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MAGNITUDE AND FREQUENCY OF FLOODS IN THE UNITED STATES

PART 13. SNAKE RIVER BASIN

By C. A. Tuaomas, H. C. Broom, and J. E. CoMmArs

ABSTRACT

The magnitude of a flood of any selected frequency up to 50 years for any site
on any stream in the Snake River basin can be determined by methods out-
lined in this report, with some limitations. The methods are not applicable
for regulated streams, for drainage basins smaller than 10 or larger than 5,000
square miles, for streams fed by large springs, or for streams that have flow
characteristics materially different from the regional pattern. The magni-
tude of a flood for a selected frequency at a given site is determined by using
the appropriate composite frequency curve and the mean annual flood for the
given site. The mean annual flood is computed from either a formula or a
nomograph in which drainage area, mean annual precipitation, and a geographic
factor are used as independent variables. The standard error of ectimate for
the computation of mean annual floods is plus 17 percent and minus 15 percent.

Nine flood-frequency regions (A-I) are defined. In all except regions B and
I, frequency relations vary with the mean altitude of the basin as well as with
the geographic location; therefore, families of curves are required for 7 of the
9 flood-frequency regions.

The report includes a brief description of the physiography and climate of
the Snake River basin to explain the reason for the large variation in mean
annual floods, which range from zero to about 27 cubic feet per second per
square mile.

Composite frequency curves and formulas for computing mean annual floods
are based on all suitable flood data collected in the Snake River basin. Tables
show the data used to derive the formula. Following the analysis of data are
station descriptions and lists of peak stages and discharges for 295 gag'ng stations
at which 5 or more years of annual flood records were collected prior to Sept.
30, 1957. Many flood peak data are not usable in defining the frequency curves
and deriving the formula because of large diversions and regulatio~ upstream
from the gaging stations.

INTRODUCTION

The purpose of this report. is to describe methods by which the flood
frequency and magnitude for any site on any stream in the Snake
River basin can be estimated and to bring together in a single volume
lists of peak stages and discharges for all gaging stations in the
Snake River basin that have 5 or more years of annual flocr records.

1



2 FLOODS, SNAKE RIVER BASIN

Economic considerations in the design of dams, bridges, culverts,
highways, railroads, waterworks, diversion dams; the utilization of
flood plains or banks of streams for agricultural or industrial pur-
poses; and intelligent and beneficial use of floodwaters themselves all
require knowledge of flood hazard and potential.

Flood discharge data obtained at individual gaging stations and
analyzed collectively furnish the most reliable basis for estimating
future flood expectancy. This study is an attempt to generalize the
probability expressions of flood frequency and magnitude of large
groups of streams and thereby to reduce the effect of variations of
flood data resulting purely from chance. Data from gaged areas can
then be used to estimate the magnitude and frequency of floods in
ungaged areas.

Flood formulas derived by empirical methods should be limited to
use within the ranges of experience and under conditions similar to
those of the data on which they were based. In this report, statistical
methods are used to derive a formula applicable to conditions found
in the Snake River basin. The formula is based on all known flood
data for the area as of September 30, 1957.

This report was prepared by the U.S. Geological Survey Water
Resources Division, Surface Water Branch, Boise district office, under
the general direction of W. 1. Travis, district engineer. Technical
guidance and review were furnished by G. L. Bodhaine, hydraulic
engineer, U.S. Geological Survey, Tacoma, Wash., and Tate Dalrym-
ple, hydraulic engineer, U.S. Geological Survey, Washington, D.C.

The streamflow records used, unless otherwise stated, were collected
by the U.S. Geological Survey in cooperation with many State and
Federal agencies and private crganizations. Detailed acknowledge-
ment of cooperation is given in the series of annual water-supply
papers published by the Geological Survey entitled “Surface Water
Supply of the United States.” Records have been compiled and
published in summarized form through Sept. 80, 1950, in Geological
Survey Water-Supply Paper 1317.

DESCRIPTION OF THE BASIN

A brief description of the basin will aid in the study cf its flood
characteristics. The Snake River basin has an area of abcit 108,500
square miles and a mean altitude of about 5,100 feet. This basin is
considerably larger in area and yields more discharge than that of any
other tributary to the Columbia River. The basin includes parts of
western Wyoming, northern Utah and Nevada, eastern O-egon and
Washington, and all of Idaho except the extreme northern end and a
relatively small area at the southeast corner of the State. (See fig. 1.)
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4 FLOODS, SNAKE RIVER BASIN

Altitudes range from 340 feet at the mouth of the Snake Rivar to 13,766
feet at the top of Grand Teton Mountain near the east edge of the
basin. Land slopes in the mountainous parts are steep. generally
averaging 20 percent or more. The average relief between the gaging
stations studied in this report and the highest point of their respective
contributing basins is 4,700 feet. Stream slopes average 135 feet per
mile and vary from 2 to 500 feet per mile.

Lakes, ponds, and reservoirs constitute an insignificant part of the
basin. Manmade lakes are greater in extent than those occurring
naturally. The effects of watered areas on flood characteristics were
so poorly defined that further study was not made for this report.

PHYSIOGRAPHY

Effects of the extreme and numerous variations in topceraphy on
the flood discharges are profound and complex. These variations in
relief must be analyzed in determining the flood potential. For de-
scriptive purposes, the Snake River basin can be divided into seven
regions as shown on plate 1. Regions were delineated by the authors
of this report and are generally similar to those used in Weather
Bureau Climatological Base Maps of the several States in which the
basin lies; no physiographical authority such as Fenneman was strictly
followed.

