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HYDROLOGIC EFFECTS OF URBAN GROWTH

CONSIDERATIONS INVOLVED IN EVALUATING
MATHEMATICAL MODELING OF URBAN

HYDROLOGIC SYSTEMS

By DAVID E. DAWDY

ABSTRACT

Techniques are available for assessing the performance of mathematical 
models of catchment behavior. These system analysis techniques include optimi­ 
zation methods and use of goodness of fit criteria, error analysis, and sensitivity 
analysis. Further research, however, in model assessment is needed, particularly 
in the application of mathematical modeling to the urban hydrologie environment.

INTRODUCTION

Quantitative hydrology is modeling. The development of hydrology 
is the development of mathematical statements about hydrologie 
processes. Thus flood routing is a mathematical model which describes 
how a flood wave is translated and attenuated as it travels down a 
channel. Whenever a past event is reconstructed or a future event is 
predicted, a model is involved. Interest in the hydrology of the urban 
environment leads to interest in modeling as soon as knowledge is suf­ 
ficient so that quantitative answers are desired to hydrologie questions.

The field of mathematical modeling can be divided by at least two 
different methods of classification. First is the stochastic-deterministic 
classification. A stochastic model relates input to output statistically. 
This can be by the relation of an input as an independent variable to 
the output as a dependent variable, as in Carter (1961), who related 
change in flood peaks as a result of urbanization to change in lag time. 
It can also be by a statistical simulation of a synthetic streamflow 
trace. Fiering (1967), for instance, computes the statistics of a given 
recorded trace, then uses those statistics to generate "equally likely" 
traces. A deterministic model relates input to output in such a manner 
that, once the input is known, the output is wholly predictable. The 
most often used deterministic models in hydrology are those based on 
the laws of hydraulics, which use equations of continuity and motion.

Dl
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Examples are Liggett's (1959) study of open channel flow and Grace 
and Eagleson's (1965) study of similitude for modeling runoff from 
small, impervious areas.

A second division of hydrologic modeling is the analytic-synthetic 
classification. An analytic model usually describes a restricted area of 
hydrology in which the laws governing the process are fairly well 
known and accepted. Given these laws, a means of solution is devel­ 
oped, either in closed form or by finite difference approximations. A 
synthetic model specifies a conceptual relating function, and system 
parameters are identified through the use of input and output data. 
The conceptual model may vary between modelers, if the physical laws 
operating are not well defined or generally agreed upon. Thus, an 
analytic model usually describes a narrow or restricted subsystem in 
hydrology so that the problem is made manageable, whereas a syn­ 
thetic model can be made as complex and cover as broad an area of 
hydrology as desired. Grace and Eagleson's study is an example of 
the analysis approach, and Crawford and Linsley's (1966) rainfall- 
runoff model of the synthesis approach.

During the process of model building, the model builder is con­ 
tinually faced with a decision concerning simplicity versus com­ 
pleteness in the model. The simpler the model is, the easier it is to 
understand and use, and probably the cheaper it is to use. However, no 
important element of the system which bears on the process to be 
modeled should be omitted from the model. For example, the use of 
hydraulic equations is familiar to most hydrologists. Because the 
general form of the equations is difficult to solve, simplifications are 
made. Each simplification requires a statement of an assumption, such 
as that steady, uniform flow occurs in a trapezoidal channel. Once 
these assumptions are made the problem is reduced to a manageable 
size and can be solved, but the solution does not apply if the assump­ 
tions are violated.

The same problem faces the synthetic model builder as faces the 
analytic model builder, but the decisions are not so easy nor the as­ 
sumptions so obvious. First the process to be modeled must be broken 
down into subsystems, each subsystem must be judged as to relative 
importance, each must be modeled, and all must be tied together in a 
master program. However, generally accepted concepts such as steady, 
uniform flow or gradually varied flow do not exist. Eather, the ques­ 
tion facing a rainfall-runoff model builder might be the relative im­ 
portance of interception storage as opposed to detention storage, and 
how the two can be differentiated if the two are to be modeled sepa­ 
rately. Equations for both must be derived from empirical studies and
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data for neither will be available for most areas of use. Both intercep­ 
tion and detention may exist on a basin, yet neither may be necessary 
in a model which aims at a given level of output accuracy. A desire 
for completeness in a model tends to lead toward inclusion of all com­ 
ponents which intuitively are known to exist. However, the desire for 
completeness may lead to the inclusion of many parameters which are 
merely curve fitting factors rather than physical parameters describing 
the process they supposedly are modeling. The optimal rule to follow 
would be that of Occam's Eazor, which states that if a simple model 
will suffice, none more complex is necessary. This fails in practice 
unless "suffice" is better defined.

