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GROUND-WATER HYDRAULICS

WATER LEVELS NEAR A WELL DISCHARGING FROM 
AN UNCONFINED AQUIFER

By IKWIN REMSON, S. S. MCNEARY, and J. R. RANDOLPH

ABSTRACT

The differential equation describing unsteady radial flow to a well in an uncon- 
fined aquifer has no simple solution in terms of elementary functions because the 
transmissibility decreases as the aquifer is dewatered. A numerical solution and 
type curves are presented showing the head of water in a homogeneous aquifer 
as a function of radial distance from the well and time elapsed after the water 
level in the well is lowered to and maintained at a given level. This solution is 
similar to one presented by J. R. Philip in 1955 for linear diffusion in a flow 
system in which diffusivity is concentration dependent.

INTRODUCTION

The U.S. Geological Survey carried on studies of the occurrence 
and movement of subsurface water, particularly in the zone of aera­ 
tion, at Seabrook, N.J., from 1950 to 1960. Because of similarities 
between unsaturated flow and unconfined saturated flow, these studies 
led to a numerical solution of the differential equation describing 
unsteady radial flow in an unconfined aquifer.

The theory and the solution are developed in this paper. The 
methods are demonstrated by applying them to a convenient hypo­ 
thetical problem. Type curves are presented and are applied to 
practical problems in a report in preparation.

Acknowledgment is made of the generous collaboration of the 
Seabrook Farms Co. These studies were under direction of Henry C. 
Barksdale, area chief, Ground Water Branch, U.S. Geological Survey, 
Arlington, Va.
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28 GKOUND-WATEK HYDRAULICS

STATEMENT OF THE PROBLEM

The differential equation governing unsteady radial flow to a well 
in an aquifer (Jacob, 1950, p. 366) may be written

M_An^~LXM m
bt~dr[_S()r]+rSdr' ( }

where
h=head of water at any point in the aquifer, in feet; 
£=time, in days, since pumping started; 
r=radial distance, in feet, from the discharging well; 
T= coefficient of transmissibility of the aquifer, or rate of flow 

of water at the prevailing water temperature, through a 
vertical strip of aquifer 1 foot wide extending the full 
saturated height under a hydraulic gradient of 100 percent. 
T is normally expressed in gallons per day per foot of 
aquifer width (Theis, 1935). However, it is more con­ 
venient in the present development to express it in cubic 
feet of water per day per foot of aquifer width; 

S= coefficient of storage of the aquifer, or volume of water 
released from or taken into storage by an aquifer per unit 
surface area of the aquifer per unit change in the component 
of head normal to that surface. It is a dimensionless 
quantity (Theis, 1935).

In the following application of equation 1, it is assumed that the 
aquifer is infinite in areal extent, homogeneous, and iso tropic; that the 
discharging well penetrates and receives water from the entire thick­ 
ness of the aquifer; and that the well has a negligibly small diameter. 

In a confined aquifer which is not dewatered during the discharging 
period, the transmissibility may be assumed to be constant at all times 
and at all places. In such a confined aquifer, the water is released 
from or taken into storage by virtue of the elastic response of the 
aquifer and the water to pressure changes induced by the pumping. 
It is assumed that the water is removed from storage instantaneously as 
head declines. Solutions of equation 1 are available for such con­ 
fined aquifers, where T and S may be taken as constant (Theis, 1935; 
Jacob, 1940).

An unconfined aquifer is dewatered as the head is lowered by a dis­ 
charging well. Because the dewatered portion of the aquifer cannot 
transmit water, the transmissibility decreases with the decline in head. 
Furthermore, the water is released from or taken into storage in 
response to head changes, largely by gravity drainage or refilling of the 
zone through which the water table moves. Although the coefficient
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of storage is usually assumed to be constant and to be virtually equal 
to the specific yield of an unconfined aquifer, the release of water from 
some rocks is not instantaneous, and some variation in this coefficient 
does occur in both time and space during a period of discharge.