UPPER SNAKE RIVER MOUNTAINS

The mountains at the extreme east edge of the basin form an abrupt,
effective uplift barrier that raises all the prevailing westerly winds
across the long stretch of open plains. In rising over the mountains,
the air masses drop a heavy snow cover that yields substantial summer
runoff to the valleys downstream. (See precipitation index map,
pl. 2.) The Teton Range extends north-south at the west edge of the
region and is very precipitous. Jackson Hole, a flat, mountain valley
at the eastern base of this range, is bounded on the east by more high
mountains that range in altitude from 5,100 to 13,766 feet and have
a mean altitude of about 7,600 feet. This mountain region embraces
an area of nearly 7,000 square miles.

UPPER SNAKE RIVER PLAINS

Immediately west and south of the upper Snake River region is the
flat, basalt-filled Snake River plains region. The nearly level or
gently sloping terrain in this area is broken by scattered buttes, lava
cones and flows, and deeply incised river channels. This area com-
prises about 20,000 square miles and extends on either side of the Snake
River to the mountains and west as far as King Hill. Because of its
relatively low altitude and its location east of several mountain ranges,
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the area receives an extremely low mean annual precipitation. (See
pl.2.) Practically all the soil has an infiltration capacity that greatly
exceeds the usual rate of rainfall. Infiltration is so great that no sur-
face stream channel reaches the Snake River from the north between
Henrys Fork (above Idaho Falls) and the Malad River (near Good-
ing), a distance of 225 miles; however, several streams from the north
do reach the plains. Much of the water in all streams enter'ng the
above-described region sinks into the ground and ultimately returns
to the Snake River channel through large springs in the Thousand
Springs area near Gooding and above King Hill. The plains increase
in altitude gradually from west to east and from the Snake River both
northward and southward. The flatlands range in altitude frow 3,000
feet to more than 6,000 feet, although some river channels ar> lower
than 3,000 feet, and some buttes are higher than 7,000 feet.

LOWER SNAKE RIVER FLAINS

The lower and upper Snake River plains are separated by a com-
paratively narrow constriction formed by hills on both sides of the
Snake River near King Hill. (Seepl.1.) This throat is downstream
from the large return flows from ground water and irrigatior in the
upper plains. Downstream from this throat, the valley again widens.
The topography is not unlike that of the upper Snake River plains,
and rainfall is likewise very light. (See pl. 2.) However, contrast-
ing geology causes streamflow characteristics to differ considerably
from those in the upper plains. Streams entering the lower plains
maintain their flow across the Snake River valley, and storms and
snowmelt at times cause runoff from the flatlands. This region in-
cludes about 6,000 square miles and ranges in altitude from 2,100 to
4,500 feet.

A large part of the irrigated area within the Snake River basin is
in the lower and upper Snake River plains, and diversions for irriga-
tion and other works of man affect the natural régimen of flow more
radically than in any other regiou of the Snake River basin.

SOUTHERN HIGHLANDS

The south side of the Snake River plains, defined by the near-arc
shape of the Snake River channel, is joined at roughly 20-mile
intervals by a succession of tributary basins that approach roughly
from radial directions. These southside drainage basins are charac-
terized by rather wide valleys flanked by high mountain ranges with
gentle to steep slopes that run parallel to the streams. Altitudes of
the valleys range from 4,000 to 5,000 feet, and altitudes of the moun-
tain tops range from 6,000 to 11,000 feet. This general pattern is
broken by the Owyhee River plateau (about 5,000 square miles) and

690-448 O - 64 - 2
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the lower, more gently rolling hills of the Malheur and Burnt River
basins. The entire region embraces an area of 31,000 square miles.
Owing to the high permeability of the soil and to the fact that much
of the moisture from air masses progressing eastward i¢ precipitated
on mountain ridges to the west, runoff from these northward-drain-
ing basins is relatively light. (See precipitation index map,

pl. 2.)

CENTRAL MOUNTAINS

The Central Mountains region joins the north edge of the roughly
crescent-shaped Snake River plains. On this side also. streams ap-
proach the Snake River roughly from radial directions. They drain
the southern end of the rocky, precipitious mountains covering most
of Central Idaho known as the Great Idaho Batholith. These south-
ward-running streams drain an area of about 14,000 square miles,
within which the drainage basins rise from valley floors ranging from
2,500 to 6,000 feet in altitude to mountain peaks ranging from 7,500
to 12,230 feet in altitude. At least 90 percent of this region is steep
mountainous terrain; sizable valleys are limited to those along the
Weiser, North Fork Payette, Big Lost, and Little Los: Rivers and
Birch Creek. Because of the preponderance of mountains of higher
altitudes, precipitation is relatively high in the western part of this
region, being as high as that for any part of the Snake River basin.
The amount of snowfall and rain decreases toward the east, and is
lightest in the Little Lost-Birch Creek area where larger valley
areas and shadow effects of mountains toward the Pacific Coast reduce
the catch materially. (See pl. 2.) Extensive alluvium along the
mountains and in the valleys of the eastern half of this region reduce
the runoff and flood potential noticeably. The flow of many streams
that traverse the alluvium is further reduced as the streams cross the
lava plains, and some streams never reach the Snake River as surface

flow.
NORTHERN MOUNTAINS

The large Northern Mountains region, which comprises about 29,500
square miles, is on both the east and the west sides of the Snake River.
(See pl. 1.) The area is entirely mountainous except fcr a few rela-
tively small valleys in the Baker-LaGrande-Enterprise areas in Oregon
and several narrow valleys near Salmon in the upper falmon River
area. With the exception of flow through these valley areas, discharge
in the tributaries is practically unaffected by works of man. The
Snake River main stem, however, is now being intensively developed
for hydroelectric power in the reach within the regior and is con-
siderably affected by regulation. Streams have cut Ceep canyons
through the high mountains, and slopes are extremely steep and rocky.
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Altitudes vary from below 1,000 feet where the Snake River leaves
the region to move than 11,000 feet at the top of several mountains.
Precipitation, in general, is greatest in the northern and eastern parts
of the region (see pl. 2), but variations are likely to be extreme in
short distances because of radical changes in altitude and complex
orographic effects on air masses moving through the region.