An important problem which faces both the model builder and the 
model user is that concerning the transferability of results. This is 
particularly true in urban hydrology, for little data exist for urban 
watersheds. Practically no data exist for the modeling of the quality 
of urban runoff. Therefore, any model developed must be applicable 
to ungaged areas. Transferability implies that model parameters 
must be derivable from physical measures of the drainage basin. For 
instance, Carter's study requires measures of length, slope, drainage 
area, and degree of urbanization. With these, an estimate of the mean, 
annual flood can be computed. Fiering's streamflow synthesis model 
requires a mean flow, a variance, and a first order serial correlation 
between adjacent flows. From these a synthetic trace can be generated. 
Urbanization studies require that the change in parameters as a result 
of man's influence must be estimated. Carter estimated man's influence 
by using the percentage of impervious area as a parameter. If param­ 
eters have true physical significance, such methods may be very 
effective.

The physical significance of the parameters in a typical rainfall- 
runoff model and their changes as a result of urbanization are dis­ 
cussed by James (1965) in his study of the hydrology of Sacramento, 
Calif. The lack of direct physical significance of the statistical param­ 
eters in a streamflow synthesis program is a possible shortcoming. 
Means, variances, and serial correlations must be related to a mappable 
measure. In addition, the statistical parameters used to establish any 
relation must be defined on the basis of a measured period of record. 
Adequate records to define a range for the statistical parameters for 
the urban environment are inadequate or nonexistent. For this reason, 
stochastic models are not considered feasible at this time for model­ 
ing urban basins, and therefore are not discussed further. However, 
many of the points which are discussed are applicable both to 
stochastic and deterministic models.
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CRITERIA OF GOODNESS OF FIT AND THE 
FITTING PROCESS

Any model must be easily usable and must give satisfactory results. 
While a model builder is concerned with how a model is derived, 
a user is more concerned with what is derived and how well it can 
predict results for his particular problem. "Satisfactory results," how­ 
ever, have no meaning by themselves. There must be some criteria for 
judging goodness of fit.

A best linear predictor for linear systems can be derived by the 
least squares criterion if residual errors are independent, normally 
distributed, and homoscedastic. Even when these conditions are not 
met, some least squares fitting is often used. Yet, even a least squares 
criterion requires that deviations from something must be computed 
in order to have a squared measure to minimize. Eagleson and others 
(1966) explained the rationale for the use of a least squares analysis 
when they stated that the basic problem of linear black box analysis 
is to solve for a meaningful response function when the input and 
output are related by a system that is not truly linear. Eagleson 
obtained an optimal realizable unit hydrograph by using linear pro­ 
graming to solve a Weiner-Hopf formulation for the rainfall-runoff 
system. A solution of the Weiner-Hopf equations gives the least- 
squares fit or, in Eagleson's language, minimizes the integral square 
error. The Weiner-Hopf equation, in Eagleson's analysis, minimized 
the squared differences between the simulated and observed total 
streamflow traces. This was an operational decision made in order to 
obtain a hopefully meaningful response function. Any other squared 
error term could have been used, would have given a different Weiner- 
Hopf solution, and would have been equally optimal.

Dawdy and Thompson (1967) indicated that the criterion set for 
optimization influences the resulting set of optimal parameters for 
a given model. They indicated that the modeling process can be con­ 
sidered as analogous to a linear programing problem. Eagleson trans­ 
formed the problem to an explicit formulation of a linear programing 
problem. As Eagleson showed, the goodness of fit criterion in model­ 
ing is an objective function, and the model itself, expressed by the 
Weiner-Hopf convolution equations, is a set of constraints.

