	2-6-27aaCo	ntinued			
May 2, 1952	2,16	Dec.	3, 1952	2,25	July	3, 1953	2.49
June 4	2.27	Jan.	6, 1953	Frozen	Aug.	3	3.09
June 27	2.35	Feb.	3	2.07	Sept.	4	3,17
Aug. 4	3.10	Mar.	5	2.28 2.40	Oct.	5	2.84 2.37
Sept. 5 Oct. 2	3.16 2.91	Apr. May	2	1.96	Nov. Dec.	2	2.18
Oct. 2 Nov. 10	2.34	June	2	1.99	Jan.	6, 1954	2.32
		- Cuite			Jan.	0, 1334	
			D3-4-11bd	b 		· · · · · · · · · · · · · · · · · · ·	
Aug. 22, 1952	6.17	July	3, 1953	7.74	Dec.	2, 1953	14.65
Feb. 3, 1953	13.94	Aug.	3	8,86	Jan.	5, 1954	14.90
Mar. 3	14.49	Sept.	2	10, 20	Feb.	4	15.31
Apr. 2	14.89	Oct.	5	11.12	Mar.	3	14.84
May 4	15.54	Nov.	6	11.70	Apr.	1	15.20
June 2	11.42						
			D3-4-14ba				
May 18, 1951	46, 50	May	5, 1952	43, 51	June	2, 1953	37.80
May 30	44. 39	June	4	39. 43	July	3	34, 57
July 6	32. 40	June	27	32.00	Aug.	3	32.66
Aug. 1						32, 96	
Aug. 29	31, 71	Sept.	5	31.84	Oct.	5	34.93
Sept. 28	33.93	Sept.	29	33.98	Nov.	6	36.86
Nov. 1	39.92	Feb.	3, 1953	44,62	Dec.	2	42.25
Dec. 4	42.66	Apr.	2	46.00	Jan.	5, 1954	43.18
Jan. 11, 1952	43.03	May	4	46.38			
			D3-4-27ba				
May 18, 1951	21.60	May	5, 1952	12.10	May	4, 1953	23.40
May 30	18.53	June	4	2, 25	June	2	22.65
July 6	3.48	June	27	2, 15	July	3	5.70
Aug. 1	5. 16	Aug.	6	4.92	Aug.	3	5.93
Aug. 29	11.03	Sept.	5	10.19	Sept.	2	6.95
Sept. 28	11.88	Sept.	29	12.92		5	9.30
Nov. 1	16.57	Feb.	3, 1953	21.10	Nov.	6	11.82
Dec. 4	20.67	Mar.	3	22, 38	Dec.	2	19.61
Jan. 11, 1952	20,84	Apr.	2	23.19	Jan.	5, 1954	20.70
			D3-5-1ac	_			
May 14, 1951	36.12	Apr.	7, 1952	32.77	Mar.	3, 1953	33.94
May 30	37.93	May	5	30.05	Apr.	2	36.73
July 5	31.20	June	4	26.73	May	4	39.09
Aug. 1	24.99	June	27	20.20	June	2	38,63
Aug. 28	21.55	Aug.	6	15.08	July	3	23.88
Sept. 28	21.73	Sept.	5	15.05	Aug.	3	20.90
Nov. 2	27.01	Sept.	29	16.55	Sept.	2	18.55
Dec. 3	27.62	Nov.	7	21.09	Oct.	5	19.28
Jan. 11, 1952	29.01	Dec.	2	23.88	Nov.	6	21.51
Feb. 4	33.95	Jan.	6, 1953	28.08	Dec.	2	24.63
Mar. 7	37.78	Feb.	3	3 1.09	Jan.	5, 1954	28.40
	1	l			L		

Table 34.—Water-level measurements by tape, in feet below land-surface datum—Cont.

	Date	Water level		Date	Water level		Date	Water level
	•			D3-5-3bb				
May	15, 1951	12. 28	Mar.	7, 1952	Dry	Apr.	2, 1953	15.87
May	25	11.88	Apr.	7	Dry	May	4	11.24
July	5	4.74	May	5	7. 60	June	2	11.61
Aug.	1	6. 56	June	4	6.28	July	3	3.78
Aug.	29	9.04	June	27	3, 01	Aug.	3	5. 27 5. 39
Sept.	28	12.00	Aug.	6	3. 26 5. 84	Sept. Oct.	2 5	9.97
Nov. Dec.	3	8.31 14.79	Sept. Sept.	5 29	6.84	Nov.	6	13.71
Jan.	11, 1952	Dry	Feb.	3, 1953	15,63	Dec.	2	14.52
Feb.	4	Dry	Mar.	3	16.05	Jan.	5, 1954	15.36
				D3-5-3da				
				<u>-</u>				
Apr.	23, 1951	29. 20	June	2, 1953	29.43	Oct.	5, 1953	12.26
Feb.	2, 1953	25. 36	July	3	5.08	Nov.	6	18.29
Mar.	3	26.10	Aug.	3	6.01	Dec.	2 5, 1954	20, 56 22, 72
Apr. May	2 4	29.76 29.80	Sept.	2	8. 23	Jan.	5, 1954	22, 12
				l				
		· · · · · · · · · · · · · · · · · · ·		D3-5-5aa1				
Apr.	23, 1951	4. 51	Apr.	7, 1952	5. 18	Mar.	3, 1953	5.67
May	30	4.02	May	5	2. 52	Apr.	2	4,66
July	6	2. 92	June	4	2.71	May	4	4.72
Aug.	1	3.41	June	27	2.54	June	2	3.74
Aug.	29	4.11	Aug.	6	2. 98	July	3	3.11
Sept.	28	4.09	Sept.	5	4.66	Aug.	3	3, 51 4, 50
Nov. Dec.	2 4	4. 27 4. 86	Sept.	29 7	4.40 4.76	Sept. Oct.	2 5	4.58
Jan.	11, 1952	5. 25	Dec.	2	5.08	Nov.	6	2.84
Feb.	4	5. 57	Jan.	6, 1953	5. 18	Dec.	2	3.89
Mar.	7	6.13	Feb.	3	5.30	Jan.	5, 1954	5.04
		<u></u>		D3-5-9da				
2.5	05 1051	80.00	A		00 00	Ŧ	0 1050	21.00
May	25, 1951	32.90	Apr.	7, 1952 5	22.67	June	2, 1953 3	31,02 23,82
July Aug.	5 1	18.40 20.40	May June	4	26.32 24.92	July Aug.	3	18.59
Aug.	28	16.01	June	27	20. 29	Sept.	2	17.69
Sept.	28	18,67	Feb.	3, 1953	24. 26	Oct.	5	17, 23
Nov.	2	22, 26	Mar.	3	26.69	Nov.	6	18.78
Dec.	3	22.66	Apr.	2	28. 72	Dec.	2	20.40
Jan.	11, 1952	23.31	May	4	29, 26	Jan.	5, 1954	24. 15
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	D3-5-18ab			-	
Apr.	10 1051	18. 87	Cont	20 1052	17. 37	A 11 m	3, 1953	15. 82
May	19, 1951	17.51	Sept. Feb.	30, 1952 3, 1953	18.69	Aug. Sept.	2	16.99
July	6	14.62	Mar.	3	18. 74	Oct.	5	17. 18
Aug.	1	15. 67	Apr.	2	19. 19	Nov.	6	17, 42
Aug.	29	16.00	May	4	18. 78	Dec.	2	17.37
Sept.	28	16.96	June	2	16.82	Jan.	5, 1954	17.83
Nov.	2	17. 23	July	3	13.58		1	

Geology, ground-water resources, gallatin valley, mont.

Date	Water level	Date	Water level	Date	Water level
		D3-6-6ac			
Aug. 13, 1951 Aug. 28 Sept. 28 Nov. 1 Dec. 3 Jan. 11, 1952 Feb. 4 Mar. 7 Apr. 7	16.09 13.27 13.13 13.77 13.91 14.20 15.01	June 27	11. 55 11. 60 11. 75 11. 40 11. 97 12. 86 13. 22	May 4	14. 68 14. 41 13. 96 13. 61 12. 79 15. 68 14. 16

Table 35,—Water-level measurements from recorder chart, in feet below land-surface datum

t						1953								1954	
Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
					A1-	A1-4-5da									
			4.32	4.05	4.04	3.92	3.51	3.16	3.61	3.71	3.40	3.42	3.85		3,67
2			4.32	4.03	4.04	3.93	3.56	3,15	3,55	3.72	3.40	3,43		:	3,68
က		:	4.32	4.04	4.05	3.04	3.60	3.13	3,54	3,69	3.40	3.44		4.15	3.69
4	:	4.21	4,32	4.04	4.08	3,12	3.62	3.00	3.54	3,68	3,39	3,44		4.17	:
			4.31	4.03	4.10	3.32	3.67	3.10	3.55	3.68	3,38	3.46	3.94	4,18	
9			4,30	4.01	4.12	3,38	3.71	3,10	3.57	3.67	3,37	3,46	3.92	:	:
7	4.70		4.29	3,97	4.14	3.40	3,65	3,11	3,59	3.67	3.37		3.90	:	
8			4.18	3.97	4.17	3,38	3.68	3.11	3.60	3.68	3.37	:	3,89	:	
6		:	4,14	3.98	4,19	3,41	3.70	3.08	3.62	3,68	3,37	3.54	3.87	:	:
10.		:	4,12	3.98	4.21	3.43	3.70	3.06	3.64	3.67	3,36	3,54	3,87	4.25	3,72
11		:	4.07	4.01	4.21	3.40	3.74	3.06	:	3.67	3,36	3,55	3.90	4.25	3,71
12			4.03	4.01	4.21	3,17	3.78	3.14	3,63	3.67	3,36	3.58	3,95	4.23	3,71
13		:	4.02	4.02	4.20	2.72	3.81	3.22	3,65	3.69	3,35	3,59	:	4.00	3.71
14			4.00	4.04	4.21	2,92	3.84	3.24	3,66		3,34	3.60		3.96	3.70
15		:	4.00	4.04	4.23	2.96	3.85	3.24	3.66	3.71	3,35	3.64		3.94	3.69
16		:	4,00	4.05	4.25	3.01	3.82	3.29	3.68	3.71	3,34	3.65	:	3.89	3,68
17			4.00	4.06	4.26	3.01	3.85	3.31	3.69	3.72	3,35	3.68		3.84	3.66
18		:	4.01	4.05	4.28	3.04	3.88	3.37	3,68	3.70	3.34	3.70		3.84	3.66
19		:	4.01	4.06	4.30	3.10	3.92	3.39	3,73	3.68	3.34	3.72	:	3,83	3.63
20	:	:	4.01	4.07	4,25	2.94	3.94	3.42	3.72	3,65	3.42	3.73		3.82	3.62
21		:	4.02	4.08	4.23	2.97	3.86	3.47	3.72	3.63	3.42	3.72		3.79	3.61
22		:	4.03	4.09	4.10	2.91	3.77	3.48	3.67	3.57	3.40	3.67	:	3.76	3,56
23		:	4.04	4.09	4.10	3.04	3.68	3.51	3,66	3,51	3,35	3.67	:	3.75	3,51
24	:	:	4.05	4.08	4.12	3,13	3.50	3.53	3.66	3.51		3.71	:	3.69	3.52
25		:	4.04	4.09	3.81	3,21	3,39		3.65	3.49	3.34	3.76		3.68	
26		4.38	4.05	4.09	3.89	3.23	3.29		3.67	3.47	3.36	3.80		3.67	
27		4.37	4.05	4.11	3.94	3,30	3,19	3.62	3.68	3.46	3.37	3.82	4.13	3.68	
28		4.32	4.05	4.12	3.98	3,33	3.26	3.60	3.69	3.45	3.40	3.83		3.67	
29	:		4.05	4.05	4.00	3.39	3,31	3.55	3.69	3.43	3,41	3.83	:		:
30	:		4.04	4.04	3.92	3.44	3.32	3.56	3,69	3.42	3,41	3.83	-		:
			4.05		3.90		3.27	3.58		3.41		3.85			3.60

Table 35, --Water-level measurements from recorder chart, in feet below land-surface datum--Continued

	Mar.		5.85	5.88	5.91	5.96	00.0	6.05	80.9			6.10								6.22					6.19	<u>:</u>	-		:			
1954	Feb.		5.57	5.58	5.62	5.66	5.70	5.72	5.75	7.7.4	. r.	5.84	5.85	5.76	5,67	2,66	5,63	5,64	5,66	5,71	5,74	5,69	5,62	5,66	5,64	5.68	5.73	5.78	5.80		_	
	Jan.		5.06	5.09	5,13	5.12	5,11	2.09	5.08	5.09	7.10	5,20	5.29	5,34	5,36	5,39	5,41	5,39	5,38	5,38	:	5,46	5,49	5.49	5.48	5.49	5.50	5.50	5.53	5.54	5,55	
	Dec.		4.40	4.43	4.47	4.49	4.53	4.52	4.57	4.62	4.61	4.66	4.65	4.70	4.72	4.72	4.75	4.80	4.83	4.80	4.80	4.80	4.79	4.85	4.94	2,00	5.02	5.04	5.06	5.05	5.09	
	Nov.		4.12	4.17	4.15	4.14	4.14	4.15	4.19	4.19	4.20	4.23		:	:				:	4.20		:	:			4.29	4.35	4.37	4.40	4.41	4,41	
	Oct.		4.18	4.00	4.05	4.08	4.10	4.12	4.13	4.14	4 17	4.12	4.12	4.10		4.07	4.07	4.07	4.06	4.07	4.04	3.92	3,93	3,95	4.03	4.06	4.06	4.07	4.07	4.10	4.12	
	Sept.		4.15	3.92	3.98		4.06	4.05	4.05	-		4.08	4.09	4.12	4.07	4.06	4.12	4.11	4,11	4.15	4,11	4.09	4.11	4.03	4.06	4.05	4.10	4.11	4.14	4.10	4.11	
	Aug.		4.43	4.37	4.30	4.26	4.29	4.33	4.35	4.35	4.26	4.21	4.25	4.27	4.18	4.30	4.29	4.27	4.26	4.27		:	:		:		:	:	:	4.09	4.13	
	July			:	4.79	4.74	4.76	4.74	4,73	4.69	19.4	4.60	4.58	4.58	4.58	:	:	4.41	4.43	4.50	4.58	4.60	4.60	4.60	:	4.48	4.46	4.48	4.48	4.49	4.49	
1953	June	A1-4-22dc1	5.47	5.41	4.67	3.98	4.34	4.45	4.43	4.45	4.69	4.72	4.69	4.69	4.70	4.70	4,73	4.77	4.81	4.77	4.60	4.63	4.68	4.72	4.67	4.67	4.62	4.66	4.64	4.69	4.71	
	May	A1-4	6.24	6.27	6.30	6.33	6.36	6.38	6.40	6.40	2 2	6.31	6.25	6.22	6.24	6.29	6,34	6.37	6.41	6.40	6.23	6,11	5.94	5.89	5.92	5.75	5.75	5.74	5.75	5.70	5.61	
	Apr.		6,32	6.34	6.37	6.39	6.41	6.36	6.27	6.23	2 2 2	6.42	6.43	6.46	6.48	6,49	6.51	6.51	6.45	6,45	6,48	6,51	6.53	6.49	6.41	6.43	6.46	6.48	6.49	6.30	6.22	
	Mar.						-	:						5.78	5.82	5.87	5.92	5.97			20.9	6,10	6.13	6.17	6.20	6.21	6.25	6.27	6.29	6.28	6.26	
	Feb.						:	Ī	1	:	:											:						6.10				-
	Jan.			-	-	-	<u> </u>	-	5.35	:	<u> </u>					-	-	-	:	<u>:</u>			<u> </u>	-	-	<u> </u>	-		-	:		-
	Nov.		3.90	3.97	3.96	3.99	·	3.95	3.99	4.01	4.04	4.01	4.01	3.98	3.99	3.97	3.92	3.91	3.95	3.98	4.02	4.06	4.10		:	4.14	-					
1952	Oct.		3.99	3.96	4.00	3.98	3.96	3.97	3.97	86.0	00.4	3.98	3,99	4.01	3.99	3.98	4.01	4.02	4.02	4.00	3.99	3.99	3.99	3.99	3.99	4.00	4.00	4.00	3.99	3.98	3.96	-
	Sept.				3.96	3.99	3.93	3.96	3.99	20.00	20.0	3.91	3.89	3,83	3.87	3.87	3.92	3.94	3.99	4.03	4.03	4.04	4.00	4.01	4.01	4.00	3.99	3.99	4.00	3.98	3.99	
;	Day		1	2	3	4	5	9	7		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	-

Table 35, -- Water-level measurements from recorder chart, in feet below land-surface datum-- Continued

Day	1951	_				19	1952						
	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
			A1-	A1-4-25dc			:			:	٠		
1		11.86		14, 34	14, 79	13,88			6.84	7.77		8.49	9, 56
2		11.92	13, 37	14.36	14, 70	13, 73	11.89		6.73	7, 72		8.56	9,61
3		11,97		14,41	14,60	13.67		7, 59	6.36	7, 71	8,08	8,55	9,67
4		12,03			14.38	13.63			6.49	7. 70	8.14	8.60	9, 74
2	:	12,06	13, 49	14,44	14.06	13.62	11, 70	7.57	60.9	7, 72	8. 20	:	9, 77
9		12.09	13, 52		13, 35	13, 71	11.61	7.62	5, 92	7.71	8, 23	:	9,83
2	10, 57	12, 17	13, 55	14,65	:	13, 77	11. 22	7. 72	6.43	7. 73	8, 22	:	9,85
8		12, 23	13, 60	14,66	:	13.82	10, 93	7. 90	6.76	7.76	8, 17	:	9,93
,	:	12.27	13, 62	14.67	:	13.85	10.94	. 9.	0.0	6.5	× 1 ×		10.01
10	10 57	12,34	13.07	14. (3	1.9 00	13.80	10, (3	0.00	. 00	7 27	0, 44	0.0	10,03
1	10. 70	0 6	13, 73	14. 76	16.30	13.84	10.27	8 09	7.24	7.88	8 24		10, 12
13	10, 75	48	13, 77	14, 79		13,81		7,87	7, 44	7, 93	8,30		10, 24
14	10,83	12,53	13,81	14,83		13, 73		7,68	7, 58	7.97	8,33		10,28
15	10, 79	12, 57	13,85	14,84	13.03	13.60		7, 58	7.62	7.80	8, 33	8.85	10,34
16	10, 73	12,61		14,88	:	13,45		7,82		7.80	8,37		10,40
17	10,66	12,68	:	14,91	:	13, 32		8, 10	7, 75	7.80	8, 41	:	10,45
18	10,61	12, 70		14, 93	:	13, 18		8, 13	7. 78	7.78	8, 44	:	10,50
19	10,54	12, 76		14,96	:	13.06		8, 22	7.82	7.76		:	10, 57
20	10,49	12,80	14,04	14,99		12,93		7.86	7.87	7. 79		8.97	10,61
21	10.43	12,85	14, 05	15.02		12, 75		8.02	7. 88	7. 79		9.03	10,67
22	10.45	12.88	14,08	15,02	13, 54	12.40	9.60	66.2	7.88	7. 7.	0,01	9,09	10,73
24	10.57	13.00	14.14	15.06		11.82		7.94	7.91	7.81		2 6	10.83
25.	10,63	13,03	14, 17	15.07	13.79	11.65		7.99	7.87	7.85		9. 26	10,90
26		13.06	14. 20	15, 11	13,84	11,58		7, 24	7.89	78.7		9.30	10,95
27	11.60	13, 11	14, 24	15, 11		11,52		6.97	7.92	7.90		9.36	11,01
28	11,66	13, 16		15, 10		11, 45		6.92	7, 99	7.94		9.40	
29	11.68	13.21	14, 32	15.07	14.02	11.47		6.97	8,03	7, 93		9.47	11, 15
30	11.76	13, 23		14,96	14.06	11,57	7.90	2.00	7.92	7.96		:	11, 19
31	11.80	13, 28		14,82	_			6.92	7,81	_		_	11, 25

Table 35.—Water-level measurements from recorder chart, in feet below land-surface datum—Continued