NORTHERN HILLS

The Northern Hills region lies between the Northern Mountains and
the mouth of the Snake River. The rolling hills of the region slope
more or less gradually from the foot of the mountains towasrd the
Columbia River. The region, which embraces an area of about 8,500
square miles, is practically all below 4,000 feet in altitude and descends
to a low of about 340 feet where the Snake River reaches the Colum-
bia River at Pasco. Much of this land is used for agricultural pur-
poses, but only small acreages are irrigated. Precipitation is lowest
at the low altitudes and increases gradually toward the higher country
upstream. (See pl. 2.)

CLIMATE

The entire basin is in the belt of prevailing westerly winds whose
direction and moisture content are controlled by the seasonal move-
ments of the Aleutian Low and the Pacific High pressure systems.
These opposing barometric centers tend to follow the annuel shift
of the sun’s latitude. The Aleutian Low is farthest south in winter
concurrently with maximum intensity and extent, thus causing strong
moisture-laden southwesterly winds to flow inland to the Snake River
basin. The northward trending mountain ranges and their interven-
ing low valleys and basins alternately cool and warm these air masses
passing eastward, thus causing alternate belts of high and low pre-
cipitation. The higher a mountain range and the fewer the interven-
ing obstructions between it and the ocean, the more moisture is
condensed out of these air masses. Consequently, for any given
altitude, areas of highest precipitation are in the western par* of the
basin, and areas of lowest precipitation are in the eastern part except
where modified by other orographic influences. Increasing domi-
nance of the Pacific High lessens the intensity of the moisture-laden
winds as the sun moves north. Effects of continental-type storms
complicate the storm patterns in the eastern and southern parts of the
basin. Two types of floods occur: one results from direct runoff
from rainfall or rain on shallow snow, and the other is caused by
warm weather melting snow that has accumulated from many storms
throughout the winter. The area of rain-type floods (or mor= often,
rain on snow) extends eastward from the coast into the Cle~rwater
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River basin, and the floods occur generally from Noverber through
March. Low-altitude basins in the Northern Hills region and ad-
jacent to the Snake River plains are affected by rain or rain on snow
during winter months and have flashy, rain-type flood peaks. By
far the largest number of annual flood peaks in the Snake River
basin are caused by snowmelt or by rain on snow. Where most of
the precipitation falls as snow, the maximum flood is rearly always
caused by snowmelt during the spring or early summer. Considera-
tion of the snowmelt potentialities is of greater practicel importance
than consideration of rainfall intensities in determining the magni-
tude and frequency of floods over most of the Snake River basin.

Average annual precipitation over the entire Snake River basin,
as taken from the precipitation index map (pl. 2), is about 21 inches.
Because of the effects of the great diversity of topograply both in the
Snake River basin and westward toward the Pacific Co~st, tempera-
ture and precipitation vary greatly from place to place. Average
annual precipitation varies from about 8 inches on large areas in the
Snake River plains and similar areas of low relief to an estimated
maximum exceeding 70 inches on some of the higher mountain ranges.
The greatest amount falls on the western slopes near the tops of the
highest mountains. Abrupt changes in orographic effects cause pre-
cipitation to vary considerably in short distances. Instances exist of
mean annual precipitation varying from 18 inches in the valleys to 60
inches or more on nearby mountain tops. Precipitation over most of
the basin is heaviest in winter. Average precipitation st some high-
altitude weather stations for the months November—March is as much
as 80 percent of the mean annual precipitation and can be correlated
with the pattern of storms from the Pacific Ocean. How=ver, in parts
of the southern and eastern sections of the basin the storms from the
Pacific Coast are modified by the continental air masses, and a greater
proportion of the precipitation comes in summer—nearly 50 percent
of the total in some areas falls during May—October. Precipitation
occurs as rain or as a combination of rain and snow during the winter
at low altitudes, but the proportion of snow increases at higher alti-
tudes and is preponderantly snow on the highest mountains. Snow
is a significant part of the precipitation everywhere in the basin.
As well as being responsible for most floods, melting of the accumulated
snowpack contributes much more to the total volume of direct runoff
than does rainfall alone.

OTHER FACTORS AFFECTING FLOODS

It is characteristic of the entire Snake River basin that summer rains
fall on dry or unsaturated soils, and thus there is little runoff. How-
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ever, an occasional thunderstorm causes rain of sufficient intensity to
produce high unit discharges from small areas. In a few instances,
streams in small basins denuded by fires, for example, have hed unit
discharges far in excess of rates experienced under normal conditions.

Geologic influences affect runoff and flood-generating potentials to
a considerable extent, especially in some areas. Probably mos" effec-
tive in reducing flood flows are the permeable basalt and alluvium.
The volcanic flows over most of the upper Snake River plains region
are so permeable that surface runoff disappears partly or entirely.
Deep loose alluvium at the base of many of the mountain ranges, most
noticeably in the valleys to the north and south of the upper Snake
River plains region, also absorbs large quantities of the surface runoff.
Mantle rocks or soils of the Snake River basin include all degrees of
permeability from very porous lava flows and coarse alluvium to dense
impermeable granite and clay. In regions of low precipitation, the
amount of precipitation excess available to produce flooding is con-
trolled in large part by the type or soil over which it flows.

In addition to these natural features that affect the magnitnde of
floods, manmade influences have altered the flow patterns of many
streams in the Snake River basin. Millions of acre-feet of water is
stored in reservoirs; water is directed for the irrigation of more than
2,840,000 acres of land ; and a large amount of water is pumped from
ground-water aquifers. Many streams in the more mountainous areas
are still unaffected by regulation or diversion ; but on the Snake River
main stem and all major tributaries except the Salmon and Cles rwater
Rivers, the effect of storage and diversion must be considerel care-
fully in the determination of flood expectancy.