Even if a constant value of S is assumed, the ratio T/S is variable 
because T is a function of the head in an unconfined aquifer. An exact 
solution of equation 1 with variable T/S has not been achieved in 
terms of elementary functions. It is the purpose of this paper to 
present a numerical solution for equation 1 applied to an unconfined 
aquifer for an assumed relation between T and head.

RESTATEMENT OF THE DIFFERENTIAL EQUATION

A saturated soil will drain very rapidly to a critical range of moisture 
content within which values of capillary conductivity become small; 
thereafter, the soil drains very slowly. At Seabrook, N. J., for example, 
sediments above the capillary fringe and below the root zone rapidly 
drain to, and then remain approximately at, this critical moisture 
content. Subsequent drainage is very slow (Remson, Randolph, and 
Barksdale, 1960, p. 150-151). Therefore, as a reasonable approxima­ 
tion, S can be taken as constant in equation 1 if applied over a time 
period as long as a few days, as is commonly the case in analysis of 
pumping-test data.

For convenience, let

D-l (2)

Because S is taken as constant, the hydraulic diffusivity, D, varies 
with T , which in turn varies with hydraulic head.

Let hn equal the constant hydraulic head throughout the aquifer 
before the well discharge begins, and let h 0 equal the head of water in 
a discharging well that commences to discharge at 2=0. It is assumed 
that the head is instantaneously lowered to h0 at t0 and is maintained 
constant throughout the discharging period; in other words, the well 
is "pumped at constant drawdown." It is assumed also that the head 
of water immediately outside the pumped well is hQ. Furthermore, let

/,_ h "o /o\ 
0=7  T* vv nn n0

Then 6 is proportional to the difference between the hydraulic head at 
any point in the aquifer and the head at the discharging well, and is 
defined over the interval Q<,8^1. Thus, 6 is a function of head, 
which in turn is a function of radial distance from the well and time. 
At the well, 6=0} and at a remote point (r >») J 0=1.
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Substituting equation 2 and appropriate differentials of equation 3 
in equation 1

r dr 

The boundary conditions for the case of a discharging well are

0=0« at t=0 and r>0 
and

0=00 at r=0 and 2^0 (5)

and 0«>00. It is assumed also that D is a single-valued function of 0. 
In applying equation 4 to unconfined flow, we are essentially adopt­ 

ing the assumptions of Dupuit (1863) as described by Jacob (1950, 
p. 378).
In discussing the flow of ground water in a vertical plane above a horizontal sole or 
impermeable bottom, he [Dupuit] assumed the velocity along the water table to be 
proportional to the slope or tangent of its angle of inclination, instead of to the sine 
as it actually is. Furthermore, he assumed the flow to be horizontal at the water 
table and everywhere below and the velocity to be uniform from top to bottom.

As shown by R. W. Stallman of the U.S. Geological Survey (written 
communication, 1960), equation 4 can be derived from Jacob's general 
equation for unsteady unconfined flow, which also is based upon the 
Dupuit assumptions (Jacob, 1950, p. 384).

Equation 4 has the same form as the radial-diffusion equation where 
diffusivity is a function of concentration. In the diffusion case, D 
would be the diffusivity and 6 would be the concentration. Philip 
(1955) has presented an iterative procedure for the numerical solution 
of the diffusion equation for one-dimensional flow, and his procedure 
may be adapted for solving equation 4. For clarity and convenience, 
much of Philip's development is reproduced below, most of his notation 
being retained.