Sensitivity analysis in linear programing studies the changes in the 
optimal solution as any set of coefficients are varied, including those 
of the objective function. Dawdy and Thompson indicated that in 
their study, three different sets of optimal parameters existed, each 
corresponding to a different objective function. If all three of their 
objective functions were combined into one weighted function, their 
three solutions would be end-member solutions with weights of
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(1,0,0), (0,1,0), and (0,0,1), where the numbers in each set of pa­ 
rentheses represent the relative weights given to each of the three 
objective functions. Each weighting produces a different set of optimal 
parameters. Research into the variation between sets of optimal param­ 
eters produced by the use of different objective function weightings 
would give insight into the modeling process and into the interpreta­ 
tion of a given model. Each optimal set of parameters is optimal only 
in terms of its objective function. Most workers have observed this 
seeming paradox in simpler cases of an optimal solution not being a 
unique solution, and it is here merely extended to the general field 
of simulation. Eagleson summarizes the problem when he states, 
"When each storm is analyzed independently, the several unit hydro- 
graphs obtained are thus likely to have widely varying geometrical 
properties, and the method of averaging them * * * is not clear." A 
measure of the effect of averaging of parameters on peak estimation 
is shown in figure 1. A rainfall-runoff model was fitted to four differ­ 
ent years of record for Arroyo Seco near Pasadena, Calif. Each year 
was fitted separately, and the simulated peaks are shown. In addition, 
the optimum parameters for each year were averaged, and these aver­ 
age parameters were used to simulate the same peaks. The scatter 
increases, particularly for the lower peaks.

There is a direct interaction between the objective function and the 
fitted parameters. Therefore, the choice of the objective function itself 
should be optimal in some sense to the model user. There is no objec­ 
tive method for choosing the dbjective function, however, so that the 
choice of the objective function is a very subjective decision. Research 
in this area is vitally needed.

An example of the effect of the choice of the objective function 
on the fitting process is shown in figure 2. For the same rainfall-runoff 
model, parameters were fitted to a given control period on the basis of 
two different objective functions. The first objective function mini­ 
mized the sum of squared deviations of simulated discharges from 
observed discharges for peaks, the second for days. The purpose of the 
fitting was to develop a model for estimating peak discharges. The 
goodness of fit was tested by estimating peak discharges for a test 
period on the basis of the two sets of averaged parameters. As can 
be seen, the scatter is about the same for the two sets of simulated peaks 
and is on the same order as the scatter during the control period, as 
shown in figure 1 for the average parameters. However, the parameters 
based on fitting to daily values result in unbiased estimates, whereas 
fitting to peak values resulted in what seems to be a biased estimate. 
This effect in terms of a frequency diagram is shown in figure 3. Part

336-372 69   2
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FIGURE 1. Comparison of simulation results using optimum parameters for 

each year with results using averaged parameters.

of the hydrologic model became a curve-fitting function and therefore 
did not retain its supposed physical significance when peaks alone 
were used for fitting. Although parameters were "reasonable," the 
water balance was grossly erroneous. This created errors of prediction 
in. the test period.

Sequential fitting methods can use different criteria for fitting dif­ 
ferent subsets of parameters in a model. A first stage could hold routing 
constants at some first estimate and fit the parameters for water bal­ 
ance. Then the water balance parameters can be held fixed while
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Fitting for one is to peak flows, for the other, to daily flows.

routing parameters are fitted to peaks. However, there is much inter­ 
action 'among parameters, and some parameters may influence equally 
both water balance and peak flows. Research in fitting methods can 
go 'hand-in-hand with research in the effects of choice of objective 
function on the optimal fitted solution.

Interactions cannot be eliminated, for they exist in the physical 
system. Their importance in the curve fitting process can be mini­ 
mized, however, by determining as many parameters outside the model 
as possible. For instance, the Stanford Watershed Model has 20 param­ 
eters. Two are based on meteorological data, four on hydrograph 
separation, five are computed from physical measures, three are esti­ 
mated from empirical tables, and six are fitted. The six fitted para­ 
meters all are involved in the loss function, which includes infiltration, 
drainage, and evaporation. Chawford and Linsley (1966) discuss the



D8

1400

1200

Q
z 
o 
o
$ 1000 

cc
LU 
Q_

S 800
u_
O 
CD

0 600

z
u 
o
2? 400
I 
O
w
Q 

200

n

HYDROLOGIC EFFECTS OF URBAN GROWTH

i 
EXPLANATION 

x 
Observed

Simulated "average" day criteria

O 
Simulated "average" peak criteria

O 

0 ,
0° <

O »

.