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. 11.31 12.63 13.87 14.77 15.05 11.69 17.45 8.22 8.41 9.19 11.00 12.64 11.51 12.61 13.90 14.77 15.05 11.41 8.62 8.27 9.22 11.14 12.77 11.61 12.61 14.00 14.77 15.05 11.41 8.66 8.23 8.24 9.24 11.14 12.77 11.61 12.86 14.00 14.90 16.00 11.41 8.66 8.23 8.24 9.24 11.14 12.77 11.61 12.87 14.11 14.93 14.91 9.79 11.80 12.90 11.80 12.90 11.14 11.80 12.90 12.77 11.80 12.90 12.71 12.90 12.71 11.80 12.80 12.80 11.81 12.80 12	Dow						1953								1954	4	
11.31 12.63 13.87 14.73 15.06 11.69 11.69 12.64 11.31 12.68 13.90 14.77 15.06 11.69 11.62 11.62 12.64 11.41 12.71 13.93 14.80 15.06 11.41 18.56 11.62 12.77 11.41 12.71 13.93 14.80 15.07 10.22 11.41 12.68 11.42 12.71 13.93 14.80 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 10.22 14.81 15.07 14.91 14.9	1.43	Jan.	Feb.	Mar.	Apr.	May	June	July	_	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
11.31 12.63 13.87 14.73 15.06 11.69							A1-4-	25dc—	Continue	-p							
11.35 12.68 13.90 14.77 15.05 11.62	1	11.31	12.63	13.87	14.73	15.06	11,69			7.45	8.22	8.41	9.19	11.08	12,64	13.60	14,64
1144 12.75 13.93 14.80 15.06 1144 8.56		11,35	12.68	13.90	14,77	15.05	11,62	<u>:</u>		7.57	8.27	8.47	9.22	11,14	12,68	13,65	14,67
11.66 12.87 14.87 15.07 10.82 10.82 10.81 11.25 12.81 11.65 12.81 14.87 15.08 10.32 10.32 14.87 15.08 10.32 10.32 14.87 15.08 10.32 10.32 11.25 11.2		_	12.71	13.93	14.80	15,06	11.41	8.56	:	7,61	8,30	8.37	9.27	11,19	12.72	13.72	14.68
11.56 12.80 14,02 14,87 15,08 10,32		11.47	12.75	13,95	14.83	15.07	10.82	- -	:	7.59	8.32	8.27	9,35	11,25	12.77	13.77	14,67
11.61 12.83 14.05 14.90 15.03 10.08		11.56	12,80	14.02	14.87	15.08	10.32	:	:	2,60	8,33	8,29	9,44	11,30	12,81	13,81	14,65
11.66 12.87 14.11 14.93 14.91 9.92 7.05 7.69 8.36 8.24 9.55 11.38 12.90 11.70 12.92 14.14 14.96 14.74 9.79 7.77 8.42 8.13 9.71 11.50 13.00 14.09 14.09 14.14 9.79 7.77 8.42 8.18 9.71 11.50 13.00 14.09 14.09 14.09 14.11 9.45 8.32 6.75 7.77 8.42 8.18 9.76 11.54 13.04 11.75 13.01 14.06 15.07 14.27 9.51 7.72 6.64 7.83 8.47 8.15 9.81 11.60 13.09 11.80 13.13 11.80 13.14 14.05 15.10 14.23 9.57 7.72 6.67 7.96 8.50 8.19 9.98 11.68 13.21 11.84 13.22 14.03 15.12 14.23 9.57 7.73 6.67 7.96 8.46 8.24 10.04 11.74 13.25 11.84 13.25 14.12 14.17 9.35 7.37 6.72 7.96 8.49 8.24 10.04 11.74 13.25 11.89 13.37 11.89 13.37 11.89 13.37 14.23 14.12 14.17 9.35 7.37 6.64 7.98 8.49 8.24 10.04 11.74 13.25 11.89 13.31 11.89 13.31 11.89 13.31 11.89 13.31 13.31 14.23 15.20 14.41 14.17 13.25 13.89 13.			12,83	14.05	14.90	15.03	10.08	:	:	7.68	8.33	8.19	9.48	11,35	12,86	13,85	14,64
11.70 12.92 14.14 14.96 14.74 9.79 77.71 8.39 8.23 9.64 11.44 12.96 11.74 13.00 14.09 14.55 9.67 7.73 8.41 8.21 9.71 11.50 13.09 11.76 13.00 14.08 14.08 15.02 14.41 9.45 8.29 6.83 7.77 8.41 8.11 9.76 11.50 13.09 11.78 13.07 14.07 15.02 14.27 9.51 7.29 6.64 7.83 8.49 8.18 9.93 11.60 13.09 11.76 13.14 14.05 15.10 14.27 9.57 7.72 6.67 7.83 8.49 8.18 9.93 11.60 13.09 11.76 13.29 14.10 14.11 9.51 7.40 6.68 7.93 8.49 8.18 11.60 13.01 11.84 13.20 14.12 9.51 7.40 6.68 7.93		11,66	12,87	14,11	14.93	14.91	9.92	:	7,05	69.7	8.36	8.24	9,55	11,38	12,90	13,91	14.63
11.74 13.00 14,09 14,59 14,55 9.67 7.77 8.41 8.21 9.71 11.50 13.04 11.76 13.03 14,08 15,02 14,41 9.45 8.32 6.72 7.77 8.49 8.19 9.76 11.50 13.04 11.76 13.04 14,06 15,07 14,21 9.51 7.92 6.47 8.49 8.19 9.91 11.50 13.04 11.80 13.14 14,06 15,10 14,27 9.57 7.72 6.67 7.86 8.49 8.18 9.91 11.62 13.17 11.76 13.24 14,07 9.57 7.72 6.67 7.96 8.49 8.19 9.91 11.62 13.17 11.76 13.20 14,19 15.19 14,11 9.21 7.46 6.68 7.96 8.49 8.24 10.04 11.74 13.28 11.84 13.20 14,11 9.21 7.46 6.68	8	11,70	12,92	14,14	14.96	14,74	9.79	:	66.9	7,71	8.39	8,23	9.64	11,44	12,96	13.94	14.62
11.76 13.03 14.08 15.02 14.41 9.45 8.32 6.72 7.77 8.42 8.18 9.76 11.54 13.04 11.78 13.07 14.07 15.05 14.31 9.31 8.29 6.83 7.82 8.45 8.17 9.81 11.60 13.09 11.78 13.19 14.07 15.05 14.27 9.51 7.72 6.67 7.88 8.49 8.18 9.91 11.60 13.19 11.78 13.22 14.03 15.12 14.27 9.55 7.40 6.68 7.98 8.49 8.18 9.98 11.60 13.19 11.84 13.22 14.03 15.14 14.17 9.55 7.46 6.68 7.98 8.49 8.24 10.04 11.74 13.28 11.94 14.27 9.51 14.10 9.01 14.10 9.81 7.46 6.68 7.98 8.49 8.24 11.60 13.28 11.95	6	11.74	13.00	14,09	14,99	14.55	9.67	:	6.75	7,73	8.41	8.21	9,71	11,50	13,00	13.98	14,62
11.76 13.07 14.07 15.05 14.31 9.31 8.29 6.83 7.82 8.45 8.17 9.81 11.60 13.09 11.80 13.14 14.06 15.07 14.27 9.51 7.93 6.64 7.83 8.47 8.15 9.87 11.60 13.13 11.75 13.22 14.05 15.14 14.27 9.57 7.40 6.68 7.96 8.48 8.18 9.91 11.62 13.17 11.86 13.22 14.12 15.14 14.12 9.51 7.40 6.69 7.96 8.48 8.24 10.04 11.74 13.13 11.86 13.20 14.12 15.14 14.12 9.21 7.46 6.69 7.96 8.50 8.24 10.04 11.74 13.25 11.89 13.36 14.00 8.88 7.84 6.69 8.69 8.24 10.04 11.74 13.25 11.90 13.48 14.21 9.21	10	11.76	13.03	14.08	15.02	14.41	9.45	8.32	6.72	7.77	8.42	8.18	9.16	11.54	13.04	14.02	14,63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	11.78	13.07	14,07	15.05	14,31	9.31	8.29	6.83	7.82	8.45	8,17	9.81	11,60	13.09	14,06	14.64
11.75 13.19 14.05 15.10 14.27 9.57 7.72 6.67 7.88 8.49 8.18 9.93 11.62 13.17 11.76 13.22 14.03 15.10 14.23 9.65 7.40 6.68 7.93 8.50 8.19 9.98 11.62 13.21 11.84 13.20 14.10 15.19 14.17 9.21 7.46 6.69 7.96 8.79 8.24 10.09 11.80 13.25 11.99 13.35 14.19 15.19 14.11 9.01 7.88 6.64 7.96 8.49 8.24 10.04 11.74 13.25 11.99 13.37 14.23 15.20 14.00 8.88 7.94 6.48 7.99 8.45 10.25 11.89 13.31 12.03 13.48 14.27 15.22 13.89 8.89 7.84 6.58 8.06 8.59 8.45 10.25 11.89 13.33 12.03 13.48	12	11,80	13.14	14,06	15.07	14.27	9.51	7.93	6.64	7.83	8.47	8,15	9.87		13,13	14,11	14.66
11.76 13.22 14.03 15.12 14.23 9.65 7.40 6.68 7.95 8.50 8.19 9.98 11.68 13.25 11.84 13.26 14.12 15.14 14.17 9.35 7.37 6.72 7.96 8.48 8.24 10.04 11.74 13.25 11.81 13.35 14.19 15.19 14.11 9.01 7.86 6.48 7.98 8.49 8.22 10.15 11.85 13.25 11.93 13.37 14.23 15.20 14.00 8.88 7.94 6.48 7.98 8.49 8.32 10.15 11.85 13.31 12.03 13.48 14.27 15.22 13.89 8.89 7.94 6.48 7.99 8.47 8.36 10.21 11.89 13.31 12.13 13.56 14.14 15.24 13.48 8.87 7.44 7.25 8.06 8.54 8.54 10.35 12.24 13.44 15.27 13.13 8.47 7.59 7.42 8.99 8.47 8.10 12.31 13.73 14.50 15.24 13.48 8.47 7.55 8.10 8.43 8.95 12.31 13.73 14.57 15.24 12.80 8.47 7.55 8.10 8.42 8.91 12.34 13.51 14.57 15.23 12.57 12.40 13.81 14.57 15.23 12.57 12.41 14.57 15.23 12.50 12.55 12.42 13.83 14.60 15.21 12.52 12.43 13.83 14.64 15.17 12.26 12.44 14.47 14.47 14.83 15.20 12.26 12.55 14.47 12.80 12.05 12.56 8.41 9.15 10.84 12.50 12.59 14.41 12.50 12.55 12.59 13.51 14.57 15.23 12.55 12.50 13.51 12.55 12.50 13.51 13.51 12.50 13.51 13.52 13.51 14.51 15.23 12.50 12.52 13.14 14.57 15.23 12.50 12.53 13.50 12.55 12.54 13.44 13.55 12.55 13.54 13.56 12.55 13.54 13.55 13.58 14.60 15.21 12.55 14.44 13.54 13.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 14.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55 15.50 13.55 13.55	13	11,75	13.19	14.05	15,10	14.27	9.57	7.72	6,67	7.88	8.49	8.18	9,93	11,62	13.17	14,15	14.67
11.84 13.26 14.12 15.14 14.17 9.35 7.37 6.72 7.96 8.48 8.24 10.04 11.74 13.25 11.88 13.30 14.16 15.16 14.12 9.21 7.46 6.69 7.96 8.49 8.24 10.04 11.74 13.28 11.93 13.35 14.19 15.21 14.10 8.81 7.94 6.64 7.98 8.45 10.09 11.80 13.31 12.03 13.48 14.27 15.22 13.89 8.89 7.83 6.53 8.00 8.50 8.45 10.26 11.89 12.04 13.55 14.34 15.23 13.70 8.97 7.48 7.25 8.06 8.54 8.54 10.35 12.24 13.64 14.42 15.27 13.18 8.67 7.44 7.59 8.47 8.89 12.34 13.73 14.50 15.26 12.99 8.47 7.70 7.53 8.09 8.42 8.91 12.34 13.74 14.53 15.24 12.80 8.47 7.70 7.55 8.10 8.42 8.91 12.34 13.73 14.50 15.21 12.25 12.35 13.45 12.34 13.83 14.50 15.21 12.25 12.35 13.45 12.34 13.81 14.57 15.23 12.25 12.35 14.41 12.25 12.25 12.34 13.41 14.53 15.24 12.25 12.35 13.41 12.25 12.34 13.41 14.53 15.24 12.25 12.35 13.41 12.25 12.34 13.41 14.51 12.25 12.35 13.41 12.25 12.35 14.41 12.25 12.35 13.41 12.25 12.35 13.41 12.25 12.35 13.41 12.25 12.35 13.41 12.25 12.35 13.41 12.25 12.35 13.41 12.25 13.43 13.54 13.54 13.43 13.57 14.54 15.11 12.25 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 14.41 14.41 14	14	11.76	13,22	14.03	15,12	14,23	9,65	7.40	6,68	7,93	8.50	8,19	96.6	11,68	13.21	14,19	14,69
11.88 13.50 14.16 15.16 14.12 9.21 7.46 6.69 7.96 8.50 8.27 10.09 11.80 13.28 11.93 13.35 14.19 15.19 14.11 9.01 7.88 6.64 7.98 8.49 8.32 10.15 11.85 13.31 12.03 13.48 14.27 15.23 13.79 8.84 7.64 6.96 8.06 8.54 10.28 11.84 12.03 13.51 14.30 15.23 13.79 8.84 7.64 6.96 8.06 8.54 10.35 12.13 13.56 14.34 15.23 13.70 8.97 7.48 7.25 8.06 8.55 8.66 10.45 12.14 13.64 14.42 15.26 13.28 8.67 7.44 7.58 8.06 8.43 8.91 12.25 13.68 14.47 15.27 13.13 8.47 7.75 7.43 8.10 12.34 13.73 14.50 15.26 12.99 8.47 7.70 7.55 8.10 8.43 8.95 12.34 13.81 14.57 15.24 12.80 8.47 7.70 7.55 8.10 8.43 8.95 12.34 13.83 14.60 15.21 12.52 12.49 13.68 14.71 12.26 12.59 13.69 14.71 12.26 12.59 12.50 12.05 12.50 12.51 12.55 12.50 13.68 14.71 12.56 13.50 14.71 12.50 14.71 15.25 12.80 15.50 12.65 13.88 15.50 13.68 13.56 15.50 13.68 13.56 15.50 13.68 13.56 15.50 13.68 13.56 15.50 13.68 13.56 15.50 13.68 13.56 15.50 13.65 13.56 15.50 13.55 15.50 13.65 13.55 15.50 13.65 13.55 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 15.50 13.65 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50	15	11.84	13,26	14,12	15.14	14.17	9.35	7.37	6.72	96.7	8.48	8.24	10.04	11.74	13,25	14.24	14.70
11.93 13.55 14.19 15.19 14.11 9.01 7.88 6.64 7.98 8.45 8.32 10.15 11.85 13.31 12.03 13.37 14.23 15.20 14.00 8.88 7.94 6.48 7.99 8.47 8.36 10.21 11.89 13.33 12.04 13.51 14.27 15.23 13.79 8.84 7.64 6.96 8.66 8.56 10.21 11.84 12.13 13.56 14.34 15.23 13.70 8.97 7.48 7.25 8.06 8.55 8.66 10.45 12.14 13.51 14.50 15.26 13.28 8.87 7.44 7.38 8.06 8.45 8.45 10.45 12.24 13.64 14.42 15.26 13.28 8.47 7.75 7.42 8.09 8.47 8.91 12.31 13.73 14.50 15.26 12.80 8.47 7.70 7.55 8.10 8.43 8.95 12.34 13.74 14.53 15.24 12.80 8.47 7.70 7.55 8.10 8.43 8.95 12.49 13.83 14.67 15.21 12.52 12.80 12.49 14.71 12.26 12.06 12.50 12.50 12.60 12.02 12.50 14.71 12.50 12.05 12.50 14.71 12.50 12.05 12.50 12.50 12.05 12.50 13.64 14.71 12.50 12.50 13.64 14.71 12.50 12.50 13.64 14.71 12.50 12.50 13.64 14.71 12.80 12.50 13.64 14.71 12.80 13.50 12.51 12.52 14.71 15.21 12.52 15.50 13.64 13.64 13.64 15.50 13.64 13.64 13.64 15.50 13.64 13.64 13.64 15.50 13.64 13.64 13.64 15.50 13.64 13.64 13.64 15.50 13.64 13.64 13.64 15.50 13.64 13.65 15.50 13.65 13.66 15.50 13.65 13.66 15.50 13.65 13.66 15.50 13.65 13.66 15.50 13.65 13.66 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.65 15.50 13.85 15.50 13.85 15.50	16	11,88	13.30	14,16	15,16	14.12	9.21	7.46	69.9	7.96	8.50	8.27	10.09	11,80	13,28	14,27	14.72
11.99 13.37 14.23 15.20 14.00 8.88 7.94 6.48 7.99 8.47 8.36 10.21 11.89 13.33 12.03 13.48 14.27 15.22 13.89 8.89 7.83 6.53 8.00 8.50 8.45 10.28 11.94 12.04 13.56 14.34 15.24 13.48 8.87 7.44 7.25 8.06 8.54 10.35 12.18 13.56 14.38 15.24 13.48 8.87 7.44 7.38 8.06 8.43 8.69 10.47 12.16 12.24 13.64 14.42 15.26 12.99 8.46 7.53 7.42 8.09 8.37 8.10 12.31 13.73 14.50 15.24 12.89 8.46 7.55 8.10 8.43 8.95 12.34 13.74 14.53 15.24 12.80 8.47 7.70 7.55 8.10 8.43 8.95 12.49 13.81 14.57 15.23 12.52 12.40 13.81 14.57 12.26 12.41 14.54 12.86 12.90 12.52 14.45 12.86 12.90 12.53 14.60 15.21 12.52 12.54 13.81 14.57 12.26 12.55 14.45 12.86 12.55 14.47 14.57 15.23 12.50 12.59 14.47 14.57 15.25 12.59 14.47 14.57 15.25 12.59 14.47 14.50 15.26 12.59 14.47 14.50 15.26 12.59 14.41 14.51 15.25 12.59 14.41 14.51 15.25 12.59 14.41 14.51 15.25 12.59 14.41 14.51 15.25 12.59 14.41 14.51 15.25 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 13.50 12.50 14.64 15.17 12.26 15.50 12.50	17	11.93	13,35	14.19	15.19	14.11	9.01	7.88	6.64	7.98	8.49	8.32	10.15	11.85	13,31	14.31	14.73
12.07 13.48 14.27 15.22 13.89 8.89 7.83 6.53 8.00 8.50 8.45 10.28 11.94 11.30 12.13 13.79 8.84 7.64 6.96 8.56 8.54 10.25 10.28 11.94 12.13 13.56 14.38 15.24 13.46 8.97 7.44 7.38 8.06 8.54 8.54 10.35 10.25 10.21 12.19 12.24 13.48 15.24 13.48 8.62 7.53 8.06 8.37 8.72 10.52 12.19 12.24 13.48 13.74 14.53 15.27 13.13 8.47 7.75 8.19 8.42 8.91 8.42 9.01 12.23 13.45 12.24 12.80 8.47 7.70 7.55 8.19 8.42 9.01 12.35 13.45 12.24 13.48 12.24 12.80 8.47 7.70 7.61 8.13 8.42 9.01 12.35 13.57 12.24 13.48 12.24 12.80 12.25	18	11,99	13.37	14.23	15.20	14,00	8.88	7.94	6.48	7.99	8.47	8.36	10,21	11.89	13,33	14,33	14.61
12.07 13.51 14.30 15.23 13.79 8.84 7.64 6.96 8.64 8.54 10.35 10.45 10.35 10.45 10.35 10.45 1	19	12,03	13.48	14.27	15.22	13.89	8.89	7.83	6.53	8.00	8.50	8,45	10,28	11.94	-	14.37	14,60
12.13 13.56 14.34 15.23 13.70 8.97 7.48 7.25 8.06 8.55 8.66 10.45		12.07	13.51	14.30	15.23	13.79	8.84	7.64	96.9	8.06	8.54	8.54	10,35		:	14,40	14.59
12.24 13.58 14.38 15.24 13.48 8.87 7.44 7.38 8.06 8.43 8.69 10.47 12.16	21	12,13	13,56	14.34	15.23	13,70	8.97	7.48	7.25	8.06	8.55	8.66	10.45	-	:	14.42	:
12.24 13.64 14.42 15.26 13.28 8.62 7.53 7.42 8.09 8.37 8.72 10.52 12.19	22	12,18	13.58	14.38	15.24	13.48	8.87	7.44	7.38	8.06	8,43	8.69	10.47	12.16	:	14.45	14.52
12.26 13.68 14.47 15.27 13.13 8.47 7.59 7.43 8.12 8.35 8.81 12.24 13.43 12.31 13.73 14.50 15.26 12.99 8.46 7.65 7.53 8.09 8.42 8.89 12.29 13.45 12.34 13.73 14.50 15.24 12.89 8.47 7.70 7.55 8.10 8.43 8.95 12.29 13.45 12.40 13.81 14.57 15.23 12.67 7.64 7.61 8.13 8.42 9.01 10.88 12.47 12.43 13.83 14.60 15.21 12.52 7.64 7.65 8.19 9.07 10.88 12.43 13.57 12.49 14.71 12.26 7.27 7.65 8.19 9.11 9.15 0.98 12.54 12.59 14.71 11.83 7.27 7.27 8.41 9.15 10.83 12.56	23	12.24	13.64	14.42	15,26	13.28	8.62	7.53	7.42	8.09	8.37	8.72	10.52	12,19	:	14.47	
12.31 13.73 14.50 15.26 12.99 8.46 7.65 7.53 8.09 8.42 8.89 12.29 13.45 12.34 13.74 14.53 15.24 12.80 8.47 7.70 7.55 8.10 8.43 8.95 12.35 13.47 12.40 13.81 14.57 15.23 12.67 7.44 7.67 8.13 8.42 9.01 12.35 13.47 12.49 14.60 15.21 12.52 7.44 7.67 8.13 8.39 9.07 10.88 12.43 13.57 12.53 14.60 15.21 12.02 7.65 8.19 8.37 9.01 10.88 12.43 13.57 12.53 14.68 15.10 12.02 7.27 7.65 8.19 9.11 9.15 0.98 12.54 12.59 14.71 11.83 7.27 8.41 9.15 10.83 12.60 12.60	24	12.26	13.68	14.47	15.27	13,13	8.47	7.59	7.43	8.12	8.35	8.81	:	12.24	13.43	14.49	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	12,31	13,73	14.50	15.26	12,99	8.46	7.65	7.53	8.09	8.42	8.89	:	12,29	13,45	14.52	:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	12.34	13.74	14.53	15.24	12,80	8.47	7.70	7.55	8.10	8.43	8.95	:	12,35	13.47		:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	12,40	13.81	14.57	15.23	12.67		7.69	7.61	8.13	8.42	9.01	:	12,39	13,52	-	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	12.43	13,83	14.60	15.21	12.52	-	7.44	7.67	8.13	8.39	9.07	10.88	12,43	13.57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	12.49		14.64	15.17	12.26	-	:		8.19	8.37	9.11	10.91	12.50		_	
12.59 14.71 11.83 7.27 8.41 10.83 12.60	30	12,53		14,68	15,10	12.02	:		7.65	8,19	8.41	9,15	10.98	12.54		:	
	•	12,59		14,71		11.83		7.27	:		8.41		10.83	12.60		14.63	

Table 35.—Water-level measurements from recorder chart, in feet below land-surface datum—Continued

		;								0.00						
ď		31	1661							7661			Ì	Ì		
Day	Sept.	Oct.	Nov.	Dec.	Jan,	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
						A2-5	A2-3-33da									
1						39.76	40.15	40.03			32.52		32.84	34.28	33.78	37.31
2							40.15	40.03	41,40	39,49	32.67	33,47	32,93	34,42	33,86	37,33
							40,15	•			31,69	32.93	32.97	34.60	33,90	37,39
4	:	:	:			:	40.15	•	<u>:</u>		30.50	32.47	33.00	34.72	33.90	37.46
5	:	:	37.30	:	:	i	40.19	40.05	<u>·</u>	:	30.19	32.45	33.03	34.79	33.90	37.47
9	:	:	37.31	:	:		40.19	40.05	<u>·</u>	:	30,29	32.86	33.06	34.83	34.43	37.51
7			37.34	:	:		40.25	40.05	:		30.22	32.97	33.11	34.84	35.01	37,56
80		:	37.40	:	:	39.88	40.25	40.05	<u>:</u> :	:	31.18	32.73	33,19	34.82	35.36	37.63
6	34.43	:	37.43		39.39		40.25	40.05	40.25	35,37	31.49	32.23	33,24	34.81	35.59	37.70
10		:	37.44	:			40.25	39.99	40.23	34.75	31.50	32.04	33.32	34.84	35,73	37.73
11		:	37.48	:	39.38		40.25	39.93	40.23	34.45	31.54	31.39	33,45	34.78	35.82	37.78
12	:	36.05			:	:	40.26	39,93	40.20	34.40	30.43	31,13	33,56	34.60	35.88	37.83
13		:	37.58		:		40.28	39,93	40.09	34,23	30.23	31,06	:	34.46	35,96	37.87
		:			:	:	40.32	39.93	40.02	34.05	30.59	30.46	:	34.25	36.01	37.89
15		36,23			:	39,92	40,33	39,93	39,96	33.87	31.47	30.32	33,90	33.74	36.09	37,91
16		36,26	37.74			:	40.34	39.94	39,97	33,80	32.28	30.94	34.00	33,26	36,19	37,95
17		36,32		:	:		40.34	39.94	40.18	33,58	32,83	30.90	34.09	32,96	36.27	37,99
18		36,39					40.35	39.94	:	33,59	32,98	30.49	34.07	32.57	36,36	38,01
19	:	36,43			:	:	40,32	39,94	40.14	33,65	32,93	29.02		32,42	36.42	38.04
20	:	36,45		:	:	40.02	40,30	39.94	:	33.76	33,13	26,89		32,35	36.47	38.09
21		36.52			:	40.02	40.31	39.94	:	33.22	33,46	25.57	33,90	32,40	36.58	38,13
22	:	36,58		:		40.03	40.30	39.95	:	32,75	33,62	28.59	33,77	32,50	36,66	38,16
23	:	36,61		:	:	40.04	40.30	39.98	:	33,82	33,36	30,50		32.91	36.75	38,20
24	:	36,64		:	:	40.04	40.31	40.04	:	33.82	33,35	31,59		33,36	36,83	38.22
25		36.71		:	39,68	40.06		40.08		32,51	33,32	32,28		33.72	36,90	38.26
26	:	36.75		:	39,68	40.06		:	39,63	32.44	33,18	32,76		34.02	36,96	38.29
27		36,79		:	39,69	40.09		-	39,60	32,66	33,25	32,85		34.17	37,05	38,33
28	:	36,82		:	39,71	40.09		:	39,55	32.87	33,47	32,77		34.21	37,12	38,36
29	:	36.86		:	39,72	40.14		:	:	32.74	33,69	32.74	33,92	34.00	37.20	38,39
30	:	:		:	:	_	40.03	<u>·</u> !		33.80		32.80	34.11	33,83	:	38.42
31							40.03					32.70		33.76		38.45

Table 35.—Water-level measurements from recorder chart, in feet below land-surface datum—Continued