AVAILABLE FLOOD RECORDS

Records for 179 of the 295 stations having 5 or more years of rec-
ord in the Snake River basin were selected as being most suitable for
use in the analysis of the basin characteristics. These stations are
listed in table 1 and are shown on the base map of the basin (pl. 3)
as solid circles. Only records for streams not materially affected
by works of man should be used to generalize the flood-frequency re-
lationships. For gaging-station records to be comparable, they must
represent the natural streamflow for the same time period. For this
study, 1921-57 was selected as the base period. When records were
not complete for the entire base period, annual peaks of record were
correlated with those for a nearby station or stations, and annuel peaks
were estimated for years of no record. For correlative purposes,
stations were selected with similar flood characteristics. Tre esti-
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mated peaks were used only for the purpose of assigning order num-
bers to the actual peaks of record. Gaging-station records less than
5 years in length do not define flood-frequency curves adequately but
may furnish valuable information to aid in defining the mean annual
flood. Because of the dearth of records for small drainage areas in
some localities, records for 82 gaging stations having lese than 5 years
of record were used as guides in delineating some of the flood-frequency
boundaries. These short-term records were also of considerable value
in defining geographic factors to use in determining mean annual
floods at ungaged sites. The 82 stations are listed in talle 2,

Many records were adjusted for storage in reservoirs sbove the sta-
tion before being compared with those for natural streams; others
were adjusted for diversions. Several records were corputed using
only that part of the drainage area below reservoirs if the reservoirs
were completely shut off for a large percentage of the time during the
flood season.

Table 3 contains an inventory of data for gaging stations used in
the flood-frequency analysis. Available records 5 years or more in
length for 118 gaging stations are not listed in table 3 and were not
suitable for use in the analysis for a variety of reasons. Large reser-
voir storage and comparatively great depletion of flow by irrigation
diversions made many records unsuitable for flood anal7ses. Many
basins have little or no surface runoff, for discharge is all by spring
or subsurface flow. The drainage boundaries for ground and surface
water in some basins do not coincide, and, therefore, stre~mflow from
such basins does not have regional significance. Considerable selec-
tivity is necessary to assure that all records used in evolving regional
relations are for streams for which the flow pattern is not materially
affected by works of man. However, many of these records not used
directly in the analyses were adjusted and used as indicators of basin
characteristics in the absence of better data.

Outstanding peak discharges have been measured at many miscel-
laneous sites in Snake River basin. Peak discharges at rmiscellaneous
sites and at gaging stations not listed in table 3 are shown in table 4.

METHODS OF ANALYSIS

The method presented in this report for computing the magnitude
and frequency of floods reflects the latest developments based on a
continuing study by engineers of the Water Resources Division of the
Geological Survey and others. The analyses were directed toward
the development of flood-frequency and -magnitude relations at gag-
ing stations and the transferral of these point data to other sites
or their adaption to apply over the entire basin. Methnds used are
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adaptations of those described in several previously published reports
of the Geological Survey relating to the magnitude and frequency of
floods.

FLOOD FREQUENCY AT A GAGING STATION

Many techniques have been evolved for the determinatior of the
frequency of expected floods at a gaging station based on past flood
records at the station. The method used in this report is simple, gives
acceptable results, and is the one often described in Geological Survey
flood-frequency reports. It consists of listing the annual floods and
numbering them in order of magnitude, beginning with the largest
as number 1. The plotting position or recurrence interval, 7', is com-
puted for each recorded annual flood by means of the formula
(N+1)/M, where N equals the number of years of record and &
equals the relative magnitude of the event, beginning with the highest
as 1. Computed positions are then plotted on probability paper. A
specially designed probability paper (Powell, 1943) generally adopted
by the Geological Survey was used for this study. It has a linear
scale as the ordinate for plotting discharge and a scale gradunated in
accordance with the theory of extreme values (Gumbel, 1941) as the
abscissa for plotting recurrence interval. Theoretically, the points
should fall on a straight line on a chart so graduated, but experience
indicates that the points usually define curves that are concave upward
in varying degrees. The curves are fitted by inspection, because the
short length of most streamflow records does not warrant use of more
refined methods. Most weight is given to the position of points along
the lower and middle parts, as the computed recurrence intervals for
the floods in the upper range are likely to be different from their actual
recurrence intervals. :

Considered from the viewpoint of probability, a flood with a 5-year
recurrence interval is one that has a 20-percent chance cf being
equaled or exceeded in any 1 year, and one with a 25-year recurrence
interval has a 4-percent chance of being equaled or exceeded in any
1 year, and so on.

Two methods by which flood data may be analyzed are as an annual-
flood series and as a partial-duration series. In an annual-flocd series,
only the highest momentary peak discharge in each water year is used.
In a partial-duration series, all peaks above a selected base discharge
are used. There is an important distinction in meaning between re-
currence intervals determined by the two series. In an annual-flood
series, the recurrence interval is the average interval of time within
which the given flood will be equaled once as an annual maximum.
In a partial-duration series, the recurrence interval is the average
time between floods of a given magnitude regardless of their relation
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to the water year or any other period of time. There is a definite
relation between the values in the two series as shown by the follow-
ing table (Langbein, 1949) :

Recurrence intervals, in years

Annual-flood series Partial-duration series
116 e 0.5
2.00 - 145
5.52 —_——- - 5.00
105 - — 10
20.5 _— -- 20
50.5 _ - - - -- 50

As will be noted in the table above, results from the two series are
essentially the same for recurrence intervals greater than 10 years.
The annual-flood series was used in this report. For those desiring
frequency information on a partial-duration series basis, it is sug-
gested that methods described in this report be used to compute
results based on the annual-flood series and that conversion be made
by use of the above table.

Frequency curves for the 179 gaging stations listed in table 1 were
defined for the base period 1921-57. To help define frequency re-
lations in areas for which there are no better data, similar curves were
drawn for the 82 short-term stations listed in table 2 by use of corre-
lative methods. As a further aid in this study, curves were drawn
for many stations where flows are affected in varying degrees by
works of man.