0 (

o o 

o
*     x-»   <

x ;
1

,

o °
0 ' 

)

y

< X m  
 

0.1 0.5 1.0 

RECURRENCE INTERVAL, IN YEARS

5.0

FIGURE 3. Resulting flood frequency curves for scatter diagrams of figure 2.

interactions among the fitted parameters and suggest a combination 
of fitting both sequentially and to selected data to define the param­ 
eters as independently as possible.

The determination of parameters a priori eliminates to a degree the 
use of a simulation model as a black box device, and adds a degree of 
grayness. It masks a part of the interaction of parameters because 
some are held constant. However, certain "physical" parameters may 
be indices rather than measures. Resistance coefficients and slope when 
applied to basins as "average values" are examples. If fitted param­ 
eters are obtained in order to correlate with measured indices, the inter­ 
actions plus errors in data and in the model may result in physically 
meaningless values for some or all parameters.

To summarize, fruitful areas of research exist in the development 
of fitting methods, the choice of criteria for judging goodness of fit, 
and the effect of choice of criteria upon fitted parameters.
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EFFECTS OF ERRORS OF DATA ON MODELING

Errors in data are reflected in errors in the fitted parameters in a 
simulation model. If perfect input data are routed through a perfect 
model, the output produced would agree perfectly with an error-free 
output record. If errors are introduced into the input or output record 
or both, the output will not be exactly reproduced even by a perfect 
model. If a fitting process is used, the parameters will deviate from 
their true values in order to minimize the deviations between the sim­ 
ulated and recorded traces as specified in the objective function. The 
"optimal" set of parameters will now be in error, and the fitted values 
of the objective function will be less than its "true" value.

This process is analogous to statistical least squares analysis. The 
fitted parameters deviate from their population values because of 
random errors in the data. The standard error of estimate is a measure 
of error of reproduction of the fitted data. The standard error of pre­ 
diction, however, is somewhat greater than the standard error of esti­ 
mate, for it includes both the measure of lack of fit of the data used to 
fit the model and the measure of error in the fitted parameters. These 
relationships are shown in table 1.

TABLE 1. Qualitative comparison of errors involved in hydrologic modeling with 
analogous errors in standard statistical analysis

Source of error Size of error Statistical analog

Data _____ __ __ __ ___ _

Comparison of measured to simulated 
during period used for fitting. 

Comparison of measured to simulated 
during period not used for fitting.

a-b

a+c

Measurement and
sampling error. 

Standard error of 
estimate. 

Standard error of 
prediction.

If the assumptions of regression theory hold (a linear model with 
normally distributed and homoscedastic errors of the dependent vari­ 
able) , the error of prediction can be computed from the standard error, 
the deviations of the independent variables from their mean, and the 
error in the coefficients for the independent variables. The assumptions 
seldom hold, however, so that statisticians often resort to split sample 
testing. A similar situation holds for hydrologic simulation, except 
that there is no theory by which to compute the error of prediction. In 
order to present a measure of utility of a model to the potential user, 
the data used to test a model should not include any data used to 
develop the model or its parameters.

Nonlinearity of the hydrologic process precludes any theoretical 
description of the mechanism by which errors in data are transferred



D10 HYDROLOGIC EFFECTS OF URBAN GROWTH

to model parameters and then combined with input errors in the test 
period to produce errors in the simulated streamflow trace. An em­ 
pirical study for the response for a particular model can be made as in 
table 2. A recorded rainfall trace was assumed error free and routed 
through an optimized set of parameters, which were assumed correct 
values, to obtain a "true" streamflow trace. Then a random error with 
mean zero and standard deviation of 10 percent was applied to all 
rainfall values. These "erroneous" rainfall values were then routed 
through the true model, and the resulting standard error of the simu­ 
lated streamflow trace computed. An optimization run then was made 
which adjusted the parameters to minimize the standard error. The 
"optimized" set of parameters is shown, along with the resulting 
standard error. The "true" rainfall trace was then routed through the 
optimized parameters, and the standard error computed. Assuming in­ 
dependence of the two souces of error, one in the input data and the 
other in the model parameters, the error of prediction should be ap­ 
proximately equal to the square root of the sum of the squares of the 
two separate estimates. Similar results are shown for random errors 
in the input with 20 percent standard error, and for random errors