Jan. Feb. Mar. Apr. May	Mar. Aj A2-3-33d 83, 65 40, 89, 67 40, 89, 72 40, 89, 72 40, 89, 75 40, 89, 80,	la—Continue 10.07 40.39 10.9 40.39 10.9 40.39 11.14 40.42 11.14 40.42 11.14 40.42 11.14 40.39 11.14 40.39 11.14 40.39 11.14 40.39 11.14 40.39	J	32. 33. 33. 32. 32. 32. 32. 32. 32. 32.		Sept. 32 32 32 32 32 48 32 55 32 48 32 32 61 33 46 34 36 36 36 36 36 36 36 36 36 36 36 36 36	Oct.	Nov.	36.24	Jan. 38, 45
38, 48 39, 17 3 38, 56 39, 21 3 38, 56 39, 21 3 38, 56 39, 22 3 38, 56 39, 22 3 38, 61 39, 22 3 38, 64 39, 27 3 38, 74 39, 27 3 38, 74 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 37 39, 38, 39, 39, 48 39, 48 39, 48 39, 48 39, 48 39, 48 39, 58, 59, 50, 59, 60, 39, 60, 39, 60, 39, 60, 39, 61, 39, 6	A2 – 3 – 3 3 3 d d d d d d d d d d d d d d	On the continuous of the conti	ned 34.99 35.11; 35.32; 35.22; 35.45; 45.22; 35.23; 45.22; 35.23; 45.22; 35.23; 45.23;		28. 28. 28. 29. 29. 30. 30.	32, 32 32, 48 32, 55 32, 55 32, 70 33, 02 33, 46 33, 46 33, 96		35, 99		38, 45
38, 48 39, 17 39, 65 40, 07 38, 52 39, 19 39, 67 40, 09 38, 56 39, 21 39, 59 40, 10 38, 57 39, 21 39, 71 40, 12 38, 64 39, 23 39, 73 40, 14 38, 64 39, 27 39, 73 40, 14 38, 64 39, 27 39, 75 40, 14 38, 71 39, 30 39, 75 40, 14 38, 74 39, 31 39, 75 40, 14 38, 74 39, 31 39, 77 40, 14 38, 74 39, 31 39, 77 40, 14 38, 76 39, 34 39, 77 40, 14 38, 87 39, 39 39, 39 40, 15 38, 88 39, 39 39, 39 40, 26 38, 88 39, 41 39, 81 40, 26 38, 89 39, 41 39, 81 40, 26 38, 89 39, 43 39, 81 40, 26 38, 89 39, 43 39, 81 40, 26 38, 90 39, 43 39, 81 40, 36	65 67 69 77 77 75 77 77 77 77 77 88 88 88			· · · · · · · · · · · · · · · · · · ·	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32, 32 32, 48 32, 55 32, 55 32, 61 33, 46 33, 76 33, 96 33, 96		35,99		38.45
38. 56 39. 11 39. 69 40. 09 38. 57 39. 21 39. 69 40. 09 38. 57 39. 21 39. 69 40. 09 38. 59 39. 21 39. 71 40. 12 38. 61 39. 23 39. 72 40. 14 38. 64 39. 28 39. 75 40. 14 38. 71 39. 28 39. 75 40. 14 38. 71 39. 31 39. 75 40. 14 38. 71 39. 31 39. 75 40. 14 38. 72 39. 31 39. 75 40. 14 38. 74 39. 31 39. 75 40. 14 38. 74 39. 31 39. 75 40. 14 38. 76 39. 31 39. 75 40. 14 38. 76 39. 31 39. 39 40. 15 38. 80 39. 39 39. 39 40. 15 38. 80 39. 41 39. 81 40. 24 38. 80 39. 42 39. 81 40. 24 38. 90 39. 46 39. 81 40. 24 39. 02 39. 54 39. 39 40. 34	667 772 775 775 776 880 881				30.0.2 30	32. 48 32. 55 32. 55 32. 70 33. 46 33. 76 33. 96 33. 96		35, 99	 	38, 45
38. 52 39, 19 39, 67 40, 09 38. 56 39, 21 39, 69 40, 10 38. 59 39, 23 39, 72 40, 11 38. 61 39, 23 39, 72 40, 14 38. 61 39, 27 39, 73 40, 14 38. 64 39, 27 39, 75 40, 14 38. 73 39, 30 39, 75 40, 14 38. 74 39, 31 39, 75 40, 14 38. 74 39, 31 39, 75 40, 14 38. 74 39, 31 39, 75 40, 14 38. 76 39, 31 39, 75 40, 14 38. 77 39, 31 39, 75 40, 14 38. 80 39, 31 39, 75 40, 14 38. 81 39, 31 39, 40 39, 81 40, 15 38. 82 39, 41 39, 81 40, 26 38. 92 39, 43 39, 81 40, 26 38. 92 39, 43 39, 81 40, 36 38. 92 39, 43 39, 81 40, 36 39. 02 39, 64 39, 81 4	65 69 77 77 77 77 77 77 88 88				20.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	32. 48 32. 55 32. 61 32. 70 33. 46 33. 46 33. 76 34. 27		35, 99	 	38.45
38. 56 39. 21 39. 69 40. 10 38. 57 39. 22 39. 71 40. 12 38. 61 39. 22 39. 73 40. 14 38. 64 39. 27 39. 73 40. 14 38. 64 39. 27 39. 75 40. 14 38. 71 39. 31 39. 75 40. 14 38. 74 39. 31 39. 75 40. 14 38. 74 39. 31 39. 77 40. 14 38. 76 39. 31 39. 77 40. 14 38. 77 40. 14 38. 77 40. 14 38. 87 39. 31 39. 77 40. 15 38. 88 39. 39 39. 31 40. 16 38. 89 39. 39 39. 84 40. 26 38. 89 39. 41 39. 84 40. 26 38. 89 39. 43 39. 84 40. 26 38. 90 39. 48 39. 86 40. 26 38. 90 39. 48 39. 84 40. 36 38. 90 39. 54 39. 86 39. 36 39. 90 39. 64 39. 39. 54 39. 39 <td>669 772 775 775 775 777 777 777 880 881</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>20.00.00.00.00.00.00.00.00.00.00.00.00.0</td> <td>32.55 32.61 32.70 33.02 33.46 33.76 33.96</td> <td></td> <td>35, 99</td> <td><u> </u></td> <td>38, 45</td>	669 772 775 775 775 777 777 777 880 881	· · · · · · · · · · · · · · · · · · ·			20.00.00.00.00.00.00.00.00.00.00.00.00.0	32.55 32.61 32.70 33.02 33.46 33.76 33.96		35, 99	<u> </u>	38, 45
38, 57 39, 23 39, 71 40, 13 38, 61 39, 23 39, 72 40, 13 38, 64 39, 25 39, 75 40, 14 38, 64 39, 27 39, 75 40, 14 38, 71 39, 28 39, 75 40, 14 38, 71 39, 21 39, 75 40, 14 38, 71 39, 31 39, 75 40, 14 38, 74 39, 31 39, 75 40, 14 38, 74 39, 31 39, 75 40, 14 38, 76 39, 31 39, 75 40, 14 38, 77 40, 39, 31 39, 75 40, 14 38, 80 39, 31 39, 31 40, 15 38, 81 39, 31 39, 31 40, 24 38, 82 39, 41 39, 81 40, 24 38, 82 39, 41 39, 81 40, 24 38, 82 39, 43 39, 81 40, 24 38, 92 39, 48 39, 81 40, 34 38, 92 39, 41 39, 81 40, 34 39, 92 39, 64 39, 81 40, 34 <td>71 72 72 75 75 75 77 79 80 81</td> <td></td> <td></td> <td>······································</td> <td></td> <td>32.61 32.70 33.02 33.46 33.76 33.96</td> <td></td> <td>35, 99</td> <td><u> </u></td> <td>38.45</td>	71 72 72 75 75 75 77 79 80 81			······································		32.61 32.70 33.02 33.46 33.76 33.96		35, 99	<u> </u>	38.45
38, 59 39, 25 39, 72 40, 13 38, 61 39, 25 39, 73 40, 14 38, 64 39, 27 39, 75 40, 14 38, 71 39, 30 39, 75 40, 14 38, 71 39, 31 39, 75 40, 14 38, 73 39, 31 39, 75 40, 14 38, 74 39, 32 39, 77 40, 15 38, 76 39, 31 39, 77 40, 15 38, 80 39, 31 39, 77 40, 16 38, 80 39, 31 39, 81 40, 16 38, 80 39, 31 39, 81 40, 16 38, 80 39, 41 39, 81 40, 26 38, 80 39, 43 39, 81 40, 26 38, 90 39, 42 39, 81 40, 36 38, 90 39, 43 39, 81 40, 36 38, 90 39, 48 39, 81 40, 34 38, 90 39, 54 39, 54 39, 37 39, 64 39, 54 39, 54 39, 37 39, 64 39, 58 39, 54 39, 37	72 73 75 75 75 77 77 80 81	·· · · · · · · · · · · · · · · · · · ·				32, 70 33, 02 33, 46 33, 76 33, 96 34, 27		35, 99	<u></u> .	38, 45
38.61 39.25 39.73 40.14 38.64 39.27 39.75 40.14 38.71 39.21 39.75 40.14 38.71 39.31 39.75 40.14 38.73 39.31 39.75 40.14 38.74 39.32 39.77 40.15 38.77 39.34 39.77 40.15 38.78 39.34 39.77 40.15 38.89 39.34 39.77 40.15 38.89 39.37 39.81 40.17 38.89 39.39 39.81 40.25 38.89 39.41 39.81 40.26 38.90 39.41 39.81 40.26 38.90 39.43 39.84 40.26 38.90 39.43 39.84 40.26 38.90 39.48 39.86 40.36 38.90 39.52 39.88 40.34 38.90 39.56 39.96 39.96 39.96 39.03 39.64 39.96 39.96 39.87 40.34 39.03 39.64 39.96 39.86 40.37 39.66 39.96 39.87 40.37 39.96 39.86 <td>75 75 75 75 77 77 77 80 81</td> <td></td> <td></td> <td></td> <td>·</td> <td>33.02 33.46 33.76 33.96 34.27</td> <td></td> <td></td> <td></td> <td></td>	75 75 75 75 77 77 77 80 81				·	33.02 33.46 33.76 33.96 34.27				
38, 64 39, 27 39, 75 40, 14 38, 68 39, 29 39, 75 40, 14 38, 71 39, 30 39, 75 40, 14 38, 73 39, 31 39, 75 40, 14 38, 74 39, 31 39, 77 40, 14 38, 74 39, 31 39, 77 40, 15 38, 74 39, 31 39, 77 40, 15 38, 80 39, 37 39, 81 40, 17 38, 81 39, 31 39, 81 40, 17 38, 82 39, 41 39, 81 40, 22 38, 89 39, 41 39, 82 40, 24 38, 89 39, 43 39, 81 40, 24 38, 89 39, 41 39, 81 40, 24 38, 90 39, 48 39, 81 40, 34 38, 90 39, 54 39, 54 39, 39 39, 03 39, 54 39, 39 40, 37 39, 03 39, 64 39, 39 40, 37 39, 04 39, 64 39, 39 40, 37 39, 09 39, 64 39, 39 40, 37	75 75 75 77 77 79 80 81					33. 46 33. 76 33. 96 34. 27				
38.68 39.28 39.75 40.14 38.71 39.30 39.75 40.14 38.74 39.31 39.75 40.14 38.74 39.31 39.75 40.15 38.76 39.31 39.75 40.15 38.76 39.31 39.77 40.15 38.87 39.34 39.79 40.16 38.88 39.37 39.81 40.16 38.89 39.40 39.81 40.24 38.89 39.43 39.81 40.24 38.90 39.43 39.81 40.24 38.90 39.46 39.85 40.24 38.90 39.46 39.85 40.24 38.90 39.48 39.81 40.36 38.90 39.54 39.96 40.34 39.02 39.64 39.96 40.37 39.03 39.64 39.96 40.37 39.09 39.64 39.96 40.37 39.09 39.64 39.96 40.37 39.09 39.64 39.96	75 75 77 77 77 80 81					33.76 33.96 34.27				
38. 58 39. 78 39. 75 40. 14 38. 71 39. 30 39. 75 40. 14 38. 74 39. 30 39. 75 40. 14 38. 74 39. 32 39. 77 40. 15 38. 76 39. 34 39. 77 40. 15 38. 87 39. 34 39. 39 40. 16 38. 88 39. 39 38 40. 17 38. 89 39. 39 39. 81 40. 19 38. 89 39. 41 39. 83 40. 26 38. 90 39. 46 39. 85 40. 26 38. 90 39. 46 39. 86 40. 26 38. 90 39. 46 39. 86 40. 26 38. 90 39. 48 39. 86 40. 36 38. 90 39. 56 39. 56 39. 57 39. 39 39. 03 39. 64 39. 57 39. 39	75 77 77 77 79 80 81					33, 76 33, 96 34, 27			<u> </u>	
38. 71 39. 30 39. 75 40. 14 38. 74 39. 31 39. 75 40. 14 38. 74 39. 32 39. 77 40. 15 38. 78 39. 32 39. 77 40. 15 38. 78 39. 35 39. 80 40. 15 38. 80 39. 37 39. 81 40. 17 38. 80 39. 37 39. 81 40. 21 38. 80 39. 41 39. 82 40. 24 38. 80 39. 43 39. 84 40. 24 38. 80 39. 43 39. 84 40. 24 38. 80 39. 46 39. 84 40. 24 38. 80 39. 48 39. 84 40. 28 38. 80 39. 48 39. 84 40. 28 38. 90 39. 56 39. 84 40. 34 39. 03 39. 56 39. 57 39. 57 39. 03 39. 56 39. 57 39. 57 39. 03 39. 56 39. 57 39. 57 39. 03 39. 56 39. 57 39. 57 39. 03 39. 56 39. 57 39. 57 39. 03 39. 56 39. 57 39. 57 39. 04 39. 56 39. 57 39. 57 39. 05 39. 56	75 76 77 79 80 81 81					33, 96 34, 27				
38 73 39.31 39.76 40.14 38 74 39.32 39.77 40.15 38 78 39.33 39.34 40.10 38 80 39.35 39.80 40.11 38 80 39.37 39.81 40.15 38 80 39.37 39.81 40.15 38 80 39.40 39.81 40.22 38 80 39.41 39.83 40.24 38 80 39.43 39.84 40.24 38 90 39.43 39.85 40.24 38 90 39.46 39.85 40.24 38 91 39.43 39.81 40.36 38 92 39.54 39.88 40.31 38 93 39.54 39.88 40.34 39 03 39.56 39.95 40.37 39 04 39.64 39.84 40.37 39 04 39.64 39.84 40.37 39 04 39.64 39.84 40.37 39 04 39.64 39.84 40.38 39 04 39.64 39.84 40.38	76 77 77 79 80 81 81					34, 27				
38.74 39.32 39.77 40.15 38.76 39.34 39.79 40.16 38.81 39.37 39.80 40.11 38.82 39.37 39.81 40.15 38.83 39.37 39.81 40.12 38.83 39.39 39.81 40.21 38.85 39.40 39.82 40.24 38.86 39.41 39.83 40.24 38.90 39.46 39.85 40.26 38.91 39.43 39.85 40.26 38.92 39.48 39.86 40.36 38.93 39.54 39.88 40.34 38.90 39.64 39.95 40.34 38.90 39.64 39.95 40.34 39.02 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.03 39.64 39.95 40.37 39.04 39.95 40.36 40.36 39.05 39.64 <td>77 79 80 81 81</td> <td></td> <td></td> <td></td> <td></td> <td>34.27</td> <td><u>:</u></td> <td></td> <td>:</td> <td></td>	77 79 80 81 81					34.27	<u>:</u>		:	
38, 76 39, 34 39, 79 40, 16 38, 78 39, 35 39, 80 40, 17 38, 80 39, 37 39, 81 40, 19 38, 83 39, 39, 81 40, 21 38, 86 39, 41 39, 81 40, 22 38, 86 39, 41 39, 84 40, 26 38, 89 39, 46 39, 84 40, 26 38, 90 39, 46 39, 84 40, 26 38, 91 39, 46 39, 84 40, 26 38, 92 39, 46 39, 84 40, 36 38, 93 39, 56 39, 56 39, 91 40, 31 38, 92 39, 56 39, 91 39, 02 39, 56 39, 93 40, 36 39, 03 39, 64 39, 57 39, 37 39, 03 39, 64 39, 39 40, 37 39, 04 39, 64 39, 39 40, 38 39, 04 39, 64 39, 39 40, 38	79 80 81 81 82		35. 34.							
38. 78 39.35 39.80 40.17 38. 80 39.37 39.81 40.19 38. 85 39.37 39.81 40.21 38. 85 39.40 39.81 40.22 38. 85 39.41 39.84 40.24 38. 89 39.43 39.84 40.24 38. 90 39.46 39.85 40.24 38. 90 39.45 39.85 40.28 38. 90 39.46 39.87 40.28 38. 90 39.50 39.87 40.31 38. 90 39.55 39.87 40.34 39. 03 39.56 39.91 40.34 39. 05 39.64 39.95 40.37 39. 05 39.64 39.95 40.37 39. 05 39.64 39.84 40.38 39. 05 39.64 39.84 40.38	80 81 82 82		34.						4	
38. 80 39.37 39.81 40.19 38. 83 39.38 39.81 40.21 38. 85 39.40 39.82 40.22 38. 86 39.41 39.83 40.24 38. 89 39.43 39.84 40.24 38. 90 39.46 39.85 40.24 38. 90 39.46 39.85 40.26 38. 90 39.48 39.87 40.36 38. 90 39.54 39.88 40.31 38. 90 39.54 39.98 40.34 39. 03 39.56 39.99 40.36 39. 03 39.64 39.95 40.37 39. 03 39.64 39.98 40.37 39. 03 39.64 39.98 40.38	81		34.		31					
38. 83 39. 81 40. 21 38. 85 39. 40 39. 82 40. 22 38. 86 39. 41 39. 82 40. 24 38. 86 39. 41 39. 84 40. 24 38. 90 39. 46 39. 85 40. 27 38. 90 39. 48 39. 86 40. 28 38. 90 39. 48 39. 86 40. 28 38. 90 39. 48 39. 86 40. 28 38. 91 39. 50 39. 87 40. 30 38. 91 39. 51 39. 88 40. 31 38. 92 39. 54 39. 90 40. 34 39. 02 39. 56 39. 91 40. 34 39. 03 39. 56 39. 91 40. 37 39. 03 39. 56 39. 91 40. 37 39. 03 39. 60 39. 95 40. 37 39. 03 39. 60 39. 95 40. 37	81	_	:		31 40					
28, 59 39, 50 39, 51 40, 22 40 39, 61 40, 22 38, 86 39, 41 39, 83 40, 22 38, 86 39, 41 39, 83 40, 22 38, 89 39, 46 39, 84 40, 26 38, 90 39, 46 39, 86 40, 27 38, 90 39, 48 39, 86 40, 28 38, 97 39, 50 39, 88 40, 31 38, 90 39, 54 39, 90 40, 34 39, 61 39, 86 39, 91 40, 34 39, 61 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39, 61 37 39, 61 39	82		6		91 69	:			<u>. </u>	
38. 85 39. 40 39. 82 40. 24 38. 86 39. 41 39. 83 40. 24 38. 86 39. 43 39. 84 40. 24 38. 90 39. 46 39. 85 40. 27 38. 90 39. 48 39. 85 40. 28 38. 90 39. 50 39. 87 40. 36 38. 90 39. 54 39. 89 40. 34 39. 03 39. 56 39. 91 40. 34 39. 03 39. 56 39. 95 40. 37 39. 03 39. 64 39. 95 40. 37 39. 03 39. 64 39. 98 40. 37 39. 03 39. 64 39. 98 40. 37 39. 03 39. 64 39. 84 39. 37 39. 03 39. 64 39. 84 39. 37	22	02.60 12.		200	0.1.00		:		<u>:</u> :	:
38, 86 39, 41 39, 83 40, 24 38, 98 39, 43 39, 84 40, 26 38, 99 39, 43 39, 84 40, 26 38, 92 39, 48 39, 86 40, 28 38, 92 39, 48 39, 86 40, 28 38, 95 39, 50 39, 87 40, 34 38, 92 39, 56 39, 93 40, 34 39, 03 39, 56 39, 93 40, 36 39, 07 39, 64 39, 93 40, 37 39, 07 39, 64 39, 93 40, 37 39, 07 39, 64 39, 93 40, 37			34.	32.	31.82	:	:	:	<u>.</u>	:
38.88 39.43 39.84 40.26 38.90 39.46 39.85 40.27 38.92 39.48 39.86 40.28 38.92 39.50 39.86 40.38 38.97 39.50 39.88 40.31 38.99 39.54 39.90 40.34 39.02 39.56 39.91 40.34 39.05 39.60 39.95 40.37 39.07 39.64 39.96 40.37 39.09 39.64 39.96 40.37	83	_	34.	32.	31, 78	:	:	:	:	:
38, 90 39, 46 39, 85 40, 27 38, 90 39, 48 39, 86 40, 28 38, 97 40, 30 38, 97 39, 52 39, 88 40, 31 38, 97 39, 52 39, 88 40, 31 39, 02 39, 56 39, 91 40, 34 39, 05 39, 64 39, 90 40, 34 39, 05 39, 64 39, 91 40, 37 39, 05 39, 64 39, 91 40, 37 39, 05 39, 64 39, 91 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39, 64 39, 98 40, 37 39, 07 39	84	-	9 34,44	1 32, 71	31, 56				-	
38,92 39,48 39,86 40,28 38,97 39,50 39,87 40,30 38,97 39,52 39,88 40,31 38,99 39,54 39,91 40,34 39,02 39,56 39,93 40,36 39,03 39,64 39,95 40,37 39,07 39,64 39,97 40,37 39,07 39,64 39,97 40,37	85	. 27 37, 09	9 34, 55	32, 67	31.46	34,94				
38. 96 39. 50 39. 87 40. 30 38. 97 39. 52 39. 88 40. 31 38. 99 39. 54 39. 90 40. 34 39. 02 39. 56 39. 91 40. 34 39. 03 39. 58 39. 93 40. 35 39. 09 39. 64 39. 98 40. 37	98	28	5 34,47	32, 48	31, 47	35.04	:		:	:
38. 97 39. 52 39. 88 40. 31 38. 99 39. 54 39. 90 40. 34 39. 02 39. 56 39. 91 40. 34 39. 03 39. 58 39. 93 40. 36 39. 07 39. 60 39. 95 40. 37 39. 07 39. 62 39. 97 40. 37	87	30	5 34.15	32, 48	31.68	35.07	:		:	:
38. 99 39. 54 39. 90 40. 34 39. 02 39. 56 39. 91 40. 34 39. 03 39. 58 39. 93 40. 36 39. 07 39. 62 39. 97 40. 37 39. 09 39. 64 39. 98 44. 37	88	31	9 33,17	7 32, 35	31, 71	35, 12	:		:	
39, 02 39, 56 39, 91 40, 34 39, 03 39, 58 39, 93 40, 36 39, 05 39, 60 39, 95 40, 37 39, 07 39, 64 39, 98 40, 38	06	34	8 32, 33	_	31,69	35, 18	:			
39.03 39.58 39.93 40.36 39.07 39.60 39.95 40.37 39.07 39.62 39.97 40.37 39.09 39.64 39.98 40.38	91	34	4 31.08	3 31, 18	31,60	35, 23				
39.05 39.60 39.95 40.37 39.07 39.62 39.97 40.37 39.09 39.64 39.98 40.38	93	36 35.	93 31,28	3 30, 57	31,68	35, 24			-	
39.07 39.62 39.97 40.37 39.69 39.98 40.38	95	37 35.	82 32.60	29. 79	31,82	35, 31				
39,09 39,64 39,98 40,38	97	37 35.	33	_	31.	35, 34				
	86	38 35	33	28	~	35, 37				
39.12 40.00 40.39	00	39 35.		27.	_	35, 44				
39.15 40.01 40.39	01	39 35.			32, 12					
39, 16 40, 04		35		27.	_					
				1					-	

Table 35.—Water-level measurements from recorder chart, in feet below land-surface datum-Continued

				-	1953	, m						1954	
Day	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
						,							
			-10	DI-4-bddcz									
		16,66	17,25	14, 53		6, 19	5, 54	9, 91	11.06		13,97	15,84	16,33
2		16,67	17, 31			6,31		10,08	11.04		14,04	15,91	16,37
		16,68	17,39	13,85		6,36	4, 23	10,22		12, 32	14,09	15,99	16,40
		16,71	17,43	13,74	4.61	6, 45		10,34	10.97	12, 39	14, 14	16.05	16,44
2		16,74	17,49			6,58	5.75	10,44			14, 21	16, 10	16,49
9		16,77	17, 51			6,62		10.62		12, 51	14, 25	16, 17	16, 54
<i>L</i>		16, 79	17, 59	12,67		6.68		10,72	10,97			16,22	16,59
8		16,68	17,55			6.73		10.81		12,62		16,27	16,63
6		16, 71	17, 51			6.74	6, 18	10.89	10,98	12,68	14, 41	16,31	16,69
10		16, 75	17.54			6.70		11,00		12, 76		16,34	
11		16,80	17, 58			6.55		11.11		12,83	14, 51	16,38	
12		16,83	17.64			6.31	5.89	11.20	11.05	12, 91		16,39	16,84
13		16,89	17.71	11.34		6.42		11,28	11.07	12, 97	14, 57	16,38	
14		16.91	17, 77			6.52		11.34	11.09	13.02		16,27	
15		16,95	17.83			6.54				13,08	14. 70	16, 25	
16		17.00	17.88			6, 56		11.38	11.13	13, 13		16,23	17,01
17	17.61	17, 10				6.51		11.41	11. 18	13, 17	14, 81	16, 21	17,06
18		17, 12				6.40		11.42	11.21	13, 21		16, 20	
19		17, 15	:			6, 36			11, 27	13, 25	14,94	16,21	
20		17.18	17.86			6, 32				13, 30		16,21	
21		17,23	17,68	2, 27	5, 13	6, 32	8.20		11.47	13, 37	15, 10	16.22	
22		17.29	17,44			6.26		11,43		13, 42	15, 15	16,24	:
23		17,33	17, 23			6.20		11.40	11,63	13,46	15, 22	16.25	:
24	16,37	17,35	16,91			6. 10		11.37		13, 51	15, 28	16, 25	:
25	16,39	17,31	16,65			5, 97		11.39		13, 57	15, 36	16,25	:
26	16,44	17,35				4, 99	9, 13	11.37		13,62	15, 42	16,25	:
27	16,45	17,36		3, 70	4.62	5, 69	9, 28	11,35			15, 50	16, 27	:::::::::::::::::::::::::::::::::::::::
28		17, 32	:			5.76	9, 44	11,27	12,03	13,74	15, 55	16, 28	:
29	16, 52	17, 29				5,67	9,62	11. 20	12, 11	13, 80	15, 63		:
30	16, 57	17,26	15, 23	:	5, 51	5.56	9. 76	11. 18	:	13,87	15.70		17 65
31	10.02		14.90			5, 54		11.12		13, 32	13. 70		11.03