EFFECT OF BASIN CHARACTERISTICS

Variations in the individual frequency curves for the stations used
in the analysis were investigated to determine what relationships
existed between frequency curves and basin characteristics and
whether regional frequency curves could be defined. Regional fre-
quency curves should be based on records for streams having similar
flood-frequency characteristics. If such similarity can be reasonably
established, a flood-frequency graph based on the combined experience
of a group of stations has firmer support than one draw> to fit data
at a single station because the larger sample available to define the
curve reduces the effect of variations resulting purely from chance.
If the significant basin characteristics of ungaged sites can be meas-
ured, flood-frequency relations for ungaged sites can be determined.
Because of the complexity of the effects of topography, climate, and
geology on flood discharges, there is little reason to asstme that all
the variations in individual frequency curves occurred purely from
chance or that one composite frequency curve is best for the entire
Snake River basin.
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The ratio of the 10-year flood to the mean annual flood is considered
a measure of the slope of the frequency curve. The study of the
frequency relations and basin characteristics indicates that mean alti-
tude is the most significant of the readily measurable characteristics
that affect this slope. Location within the basin is also highly signif-
icant because of variations from place to place of patterns of mois-
ture inflow, temperature, intensity of precipitation, and other factors.

Ratios of the 10-year flood to the mean annual flood for all stations
in the Snake River basin were plotted against mean altitude of the
drainage basin above the station. Plotted points showed consider-
able scatter. However, points for stations in the same geographic lo-
cation—areas of similar topography, exposure, and geology—and for
stations similarly located with respect to principal mountain ranges
had a tendency to gather in groups. Plots of flood ratios for other re-
currence intervals (1.1-year, 5-year, and 50-year) against mean basin
altitudes indicated essentially the same pattern. The analysic indi-
cates that mean basin altitude is a significant parameter.

DETERMINATION OF FLOOD-FREQUENCY REGIONS

Because the mean altitude and the location seemed to be by far the
most significant of the measurable characteristics and becarse the
effects of other variables were not well defined or not readily measur-
able, flood-frequency regions were established on the basis of the plot
of flood ratios against mean altitudes. Tentative regional boundaries
were sketched on a basin map, including within the boundaries sta-
tions that grouped together on the plot. Further study was made
until boundaries appeared to be as well defined as practicable. The
basin was divided into nine regions, A to I; however, not all parts
of each region are contiguous. (See pl. 4.)

Flood-frequency boundaries as finally determined are considered
reasonable, Statistical tests were made to determine whether all
records within a region are homogeneous or, in other words, whether
differences in slopes of individual frequency curves are greater than
might occur by chance in random sampling. The tests showed that,
after applying corrections for mean altitude, all records used in each
region are homogeneous within the limits of the 95-percent confidence
level.

REGIONAL FREQUENCY CURVES

DERIVATION

After the frequency regions were outlined, the next step was to draw
a composite curve for each region. The ratio of the 10-year food to
the mean annual flood was plotted against the mean altitude of the
basin for each station in the region, and a curve of best visual fit was
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drawn through these points. The relation for region G is shown in
figure 2. Curves were similarly drawn for the 1.1-, 5-, 20-, and 50-year
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Fi1cURE 2.—Relation of 10-year flood divided by mean annual flood to
mean altitude in region G.

recurrence intervals for each region. The mean altitude affected flood
ratios sufficiently to require the development of families of curves for
all the regions except B and I. The family of curves for each region
was produced as follows: Values of the ratios for the 1.1-year flood,
for example, were picked at 1,000-foot intervals of mean altitude from
the curves of flood ratio versus altitude. These points were plotted
on the graph of ratio to mean annual flood versus recurrence interval.
Points were similarly plotted for recurrence intervals of 5, 10, 20, 30,
and 50 years. Smooth curves were drawn through the pints for each
1,000 feet of mean altitude likely to be found in the region. Figures
3-11 show the composite regional frequency curves for regions A-I.



15

OF ANALYSIS

METHODS

s
Py

i
\

3.0

AN |
JARWIAN
EANTAN
) \\
\
Al
2
Q g 2

Q0074 IVNNNY NV3W OL 3DYVHOSIQ 10 OlLvY

100

50

20

10

RECURRENCE INTERVAL, IN YEARS

F1cURE 8.—Composite frequency curves, region A.

100

10

-

2.0

0 ) o) )
- - =]

Q0074 TVYNNNY NV3IW
04 3IDUVHOSIQ 40 OlLvY

RECURRENCE INTERVAL, IN YEARS

Fiecure 4.—Composite frequency curve, region B.



16

5.0

FLOODS, SNAKE RIVER BASIN

|
45 I
Tl %
40 | °’§
[=) 1 &
2 e | v
. } t
2 T >
: | S
z | <
<
30
g ! o°° /63’(g
= $ @/ b
Q25 % & 1927
Lt
g | 52 C sk
<
I 20
o
(2} I /jj ® //
o ( //// g 9000
615 ! ﬁ ZSus
1
2 | Z=
& |
10
9000“ E
0.5 ’
*
° 1
kil 1
(o]
1.1 15 2 5 10 20 50 100
RECURRENCE INTERVAL, IN YEARS
FIGURE 5.—Composite frequency curves, region C.
6
g
= g ol
2 <
2 | e
§ ’50‘0’&//
; ) | 000‘(
052 % /
: | 2P e
o3
- I N ]
w | K %ﬁ / W
g | 2595 800
2
é r j// g
= T
5 | il
e | st =T
<<
R
= 3000, |
1.1 1.5 2 5 10 20 50 100

RECURRENCE INTERVAL, IN YEARS

Fi1GURE 6.—Composite frequency curves, region D.



17

METHODS OF ANALYSIS

70008
f
9000t ]

4.0

100

50

20

RECURRENCE INTERVAL, IN YEARS

F16URE 7.—Composite frequency curves, region E.

