Occurrence and Distribution of Strontium in Natural Water

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496-D

This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission

Occurrence and Distribution of Strontium In Natural Water

"y MARVIN W. SKOUGSTAD and C. ALBERT HORR

CHEMISTRY OF STRONTIUM IN NATURAL WATER

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496-D

This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

CONTENTS

	Page
Abstract	55
Introduction	55
Sampling program	58 58
Analytical methods	_
Chemistry of strontium	59 63
Strontium content of water	63
Surface water	71
Ground water	73
SummaryReferences cited	73 74
References cited	14
ILLUSTRATIONS	
	
FIGURE 10. Average strontium concentration in surface water	65
11. Average Sr/Ca ratio in surface water	68
12. Average strontium concentration in total dissolved solids in	00
surface water	69
NULLUNO TECNOLARISADA DE LA CARRA DELA CARRA DEL CARRA DE LA CARRA	00
-	
TABLES	
Table 1. Physical properties of strontium and related elements	60
2. Surface-water samples having a Sr/Ca ratio greater than twice	-
the median for all samples	66
3. Surface-water samples having a strontium content greater than	
twice the median for all samples	70
4. Chemical analyses of surface water	75
5. Chemical analyses of ground water of low mineralization	82
6. Chemical analyses of brines	92
7. Sr/Ca ratios and strontium content in total dissolved solids	93

CHEMISTRY OF STRONTIUM IN NATURAL WATER

OCCURRENCE AND DISTRIBUTION OF STRONTIUM IN NATURAL WATER

By Marvin W. Skougstad and C. Albert Horr

ABSTRACT

Strontium, an alkaline-earth element chemically similar to calcium and magnesium, occurs in trace quantities in all natural water. Analysis of samples from 75 major rivers of the conterminous United States shows that the strontium concentration ranges from 0.007 to 13.7 ppm (parts per million). The strontium concentration in the total dissolved solids carried by these waters ranges from a few hundredths of a percent to 0.37 percent. The greatest strontium concentration in surface water and in dissolved material occurs in the high-salinity streams of the Southwestern United States. In this area, characterized by relatively low annual rainfall, high evaporation rate, and low physical relief, the concentration of strontium in the streams is generally 2 to 3 times as great as in most other streams of the Nation.

The strontium content of ground water has a wider range than that of surface water. Of more than 175 ground-water samples analyzed, 60 percent contained less than 0.2 ppm, although some potable water samples contained as much as 50 ppm. One brine sample contained 2,960 ppm of strontium.

INTRODUCTION

Studies of the occurrence of strontium in water have, with few exceptions, been limited to investigations of areas where unusually high strontium concentrations have been noted, or to the analysis of brines or highly mineralized waters containing appreciable amounts of strontium.

Odum (1951, p. 20-21) reported the strontium and calcium content of certain Florida waters, including 14 springs, 4 rivers, and 6 lakes and ponds. The strontium content of the springs generally ranged from 0.107 to 0.784 ppm (part per million), although 1 spring was found to contain 6.308 ppm of strontium and 2 spring samples contained less than 0.10 ppm. Strontium in rivers and lakes ranged from a few hundredths of a part per million to about 0.8 ppm.

Lohr and Love (1954, p. 624) noted the unusually high strontium content of three municipally-owned wells at Waukesha, Wis. Later,

Nichols and McNall (1957) analyzed more than 380 samples in a comprehensive survey of the occurrence of strontium in municipal water supplies in Wisconsin. They found that water in the eastern part of the State generally contained more than 1.0 ppm of strontium and that several wells in this area, including wells at Campbellsport, Greendale, Kaukauna, Menomonee Falls, Waukesha, and Wauwatosa, contained strontium in concentrations greater than 30 ppm. They tabulated the strontium content in the water supplies of 100 Wisconsin communities where the concentrations exceeded 1.0 ppm. Their analyses were made by a flame-photometric procedure using synthetic radiation buffers of a composition similar to the composition of the water analyzed. When the sample composition differed significantly from that of the synthetic buffer, an appropriate correction to the strontium value obtained was made.

Alexander, Nusbaum, and MacDonald (1954), in a study of the occurrence of strontium in the water supplies of 50 major cities of the United States, found only two sources which contained more than 1.0 ppm. The maximum concentration found in any untreated surface or ground water used as a source for municipal supply was 1.9 ppm in ground water at Wichita, Kans. The strontium content of the samples ranged from 0.0058 to 1.9 ppm. The analyses were made spectrographically and included determination of calcium and magnesium as well as strontium.

A more recent survey of the strontium content of the drinking water of seven cities (Chicago, Denver, Oak Ridge, Cincinnati, New York, Atlanta, and Charlottesville) was reported by Blanchard, Leddicotte, and Moeller (1958). They used a neutron-activation method to determine several minor elements, including strontium, and reported a range of strontium concentrations from 0.08 to 1.23 ppm.

Feulner and Hubble (1960) reported strontium concentrations in both surface and ground water in Champaign County, Ohio, where celestite-rich limestones and glacial deposits of Late Silurian age give rise to considerable amounts of strontium in ground water. Strontium concentrations ranging from a few tenths of a part per million to as much as 30 ppm were found in the wells tested. Surface water, particularly that fed by springs or ground-water seepage from celestite-rich limestone aquifers, contained up to 2.1 ppm of strontium. Two spring-discharge samples contained 8.7 and 9.0 ppm of strontium.

The "Committee on World-Wide Runoff of Dissolved Solids," appointed by the International Association of Hydrology of the International Union of Geodesy and Geophysics, has undertaken a program involving the analysis of samples from about 70 major rivers of the world. Four samples from each river, each sample taken

at a different time of the year and representing a different flow stage of the river, have been analyzed for about 20 chemical substances by conventional chemical methods. In addition, spectrographic trace-elements techniques were used to determine up to 25 additional minor elements, including strontium. Preliminary data (Durum, Heidel, and Tison, 1960) for the several U.S. rivers included in this study indicate a range of strontium concentration from 0.0075 ppm (Apalachicola River, Fla.) to 0.802 ppm (Colorado River at Yuma, Ariz.).

Except for these data, little information is available on the general occurrence and distribution of strontium in fresh water. Recently, however, considerable interest has developed in the occurrence of strontium in water, soils, plants, and foods, particularly in relation to the fallout hazards associated with the radioactive isotopes of strontium. There are four naturally occurring isotopes of strontium, the predominant one being strontium-88. These isotopes are not radioactive and are nontoxic, at least no more toxic than calcium, an essential element which in its behavior is chemically similar to strontium. Strontium, while being one of the more abundant of the minor elements, is much less abundant than calcium and probably seldom occurs in nature in concentrations which might be harmful.

Two strontium isotopes resulting from nuclear fission, strontium-89 and strontium-90, are among the most hazardous substances present in atomic fall-out or atomic-waste materials. They create a serious hazard to human and animal life when present in water or foods. A knowledge of the concentration levels of strontium in natural water, therefore, is of considerable interest for the evaluation of potential hazards in connection with fallout or atomic-waste disposal. There is little evidence that indicates a physiological preference for calcium with respect to strontium or vice versa. Strontium and calcium are probably assimilated by the body of man and by plants in close to the same relative proportion in which they occur in the water or food material ingested or available to the organism. Because there is no physiological or chemical distinction between strontium-90 and the nonradioactive isotopes of strontium, the presence of natural strontium effectively dilutes the radioactive variety and reduces the amount of strontium-90 taken up by body tissue.

In order to have more extensive, accurate data on the concentration levels of strontium which occur in natural water, the U.S. Geological Survey has made a study of its occurrence and distribution in the natural waters of the United States. The study was made on behalf of the U.S. Atomic Energy Commission and was carried out under the direction of S. K. Love, Chief, Quality of Water Branch, U.S. Geological Survey.

SAMPLING PROGRAM

A program was established which provided for the sampling of 75 of the major rivers and streams of the conterminous United States. Several large rivers were sampled at more than one point so that a total of 85 different sampling points was included. Most of the sampling sites selected are regularly operating stations of the Quality of Water Branch of the Survey. An attempt was made to obtain three samples at each site over a period of several months or a year, in order to obtain samples representing high-, median-, and low-flow conditions at each site. At a few sites this was not possible because they were not sampled on a regular schedule, and multiple sampling was impractical. No attempt has been made to obtain exact flow data, and the designations "high," "medium," and "low" flow are to be considered as representing relative flow conditions only.

The discharge or flow rate varies widely for certain rivers and very little for others. Thus, for some rivers the difference between high and low flow may be very little, while for others it is large. Detailed data on flow rates for most of the rivers included in this report may be found in the U.S. Geological Survey Water-Supply Paper series "Surface Water Supply of the United States," published annually in 14 parts.

A chemical analysis was made of each sample collected. Most of these analyses were made in the laboratory of the district office operating the sampling station and collecting the sample for this study. The district office then transmitted a part of the sample, together with the analytical report, to the Denver Quality of Water laboratory of the Survey where all strontium analyses were made (table 4).

Although this study was primarily intended to provide a survey of strontium concentrations in surface water, a considerable number of ground waters, including some brines, mineral waters, and springs, and other miscellaneous water samples were analyzed for strontium when such samples were available. These additional samples were obtained as a result of sampling for other purposes, but the results of chemical analyses of these samples (including strontium) are included in this report (table 5). The analyses of several brines and highly mineralized waters are also included (table 6).

ANALYTICAL METHODS

Samples containing more than 1.0 ppm of strontium were analyzed by a direct flame-photometric method, utilizing a radiation buffer to minimize the effect of variation in sample composition with respect to other constituents. The determination of strontium by direct flame photometry is not sufficiently sensitive for water whose strontium concentration is less than 1.0 ppm, and two techniques were used for analysis of those waters. One, a flame-photometric method, involved a tenfold concentration of the cationic constituents in the sample by means of a strongly acidic cation-exchange resin before the determination of strontium. By this method, as little as 0.02 ppm of strontium could be detected with certainty. The ion exchange technique, in addition to accomplishing a tenfold concentration of the sample, had the added advantage that anionic interferences such as those from sulfate and phosphate were eliminated, and the final solutions used for the flame-photometric determination were of uniform anionic composition. The flame photometric procedures are described in detail by Horr (1962).

The second method used to determine strontium in samples containing less than 1.0 ppm of strontium was a spectrographic method. The spectrographic copper-spark technique used permitted detection of 0.005 ppm of strontium without prior concentration of the sample and had the added advantage that 20 to 30 ml of sample would suffice for the analysis. The spectrographic method was developed solely for the determination of trace amounts of strontium in dilute water and is not considered reliable for the analysis of water containing more than 500 to 600 ppm of dissolved solids. A detailed description of the spectrographic procedure is given by Skougstad (1961).

CHEMISTRY OF STRONTIUM

Strontium, atomic number 38, is the fourth member of the Group II elements, the alkaline-earth metals. The electron distribution in the strontium atom (1s² 2s² 2p6 3s² 3p6 3d¹0 4s² 4p6 5s²) determines its universal divalency in its compounds. This is characteristic of all elements in this group which have no partially filled subshells, and whose outermost electron shell is a completed s-shell. The nucleus may contain 46, 48, 49, or 50 neutrons. Thus, there are 4 stable isotopes of strontium having mass numbers of 84, 86, 87, and 88. The natural distribution of these 4 isotopes gives rise to an average atomic weight for strontium of 87.63 and an equivalent weight of 43.82.

Although no radioactive isotopes of strontium exist in nature, as many as 10 artificially produced isotopes have been identified. The most familiar of these are the isotopes of mass number 89, 90, and 91, which are a part of the material that results from atomic fission.

The other alkaline-earth elements are beryllium (Z=4, at. wt=9.013), magnesium (Z=12, at. wt=24.32), calcium (Z=20, at. wt=40.08), barium (Z=56, at. wt=137.36), and radium (Z=88, at. wt=226.05). Of the alkaline-earth elements, calcium and magnesium are by far the most abundant, both in the earth's crust and in the

hydrosphere. Next in general abundance are strontium and barium, often of the same order of magnitude, and finally beryllium and radium, which occur in exceedingly small amounts relative to the others.

Physical properties of the several elements most closely resembling strontium (table 1) indicate that strontium should be intermediate between calcium and barium with respect to its chemical behavior, and in many instances should resemble potassium. This is indeed true, and strontium is commonly found in both calcium and barium minerals and, to some extent, even in potassium minerals, as a result of replacement of ions of these elements in the crystal lattice of their minerals. Strontium occurs in barite, where it replaces barium, and in aragonite, calcite, gypsum, and anyhdrite, where it replaces calcium. No doubt the widespread distribution of strontium in trace amounts in igneous rocks is due to its ability to substitute for potassium, particularly in potassium feldspars, or for calcium in other igneous rock minerals.

ĸ Ca SrBa M° radius ______angstroms _ Mn+ radius _____do ___ Mn+ radius, aqueous solution ____do ___ Ionic potential (ionic charge/ionic radius) _ E° at 25°C, aqueous solution _____volts ____ 1.97 2.15 2.22 2.02 1. 35 . 99 1.33 1.13 2. 5 1. 77 2. 5 2. 3 2. 02 2. 87 1. 48 1. 50 2, 89 2.90 2. 92 Ionization potential: 5.67 6.09 5. 19 4, 32 11.82 10.98 9.95

Table 1.—Physical properties of strontium and related elements

Strontium forms chemical compounds analogous to those of calcium and barium. The properties of such compounds are usually intermediate between those of the same compounds of calcium and barium. Thus, the carbonates, sulfates, chromates, and phosphates of all three metals are sparingly soluble in water, the solubility decreasing with increasing atomic number. In fact, the very low solubility of barium salts restricts the movement of barium through soils and by water transport. A few parts per million of sulfate in water, for example, precludes the possibility of the presence of much barium. Strontium sulfate, however, is much more soluble, hence appreciable amounts of strontium may exist in water containing significant concentrations of sulfate.

Strontium finds its way into natural water in much the same way as does calcium. Through normal weathering processes, water in contact with soil and rock materials dissolves appreciable amounts of minerals and other constituents largely through the action of hydrogen ions carried by the water. The carbonic acid-bicarbonate equilibrium in water provides a supply of hydrogen ions and permits retention of the reaction products in solution, as in the case of strontium and calcium, through the formation of soluble bicarbonates. Although carbonic acid, resulting from dissolved carbon dioxide, is a principal factor in causing attack on soil and rock particles, other factors are also effective. Organic solutes found in soil moisture, acid clays, strong mineral acids (particularly sulfuric and sulfurous acids formed by oxidation of sulfide minerals), and organic chelating compounds may also be effective under certain conditions.

Strontium in natural water may be removed or redeposited by several mechanisms and reactions. Strontium carbonate is less soluble than calcium carbonate and precipitates at a pH below that at which calcite precipitates. When calcium carbonate precipitates, and if strontium is present in the same solution, some strontium will almost certainly accompany the calcium by coprecipitation, even though the solubility product of strontium carbonate may not be exceeded. This is true also when other substances, such as ferric hydroxide, precipitate from water. Some strontium may be caught or adsorbed to the colloidal precipitate and dragged down with it

Other insoluble strontium compounds, such as sulfates or phosphates, may be formed. Strontium may also be adsorbed through ion exchange with clay minerals, or it may exchange with calcium minerals such as calcite or aragonite. In this respect, the relatively small radius of the hydrated strontium ion indicates a greater tendency for exchange than the larger calcium ions. This is generally true and it has been observed that strontium is more strongly held by exchange materials than is calcium.