TABLE 2. The effect of errors in data on the fitting process

[The model parameters have the following meaning: SWF is suction at the wetted front, KSAT is saturated 
soil permeability, KSW is surface storage coefficient, EVC is evaporation pan coefficient, SMSN is a 
nominal soil-moisture storage, RGF is a multiplicative factor controlling the range of effective SWF, RR 
is a runoff ratio, and D RN is the soil drainage rate]

Parameter value

Parameter
Optimized errors (percent)

True Rainfall
20

Runoff
10

SWF (in.)- __ -
KSAT (in. per 

hr)_____.__.
KSW (hr.)_____ 
EVC__________
SMSN (in.).___ 
RGF_ _ ____-
RR___________
CRN (in. per 

hr)_________
U, Pd 1 (given) _.

pd (fitted) __ .
pD_________.

U, Test 3

3. 6

.063
1.0 

. 56
4. 0 

12. 0
.8

. 020

3. 6

. 063
1.04
.57

4. 02 
11.9

.796

. 018
2. 405(13)
.261(10. 5)
. 105(6. 5)

. 530(14)

3. 8

.06
1.06
.58

3.98 
11.94

.8

. 017
1.45(26)
1.06(19.8)
.41(13) .

2. 40(30) .

3.7

. 063
.98 
.559

4. 04 
12. 12

. 796

. 020

. 063(4. 9)
. 046(4. 0)

3.7

. 061
.98 

. 56
4. 04 

12.21
.796

. 019
. 247(9. 4)
. 191(8. 3)

1 P=True parameters, p=optimized parameters, D = correct data, d=erroneous data, U=value of ob­ 
jective function.

2 Nota bene. First value is sum of squares of difference of natural logarithms of the 18 peaks plus half the 
squares of the 18 storm volumes. The second value converts the first value to an equivalent "percent standard 
error" by SE=aritilog V U/27, and averaging plus and minus percentages.

3 Average of nine separate test runs.
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in the output of 5 and 10 percent. A further test is then made for each 
case by applying a new set of random errors to the rainfall and routing 
this new set of erroneous data through the "optimized" parameters 
and computing the resulting errors of prediction. These errors also 
are shown in table 1. Such an analysis gives insight into the fitting 
process in simulation models, shows how errors in data are transmitted 
to the model, and gives an empirical measure of the effect of data 
errors on the accuracy of prediction in simulation.

Data errors have different results depending upon the type of data 
considered. All transfer part of their errors into the model parameters, 
but each differently. Each therefore must be considered separately.

INPUT ERRORS RAINFALL

The major source of error results from the rainfall input data. 
Rainfall errors have several sources. There is sampling error as evi­ 
denced by variability between measured catches for different designs 
of rain gages, and changes in catch when minor changes are made in 
the configuration of a given rain gage. There are changes with time as 
buildings are built or trees grow nearby, changing wind patterns and 
thus changing catch. There are changes which occur when the gage 
is physically moved, and most long-term records have come from gages 
which had been moved at some time. There is spatial variability of 
rainfall over the basin which a rain gage does not measure because it 
measures point rainfall. Finally, any rainfall record must be consid­ 
ered representative of the basin to be simulated, and there may be 
adjustments made before it is considered representative.