DERIVATION OF THE ITERATIVE EQUATIONS

CONVERSION TO AN ORDINARY DIFFERENTIAL EQUATION

As a first step hi the derivation of the iterative equations, the partial 
differential equation 4 is converted into an ordinary differential equa­ 
tion by means of the Boltzman transformation

<£=rr 1/2. (6)

Q and D, both single-valued functions of r and t, are consequently 
single-valued functions of $. Therefore, equation 4 can be rewritten
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When equation 6 and its derivatives are substituted into equation 7, 
the results can be simplified to the ordinary differential equation

_0 (de\_dL r dn D /de\ , .
2\dj>) <^L ^_r<#»w/ w

This equation is subject to the boundary conditions

0=00=0, at 0=0, 
and

0^»0n=l, as 0->oo, (9)

where 8o^d^6n for the case of a discharging well.
The boundary conditions state that, at any time, 6 equals 00 at the 

pumped well, where r=0 and 0=0. At any time, 6 remains at its 
original value, dn , at an infinite distance from the well, where r=«> 
and 0=oo. The second condition states also that, when 2=0, 
0=°= and heads are at their initial values throughout all parts of the 
system except at the well, where 0 is 00 .

For a homogeneous aquifer, it may be assumed that 6 is a monotoni- 
cally increasing function of 0, and equation 8 can be multiplied by

 TT and rearranged to give

2Z>_  2
Because

as

the second boundary condition can be expressed in the form

Equation 10 can then be written in integral form incorporating the 
second boundary condition:

586293 61
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FINITE-DIFFERENCE FORM OF THE DIFFERENTIAL EQUATION

A finite-difference form of equation 12 can be developed by dividing 
the interval from 00 to 6n into n equal steps of size 50. Let

ep=e0 +p8e (13)
where p is the number of equal steps of size 50 between 00 and 6P .

The <£=/(0) curve can be replaced by a histogram with<£P and 6P as 
coordinates of the midpoint of step p. Then, by use of equation 13, 
the following finite-difference approximations are shown to hold:

f'»+* ,50 ,, 4 , 
##=0, T (14)

Jov *

and
C 6* Jn , 8d /1KN</)dO=(l>p -75- (15) 
 Vi 2

For 0=0p+i/2 , the finite-difference form for the first term in equation 
12 may now be written as

C gn C ev +* , C 6n , 50 ,^N 
0d0= (^^0  0^0= «^0 0P g- (16)

Let Dp+i/2 be the average value of Z? in the interval 6P to 0P+i, such 
that

J 9

"1 Die

de

Then, by analogy with equation 16, the finite-difference form for the 
second term in equation 12 is

The finite-difference form for the right side of equation 12 is

By substitution of equations 16, 18, and 19 into 12 and rearrange­ 
ment,

, , _
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Let _ 

50 Jer L 9 J i i i 

Then

In similar fashion, it can be shown that

 ip-l/2

where

50 J0,, L ° 

From equations 21 and 24,

_  p+i/2 -ip-i/2 
9P

When Dp+i/2+Dp-i/2 is replaced by 2DP,

Ip+i/2 Ip-i/2=  0p ~r^' (26)

Equations 22 and 26 form the basis of the iterative procedure for 
solving equation 12, the transformed version of the basic flow equa­ 
tion 4.

EVALUATION OF / CLOSE TO 0=0n

The iterative solution involves the calculation of 6 and 0 values 
over the interval 80 ^8^dn. At 0=00, 9=0, and this value can be 
used directly. However, at 0=0re , $ ,= <*>, and this value can only 
produce other values of infinity when used to determine In-i/2- 
The following provides a suitable method for determining In-i/2-

A range of values, 0=0re_ e to 8=8n, can be selected such that the 
variation of D is small over this range. In such an interval, it can be 
assumed that D is constant. This is valid for small values of e be­ 
cause changes of water level are small in the vicinity of 6n . If e is 
taken as 1, 0w_ e is sufficiently remote from the well for D to be vir­ 
tually constant. Therefore, Dn~i/2 will be taken as the constant value 
of D throughout the interval 8n-i to 8 n, and it will be used to derive 
In-i/2, which is equal to /p+i/2 for p=n  1.

As indicated by equation 21, if
-^"U
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can be evaluated, In-\i2 can be determined. Therefore, values of <j> 
between 0w_j and 6n will be determined to evaluate this integral. 