The sources of strontium in natural water are mainly the trace amounts of strontium found in nearly all limestones and widely distributed in igneous and metamorphic rocks. When the strontium in in water is derived from these sources, the relative amounts of strontium and calcium do not usually differ greatly from their proportions in the rock material. Certain natural waters have much higher Sr/Ca ratios (Sr atoms per 1,000 Ca atoms) and indicate that the water has been in contact with strontium-mineral deposits, either celestite (SrSO₄) or strontianite (SrCO₃). Such deposits usually occur as beds or lenses in limestone deposits or in anhydrite or gypsum. Celestite frequently occurs disseminated in limestone and dolomite.

Probably relatively few waters are saturated with respect to either strontium carbonate or strontium sulfate. The amount of strontium present is largely controlled by its abundance in the rock material that has gone into solution.

The chemical similarity of strontium and calcium suggests that correlations may exist between these two elements with respect to their occurrence in the rocks and minerals. Turekian and Kulp (1956), reporting on the distribution of strontium in various rock materials, offer evidence that there is a direct relationship between the calcium content of granites and the amount of strontium present in these granites. They found that whereas all granitic rocks contain, on an average, an estimated 0.0285 percent strontium, granodiorites containing 1.0 to 5.0 percent calcium contain an estimated average of 0.0440 percent strontium. On the other hand, granites having 0.1 to 1.0 percent calcium contain an average of 0.0100 percent strontium. Previous estimates of the average strontium content of granitic rocks, 0.0090 percent (Noll, 1934) and 0.0120 percent (Hevesy and Wurstlein, 1934), were considerably lower. It is generally apparent, however, that in granitic rocks the amount of strontium increases as the amount of calcium increases.

These same investigators also estimated the average strontium content of basaltic rocks to be about three times as great as previously reported and found an average of 0.0465 percent strontium in all basalts, a figure that is considerably higher than the average for granites (0.0285 percent) and slightly higher than the average for high-calcium granites (0.0440 percent).

The average strontium content of all limestones was found by Turekian and Kulp (1956) to be 0.0610 percent; shales contained only about one-half of this amount. They concluded that sandstones probably contain, on an average, no more than 0.0020 percent strontium.

On the basis of these observations, some estimate of the probable occurrence of strontium in water might be projected. That is, in water draining areas where surficial geology consists primarily of basalt or sedimentary rocks, the proportion of strontium to calcium would be expected to be significantly less than in water draining areas of granitic igneous rocks. Such an extension of the geologic implications must be tempered with consideration of additional factors which can affect the behavior of strontium when it is dissolved in water. The movement of water through soil and rocks, involving contact with clay minerals and finely divided sediment material in the soil and in suspension in a stream, permits opportunity for several types of reactions which may alter the ratio of strontium to other major constituents in the water. Turekian and Kulp were unsuccessful in their attempts to correlate the occurrence of strontium with potassium.

STRONTIUM CONTENT OF WATER

SURFACE WATER

All surface-water samples collected as a part of this study contained a detectable amount of strontium (more than 0.005 ppm). The higher strontium concentrations were found in the streams of the Southwest, including eastern Arizona, New Mexico, western Oklahoma, and northern and western Texas, where the total dissolvedsolids content of the surface waters is also the highest of any area of the conterminous United States. In many places in this area rocks of rather high solubility occur at or near the land surface. The low average-annual precipitation together with high rates of evaporation and loss of surface water to ground-water recharge tends to reduce stream-discharge rates downstream from the source and to increase the dissolved-solids concentration carried by the stream. The high-salinity streams of this area also carry proportionally more strontium, usually 1.5 ppm or more, and some as much as 5.4 and 9.5 ppm, as in the samples from the Double Mountain Fork and the Salt Fork of the Brazos River near Asperment, Tex., respectively (table 4).

By contrast, streams of most of the Atlantic slope basins, South-eastern United States, the upper Great Lakes region, and the Pacific Northwest contain relatively low concentrations of strontium. This fact coincides with observations which may be made on the characteristics of rivers and streams of these areas. In general the salinity of water draining these areas is low, the average annual rainfall is relatively high, the evaporation rate is low, and the loss from streams due to ground-water recharge is low. Rarely do streams in these areas contain more than 0.5 ppm of strontium and frequently the strontium content is much less, especially during periods of high discharge.

Rivers of the rest of the Nation generally contain between 0.5 and 1.5 ppm of strontium. Several exceptions to these generalizations may be noted; the exceptions usually involve higher concentrations of strontium in a stream than would be expected from the generalizations just stated. One such exception is the high concentration of strontium in the Maumee River, Ohio. Samples taken at Waterville (table 4) contained 0.44 to 1.0 ppm of strontium. (An additional sample, containing 1.4 ppm of strontium, was analyzed but was not included in table 4 because of lack of other data.) This is considerably more than most of the rivers of the midcontinent area, more than was observed in samples collected from the Ohio, Kentucky, Wabash, and Cumberland Rivers, for example. Feulner and Hubble (1960) have pointed out the high strontium

content of certain ground waters in an area of northwestern Ohio, and the celestite deposits and celestite-rich limestones and glacial deposits of that area. These celestite-bearing limestones of Late Silurian age extend north and northwest of Champaign County, Ohio, and no doubt contribute significant amounts of strontium to streams which are tributaries of the Maumee and which, therefore, serve to increase strontium content in the Maumee even as far downstream as Waterville, which is close to the mouth of the river.

Another obvious exception resulting from localized conditions involves an area along the east coast of Florida. Odum (1951, p. 20–21) reported strontium concentrations in water from several springs and spring-fed rivers which are higher than might be expected on the basis of the generalizations previously made. The results of the present study also indicate the presence of somewhat higher strontium concentrations in certain of the Florida rivers sampled, particularly rivers along the eastern coast. Thus, the St. Johns River showed concentrations of strontium ranging from 0.68 to 1.1 ppm. Other Florida rivers sampled contained 0.029 to 0.11 ppm of strontium, which is in accord with the expected concentration. The higher strontium concentration found in samples taken in the eastern part of the State may be attributed to underlying limestones containing a high concentration of strontium and to a significant flow of ground water to surface streams from these permeable limestone formations.

The average strontium concentration of samples obtained at each site are shown in figure 10.

Strontium-calcium ratios (Sr atoms per 1,000 Ca atoms) were calculated for all samples in which both ions were determined (table 7). The ratios ranged from 0.40 to 15.75. Calculation of an average Sr/Ca ratio has little significance because of the variability among the samples and the great irregularity in distribution of the sampling sites. However, it may be pointed out that the Sr/Ca ratios in three of the rivers sampled were exceptionally high: the St. Johns River near Cocoa, Fla.; the Canadian River at Logan, N. Mex., and the Paria River, at Lees Ferry, Ariz. Two samples from the Paria River had ratios of 10.5 and 4.19; the river is one of the sources of the Yuma Main Canal, one sample of which also had an unusually high Sr/Ca ratio (11.2) that probably reflected the upstream sources.

A median-flow sample from the Brazos River at Richmond, Tex., also showed an unusually high Sr/Ca ratio. Two other samples, one at high flow and one at low flow showed ratios of 2.60 and 3.68, respectively, whereas the median-flow sample had a ratio of 12.6. This sample also differed in other respects from the other two samples from this river. Sodium and chloride concentrations were approximately 6 times the amount found in the other 2 samples. Concentrations of

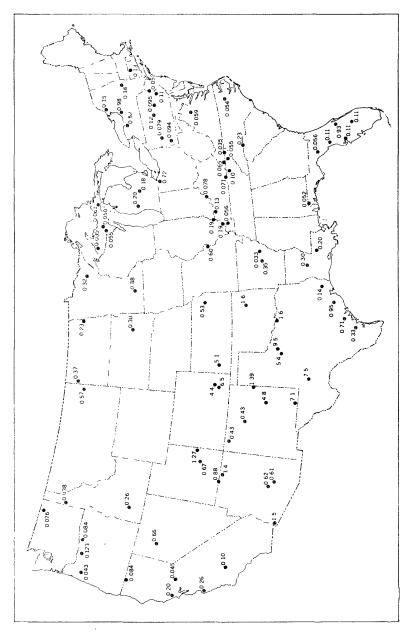


Figure 10,-Average strontium concentration (parts per million) in surface water,

the other major constituents did not increase to nearly the same extent: calcium and magnesium only about twice, potassium by about one-half, sulfate about three times, and bicarbonate only very little. This suggests drainage of salt water bearing significant strontium, since the strontium concentration increased about five times.

The median Sr/Ca ratio for all samples was 3.2. Those samples which had a ratio greater than twice the median are listed in table 2.

 ${\bf T}_{\tt ABLE} \ \ 2. \\ --Surface\text{-}water \ \ samples \ having \ \ a \ \ Sr/Ca \ \ ratio \ \ greater \ \ than \ \ twice \ \ the \\ median \ for \ \ all \ samples$

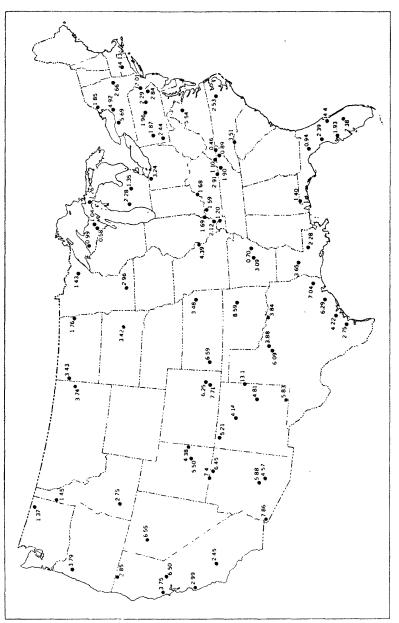
River	Location	Flow stage	Sr in total dissolved solids (percent)
St. Johns	Cocoa, Fla	High	16, 3
Do	do	Median	15. 7
Canadian	Logan, N. Mex	High	15. 0
	dó		14. 7
Do	do	Low	14. 4
Do	do	do	14.0
Brazos			12. 6
Arkansas			11. 4
Yuma, Main Canal	Yuma, Ariz	do	11. 2
St. Johns	Cocoa, Fla	Low	11. 1
Canadian	Logan, N. Mex	Median	11. 0
Paria	Lees Ferry, Ariz		10. 5
Canadian	Logan, N. Mex		9. 7
Yuma, Main Canal	Yuma, Ariz		8. 51
Green	Green River, Utah	High	8. 47
Neches	Evadale, Tex	Low	8. 37
Humboldt	Rye Patch, Nev	do	8. 22
Arkansas	Tulsa, Okla	do	7. 75
Purgatoire	Las Ánimas, Colo		7. 71
Kissimmee	Okeechobee, Fla	High	7. 38
Rappahannock	Remington, W. Va		7. 13
Pecos	Puerto de Luna, N. Mex	Low.	7. 77
Rio Grande	San Ildefonso, N. Mex.	Median	7. 60
San Juan	Archuleta, N. Mex		6. 70
Salt	Stewart Mt. Dam, Ariz	High	6. 64
American	Fair Oaks, Calif		6. 50

It will be observed that practically all of the rivers with unusually high Sr/Ca ratios are located in the southwest and along the east coast of Florida. A single exception is the Rappahannock River. One sample taken at approximately median flow showed a ratio twice the average ratio observed on three other samples taken over a period of several months. The chemical quality in the Rappahannock at Remington does not vary significantly throughout the year. However, it should be noted that in the one sample which showed a high Sr/Ca ratio, the sulfate concentration was also proportionally much greater than the median or nominal concentration of sulfate for this stream. While the concentrations of Ca, Mg, Na, K, HCO₃, and Cl, were about the same or slightly below the median concentration for

these ions, the sulfate concentration in this particular sample was about double the median for this ion. This would indicate a possible pollution of the stream with SrSO₄ at or about the time of sampling, or a stream entering the Rappahannock above the sampling point and draining an area containing strontium-rich minerals.

Two rivers in Florida, both draining eastern coastal areas, showed unusually high Sr/Ca ratios. Ratios of 16.3, 15.7, and 11.1 were obtained on 3 samples from the St. Johns River near Cocoa, Fla. Two of these, however, are low-flow samples since the discharge measurements, 411 and 357 cfs (cubic feet per second), respectively, are much below the 1958 water-year median of 1,368 cfs, and not much greater than the minimum of 218 crs for that year. The 1958 water-year maximum discharge was 3,990 cfs and occurred on October 4–5. The Sr/Ca ratio for the high-flow sample, 16.3. at 2,323 cfs, is only slightly larger than the ratio for one of the low-flow samples, 15.7 at 411 cfs.

The Kissimmee River, sampled near Okeechobee, Fla., also showed a fairly high Sr/Ca ratio in the single sample obtained at this site. Although the discharge data are not available for this sample, the date of sampling, May 1–10, indicated that it was probably sampled at a time of about median flow. The chemical analysis of this sample shows a fairly high magnesium content and considerable sodium chloride, although the total concentration of dissolved solids is low and the water may be classified as a soft water.


Sr/Ca ratios in rivers of the rest of the Nation ranged from 0.40 to 6.4. There is no consistent correlation between discharge and the Sr/Ca ratio. In some streams the ratio increases with a decrease in discharge rate while for others the opposite is true. In general, the greatest variations in the Sr/Ca ratio in a single river sampled at different flow rates occurred when the ratio was much larger than the median. Thus, the Sr/Ca ratio in 6 samples from the Canadian River at Logan, N. Mex., ranged from 9.7 to 15.0. Similarly, the ratio in the Arkansas River, at Tulsa, Okla., ranged from 6.6 to 11.4.

In some rivers, the Sr/Ca ratio does not vary appreciably with discharge rate, as, for example, the Cumberland, Monongahela, St. Lawrence, Lehigh, Mohawk, Oswego, Susquehanna, and Roanoke Rivers.

The average Sr/Ca ratio for samples collected at each site is shown in figure 11.

Another indication of the general distribution of strontium in surface water may be obtained by calculating the strontium content in the total dissolved material carried by the river. This information was available (table 7) for the great majority of samples. Figure 12 shows the distribution of values. The strontium content ranged

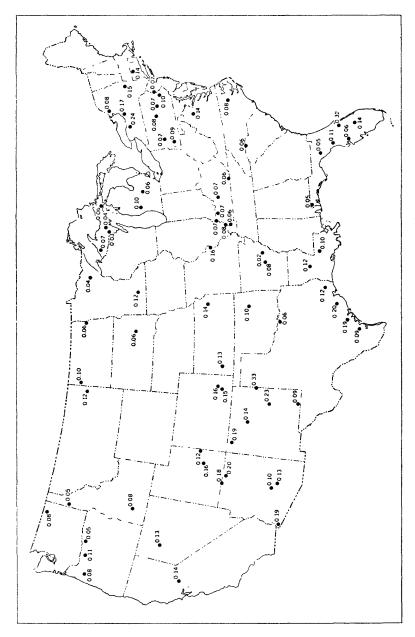


FIGURE 12.—Average strontium concentration (percent) in total dissolved solids in surface water.

from 0.01 to 0.38 percent, 0.09 percent being the median for all samples. Very low concentrations of strontium were found in the Embarrass (0.03, 0.04 percent), Escanaba (0.04 percent), and Ford (0.03 percent) Rivers, all in northern Minnesota or Michigan, and in the Escambia River (0.05 percent), in Florida. The White River, sampled at Clarendon, Ark., also had a very low concentration of strontium, 0.03, 0.02, and 0.02 percent being found in 3 samples analyzed. A high-flow sample from the James River at Huron, S. Dak., contained only 0.03 percent strontium, whereas near-median-flow and low-flow samples from this river contained 0.07 and 0.08 percent, respectively.