NN i 2
NN
VMMMV
NN Y
////ﬁ N
SN
72
o
AN 2
2\ e |
® Q w o © o 0 o
™ m N o~ — - o

ao0Td YNNNY Nv3IW. OL 3DUVHOSIG 40 OlLvY

6000 fLi—
7000 ft |
8000 ft

4.0

0
™

[
) o © o
m

o~ - -

Qo074 TYNNNY NVIW OL 394VHOSIQ 40 OlLvH

W
~

0.5

20 50 100

10

RECURRENCE INTERVAL, IN YEARS
Fi16UuRE 8.—Composite frequency curves, region F.

1.5

11



FLOODS, SNAKE RIVER BASIN

18

100
100

8 —8
SR NAW'A
ENENEN- I A N\ || £
NENE:R: S /@ /w/ g
w o .m Gh ra) .
N Zm & < 2\ \|« b
S g 2\8 \8
z k& /m ©
B /// / _~ wm m. /// /4; g
SO £ S AN
. BN\ z g A
AN o8 & W o
] N
g 2 g
D S 8
“ <3
A . N e N O O
~ B «
2
~ n
P\ pA\\i—
AN : EAN
B\ ANE .
2 3 = § = = 3 °" 5 = s = 2 g °°

4.0

Qo074 TYNNNVY NV3IW 0L 3D¥VHOSIQ JO OlLwvd QOO0Td TVANNY NV3IW OL 3DYVHOSIA 40 OlLvd

RECURRENCE INTERVAL, IN YEARS

Fi1curRE 10.—Composite frequency curves, region H.



METHODS OF ANALYSIS 19

3.0

25

2.0

15

10

e

0.5

RATIO OF DISCHARGE TO MEAN ANNUAL FLOOD

,“T__;~_T_______j

5 10 20 50 100
RECURRENCE INTERVAL, IN YEARS

Fieure 11.—Composite frequency curve, region I.

1l 15

N

EFFECT OF ALTITUDE

The variation of flood ratios with altitude is of basic importance in
the determination of flood discharge at ungaged sites in the Snake
River basin because of the extreme variation in altitude found. The
heavy accumulated snowpack in the higher altitude basins causes
runoff at relatively high rates and in similar patterns each year. The
results are a high mean annual flood, a low ratio of 50-year flood to
mean annual flood, and a flat frequency curve. The lower altitude
basins may have no accumulation of snow during some winters, in
which event the annual flood will be low in unit discharge. Occa-
sionally the annual flood will be caused by rain on snow and result
in a relatively high unit discharge. Therefore, frequency curv~s for
the lower altitude basins have steeper slopes than those for higher
altitude basins. The paucity of streamflow records precludes ade-
quate definition of the frequency relations for small basins in the
lower altitudes.

LIMITATIONS

Records at gaging stations, especially on larger basins, do not nec-
essarily reflect the flood ratios applicable to each small part of the
basin above the gage. Such records may integrate flows from many
types of small basins. Streamflow records available for small s‘reams
are inadequate to define all the variations in basin characteristics.
In addition to small streams, certain other streams require special con-
sideration. Floods on streams in several large areas in the Snake
River basin, including those in the Henrys Fork-Fall River area,
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Teton River basin, Salt River basin below Afton, Medicine Lodge—
Birch Creek-Little Lost River area, Pahsimeroi-Lemhi area, Lower
Big Lost River area, Big Wood River basin below Hailey, upper
Snake River plains area, and others, are extremely affected by heavy
seepage losses from tributaries and by the resulting return flow from
large springs. The frequency curves for many of these streams have
very flat slopes. As an extreme example, Birch Creek near Reno is
almost completely regulated by natural influences, sud the mean
annual flood is only very slightly larger than the stream’s average dis-
charge. On such naturally regulated streams, a knowledge of their
characteristics of flow is essential to the determination of a flood-
frequency relation. Methods outlined here may not apply to all such
streams. It is suggested that a special study be made to obtain flood-
frequency information for a stream where flow characteristics are
known to vary materially from the regional patern.

Consideration must always be given to the effect on flood frequency
caused by irrigation diversion and by regulation by reservoirs.
Detailed discussion of this effect at all sites within the basin is out-
side the scope of this report. Flood-frequency curves for many
streams below reservoirs and diversions can be made for regulated
conditions using records published in the annual streamflow reports
of the Geological Survey. Water districts and water companies have
additional data. Flood-frequency relations cannot b= adequately
defined for streams significantly affected by regulation end diversions
without a special study for each site under consideration. Further-
more, the works of man are continually changing in most areas.

DERIVATION OF MEAN ANNUAL FLOOD

Once one has the flood-frequency curve for any site on any stream
in the basin, it next becomes necessary to determine the mean annual
flood for any site on any stream in the basin by relating it to some
measurable property or properties.

EFFECT OF DRAINAGE BASIN CHARACTERISTICS

The scatter of the plot of mean annual flood against drainage area
for the gaging-station records analyzed in this report shows that size
of drainage basin, while important, is by no means the only variable
of consequence. If it were possible to divide the Snake River basin
into areas of equal accumulated snowpack or equal annual precipi-
tation, drainage area within those segregated areas vrould be con-
siderably more significant. The precipitation index map (pl. 2) dem-
onstrates the complexity of patterns of precipitation within the basin.
The mean annual floods as computed from gaging stations vary
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from about 0.2 efs per sq mi (cubic feet per second per square mile) to
about 27 cfs per sq mi. Variation of discharge from place to place in
the Snake River basin is at least as complex as the pattern of annual
precipitation shown on the precipitation index map, which is admit-
tedly over-simplified. Many high-yielding snow fields have not been
gaged. Also, large parts of the Snake River plains and other valley
areas rarely, if ever, produce any runoff; and, as mentionedl above,
discharge in agricultural flatland areas is poorly defined, as it is
confounded by diversion effects.