For constant diffusivity, equation 8 may be written

_ __ ^j? d?e Dn-i,2 de_ m

In this case, the equation will be evaluated between the intervals

8=8n-i t 4>=<l>n-i and e^en ,<f>=<i>rt . (28) 

Let

-=| <29>
(Frank, 1950). 

WThen (29) is substituted in equation 27, one obtains

dw 0 7 , fa , onv  =  =  fa    (oOJ 
w 2Dn -i/2 v

Upon integration, equation 30 becomes

(31)

where C\ is a constant of integration. When terms are rearranged, 
equations 29 and 31 become

A,-,/2 . (32) 
a<p <p

Upon integration, equation 32 becomes

Cp 4-Dn-l/Z

e=Ci\  -    dfi+Cz (33)
J 9

Let

u=jf- (34)
4Z>ra -i/2 

When (34) is substituted in equation 33, one obtains

(35)
u 

where the boundary conditions are

e=Bn.ltu=un.l=-^- and e=en,u=un=-^-' (36)
4/>B _l /2 4^-1/2

If the second boundary condition is incorporated in equation 35, one 
obtains
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(37)

Because 0-»0n=l at a remote distance from the well, where

it may be assumed that tin=-=J^   = <» . Equation 37 can then be ex-
4ZV1/2 

pressed in terms of the exponential integral function

0-dn=C3Ei(u). (38)

When the first boundary condition is substituted for the beginning 
of the "n"th interval, one obtains the equation

4^ (39> 

or
sa

(40)

where 50=0« 0«_i. Thus, after both boundary conditions are satis­ 
fied, equation 38 becomes

. . 50

and, after terms are rearranged,

(42)
With known values of 0w-t> 6B, 0»_i, and Dn-i/2, equation 42 permits 

the computation of values of 0 corresponding to any values of 0 in 
the range #»_, to 0».

The integral in equation 21 cannot be evaluated because <£-»«> as 
0-»0w. However, assume that #»_3/4, 4>n-i/2, and 0«_i/4 have been 
evaluated by means of equation 42. The integral in equation 21 can 
then be replaced by the following open-quadrature formula:

J, (43)
'*-! «

(Kunz, 1957, p. 139),

where
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APPLICATION TO A HYPOTHETICAL PROBLEM

Assume that the pumping level in a discharging well is at the 
bottom of the aquifer. Although h0= 0 is a poor choice so far as the 
Dupuit assumptions are concerned, it is convenient for illustrative 
purposes. If one lets n lQ and remembers that 60  Q and 0«=1, 
values of 6P can be tabulated as shown in table 1.

Assume that the aquifer has a transmissibility of 300 cubic feet 
per day per foot and its coefficient of storage is 0.30. From equation 
2, Dn= 1,000 cubic feet per day per foot. If D is assumed to be 
linearly related W 0, values of DP and DV-\K can be listed as shown 
in table 1.

The computation was begun by assuming a trial value of $9 . In

this case, 27.11 -j= was chosen arbitrarily. By use of equation 42,

tables of the exponential integral (Federal Works Agency, 1940), 
and the trial value of <£9 , it was found that 09M ==33.05, <£9M =41.36, 
and <£9M =55.02. These values were substituted into equation 43 and 
the result of that substitution into equation 21, giving /9M =42.36.

TABLE 1. First iteration

ep

Bo =0.0_ _ _ _ _ _ _
0t = .!.___._____. ___....._.
02 = .2-- - ___ ___ _ - ___ __

63 = .3 __ .__ ___ ._.__.__.
04 = .4_______. .___.__.____.