There is no general correlation between flow and the concentration of strontium. Thus, the concentration of strontium in the Pecos River at Puerto de Luna was observed to vary threefold, from 0.12 to 0.36, over a period of a year. Similarly the percentage of strontium in the Brazos River at Richmond, Tex., varied from 0.11 at high flow (42,980 cfs) to 0.35 at median flow (4,685 cfs) and to 0.13 at low flow (the unusual chemical characteristics of the median-flow sample have been noted on page 75).

Many other rivers showed only slight variation in percentage of strontium throughout the year, as, for example, the Yakima River at

Table 3.—Surface-water samples having a strontium content greater than twice the median for all samples

River	Location	Flow	Sr in total dis- solved solids (Percent)
Canadian Pecos. Brazos St. Johns. Canadian Green. Canadian Yuma, Main Canal Genesee Paria Colorado San Juan Do Genesee Yuma, Main Canal Colorado Gila Pecos. Rio Grande Gila Guadalupe Mississippi Oswego	Puerto de Luna, N. Mex Richmond, Tex Cocoa, Fla Logan, N. Mex Green River, Utah Logan, N. Mex Yuma, Ariz Rochester, N. Y. Lees Ferry, Ariz do Archuleta, N. Mex -do Rochester, N.Y Yuma, Ariz Lees Ferry, Ariz Lees Ferry, Ariz Lees Ferry, Ariz Les Ferry, Ariz Kelvin, Ariz Puerto de Luna, N. Mex San Ildefonso, N. Mex Kelvin, Ariz Victoria, Tex St. Louis, Mo	Median High Low Median Low High Low Low Low Low Low High Low High High Low	. 36 . 35 . 32 . 31 . 29 . 27 . 25 . 23 . 23 . 23 . 22 . 21 . 20 . 20 . 19 . 19

Northport, Wash., the White River at Clarendon, Ark., the Red River of the North at Grand Forks, N. Dak., and the Delaware and Lehigh Rivers, Pa. The strontium content trends to fluctuate to a greater extent in those rivers in which it is in excess of 0.1 percent of the total dissolved-solids content. If the strontium content in a river is close to, or below, the observed median for all rivers sampled, the variations in strontium content in samples taken throughout the year and at different flow stages are more likely to be small.

Surface-water samples found to have a strontium content which is more than twice the median for all samples analyzed are shown in table 3.

GROUND WATER

In addition to the surface-water sampling program, 175 samples of ground water were analyzed for strontium. Unlike the surface-water program, however, the ground-water samples were not obtained by a sampling program planned for this purpose, but were analyzed as they became available to the laboratory from various sources. Most of the ground-water samples were taken from public water supplies and were obtained in connection with other current projects. These samples were analyzed only by the direct flame-photometric procedure, whose limit of sensitivity is 0.2 ppm of strontium. No attempt was made to determine strontium in samples containing less than this amount. Many of the samples did contain less than 0.2 ppm of strontium (table 5).

A wide range in strontium concentration was observed in ground water. The unusually high concentration of strontium in ground water of east-central Wisconsin has previously been reported by Lohr and Love (1952) and by Nichols and McNall (1957). The Sr/Ca ratios calculated from the chemical analyses of water from 3 Waukesha, Wis., wells reported by Lohr and Love are 396, 285, and 208. These values are higher, by a factor of 100 to 300, than the maximum ratio calculated for any surface water sampled in the present study. The concentration of strontium in the dissolved solids of these samples is also exceptionally high: 11.8 percent, 9.8 percent, and 7.9 percent, respectively.

Two samples obtained from this area of Wisconsin for the present project contained 36.0 to 24.4 ppm of strontium. These samples, one from a drilled well at Campbellsport in Fondulac County, the other from a drilled well at Kaukauna in Outagamie County, were not from the area of highest previously observed strontium concentrations. Nevertheless the Campbellsport sample had a Sr/Ca ratio of 162 and contained 5.9 percent strontium, and the Kaukauna sample a Sr/Ca ratio of 65.5 and a strontium content of 3.16 percent.

Feulner and Hubble (1960), in their study of the occurrence of strontium in surface and ground water of Champaign County, Ohio, found that, of 22 drilled-wells sampled, the water of 7 contained between 17 and 20 ppm of strontium and 1 contained 30 ppm. The Sr/Ca ratios in these 8 samples ranged from 89.7 to 132, and the strontium content in the dissolved solids ranged from 4.4 to 5.4. Other samples from this group of 22, with but one exception, had Sr/Ca ratios within the range generally found in surface water of the conterminous United States. However, in only two of the Champaign County wells was the strontium content within the range found in the Nation's surface waters.

The data of Feulner and Hubble are somewhat less complete for surface water of the same area, particularly for samples which were found to contain in excess of 1 ppm of strontium. For the most part, however, the surface-water samples showed Sr/Ca ratios of from 1.2 to 19.0, calculated on the basis of their reported results. The analyses of samples from two springs draining into Nettle Creek differed markedly from the others. The Sr/Ca ratios, 56 and 60, are several times as large as those found in most surface water.

The chemical data (including strontium concentrations) for ground-water samples are given in table 5. Most of the samples analyzed contain less than 0.2 ppm of strontium. Ground-water samples collected from Iowa and Kansas, however, contained more. Of 15 samples collected in Iowa, 4 contained less than 0.2 ppm of strontium. The strontium content of the other 11 samples ranged from 0.8 to 8.8 ppm. Of 15 samples collected from different wells in Kansas, 5 contained 0.2 ppm, or less, of strontium, 9 contained from 0.8 to 1.6 ppm, and 1 sample, from Eskridge, in Wabaunsee County, contained 9.2 ppm.

Several samples from ground-water sources in Eddy County, N. Mex., also contained considerable amounts of strontium, as much as 8.0 ppm in 1 sample. A single sample from Wayne County, N.Y., contained 13 ppm of strontium.

Sixty percent of the ground-water samples tested contained 0.2 ppm, or less, of strontium. Certain brine samples, however, contained unusually high concentrations; as much as 2,960 ppm in a sample from a brine source at Midland, Mich. Another sample from a brine well at Orlando, W. Va., contained 2,200 ppm of strontium.

Except for these brines, however, the strontium content generally ranged from 0.2 to 59 ppm, and only 9 samples of approximately 175 analyzed contained more than 10 ppm.

The chemical analyses of several brine samples are shown in table 6. The Sr/Ca ratio in these samples ranges from 4.4 to 28.6. These brines also show a high concentration of strontium in the dissolved solids, ranging from 0.07 to 0.84 percent. One brine sample, containing 0.07 to 0.84 percent. One brine sample, containing 0.07 percent strontium in the dried residue, was close to the median (0.09 percent) for all surface water tested. Another sample contained only slightly more strontium, whereas other brine samples contained from 2 to nearly 5 times the median strontium content in surface water. The maximum strontium content in any surface water tested was 0.38 in a sample from the Canadian River, at Logan, N. Mex. Four brine samples contained from 0.25 to 0.33 percent, and 2 samples contained 0.6 and 0.84 percent.

SUMMARY

A survey of the occurrence of strontium in the major rivers of the Nation shows that concentrations may range from 0.007 ppm to nearly 15 ppm. The percentage of strontium in the total dissolved-solids content carried by these streams ranges from 0.01 to 0.38. Relatively high concentrations of strontium occur in the streams of the southwest, where concentrations generally exceed 1.5 ppm and are locally as high as 13.7 ppm. Streams of this area are generally of relatively high salinity. They drain areas of low annual rainfall and of generally high evaporation losses.

Streams of the Pacific Northwest, most of the Atlantic Coastal Plain, and northern Minnesota and Michigan generally contain only small concentrations of strontium, usually less than 0.5 ppm, and frequently as little as 0.01 ppm or less.

Strontium concentrations in ground water vary greatly. Potable waters may contain up to 50 ppm. but certain brines from wells and other highly mineralized waters may contain several thousand parts per million. In addition to previously known areas of ground waters with a relatively high strontium content in eastern Wisconsin and west-central Ohio, several ground-water samples from Iowa, Kansas, and New Mexico were found to contain more than 3.0 ppm of strontium.

REFERENCES CITED

- Alexander, G. V., Nusbaum, R. E., and MacDonald, N. S., 1954, Strontium and calcium in municipal water supplies: Am. Water Works Assoc. Jour., v. 46, p. 643-654.
- Blanchard, R. L., Leddicotte, G. W., and Moeller, D. W., 1958, Neutron activation analysis of drinking water: Internat. Conf. Peaceful Uses Atomic Energy, 2d, Geneva, 1958, Proc., v. 28, p. 511-516.
- Durum, W. H., Heidel, S. G., and Tison, L. T., 1960, World-wide runoff of dissolved solids: Internat. Assoc. Sci. Hydrology, Commission of Surface Waters Pub. 51, p. 618-628.
- Feulner, A. J., and Hubble, J. H., 1960, Occurrence of strontium in the surface and ground waters of Champaign County, Ohio: Econ. Geol., v. 55, p. 176-186.
- Hevesy, G. von, and Wurstlin, K., 1934, Geochemistry of strontium: Zeitschr. anorg. allg. Chem., v. 216, p. 312-314.
- Horr, C. A., 1962, Flame photometric determination of strontium in water: U.S. Geol. Survey Water-Supply Paper 1496-C.
- Lohr, E. W., and Love, S. K., 1954, The industrial utility of public water supplies of the United States 1952, pt. 1, States east of the Mississippi River: U.S. Geol. Survey Water-Supply Paper 1299.
- Nichols, M. S., and McNall, D. R., 1957, Strontium content of Wisconsin municipal waters: Am. Water Works Assoc. Jour., v. 49, no. 11, p. 1493-1498.
- Noll, W., 1934, Geochemistry of strontium: Chemie der Erde, v. 8, p. 507-600.
 Odum, H. T., 1951, Strontium in Florida waters, in Black, A. P., and Brown'
 Eugene, Chemical character of Florida's waters—1951: Florida Board of Conserv., Div. Water Survey and Research, Water Supply and Research Paper 6.
- Skougstad, M. W., 1961, Copper-spark method for the spectrochemical determination of strontium in water: U.S. Geol. Survey Water-Supply Paper 1496-B.
- Turekian, K. K., and Kulp, J. L., 1956, Geochemistry of strontium: Geochim. et Cosmochim. Acta, v. 10, p. 245-296.

Table 4.—Chemical analyses of surface waters

[Results in parts per million except as noted]

	Ηq	6.8	7.0 7.3 6.5	7.7 7.9 8.1 8.2	8	7.9	7.8	7.4 7.2 4.4	7.0.0.7.8.8 1.0.0.7.1.4 1.4.1.4	8.1
	Specific conduct 3°35 ts sodmy)	226 126	200 218 57.2 39.8	3, 300 4, 430 1, 900 2, 940		4, 700	53, 900	345 1,040 556	29.2 34.9 38.5 372 468	2,310 2,310
ness CO3	Noncarbonate	28.82	744 0 0	996 1,350 128 174	82384	1, 120	068	32 125 42	111000	_
Hardness as CaCO3	Calcium- magnesium	43	5223	1,240 250 305	865 87 87 87 87 87 87 87 87 87 87 87 87 87	1,220	4,020 3,	127 253 162	212883	384 384
	Dissolved baylossid O°081 ta subi	174	127	2,830 3,980 1,190 1,710	2, 100 305 313 680			210 632 319	37 37 225 260	612
	Vitrate (NO3)	0.7	6.	8.0 6.1 5.9		0	-	9.50 10.00 10.00	1.0.	- 1 ∞
	Chloride (Cl)	18 8.8	12 17	107 138 500 800	980 22 220	930	21,700	183 73	1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	388
	Sulfate (SO4)	25	50	1, 590 2, 320 116 135		1,130	2,800	33 107 47	7.1.1.2 2.1.3 7.1.1.3 7.1.1.3	
(Carbonate (CO ₃	00	00	0	1000	0	0	000	000000	000
(80%)	Bicarbonate (H	19	224 22	282 148 160 160	<u>8</u> 888	116	156	116 156 145	12 181 184 148	
	Potassium (K)	1.1	1.5	6.2 8.2	4.2.2 6.7.4		00	4.08	1.1 1.1 3.3	6.5
	(sN) muibo8	10 5.7	7.9	374 584 323 506	613 50 54 141	—629 —	13,600	19 111 48	1.6 42.7 42.7 42.9 42.9	
	(12) muitaott2	0.11 .063	. 098 . 050 . 040	2.1 2.0 2.0	1.8 .21 .18 .67	5.4	9.5	2.2 41.		
(2	Magnesium (M	0.2	4.9	107 130 26	32 7.9 8.3	50	297	5.3 13 8.4	7.026.886	×, 52 &
	Calcium (Ca)	841	21 2.8	869 823 869 869	108 22 23 26 26 26 26 26 26 26 26 26 26 26 26 26	405	1,120	80 12 13	4.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	288
	Silica (SiO ₂)	18 4.6	41	18 21 11	4.3	311	11	13 14 14	9.51.50 15.5	222
	Mean discharge (cfs)	525 33, 700	10, 400 9, 300 640	1 19, 700 1 13, 600	79,800 79,000 80,400 12,800	∞i	3.3	42, 980 4, 685 2, 590	4,320 1,650 1,240 2,180 1,440 (approx.) 500	86 55 50 50 50 50 50 50 50 50 50 50 50 50
	Date of collection	Oct. 29, 1959 Mar. 30-Apr. 22, 1958.	Aug. 4, 1958 Oct. 5, 1958 Oct. 13, 1959 Sept. 18, 1958	Jan. 31, 1960 Jan. 31, 1960 Apr. 2-10, 1958 Mar. 21-25, 1958	Mar. 6-8, 1958 July 12-20, 1958 Apr. 14-20, 1968 Sept. 10-12, 1958	Oct. 4–11, 14–20, 1958.	Oct. 4-11, 14-27,	May 1-10, 1958 July 15-31, 1958 Oct. 10-14, 21-25,	Apr. 21–30, 1958 July 11–20, 1958 June 21–30, 1958 June 21–30, 1958 July 6, 1958 July 6, 1958	July 11-14, 1999 July 19, 1968 Sept. 16-19, 1959
	U.S.G.S. gaging station identifica- tion No.	02B3015 03A0365	11 4465	07 1240 07 1330 07 1644	07 2635	08 0805	08 0820	08 1140	02.A.1515 07.2270	
	River and sampling point	Alafia: At Lithia, Fla Allegheny: At Kittanning, Pa.	American: At Fair Oaks, Calif.	s Animas, Colo mar, Colo ings Bridge, near	At Little Rock, Ark	Brazos: Double Mountain Fork: Near Asper-	Salt Fork, Near Asper-	At Richmond, Tex	Broad: Near Boiling Springs, N.C. Canadian: At Logan, N. Mex.	

See footnotes at end of table.