Table 35, .-- Water-level measurements from recorder chart, in feet below land-surface datum--Continued

Dav					1953						74	1954	
	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
			D1-4	D1-4-9ba1									
1		22, 51		15, 54	14,81	17.05		16,91	18,06	20, 13	21,35		23, 32
2		22,63	:	:	14, 72	17,05	•	16,87		20, 19	21,38		23, 33
3		22.68		15,35	14,68	16,90	:	16.86	18, 23	20.24	21,46	22,29	23, 32
4	:	22, 71		15,38		16,72	:	16,89	18, 33	20,27		22,35	23, 22
	:	22, 72	:			16,66	:	16,95	18, 41	20, 30		22.40	
9		22, 73	18, 14		14.98	16.62			18,48	20,35	21,59	22,46	23, 13
	:	22.65	18, 11			16,60		17.06	:	20,40		22, 50	
00		22, 57	18,05	15, 44	15, 21	16, 57	20, 70	17, 11	18,65	20,46	21,65	22,49	
6	92	22.58	- 86	:		16,52	20,90	17, 33	18, 72	20,51		22.48	
10	81	22.63	95	15,30		16,53	21, 15	17.50	18.82	20,56		22,48	23, 21
11		22, 71	20	15, 29	15.64	16.57	21, 30	17.63	18.87	20.62		22, 51	23.24
12	98	22,82	11	15, 33		16, 59		17.73	18.95	20,68			23, 26
13	06	22.94		15, 39	:	16,69		17.82	19.01	20.72			23, 26
14	93	23.07		15, 34	16.01	16.76		17.89	19.04	20, 77		22, 75	23.25
15	96	23, 15	-	15.32		16.82	19, 15	17.96	19, 13	20,83	21.77		23.21
16		23.22		15, 31		16.89	18.87	17.99	19, 17	20,87		22.83	
17		23.25		15.34		17.01	18.63	18.02	19, 25	20,90		22, 85	23. 22
18		23, 23		15, 45		17.13		18, 12	19, 31	20.94		22.87	23. 22
19	22.97	23.17	73	15.66		17, 23		18, 13	19, 37	21.03	21.88	22.89	:
20		22, 83	72	15.76		17, 38		18.01	19.41			22.91	
21	22, 90	22. 27	69	15, 75	16, 58	17.47	:	17.88	19, 48	21, 13		22.94	
22	22, 83	22.01	92	15, 46	16.62	17.62	17, 53	17.70	19, 53	21.08		22, 95	23, 31
23	22, 73	21,88	81	15,08	16,66	17.70	17.21	17, 44	19, 59	20,06	21.95	22.99	:
24	22, 64	21.90	98	14,92	16,69	17.82	17, 15	17.48	19,68	21,08		23, 03	:
25	22, 61	21.96		14, 78	16, 78	17,94	17.11	17,55	19,74			23,06	:
26	22, 61	22.00		14, 71			17.06	17,62	19, 78	21, 16	21.98	23.07	:
27	22, 59	21.86	15, 53	14,65			17.03	17,70			22.04	23,06	
28	22, 54	21, 43		14.84	17.03		17.00	17,82			22,08	23.07	
29	22, 49	20.62		14, 70	17.05		17.02	17,91	19,96	21, 25		23, 14	:
30	22, 46	20.02	:	14, 77	17.04		17.06	17,97	20.01			23, 19	
31		19,74		15,00	17.04		17,00		20.07	21, 30		93 95	

Table 35.-Water-level measurements from recorder chart, in feet below land-surface datum-Continued

	Dec.		:	:		:	9		:	:	:	:	:	6	:	:	:	
					:	20. 1	16.			20.0			_:	15.				
	Nov.		20.4	20.3	20.5	20, 1				20.0	19.8	19, 7	18.8	18.7	18,6	18.6		
	Oct.					:		:			:				22.5		:	
1953	Sept.		26.2	24.8	23.6		25, 5			24.3	24.3			25. 5		17.7		
19	June July Aug.											:	:				26.0	
	July		26.2		:					:		-					26.0	
	June				23.6	:		:	:	24, 3		:						
	May		15.6	15,8	16.1	16.2	16.4	16,4	16.2	16.4	16.5	16.6	16.8	17.1	17.4			
d	Day	sa2	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
	Dec.	D1-4-25aa2	18.5	18.4	18.4	18,3	18, 2	18.1	18.0	17.9	:	:	:				16.9	20.6
			-									•		•	:	•		
	Nov.							22.0					:	21.3	-			20.6
	Oct.			23.9			:			23.6		:		21.3				20.6
53	Oct.					25.0				23.6			24.8	21.3				20.6
1953	Oct.								26.0	23.6				21.3		25. 5		20.6
1953	July Aug. Sept. Oct.				25.0	:			26.0	23.6		26.0		21.3		25.5		20.6
1953	Aug. Sept. Oct.		18.3	18.6 23.9	18.9 25.0	19.3 25.0	•	20.1	20.5 26.0							25. 5		20.6
1953	July Aug. Sept. Oct.					19.3	19. 7	20.1	14.3 20.5 26.0	14.9 20.9 23.6		15.0 26.0		21.3	15. 2	15.4		15.6 20.6

Table 35, --Water-level measurements from recorder chart, in feet below land-surface datum--Continued

Day						1953		1				16	1954	
3	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan,	Feb.	Mar.	Apr.
				D1-	D1-4-25aa3									
1		17.44	16, 15	11,65	8, 20		8.38	9. 79		11.91		15, 37	16.44	
2		17, 48			8,01		8, 48	9,84		11,96		15,42		
		17,52			7.87	:	8, 51	:		12.05				
4		17,58	15,77				8.60			12, 10	13,70	15,53	16.61	18,96
5		17, 60	15,67			:	8,65	:	10,48	12, 15		15, 57		
9		17,67		11, 73			8, 70	10,00		12, 20				
	15,97	17, 72	15, 71				8, 72	10,00		12, 25				
8	15,98	17, 76	15, 75	10.87	6,50	6.47	8.77	10,00		12, 31	13,90	15,69	16,87	
6		17,81	15,80	10,75			8,83	9,95		12, 36	13,94		16,93	18, 14
10.	16.24	17,85	15,84	10,67			8.87	9.98		12, 41	14,00		16,99	18,05
1.1		17,88	15,88	10,58	60.9		8,91			12,46	14,05		17,06	17,96
	16, 29	17, 91		10, 53		:	9.01		10, 78	12,51	14, 11	15,85	17, 13	17,81
	16.31	17,96	15.83	10,49		:	9.05		10.82	12, 56	14, 14	15,89	17.20	17,65
	16.38	18,00		10,43			9.08		10,88	12,61	14,20			17, 53
	16.45	18,00	15, 73	10,34			9, 12	10, 16	10,94	12,66	14, 23	15.97	17.34	17,48
	16.51	18, 00	15,67	10, 12			9, 16		10.99	12.67		16,01	17.42	
	16.58	18, 01	15.65	9,95	5, 63	7.30	9, 22		11.04	12, 72		16.05	17.49	17,00
	16.64	17.98	15,63	98.6			9, 30		11.10	12,76		16,09	17.58	
	16.69	17.94	15,62	9. 78	:		9.34		11, 16	12.80		16, 13	17.66	16,98
	16.71	17.89	15, 61	9. 70			9, 35			12,84			17.75	
	16.78	17.82	15.54	9.64	:		9.41		11.26	12.88	14, 70	16, 21	17.84	16,83
	16.83	17, 75	15, 52	9.57	:		9.45	10.24		12,92	14, 73	16.15	17.93	16.75
	16.89	17.67	15, 48	9, 45			9, 48	•	11.38	12,97	14.79	16.19	17.99	
	16.93	17, 58	15, 36	9, 39						13.01	14.86	16, 22	18.07	
	17.01	17.48	15.04	9, 31		:			11,52	13.06	14.93	16.26	18, 15	
	17.08	17, 13	14,62	9. 26			9.58			13, 12	15.00		18.24	
	17.11	16,83	14,30	9, 16	5.77	:			11.66	13, 19	15.07	16,35	18.31	
	17.16	16.61							11,73		15, 13	16.40		
29	17, 18	16, 45	:	:	5, 96	8, 21	99.6	10, 33	11, 79	13, 35	15.20		18,47	:
30		16, 30	12, 75						11,85	13, 41	15, 26			
31	17.38		12,39							13, 47	115,31		18.64	

Table 35.--Water-level measurements from recorder chart, in feet below land-surface datum--Continued

						1953							1954	4	
Day	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
					D1-	D1-5-34cc2									
1			9,33	9.38	9.30	99.9	8.25	10,03	10,48	10.04		9.72	10,20		9.79
2	:	:	9.33	9.39	9.29	6.53	8.39	10.06	10,50	10.07		9.74	10,20		9.79
6			9,33	9,39	9.26	6.55	8,43	10.09	10,51	10,09	:	9.75	10,21	9,90	9.77
4	:		9,33	9.41	8,95	09.9	8.54	10,10	10,52	10,10	9,80	9.78	10,22	9,90	9,61
5	:	9,95	9,33	9,41	8,62	69.9	8.64	10,12	10,53	10,10	9,80	9,81	10,22	9,90	9.56
9	:	:	9.32	9.42	8.47	6.80	8.78	10,14	10,53	10,12	9.78	9.82	10,23	9,90	9.52
L	:	:	9.31	9.43	8,42	98.9	8.84	10,15	10,54	10,14	9.77	9.83	10,23	9.90	9,51
80	:	:	9.27	9.45	8,43	:	8,92	10.17	10,54	10,14	9.77	9,83	10.24	9,89	:
6	:	:	9.27	9.48	8.43		8,99	10,18	10,56	10,14	9.74	9.84	10,24	9.87	:
10			9.25	9,49	8.46	5.50	90.6	10,19	10,56	10,15		9.85	10.24	98.6	
11	:	:	9.23	9,51	8,48	5.53	9,13	10,19	10,57	10,17	:	98.6	10.24	9,85	
12.		9.75	9.21	9,53	8,49	5,59	9.20	10.26	10.57	10.18		9.85	10.24	9.85	
13		9.72	9.20	9,53	8,51	5,68	9.26	10.27	10,54	10,19		9.82	10.24	98.6	
14	:		9.20	9,53	8.50	5.63	9.29	:	10,52	10,19	:	98.6	10.24	98.6	9,49
15		```	9.21	9,55	8,46	5.84	9.32	:	10,52	10.19	9.71	9.89	10,25	98.6	9.51
16	:		9.20	9.56	8.42	6.13	9.36	:	10,51	10,18	9.70	9.90	10.24	9.85	9.52
17			9.20	9.58	8.41	6.39	9.42		10.49	10.17	9.70	9.91	10.23	9.84	9.52
18			9.24	9,59	8, 10	6.62	9.47	:		10.17	9.70	9.93	10.22	9.83	9.53
19	:	9.59	9.24	9.59	7.85	6.81	9.52	:	1		9.70	96.6	10.22	9.83	9.53
20		9.55	9.24	9,59	7.50	6.91	9.57	:			9,70	:	:	9.83	9.56
21		9.53	9.24	9.58	7.41	6.95	9.63	-	:	10.14	9.71	10.03	:	9.82	9.57
22	:	9,51	9.26	9.54	7.41	7.05	9.68	:	10,33	10.10	9.71	10.03	:	9.82	
23	:	9.50	9.28	9,45	7.09	7.22	9.72	:	10.29	10,08	69.6	10.04	:	9.82	:
24	:	9.46	9.30	9.40	6.79	7.30	9.75	:	10.28	10.05	9.70	10.06	9.99	9.82	
25	:	9.44	9.32	9.38	6.53	7.41	9.80	:	10.28	10.01	9.71	10.09		9.82	:
26	96.6	9.43	9.32	9.32	:	7.52	9.83	10.42	10,28	9.99	9.71	10,11	:	9.82	
27	:	9.43	9,32	9,31	6.21	7.65	9.87	10.43	10.25	:	9.73	10.14	:	9.81	:
28		9,37	9,33	9.29	6,16	7.79	9.90	10.44	10.20		9.71	10,15	:	9.81	:::::::::::::::::::::::::::::::::::::::
29	:	9.37	9,35	9.28	6.22	7,91	9.95	10,46	10.14	:	9.74	10,16		9,81	
30	:	9,35	9.36	9.29	6.44	8.00	96.6	10.47	10,10	:	9.75	10,19		9.81	
31	:	9.34		9.29		8.12	10.01		10.06		9.74	10.19		9.80	

Table 35,--Water-level measurements from recorder chart, in feet below land-surface datum--Continued

	Nov. Dec.		22 92			22.90	22.91	22.90	22.87	22.92	22.89	22.88	22.86	22.80	22.78	22.71		22,73	22.76	22.82		22.76	22.80	:	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	:	22.78	22.77				
	Oct.		23 27	23 22	23.24	23.25	23.24	23,23	23.21	23.18	23,16	23.21	23,20	23.17	23,19	23.23	23.14	23,12	23,18	23,17	23.13	23.11	23.10	23,10	23.06	23.06	23.04	23.01	23.06	23.03	22.96	22.96	22.91
	Sept.		23.49	23.43	23.40	23.39	23.38	23,35	23,32	23,30	23,26	23.25	23.24	23.22	23.29	23,30	23.24	23.22	23.29	23,30	23,30	23,31	23,34	23,31	23,30	23,31	23.31	23.27	23.23	23.26	23.26	23.26	
	Aug.		24 14	24 08	24.06	24.02	24.01	23.96			23.90	23.87	23.82	23.80	23.78	23.75	23.72	23,72	23,72	23.71	23.64	23,65	23.64	23,61	23.58	23.55	23,53	23.52	23.54	23.51			
	July		25 47	25 45	25.40	25.34	25.28	25,31	25,30	25.24	25,16	25,18	25.17	25.14	25,12	25,04	24.91	24.88	24.85	24.80	24.75	24.70	24.61	24.60	24.63	24.47	24.48	24.46	24.36	24.30	24.25	24.19	24 17
1952	June		26 25	26 27	26.29	26.33	26.32	26.28	26.29	26.33	26.28	26,12	26,11	26,11	26,12	26.07	26.07	26.04	26.06	26.08	26.01	25.97	25.89	25,86	25.82	25.77	25.72	25,68	25.59	25.58	25.52	25.53	
	May		26 54	26.55	26.53	26.56	26.57	26.54	26,56	26.53	26,61	26,61	26.57	26.59	26.58	26,55	26.54	26,63			26,51	26,44	26.37	26.36	26.36	26,35	26,31	26.35	26.36	26.32	26.26	26.29	26 25
	Apr.		26.30	26.28	26.33	26.37	26.36	26.36	26.34	26.41	26.46	26.42	26.43	26.51	26.52	26.51	26.57	26,59	26.59	26.51	26.48	26.54	26,56	26.54	26.54	26.57	26.58	26.54	26.53	26.48	26.56	26.56	
	Mar.	-9bc	25.72	25 72	25.73	25 74	25.77	25,83	25.88	25.87	25.87	25,80	25.82	25.83	25,88	25,95	25,99	25,95	25,96	25.96	25,99	26.07	26.19	26.20	26.12	26.12	26.16	26,19	26.20	26.12	26,11	26.13	26 18
	Feb.	D2-4-9bc	25.40	25.36	25.44	25.45	25.50	25,54	25,52	25,53	25.52	25,55	25,54	25.53	25,59	25,60	25.60	:			:		:	25.64	25.66	25.74	25.77	25.77	25,77	25.76	25.76		
	Jan.		25.23	25 29	25.29	25.29	25.29	25.27	25.20	25.25	25,34	25.24	25.23	25,17	25,14	25,12	25,12	25.08	25,11	25.17		25.20	25.22	25.27	25.27	25,25	25.27	25.34	25.41	25.44	25.42	25.40	25.38
	Dec.								25.20						•	25,23	25,21	25,19	25.20	25,11	25,11	25,14	25,17	25,15	25.20	25,20	25.25	25,30	25.27	25,15	25.13	25,12	25 15
	Nov.		25.67	25.59	25.59	25.56	25.57	25.57	25.52	25,49	25,47	25.50	25.43	25.38	25.41	25.41	25.48	25.55	25.27	25.21	25.17	:	:	:	25.14	25.08	25.10	25.08	:			25.07	
1951	Oct.			26 68						26,48					:		26,15	:	:		:		:	25,86	25.81	25.75	25.69	25.70	25.69	25.67	25.52	25.62	25.62
	Sept.		31.36	,					29.23							:			27.81							27.13	27.14						
	Aug.																	:												:			31.50
č	Day			~ ~	1 07	4				8	6	10			-;		15	16	17	18		20	21	22	23	24	25	26	27	28	29	30	31

Table 35.--Water-level measurements from recorder chart, in feet below land-surface datum-Continued

4	=	1952						1953	_							1954	54	
Lay	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
								D2-5	D2-5-14ac									
1						5.52	6.05	5,55	5,51	6.27	6.30	6,81	7.08	66.9	6.32	6,80	6,31	6.72
2				6.58	:	5.58	6.07	5.57	5,53	:	6.24	6.84	7.10	86.9	6.34	6,81	6,35	6.72
3			:	:		5,62	80.9	4.92	4.84	:	6.22	6.85	7,11	6.97	6.37	6,81	6.40	6.72
4		6.38	:	:		5.68	6.10	:	4.55	:	6.22	98.9	7.11	6.97	6.39	6,83	6.41	6.34
5		:	:		99.9	5.65	6.11		4.90	6.10	6.23	6.87	7,11	86.9	6.41	6.83	6.43	6.14
9			6,65	:	6.70	5,61	6.12	3.86	4.72	5.90	6.24	6.88		7.00	6.41	6.83	6.45	6.01
7				:		5.58	6,15	3.89	5,17	5,73	6.29	06.9	7,14	7,03	6.41	6.83	6.47	5,95
89	6,13			:		5,57	6.18	4.03	5,44	2.00	6.18	6.92	7,15	7,03	6.39	6.84	6.48	5,91
6		:				5,65	6.21	4.40	5,63	5.04	6.11	6.93	7,15	7.03	6.41	6.84	6.49	5,91
10						5,67	6.24	4.53	5.71	4.98	80.9	6.94	7.15	7.03	6.42	6.84	6.46	5,93
11						5,69	6.26	4.24	5,66	5,11	:	96.9	7.16	7.03	6.43	6.85	6,49	5,95
12		:		-	6,15	5,62	6.28	4.19	5,76	5,36	5,91	6.97	7.16	7.04	6.43	98.9	6,53	5.98
13				-	5.99	5,58	6.29	4.20	4.41	5,49	5.98	86.9	7.16	7.06	6.45	6.74	6.57	00.9
14					5.91	2.60	6.31	4.39	5.02	5,33	6.07	7.00	7.17	7.07	6.47	6,63	6.59	6.03
15		:				5,64	6.33	4.33	5.55	5.49	6.17	7.01	7.17	7.08	6.48	6.64	6.62	90.9
16	:					5,65	6.34	4.55	5.58	2.60	6.20	7.02	7,18	7.09	6.51	6,63	6.63	6,11
17		:				5,68	6.36	•	5.57	5.66	6.26	7.03	7.19	7.10	6.55	6.62	6.64	6,13
18		-				5.72	6.33	:	5.60	5.77	6.28	7.05	7.20	7,11	6.57	6.58	99.9	6.16
1		:	<u>:</u>	:	5.98	5.74	6.22	:	5.78	5.87	6.19	7.06	7.20	7.12	09.9	6.61	6.67	6.20
20		:	-	:	5.95	5.78	6.15	:	5.88	5.78	6.22	7.07	7.21	7.12	:	6.62	6.67	6.23
21		:	-	:	5.92	5.82	6.10	:	5.94	5.94	6.23	1.08	7.25	7.13	:	6.61	6.65	6.25
22		:	:	:	5.90	5.85	5.72	5.62	5.95	6.04	6.32	4.09	7.23	7.13	6.70	6.48	6.65	6.28
23			:	-	5.91	5.90	5,61	5.62	5.99	6.12	:	7.10	7,18	7.14	6.71	6.43	99.9	:
24		-			5.92	5.92	5.55	5.04	29.6	6,16	:	7.09	7,17	7,15	6.73	6,30	6.67	:
25				6.59	5.80	5.92	5.55	4.48	5.72	6.21	6,65	7.09	7,16	7.16	6.74	6.25	6.70	:
26		:		6.57	5.72	5.95	5.57	4.37	5.92	6.26	6.68	2.06	7.11	7.17	6.75	6.20	6.70	:
27			-		5,68	5.96	5,61	4.37	90.9	6,30	6.71	7.05	7.08	7.17	6.77	6,26	6.71	:
28			:	:	5,64	5.99	5,13	4.61	6,17	6.30	6.73	7.05	7.05	:	6.78	6.27	69.9	:
29			:		5,62	6.01	5,48	:	6.24	6.26	6.76	7.05	7.03	6,31	6.78		89.9	:
30	:	:			5.54	6.03	5,49	5.27	6.28	6.27	6.19	2.06	7.01	6,32	6.19		89.9	:
		:			5.52		5,54		6.22	6.29		7.07		6.32	6.80		6.70	

Table 35.—Water-level measurements from recorder chart, in feet below land-surface datum—Continued

က္	Mar.			3 5.52					2	2	4	2	1	1	<u> </u>	<u>0</u>	₀	9	9	7		7	7	9	9	8	0	1		8	:	:	
1953	Feb.		5.42	5.43	5.44	5.44	5 44	5.44			1 5.44	5.42	5.41	7 5.41		_				5 5.47		_								_	67	8	~
	Jan.								5.64				:	5.27	5.27	5.29		5.34	5.35								5.37	5,39	5,41	5.42	5,42	5.42	5 43
	Dec.			_	5.27						5.28			5.28	5.24	5.22	5.24	5.26	5.31				5.45			5.49	:	:	:	:	i	:	2,5
	Nov.		5,14	5.16	5.16	5.16	7 1 7	5.18	5,19	5.20	5,21	5.22	5.22	5.23	5.23	5.24	5.24	5.24	5.24	5.24	5.25	5.26	5.29	5,30	5.30	5,31	5.32	5,29	5,28		:	:	
	Oct.		5.07	5.07	5.09	5.10	10	5.06	5.08	5.08	5.08	5.08	5.07	5,10	5.10	5.07	5.04	5.05	5.06	5.07	5.07	5.07	5.08	5.09	5.08	5,11	5,11	5,11	5,13	5,13	5.14	5,14	7
	Sept.		3,66	3.61	3.55	3.71	3 74	3.89			4.16	4.20		4.67	73	4.79	4.81	4.85	4.88		4.93	4.97			5.00	5,01	5.02	5.06	5.08	5.08	5,09	5.08	
	Aug. S		3,12 3	4.15 3	4.323	4.37.3	4 30 3	4.4333	4.604	4.62 4	4,46	4.34	4.30 4	4.33	4.17 4.	4.04		3,18	3.26	3.30 4	3.24	4.21	4.25 4	4.24 4	4.28	4.24	4.18	4,23	4.20	4.20	1.25		3 87
	July A		4.37	4.32										4.10	3,33	4.08	4.24	4.11	4.31	4.59		4.57			4.57	4.61	4.54	4.48	4.20	4.17	4.31	4.30	r.
1952	June Ju		4.85 4	4.86 4					4.99 4	4.96 4		5.00 4	4.97 4	4.95 4	4.78 3									4.09 4	4.15 4		3.72 4	3.96 4	3.89 4	4.02 4	10 4	4.26 4	7
	May Ju		4.86 4.	4.89 4.					4.98 4.			4.87 5.	4.91 4.	4.93 4.				4.76 3.	4.77 2.					3.31 4.	4.03 4.	4.32 4.	4.47 3.	4.40 3.	4.51 3.	4.61 4.	4.68 4.	4.75 4.	08
		i				_				-2	4	_		_		_			-						_			4.69 4.	_		4.80 4.	4.83 4.	4
	r.Ap		54 5.46	54 5.42						9 4,10	30 4.31	30 4.43		30 4.22	3.93	31 3.48	31 2.69	3.06	1 2.91	59 3.85	30 4.13	31 4.35	32 4.37	32 4.46	52 4.53		31 4.64		4,73	51 4.77		5,50 4.	-61
	Jan. Feb. Mar. Apr.	D2-5-16aa1		_	2 5.54										19 5.60			14 5.61			_	5.61		19 5.62	19 5.62		51 5.61	52 5.54	53 5.46	53 5,54	54 5.50	2	נמ
	n. Fe	72-5-	_					5.42	5.4	5.43	5.43	_		0 5.43	0 5.39	11			_	12 5.46	11	:		5.49	•	5.			_	11 5.53		01	41
	-	-	3					-	3		:			5,30	5.30	8 5.31		0 5.28	1		5,31		5 5.34	2	8	:		5.41			5,40	26 5.40	
	Dec.		2 4.93	4.94			_						<u></u>			5.08		5 5.10	5.11	5.11	:	<u>:</u>			5.18	:		<u>:</u>		_		<u>س</u>	_
	Nov.		4.7	2	9	-	4 60	4.83 4.64	8 4.68	1 4.70	3 4.73	8 4.74	1 4.76	9 4.77	4.80	6 4.82	04.84	64.86	7		6	3		-	2 4.96	84.98	0 5,00	8 5.01	15.01	0 5.01	5 4.97	8 4.94	0
	Oct.		5,05	5,05	4.96	4.70	4 74	4			4.93	4.98	5.01	4.99	5.04	5.06	5.00	4.96	4.97	2.00		4.83	4.78	4.80	4.82		4.70	4.68	4.71	4.70		4.68	4 69
	Aug. Sept.			-										4.92	4.94	4.96						_			4.72		4.87	4.91	4.95	4.98	5.00	5,03	
1951	Aug.		4.52	4.52	4.34			3,58	4.01	3,99	4.06	4.08	4.10	4.02	4.07	4.15	4.20	4.23	4.23	4.29	4.30	4.24	4.35	4.50	4.27	3.93	3.86	3,94	4.07	4.22	4,35	4.43	4.51
	July		4.42	4.37	4.12	4.12	4 04	3,99	4.01	4.04	4.00	3,99	4.01	3.91	3,98	3,39	2,96	2.51	3.76	3,90	4.09	4.21	4.36	4.43	4.36	4,35	4.19	4,11	4,10	4.06	4.16	4.26	4 33
	June July		5,13	5.16	5.05	5.00	4 75	4.52	4.36	4.26	4.14	4,10		3.86	3.63	3.12	2.92			3.97	3,95	4.02	4.04	4.26	4.38	4.30	4.24	4.25	4.14	3.93	4.02	4,25	
		ļ		4.86						_	_			:	:	:	-	5,19	.17	.05		15	5.17	16	13	13	22	25	5.27	.21	18	.24	
	Apr. May			-	_		<u> </u>						-	-	-	-	:	:	:	:	5,42	:	:	:	-:	:	:	:	:		:		
	, day					_	_		_			_				_	15						_	22	23								