Lumped parameter models of basin response take a rainfall record 
as representative of a basin or subbasin and assume uniform rainfall 
in space. As distributed parameter components or subsystems are in­ 
cluded in a given model, input data needs are increased. For example, 
an areally distributed rainfall input becomes necessary in order to be 
compatible with the model, and therefore to realize the benefits of the 
detailed description of the model. The problems of rainfall network 
density for both lumped and distributed parameter modeling have 
been discussed by Amorocho, Brandstetter, and Morgan (1968) and 
Eagleson (1967). Both agree that one or two gages are sufficient to 
estimate mean convective storm precipitation for drainage areas of 
size similar to those found in urban areas. In addition, Amorocho and 
Brandstetter (1966) have studied the problem of rainfall input for 
a distributed system in space. Their conclusions state, "The investiga­ 
tion of questions regarding catchment damping is also essential in order 
to determine the range of departures from the real input field which 
these systems can accept without significant change in the output."
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The study of the relation of rainfall network density to accuracy 
still is a fruitful area for research. But errors in data by themselves 
are not of as much importance as the effect of those errors on the deci­ 
sion-making process. The next logical step, as Amorocho and Brand- 
stetter imply, is to study the effect of rainfall errors on simulated 
runoff records. In particular, the use of distributed parameter models 
requires a study of the effect upon simulated streamflow traces of an 
assumption of uniformity of rainfall in space as opposed to the use 
of a spatially varied rainfall.

INPUT ERRORS EVAPOTRANSPIRATION

"Evapotranspiration (ET)" in the main is a depletion from soil 
moisture. An "antecedent precipitation index (API)" is a simplified 
model of the persistence of the effect of past rainfall on future events. 
ET is used in simulation models to construct a better index, or per­ 
haps a "time variable API." ET determines soil moisture depletion, 
and therefore affects the rate of losses of rainfall to soil moisture 
through infiltration. If any concept of a limiting value of minimum 
infiltration is included in a simulation model, major storms of long 
duration and high intensity approach that limiting value, and the 
effect of initial soil-moisture conditions is decreased. Thus stream- 
flow traces for periods of major storms, years of high precipitation, 
and regions of high precipitation should generally be fitted more 
accurately than traces where initial soil moisture conditions are 
critical.

Measured values of soil moisture are seldom available for testing 
depletions from soil moisture through the process of drainage and ET. 
If models of ET loss are to be constructed and then tested by means of 
rainfall-runoff data, the ET model can best be tested in regions where 
soil moisture conditions are critical but variable, or else only selected 
periods of record should be used for model construction. Such periods 
should be selected so as to cover the range of effects of soil moisture on 
storm runoff and peak flows. With such a test, the problems of errors 
in ET can be studied in the manner suggested by Amorocho and 
Brandstetter (1966) for the study of rainfall errors by measuring the 
impact of errors on simulated outputs.

True measures of ET seldom exist. Rather, pan evaporation data is 
collected, pan coefficients are determined, which supposedly adjust 
pan data to a potential evapotranspiration (PET), and then the cal­ 
culated PET is used as input. Alternatively some PET can be cal­ 
culated by an empirical (that is, Blaney-Criddle) or semi-empirical
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(Thornthwaite or Penman) equation. Penman (1963) presents various 
theories of "availability of water for evapotranspiration." These dif­ 
ferent theories represent different modulating functions which con­ 
vert PET to ET. Errors of output result from errors in PET, 
errors in the conceptual modulating function, and errors of the param­ 
eters in the modulating function. Studies of the relative importance 
of these components of error would be worthwhile. In addition, the 
impact of various levels of urbanization on the simulation results will 
give some measure of the degree of attention to these data necessary 
for hydrologic simulation in the urban environment.

OUTPUT ERRORS STREAMFLOW

A discussion of errors of recorded output data centers around er­ 
rors in stream gaging. The output of interest will depend upon the 
objective function, whether that objective function is stated explicitly 
or is an implicit "let's see how it looks." However, generally the only 
output data available is recorded streamflow. Streamflow data are 
much more accurate than rainfall data because they measure an inte­ 
grated runoff from the total basin. Most streamflow records are rated 
as "good" by the U.S. Geological Survey (1966), which can be in­ 
terpreted as meaning that daily mean discharges have a standard 
error of 5 percent (95 percent are within 10 percent). Peak discharges 
are somewhat more inaccurate. Peaks fairly well denned by discharge 
measurements would have a standard error of about 5 percent. By 
"fairly well defined" is meant that the peak flow is no more than twice 
the highest current meter measurement. When not so defined, peak 
flows may be computed by means such as slope-area measurements or 
other indirect methods, and the standard error then may be about 10 
percent.