TABLE 4.—Chemical analyses of surface waters—Continued

		Hq	7.5	6.7	8.7	8.1	7.4	7.7	7.8	7.3	17.7	 	6.4	6.7	9.0	- 6.6.6 - 6.4.8
	ance C)	Specific conduct	207	130	141	060	130	572 978	25	172	122		26	117		167 167 57.4
		Noncarbonate	133	27	45	504 2,	564 2,	78 174	364 1,	F	eo !	7	12	14	247	<u>34⊬∞</u>
	Hardness as CaCO	Calcium- magnesium	82	22	157	889	746	322	544	782	45.5	137	88	34	288	8488
		Dissolved sollds of ta subi		28	276	1,560	1,620	383	1, 120	-86	1023	27	74	74	195	95 110 85
		Vitrate (NO ₃)	1.8	w.	2.7	=	21	11	-	寸	11	80	6.	1.0		4481
		Chloride (Cl)	3.0	α.	121	190	168			2.0		3.0	2.0	3.0		0.00
		Sulfate (SO4)	17 14	88	8	069	208		-	15		4.3	82	27	323	8822
	(Carbonate (CO	00	0	:	0	0	00	.	10	000	50	0	0	000	000
	(800)	Hicarbonate (H	106	31	113	224	222	156	219	8	888	158	21	22	101	\$\$25
		Potassium (K)	1.8		1.8	7.3	6.6		!			1.2	1.2	1.1	. 6	25.
noted		(aV) muibo8	න ස්ස්	69	27	213	215	14.8	146	2.0	4.00		5.2	7.5	86.4	चं लं लं चं लं लं
sept as		(18) muitnott	0.065	.038	.42	1.4	2.0	1.1	2.2	.08	.095	.035	.041	.051	12.042	28.92.92 12.12.92
llion ea	(2	M) muisənzaM	7.1	5.5	9.5	8	22	72.22	42	4.9		12	3.2	3.7	8.6	0.4.9. 4.4.4.
per mi		Calcium (Ca)	22,88	ជ	47	191	180	88	148	22		35	6.3	7.8	8.5	16 12 8.0
parts		S lica (SiO ₂)			6.6	===	14		-	6.6	ΤÌ	İΤ	7.2	9.3		4.21.0
[Results in parts per million except as noted]		Mean discharge (cfs)	1,640	533	27,300	2, 560	2, 540	22, 130 6, 150	3,980	38,600	495.600 112,100		16, 130	060 '9	210 44,310	3,640 50 47
		Date of collection	Apr. 30, 1959-	July 14-Aug. 1,2,4, 1958.	June 1, 8, 11-19,	Oct. 1-17, 27-31,	Sept. 1-13, 15-30,	May 22–31, 1959 July 21–24, 26–28,	Aug. 31, Sept. 2-	Dec. 15-25, 1958 Jan. 29-Feb. 15,	June 1-22, 1958 Aug. 14-31, 1958	Apr. 30, 1959	Apr. 23-May 2,	Jan. 26-Feb. 12,	Sept. 13-30, 1958 Apr. 4-23, 1958	July 24, 1958 July 24, 1958 May 23, 1968
		U.S.G.S. gaging station identifica- tion No.	03B5270	12 4135	09 1805			09 3800		12 3995	14 1057	03B5260	03B4040		01B4635	04 0170
		River and sampling point	Clinch: At Clinchport, Va. Clinch: At Speers Ferry,	Coeur D'Alene: Near Cataldo, Idaho.	Colorado: Near Cisco, Utah			At Lees Ferry, Ariz		Columbia: At Northport, Wash.	Columbia: At the Dalles, Oreg.	Copper Creek: Near Gate	Cury, va. Cumberland: At Williams-	ours, Ay.	Delaware: At Morrisville,	

1	7.5	7.5.7.7.7.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	7.4	87.87.9		7.7	7.9 7.6 7.8	7.2	7.2	7.6 6.6 7.1	7.5	6.6	7.7.9	
	181	337 337 421 715 736 661	1,300	411 915 1,100 224 265	369 597	280	726 836 676	810 863	?42 636	824 112 168	265 252 252	88	131 197 196	300 433 433
=	=	188281	174	35 119 148 37	37	0	008	82	82	2178	87 00	≥41	00	57 77
4	91	165 124 158 170 170	330	156 286 326 98 114	25.53 25.53	173	166 174 166	230	141	<u>\$</u> 85	35-	27	8888	126 126 808
16	115	202 202 448 244 74 74	98	259 612 741 136 165	378	209	450 537 429	518	300	515 92 103	451	77	g	<u> </u>
7.	<u>∞</u>	.4	ĸ.	321116		1.2	3.5.4	3.1	2.9	3.70	8:4:	0	000	ο Ε 2
16	2	823.38 8733.88 8733.88	195	36 46 7.5	38	89	25 28 38 38	8 2 2	14 57	2.000 to 0.000	01 8.4.21	42	04.000 04.000	
1. 8		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					10.010					8.0	1 19	
-	<u> </u>	00 00 15 00 138 00 138 131 138	0 214	28833 2883 428333		65	2888	174	28	822	25.6 IS		0000	12.72
_	_		•		`	Ū		-	•		000	-		
9	86	0 182 2 108 0 220 7 167 7 194	3 190	2024		318	280 328 177	214	148	4 · 8 8 8 9 19	16222	##S	1001	
1.2	1.0	11.970.00	7.	11.33.28	20.00	13	222	13	6.3 8.8	4. 8.	1999	0	1 6	
7.9	6.	23723.	144	27 89 115 5.0 6.8	28	105	322	88	13	3.4	7.8,4°	300	4.21.0.0	10 5.3
.052	.050	360 84 84	Π.	8.9.9. 1.080. 14.	71.	88	.58 .15	¥.4	. 57	.046	10000	77	.055 .098 .10	1.0
4.	% %	8.6 8.8 8.6 8.6	- EI	12 29 37 5.6 7.0	9.1	14	20123	88	6.9	19.74 3.8 4.4	6.8 4.6	2.4	9. 8. 7.4	13
17	Si	£88888 \$4888	110	84928 848 848 848	3 £	94	3 48	4 4	45 67	812	813	6.8	199	29
21	8.6	84.5.84.8 91.5	92	11.09.7.99.7.09.7.09.7.09.7.09.7.09.7.09		35	222	128	1191	8.6	9.4 21 21	3.2	6.4	6.9
		1 1		1 1	:		_	1001		800			1000	01000
1, 420		1, 140 2, 860 698 269	225	19, 730 1, 792 1, 470	3,225	321	196 (Approx.). 56		33, 155 5, 577	4, 966 53, 300 19, 850	21,370 2170 2170	2,316	3,98 3,69 3,69	3 849 3 547 22,700 3,125
T	T		- 1	28	TT		П	5,	!	11.	111	П	111	
8	1	8 9	J	358. 358. 1, 19 1958.	1968	15-30	358. 8. 5,	1958. g. 3,	1958. pt. 5,	1958 1958 1. 10	82	59	188	8261
195	1960	1960 1960 1958 1958 14, 1	30, 1959	32,5	, 19 21,	13, 1	-30, 195 2, 1958. 9-Apr.	4,2	• 0	12, Api	1958	0,15	959 959 1958 3, 15	13, 1958 15, 195 13, 195 18-19, 1
, 19,	14,	4.6, 1.9, 1.7	8	2,14	Ī÷	٠. ۵		⁵ 극위	•∓≱°	. 45¢	, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	, 1–10,	1,6,1	된고등
Nov. 19, 1958.	Jan.	Jan. 1 Jan. 1 Sept. Aug. Sept.	an 3	June Aug. Oct. 1 Apr. May	Oct. 1	Sept. 1-13,	June 1-30, Nov. 22, 1 Mar. 29-4	1908. July 11-2 July 25-≜	July 11–21 Aug. 24–Se	May 12-18, May 10-12, Mar. 29-Aj	Sept. 3, 1 Jan. 6, 19	May	Feb. 3, 1959 Oct. 7, 1959 Sept. 9, 1958 Apr. 1–23, 1958.	July 13, 1968 Sept. 15, 1958 June 13, 1958 Apr. 18-19, 1
7	<u> </u>	1111		1 1	-							-	10024	1500.7
55.	0	900		15.	22	0	99		9	76	-0	30-	9	100
2B3755.	0690	. 2320 2320 4740		9 3150 3A321	1765	3350	A47		888 888	A28	1940	B27	5305	193
8	8	22 S		0	8	10	8		8		=	8	77	2
ιτy,	lell,	h ter,		en: At Green River, Utah At Look & Dam No.1, Spottsville, Ky.	ria,	ъ Ф	9k		ns.	4,	eld,	-oq	uth,	IIIe,
entı	Con	Mic ches riz		Ď Ž	7ictc	P.	ď.		Ŋ.	ž	ersfi	Kee	lam:	terv
C	٠.	., A.		iver Dan 9, K	حز	8	ă,		eka	2003	Bak	ır O	M P	Wai
Nea	A1	Hy Ivir		B B	4	Z	iur.		Ţ0]	, K	 <u>Fu</u>	Š	Near	# #
ia:	.e	. A1 : A1 : Ke		Jree Jock	ıbe:	ldt:	1, 14 1, E		Αţ	fort.	Nea	99	15. 14. A.t.	, , , , , , , , , , , , , , , , , , ,
qui	inak Seri	K 88 7.		At (At 1 Sg	dalt	Tex. [umbol	es: 7		888:	tuck	ii.	din.	dif.	i i i
Esc	ESC	witch. Ford: Near Hyde, Mich Genesee: At Rochester, 04. N.X. Gila: At Kelvin, Ariz		At Look & Dam No. 1, Spottsville, Ky.	Guadalupe: At Victoria,	Humboldt: N e a r R y e	James: At Huron, S. Dak		Kansas: At Topeka, Kans	Kentucky: At Lock No. 4, Frankfort, Ky.	Kern: Near Bakersfield, Calif.	Kiss	Klamath: Near Klamath, Calif.	Manmee: At Waterville, Ohio.

See footnotes at end of table.

TABLE 4.—Chemical analyses of surface waters—Continued

[Results in parts per million except as noted]

	(CHEMISTRY	OF.	STE	LATO	TUM	IN	NAT	UKA	ı	W A	TE	к		
		Hq	7.6	7.7.7	7.7	7.4 7.6 7.0	7.0 6.3 6.3	3.9	6.0 0	7.4	7.7.0	7.4	7.8	202	7.7
	ance C)	Specific conduct	1,100	695 523 500	365	570 695 213	215 169 177	551 297	145	691 691	231 378 596	122	725 902	875 512	2, 520 2, 520 2, 620
	ness CO3	Noncarbonate	188	51	288	133	822	164	11 27	31.0	4 82	600	115 179 256	828	,350 460
	Hardness as CaCO3	Calcium- magnesium	554	282	130	197 235 97	328	1 64 140	888	182	101	57	222	348	288 288 110 110 110 110 110 110 110 110 110 1
		Dissolved solids O° 081 as bub	747	444 323	202 240	375 463 130	133	361 193	134	280 14 15 15	153 220 230 230	82	532 532	332	2,330 2,350 2,520 1,520
		(tOV) stratiV	9.0	9276	. ci . c	1.5	29. 10.0	1.4	10.∞	1.5	က်က်င ကြောင်း	4.	9.22	2.5	1~ co 4
		Chloride (Cl)	18	9128	35.4	7.7		7.0	24.88	8:73	14.0 25.0	1.0	115	122	= <u>8</u> 8
		(408) stallug	238	25 08 5 5	68	143 191 17	888	239	16 20	88	428	6.2			1,360
	(Carbonate (CO ₃	0	000	00	000	0	0	0	0	000	0	000	000	100
	(800	Bicarbonate (H	446	216 192	126	861 98 98	800	150			118		130	150	524
		Potassium (K)	5.8	6.0	125	33.5				∞.r. 	44.5	# C7	2000	44.4	9.5°C
		(sN) muibos	40	31.	323	44 59 3.1	4,4,4,	30 8.8	- 618		6.4 4.0 4.0 6.4	3-i 8-i	08 8 5	32.25	88.5 86.7 84.0
Jon		(12) muiinoit2	0.88	9.0.	88.8	. 56	86.2	 	.10	85.85	288	. 039	1.0	;∞.‰	.36 4.7 9.0
	(5	Magnesium (Mg	52	18	10.88	81 1.4	70.4.0 70.4.4	13	ლ. დ. 44	9.8	27.6	2.9	24.5	222	83 83 83
		(salcium (Ca)	136	55.55	348	49 32 32	823	4 4 04	တွင် တွင်	27 23	82.2	32	88 5	388	67 496 530
		Silica (SiO ₂)	<u></u>	 	 ::::::::::::::::::::::::::::::::	6.9.4. 9.4.	8.7.9 9.00	22	5.2	82	8.0° 4 0.4.0	∔.0;	000	:01	1242
Tanana I		Mean discharge (cfs)		922	407,000 407,000 40,167	17,370 13,200 42,000	33,300 9,190	092	19,100	5.2 2.2			4,720	3.0	1,540
		Date of collection	Mar. 2, 1960	Oct. 29, 1958	June 11–20, 1958 May 28–June 5,	1958. May 12-22, 1958 Sept. 13-29, 1958 Apr. 3, 1959.	May 27, 1958 Aug. 4, 1958 Apr. 30-May 8.	1959. Sept. 27, 1958 Jan. 15, 1960	May 10-21, 1958 July 21-31, 1958	Oct. 1–31, 1958 May 1–31, 1958	May 12-20, 1958 June 11-20, 1958	Jan. 12, 1960.	Jan. 19, 1960 Sept. 17, 1958	Oct. 24, 1958.	May 15, 1958 Dec. 2, 1958 Mar. 1-31, 1959
		U.S.G.S. gaging station identification No.	05 3250	07 0100	07 3734.20. 06A3300	01B3573	03A 0750	04 1215		08 2210	03A3845	04 0400	04 2490	09 3820	08 3835
		River and sampling point	Minnesota: At Mankato,	Mississippi: At St. Louis, 07 Mo.	At St. Francisville, La. Missouri: Near Williston,	N. Dak. Mohawk: At Cohoes, N.Y. 01	Monongahela: At Charle- 03	Muskegon: At Evart,	Mich. Neches: At Evadale, Tex 08	Nueces: Near Mathis, Tex. 08	Ohio: Lock & Dam No. 51 at Golconda, III.	Ontonagon Near Rockland,	Oswego: at Lock No. 7, 04 Oswego, N.Y.	Paria: At Lees Ferry, Ariz. 99	Peros: Near Puerto de Luna, N. Mex.

で	ででいる なる の の の の の の の の の の の の の
- ;	102 103 260 285 285 288 320 1, 050 1, 050 1, 520 873 264 431 1111 1111
	08 08 24 28 4 48 5 5 9 4 6 4 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	204 11132 1232 1232 1232 1232 1232 1232 12
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	832 832 832 832 832 833 834 173 173 174 104
21/2	.4
228.00.00.00.00.00.00.00.00.00.00.00.00.00	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2, 0.064 2, 0.064 2, 0.064 2, 0.064 2, 0.064 2, 0.06 2, 0.06	2,44
00000000 0 00 000000 000	-
1 11 11 11 11 11 11 11 11 11 11 11 11 1	49 129 165 164 134 138 171 171 136 67 107 1143 1143 1153 1183 1183 1183 1183 1183 1183 118
072724 r.	14 14 64 44 44 80 140 10 40 80 80 60
1.1.1.4.030 1.2.2.2.2.4.4.030 1.2.2.2.2.4.4.0.00 1.2.2.2.2.4.4.0.00 1.3.2.2.2.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	2.7.7.9.7.1.8.8.8.8.11.8.8.8.8.8.8.8.8.8.8.8.8.
	250 250 250 250 250 250 250 250 250 250
25 25 25 25 25 25 25 25 25 25 25 25 25 2	
371 6113 6503 6503 6503 6503 72 72 72 72 73 75 75 75 75 75 75 75 75 75 75 75 75 75	22 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
755022 1 18 2 2 2 2 1 1 2 2 2 2	8. 4 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1, 438 1986 565 565 3, 3, 386 1, 1, 320 1, 320	7,5,4,590 1,050 1,050 1,050 1,77 1,77 1,420 1,120 1,120 1,120 1,120 1,120 2,20 2,
Aug. 22, 1958	1. 1–30, 1953 1. 1–30, 1953 1. 1–30, 1953 1. 12, 1958 1. 12, 1958 1. 12, 1958 1. 12, 1958 1. 12, 1958 1. 12, 1958 1. 1–24, 1958 1. 1–29, 1958 1. 1–20, 1958
Aug. Pec. Pec. Pec. Pec. Pec. Pec. Pec. Pec	Sept. 1 Feb. 5 Feb. 6 Feb. 9 Sept. 1 Sept. 1 Sept. 1 Juny 1 June
08 4075 08 4465 07 1286 01B6640 08 3180 05 0825 08 3130	11 4670 11 1525 09 5020 09 3555
At Red Bluff, N. Mex Constitution of the co	Russian: Near Guerneville, 7 Calif. Salmas: Near Spreckles, Calif. Salt: Below Stewart Mt. Dam, Ariz. San Juan: Near Archulota, (N. Mex. N. Mex.