Table 35, --Water-level measurements from recorder chart, in feet below land-surface datum---Continued

						1953	53					1954	4	
Day	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
				D2-	D2-5-22ccd									
1		9.24	06.6	9.77	8.29	8,11	9.47	10,17	10,05	10,34	11.11	11.09	10.30	10,83
2		9.27	96.6	9.83	8.23	8.38	9.55	10.11	10.12	10.35	11.11	11.04	10.33	10.86
3		9.39	10.03	9.44	8.32	8.55	9.56	10.05	10,18	10.39	11,12	10.99	10.36	10,86
4		9.47	10.08		8.66	8.66	9.57	10.02	10.23	10.46	11.12	10.93	10.40	10,27
5			10,13		8.59	8.80	10,10	10,00	10.27	10.51	11.10	10.89	10.46	10,13
9	:		10,18	8,51	8.56	8.88	10.23	10,00	10,31	10.56	11,10	10,84	10,51	10,05
L		:	10.22	8,59	8.51	8.85	10,32	10,00	10,35	10.61	11,11	10.82	10.54	9.98
8			10,28	8.70	8.50	8.98	10.40	10,00	10,39	10,67	11,09	10,77	10,53	9.93
6	10,78	9.38	10.34	8,82	8,49	9,18	10,44	9.97	10.42	10.70	11,10	10.68	10.51	9.93
10	10,51	9,33	10,40	8,96	8.48	9.29	10.49	96.6	10,44	10.74	11,11	10,51	10.42	9,91
11	10,24	9.27	10,44	9.10	8.54	9.26	10.08	10,06	10.47	10.77	11,12	10,43	10,47	9,92
12,	9,99	9,23	10,47	9.37	8.63	9.27	10.08	10,14	10,52	10.81	11,16	10.51	10.53	9,94
13	9,93	9,19	10,50	9.43	8.55	9.32	10,10	10,18	10,55	10.84	11,17	10.02	10.58	9.98
14	9,90	9,16	10,51	9.50	8.53	9,25	10,10	10,22	10.57	10.87	11,19	10.07	10,60	9,99
15	98.6	9,15	10.54	9.54	8.46	8.94	10,17	10,24	10,60	10,91	11,19	10,23	10.62	10.07
16	9.84	9,11	10,58	9.45	8.38	8.80	10,21	10,26	10,63	10,92	11.20	10,32	10,61	10,15
17	9,83	9.08	10,62	7.40	8,36	7.58	10.23	10,26	10.67	10.94	11.20	10,39	10.58	10,21
18	9.87	9.17	10.55	6.82	8,31	6.88	10,10	10.24	10.69	10,96	11,20	10.41	10.59	
19	9.88		10,50	6.54	8.46	7,05	10.18	10,23	10,69	10,98	11,22	10.46	10.60	10,35
20	9,80	:	10,36	6.35	8.56	6,65	10.24	10,25	10.70	11,00		10.51	10,60	10,41
21	9.16		10,21	99.9	8.64	6.89	10.23	10.32	10.71	11.02		10,53	10.01	10,43
22	9.77		9.88	6.92	8.48	7,16	10.22	10,30	10,69	11.02	11.24	10.46	10.62	10,45
23	9.19		9.76	7.16	7.32	7.27	10.22	10,18	10.61	11.03	11.23	10.41	10.62	:
24	9.78		99.6	7.44	6.94	7.72	10.15	10.13	10.53	11.05	11.23	10.28	10.63	
25	9.62	9.16	9.63	7.67	6.46	8,14	10.22	10.08	10.48	11,06	11.23	10.23	10,65	:
26	9.46	9.83	9.65	7.92	6.52	8.44	10.27	10.00	10.43	11.07	11.22	10.20	10.66	
27	9,41	9.91	9.70	7.98		8.68	10.33	96.6	10.37	11.08	11.24	10.26	10.67	:
28	9.40	9,99	9.75	8.07	:	8.91	10,33	9.90	10.35	11.10	11.25	10.26	10.66	:
29	9,36	9.88	9.70	8,18	7.15	9.08	10.28	9.92	10.34	11,10	11.22		10.68	
30	9.23	9.83	9.72	8.24	7.55	9.24	10.21	9.92	10.35	11,11	11.18		10.71	:
31	9.22		9.71		7.78	9.38		9.98		11.12	11.13		10.75	

Table 36.—Record of wells and springs

Type of well: B, bored; DD, dug and drilled; Dn, driven; Dr, dril Well number: See explanation of well-numbering system. Du, dug; Sp, spring.

Depth of well: Measured depths are given in feet and tenths below

measuring point; reported depths are given in feet below land si Type of casing: C, concrete; P, iron or steel pipe; T, tile; R, roc W, wood.

Type of pump: C, centrifugal; Cy, cylinder; N, none; P, pitcher;

Type of power: E, electric; F, natural flow; G, gas; H, hand-oper T, turbine.

land surface; Pb, pump base; Tc, top of casing; Tp, top of platform. Measuring point: Hh, hole in pump housing; Hp, hole in pump base Use of water: D, domestic; Ir, irrigation; In, industrial; N, none; O, observation of water-level measurements; P, public supply. N, none; W, wind.

lled;	Depth to water: Measured depths are given in feet and hundredths; reported depths are given in feet.
	Remarks: A, aquifer test; Caf, chemical analysis by Federal agency;
W	Cao, chemical analysis by other than Federal agency; Cp, casing
surface.	perforated or slotted (numeral indicates depth); D, drawdown in feet
k;	(r, reported; m, measured); F, filled in (numeral indicates depth);
	Fc, filled in and covered; Fl, natural flow (numeral indicates depth);
J, jet;	L, log; OT, oil test in progress; P, plugged (numeral indicates
	depth); R, recorder in well; S, screen in well; T, temperature, in
rated;	degrees Fahrenheit; TH, test hole (numeral indicates original depth);
	Y, yield (numeral indicates gallons per minute for wells and cubic
.,	feet per second for springs; r, reported; m, measured); U, water
	reported unfit for human consumption; Ww, water reported to be
se; Ls,	warm.
0.00	

			i	
		у 6шз1.қг	тн; г	Y20r; D25r
		Date of measurement	6.90 10-14-52 22.46do 600 5-19-41 94.58 10-14-52	8- 9-51
	1	Distance to water level below measuring poin (feet)		5.81
	point	Height above mean sea level (feet)	4,180	0 4,227
	Measuring point	Distance above or be- low (-) land surface	0 0 0 2.0	0
	Me	Description	Tc Ls Ls Tc	Tc
		Use of water	S D D	D,S
		Type of power	単単 ひ ひ	田田
		Type of pump	လိုလိုလို	יי
;		Type of casing	В Су Н Р Су Су Н Р Су С	다 다
and base, ich of casing, ip, ich of pratter in	2)	Diameter of well (inches	10,3 48 28,4 30 630 4 1,182.0	4 4
		Depth of well (feet)	10,3 28,4 630 1,182.0	84
		Type of well	Dr Dr Dr	Dr
1		Year drilled	1941	
do to toma dand to to		Owner or tenant	A1-2-10db Catherine Martin	3- 1da Dick Muir Dr 1dd Enoch Sales.
d for food and and		Well	A1-2-10db 22ab 26ab 29adc 34cb	3- 1da

	Y40r; D < 1r	L; A; T50	A; T51 A	L; Y40r; D30r A; Caf; T49 A; T51	T47 A; T49	L; Caf A; Y45r
	7-31-51	5-21-51	9-24-52 2-24-54 8-26-52	3- 7-54 8- 4-53	:	6-13-51 5-10-51 5- 9-51 5- 8-51
15 15 4	4.01 4 6 15 15	25 34.05 40 64.71	4.81 9.87 12 6	18 60 7 12.68 12.60	5.49	10.95 260 48.60 12.30 5.80
	4,239	4,225	4,251	4,288	4,293	4,343 4,407 4,357 4,357
000	0 0	1.2	2.0	ري 0	1.7	9. 0
Ls	Tp Ls Ls Ls	Ls Tc Ls Tc Ls	Tc Tc Ls Ls	Tc Ls Ls Ls	Tc T p Tc	Tp Ls Ls Ls
ДДД	s,0 D D,8 D,8	D,S O D D,S,O D,S	D,S,O N D,S D,S O,S	D,S D,S D,S N	O P % O 8	D D,S D,S
西田田	甘甘西西西	田区田田田	HZHHZ	HHHN	ZEZ	д≽ыыы
د در د	ပို့ပဲပပဲပို	2 2 2 2 y	ROÇRE	zůčůz	z Ĉz	, , , , , , , , , , , , , , , , , , ,
다 다 다	\vdash		т≽ччч	ተ	ь чь	л ц
999	12 5 5 5	40004	12 36 by 36 6 6 12	6 4 5 30		0 2 4 0 4 4
52 40 29	18,5 20 30 35 105	60 76 _* 6 80 134 30	10.5 27.6 33 35 6.0	75 185 65 28.3 15	9.5 10.4 20.3	30 15 310 99 40 25
Dr. Dr	Dr Dr Dr	Dr Dr Dr	Dr. Dr. Dr.	Dr. Dr. Dr.	Sp Du B	
1949 Dr Dr Dr	1950		1951 1952	1954	1951	
2ac1 Henry Oyler	do	4cc C. Yadon	Wm. D. Gover	Jake Brouwer. C. B. Chase. J. F. White, Estatedo.		26022 Elizaben Emmelkamp 27dc Jack White
2ac1 2ac2 2cdc1	2cdc2 2cdd 2dc 2dd	4cc 4da 9bba 9bbb	10bd 10ca 10cb 11ab	14dd 21aa 22ad 22da1	23bb 25cb 26cc	27dc 27dc 29aa 33dd 35dd

Table 36.—Record of wells and springs—Continued

	Кетагks				A; TH207; L; Cp11-35; P42; R; Caf; T48 A; Caf; T56	A; T49		
	Date of measurement	4-24-51	5-31-51	7- 5-51 8-10-51	2- 4-53 8-10-51 5-31-51	8- 9-51	5-31-51	
11	Distance to water level below measuring poir (feet)	20 30 20 12 20.05	9 6 5.46	5.09	5.21 6.75 6.70	6.27	3,62	2
g point	Height above mean sea level (feet)	4,270	4,245	4,229	4,245 4,255 4,220	4,224	4,245	
Measuring point	Distance above or be- low (-) land surface	9.0	2.1	2.1	1.0	e.	1.6	
Me	Describtion	Ls Ls Ls Ls	Ls Ls Tc	Tc	Tc Tc Tp	$_{ m Tc}$	Тc	Ls
	Use of water	D, S D, S D, S D, O	D,S	O D,S	0 0	0	0	D,S
	Type of power	пинке	HHZ	z u	z Hz	Н	Z	Ħ
	Type of pump	ပ်ပိပ်ပိပ	Ç r Z	Z n	Z ÇZ	Cy	z	Cy
	Type of casing		머머머	4	д дд	д	Д	≱
(8	Diameter of well (inche	8 9 4 4 4	4 4 wl4	44 wj4	6 4 8 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	4	6)4	48
	Depth of well (feet)	25 80 45 40 48.3	35 20 8.0	8.1	35.0 18.0 13.7	39.3	6.7	12
	Type of well	D D D D D D D D D D D D D D D D D D D	Dr Dr	В	Dr.	Dr	В	Du
	Year drilled		1949	1949	1952 1949		1949	
	Owner or tenant	A. M. Moore	3bc Lena E. McLeod		U. S. Geol. Survey Bernard Heetderks U. S. Soil Conserv.	Service 2. Bernard Heetderks	U. S. Soil Conserv.	7ba Michael J. Aughney
	Well	A1-4- 1cb 2ad 3ab 3ac	3bc 4ac 5ad	5ba	5da 5dd	6bc	7aa	7ba

							TH315; L; A; Caf; T59			TH301; L; A; Cp 15-85; P92; F1	11(-100; Cai	А; В
5-31-51		7- 6-51	qo	qo	8- 7-51	do	5-20-53	7- 6-51		9- 1-53	7- 6-51	8- 7-51 2-24-54
2.34	4	4 7 4 22 22	3.20	3.43	2.45 3 6.43	4.21	5.54	4.60	4 & 6 1 - 8	5.12	2.62	3.98 5.60 5.24
1.7 4,252	:	4.278	4,321	4,298	4,300	4,318	4,320	4,289		4,298	4,347	4,349
1.7		6.	7.	2.3	0 1.0	4.	6.	1.2		·.	1.8	0 1.2 0
Ls	Ls	Ls T	Tc	Tc	Ls Ls Tc	Тс	Tc	$^{\mathrm{Tc}}$	Ls Ls Ls	Tc	Tc	Ls Tp Tc
D,S O	D,S	D,S D,S O	0	z	D,S D	0	0	0	D,S D,S D,S	z	0	0 0 v v
ĦZ	H	HHZ	z	z	HEZ	z	z	z	西西耳田	z	z	HZHH
$_{\rm N}^{\rm Cy}$	Cy	n n Z	z	z	L Cy N	z	z	z	L L O	z	Z	Cy Ry
떠고	<u></u>	4 1 4	Ъ	<u>Д</u>		<u>L</u>	Д-	Д.	дддд	<u>r</u>	Д.	다도도도
36	4	18 11		12	4 8 8 €	12	9	83	4444	9	ω 4t	60 30 30
14 7.0	23	30 17 8,9	6.6	10.2	25 8 8.8	8.4	300.0	8.1	25 35 35 40	81.0	6.3	18 9.1 9.3 8.7
ВВ	Dr	D D B	В	В	n D n	В	Dr	В	r p p	Dr	В	D D D D
1949	Dr	1949	1946	1946	1949	1949	1953	1949	Dr. Dr.	1953	1949	D D D
₽. Ъ.	J. H. Evans	P. Miller. H. Brainard. U. S. Soil Conserv.	Service 50. U. S. Soil Conserv.	Service 43. U. S. Soil Conserv. Service 48.	Ā.Ÿ. ♡	u.	Service 33. U. S. Geol. Survey	U. S. Soil Conserv.	H. P. Smith. Albert Schneiter. J. Sinnema. Walter Schneiter.	19cb U. S. Geol. Survey 1953	U. S. Soil Conserv.	F 5 : :
8ad	8bb	8cd 9ab	13ad	14bbb.	14bbc 14cc 15ba	15da1	15da2	16bb	17ba 18ab 18bb	19cb	21dc	22cc 22dc1 22dc2 22dc3

Table 36,--Record of wells and springs--Continued

	Remarks	TH43; L; A; Cp 3-43: F27	17.1	Y30r				TH400; L; Cp10- 329: R: F100:	X140m; D7.1m; Caf; T52		A; T50		
	Date of measurement	10- 7-53	7- 6-51	8- 7-51 8- 4-53		7- 6-51	do	12- 7-51		8- 3-51	9-25-52	7- 6-51	Ls 0 4,357 9.04 5- 9-51
	Distance to water level below measuring point (1991)	3,13	5.43	2.60	2	4.94	4.49	12,07		7.80	7.45	4.28	9.04
point	Height above mean sea level (feet)	4,349	4,354	4,333		4,357	4,370	4,387		4,370		4,344	4,357
Measuring point	Distance above or be- low (-) land surface	0.0	6 ,	0.5		1.0	1.3	1.5		2.	ω.	1.0	0
Mea	Description	Tc	$^{\mathrm{Tc}}$	Ls	Ls	Tc	Tc	Tc		T _C	T c	$^{\mathrm{Tc}}$	Ls
	Use of water	z	0	ΩZ	D,S	0	0	0		o, c	, C	0	D,S
-	Type of power	z	z	ΗZ	四	z	z	z		н	; E	z	田庄
	Type of pump	z	z	Z,C	ا	z	z	z	-	Š Č	30	z	Z C
	Type of casing	д	Д	<u>р</u> , д	Ъ	Ъ	Д	Д		η	, Д,	Д	д
(5	Diameter of well (inches	9	12	4 T	2	12	122	9		12	9	ভাব	4
	Depth of well (feet)	27.0	10.5	20.0	20	7.1	9.4	101.0		17.6	24	7.3	31.5 4
	Type of well	Dr	Д	D. B	Dr	Д	щ	Dr		מַ בַּ	i ü	В	DD Sp
	Year drilled	1953	1946	1946	1948	1946	1946	1951		:	1952	1949	
	Owner or tenant	U. S. Geol. Survey	U. S. Soil Conserv.	Service 12B. Don Ray. U. S. Soil Conserv.	Service 32. Henry DeHaan	U. S. Soil Conserv.	U. S. Soil Conserv.	ol. Survey		L. M. Happel		rv.	Service 88. Helen Hutchinson L. B. Heeb
	Well	A1-4-22dc4	22dd	23bb1 23bb2	24cd	24 dc	25bd	25dc		28da1	28da3.	29ab	29dc

		L; Y30r; D30r A		⟨	۷
5- 9-51	6-27-52	5-28-51 5-14-51 5-15-51 5-29-52 7- 9-53	6-19-52	5-28-51 12-11-51 7- 6-51 6-17-53	12- 4-51
6.20 7 4 8 10	14 10 30.84 12 6.01	6 8.16 33.98 22.22 9.49 20 7.19	13 10 6.64	15.29 13.9 4.24 8 8	6 3 8,75
4,350	4,424	4,465 4,394 4,337 4,413	4,490	4,416 4,413 4,336	4,402
0	1 2 2	2.0 0.3 1.2	0	1.0	1.0
Ls Ls Ls Ls	Ls Ls Tc Ls	Ls Tc Tc Tc Pb Ls	Ls Ls 21	Tc Tc Tc Ls	zi zi t gi zi
D,S D S D D,S	D,S D,S O	0 0 0 0 0 0 D	Hooro	S,0 0 0 0	o Hood
西西西西西	HEZEE	HERHHHH	HEHE	HZZ EH	пнпнн
50500	22 Z 2 Z	, x 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	CACCC	C. R. R. R. C.	Съгрс
4444	4444	ночищичи	口口口玩玩	чн нн	Аннн
യവവവയ	4 4 6 6 10	10 30 55 44 77	4 5 2 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 $\frac{7}{1\frac{1}{2}}$ 12 4	12 12 18 12
23.1 34 30 25 63	45 50 33.0 103 13.5	13 10.6 80.8 52.2 15 107 25 35	35 50 80 10.7	22.4 15 9.8 16 37.0	12 9 14 11.6
Dr Dr Dr	Dr. Dr.	o d d d d d d d d d d d d d d d d d d d	ក្នុក្ខភ្ន	Dr B Dr	2 2 2 2
	i d d d d	1948		1946	
Buell Heeb	E. Gibson. R. Harrison. C. J. Sanders. Vern Sexton. R. L. Eukes.	do	dospringhill School	Albert Seifertdo	Percy ReesedododoRercy Reese
31ca 32ab1 32ab2 32db	33cc 33cd 36dc 5- 3da	4dd2 5da 6bd 6cc 8ad 9bb 10ba	11cb2 13ad 14ab 15cb1	16bc1 16bc2 19bc 20ca	21bc1 21bc2 21bc3 21bc4 21ca

Table 36.—Record of wells and springs—Continued

	, divocity		, , , , , , , , , , , , , , , , , , ,			, M.O.V.
	Kemarks	Caf A	TH210; L; A; Cp 11-118; F118;	Caf; T46		
	Date of measurement	9-28-51	9-28-53			7-31-51 do 7- 7-51
14	Distance to water level below measuring poir (feet)	15 17 70 7.32	8 6 2.87	6 52	တဆင္	3,46 3,46 5,98
g point	Height above mean sea level (feet)	4,515	4,418			4,376 4,378 4,383
Measuring point	Distance above or be- low (-) land surface	0.8	1.5			3 3 3 3
Me	Description	Ls Ls Ls	Ls 17	z, z	Ls Ls Ls	Tc Ls Ls
	Use of water	D D D D,S,O	D,S U N	D,S D	D,S D,S	N Q O S S
	Type of power	БПББП	HHZ	田田	шшы	KERKER
	Type of pump	, C, C, C, C, C, C, C, C, C, C, C, C, C,	L V Z	ם מ	055	SOPES
	Type of casing	ਰਾਜਾਜਾਜ	F O F	≱ գ	ы	
(s	Diameter of well (inches	40494	10 36 6	8 4 4	4	440 44
	Depth of well (feet)	30 80 55 100 25	18 25 118.0	10	. 8 35	70 70 30 10.3 28
	Type of well	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D	Du	ក្នុក	ក្នុក្នុក្
	Year drilled		1953			1951
	Owner or tenant	Edwin Seifert. Roges Spring. Frank Gowin. Bertha Carlson. Frank Gowin.	West Davis	Chas. Osborne, Estate Thompson Hereford Ranches Inc	ĭž≱	30cc1 C. J. Sanders
	Well	A1-5-22ad 22cc 23cc 24ac	27 cc 28 db 1 28 db 2	29ab 29cal	29ca2 29cc	30cc1 30cc2 30dc 32ca

	A L; Caf	Caf T54 TH26; L; F TH27; L; F L; X15r; D20r L; X10r	T48 L; Y15r L	Y1,400r F3.7-14.5m; Caf; T53 F8.3-22.6m; T53	F0-10m TH450; L; Cp42- 64; P62; R;	Cal, 132-31
	9-28-51 5- 7-51 5-28-51		10-14-52 5-21-51		9- 9-51	5-21-51
8 7 21 7 40	12.85 19.03 8.69 120	6 Dry Dry 87 60	68.19 11.24 40 35 24		30 35.93	35
	4,549 4,564 4,529		4,094		4,204	4,218
	4.0- 5.2 8.		6.3		1.5	0
Ls Ls	Tc Tp Tp Ls	Ls Ls Ls	Tp Tc Ls Ls		Ls	Ls Tp
D,S D,S S D,S	0 0,8 0 0 0	002200	s O O u	യയ യ	D,S O	O Z
西西西耳田	ZHZHFH	HFZZ : :	Cy G, H N N	Z E E	BFZ	e z
د د د د د	Chayas	nzzz	ÇZ Ç	rz z	nZZ	C
	T T		다 다 다 다 다		д д	<u>д</u>
40400	6,4 20 20 4 6	9 999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4 9	9 4
32 37 60 19	18.6 52 15.9 140	26 110 92	90 145 137 79 152.6		61.0	52 49.3
<u> </u>	Dr Dr Dr Dr	Sp Dr Dr	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sp Sp	Sp Dr	Dr
	1950	1952 1952 1947 1948	1951 1950 1948 1948		1951	1953 Dr
32ccd2. do 32dd E. Spain 34bd1. H. S. Hecox. 34bd2 George Stimson	35aa Busch School	do. Wright. U. S. Geol. Survey. do. F. F. Kessinger. R. H. Johnston.	Jack Brant	31cd Manhattan Co	32dd R. J. Glisan	J. Green Charles Spaulding
32ccd2 32dd 34bd1 34bd2	35aa 35ad 35cd Al-6- 7cc	18cb2 30ab A2-2-35ab1 35ab2 35ad1	35db 36ba 36bb 36bc	31cd 32ac	32dd 33ba	34ca