Because drainage area alone does not define the mean annual flood
adequately, a study of the relationships of other measurable variables
was made to explain the large residuals of variations in the correla-
tion of drainage area versus mean annual flood. It is very difficult
to determine all the different flood-producing characteristics of all
areas of the Snake River basin. Because of the heterogeneous nature
of the basin, most streams travel in their courses through many dif-
ferent hydrologic conditions. In the instance of the mean annual
flood as in the instance of the flood-frequency relationship, all small
subbasins within a gaged basin do not necessarily have the same
characteristics as the records collected at the gaging station indicate.
Records for small streams have not been sufficient to give adequate

coverage.
ALTITUDE

Considering the Snake River basin as a whole, only a small part
of the variation in mean annual flood can be attributed to altitude.
A mean curve was drawn through the plot of drainage area versus
mean annual flood. For each gaging station, deviation from the mean
curve was plotted against the mean altitude of the basin. No signifi-
cant trend was evident. It is well known that the precipitation at
a given altitude in the Clearwater basin, for example, which faces
the winds from the Pacific Coast after they have passed through the
Columbia Gorge and over only relatively low mountains. is many
times greater than that at the same altitude farther south and east,
where the winds have passed over several high mountain ranges after

leaving the ocean.
LOCATION

The geographic location of any subbasin determines to a high degree
the water supply available for runoff. All measurable porameters
are affected by the distance between the area in question and the ocean,
the tortuosity of the path of the moisture-carrying winds, the distance
toward the ocean from the previous uplift, and the location of the
basin with respect to the center of the prevailing storm pattern.

690-448 O - 64 - 3
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PRECIPITATION AND RUNOFF

Study of correlations using several basin characteristics and consid-
ering location indicated that either precipitation or runoff was prob-
ably the most significant variable to use in conjunction with drainage
area to estimate the mean annual flood at ungaged sites. Runoff based
on gaging-station records would have been a useful parameter, but
much more usable information was available from whicl to drawn a
preciptation index map. Precipitation records were spot data. Avail-
able runoff data, however, did not necessarily define the extremes of
runoff or the runoff from any particular area within the gaged basin
under the variable conditions found in most of the Snake River basin.

PRECIPITATION INDEX MAP

Isohyetal maps of normal precipitation for the Snake River basin
have been prepared previously by the U.S. Weather Bureau and the
U.S. Army Corps of Engineers. New topographic maps have since
become available; and more weather records, snow surveyr, and runoff
data have been collected.

A new isohyetal map was prepared to show the variation of precipi-
tation over the whole basin (pl. 2). The authors believe that, for the
purposes of this report, their map is superior to those previously pre-
pared. Data from snow-survey courses and stream-gaging stations
were used in addition to the precipitation records from Weather
Bureau stations. Precipitation records were adjusted to a common
base period, 1931-52, and short-term streamflow records were adjusted
to the same period. After completing the precipitation index map, the
mean annual rainfall was determined therefrom for each of the basins
above the gaging stations analyzed in this report.

MEAN ANNUAL FLOOD FORMULA AND GEOGRAPHIC FACTOR

The residuals from a graphic correlation of drainage area against
mean annual flood were plotted against the values for the mean annual
precipitation as the next step in a multiple correlation. This plot
showed that precipitation is a highly significant parameter. How-
ever, there still remained considerable scatter in the plot after correct-
ing for the precipitation effect. Residuals for stations in given geo-
graphic locations with similar basin characteristics tend=d to group
together, indicating the strong influence of various undefnable basin
characteristics on the mean annual flood. These characteristics in-
clude geologic effects of soil and rock types, area-altitude distribu-
tion, retentiveness of vegetal cover, and exposure to sun and warm air
masses. Other weather phenomena include probability of high in-
tensities of rainfall, normal depths of snow cover, tendency to have
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heavy rain on shallow snow cover, and many other peculiarities of the
various zones within the basin that result from various combinations
of the many effective features. It was not possible to define adequately
all or even a few of these variables. A coefficient to integrate the effect
of these variables, based on actual records, seemed to be the only
reasonable approach.

The following formula for determining the mean annual flood
was computed by mathematical multiple-correlation methods using
drainage area and mean annual precipitation as independent variables
for the stations listed in table 1:

Q=0.wOA0.88 PI.SS

where

@=mean annual flood, in cubic feet per second ;

A=drainage area, in square miles; and

P=mean annual precipitation, in inches.
A geographic factor (@) was then computed from the formula for
each gaging station used. The computed factors for individual gag-
ing stations varied considerably. The whole Snake River basin was
divided into geographic zones on the basis of groupings of these
computed values (consideration being given to topography, geology
and soil types, vegetal cover, and weather and runoff data), and a mean
value was assigned to each zone. Plate 5 shows the geographic zone
lines and the assigned values of the geographic factors. Because of
the nature of geologic differences and the variations in other factors
considered, these zone lines often could not be drawn reasonably along
drainage-basin boundaries. Values of assigned factors varied from
350 to —10 percent as shown.

Percentage figures were used for geographic factors to obviate use
of decimal points. The change of @ from ratio to percent then makes
the final formula to determine mean annual flood at ungaged sites as
follows:

€ =0.00060 A°%8 P38 @, where G is geographic factor, in percent.

The standard error of estimate was computed to be +17 percent
and —15 percent on the basis of deviations between mean annual
floods from recorded data and mean annual floods computed as out-
lined herein. Allowance was made for one lost degree cf freedom
for each parameter and for each different geographic factor shown in
plate 5. This means that two-thirds of the computed values at gaging
stations were within about 16 percent of the mean annual flood as
recorded. The standard error is affected to a great extent by the geo-
graphic factor and the method of its derivation. The coefficient of
determination for the formula was found to be 0.99 percent, meaning
that 99 percent of the variation is accounted for by the formula.
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APPLICATION OF FLOOD FORMULA.