See footnotes at end of table.

Table 4.—Chemical analyses of surface waters—Continued

		Hq	8.0	7.9	27.78	6.9	7.7.7 8.9.8 8.9.8	7.2 6.9 7.2	6.9	7.7.0	7.2	7.7	6.7	6.7 6.4 6.9
	snœ C)	Specific conduct of the sound)	440	532 488	238 485	308	297 173 218	432 134 174	203 151 118	138 139	327 486	453	133	60 64 130
	ness CO3	Noncarbonate	26	822	825	5 6 6 6 7	4 42	7 4 8 8	5 ⁸ 11	<u> </u>	2642	45-0	40	004
	Hardness as CaCOa	-Galcium- magnesium	218	208 196	<u>§</u>	8 2	2 4 8 8 8 8	175 51 69	623	328	78 157 232	282 282 282	145	18 21 62
		Dissolved solids due at 180 °C	284	332		1	138	277	103 102 203	88.	1199 307	888	172 49	54 54 97
		Vitrate (NO3)	5.5	છ .0	165.4	<u></u>		2,2,6		1111 2040	.∝.4. ∞ ట.ల	4;4;0 4;40	2.6	6.7.7
		(ID) obtrot(D)	12	25	111	92	25 25 40 40	51 4, 4, 0 75	0.4.4. 800	4.0.4.	4 8 4 0 4	5.40 000	5.0	90.0
		(4OS) etailus	46	23	225	34	833	158 40 55	2.5.5 8.53	41 0; 00; 0	2882	స్ట్రెల్ ల 4	5.8	968 8116
		Carbonate (CO	0						000					000
	(°OC	Bicarbonate (H	198						14 78 61					9880
[per		Potassium (K)	2.6		4.1. 80	9	1:5	4	1.5			2.9 1.7	1.3	6.1.
t as not		(sN) muibos	6.8	888	51 22	9.8	14.7.	16 4 4.01	466	ળ! 4ન ધ્યું, છ © ધ્યું	5.4.51 8.5.5	œ'' 24 8 8 1 1	න ල ස් ස්	44.60
Results in parts per million except as noted		0.18	83	1.1	1.0	. 15 . 086 . 088	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	989	.037 .037	ខ្លួននេ	033	.039	.050	
millio	Magnesium (Mg)		16	50	24.9 0.8	11 8.3	8.4.7.	17	922	92,99	4.138 4	18 11.7	41	1.3
rts per	Calcium (Ca)		19	46	\$ C C C		828	18 43	ផងីផ	588 58 58 58 58 58 58 58 58 58 58 58 58	438	42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	35	5.0 5.2
in ps		Silica (SiO2)	7.6		% ∞ -: ∞ ∞	22.2	1.4.0. 1.4.4	4.0.0	7.9 6.0 6.5	8,4,8, 1.6.11	o. 11 o. 4 o.	2		16 16 6.7
[Results		Mean discharge (cfs)		9,140 9,102	8,850 2,323 8,411	8,357	23, 100 11, 300	2,380 14,500 4,980	19, 200 13, 400	5,200 97,350 55,470	39, 600		35, 300	7,180 3,950
		Date of collection	Jan. 16, 1960	Dec. 16-31, 1958	an, 1–30, 1959 Sept, 23, 1959 July 7, 1958	ept. 2, 1958	Oct. 7, 1958 Mar. 7–29, 1958 July 13, 1958	ept. 7, 1958 far. 11-30, 1958 tly 13, 1958	Sept. 14, 1958 Apr. 23, 1959 July 15, 1958	ept. 16, 1958 pr. 21–30, 1958 une 1–10, 1958	dov. 21–29, 1958 une 21–30, 1958 day 21–31, 1958	Nov. 21-30, 1958 May 11-23, 1958 Mar. 1-10, 1958	ept. 11-20, 1958 Dec. 16-22, 24-31,	Jan. 1-29, 1960 July 1-3, 7-31, 1958. Oct. 20, 1959
			5	:	- 202 - 5	30	1	865	00 VI I	22 VID /			<u> </u>	
		U.S.G.S. gaging station identifica- tion No.	04 1445.	13 1545	02B2324		01B5405.	01B 5535.	02B3205	03B6095	03A3788	07 0778	14 1910.	B3130
		River and sampling point	Shiawassee: At Owosso,	Snake: At King Hill, Idaho.	St. John's: Near Cocoa, Fla.	St. Lawrence: At Thou-	sand Island Pk., N.Y. Susquehanna: At Danville, Pa.	West Branch at Lewisburg. Pa.	Suwannee: At Branford, Fla.	Tennessee: Kentucky Dam near Paducah, Ky.	Wabash: Near New Haven, Ill.	White: At Clarendon, Ark.	Willamette: At Salem,	Withlacoochie: Near Holder, Fla.

112 0 112 0 114 115 11	1.9 130 0 57 1.6 2.3 220 130 23 834 7.5	5.0 158 0 161 7.3 1.3 398 194 64 606 7.3	266 266 712 858 140 1,010 7.7	4.8 182 0 298 88 2.3 777 342 192 1,102 7.6	4.8 156 0 289 107 1.2 754 328 200 1,120 7.7
.059 10 .073 12 .12 24	.25 17	.49 51	06 86	.8 112	2.1 113 1.6 114
	13 38 8.5	9.9 50 17		. 94 26	86 86 88 86 86
4, 900 2, 790 1, 170	35, 970	19, 200	5,100	4,840	570 20
Dec. 23-31, 1958 Apr. 16-23, 1959 July 16-Aug. 13,	Hay 26-31, 1958	Mar. 10, 18, 25,	Jan. 4, 9, 17, 25,	1959. Mar. 3-7, 10-14, 18-21, 24-28, 31,	Sept. 1–30, 1959 Oct. 1–30, 1969
12 5105	06A3295			09 5255	
Yakima: At Kiona, Wash	Yellowstone: Near Sidney,	Mont.		Yuma Main Canal: Below Colorado River Siphon at	Yuma, Ariz.

¹ Discharge measured at Tulsa, Oklahoma (07 1645). ² Discharge measured below Kern Canyon powerhouse, 11 miles northeast of Bakersfield (11 1930). ³ Discharge measured at Bethlehem, Pa. (01B4530). ⁴ Station No. 775 (35 percent of flow). ⁸ Station No. 1425 (75 percent of flow). ⁹ Composite of 10 verticals across the stream. ⁷ Discharge at Roanoke Rapids, N.C. ⁸ Discharge data near Christmas, Fla.

Table 5.—Chemical analyses of ground water of low mineralization

ted].
t as note
except
million except
rts per 1
in parts
ts in
Resu
_

	Hq		8.9	1	7.0.7.7.0.0.7. 0.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		7.5	8.8.8.0 8.1.3.0	7.7	8.3								
	Specific conductance umpos at Dogo Dogo		1,270		213 213 153 185 219 209 487		579	1,410 4,740 590 892	246	323 238								
	918		2,380 18,2		0000000		78	570	0	0 0								
	Masicium Hasicium Has		2, 470		8 61 3 4 47 34 247		193	382 32 131	82	40								
	Dissolved solids residue (O°081) ta		11, 200		286 170 101 126 156 141 294		391	3,070 3,070 354 558	204	260								
	Nitrate (NO ₃)		2.6		1.2 0 .8 0 .3 3.2		0.2	1.1 1.9 49	0	1.5 8.4								
	Oholride (ID)			l							6, 360 268		25 17 0 1.0 8.0 6.0		54	49 150 88 143	18	9.0
	Stallug (408)		993		6.2 12.7.6 10.8.8.4 36.4		28	154 530 27 93	5.8	14.1								
	Carbonate (CO)		0%		0%0000		0	0708	0	081								
	Bicarbonate (HCO ₃)		115		252 86 96 1112 1118 252		140	1,690 149 90	114	114								
oted).	Potassium (K)		2.2				1.2	12.0.2. 1.0.4.	3.2	3.6								
kesuits in parts per million except as noted	muibod (sV)		3,040 246		1112 238 245 349 348 5.8		39	330 1,020 114 130	15	36 36								
поп ехсе	Strontium (12)	et .	18	as	<u>~~~~~~~</u> ©;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ia	1.4		V.2	V. V.								
per mil	muisənzeM (gM)	# -	34	Arkansas	0 % . 0 % 4 4 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	California	19	2.0 2.9 3.9	9.7	14								
in parts	muiəlsO (sO)		898 8.0		3.2 1.2 1.6 1.6 91 91		46	6.48 0.89 0.09	19	24 13								
estilts	eoili8 (sOi8)		0.48		20 53 112 111 31 20 9.0		39	2282	92	76 27								
)XI	Water-bearing formation		Alluvium		Claiborne Group Wilcox Group do Claiborne Group St. Peter Sand stone and other rocks of Orde. vician age.		Valley fill	do	Laguna	Alluvium								
	Date of collection		Jan. 11, 1956 Jan. 31, 1968		Mar. 6,1988 Mar. 7,1988 Mar. 6,1988 Mar. 4,1988		Jan. 30, 1959	Jan. 27, 1959 Mar. 5, 1958 May 29, 1958	qo	do. 7, 1958								
	Well		(D-4-3u)30da (B-1-1)16dba		13S-9Wbacb2. 11S-14W12cbd. 9N8E-29adb 7N8E-24be 11S-15W3cbcc 12S-16W2cbdd 15N-16W2cbdd		Bennett's	25/5-14M 26/5-5F 27/40-4L1 31/29-26E1	9/5-23F2	9/5-23F2 1N/9E-31A3								
	County		Greenlee Maricopa		Bradley Calhoun Crittenden Ouachita Sehroy		Inyo	Kern	Sacramento	San Bernardino.								

7.2	8.0		8.7	7.1	7.6 6.9	7.4	7.2	7.7. 7.89 7.89	7.3	4.7.7.8 4.9 9.7.9
300	370		722 759	366 742 1,840	279 446	390	250	1,330 641 723	008	970 661 558 306
100 15, 100 23, 500 434 136 1, 300	-6		080	384 1,	98	-	0 1,	5800	0 2,	0 4 4 0 0 2,
6, 100 14	53		272	240 650	109 175	168	258	203 155 250	588	299 145 214 133
28, 900 16,	257		463	254 535 1,410	344	1 215	288	1 864 367 450	2,000	2,090 413 252
0	6.3		5.8	5.0	17.4	0.4	9.	45 0.3	4.4	8.0
1,830	18		54	11 19 50	222	2.0	18	34 11 13	19	19 13 24 4. 0
274	37		114	17 149 695	85	19	317	252 120 172	1,030	1,060 110 50 13
0 15,	-		18	000	00	0	0	000	0	••••
1,160	142		352	195 276 326	156	232	388	456 238 234	530	576 250 206 163
2.8	2.4		1:0	4.2 19 19	4.0. 21.0	1.2	8.4	6.4.7. 4.8.8	15	14 11 7.8
2,520 129	29		50 180	52 66 191	15 19	19	182	196 79 59	568	592 887 26
14 .2	V. 2	op	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 8.	, v , v	.43	.2	, V. V.	1.6	1 . ^ , ^ 2 & 2 & 2
3, 520	1.9	Colorado	19	2.9 14 66	7.3	13	32	19 17 19	98	28 11 11 11
649 120	18		1.6	8E23	3 8	46	150	34 69	98	35 613
88	98		17 16	212	38		9.5	0 42	9.4	115 116 61 58
Rincon ShaleAlluvium and Santa Barbara	Formation. Alluvium of Fleistocene age.		Alluvium Laramie Forma- tion and Fox Hills Sand-	O D	Formation. Dawson Arkose Alluvium over- lying Dawson	Arkose. Alluvium of the	Cheyenne Sand- stone Member	of Purgatoire Formation. Dakota Sandstone. Cheyenne Sandstone. Stone Member of Purgatoire	Formation. Dakota Sandstone and Cheyenne Sandstone	Member of Purgatoire Formation. do. Ogailala Forma- tion.
Apr. 8,1958	May 27,1958		Jan. 13, 1958	Feb. 5, 1958 Apr. 2, 1958	Feb. 4, 1958	Oct. 4, 1959	Apr. 1,1958	Apr. 2, 1958 Apr. 3, 1958 Apr. 2, 1958	June 6, 1958	do June 6,1958 May 23,1958
Santa Barbara 4/47-19H1 A 4/28-13D1	23/27-34C1 IV		C5-68-17caac Js	C5-65-33ccc Fr C5-65-29babb A 28-50-32c A	C7-67-3ab d2 C8-67-11bab	B9-79-21bceb O	32-53-15a A	23-47-4dba A 23-44-12c A 2-42-15dab A	22-47-8bbd	22-47-8bad Jr. 82-44-12cas Jr. 82-52-18cd M. B2-50-9d
Santa Barbara	Tulare		Arapahoe	Baca	Douglas	Jackson	Las Animas	Prowers		Washington

See footnotes at end of table.