		уешзька	Y8m; D6m; T50			
		Date of measurement	8- 9-51 5-28-51 5-15-51 5-14-51	5-15-51 5-14-51 8-10-51	5-31-51	5-15-51 5-28-51 5-28-51
	1t	Distance to water level below measuring poin	9.68 11.26 6.57 14.38	35.67 60 20.63 20	25 6.00 10 8 5	13.40 7.50 18 25.29
	point	Height above mean (1991) level sea	4,201 4,608 4,544 4,455	4,519	4,212	4,332 4,822 4,889
	Measuring point	Distance above or be- low (-) land surface	2,3 .3 .1	5	1.0	റ 4 ജ
	Mea	Description	Tc Tc Tc Tc Ls	Tc Ls Tp Ls	Ls Tc Ls Ls Ls	Tp Tc Ls Tc
		Use of water	0 0,0 0,0 8,0	0,00 N	D,S D,S D,S	00000
		Type of power	HZZES	HKHKH	HHH NE	HZHHZ
		Type of pump	PZZ ÇÇ	Cy Cy Ry	Cy Cy	N C C N
		Type of casing	00044	rrandr	नि नि म	HCH H
	(s	Diameter of well (inche	24 30 6 6	დ დ დ ფ 4 დ 4	ည တ (၂၈၈) အျမှ တ (၁၈)	48 30 40 5
		Depth of well (feet)	11.5 13.2 9.8 22.2 80	50.1 78 23.2 33 28.6	40 8.0 40 20 15	14.6 15.0 22 72.6
		Type of well	ក្នុក្ខក្	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Du Du	នួកប្តី
		Year drilled		1949	1946	
,		Owner or tenant	Enoch Sales. Ralph Biggs. Art Gee. Orpha G. Boyd.	Dick Vanderby. Orpha G. Boyd. H. L. Shyder. do. R. W. Hespen.	O. McElwee U. S. Soil Conserv. Service 1. Pearle E. Cole Jesse R. Green. L. A. Cowan.	36cc Mary Tribble Sacl Ralph Biggs
		Well	A2-3-36ac 4- 2dd 12cc 23da	24bb 24dd 26ba1 26ba2	29dd 31cc 32ab 33bc	36cc 5- 6ac1 6ac2 8bc

18ba. Peter Dyk. Db 14,7 54 C N N O To 1,8 4,685 4,685 5.28-51 208d. Babb Armstrong Db 14,7 54 C N N O To 1,8 4,685 5.28-51 2.28dd. Babb Armstrong Db 14,7 54 C N N F D D D D D D D D D	T49 T54		Y40r	Caf; T46	Ww	
Peter Dyk DD 39.1 4 P N O TC 1.3 4.743 7.8 C TP 1.8 4.685 2 C C TD 1.8 4.685 3 4.884 A B B B B C C C C C C C C C C C A	_ : ::		வ் வ		10-14-52	
Peter Dyk	_ " ! !	3 71.58 12.71 10	2.20 3 27 13.03	28,17 320 115.51 350	35.80 485 10	<u> </u>
Peter Dyk			4,744	5,154		
Peter Dyk	1.3 1.8 0	-4.5 0	0 0	3.5	o	
Peter Dyk. DD 39.1 4 P N N Russell Rector. Du 14.7 54 C N N Zenas Warwood DD DD 100+ 5 C C E W. E. Dean DD 100+ 5 C C E W. E. Dean DD 100+ 5 C C E D. T. Saisbury DD 44.2 5 C C E Rose Warwood DD BD 44.2 5 C C E Go. H. Hutchinson DD BD A4.2 5 C C E O. H. Hutchinson DD BD C A R Cy H Co. H. Hutchinson DD BD C C E N I Incepter Warwood DD BD C C B C N I Jales Fester Marrayod <	Tc Tp Tp	Ls Tc Tc Ls	Tp Ls Tp	Tc Ls Tc Ls	Tp Ls Ls	Ls Ls
Peter Dyk. DD 39.1 4 P N	0 0 0,8 0	00000	ZAQOA	AOZZZ	NN DOO	D, S, D, S, D, S, D, S, D, S, D, S, D, S, D, S, D, S, C, C, C, C, C, C, C, C, C, C, C, C, C,
Peter Dyk. DD 39.1 4 P do. do. do. do. do. do. do. do. do. do.						
Peter Dyk. DD 39.1 4 "do."do. "do."do. "do. 4.87 54 Ralph Armstrong. Sp 33.8 48 48 Zenas Warwood. Sp 100+ 5 42 Delwin Theisen. Dr. 100+ 5 36 Bolwin Theisen. Dr. 44.2 5 Bo. T. Saisbury. Dr. 44.2 5 Bo. T. Saisbury. Dr. 50 48 Go. H. Hutchinson. Dr. 50 48 Go. H. Hutchinson. Dp. 62.9 5 Bose Warwood. Dp. 62.9 5 Jim Border. Bp. 70.8 5 Barl G. Smith. Bp. 70.8 5 Zales Ecton. Bp. 40.0 4 M. C. Smiley.		ပတ္သည္ပမ	Z, P C,	C C C C C	yz yży	<u>, გაგააგგ</u>
Peter Dyk. DD 39.1 Edition DD 14.7 Edition DD 14.7 Edition DD 14.7 Edition DD 14.7 Edition DD 15 Edition DD 15 Edition DD Edition DD Edition DD Edition Editio	ଟଠୟ	CHHC	氓도도도도	<u> </u>		<u> </u>
Peter Dyk. DD do. do. Bussell Rector. Du Zenas Warwood. Sp W. E. Dean. Du Delwin Theisen. Du D. T. Saisbury. Du Bose Warwood. Du O. H. Hutchinson. Du O. H. Hutchinson. Du Jim Border. Dp Lester Warwood. Dp Jim Border. Dp Jim Border. Dp Delmer Moore. Sp Willard Harris. Dp Zales Croek School. Dp Jim Border. Dp Willard Harris. Dp Zales Ecton. 1915 Dr M. C. Smiley. Dr Dean D. Francis, Dr Trustee. Henry Deltan. J. Veltkamp. Dr John Dykstra. Dr John Dykstra. Dr John Dykman. Dr John Dykman. Dr Herry Dyk. Dr						2,-12 4 6 6 8 8 4 4
Russell Rector. Ralph Armstrong. Russell Rector. Ralph Armstrong. Ralph Armstrong. Ralph Armstrong. Ralph Armstrong. Ralph Armstrong. Rose Warwood. Rose Warwood. Rose Warwood. Rose Warwood. Rose Warwood. Rose Warwood. Rose Creek School. Rose Creek Sc	39.1 14.7 33.8	15 100+ 44.2 50	8.5 14 95 62.9	70.8 401 158 500	600 42.3 556 40	95 102 80 105 114 120 230
Peter Dyk. Bussell Rector Ralph Armstrong. Zenas Warwood. Zenas Warwood. Delwin Theisen Delwin Theisen Dolwin Theisen Dolwin Theisen Dolwin Theisen Dolwin Warwood Couls Warwood Dolwert Snell 1950 Lester Warwood 1948 Delmer Moore. 1948 Delmer Moore 1948 Delmer Moore 1955 Earl G Smith. 1915 Earl G Smith. 1915 Earl G Smith. 1915 Trustee Henry Delaan 1921 T. Emmelkamp. 1940 W. VanDyk. J. Veltkamp. Herry Dyk. Henry DD Du Sp Sp	Dr Dr Du Sp	D D D D D D D D D D D D D D D D D D D	Sp Dr Dr	Dr. Dr.		
18ba			1950 1948	1915	1921	1951
	18bcdodo20adRussell Rector23cdRalph Armstrong	:::::	34ddc Couis Warwood	5-17cc Delmer Moore	M. C. Smiley	3bb E. Ypma

Table 36.--Record of wells and springs--Continued

	Remarks	L; Y12r L; S; F175	Y30r L	L; Yl6r Yl2r; D5r	Caf Ww Y12r; D30r L; Y16r; D33r Y24r; D20r
	Date of measurement			1951	8-18-52 8-18-52 8-20-52
1u	Distance to water level below measuring point (feet)	40 84 105 90	88	105 104 100 30	365 365 4 28 50 34.07 8 8
point	Height above mean sea level (feet)				4,4477
Measuring point	Distance above or be- low (-) land surface				2.0
Me	Description	21 21 21 21	Ls	si si l	1.
	Use of water	2,0 0 0	QQ	0000	D,S D,S D,S D,S
	Type of power	× ∺ ∺		国	ы №
	Type of pump	Cy Cy		Cy	, yy, y,
	Type of casing		ద	дддд г	,
(s	Diameter of well (inche	4 9 9	9	9 - 9 4	4 646644664
	Depth of well (feet)	75 111 235 187	128 102	153 164 175 80 140	280 450 450 67 172 160 180 40 32
	Type of well	Dr Dr Dr	Dr		
	Year drilled	1912 1949 1910	1949 1952	1948 1952 1948	1949 1915 1915 1915 1951
	Owner or tenant	Sam Dyk. A. Dykstrahouse. Lena Feddes. Christian Reformed	Gnuren, Henry Santhuisen, H. Douma,	Elizabeth Emmelkamp Sam Sinnema Pierre Hoekema M. Flikkema	Herman Vanlyken. B. R. Bates. Alma Newbury. J. Lucas. H. Cok. Henry Cok. Patten Estate. Menko Flikkema. do.
	Well	D1-3-11aa 13bb 13bd	13cal	13cb1 13cb2 13cb3 14ba1	14cc

TH882; L; A; Cp 15-113; P185; F113; Caf; T51-115	A; Caf; T51 L; Y750r A; Caf	A; L	Y25r Caf; T51	TH255; L; A; Cp 5-65; P140; R; F65	3	Th; L; R
15.20 10-14-52	4-22-54 1- 7-53 12- ?-48 8-29-52	5-8-51	5- 9-51 8- 9-51	3-17-53	8 -6-51 8-6-51	2-23-53 4-8-53 4-25-53
15.20	56.41 50.71 47.40 31.39	51.44 23 42.79 10	7 8.20 5 10 5.79	18.61	12 4.55 6 10 8 8	6 6 13.61 23.70 5.57
4,680	4,444	3.0 4,457	4,364	4,407	4,413	4,429
1.0	2.4 0, 0		0	1.0	0 0	-4.0 1.0
Tc	Tc Ls Ls	Tc Ls Tc Ls Ls	Ls Tc Ls Ls	$T_{\mathbf{c}}$	Ls Ls Ls Ls Tp	Ls Ls Tc Tc
z	Ir,0 P P	O D,S In D,S	D, S	0	2,0 2,0 2,0 3,0 0,0 0,0	00000
z	ы ё, ы О, ы	年四世 四日	EZE E	z	耳回回回回回	HHHZZ
Z		Cy J J Cy	r Z r	Z	ري د د د د	2 N 2 N N
다	444		Φ	д	<u> </u>	<u> </u>
9,8	6 4 4 8 8	13 4 4 13 4 4 6	9 42 4 9 4	9	ਚ ਚ ਚ ਚ ਚ	ာ ဂ ဂ ဂ ဂ _{လုန်}
113.0	107 110 200 107	57.7 60-65 178 50 21	30 8.4 35 30 22.4	65.0	35 25 40 30 25 21.4	28 40 34 97.5
Dr	Dr Dr Dr Du	Dr. Dr.	Dr Dr Dr	Dr	Dr Dr DD Dr	20000
1952	1954 1941 1948		1953	1953	1951	1953
36bc U. S. Geol. Survey 1952 Dr	4- lbc Fred Bessette	2ab	4cc2do 6bbW. L. Sales. 6cd1 Harry Droge 6cd2dodo	6ddc2., U. S. Geol. Survey 1953	6 ddd Queen Bly	8da1 Dick Dolezalik, Jr dodo Jr. H. Brant D. H. Brant 9ba1 U. S. Geol. Survey 1953 9ba2

Table 36.—Record of wells and springs.—Continued

t		1			
	Кета ткь		44		
		A	Caf		A .
	Date of measurement	8- 6-51 2-23-53 4-23-52	4-24-52 7-28-52 7-11-51	7-10-51	4-23-52
31	Distance to water level below measuring poit	8.29 16.98 54.56 20	62.20 5 18 12.37 15.31	3.09 4 20 20 20	25 23.93 25 7.72
point	nsəm əvoda üfeləH (1991) (1991 səz	4,437	4,461	4,530	4,486
Measuring point	Distance above or be- low (-) land surface	0.6	-4.5 -4.0	0	1.0
Mea	Description	Tp Tp Tc Ls	Tc Ls Ls Hp Tc	Tc Ls Ls Ls	Ls Tp Ls Tp Ls
	Use of water	D,S D D,S D,S D,S	D,0 D,8 D,0 D,0,0	2,0 2,0 2,0 2,0 0,0	D,S,O D,S,O D,S
	Type of power	ыыыры	西西田田田	ыыыыы	医耳回耳因
	Type of pump	J J Cy Cy	ر د د د	L L C L	J Cy L
	Type of casing	4 4 4 4	r	Р Р Р Р	4 K K C F
(s	Diameter of well (inche	24 5 6 5,3	40000	6 6 5 42,1	6 42 42 6
	Depth of well (feet)	25 30.0 70 95 54	76 75 50 80 65	35 33 72 60 25	70 30.5 30 12.5
	Type of well	DD Dr Dr	Dr. Dr.	Dr Dr Dr Du,	Dr. Dr.
	Year drilled				
	Owner or tenant	N. E. Baker	R. E. Huelster Roy Surface Carl Miller H. C. Davis.	13cc H. B. McCay, Estate 13dd P. S. Antonsen	14cc H. J. Finnegan
	Well	D1-4- 9bc 9cb 10ba 10db	12bb 12cb 12da 13ad	13cc 13dd 14aa 14bb	14cc 15ab 15ad 16bb

					Y24m; D2.8m;	TH280; L; A; Cp 155-223; R; Caf; T49
7-13-51				7-10-51	4-18-51	5- 6-53
5 4 6 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 6 6 3	30 82 50 7 25	60 8 10 23 18	3 15 3.18 3	4 4 14.00	14,00
4,445				4,532	4,571	4,570
0				0	1.0	1.0
Ls Ls Ls Tc	Ls Ls Ls Ls Ls Ls Ls Ls Ls Ls Ls Ls Ls L	Ls Ls Ls Ls	2	Ls Ls Tc Ls	Ls Ls Tc	Tc
D D O	D,S D,D D	D,S D, In D	D,S D D,S S,S	D D,S D,S D	OsO	0
西西西西耳	西西西西西	西西西西西	存田居田田	耳瓦西西西	田田区	z
000 n h	r C Cy	O + 1 C	0 e o o o	$\circ \circ \circ \circ_{\mathcal{C}_{\mathcal{C}}^{\mathcal{C}}}$	L Cy	z
다다ば다다		РРСРР		Р С,Р Р	4 4 4	Д
15,12 15,12 36 4	20000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	გ ფ 4 დ დ დ	4,5 4,5 4,4 4,4	994	9
8 8 16 43 28.1	36 62 40 20 50	82 194 80 42 100	75 56 35 28	30 35 27 45 19.8	42 36 30.2	225.0
Dr. Dr.	Dr Dr Dr	Dr Dr Dr	Dr. Dr.	Dr Dr Dr Dr	Dr Dr Dr	Dr
		1950				1953
16dc2 C. A. Clark	7da Ernest Hoffman	18da Henry J. Kimm	20cd M. Lee	23aa J. Benepe	24dal Carl F. Fogh	25aa2 U. S. Geol. Survey 1953
16dc1 16dc2 16dd 17ad	17da 17dc 17dd 18ad	18da 19bc 19da 20aa	20cd M. 21ad O. 22cd C. 22dal G. 22da2	23aa 23dd 24bb 24cd	24da1 24da2 25aa1	25aa2

Table 36.—Record of wells and springs—Continued

	гулешәұ	TH50.5; L; Cp32- 50; R; Y270m;	D 2. 6m				
	Date of measurement	3- 7-53	4-19-51	8- 9-51		4-19-51	
1t	Distance to water level below measuring poir (feet)	16,57	13.65 14 14	4 2.78 16 5.60	8	11.72 16 20 20	30
point	Height above mean sea level (feet)	4,570	4,569	4,602		4,550	
Measuring point	Distance above or be- low (-) land surface	9.0	α,	0 2.2		2.2	
Mea	Description	Тс	Tc Ls Ls	Ls Tc Ls Tc Ls	Ls	Tc Ls Ls Ls	Ls Ls
	Use of water	0	0 Q v	D,S D,S O D,S	D,S	0 D D,S	D, S D, S D, S
	Type of power	Z	田田の	ниния	V, Η,	2 耳 12 12 12	ыы≽ы
	Type of pump	z	C, C,	CRGGG	Cy W, H,	O'G o'G	2,0,0 c.
	Type of casing	д	ച ≱ പ	F R O F R	д	LLL LL	ндда
(s	Diameter of well (inche	9	6 42 6	9 6 4 8 8 9 8 9 8 9 9 9	2	4 4 4, 9	12 6 6
	Depth of well (feet)	50.5	25.5 25 26	56 3.5 24 9.2	09	32.1 33 56 56	100 180 100 160
	Type of well	Dr	Dr Du Dr	Da Da	Dr	Dr. Dr.	Dr. Dr.
	Year drilled	1953		1951	:		
	Owner or tenant	D1-4-25aa3 U. S. Geol. Survey	25ba1 N. Dykstra	Laurence Noyesdo Bert Ketterrer U. S. Geol. Survey E. Keltz	26da Helen W. Benepe	27bb Cameron School	29dc N. VanDyk
	Well	D1-4-25aa3	25ba1 N. Dykst 25ba2do 25ba3 do	25cc1 25cc2 26bba 26bbb	26 da	27bb 28bb 29aba	29dc 30aa 30da

1			Y27r; T46	A Y48m; D8m	TH162; L; A; Cp 15-145; F139,6; Caf; T47	_
8-6-51	7-17-51		4-24-51	6-29-53 6- 3-50 5- 3-51 8- 3-51	7-16-51 do 10-26-53	:
8 8 8 4 4.54	6 4 4 4 2,4	4 100 15 12	11 16.80 12 18.10	4.27 33 32.35 5.96		10
4,610	4,632		4,459	4,450	.5 4,476 0 4,455 1.0 4,491	
0	9.		1.0	1.0 -5.8 2.0	<u>-</u>	_
Ls Ls Ls Ls Ls	Ls Ls Tc Ls	Ls Ls Ls	Ls Tc Ls Tp	Tc Ls Tc	TP Ls Tc Ls	Ë
0,8 0,8 0 0 0	NNNDZ	D D S D,S	DossD	s D,s O	o, o o o o	Δ
田耳田 田田	ZEEE	西西西耳田	HZHHH	HHHZZ	EBZ BE	<u> </u>
C C C C C C C C C C C C C C C C C C C	Z O 25 25 25	20002	2 C C C Z	OppZZ	C Z Z	ا
다 다 다 다	дддн≽		44404	4444	<u> </u>	<u>,</u>
4 0 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 4 4 10 36		4 4 8 30 by 60 12	4 4 0 0 ° ° 14	6 8 8 12	9
280 35 35 38 18.4	50 17 18 19.4	30 140 110 35 50	35 48.0 40 25.8	25.6 30 65 62.1 7.7	28 19 145.0 25	20
000000	ñññññ	ក់ក់ក់កំក	ក៏ក៏កំកំក	ដីកំដុំកំដ		ŭ
1910				1950	1953	
L, VanDyke. Mary L, Esgar. Johns P, Heiskell. John Cook.	do	36dd3do	C. Toohey. E. B. Tonn. do. A. G. Kluckhohn.	George VanHoorn Alfred E. Heinrich Gallatin Field Gallatin Airport. U. S. Geol. Survey	9ac John Toohey Dr 9bb George VanHoorn Dr 9cd U. S. Geol. Survey 1953 Dr	Fred Schneiter
31dd 32aa 33aa 34bd 35ad1	35ad2 35bd1 35bd2 36dd1	36dd3 5- 1cb 2dc 3cb	4bd 4db1 4db2 4dc1	5ad 5cd 6cd 8ab	9ac 9bb 9cd	10cc

Table 36.—Record of wells and springs—Continued

	,		ŕ		ŕ
	Иетаткs	Caf; T52			IJ
	Date of measurement		8-21-52		12- 1-53
1	Distance to water level below measuring poin (feet)	55 65 25 165 170	65.27 25 23 24 8	9 11 15 15	6 30 16 18.70
point	Height above mean sea level (feet)		4,828		
Measuring point	Distance above or be- low (-) land surface		1.2		
Mea	Description	Ls Ls Ls Ls	Tc Ls Ls Ls	Ls Ls Ls Ls	Ls Ls Ls Ls Ls
	Vatew to sel	D,S S D,S D,S	N D,S D,S D	D D,S D D,S D,S	D,S D,S D,S D,S
	Type of power	ыыыыы	西西西西	нынын	西 莊 西
	Type of pump	χς, χς ς ς ς ς	, , ,	Cy Cy J	J 22 2 2
	Type of casing			<u></u>	
(1	Diameter of well (inches	6. 6. 6.	40040	4 9 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	36 6 5 6
	Depth of well (feet)	75 85 65 225 182	120 37 38 28 50	17 30 12 35 37	12 36 60 50 40
	Type of well	ច្ចក្តុ	ចំដំចំដំ	Dr Dr Dr	Dr. Dr. Dr.
	Year drilled			1950	
	Owner or tenant	D1-5-11bc1 Tom Toohey	13aa J. S. Smiley	5dc Marie Freese	17cc W. H. LaRue
	Well	D1-5-11bc1 11bc2 11cb 12ad	13aa 14bd 14db 14dd	15dd1 15dd2 17ac	17cc 17db 18bb 18cc

	Caf	Ą	U A			¥
2- 3-53 8- 2-51	4-18-51 do.	5-15-51	7-17-51	8- 3-51 4-18-51 7-17-51		4-18-51 7-25-53
9.79 6 20 16 8.87	10 11.98 17.07 31	10 10 5,30 23 35	14 17 14 12.57	11 11,10 17,54 20 9.24	8 8 10 25 10	10,29
4,563	4,583	4,596	4,635	4,601 4,590 4,624		4,558
0 2.0	-4.5 5.	0	1.0	1.6 .5 -5.5		°.
Tc Ls Ls Tc	Ls Tc Tc Ls	Ls Tc Ls	Ls Ls Ls	Ls Tc Ls Tc	Ls Ls Ls	T. T.p.
0 D,S D,S	D,S D,S D,S D,S	S. O O. D. S	D,S O,S	0,8 0,8 0,8 0,8	D,S D,S D	D,0 S
ZHHHZ	ппыпп	ынны	H N H H H	нхнын	西井田田田	н
Suyuz	L Cy Cy	Cy Cy L	Occuzy	L Z Q L L	2, C 2 C C	Ç
4444	~~~~≥	Р М.Т. Т.Т	ддддд		요>요요요	# #
4 0 0 4 ₁₀₁₄	5 5 10 6 36	48 48 12,4 12	0 0 0 4 4	O 044	9 8 9 4 4 4 9	54 36
27.0 40 80 90	75 22.8 30.1 65 22	36 17 13.1 26 74	27 127 78 35 28.2	32 13.2 26.5 42	35 12 35 60 60	14.9
ងិជំជំជំ	ក្នុក្ខ	Dr DD Dr	ចំពុំចំពុំ	Dr. Dr. Dr.	ច្ចក្នុ	Da
1951		Dr. Dr. Dr. Dr.	1949 1948 1900	1951 Dn Dr Dr Dr Dr Dr Dr Dr Dr Dr		
19cd John Paugh	22bc William McGinley 22cc Valley Center School 22cd H. C. Rogers 23aa J. S. Smiley 23ac R. Hoffman.	23adldo. 23adldo. 23dbNelson School. 24bcA. F. Reed	26ab1 Mary C. Biggs	26db Elton L. Bogart 27aa U. S. Geol. Survey 27bb Emma D. Preston 27cc A. McGinley.	28cal J. L. Rundlett	30aa Mary Doane Du 30cb Mary K. Marx Du