Errors in the output are transferred to the parameters through the 
fitting process just as are the errors in input. As indicated by the re­ 
sults of table 1, however, output errors are not as critical as input 
errors. Errors in input are magnified because a residual of excess pre­ 
cipitation is used in the routing, and any absolute error in input 
becomes an absolute error in the residual before routing. The generally 
minor amount of surface storage in urban basins does not greatly at­ 
tenuate input errors. The objective function usually is stated in terms 
of some measure of streamflow, so that proportional errors in meas­ 
ured streamflow are transferred as proportional errors in output.

Errors in input and output impute errors in different parts of the 
model. Random, unbiased errors in input usually are compensated for
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by adjustments in the parameters of the loss function, which includes 
infiltration, drainage, interception, and detention. Similar errors in 
output usually are compensated for in the routing function. Biased 
errors in either may act differently. For rainfall, the bias may be an 
error in the adjustment of the recorded record to "average basin pre­ 
cipitation." For streamflW the bias may vary with discharge, with 
little error for the smallest peak and a maximum error for the largest 
peak, if the general slope of the stage-discharge relation used is com­ 
puted in error.

INTERPRETATION OF ERRORS

The impact of errors upon the simulation process depends in part 
upon whether the error is a random error of a quantity which is meas­ 
ured or whether the error is in an index which is used as an approxi­ 
mation to something which cannot be measured. Data and parameters 
cover the spectrum from streamflow discharge (truly measurable) 
through point rainfall (measurable but used as an index to basin 
rainfall) to PET (not directly measurable and used as an index to 
relate water demand and water availability) to basin slope (some index 
of a varying quantity (Benson, 1959) the effect of which can only 
be estimated in itself). Even grosser indices might be "basin rough­ 
ness" or "transbasin ground-water seepage" measures.

Errors of indices are errors of approximation in the model. Even 
a "best" value of an index may lead to serious errors in simulation 
when the data are outside the range for which the particular approxi­ 
mation applies. Therefore, errors in indices generate both random er­ 
rors and errors of approximation. It is errors in indices which usually 
cause outliers, for gross errors usually are the results of poor approxi­ 
mations in a case where the approximation is the controlling factor in 
simulation of a given event.

Errors of approximation become masked in the fitting process. The 
subsystems within the hydrologic cycle are highly interrelated, with 
many interactions among parameters taking place even in the simplest 
models. Therefore the handling of outliers introduces an important 
area of subjectivity in any modeling process. If methods of systems 
identification and systems specification can be developed to separate 
the modeling process into a series of relatively independent prob­ 
lems, a major step forward will result. Sequential fitting methods, as 
mentioned earlier, are a first step in this direction, but much more 
could be done to advance the model development phase if the inde­ 
pendent factors could somehow be treated as is done in statistical 
hydrology through eigen vector analysis and synthesis.
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SENSITIVITY ANALYSIS

Sensitivity analysis studies the effect on the optimal solution of 
changes in the input-output coefficients and in the objective function. 
According to Dantzig (1963),

In many applications, the information thus obtained [through sensitivity 
analysis] is as valuable as the specification of the optimum solution itself. 

Sensitivity analysis is important for several reasons:
(a) Stability of the optimum solution under changes of parameters may 

be critical. For example, using the old optimum solution point, a slight 
variation of a parameter in one direction may result in a large un­ 
favorable difference in the objective function relative to the new 
minimum, while a large variation in the parameter in another direc­ 
tion may result in only a small difference. * * * it may be desirable 
to move away from the optimum solution in order to achieve a solu­ 
tion less likely to require essential modification.

(b) Values of the input-output coefficients, objective function coefficients, 
and/or constraint constants may be to some extent controllable, and 
in this case we want to know the effects which would result from 
changing these values.

<c) Even though the input-output and objective function coefficients and 
constraint constants are not controllable, the estimates for their values 
may be only approximate, making it important to know for what 
ranges of these values the solution is still optimum. If it turns out 
that the optimum solution is extremely sensitive to their values, 
it may become necessary to obtain better estimates.