Table 5.—Chemical analyses of ground water of low mineralization—Continued [Results in parts per million except as noted]

		Hq		7.4	7.8	7.4	7.4	7.2	7.4		7.7	7.7	7.3	7.5	7.5	7.4
	921769 1	Specific conducts a sommu Son Dobs		3,630	514 831	755	280	1,780	2,300		1,350	2,850	1,440	699	1,470	1,510
	ness	Nonear- bon- ate		1,380	116	0	16	200	\$		0	0	116	37	130	330
	Hardness	Oalcium mag- nesium		1,560	274 404	329	286	282	361	-	246	142	415	288	472	514
	enbis	Dissolved solids res of (180°C)		3, 230	290 564	426	324	1,440	1, 560		848	2,020	948	345	1,040	1,090
		Nitrate (NO ₃)		•	6.1	1.4	0	2, 0.86	•		0	5.1	•	_ •	0	•
		Obolride (Cl)		182	5.0	10	14	22	144		83	31	98	2.0	46	34
		Sulfate (402)		1,870	166	13	78	82	812		274	1,170	374	46	458	499
		Oarbonate (sOD)		-	00	0	-	00	•		6	0	-	0	0	-
	91	Bicarbona (HCO ₃)		221	312	480	328	345	314		328	88	364	320	344	346
oneni		Potassium (K)		22	6,0	- 11	oć oć	0.00 0.00	14		16	4.1	ส	2.2	17	17
kesuits in parts per million except as noted		muibos (sV)		370	3.3	37	13	124	382		195	919	164	4.9	160	151
non exc		Strontium (Sr)	Iowa	5.6	7.0	۷. ۲.	2.6	7.2	3.0		% %	œ.	3.0	, 2.2	3.0	оо оо
per mil	u	muissnasium (Mg)		122	88	ន	27	22 22	35		22	12	ĉ.	83	42	13
n parts		muiəlsD (sD)		424	104	\$	20	242	88		25	37	102	83	120	122
SUIES		Silica (SiOis)		20	ထွဲတဲ့	oc oc	8.	9.8	12		12	9.	9.5	8	9.5	12
EKG		Water-bearing formation		Cedar Valley	Jordan Sandstone. Dolomite and	Limestone of Silurian age. Cedar Valley	Prairie du Chien Group, Jordan	Sandstone. Dakota Sandstone. Dresbach Group	Sandstone. Galena Dolomite, Glenwood Shale	Member of Platteville Formation, St. Peter	Sandstone. Root Valley 2 and Jordan Sand-	stone. Sandstone of Pennsylvanian	age. Prairie du Chien Group, Jordan Sandstone and	St. Lawrence Formation. Wisconsin glacial	Prairie du Chien Group, Jordan	Sandstone.
		Date of collection		Mar. 11, 1958	Mar. 12, 1958	Mar. 13, 1958	July 30, 1958	Mar. 13, 1958 Mar. 12, 1958	July 24,1958		Mar. 12, 1958	Mar. 11, 1958	July 22,1958	Mar. 11, 1958	July 22, 1958	φυ
		Well		77-33-4B1	96-6-33L1 87-12-25L1	94-22-24G1	81-6-11	89-40-35d284-2E-24A1	73-3-30		71-20-6F1	77-28-6N1	83-20-10	80-25-31R1	83-22-6	R3-22-6
		County		Adair	Allamakee Blackhawk	Cerro Gordo	Clinton	IdaJackson	Louisa		Lucas	Madison	Marshall	Polk	Story	-

13 15 16 17 17 17 17 17 17 17	Prairie du Chien Group, Jordan Sandstone, St. Lawrence Formation.
13 56 26 0.4 44 5.2 317 0 60 34 0 401 272 12 712 12 13 13 14 14 15 14 14 15 14 14	
13 50 22 46 3.2 173 388 0 699 52 0 474 216 18 649 479 10 110 190 10 10 10 10	Roubidoux Dolo-
12 75 22 1.6 372 13 349 0 899 540 0.0 1.300 314 22 2.340 116 320 0 74 735 0 1.4 1.250 345 0 2.330 11 1.2 445 115 230 0 74 735 0 1.4 1.250 245 0 2.330 11 1.2 445 115 230 0 115 640 0 1.540 245 25 330 114 74 24 1.0 250 8.4 476 0 466 6.0 0 302 288 220 0 1.550 12 230 12 230 12 230 245 2	dodo
14	Cotter Dolomite
12 51 20 C.2 118 4.6 344 0 40 104 0 520 200 0 890 130 131 232 C.2 118 2.2 340 0 39 127 0 539 144 0 1,010 100 132 242 62 9.2 36 2.0 345 0 566 42 11 1,190 863 580 1,550 1,550 1 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1,100 10 1 1 1 1	Cotter Dolomite Swan Creed
19 38 12 < 2 167 2.2 340 0 39 127 0 539 144 0 1,010 18 242 62 9.2 16 2.4 196 0 41 16 60 11 1,190 863 580 1,550 19 40 40 8.8 <0.2 35 1.8 1.8 12 0 4.5 25 0 266 136 0 403 10 4.1 1,10 1,10 1,10 1,10 1,10 1,10 1,10 1,	Sandstone. Roubidoux Dolomite
32 63 242 62 9.2 36 2.0 346 0 41 16 60 317 239 78 540 1.550	Tonganoxie Sand- stone Member
40 8.8 < 0.2 35 1.8 212 0 4.5 25 0 266 136 0 403 4.8 0 <.2 65 1.4 160 2 12 4.0 1.5 213 12 0 288 8 0 <.2 77 8 171 0 6.6 17 6 228 2 0 328 3.2 0 <.2 192 1.8 416 0 2.1 61 0 528 0 803 3.7 1.9 <.2 192 1.8 416 0 226 100 0 228	of the Stranger Formation. Nimescah Shale Long Creek Limestone Member of the Forsker Lime- stone.
40 8.8 < 0.2 35 1.8 212 0 4.5 25 0 266 136 0 403 4.8 0 <.2	
4.8 0 <.2 6.5 1.4 160 2 12 4.0 1.5 213 12 233 12 0 288 .8 0 <.2	Sand and gravel of Pleistocene
.8 0 <.2	Sand of Miocene
3.2 0 $< .2$ 192 1.8 416 0 2.1 61 0 528 8 0 803 3.8 123 0 11 22 0 226 100 0 282	Catahoula Formation
	op

Table 5.—Chemical analyses of ground water of low mineralization—Continued

[Results in parts per million except as noted]

	****		1 2 9	1 1	7.9	6.7		7.4	7.2	7.1	0.4.67	} !	7.4											
	Hq		90 90		7.	7.		7.	~~	1.1.1.1	777		- 7.											
	Specific. conductance umros at O°52		889 69.		1,270	251		1,650	$\substack{2,250\\894}$	2, 930 825 420	1,830 678 564		362 387											
	928		7		239	10		416	749 204	1,360 178 907	98 33 87		80											
	muisen		28		306	127		962	1,080	1, 590 446 1, 280	1,040 318 201		153											
	Dissolved solids residue (0°081) ts		55		754	166		1, 310	1,920	2, 820 2, 100	1, 530 400 250 250		217											
	Vitrate (sON) baylossid		7.4		0.3	4.		-	023	0.4.	2.20		0.0											
	Oholride (Ql)		6.4		335	4.0		4.0	6.0	4.8.2.	35 5.0		4. 0											
	etallus (408)		2.7		27	12		611	183	,750 184 ,190	312 71 35		34											
	Osrbonate (sOO)		-00		-	-		-0		000	000		14											
	Bicarbonate (HCO ₃)		818		28	149		463	406 311	279 328 454	8008		176 206											
orea]	Potassium (X)		1.4		12	1.4		9.2	2.8	13 1.0 6.4	91.1		6.0											
results in parts per million except as noted	muibos (sN)		4; ₩ 61 ×		114	5.4		86	165	195 13 163	871		13 93											
поп ехс	Strontium (18)	9	2.2 0.2 2.2 Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	Michigan	1.8	, ,	ota	<0.2	1.2	20.00	۸ نونخان	ippi	0.2
per mu	muisənzaM (gM)	Maine														Michig	18	4.9						
n parts	muiolsO (sO)		80 80 80 80		86	43		210	272 118	484 1118 328	272 75 51		3.2											
STILE	Silica (SOiS)		13 16		13	14		32	32	888	1183		88											
avi	Water-bearing formation		Sand and graveldodo.		Jacobsville Sand-	do		Sandy gravel of	Sioux Quartzite	do do	Sioux Quartzite		Eutaw Formation. Sparta Sand											
	Date of collection		Aug. 4, 1958		Apr. 7,1959	Apr. 10, 1959		Feb. 13, 1958	Nov. 25, 1958 June 10, 1958	do do	Nov. 26, 1958 Nov. 25, 1958		June 18, 1958 June 12, 1958											
	Well		C 354-028		46N2W8-1	51N27W15-1		111. 41. 8cdd	105. 40. 25b	101. 39. 24bbd 102. 40. 27ccd4 102. 41. 19ddb			O 15.											
	County		Cumberland		Chippewa	Marquette		Lyon	Murray		Pipestone		Lee											

	8.7	7.7.7 356		7.1	7.5	7.5	7.4	7.1	6.0		7.6	7.4	7.4	7.6
	1,340	1, 220 932 1, 680		658	604	398	203	282 647 420	675 889		2,020 2,760 3,890	3, 540	3,490	3, 570 1, 900
	0	104 447		0	116	0	83	080	810		370 1,740 936	1,950	1,980	2, 160 254
	4	320 393 769		309	257	167	222	101 293 196	314 430		492 1,900 1,050	2,020	2, 100	2,280
	813	794 602 1, 350		370	448	27.1	388	199 475 271	390		1, 260 2, 820 1, 780	3, 430	3, 270	3,570 1,170
	1.8	21. 41		· •	99	0.6	88	0 7.7 36 0 9.5	07		0 12 %	1.5		<u> </u>
	24	07. 82.0		9.0	42	9.0	9.0	15.0	41. 0.		5g 4	128	270	152 340
	£3	329 526 655		25	32	11	8	7.27.1	88		347 1, 690 546	2,080	1,720	2, 285 285
	17	000		0	0	0	0	000	00		000	•	•	-00
	724	352 393		399	172	218	230	136 278 246	\$ 1		149 189 138	116	143	142
	0.8	විය 4 කියුය		3.2	8.2	8 6	13	8,0 0,0	0,70 4		10.10 000	6. 00	3.4	က် ကဲ့ ထ ထ
	342	163 57 126		22	12	15	13	11 11	88		236 28 114	198	117	110 238
18	9.0	röwiwi	ка	<0.02	8	.00	۷ .ک	, ^ ^ ,	∞.⊗ .×	xico	0, 0, 0, 0, 0, 0, 0, 0, 0,	V.2	V. 2	^0.2 ^.3
Montana	0	855	Nebraska	20	9.7	9.7	23	မှ ရှာ အ	ឌឌ	New Mexico	328	156	126	35
	1.6	69 67 165		16	83	19	8	252	126	Z	131 808 282	222	632	584
	13	ននដ		88	æ	02	22	47 55 57	38		38	21	82	21
	Fort Union For-	Alluvium Alluvial sand and gravel.		Sand and gravel of Pleistocene	ogallala Forma-	Sand and gravel of Pleistocene age and Sand- stone of Terti-	ary age. Sand and gravel of Pleistocene	Sand and gravel Sand and gravel of Pleistocene	age. dodo.		Gatuffa Formation do- Culebra Dolomite Member of Rustler For-	mation. Red beds of	Triassic age. Gatuña Forma- tion and	Triassic rocks.
	1, 1958	14, 1958 15, 1958 12, 1958		8, 1958	10, 1958	11, 1958	7, 1958	9, 1958 8, 1958 9, 1958	8, 1958 9, 1958		5, 1959 6, 1959 5, 1959	4, 1959		19, 1959 18, 1959
	June 11, 1958	May 18 May 18 June 13		July	July 10	July 1	May	July May July	July July		Feb. Feb.	Feb.	-op	Feb. 1
	A8-47-32ac	A-30-30-18d 23-59-82a A-1-26-34aa		23-8-25b	34-27-31d	8-28-280	21-16-23b	30-14-32a 14-10-3b 28-4-33c	18-11-11d		25.30.21.333 S23.30.19.123 25.29.16.444	23.31.26.340	23.31.17.310	22.30.32.111
	Custer	Phillips Richland Yellowstone		Burt	Cherry	Frontier	Garfield	Holt Howard Pierce	Washington Wayne		Eddy			

370 2,020 1,740 2,760	7, 390 7, 390	128 1.5 3,430 2,020 1,950 3,540	3,490	3,570 1,900	
1,740	8	1,950	1,980	2, 160 254	
1,900	1, 050	2,020	2, 100	2, 280 391	
2,820 1,900	1,780	3, 430	3, 270	3, 570 2, 280 2, 160 3, 570 1, 170 391 254 1, 900	
55.0	>	1.5	21	20	
583	#	128	270	152 340	
1,690	946	0 2,080	0 1,720	2,080	
000	<u> </u>	0	•		
189	89	116	143	142 168 188	
000	o o	65 80	3.4 143	5.50 8.80	
88		198	117	110 838	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	V	156 <.2	126 <.2	V 0.0 7 0.0 7 0.0	
328	28	156	126	199 35 <>2 2.2 35	
131		222		25 G	
888		21	88	217	
Gatuffa Formation	mite Member of Rustler For-	Red beds of	Gatuffa Forma- tion and Triassic rocks.		
5, 1959 6, 1959	6, 1959	4, 1959		19, 1959 18, 1959	
Feb.	reb.	Feb.	d.	Feb.	,
25.30.21.333 Feb. S23.30.19.123 Feb.	25.29.16.444	23.31.26.340 Feb. 4, 1959	23.31.17.310	22.30.32.111	and and and an and and and
					40 11400

See footnotes at end of table.

Table 5.—Chemical analyses of ground water of low mineralization—Continued

[Results in parts per million except as noted]	

	Hq		7.5	7.6	7.9.7.7. 408.48	7.5 7.5 8.0		6.7		7.9
	Specific conductance umpos at Dogs		1, 900 4, 980	422	10, 100 17, 600 17, 600 847 3, 670 5, 610	1, 080 1, 740 843		54, 000		6, 600 1, 010
	918		1,900	39	2, 330 10, 1 2, 740 17, 6 198 8 2, 050 3, 6 2, 520 5, 6	105 412 76		7, 020 54, 000		162
	mage- nesium Noncar- bon-		2,000	193 2, 140	2, 380 2, 920 2, 160 2, 160	466 619 176		7,090		500
	Dissolved solids residue (O°081) ts muiolsO		1, 530 4, 290	3,870	17,230 12,200 3,400 4,860	1, 320 492		40, 100		4, 280 680
	Nitrate (NO ₃)		5. 1 0	3.5 0.0	00440	55 0 0		25		6,70 0.00
	Cholride (Cl)		92 550	18 375	2, 230 5, 510 74 330 850	23 88 73		21, 200		1,010
	Sulfate (402)		794 2, 110	2, 030	2, 270 1, 210 1, 750 1, 750 2, 130	32 539 188		2, 650		1, 220
	Carbonate (CO ₃)		00	00	00000	000		0		00
	Bicarbonate		130	188 97	88 219 134 172	440 252 121		91		865
oted	Potassium (K)		4.6	සු. අද 21.00	389 389 9.38 9.8	7.9.9. 409		107		9.0
Results in parts per million except as noted	muibod (sN)	pen	142 512	301	1,540 2,700 40 136 462	$^{21}_{152}$		11, 600		1, 530 34
lon exc	Strontium (12)	Ontin	<0.2	57.12 80.23	დო;ცდ⊗ ⊗4680	1.4	ork	13	kota	1.2
per mu	muisəngaM (Mg)	New Mexico—Continued	54 131	13 156	179 256 29 156 204	25 22 23	New York	487	North Dakota	7.8
n parts	Calcium (ca)	Vew M	216 584	600	661 747 82 608 696	162 156 34		2,040	Z	21 133
ults n	Silica (SiO ₃)	~	30.22	22	5222	57 51 5.2		15		16 36
[Kes	Water-bearing formation		Culebra Dolomite Member of Rustler	Formation. Culebra Dolomite Member of Rustler	Gatuna Forma-	clott.		Salina Group		Dakota Sandstone. Fox Hills Sand- stone.
	Date of collection		Feb. 17, 1959 Mar. 26, 1959	Mar. 19, 1959 do	Mar. 25, 1959 Mar. 24, 1959 Mar. 31, 1959 Apr. 1, 1959 Mar. 31, 1959	Apr. 3, 1959 Apr. 14, 1959		May 3, 1956		May 28, 1958 June 24, 1958
	Well		25.31.21.000	24.30.8.113	24.30.18.231 25.29.32.231 24.30.36.333 23.31.29.113	24.31.17.111 23.31.7.240 25.30.7.111		Wn-546		156-68-31aca 131-76-26c
	County		Eddy					Wayne		BensonEmmons

