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SYMBOLS AND DEFINITION OF TERMS

Concentration. Weight of tracer or solute per volume of water; expressed in
micrograms per liter, ug/l.

Ebb tide. Refers to discharge or current in a seaward or downstream direction.

Flood tide. Refers to discharge or current in a shoreward or upstream direction.

High and low slack waters. The time, or brief period, between flood and ebb
tides in which no net current, or significant movement, takes place.

High and low tide. Refers to tidal stage rather than current or discharge; high or
low tide usually preceed the times of high or low slack waters. High high tide
refers to the higher of the two high tides that occur in a tidal day.

Conservative solutes. Substances which are not decomposed, alter>d chemically,
and removed physically as a result of natural processes.

Tidal cycle. One ebb and one flood tide.

Tidal day. Two tidal cycles or normally 24.8 hours in duration.

Tidal excursion. Distance a tidal volume of water moves from ebb to flood tide;
this distance varies with location in the estuary and with tide strength.

At.  The quasi-steady-state period, which is a multiple of a tidal ecycle and desig-
nates the duration of tracer injection and also the interval of data collection.
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METHOD OF STUDY

Several tools are available to evaluate the movement of solutes
introduced into a watercourse: mathematical models and tracer-
simulation methods are commonly used. The first method mathe-
matically combines the flow and dispersion characteristics of the
estuary and involves extensive hydraulic calibration of the estuary.

The second method, the subject of this report, involves sirulating
the movement of a waste solute by injecting a fluorescent dye tracer
into the watercourse. The chief advantage of the method is that the
tracer imitates exactly the movement of a like solute without the
necessity of measuring the various hydraulic parameters of the estuary.

The principle of superposition on which this method is based can be
better understood if the case of continuous injection into a flowing
stream is considered first. If, as shown in figure 24, a slug of tracer,
W,, is injected instantaneously into a flowing stream, the time-
concentration relation at an observation point X downstream is
defined by a typical bell-shaped curve. This curve represents the
response to a single slug injection or impulse. If slug injections of the
same amount of tracer are repeated at uniform, closely spaced time
intervals, concentration builds up to some ultimate plateau level. A
series of closely spaced slug injections thus amounts to a continuous
injection and yields an ultimate concentration level dependent on the
stream discharge and the amount or rate of tracer injection. The
ultimate level, Cz,, as shown in figure 24, may be simulated by super-
imposing concentrations from a series of unit response curves, a
method of computation described by Linsley, Kohler, and Paulhus
(1958) under unit hydrograph theory; or it may be simulated by
numerically integrating the response curve produced by a single slug
injection.

A more complex situation exists in an estuary because of alternate
directions of tidal flow, seaward and shoreward, and beccuse of
fresh-water inflow. Thus, the response curve resulting from an instan-
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Ficure 2.—Illustration of superposition principle as applied to rivers and estuaries.

taneous slug injection in an estuary would vary in shape, magnitude,
and location, depending on the flow condition existing when the injec-
tion was made. A whole series of different response curves could be
obtained at any time during the normal 12.4-hour tidal cycle. This
problem is best circumvented by assuming a tidal cycle represents a
quasi-steady-state period. The tracer is then injected continuously
over at least one tidal cycle, At (see fig. 2B), and the resulting time-
distance relations (response curves) are observed at one-tidal-cycle
intervals. This tidal-cycle-long injection may still be considered a
slug injection because the conditions are quasi steady state in relation
to the long observation period.

For an estuary where there is no fresh-water inflow (cee fig. 2B),
the response curve observed at 7 =1At shows the tracer cloud at the
end of the injection, when the tidal condition is the same as it was
at the beginning of the injection. The tracer mass remains centered
about the point of injection in the absence of fresh-water flow, even
though it becomes more elongated with each tidal period. Some tracer
is flushed eventually into the adjoining ocean, principally by longi-
tudinal dispersion.
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Chechessee, Beaufort, and Colleton Rivers. The mean tidal range in
the sound is 7.5 feet, but the tides are occasionally in excess of 9 feet.