Table 36,—Record of wells and springs—Continued

	уетатка	٦	TH250; L; A; Cp 15-150; R; Caf;	16-71	٦
	Date of measurement	5-17-51 3- ?-47 7- 6-51	10-27-52	7-17-51	7- 6-51 5-27-52 8- 9-51 9- ?-48
	Distance to water level below measuring point (1991)	8.78 32 4 5 5 114 112 4.20	11.92	6.23	5.94 5.63 6 4.44 9 10
point	Height above mean sea level (feet)	4,593	4,713	4,694	4,721 4,720 4,667
Measuring point	Distance above or below (-) land surface	0.3	1.5	S	1.7
Mea	Description	Tp Ls Ls Ls Ls Ls	Ls	Tp Ls Ls	Tc Tc Ls Tc Ls Ls
	Use of water	0 0 0 0 0 0	90	S,O D	0 0 0 N D C O O O O O O O O O O O O O O O O O O
	Type of power	н ныныых	ыZ	HHZ	ZZHZHH
	Type of pump	ZOOGAG G	7 Z	Z Ç Z	CAPAGO
	Type of casing	нчжччччч	요 요	民民民	다 다 다 다 다 라 다
(sa	Diameter of well (inche	14 6 6 6 6 4 8 6 6 6 6 8 6 8 6 8 8 8 8 8	48 6	48 48 48	0 0 0 0 c
	Depth of well (feet)	14,7 57 22 52 35 35 30 9.5	30 157.0	10.5 12 12	8.9 80 7.5 95 20
	Type of well		Du	ក្និក្ខិក្	Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr D
	Year drilled	1947	1952		1951 1952
	Owner or tenant	D1-5-30cd James Paugh	34cc2 U. S. Geol. Survey	35ca1 A. Nickles	35cd1
	Well	D1-5-30cd 30dc 31cc 32ca 33cd	34cc1	35ca1 35ca2	35cd1 35cd2 35da 36ac 36bb

BASIC DATA

A Y100-500r; Cao; T47 Y100-500r; Cao;	U; Ww Y12r; D70r	Y5r	Caf	Y10r; T58 Y30r Y12r; D4r		L; Y40r Y20r; D85r
7- 6-51		5-16-51			8-21-52 do 6-29-51	7-17-51
6.60 2.84 6	600 35 14	123 6.57 284 65	90 45 50 30 15	120 30 8 20	26.75 15.04 5 5 5.54	4.10 15 20
4,718		4,591			4,984 5,022 4,641	4,640
2.0		ĸį			0 0 2.0	0
T Tp	Ls	Ls Tc Ls Ls	Ls Ls Ls Ls	Ls Ls Ls	Tc Tc Tc	Tc Ls Ls
O C C I	ZQQ	D,S O N N	8,0 8,0 8,0 8,0 8,0	D,S D,S D	Owdrz	Z O W
ZĦ Ħ Ħ		日本の耳の	ध≽≽७छ	स्व विव	HZHHZ	н
ZO Z	C	<u> </u>	<u> </u>	Z 5 UU	Szosz	C C
4 O 4	<u> </u>	Р Р С,Р	ተ ተ ተ ተ			> ₽ ₽
4, ⇔ 63 0	4.00	36, 8 36, 8 4,	6,4 4 4	r-4c0	4 8 4 9 8 8 8 8 8	14 6 4
33	950 80 95	273 36.6 295 400 80	400 85 170 100 40	150 60 35 42	50+ 18.3 27 12 14.1	18.8 34 200
Sp Sp Du	ăăă	88888	66666	Sp Dr Dr	22722	D D D
1951	1952 1953	1951		1948 1943 1951	1951	1949 1952
36ddd U. S. Geol. Survey	D2-2- 1dd, Genevieve Moore	2cb Geo. Sinnema	10aa H. Viterdyk	13cc R. Blanksma	34ca Roy C. Hyde	1ba2 Lawrence W. Barclay 4aa Hayes Bryan
G	D2-2.				4	

Table 36.—Record of wells and springs-Continued

	Remarks	TH; L; A; R; Caf;	3001	A		TH150; L; A; Cp	12-65; P80; Caf; T49				-	A; T52	·			 -
	Date of measurement	2-8-52	5-23-52	5-14-51	op	9-8-53	6	16-82-9				6-21-47				
1r	Distance to water level below measuring poir (feet)	26.53	8.27	8,18	7.34	5 10.92	G G	08.6	22	- 9	٥	3.80	9	m c	20	12 6
point	Height above mean sea level (feet)	4,910	4,850	4,697	4,697	4,706	2	4,734				4,738				<u></u>
Measuring point	Distance above or be- low (-) land surface	1.0	1.0	0	1.0	1.0		Z*0				.5				
Mea	Description	Тс	Тс	$^{\mathrm{Tp}}$	Tc,	Ls	Ė	o T	Ls.	s 1	-	T C	Ls	្ន ្ម	L E	Ls
	Use of water	0	z	0	0,0	J Z	()	D,S	9 0		0	Q	Q C	Ω	ДΩ
	Type of power	Z	H	H	Ħ	ΉZ	2	Ζ,	A	4 H	þ	1 #	臼	田田	曰	нн
	Type of pump	Z	Cy	Ç	Ç,	- Z	2	ζ,	٦,	ر د م	· -	Cy o	Cy	ځ د	ت ($\frac{C_y}{C_y}$
	Type of casing	Ъ	Ы	Я	H, H	거다	£	4	H	⊣ 124	Þ	4 E				ם ם
(s:	Diameter of well (inche	9		72		4 9	m	4	12,10	36		12	4	10	9	8 4
	Depth of well (feet)	0.009	82.2	10.6	16,1	25 65.0	0	c.•o	25	16	Č.	10.4	25	15	38	35
	Type of well	Dr		Dr.	9	D.	å	<u> </u>	Da :	2 5	å	Ωn	Dr	مّ مّ	DD	Dr
	Year drilled	1661	:	:		1953	1 20 1	1331	:							
	Owner or tenant	D2-4- 9bc U. S. Geol. Survey	M. Skank	Rubye Kaemmer	A. D. Pruitt	U. S. Geol. Survey	(1	ao.	Michel Bros	13cbc Chicago, Milwaukee, St.	Paul & Pacific RR.	13cc Hugh Nicely	Lucille B. Sigler	13da Herbert B. Ross 13dd P. Dolan	14aa Guy Burrell	14ac I. M. Maynard
	Well	D2-4- 9bc	9cd	10dd, Rubye F	11cd1	11caz		1000	13ab Michel	13cbc	Paul 13chd R R S	13cc	13cd Lucille	13da	14aa	14ac 14ada1

A, T50 Y120r; Caf; T140 L	Y50r; Caf; T56	Y18r	A Y50r; T58	Y25r; D11r	Y60r L L
7-13-53	5-15-51 12- ?-49	5-22-51	7-14-53 do 5-18-51	7-13-53	
2.85 6.5.38 15 10 8	18.44 1 25 5	5 10 10 20,10 5	3.87 6.53 57.25 6	4 6.45 10 15 24	17 8 8 6
	4,874	4,813	4,918		
.6	īĊ	9	1.0 1.6 0	2.0	
TC LS LS LS LS	Tc Ls Ls Ls	Ls Ls Ls Tp Ls	Tc Tc Tp Ls	Ls Tc Ls Ls	Ls Ls Ls
O N O O O O O O O O O O O O O O O O O O	0 0 0,8	0000	S N D D S,	D,S D D D	UHDDD
S H S H H H H H H H H H H H H H H H H H	н ыгы	нимин	ничи	ыны ы	ल लल
	P Cy T J	R Cy P Cy T Cy	P Cy	C B C B C	
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 8 4	42 4 4 1 10 10	4 4 6 4	4 9 8 9 9	99479
50 11.1 50 70 23 38 120	68.1 37 40 35	14 35 40 21.5	26 25.9 97.8	12 20 30 40 96	34 30.5 64 78 10
Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr.	DD Dr Du Sp Dr	Dr. Dr. Dr.	Dr Sp Dr	D D D D D D D D D D D D D D D D D D D	Dr. Dr.
1945	1949			1952 1953 1950	1951 1949 1948 1948
14ada2 A. H. Doornboss 14add J. W. Devous 14bb John Kaemmer 14daa A. E. Randall 14dacl Bozeman Hot Springs 14dacl do 14dc N. W. McKenney 14dd C. R. Rupp 15da Wilbur Story.	17aa Pine Butte School 18ac Harold Todd 18ca H. DeHahn 22da A. B. Steele 23aa R. Otto	23ab James Todd	26ac O. L. Ward	34dd1 W. Olson	1ddb Scott Potter

Table 36.—Record of wells and springs—Continued

	Remarks				
	Date of measurement	5-15-51	5-22-51 7-17-51	7- 6-51	4-19-51
1	Distance to water level below measuring point (feet)	12 12,94 6 10 6	12 4.99 20.88 10 6	4.88 16 2 10 2	2 20 12 4.82 7 4.74
point	Height above mean sea level (feet)	4,779	4,710	4,694	4,822
Measuring point	Distance above or be- low (-) land surface	0	1.1	2.0	.5
Mea	Description	Ls TP Ls Ls	Ls Tc Tp Ls	Tc Ls Ls Ls	Ls Ls Tc Ls
	Use of water	попип	00000	0 D,S D	D,S D,S D S,O D
	Type of power	西耳田田耳	BZHBB	NEREN	HEERE
	Type of pump	0 20 0 5	- Z 200	Z ÇÇZ Z	ZCZCZ
	Type of casing	口克托托口	ддддд	r	дычы≽
(s	Diameter of well (inche	6 72,60 48 48 6	04000	14 by 20 18 6 6	36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Depth of well (feet)	26 24.0 23 20 34	45 18,5 38 30	9.5 22 9 40 30	30 24 32 7.3 21
	Type of well	Da Da Da	ច្ចក្តុ	ក្នុក្ខក្នុ	D D D D D D D
	Year drilled	1950		1951	1918
	Owner or tenant	2cd Wilbur E. Smithdodo3ab1 Edna T. Whitedododododododo	Wilbur E, Smith. R. G. Baxter. do. Emma Miller. J. A. Stout.	U. S. Geol. Survey Vernon Lang	I. N. Love. J. E. Norton. Fred Happel J. C. Huffine. do J. E. Norton.
	Well	D2-5- 2cd 2dd 3ab1 3cc	3db Wilbu 4ab R. G. 4bb dd 4cc Emm 4dc J. A.	5ba 5dc 6ba 6dc	8bc J. R. 1 8db J. E. 1 9bc Fred 1 9ccl J. C. 1 9ccldo

BASIC DATA

	A; T54	Y250r	TH265, L; A; Cp 20-110; P125; R; F125; Caf;	A; Caf; T52	R T46
op	10-23-52 4-17-51	6-29-51	11- 8-52	6-29-51 4-17-51	do 4-19-51 4-19-51
5.98 3 6 12 12	12 10 4 4.27 1.12	5 5 11 4.80	5 5 7.13	8 8 5 6.41 3.86	3.92 8 5.72 2 3.85
4,831	4,855	4,865	4,901	4,931 4,858	4,859 4,839 4,833
ē.	1.2	2.0	1.0	2.0	0 8 8
Tc Ls Ls Ls	Ls Ls Ls Tc	Ls Ls Tc	Ls Ls Ls Tc	Ls Ls Ls Tc	Tc Ls Tc Ls Tp
s D D,S	D D S N D	DOHOD	D D D,S	s D O S,O	D,S D,S D
HHZHH	BBBBB	HE NE	eee, v	HEREE	HHZHHH
Cy	OOrzr	rr ZZ	OOPON	$C_{\mathbf{y}}$	Cy S L Sy
н ччч		дддд	ддддд	4444	чнннч
4.2 6 6	0 80 0 4 rv	က က တ _{သုန}	ი ი 4 4 ഗ്ര	လ ၀ ၀ ျပ ⁸⁾⁴	5 10 20 15 66,48
9.1 22 28 28	25 21 45 33.2 30	42 45 46 9.6	37 30 46 46 110.0	39 45 45 9.7	39.7 14 8.4 11 8.1 25
Dr Pr	Dr. Dr.	Dr. Dr. Dr.	D D D D D	p p p p	Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr.
1951	1948 1950 1945 1336	1948 1949 1949 1951	1949	1951	1951
9dc2dodo	11bbb O. F. Christenot	11ddc V. E. Iverson	3cba G. M. Beatty	14cd2dodo14daRalph and Nick Aakjer14dd U. S. Geol. Survey15aa1E. F. Boldt	5ac

Table 36.—Record of wells and springs—Continued

ł		1			R.
	гүлешәұ				TH1,000; L; A; Cp 90-165; P165; R; Caf; T44-56
	Date of measurement	5-14-51		5-22-51	3-9-53
3	Distance to water level below measuring poin (feet)	6 4 18.54 6 30.10	24 8 8 8 8	4 5 6.39 6	6 6 5 12.98
point	Height above mean sea level (feet)	4,813		4,956	4,994
Measuring point	Distance above or be- low (-) land surface	0 2.5		4.	2.2
Mea	Description	Ls Ls Tc Ls	Ls Ls Ls	Ls Ls Tc Ls	Ls Ls Tc
	Use of water	D D,S D,S D,S	D,S D,S N	DOODD	0000
	Type of power	甘甘西田田	ыыыыы	ыыны н	ZHHH
	Type of pump	ကိုကိုခဲ့ပေ	50000	S S S S S S S S S S S S S S S S S S S	ROOO
	Type of casing		다독다菋다	R T T T T	нача
(s	Diameter of well (inche	9 48 6 6	36 36 4	48 16 4 6	10 4 6 6,4
	Depth of well (feet)	28 11 63 60 89.4	65 14 36 12 65	14 23.9 14 45	20 40 43 165.0
	Type of well	Dr Dr Dr	p p p p	D D D D D D	D L L L
	Year drilled	1951	1950		1952
	Owner or tenant	Ezra Allsop. H. D. Fulker. O. A. Brenden. J. L. Bradley. Homer Wilson.	M. W. Beatty	Stephen White	do
	Well	D2-5-16cd 16dd 17ba 17da	19bc M. W. 20aa Ezra f 20ad1 Mason 20ad2do 20cc T. B.	20da 21aa 21da 22aa1	22aa3 22ba 22ccc 22ccd

			A; T45			
12 10 44 41 10	5 5.99 5-10-51 8.23do	5.24 7-30-51 6 8 5.73 5-14-51 2.40 do	5 2.70 8-4-52 3	5 6 5.69 7-27-51 5.70 do	5.39 do	ο τυ 4 τυ
	5,069	5,086		5,038	5,037	
	.8	1.0	4.	1.0	0 4.	
Ls Ls Ls Ls	Ls Ls Ls Tp	Tc Ls Tc Tc	Ls Ls Ls	Ls Ls Tc	Tp Tc Ls Ls	Ls Ls
DxXxD	р В 8,0 В D	р р р о,	D D D S	S D,S U	s D,O D,S D	D D,S
田田以田田	西西印度西	Cy H,G C E C E Cy H Cy H	ыннп	HENER	西耳西西,西	阿瓦西西
OCZPO	ეეე ი ეეე ეეე ეეე ეეე ეეე ეეე ეეე ეეე ე	30033	ပိုင်ငံပ	A C. L. C. F.	00,200	0050
ተ	다 다 몫 氓 다	дддде	ተ ተ ተ	면목면무면	既日라日日	ጉዋዋዋ
0 4 4 4 0 8 8 8	6 4 36 60 by 72 6,4	16 6 14 14	9 4 4 4 1	6 42 18 5	42 3.5 6	10 111 4 6
87 35 10 8	40 25 14 9.2 30.4	43.2 8 40 11.4	25 19.0 48 12	25 12 10 9.0 46.5	8.5 11.9 8 75 20	20 8 16
D D D D D D D D D D D D D D D D D D D	Dr. Dr.	D D D D D	D D D D	Dr Dr Dr Dr	Du DD Dr Dr	D D D
	1904					
23aa1 Fred Boylandodo33aa3 do do 23aa4 do 23aa4 do 23ad4 do	George E. BelshawRandolph Geedo	Gerald H. Delin	Helen W. BenepeBenepe Estatedodo	Vern Whitedo Nels Jensen Edith E. Willson	Steve O'Donnell, Estate Harry J. Wilson John TeSelle N. L. Scheytt	Robert H. Marshall W. A. Figgins. John TeSelle. Mary E. Gant
23aa1 23aa2 23aa3 23aa4	23bb 23bd1 23bd2 25cb1	25cd 25db 26ad 26cc1	27ba 27cc 27dd1	28aa1 28aa2 28cc 28da1	28da3 29ac 29cd 29da	30aa 32aa 32ac
508919	D-60—19					

Table 36.—Record of wells and springs—Continued

	Remarks			L; A; Cp	P L; P; R; Y450-500
	Date of measurement	5-14-51	5-15-51 4-23-51	5-14-51	7-30-51
дu	Distance to water level below measuring poin	20 4 9.22 10	4.34 11.37 10 10	37.48 10 10	6 3 2.73 7
point	Height above mean (1991) level sea	5,119	5,093	5,203	5,137
Measuring point	Distance above or be- low (-) land surface	9*0	0 .3	1.8	0
Mea	Description	Ls Ls Tp Ls	Tp Ls Ls	Tc Ls Ls Ls	Ls Ls Tc Ls
	Use of water	D,S D,S O O D	0 0 0 0 0 0 0 0	Ir,O D S D,S	z Z Z Z Z
	Type of power	西下西耳田耳	HZHHH	Q	HZE Z
	Type of pump	CZŚŚŚŚŚ	SZ O SS	CRY	Z Č Z C
	Type of casing	д дндн	다 : 다 딱 다	<u> 4 4 1</u> ≥	교다동다라
(s	Diameter of well (inche	4 4 6 4	6 36 4	12 6 6 10	40 8 6 20,10
	Depth of well (feet)	30 8 12.1 30 15	7.0 22.5 33 30	155 18 45 20	20 36 56 304
	Type of well	Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr.	Dr Dr DD	Dr Dr Sp	Dr. Dr. Dr.
	Year drilled	1915 1939		1948	1952 1951 1936
	Owner or tenant	R. J. Pasha, Estate Fred Boylan. W. W. Roberts. Pasha Estatedo	L. L. Benepe Benepe Estate. Hugh Heiskel. do Henry B. Covey.	H. E. JonesdododododoHarold Klumph	6ba2dodododogdvdoBilizabeth Nash
	Well	D2-5-33aa 33bb 33cb 33db1 33db2	34ba 34cd 35aa1 35ab2	35dc 35ddl 35dd2 36aa	36ba2 36ba3 36dd 6- 6bd

L; Y15r; D20r TH32; L	L L; Y20r; D25r L; Cp22-90; Y25r L; Y16r; D32r L; Y25r; D65r	Caf; T54			Y700r	Caf
7-23-53 7-23-53 8- 3-51		8-15-51 5-27-52 8-15-51	8- 6-51 5-25-51 5-23-52		5-18-51	
40 3,46 5 5,42	8 20 20 18 29	7 40.85 1.52 37.50	31.29 3.70 90.42 30	8 8 10 8 14	10 20 20.90	2 2 4
4,910	4,974	4,948 5,003 5,061	5,164 5,085 5,198		4,877	
3.1		5 2 5	-3.5 1.0 0		-5.2	
Ls Tp Tc	Ls Ls Ls	Ls Tp Tp Tp	Tc Tp Tp Tp	Ls Ls Ls Ls	Ls Ls Tc Ls	Ls Ls
0 2 0 2 0	2 Q Q Q Q	D 0 D,S D,O D,O	DOOND	D D D,S D,S	D,S D,S S,Ir D D	NDN
HEFZ		M N H H N	E N N E	医瓦瓦耳瓦	田田 田田	ZHH
Ç, r z z		CCCC	52220	0 r 0 r	Cy Ly	
4 H A		44044			<u> </u>	- A - L
20 20 6	9 2 9 9	8 0 4 8 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10,8 6 5 24 8	12 6 4 8	1 4 36
104 10.0 19 9.3	55 58 100 80 155	72 55 15 9.7 60	35 39.0 8.0 135 50	11 50 80 20 98	15 90 40.0 5	111
Dr. Sp.	Dr. Dr.	Da Da	Dr. Dr. Dr.	Dr Dr Dr	Du Dr Du	D D
1949	1952 1948 1953 1952 1953	1951 1902		1943		
7da Elks Country Club 10dc Myron Nuffer 17da Otto E. Knutson 18cb U. S. Geol. Survey	18db F. A. Beltz	19da N. Helburn	23bb Dean Barnett 26cb Harry Woods 27aa Williams Bros 28aa Harry Davis 29cc Nash Ranch	30ca W. W. McLeod 30db Julia Martin 31ad Elanore McRoberts 31db Hoffman Bros 32cb1 R. P. Meyers, Sr	32cb2dodo	3ab1do
					D3·	

Table 36.—Record of wells and springs—Continued

	Ediodi, diodini-w	ATER RESOURC	ES, GALLAT	IN VALLEI, MONI.
da, up dangen p p dans state on the part of the state of the part of the state of t	уеш я лка	Caf; OT; T50; Y31 Y1.5r		A; T54 Y43m; T50
	Date of measurement	6-30-53 8-22-51	6- 6-52	8-22-51 8-22-52 8-23-52 8-23-54 4-18-51
ţu.	Distance to water level below measuring point per joint	3 4 6 5.72 4.54	17 46.60 4 4	13 4.60 6.97 10.46 10 40 3.58
oint	Height above mean sea level (feet)	4,886	5,026	4,910
Measuring point	Distance above or below (-) land surface	1.0	1.4	0 3.0 3.0
Meas	Describtion	Ls Ls Ls Tc Tc Ls	Ls Ls Ls	Ls Ls Ls Ls Tc Tc Ls Ls
	Use of water	D N D N N N N N N N N N N N N N N N N N	DOODZ	0,0 0,0 0,0
	Type of power	H NHHNHH	Z MZH	ы штшыш ыы
	Type of pump	OZ ŠOZ Š P	z 5zo	C CCACC
	Type of casing	- A A A H	<u> </u>	
(s	Diameter of well (inche	4 4 9 0 1 0 0 1	30 30 5	. 4 0
	Depth of well (feet)	435 12 25 21.0 21.0 12.6	50 95.0 25 15 25	30 50 10.2 25 18.5 47 47 45
	Type of well	ន្ទីក្នុក្ខភ្ន	Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr.	ក ក ក ក ក ក ក ក ក ក ក ក ក ក ក ក ក ក ក
	Year drilled	1952	1952 1951	1953
Owner or tenant		Jim McReynolds Ben Stukey Otto Pinkerton Charles Græy do. Ben Stucky	Bad Ernest Monforton 9ba do. 0ac1 Charles Gray. 0ac2 do. 0ac3 do.	Emil Kuchling. Roy Stillman. Frank Maryott. do. Stephen Kaselnak. H. Hardgrove. J. Alberson. R. Hager. R. B. MacNab, Sr. Alice Hadzor.
Well		D3-4- 3ab3 3ca 3daa 3dad1 3dd2	8ad 9ba 10ac1 10ac2	10ad 11bca 11bcc2 11bcc3 11bdb 12ac 12ac 13ab

Table 36.--Record of wells and springs--Continued

	Remarks				
	Date of measurement			8-20-51 4-19-51 4-19-51	
1	Distance to water level below measuring point		40 6 5 5	8.99 19.07 9 6.20	1 10 6 5 8
point	Height above mean (1991) level sea			5,376 5,187 5,155	5,490
Measuring point	Distance above or be- low (-) land surface			0.7	4.0
Mea	Description		Ls Ls Ls	Tc Tc Ls	T. L. S. J.
	Use of water	D,S D,S D,S D,S D,S	D,S D D N	D,O D	QQQQZ
	Type of power	मममममम	BFBBZ	дды дь	, rener
	Type of pump	ZZZZZ	Carga	0000 000	J E,F C E J E Cy H
	Type of casing		4 . 4 4	ддь д	C,P R P R
(s	Diameter of well (inche		5 10 4	4 3 ¹ 12 24	42,6 42 42 5
	Depth of well (feet)		80 32 8	19.5 31.4 11 6.6	100 30 16 25 17
	Type of 'well	% % % % % % % %	Sp Du Dr	y D Dr.	Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr.
	Year drilled			1943	
	Owner or tenant	11da Earl Kraft	17ca Floyd Herron	wood School Figgins	20cc Rosenberg Bros
	Well	D3-5-11da Earl F 11ddb Walter 11ddcdo 12cb R. N. 15ca Frank	16aa Nash 17ca Floyd 17dc Georg 17ddc1 S. Ken 17ddc2.	17dddCotton 18ab H. E. 18baldo 18ba2do	20cc Rosen 21ab T. E. 21bba John 21bbd H. D. 21bd1 H. B.