OCC	URREN	CE AND	וע	STE	пВ	UTIU	IN OF	ST	KO.	NTIU) IMI
	.00.7. .00.00	7.5		7.8	7.1	7.1	7.1 8.0 7.7	7.8	7.2	7.9	7.6 7.6 8.1 7.1
675 702 662 662	3,400 4,000 424	509 562		259	87.1	398 319	347 368 447	205 182	167	352 288	148 145 335 209
0 0 0	4, 030 43, 2, 880 41, 0	00		0	0	00	800	00	0	00	0000
208	4.8. 58.4. 012 010 010	222		26	32	125	117 115 155	38	72	12	82222
430 419 411	8,288 8,888 8,888	343		253	85	291 264	268 254 290	166 155	151	237	115 114 249 183
6. 0	200-	3.7		4.1	•	6.3 4.3	900	1.5	•	00	0000
	16, 600 15, 700 6. 0	10		6.0	2.0	ន្តន	85.0.84 20.0.84	2.0	2.0	5.0	7.4.0.7. 0000
31 39 17	41.	25 02		8.2	3.5	88	18 7.2.4 8.3	3.3	4.1	112	1.8 10.3 3.1
0 10 0	000	00		-	0	00	000	00	0	0.4	0000
344	268 268	343		142	22	168	240 118 186	111	101	148 164	8881 121
0 4 . 4	i&73 .	1.6		6.8	1.2	 8.2	6.1.9 6.20	4,0;	1.2	11 6.6	81 63 64 8 8 9 9 9 9
13 159 161	8, 910 8, 830 11	888		32	7.3	84	888	118	7.2	31	8.0.0 8.5.5 5.5
0,0,0,0		~~~ ~~~ VV	ų	<0.2	۷. ک	7.7. V.V.	VV 2,2,2,		V. 2	2,23	,
4 6	325	8.02	Oregon	بن ش	3.0	4.9	14 9.7 17	11.9	7.8	5.8	44.08
5.6 2.0	821 48	222		13	6.4	32	38.87	11	16	21.	14 14 17 21
20 10 12 13	3148	28.82		22	41	82.22	288	55 40	64	74 76	52 56 74 72
Rush Springs Sandstone. Wichita Forma- tion. Garber Sandstone and Wellington Formation.	Bartlesville Sand 4. Arbuckle Group. Garber Sandstone and Wellington Formation.	Elk City Member of Quartermas- ter Formation.		Basalt and other	Volcanic rock of	Basalt and Basal-	Basalt	Troutdale Forma-	Sand and gravel	Basalt	Dasait. Basalt
3, 1958 4, 1958 5, 1958	Dec. 19, 1958 Mar. 4, 1958	Feb. 19, 1958		Apr. 18, 1958	16, 1958	18, 1958 16, 1958	17, 1958 14, 1958 16, 1958	5, 1958	Apr. 22, 1958	June 17,1958	ug. 1,1958 do 11y 30,1958 pr. 21,1958
1		Feb.		Apr.	Apr.	Apr.	Apr. Apr. June	do May 5, 1	Apr.	June	Aug. July Apr.
5-9-3. 4-1-2. 9-2-21.	27-16-36 27-17-31 11-2-8	12-24-11		22/21-8N1	35/3-21E1	11/13-1D1 41/10-2R1	34/7-33K1 4/2N-19G1 1/25-23L1	3/28-28N1 1N/3-34D1	1N/2-26R2	4N/28-11n1	5N/35-12K1 5N/35-2H1 1N/13-4P1 2/1 W-10D1
CaddoCarterCleveland	Nowata	Roger-Mills		Deschutes	Jackson	Jefferson Klamath Klamath	Marion	Multnomah		Umatilla	Wasco

See footnotes at end of table.

Table 5.—Chemical analyses of ground water of low mineralization—Continued

	Hq		7.1		7.7	6.93	6.8		7.4	4.7
	Specific conductance um.08 at D.82		2, 270		440 307 567	382 110 171	404		859	963
	816		1,020		003	00000	> 81		172	336 303
	Manicar mass- missin missin Moncar- bon-		1, 910 1, 140		166 106 229	8888	158		430	532
	Dissolved solids residue (O°081) 48		1, 910		297 196 320	258 138 138 138 138	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7		610	773
	Nitrate (NO ₃)		0.4		5.4	0.9	. 22		0.8	7.60
	Oholride (ID)		123		3.0 3.0	0000	13		24	7.0 8.0
	Sulfate (iOS)		1,030		34 109	S			184	353 330
	Oarbonate (LOO)		•		000	0000	5 0		0	00
	Bicarbonate (HCO ₃)		148		219 171 227	12848	121		315	240 241
oted]	Potassium (K)		82		7.0 9.6 4.4	9994	4 64		5.2	4,4, 6
[Results in parts per million except as noted]	muibod (sN)		100		29 18 34	8 8 7 9 9 9 8 9 9 9 9 9	11 29		12	16
lion ex	muitnont8 (18)	ikota	5.3	gton	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 4444 4444	7. ?. V V	sin	36	20
per mil	muisənyaM (3M)	South Dakota	28	Washington	15 6.3	14 4.9 5.4 8.8	51 51	Wisconsin	88	19 21
n parts	muiolaO (aO)	σΩ	360		25 25 25 25	6.4 14.4	3 3		118	182 157
ults i	Silies (SOiS)		21		42 48 19	16 28 26	22		10	8.9 6.9
[Res	Water-bearing formation		Dakota Sand- stone.		Glacial outwash Puget Group	Gravel. Sand and clay Sand and gravel dodo	Columbia Kiver Basalt. Granite		Sandstone of Late Cambrian age.	Platteville Formation, Prairie du Chien Group, and Sandston of Cambrian age.
	Date of collection		Feb. 20, 1959		Mar. 28, 1958 Apr. 11, 1958 Mar. 27, 1958	do17, 1958 Apr. 20, 1958 Mar. 26, 1958	Mar. 28, 1958		Feb. 18, 1958	do 27, 1955
	Well		93-60-24c		20/28–27E1 24/5–23E1 33/26–16C1	35/39-10B1 18/1W-10R3 18/1W-21D3	15/44-15A2		F1 13/19/18–125_	Ou21/18/25-47
	County		Bon Homme		GrantOkanogan	StevensThurston	w nitman		Fond du Lac.	Outagamie

1	7.8	6.7	2.6	7.5
	364	262	231 1,210 7.6	370
	20	0	231	0
			402	
	195	312	774	
	3	0	0	3.9
		8.0 0 31	144	3.0 3.9
		3.1	Ċ,	9.9
		0		0
	244	329	208	219
	9.	3.6	6.0	5.2
	3.1	126	108 6.0 208	=
	<0.2	V	26 <.2	, 2 , 2
	13	2.9	56	7.3
	72	8.0	14 118	5 2
	2	23	14	22
	Casper Formation	Fox Hills Sand-	Rocks of Cam-	Arikaree Forma-
	22.1958	9, 1958	Apr. 13, 1958	8, 1958
	A n.	Apr	Apr	Apr
	15-73-14d		i	Niobrara 32-63-7b
	Albany	Campbell	Carbon 21-87-17a	Niobrara

4 As used by Oklahoma. i Calculated. 2 Of Stauffer and Thiel, 1941. 3 Values reported to two places analyzed by ion exchange method.

Table 6.—Chemical analyses of brines [Results in parts per million except as noted]

	**	e kš Hq	•	0.0	1	2.0	5.3	1	6.7		5.4	6.7	6.5	1
	-onl ts so	Specific cond		0 152, 000 10. 0		63, 500	7 301, 000 206, 000 185, 000 273, 800 225, 600		214, 000		130, 000	63, 800	128, 000	
	ess as	Von- carbon- ate		0		20,300	206, 000		0 271, 000 19, 000 18, 800 214, 000		24, 500 130, 000	6, 350	119, 000 23, 000 22, 900 128, 000 349, 000 256, 000 256, 000 162, 000	
	Hardness as CaCos	muiəlsO -9ngam muis		286		20, 300	206, 000		19, 000		24, 400	8,360	23, 000 256, 000	
	spil	Os beylossid (residue at (O°081		343, 000		46, 200	301, 000 273, 800 325, 600		271, 000		104 112, 000	47,000	349, 000 349, 000	
	(8	OV) startiV				33	22		0			- 1	11	
	(1	O) ebiroldO		110, 000		26,000	112 187, 000 132 184, 000 64 171, 500 13 200, 100		150, 000		66, 700	25, 660	61, 900 188, 000	
	(OS) stallus		36, 000 43, 300 110, 000		0.	132		0 17, 600 150, 000		-0	0	576 61, 900 19, 500 188, 000	
	(8 OC	Oarbonate (36, 000		0	0000				0	0	00	
		Bicarbonate (HCO3)				24	445 36 0		143		83	2, 450	86 31	
7000	(2)	Potassium (17, 800		58	3, 240 9, 208		4, 260		179	136 2,	148 943	
litesums in parts per minion cacept as noted	(sN) muibo2		11 125, 000 17, 800		2, 900	27,600 21,800 3,2 49,190 22,070 9,2		315 86,000 4,260		31, 100	13, 600	27 , 900 15, 700	
	(1 <u>5</u>	s) muitnorts	ig.	11	5	1 115	837 892 892 2, 730	tota	315	inia	8 76	904 4 116	2,200	
10.	(3M)	Magnesium	California	-83	Michigan	377	, 700 9, 420 2, 9 , 900 16, 800 8 , 700 9, 696 8 , 340 9, 477 2, 7	North Dakota	975	West Virginia	1,330		1, 760 15, 300	
4 3 10 4	(1	BO) muiolaO		77		7, 520	65, 700 54, 900 37, 700 73, 340	Š	5, 990	We	7, 960	1,860	3 6,300 1,760 200 . 0 77,600 15,300 2,200	6 Gas well.
201		Siliea (SiO2)		529		4.7	8. 4 54, 9 24 37, 7 102 73, 3		16		7.5	6.9	93	6 Gas
near!		Water-bearing formation		Lacustrine sedi- ments.		Sandstone of	Cambrian age. Sylvania Sandstone. Marshall Sandstone. Sylvania Sandstone.		Mission Canyon Limestone.		Burgoon Sandstone Member of Po-	Salt sand and Potts-	Wile Formation. do Burgoon Sandstone Member of Po- cono Formation.	a. 451 ppm Ba.
		Date of collection	د ود و د و و و و و و و و و و و و و و و	Jan. 25, 1959		Apr. 7, 1959	June 6, 1954 June 11, 1956 Mar. 28, 1952 Mar. 26, 1952		Apr., 1959		Dec. 9,1955	. Dec. 3, 1958	Nov. 11, 1958	\$ 206 ppm Ba.
		Well		WGC Well 1-C.		47N1E21-2	Dow No. 3 21N13N24 12N3W13		(2)		(2)	Wirt-127 (2)	චච චච	a. 2 Oil well.
		County		San Bernardino WCC Well		Chippewa	Midland Mason Gratiot		Burke		Tyler	Wirt	RoaneBraxton	1 1410 ppm, Ba.

TABLE 7.—Sr/Ca ratios and strontium content in total dissolved solids

Average Sr in total dissolved solids	(percent)	0.06	14	EI. 01.	80.			.20	90.	~	₩.		90.	.12	~~ ~~	-
Sr in total dissolved solids (nercent)	(array rad)	0.0 .08 .08	. 14	E.8.1.8	90.00 100.01	1 2 4 1 1 1	1	1385	12.5	8.5	. 29				8:18	
Total dissolved solids (ppm)	(moles)	174	2,830	3,980 1,190 1,710	2, 100 305 313 880 880	1	1	\$ 210 632 310	33 26 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	222	612		84	1,560	983	A
Average Sr (epmX103)	Ca(epm)	1.93	6.50	6.59	3.09	6.09	3.88	6.29	3.51		13.1	1.10	1.45	4.38	6.45	-
Sr (epm×10³)	Ca(epm)	1.93 2.06 1.68	6.50	6.59 6.63 11.4	. 2. 2. 4. 58. 58. 58. 58. 58. 58. 58. 58. 58. 58	6.09	3.88	12.6	9 52 53 88 53 86 86 86 86 86 86 86 86 86 86 86 86 86	15.0	14.7	1.10	1.45	4 % rd	6.59 7.59 7.59	•
Sr (epm×10³)		2.51 1.44 1.76	2. 23 1. 14 100 100	116 22.8 45.6	41.0 4.79 15.3	123	217	5.47	8.6.4	19.4	4.14.8 2.0-	1.48		31.9 45.6	25.5	2
Ca (epm)		1.30 .70 1.05	16.0	3.44 3.99	3:1:1:05 3:3:45 3:45 3:45	20.2	55.9	3.99 5.10	1001.	.1.2.1 5.00 5.00 5.00	: 1.2,4 59,45	1:33		4 ∞ ∞ 8 8 8	24.2 49.45 80.45	2
Mean discharge (cfs)		33, 700 10, 400	9, 300 640	119,700	12, 800 12, 800 12, 800	80	3.3	42, 980 4, 685	1,650 1,650 240	1,440 1,440 1,500	45.88 45.88	1 640	533	2,560	22,130 6,150 980	5
Date of collection		Oct. 29, 1959	Oct. 13, 1959 Oct. 13, 1959 Sept. 18, 1958 Jan. 31, 1960	do 10, 1958	Mar. 0-8, 1908. July 12-20, 1958. Apr. 14-20, 1958. Sept. 10-12, 1958.	Oct. 4-11, 14-20, 1958	Oct. 4-11, 14-27, 1958	May 1-10, 1958	Apr. 21–30, 1958	Aug. 15–17, 1959 July 6, 1958	July 11-14, 1959 July 19, 1958 Sent 16-10 1959	Apr. 30, 1959	July 14-Aug. 1,2,4, 1958	Oct. 1-17, 27-31, 1958 Sept. 1-13, 15-30, 1958	May 22-31, 1969. May 22-34, 26-28, 1959. Ang 31 Sent 2-21, 1959.	Aug. o., wopu. a-a., roce.
U.S.G.S. gaging station identification	No.	02B3015		07 1330 07 1644	07 2635	1000 00	000000	08 1140	02A1515	07 2270		0245970	12 4135		09 3800	
River and sampling point		Alafia: At Lithia, FlaAllegheny: At Kittanning, Pa	American: At Fair Oaks, CalifArkansas: At Las Animas, Colo	At Lamar, Colo	At Little Rock, Ark	Brazos: Double Mountain Fork: Near Asper-	Brazos, Salt Fork: Near Asperment,	Brazos: At Richmond, Tex	Broad: Near Boiling Springs, N.C	Canadian: At Logan, N. Mex	,	Clinch: At Clinchport, Va	Coeur D'Alene: Mear Cataldo, Idaho	Colorado: Inear Cisco, Otalianare	At Lees Ferry, Ariz	

See footnotes at end of table.