The principal source of fresh surface water into the sound is the
Coosawhatchie River, for which 19 years of record show an average
flow of less than 300 cubic feet per second. No significant amount of
fresh water enters the other arms of the estuary. Because depths are
great and tidal ranges are large, vertical mixing of the small amount
of fresh-water inflow is inferred to be rapid. In the absence of major
fresh-water inflows, the contents may be expected to be almost all
sea water. Sea water immediately off the South Carolina coast has a
specific conductance of about 45,000 micromhos. As can be seen from
figure 4, which shows the measured range in specific conductance,
dissolved oxygen, and pH during one tidal cycle at selected locations
in Port Royal Sound, high values of specific conductance exist through-
out the estuary. The lower values in the upper reaches indicate some
dilution by fresh water.

Fresh ground-water discharge into the estuary and fresh surface-
water inflow may be the source of this minor dilution. The piezo-
metric surface of the principal artesian aquifer ranges from about
10 feet above mean sea level near the upper reaches to about mean
sea level near the mouth. The top of this aquifer occurs at elevations
ranging from —50 feet mean sea level to —100 feet mean sea level
in the study area. Overlying this aquifer are several shallow water-
bearing units, some of which crop out in the deeper parts of the
estuary and have a limited areal extent or distribution.

The specific-conductance data also showed no significant vertical
variation and thus indicate a very homogeneous, well-mixed estuary.
The dissolved-oxygen concentrations were also found not to vary
significantly vertically, a fact confirming estuarine homogeneity. The
absolute values of dissolved oxygen also confirm the lack of pollu-
tion.

TIDAL HYDRAULICS

The stage and estimated discharge hydrographs for the Colleton
River at its mouth at the start of the tracer test (fig. 5) show a normal
semidiurnal type of reversing current, with flow seaward or down-
stream (ebb tide) for approximately 6.2 hours and then upstream
(flood tide) for about 6.2 hours. High or low tide (stage) precedes
slack water, or the time of zero current, by about 2 hours. A tidal
day is composed of two high tides and two low tides and is approxi-
mately 24.8 hours long. In Port Royal Sound the two high tides and
two low tides do not vary greatly in amplitudes. The maximum tidal
discharges into and out of the Colleton River range from 100 to 150
thousand cubic feet per second. By contrast, maximum flows at the
entrance to the sound, mile 0, range from 1.5 to 2 million cubic feet
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FIGURE 4.—Maximum variations in specific conductance, dissolved oxygen, and pH during one tidal
cycle at selected locations in Port Royal Sound.

per second. These discharge values are based on actual measurements
made in the summer of 1970 throughout the estuary. The areas under
the discharge hydrograph sketched in figure 5 indicate that tidal
volume exchanges at the mouth of the Colleton River are on the order
of 2 X 10° cubic feet. These large volumes represent wezter moving
into and out of storage in the main channel, and in marshy areas
upstream, and vary with absolute tidal stage. Such large tidal flows

























































SOLUTE MOVEMENT, PORT ROYAL SOUND J27

concentrations presented in figure 18 should be multiplied by a factor
of 1.8 to represent a conservative solute. Proper evaluatior of the
ultimate concentrations thus requires not only a knowledge of the
amount being injected, but also information on the chemical, bio-
chemical, and physical reactions that affect the decay rate. Certain
substances, such as chlorides, sulfates, sodium, and potassium, are
relatively conservative, while others, such as cyanides, phenols,
nitrates, and phosphates, are nonconservative (McKee and Wolf,
1963). Most solutes, even those called conservative, generally are less
conservative than the tracer used in this test; figure 18 will, therefore,
yield safe values, higher than would actually be the case.

EFFECT OF INJECTION AT OTHER LOCATIONS

The main advantage of a tracer simulation test is that the tracer
imitates exactly the movement of a solute injected at a given location.
The tracer responds to the hydraulics of the tidal system witkout the
necessity of mak ng extensive hydraulic measurements. Utilizing the
knowledge of the dispersion characteristics of an estuary obtained in
a tracer study in conjunction with some simple mathematical model,
it is possible to estimate the effect of an injection at other lo~ations.
Such computations would be estimates only in lieu of actual test
data. Nevertheless such estimates would be useful for planning
purposes.
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