Sensitivity analyses in hydrologic simulation are not as straight­ 
forward as in linear programing. The same principles apply, however. 
Discussions of sensitivity of results to parameter variability are given 
by Crawford and Linsley (1966) and Dawdy and O'Donnell (1965). 
In addition, sensitivity to changes in the objective function (Dawdy 
and Thompson, 1967) were mentioned earlier. A conclusion drawn by 
Dawdy and O'Donnell was that "Any further development of auto­ 
matic parameter optimization techniques must use some criterion of 
response sensitivity (or its equivalent) in selecting what can be con­ 
sidered adequately optimized parameters. Indeed, the minimization 
of differences from recorded data cannot be the sole criterion in inter­ 
preting the fit of any model."

Although all the parameters discussed by Dawdy and O'Donnell 
(1965) apparently were equally sensitive to either positive or nega­ 
tive changes in parameter values, this does not necessarily occur in all 
cases. A case in point is shown in figure 4. A parameter representing 
the rate of drainage of moisture from the soil through percolation to 
the ground-water table was estimated for a simulation run. The sensi­ 
tivity of the objective function to changes in rate of drainage shows 
that the rate is critical until a certain value is reached. Beyond that
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FIGTTBE 4. Changes in goodness of fit as soil moisture drainage rate is varied,, 
illustrating nonsymmetry of response.

critical drainage rate, the objective function is quite insensitive to- 
increases in the drainage rate. Therefore, for this model and data it 
is far better to overestimate than to underestimate drainage.

Sensitivity plots for both optimized and computed parameters give- 
insight into the modeling process and the interpretation of the physical 
meaning of the parameters in a given model. Sensitivity plots cannot 
be plotted unless the objective function is stated in objective terms.. 
Yet, as Dawdy and Thompson (1967) indicated, the formulation of 
the objective function itself influences the results. At the present time,, 
the use and interpretation of sensitivity analyses is quite subjective. 
A valid field of research which is to date almost untouched is the 
methodology of developing and using sensitivity analyses for com­ 
paring different models and for comparing results for a given model 
under differing conditions, as touched upon by Crawford and Linsley 
(1966) and Dawdy and O'Donnell (1965).
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OPTIMIZATION VERSUS SUBOPTIMIZATION

Up to this point, all discussion has centered upon hydrology as a 
system. Optimization has been in terms of errors in simulation of 
hydrologic data. In fact, hydrology is a subsystem, and the discussion 
has concerned suboptimizatkm. Hydrology is one input into a decision 
process concerning resources development. In optimization of the deci­ 
sion process, accuracy of hydrologic simulation has both costs and 
benefits with reference to the ultimate development scheme. Costs are 
incurred in gathering data of a certain type at a certain level of ac­ 
curacy for a given length of time. Benefits result from better decisions 
which result from better data. Discussion of this broader systems 
study of the marginal cost and marginal worth of hydrologic data is 
beyond the scope of the present study. Nevertheless the broader prob­ 
lem must be considered. It also presents many areas where research 
is needed.

CONCLUSIONS

Hydrologic simulation today is half science and half art. It is an 
art to the extent that subjective decisions enter into the modeling 
process and its assessment. Kesearch is needed to move the field closer 
toward the area of science by developing and using the necessary sys­ 
tems-analysis techniques. Measures of error are necessary in order to 
judge between models, whether on the part of the model builder or the 
model user. In addition, measures of error must usually be stated in 
some form of an objective function in order to us the tools of systems 
analysis.

Fruitful areas of research are:

1. The construction of meaningful objective functions and the inter­ 
play between objective function and simulation results. The use 
of objective functions for the disparate aims of fitting and pre­ 
dicting within a single model and of comparing between models 
should be considered.

2. The development of tools for sensitivity analyses and of methods 
for using sensitivity analyses for developing and using simula­ 
tion models.

3. The development of mathematical tools for fitting the independent 
parts of hydrology. This would be in the sense of eigen vector 
analysis, in which the independent factors are not necessarily the 
original variables nor subsets of the original variables, but some 
combination of the original variables.
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4. The determination of guidelines for error analysis in hydrologic 
simulations. Hydrologic models are nonlinear, so that standard 
linear theory does not apply. Errors in data are transferred into 
fitted parameters. These errors in fitted parameters plus those 
in computed parameters are transferred into predictions. Little 
is understood of this mechanism.

5. The comparative effects of input errors and output errors on simu­ 
lation results so that some concept of network density can be 
applied to urban hydrologic data in terms of the end results of 
hydrologic prediction through simulation.
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