Table 7.—Sr/Ca ratios and strontium content in total dissolved solids—Continued

TAE	TER 1:	ABLE i.—Sr/Ca raitos and strontum content in total dissolved solids—Continued	m content	no u	naanossan 1	sortas—Co	nennar			
River and sampling point	U.S.G.S. gaging station	Date of collection	Mean discharge (cfs)	Ca (epm)	Sr (epmX10³)	Sr (epmX10³)	Average Sr (epm×10³)	Total dissolved solids		Average Sr in total dissolved
	identification No.		•	•		Ca(epm)	Ca(epm)	(mdd)	(percent)	solids (percent)
Columbia: At Northport, Wash	12 3995	Dec. 15-25, 1958	38, 600	1.20	1.64	1.37	1.37	98	80	80.
At The Dalles, Oreg	14 1057	June 1–22, 1958. Aug. 14–31, 1958.	495, 600 112, 100		2.17			1023	888	Ξ.
Copper Creek: Near Gate City, Va Cumberland: At Williamsburg, Ky	03B 4040	Apr. 30, 1958 Apr. 30, 1959 Apr. 23-May 2, 1958 Jan. 26-Feb. 12, 1958	103,000 131 16,130 6,090	1.75		3.00	2.91	74 74	90.	90.
Delaware: At Morrisville, Pa. (Trenton N. J.).	01B4635	Sept. 13–30, 1958 Apr. 4–23, 1958 July 13, 1958	210 44, 310 5, 540	1.0	2.74	2.29	2.01	195	88	.07
Embarrass: At Embarrass, Minn	04 0170	Sept. 18, 1958 July 24, 1958	3,640 50	88	39	1.74	•	828	8.4.	
Escambia: Near Century, Fla	02B 3755 04 0590	May 23, 1958 Nov. 19, 1958 Jan. 14, 1960do	1,420		1.19		1.1.1. 1.04. 1.04.	115	32.53	0.04.00
Genesee: At Rochester, N.Y	04 2320	Jan. 19, 1960	97.	1.80	11.4	6.33	5.69	202	32.6	.24
Gila: At Kelvin, Ariz	09 4740	Aug. 6, 1958 Aug. 9, 1958 Sept. 1–14, 16–30, 1959	2, 860 698 269 269	25.23.25 25.93.45 26.	21.7 20.52 10.9	6.91 4.05 4.05	4.57	447	821	£1:
Green: At Green River, Utah	09 3150	Jan. 30, 1959. June 1–30, 1958. Aug. 1–31, 1958.	19, 730 1, 792	. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	18.2	8. 47 8. 47 9. 4. 10	5.50	252		91.
At Lock & Dam No. 1, Spottsville, Ky.	03A3215	Apr. 11-20, 1968 May 21-31, 1968	1,4/0	9228	3.19	1.21	1.59	188	8888	.00
Guadalupe: At Victoria, Tex Humboldt: Near Rye Patch, Nev	08 1765	May 11-21, 1958 May 11-21, 1958 Sept. 1-13, 15-30, 1958	3,225	4 44 44 44 8 44 48 8	16.2	: 4.%;	4. 22	378	119	. 19
James: At Huron, S. Dak	06A4760	June 1–30, 1958. Nov. 22, 1958. Mar. 29–Apr. 5, 1958		958 858 858 858 858 858 858	13.2 7.3.42 7.42	20.00	00.00	537	1185	er. 9
Kansas: At Topeka, Kans	06B8890	July 25–Aug. 3, £, 1958 July 11–21, 1958 Aug. 24–Sept. 5, 1958 May 12–18, 1958	33, 155 5, 577 4, 966	14464 188 22	13.0	44466 20882	. 84	212 290 390 515	88.53.4	41.
										•

Kentucky: At Lock No. 4, Frankfort,	03A2875	May 10-12, 1958	53, 300	. 55	1.05	1.91		92	.06	
Ky.		Mar. 29-Apr. 10, 1958	19,850	-1-	1.82	1.73	1.68	e:	8:	.07
Kern: Near Bakersfield, Calif.	11 1940	Sept. 3, 1958	21.370	55.5	1.55	28.5		#GT :	<u>=</u>	
		Jan. 6, 1960	2 170	1.10	2.28	2.02	2.45			
Kissimmee: Near Okeechobee, Fla	30	Oct. 6, 1959 May 1-10, 1959	2 145 2, 316	.34	22.24	7.38	7.38	11	14	.14
Klamatn: Near Klamatn, Calli	11 5305	Cet. 7, 1959	3 980	-	1.25		28.8			
		Sept. 9, 1958	3,690	8.	25.28		3			
Lehigh: At Glendon, Pa		Apr. 1–23, 1958.	3 6, 960 3 840	. 20	1.35	2.70	9 64	69	60.	ş
Merchant 44 Westernille Oble		Sept. 15, 1958	8 547	1.45	. 4. 8	2.99	, i	184	.10	T
Madine: At water tile, Onto	U4 1930	Apr. 18–19, 1958	3, 125	3.09	20.0	3.24	3.24			
Minnesota: At Mankato, Minn	05 3250	Mar. 2, 1960	2	6.79	20.1	2.38	2.96	747	.12	.12
Mississippi: At St. Louis, Mo		Oct. 29, 1958	4 24, 700 5 24, 700	2.24	13.7	4.23	4 39	48	41:	16
		qo	6 24, 700	2.89	13.7	4.74	20.1	387	19	2
At St. Francisville, La	07 3734. 20.	June 11-20, 1958	407,000	98	6.56	2.28	2.28	202	9:	.10
11000 H. 110		May 12-22, 1958	17,370	348	. 6.	22.5	3.43	375	:8:	.10
Mohawk: At Cohoes N V	01B3575	Sept. 13-29, 1958	13,200		12.0	4.43		24 E	======================================	7
TOTTOM W. T. COMOOS IN . L	Ot Door of	May 27, 1958	3,760	38	4.56	36.69	2.66	133	15	¥1.
Monongahela: At Charleroi, Pa	03A0750	Aug. 4, 1958	33,300	8.8	1.98	2.48	0 44	107	88	8
		Sept. 27, 1958	2,180	2.20	9) 	# · ·	361	J	60.
Muskegon: At Evart, Mich	04 1215	Jan. 15, 1960	1	2.00	4.56	2.28	2.28	193	01.	.10
Neches: At Evadale, 1 ex	US U41U	May 10-21, 1958 July 21-31, 1958	19,100	04.	27.4	2 kg	7.04	134	3.5	.12
Nueces: Near Mathis, Tex	08 2110	Oct. 1-31, 1958	4,170	2.64	7.30	2.77	2.75	283	:=:	60.
Ohio: Look & Dam No. 51 of Goleands	03 4 2845	May 1-31, 1958	828 000	7. 7.	7.75	7 7 7 7 7	2	415	8.5	
III.		June 11-20, 1958	177,000	2.15	. 56	2.12	2.12	220	28.	80.
Ontonoccon, Moon Dookland Mitch		Nov. 1-10, 1958		2.79	4.56		8	312	8.5	Ę
Oswego: At Lock No. 7 Oswego. N.Y	04 2490	Jan 19, 1960		. 4	16.6	. 88.	BB.	450	9	
		Sept. 17, 1958	4,720	4.39		5.19	4.92	233	61:	.17
Paria: At Lees Ferry, Ariz	09 3820	Sept. 15, 1959.	7.5	6.34	18.2	4.19	i	642	121.	•
,		June 11, 1959	3.0	1.80	18.9	10.5	*	335	.25	• 18
Pecos: Near Puerto de Luna, N. Mex.	08 3835	May 15, 1958	1,540	3.34 × ×	107.21	2.46	4 81	320	21.8 	8
		Mar. 1-31, 1959	8	26.4	205	77.7		2,520	88	?
At Ked Bluff, N. Mex	08 4075	Aug. 22, 1958 Dec. 4, 1958	1,430	23.5	109.2	4.19		1,890	25.5	
	,	May 7-12, 1959	99	30.6	182	5.95	5.83	16,000	999	80
		Sept. 21-30, 1959	84	30.1	202	6.98 88.88		10,98	88	}
-	_	Aug. 18-27, 1959.	44	99.3	198	6.76 1)	_	10,800	80.	

See footnotes at end of table.

Table 7.—Sr/Ca ratios and strontium content in total dissolved solids—Continued

Averag Sr in total dissolved	solids (percent)		90.	.15	.14	90. {	-12	90.		;	ŧī. ~		 				.9			.14	90.
Sr in total dissolved solids	(percent)		90.	.15	60.	9.6	.12	98.6	20.00	871		.14	0.08	80.			11.00	01.81.9	11.83	222	90:
Total dissolved solids	(mdd)		86	4, 410	25	3,120 3,000	83 33	334		302		259	881	8 <i>/</i>		}	580		88	75	284
Average Sr (epm×10*)	Ca(epm)		1.26	7.71	5.54	3.84	3.65	1.76			*I **		2.53		C/	2.99	5.88		5.21	4.13	1.35
Sr (epm×10³)	Ca(epm)		1.26	7.71	3.96	4. 28 83	3.65	1.48	2.8.1. 9.9.9.	9.50 9.50	7.60	38	25.23	2.02	3.75		6.64	5. 43 4. 10 2. 25	4.0 80.8 08.0 08.0	6.70 9.69	1.35
$\frac{\mathrm{Sr}}{(\mathrm{epm}\chi10^3)}$		171	1.39	148	1.03	20.53 20.53 20.53	6.38	4.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	5.02	13.7	17.1	7.98	1.16	- 66 S	5.25	62.	6. 10 14. 6 16. 4	11.4 4.10 6.38	9.35	4.2.4	4.10
Ca (epm)			1.10	19.2	585	7.98 10.4	1.75	2.8.2	1.65	2.59	3 52	888	8.02	8.	1.40	3	2.20	11.2	1888	.55.5	3.04
Mean discharge (cfs)		16				3,860 740	28,800	6, 320 1, 730	9, 450 878		656	365	7 21, 700	7 2, 420 7 1, 050	127	51	1,420	1,690	1, 120 396 250	236 297	0
Date of collection		May 1-29, 31, 1958	Jan. 14, 1960.	Jan. 31, 1960	Oct. 15, 1958	Apr. 21–27, 1958 Apr. 11–18, 1958	June 11–20, 1958	July 6-12, 1958 Apr. 21-May 17, 1958	Sept. 17-30, 1958 May 19, 1958 Sept. 11, 1958	Oct. 1-3, 7-31, 1959.	Feb. 1-28, 1959.	Sept. 24, 1958	May 1–31, 1958 Sept. 1–30, 1958	Feb. 5, 1959	Sept. 12, 1958	Feb. 9, 1959	July 1–23, 25–31, 1959 June 1–2, 4, 1958	Jan. 14-29, 1960 June 1-19, 1959 Oct 1-19, 1967	Oct. 1–26, 1958 Nov. 18, 1958	July 18-31 1959 Dec. 10, 1959	Jan. 16, 1960
U.S.G.S. gaging station	identification No.	OR 4465		07 1285			07 3555	05 0825	08 3130				02A0810.94	11 4670	11 1595	11 1060	09 5020	09 3555		01A1845	04 1445
River and sampling point		Pecos—Continued Near Giroin Tex	Pine: At Rudyard, Mich Powell: At McDowells Shoel Tenn	Purgatoire Near Las Animas, Colo	rappanamock: At Ivenington, Va	Red: Near Gainesville, Tex	At Alexandria, La.	Red River of the North: At Grand Forks, N. Dakota.	Rio Grande: At Otowi Bridge near San Hdefonso. N. Mexico				Roanoke: At Jamesville, N.C	Russian: Near Guerneville, Calif	tile O selfenne O nearly manifesto	ballias: Iveal Spreckles, Calli	Salt: Below Stewart Mt. Dam, Ariz	San Juan: Near Archuleta, N. Mex		Scantic: At Broad Brook, Conn	Shiawassee: At Owosso, Mich

Snake: At King Hill, Idaho	13 1545	Dec. 16-31, 1958	9, 140	2.30	5.02	4.17	2.75	332	. 07	80,
St. Johns: Near Cocoa, Fla	02B2324	Jan. 1–30, 1959 Sept. 23, 1959	8,850 2,323	2.40	3.19 15.5	16.3		336	40. 8	-
		Sept. 2, 1958	8 357	. 4. 85.	22.8	11.1	14.4			78.
St. Lawrence: At Thousand Island		Oct. 5, 1959		1.30	3.42	1.80	1.85	180	80.	80.
Susquehanna: At Danville, Pa.	01B5405	Mar. 7-29, 1958		 .95	1.96	. 5. 88		211	58	
		July 13, 1958 Sept. 7, 1958		2.10	2.01	2.75	.1.96	138	90.	٠٠٠
West Branch at Lewisburg, Pa	01B5535	Mar. 11–30, 1958		1 6	100					9
i		Sept. 14, 1958		1.05	5.5	2.05	RZ Y	129	20.	89.
Suwannee: At Branford, Fla	02B3205	Apr. 23, 1959 July 15, 1958	19, 200 13, 400	1.1	1.82	1.73	94	102	8.8	·8:
Tennessee: Kentucky Dam near Pa-	03 13 6095	Sept. 16, 1958		2.54	1.35	.53		192	.03	
		June 1–10, 1958			1.69	1.78	1.20	: 8 :	60.	90·
Wabash: Near New Haven, Ill	03A3788	June 21–29, 1958		2:2	. 4. 85.	2.12		114	3.2.	
		May 21-31, 1958	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.99	5.24	1.76	1.69	302	20.	20.
White. At Clarendon Ark	07 0778	May 11-23 1958			5. 19	1.19		⊋e 8	3.5	
		Mar. 1-10, 1958	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.50	. 64		02.	138	20.	20.
Willamette: At Salem. Oreg	14 1910	Sept. 11–20, 1958 Dec. 16–22, 24–31, 1958	35, 300	1.75	686	.51		172	0.00	
		Jan. 1-29, 1960		88	8:		3.79	25.	90.	80.
Withlacochie: Near Holder. Fla		July 1-3, 7-31, 1938	3,950	1.058	2.51	2.39	2.39	- 50 76	. E	=
Yakima: At Kiona, Wash	12 5105	Dec. 23-31, 1958	4, 900		1.35			112	90.	:
		Apr. 16-23, 1959	-1,790 -1,790		1. 66 2. 74			137	8.5	• 00
Yellowstone: Near Sidney, Mont	06A3295	May 26-31, 1958	35, 970	1.90	2.2	3.00		28 28	37.	
		Mar. 10, 18, 25, 1959	19, 200	2, 50	31.2	4.48	3.74	398	21.5	.12
Yuma Main Canal: Below Colorado	09 5255	Mar. 3-7, 10-14, 18-21,	4,840	4.69	18.2	3.88		144	10	
kiver Sipnon at I uma, Ariz.		Sept. 1–30, 1959.	570	4. 29	47.9	11.2	7.86	768	.27	.19

1 Discharge measured at Tulsa, Oklahoma (07 1645). ¹ Discharge measured below Kern Canyon powerhouse. ² Discharge measured at Bethlehem, Pa. (01B4530). ⁴ Station No. 715 Z. percent of flow). ⁶ Station No. 1425 (75 percent of flow). ⁶ Composite of 10 verticals across the stream. ⁷ Discharge at Roanoke Rapids, N.C. ⁸ Discharge data near Christmas, Fla.

Chemistry of Strontium in Natural Water

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496

This water-supply paper was printed as separate chapters A-D

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

The U.S. Geological Survey Library has cataloged this publication as follows:

U.S. Geological Survey.

Chemistry of strontium in natural water. Washington, U.S. Govt. Print. Off., 1962.

iii, 97 p. illus., diagrs., tables. 24 cm. (Its Water-supply paper 1496)

Issued as separate chapters A-D.

Includes bibliographies.
1. Strontium. 2. Water-Analysis. I. Title. (Series)

CONTENTS

[The letters in parentheses preceding the titles are those used to designate the separate chapters]

		Page
(A)	A survey of analytical methods for the determination of strontium in	
` '	natural water, by C. Albert Horr	1
(B)	Copper-spark method for spectrochemical determination of strontium	
	in water, by Marvin W. Skougstad	19
(C)	Flame photometric determination of strontium in natural water,	
	by C. Albert Horr	33
(D)	Occurrence and distribution of strontium in natural water, by Marvin	
	W. Skougstad and C. Albert Horr	55
		iii