				•	٦.	•
		15.40 8-13-51				
	14		:	15	20	14
	:	5,163	:		:	
	:	0		:	:	
	Ls	Tc	:	$\Gamma_{\rm S}$	$\Gamma_{\rm S}$	Ls
Q	Z	0	S,O	Д	Ω	Z
Ŀ	Z	Н	Ŀι	臼	闰	z
Z	Z	Cy	Z	Ь	5	z
<u>:</u>	Д	ц	:	Д	Д	Д
	9	C)		4	9	9
	80	43.4		80	168	30
Sp	Dr	Dr	Šp	Dr	Dr	Dr
	:	:	:		1949	:
op	R. P. Myers, Sr.	Donald Nash Dr	Nash Ranch	6dado	6dd1 A. Portnell1949	6 dd2 Dr
21bd2	6- 5bb R. P.	6ac Donale	6ba Nash	6da	6dd1	6 dd2

INDEX

Page
A
Aakjer Creek 85
Acknowledgments4-5
Agriculture 20, 23
Alluvial fans 13, 39-40, 42-43, 53, 57, 106,
153-156, 158-159; pl. 2
Alluvium 43, 45, 53-55, 57, 103, 106, 131,
132, 136, 140-142, 146, 149-150, 151,
153, 158, 159, 168; pl. 2
American Water Works Association 175-176
Amsden formation 30
Anceney, temperature 14, 17
Aquifer, artesian 100-101
water-table 100-101
Aquifer tests 9, 102-106, 136, 140-142, 146,
153-154, 157, 159 Archean gneiss 27
Archean gneiss 27 Arnold-Toohey ditch 84, 111
Artesian water in Tertiary strata 144, 150
micesian water in Termary Strata 144, 150
В
Baker Creek 62, 71, 89, 92, 143
Barnes ditch 82, 111
Basalt
Bear Creek 63, 66, 77, 93, 95, 96, 111,
153, 158
Belgrade, municipal water supply 110
precipitation 20, 119
temperature119
Belgrade plain. See Belgrade subarea.
Belgrade subarea, aquifer tests 104, 140-142
changes in ground-water storage 138, 142
character and thickness of
alluvium
chemical quality of ground water.
See Valley floor.
depth to water 143-144
ground-water, discharge 142
potential145-146
recharge142
location and extent 11, 140
occurrence of ground water 144
Pleistocene sedimentation 53
water-level fluctuations 123, 145; pl. 7
Belgrade trough 53-55, 56-57
Belt series25, 27, 48, 53
Ben Hart Creek
Bicarbonate in water 161
Big Bear Creek
Big Snowy group 30
Bluffs. See Escarpment. Boron in water
Bostwick Creek 65 75

Page
Bozeman, municipal water supply 99
population, 1950 20
precipitation 14, 18-19
Bozeman Creek. See Sourdough (Boze-
man) Creek.
Bozeman fan, aquifer
tests 102-103, 105, 153-154
changes in ground-water
storage 138, 154-155
character and thickness of alluvial-
fan deposits
166-167, 171; pl. 10
depth to water 118, 155-156; pl. 6
ground-water, discharge 107-109, 155
potential
recharge 154-155
location and extent 11, 13, 42, 153
principal aquifer 102-103, 105, 153-154
Bozeman Hot Springs 50, 166
Bozeman lake beds of Peale 6, 25, 32, 33
Bridger Creek 63, 73, 94, 98, 153, 165, 172
Bridger frontal fault system 49, 50, 52, 56
Bridger Range 5, 9, 12, 13, 14, 25, 27, 38, 39,
40, 42, 44, 47, 48-49, 55, 56, 57,
92, 94-95, 107, 159
Bright ditch 86
Bullrun Creek 67, 78, 95, 148
C
Calcium in water 160
Cambrian rocks 28-29, 46, 49
Camp Creek 35, 63, 72, 83
Camp Creek Hills, aquifer tests 105, 157
chemical quality of ground
water 163, 167, 171; pl. 10
depth to water 118
drainage 13, 14, 95
drainage
drainage
drainage
drainage
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157 recharge 157
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157 recharge 157 supply 34, 157
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 181 potential 157 recharge 157 supply 34, 157 location and extent 11, 12
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 181 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 181 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157 origin of name 5
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 181 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 181 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157 origin of name 5
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157 origin of name 5 Carbonate in water 161
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 45, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157 origin of name 5 Carbonate in water 161 Cenozoic rocks 32-46 Central Park fault 51, 54, 56, 146; pl. 2
drainage 13, 14, 95 geology 27, 28, 32, 35, 38, 42, 44, 50, 52, 57 ground-water, discharge 147 movement 131 potential 157 recharge 157 supply 34, 157 location and extent 11, 12 occurrence of ground water 157 origin of name 5 Carbonate in water 161 Cenozoic rocks 32-46

Page	Page
Central Park subarea—Continued	${f E}$
chemical quality of ground water.	Earthquakes, cause of water-level
See Valley floor.	fluctuations 128, 129
depth to water147	East Gallatin River, discharge measure-
ground-water, discharge 110-115, 116,	ments 63, 64, 73, 74, 83–84, 85,
147-149	87–88, 111
recharge 147, 149	•
location and extent11, 146	diversion for irrigation20, 99
waterlogging110, 147	drainage course
	gains and losses in flow
Chemical quality, ground water 162-163,	relation to ground water 107, 116, 142,
166-167, 168, 170-171; pl. 10	143, 145, 149, 153
sampling program 9	Elk Creek53
suitability of water for domestie	Ellis group
use 175–176	Eocene rocks
suitability of water for	Escarpment, east side of Camp Creek
irrigation 168-169, 174-175	Hills 12, 50
surface water 164-165, 172-173; pl. 11	east side of Goochs Ridge 50
Chloride in water 161, 176	east side of Madison River 12, 33, 36, 37,
Churn Creek 64, 74, 143, 144	38-39, 40, 51, 52, 53
Climate 14-20, 21-23	north side of Horseshoe Hills 13
Coefficient of permeability 101, 104-105	northeast side of Manhattan
Coefficient of storage 101, 103, 104-105, 106	terrace 149, 150, 151
Coefficient of transmissibiliyt. See Trans-	west of Madison River 53
missibility, coefficient of.	Evaporation, ground-water discharge by 110
Colluvium 46, 136	measurements near cottonwood
Colorado shale 32	grove114, 116
Corundum 25	Evapotranspiration, ground-water dis-
Cottonwood grove, amount of ground	charge by 109, 110-116, 132, 133,
water consumed 110, 112-116	134, 142, 145, 148, 150, 153, 155,
Cowan Creek	177; pl. 8
Cretaceous rocks	111, pl. 8
	F
Cumulative departures from volume of	
Cumulative departures from volume of saturated material 119-128	Fanglomerate
Cumulative departures from volume of saturated material 119-128	Fanglomerate
	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2
saturated material 119-128 D	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
saturated material 119-128 D Deer Creek 64, 74, 84	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147,	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147,	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169
saturated material 119-128 D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52
D Deer Creek	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47
Day	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159
Day	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111
Baturated material 119-128 D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14
Baturated material 119-128 Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111
Baturated material	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14
Baturated material 119-128 D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39
Baturated material 119-128 D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fot Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13
Baturated material 119-128 D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 109-110	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5
Beer Creek 64, 74, 84 Depth to water 118, 137, 148-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155, 158 by wells 109-110 Dissolved solids in water. 162-165, 166-167, 176	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin County Commissioners 5
D	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin County Commissioners 5 Gallatin Gateway 13, 88-89, 92-94, 97, 97, 97, 97
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 109-110 Dissolved solids in water. 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin County Commissioners 5 Gallatin Gateway 13, 88-89, 92-94, 97, 98, 119, 131
Day	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin County Commissioners 5 Gallatin Gateway 13, 88-89, 92-94, 97, 97, 97, 97
Dark	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin County Commissioners 5 Gallatin Gateway 13, 88-89, 92-94, 97, 98, 119, 131
Dark	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
Dark	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fort Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin Gateway 13, 88-89, 92-94, 97, 98, 119, 131 See also Gateway subarea. Gallatin Gateway Oil Co. 5
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 137, 142, 149, 150, 153, 155 by wells 25, 56 Dresent 12-14, 58-99 Dry Creek 27, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fot Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin Gateway 13, 88-89, 92-94, 97, 98, 119, 131 See also Gateway subarea. Gallatin Gateway Oil Co. 5 Gallatin National Forest 23
Dark	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek 61, 71, 137 Fish hatchery 23 Flathead quartzite 28, 46, 47 Flaxville plain of Alden 40 Fluoride in water 161, 169 Folds, Camp Creek Hills 51-52 Horseshoe Hills 47 Fot Ellis subarea 11, 13, 31, 32, 40, 159 Foster Creek 66, 77, 87, 111 Frost dates 14 Fossils, vertebrate 6, 33, 38, 39 G Gallatin Canyon 12, 13 Gallatin County Agent's Office 5 Gallatin Gateway 13, 88-89, 92-94, 97, 98, 119, 131 See also Gateway subarea. Gallatin Gateway Oil Co. 5 Gallatin National Forest 23 Gallatin Range 12, 13, 14, 27, 28, 39, 40,
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 137, 142, 149, 150, 153, 155 by wells 25, 56 Dresent 12-14, 58-99 Dry Creek 27, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151, 153, 155, 177 by streams and drains 109, 116, 148, 151, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155, 158 by wells 109-110 Dissolved solids in water 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105 depth to water 118	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 109-110 Dissolved solids in water. 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99 Dry Creek 27, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105 depth to water 118 geology 27, 30, 32, 35, 38, 39-40, 47, 158 ground-water, potential 158	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151, 153, 155, 157 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 109-110 Dissolved solids in water 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99 Dry Creek 127, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105 depth to water 118 geology 27, 30, 32, 35, 38, 39-40, 47, 158 ground-water, potential 158 recharge 156	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155, 158 by wells 109-110 Dissolved solids in water 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99 Dry Creek 127, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105 depth to water 118 geology 27, 30, 32, 35, 38, 39-40, 47, 158 ground-water, potential 158 recharge 158 location and extent 11, 12, 13, 158	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek
D Deer Creek 64, 74, 84 Depth to water 118, 137, 143-144, 147, 151, 153, 155-156; pl. 6 Devonian rocks 29-30, 49 Dikes, clastic 50 Discharge from ground-water reservoir, by evapotranspiration 109, 110-116, 132, 133, 134, 142, 145, 148, 150, 153, 155, 177 by springs 109, 116, 148, 151, 153, 155, 157 by streams and drains 109, 116-118, 137, 138-139, 142, 148, 149, 150, 153, 155, 158 by underflow 137, 142, 149, 150, 153, 155 by wells 109-110 Dissolved solids in water 162-165, 166-167, 176 Drainage, surface, history 25, 56 present 12-14, 58-99 Dry Creek 127, 44, 66, 67, 77, 87, 95, 111, 158, 165, 173 Dry Creek shale member of Snowy Range formation 29 Dry Creek subarea, aquifer tests 105 depth to water 118 geology 27, 30, 32, 35, 38, 39-40, 47, 158 ground-water, potential 158 recharge 156	Faults 33, 46, 47, 48, 49, 50-55, 56, 146; pl. 2 Fish Creek

Page	Page
Gallatin River—Continued	Jack Creek80
gains and losses in flow 89-92, 139	Jefferson Canyon fault 48
relation to ground water 107, 116,	Jefferson limestone29
136–137, 139, 142, 143, 145	Jefferson River
Gallatin Valley Water Users' Association 4,5	Jefferson River valley
Gastropods 35 Gateway subarea, aquifer tests 104, 136	Jones Creek 85 Jurassic rocks 30-31
changes in ground-water storage 137-139	Jurassic rocks 50-51
character and thickness of alluvium 136	K
depth to water 137	Kelly Creek 83
ground-water, discharge 137, 138, 139	Kootenai formation 31-32, 46
movement 136-137	_
recharge 136, 138, 139	L
location and extent 11, 136	Laramide orogeny
potential ground-water develop-	Lead ore25
ment	Leuciscus turneri beds of Wood
water-level fluctuations 123; pl. 7	Lewis and Clark expedition 20
Geologic mapping	Little Bear Creek
Geologic section, Belgrade trough	Livingston formation 32
monoclinal fold in Camp Creek Hills 51-52	Lochman, Christina, quoted 29
near Logan	Lodgepole limestone of the Madison
Geophysical methods of subsurface ex-	group
ploration9	Loess
Gibson Creek	Logan 12, 13, 23, 28, 56, 92, 131, 149
Glaciation, Bridger Range 40	Logs, wells and test holes 184-203
Gallatin Range 40, 45	Loup Fork beds
Madison Range45	Lower Creamery ditch 82
Godfrey Creek	Lowline Canal 50
Gold20	Lyman Creek 55, 64, 74, 99
Goochs Ridge	M
Gravel deposits, commercial use	Madison group
Ground water, changes in storage 119, 128; pl. 8	Madison Range
chemical analyses	Madison River 13, 56
depth below land surface 118	Madison Valley 6, 25, 33, 131
discharge 109-118; pl. 8	Madison Valley beds
movement 118	Magnesium in water 176
potential development 176, 179	Mammoth ditch 81, 111
recharge 107-109; pl. 8	Manhattan, temperature 14, 15
Growing season, length	Manhattan subarea, aquifer tests 105, 150
н	artesian water in Tertiary strata 150
	changes in ground-water storage 138, 151 character and thickness of
Hardness in water	alluvium149-150, 151
Horseshoe Hills 5, 7, 11, 12, 13, 27, 30, 34,	depth to ground water151
36, 39, 46, 47–48, 95	ground-water, discharge 150-151
Hyalite Canyon 153	recharge150
Hyalite Creek. See Middle (Hyalite)	location and extent 11, 149
Creek.	springs 151
Hydrologic cycle 57-58	waterlogging 151
Hydrologic units 11, 120, 136-159	Maurice limestone 28
I	Maywood formation29
	Meagher limestone28, 46, 47
Igneous rocks 46	Meinzer, O. E., quoted 57, 100, 101
Industry 23	Menard, temperature 14, 16
Ions in water, source and significance 160-166	Mesozoic rocks 30-32, 36, 48, 49
Irrigation, chemical suitability of	Metamorphic rocks, Precambrian 26-27
water 168–175	Middle Cottonwood Creek 64, 74-84, 95
location and extent 20, 24	Middle Creek Reservoir
diversion of surface water 20, 58, 59, 89,	Middle (Hyalite) Creek 12, 65, 74-75, 85, 93,
92, 94, 95, 99, 107, 116-117, 133, 134,	98, 107, 111, 143, 153, 154, 155
150, 151, 155, 156	Mineral resources

geology, ground-water resources, gallatin valley, mont.

Page	Page
Miocene rocks 25, 34	Quaternary deposits—Continued
Mission Canyon limestone of the Madison	extent and thickness 40, 42, 43, 57, 131
group30	136, 140, 146, 150, 151–152, 153, 158
Mississippian rocks 29-30	transmissibility 102-103, 104-105, 136
Missouri River 13	140-142, 146, 150, 153-154, 159
Montana Power Co 5, 33, 34	water supply 40, 43, 132, 151, 154, 158, 159
Montana State College	D
Montana State Engineer's Office 5, 7, 20	R
Moreland Canal 151	Rainfall. See Precipitation.
Morrison formation	Randall Creek
Movement of ground water 118, 136-137,	Recharge of ground-water reservoir, from
139, 142, 147, 149, 150, 153, 155,	irrigation water 107, 108, 136
157, 158, 159	142, 150, 154, 157
Mystic Lake	from precipitation 107-109, 136, 142
N	153, 154–155, 158, 159
	from streams 107-109, 137, 142, 143
Nichols Creek 83	153, 154, 158, 159
North Cottonwood Creek	from underflow
Northern Pacific Railway 20	Red Lion formation 29
Nitrate in water 161, 163, 176	Reese Creek
0	Residual sodium carbonate in water 161, 178
	Resistivity survey 67, 77
Oligocene rocks	l =
Ostracodes 35, 36	Ridgley Creek 62, 72, 96 Rierdon formation 3
P	Rocky Creek 63, 73
Paleozoic rocks 27-30, 36, 47, 48, 49	Ross Creek 55, 65, 76, 94-96
Park shale 28	Ross Peak
Pass fault 48	TOSS TOUR
Pennsylvanian rocks 30	S
Permeability, coefficient of, definition 101	Sage pebble-conglomerate member of
Permian rocks 30	Snowy Range formation 29
Personnel 4-5	Salesville fault 5, 49, 53
Phosphoria formation 30	Sappington sandstone 29-30
Piezometric surface, definition	Saturated material, changes in volume 119-12
Pilgrim limestone	Sawtooth formation3
Pitcher Creek 83	Schafer Creek8
Pony series27	Sedimentary rocks 25-4
Population of Gallatin County, 1950 20	Seepage, from canals, laterals, and ap-
Potassium in water 169	plied irrigation water 107, 132
Precambrian rocks 25, 26-27, 36, 47, 48, 49, 55	133, 136, 142, 150, 154, 15
Precipitation, annual volume during pe-	from streams 107, 142, 143, 153, 154
riod 1935-51 134, 135	158, 159
at Belgrade 119, 120	Seismic survey
at Bozeman19	September Morn mine, lead ore 28
collection of records 8; pl. 1	Settlement of the valley 20
daily, near cottonwood grove 114; pl. 4	Sills 4
general characteristics 14, 18, 58, 132, 133	Smith Creek 111, 15
monthly, at 18 stations 21-22	Smith drain 8
monthly volume during 1952 and	Snow. See Precipitation.
1953 19-20, 23; pl. 8	Snowmelt, recharge of ground water. 107-109
source of recharge 107, 108, 127, 136,	132, 133, 154–155; pl.
142, 153, 154–155, 157, 158, 159	Snowy Range formation 28, 29
Previous work in the area6-8	Sodium in water 160, 16
Pumping tests. See Aquifer tests.	1
Purpose of investigation4	Soils 7-
	Sourdough (Bozeman) Creek 12, 63, 73, 93
Q	99, 154, 151
Quadrant quartzite	South Bridger subarea
Quaternary deposits, chemical quality of	South Cottonwood Creek 55, 61, 70, 80, 9
water 162-163, 166-167, 168	South Gallatin subarea 11, 15
170-171; pl. 10	Spain-Ferris ditches 80-81, 11
composition 40-46, 140, 146, 153	Specific capacity of a well, definition 10
	•

INDEX 281

Page	Page
Specific conductance of water 166, 169	Surface water—Continued
Specific yield, computation of	relation to ground water 107, 108,
average 120, 123, 124	117-118, 124, 136-137, 142, 143, 145-146,
definition 100-101	147-148, 149, 153, 154, 155, 158, 159
Spring Hill fan. See Spring Hill subarea.	source of irrigation supply 20, 99,
Spring Hill subarea, aquifer tests 105, 159	116-117, 150, 156
ground-water, discharge 147, 159	source of municipal supply99
	Swift formation 31
recharge	
location and extent	Sypes Creek 84
Springs, Bridger Range 55, 99	т
Central Park subarea 148	=
Dry Creek subarea 87, 158	Temperature
Gallatin Range55	119, 155; pl. 4
Manhattan subarea 88, 150, 151	Terrace gravels in Camp Creek Hills 42, 157
thermal 50, 132, 162, 166, 170	Tertiary strata, aquifer tests 102, 104-105, 142
Stone-Weaver ditches 82, 111	artesian water 144, 150
Stony Creek * 67, 77, 148	Belgrade subarea 142, 144-145
Storage, changes in volume of	Camp Creek Hills area 131, 157
ground-water 119-128	description
coefficient of, alluvium 103, 104-105, 106	Dry Creek subarea 158
	Manhattan subarea150
definition 101	
Stratigraphic section, unit 1	
unit 2	South Gallatin subarea
Stream-channel deposits 39-41, 43-45	structure
Streamflow 55, 58-99, 107, 108, 116, 117,	subsurface unit34-35
143, 144, 154, 155, 156, 158, 168	test holes and wells 34-35, 42, 43, 52,
Stream-gaging program	136, 146, 154, 158, 166
Stream-gaging stations, description 60-68	undifferentiated
Streams, from Bridger Range 94-95, 96	unit 1
from Camp Creek Hills 95	unit 2 38-39, 52; pl. 2
from Gallatin Range95-94	vertebrate fossils
from Horseshoe Hills	water derived from 34, 150, 159, 166, 167
	Test holes, drilling program 9
from valley floor	logs 184-203
monthly and annual runoff 69-79	Thermal water 50, 132
occasional measurements of	Thompson Creek
discharge 80-88	Three Forks shale29-30
Structure36, 46-55	Three Forks structural basin 6, 25, 26,
Sulfate in water 161, 176	32-33, 36, 53, 56
Surface water, alluvial deposits 42-45, 53,	Topography 12-14; pl. 1
	Transmissibility, coefficient of, alluvial-
136, 140, 146, 151	fan deposits 102-103, 106, 153-154
annual changes in supply 1935-51 134-136	alluvium 103, 104–105, 136, 146, 157
chemical quality 160, 164-165, 167-168,	definition 101
172–173; pl. 11	
course and drainage area of princi-	Tertiary strata 102, 103, 104-105,
	146, 157
pal streams 13-14, 58-59, 92-95	Transpiration of ground water by phrea-
description of stream-gaging pro-	tophytes 110, 112, 113-115
gram 8,58	Transportation 23-24
description of stream-gaging stations 60-68	Trout Creek
discharge measurements69-88,	Truman Creek 66, 76
111, 135, 148	
- · · · · · · · · · · · · · · · · · · ·	υ
gains and losses in flow, of East Gal-	Upper East Gallatin subarea 11, 151, 153
latin River	U.S. Bureau of Reclamation 4, 5, 7
of Gallatin River 89-92, 139	U.S. Public Health Service 175
general runoff pattern 58,89	U.S. Soil Conservation Service 4, 5, 7, 149
inflow to valley 88-89, 93, 97-99, 116,	
117, 128, 130, 132–136; pl. 8	U.S. Weather Bureau 5, 8, 19, 20, 134
monthly changes in supply	v
1952-53 128, 130-132; pl .8	Valley floor, chemical quality of ground
outflow from valley 89, 92, 93, 117,	water 162, 166, 170; pl. 10
128, 130, 132–136; pl. 8	subareas 11, 136-153

282 geology, ground-water resources, gallatin valley, mont.

Page	Page
Valley-fringe area, chemical analyses of	Water table—Continued
ground water 163, 167, 171: pl. 10	configuration 118; pl. 5
résumé of water resources 158-159	definition100
w	depth to
Water, suitability for domestic use 175-176	Watts Creek 84-85
suitability for irrigation 168-175	Weaver ditches 81-82, 111
Water-level fluctuations, caused by earth-	Well-numbering system9-11
quakes and other disturb- ances128	Wells, hydrographs of water level 108, 109,
graphs 108, 109, 112, 129, 147,	112, 129, 147, 152, 156; pl. 9
152, 156; pl. 9	location 8; pl. 1
measurements 8, 204-243	logs 184–203
relation to changes in ground-water	measurements of water level 8, 204-243
storage119-128	records244-275
Waterlogging	West Branch of East Gallatin River 84, 111
150, 151, 158	West Fork of Wilson Creek 60, 70
Water-resources inventory, water years	White River formation 33, 34, 36
1935 through 1951 134-136	Wilson Creek
water years 1952 and 1953,	Wind velocity 113, 115; pl. 4
analysis 132-134	Wolsey shale 28, 46
evaluation 128,131-132 graph pl. 8	Y
Water table, changes in position 119-128, 137,	Yankee Creek80
139-140, 143-144, 145-146, 149, 151,	Yellow Dog Creek61, 71
153, 156; pl. 7	Yield, specific, definition 101

U. S. GOVERNMENT PRINTING OFFICE: 1960-0 508919

The U.S. Geological Survey Library has cataloged this publication as follows:

Hackett, Orwoll Milton, 1920-

Geology and ground-water resources of the Gallatin Valley, Gallatin County, Montana, by O. M. Hackett tand others. With a section on Surface-water resources, by Frank Stermitz and F. C. Boner, and a section on Chemical quality of the water, by R. A. Krieger. Washington, U.S. Govt. Print. Off., 160.

viii, 282 p. illus., maps, diagrs., tables. 24 cm. (U.S. Geological Survey. Water-supply paper 1482)

Part of illustrative matter in pocket.

Prepared as part of the program of the Department of the Interior for development of the Missouri River basin.

(Continued on next card)

Hackett, Orwoll Milton, 1920— Geology and ground-water resources of the Gallatin Valley, Gallatin County, Montana. 1960. (Card 2)

Bibliography: p. 179-182.

1. Geology—Montana—Gallatin Valley. 2. Water, Underground—Montana—Gallatin Valley. 3. Water-supply—Montana—Gallatin Valley. 4. Water—Analysis. I. Stermitz, Frank, 1907—II. Boner, Fred Charlan, 1925—III. Krieger, Robert Albert, 1918— (Series)