08 = .6__ ___ __ ___ _ ___
07 = .7 _ ___ ____ ___ _
08 = .8 ______ ___ ________
Bg= .9____- ._._._____._____
010=1.0 ________ __ _ __

Dp

0
100
200
300
400
500
600
700
800
900

1,000

VP-X

50
150
250
350
450
550
650
750
850
950

Ip-X

1,703
1,596
1,402
1, 155

890.3
640.5
427. 4
260. 1
135. 9
42. 36

4>>

1.84
1.90
2.09
2.45
3.06
4.07
5.79
8.83

14.60
27. 11

Substituting the values of /9^ and <£9 into equation 26, one obtains 
J8H=135.9, and substituting the values of <£9 and !$& into equation 
22, $8=14.60. By alternate use of these equations, the values of 
Ip-i/2 and <f>P in table 1 were determined.

Although $o in table 1 was computed as 1.84, it must equal 0 to 
satisfy the boundary requirements. Therefore, the original choice 
of fa was too large, and the computation was repeated with a smaller 
value of $9. When this procedure was repeated five times, $0 was ob­ 
tained very close to 0 as shown in table 2. It is noteworthy that !<$& 
approaches 0 as <£0 approaches 0. A mathematical discontinuity 
makes it impossible to derive a value of 00 exactly equal to 0.
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The values of 0 P and the corresponding values of <f> p lead to the 
solution. If time is fixed in <f>P, the variation of ground-water head 
with distance can be determined at a given time. If distance is fixed 
in <j>p, the variation of ground-water head with time can be determined 
at a given distance from the discharging well.

As discussed above, a linear relation is assumed between D and 6. 
Therefore, the solution of equation 4 forA0=0 and for any value of Dn

ft3 
= 1,000 X -I  57 can be determined by multiplying the respective

values of 4>p in table 2 by X1'2 . The resulting curves relating 6 and 
<£ for A,0=0 and for different values of Dn are shown in figure 9. 
Values of <t> are plotted on a logarithmic scale to improve the useful­ 
ness of the curves. However, this method of plotting makes ap­ 
parent the error in the approximation of the boundary conditions.

Assume that one or more observation wells are available in the 
vicinity of a well discharging from an unconfined aquifer. If the 
pumping level in the discharging well is at the bottom of the aquifer, 
the field curves relating 6 and $ can be compared with figure 9 and the 
value of Dn determined for the aquifer. Figure 10 is included to 
facilitate interpolation between the curves.

Da , IN FEET* PER DAY

0.8

0.7

A A
77

ID** I0~5 10'" 10"' 

<(>. IN FEET PER DAY*

FIGURE 9. Belation between 0 and <p for different values of D..
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TABLE 2. Final iteration

«p

00 -0.0  ___ ----- __ -----
0i = .1
02= -2 _____ -- _______ --_ _
A ___ O 
ffn     m\

04= .4___---_-__-___-_-_-__
05 = .5- ___ ____ - ____ __

0« = .6 _ -- _ _ __ -. _.

08= .8-_.-_ __ -__- __ --_-__
0» = .9. ___ _-_ _ _ _ ___
0io~1.0 -_ -

DP

0
100
200
300
400
500
600
700
800
900

1,000

D,-H

50
150
250
350
450
550
650
750
850
950

Ir-H

2, 634, 000
2, 132, 000
1, 390, 000

722, 300
294, 100
91, 180
20, 560
3,110

265. 1
.07112

*p

0.0004
.0004
.0005
.0009
.0019
.0049
.0170
.0802
.5625

6.9750

Dn , IN FEET 2 PER DAY

0.3

0.2

0.

0.0

IO
'5 ~ 4

I0 , 
0, IN FEET PER DAY f

FIGURE 10.  Enlarged portion of curves relating 0 and 0 for different values of D».
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The assumptions made in applying equation 4 to unsteady uncon- 
fined flow limit its range of applicability. It must be emphasized that 
figures 9 and 10 apply only when the pumping level in the discharging 
well is at the bottom of the aquifer, or hQ=Q. This is a condition ob­ 
viously difficult to attain and one that violates the Dupuit assump­ 
tions. However, similar curves can be developed for any values of 
AO. In fact, a single set of curves can be developed for use with any
value of At>-
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