The magnitude of a flood for a given recurrence interval at an
ungaged site in the Snake River basin can be determined by the follow-
ing procedure:

1. Determine the drainage area of the stream above the selected site.

2. Determine the mean altitude of the basin above the site.

3. Determine the mean annual precipitation over the basin using
plate 2.

4. Determine the geographic factor from plate 5.

5. Compute the mean annual flood using the formula or the nomo-
graph. See figure 12.

6. Using plate 4, find the frequency region or regions in which the
basin is located, and, using figures 3 to 11, select the ratio corre-

. sponding to the mean altitude and the desired recurrence interval.

7. Multiply this ratio (step 6) by the mean annual flood (step 5) to
obtain the desired flood magnitude.

Familiarity with suitable methods of deriving the several factors
used in the formula and a knowledge of the limitations of their use
will aid in the application of procedures outlined above.

METHOD OF OBTAINING BASIN CHARACTERISTICS
DRAINAGE AREA

Select the best topographic map available for the drainage basin
being considered. Large areas of the Snake River basin are not yet
mapped on Geological Survey topographic maps of the 7l5-, 15-, or
30-minute series (scales 1:24,000; 1:62,500; or 1:125,000, respec-
tively). However, good topographic maps on 1: 250,000 scale by the
Army Map Service or the Geological Survey are availalle for most
of the basin and will soon be completed for the remainder. Maps
of the whole basin are available on U.S. Army Strategic Maps, scale,
1:500,000, and on World Aeronautical Charts, scale 1:1,000,000.
The larger scales are preferable because of detail.

Outline the drainage area on the map and measure it, in square
miles, using a planimeter or a transparent grid overlay made to a
convenient unit on the map scale. If a grid overlay is usd, it is laid
over the outlined basin, and the squares lying within the basin are
counted and multiplied by the square miles in each grid.

MEAN ALTITUDE

Determine the mean altitude using the map on which th= basin has
been outlined for determination of the drainage area. This is best
accomplished by using a transparent grid overlay made to map scale,
although a planimeter may be used if time permits. If a grid is used,
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it should be of such a scale that sufficient points are picl-ed off to
determine the altitude adequately. The grid is placed over the map
of the drainage basin, and the altitude of each intersection cf the grid
is recorded on a tally sheet. The mean altitude is determined by
adding the altitudes so recorded and dividing by the number of items.

MEAN ANNUAL PRECIPITATION

The mean annual precipitation is next determined by outlining the
basin on the precipitation index map (pl. 2) and determining mean
annual precipitation on the basin with a grid system in a manner
similar to that recommended for determining mean altitude.

GEOGRAPHIC FACTOR

The geographic factor should be determined by outlining the basin
on plate 5 and selecting the applicable factor. If a specife basin is
in more than one geographic zone, a weighted geographic factor
should be computed on an areal basis.

DETERMINATION OF THE MEAN ANNUAL FLOCD

The formula for the mean annual flood can be solved by the use of
logarithms or with a slide rule.

A nomograph has been prepared for the formula for eas» of appli-
cation (fig. 12). The nomograph is largely self-explanatory. The
mean annual flood can be determined in the following manner using
the values determined above:

!.d

Plot the geographic factor on the nomograph line &.

Plot the drainage area on line 4.

Draw a straight line between these two values on the nomograph
and mark the point of intersection of this line on pivot line 1.

. Plot the mean annual precipitation on line 2.

. Draw a straight line between this point on line P and the point

previously determined on pivot line 1 and mark the point where

it intersects the @ line. This point represents the mean annual

discharge, in cubic feet per second.

80 1

[

FLOOD ESTIMATE AT SELECTED FREQUENCY

After the mean annual flood has been computed, the me.gnitude of
the flood for the selected recurrence interval can be calculated. From
figures 3-11, select the proper set of curves for the frequency region
or regions in which the basin is located. Select the ratio correspond-
ing to the mean altitude of the basin. If the basin is in more than
one frequency region, this ratio should be weighted according to the
percentage of the basin in each region. The ratio is then multiplied
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by the mean annual flood to obtain the peak discharge that can be
expected to be equaled or exceeded, on the average, once in the number
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of years of the selected recurrence interval. Expressed as probability,
the chance that this peak discharge will be equaled or erceeded in
any 1 year is equal, in percent to 100 divided by the recurrence
interval,

A complete frequency curve for any site can be made by selecting
several well-distributed recurrence intervals, repeating the above

process, and drawing a curve through the points when plot‘ed on any
kind of frequency paper.

LARGE DRAINAGE BASINS

To expedite determination of flood frequency for ungaged sites at
large main-stem stations on the Snake, Salmon, Owyhee, and Clear-
water Rivers, frequency curves for sites at several gaging stations on
each of these streams are given in figures 13 and 14. Unles=, or until,
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further affected by more works of man, these curves can be used for
ungaged sites near the gaging stations by making proper allowance
for differences in drainage area, entries of tributaries, intervening
storage, if any, and on some streams, diversions.

To 1959, the Clearwater and Salmon Rivers are practically un-
affected by diversion and storage. However, flood flows on the Snake
River are much affected by diversion, regulation by impoundments
in reservoirs, return flow, and other artificial controls of man. Pali-
sades and Brownlee Dams have recently been completed, and their
large reservoirs have added to this effect. No doubt, further con-
struction and more use upstream will cause future changes. Because
of the intense interest in flows in the Snake River, these data were
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plotted to show floods actually recorded at these sites without cor-
rection for storage or diversion. Dotted lines were drawn in figure 13
between values at the various Snake River gaging stations only to
connect points of equal frequency, because changes between sites occur
at points of large diversions and storage and not gradually in the
reach. Use of figure 13 for the Snake River at points other than those
plotted requires current information on manmade controls.

This study indicates that the flood peaks for the Owyhee River
increase very little, if any, below the station near Rome. See f'gure 14.
Use of this curve below Owyhee Reservoir requires correction for
storage and diversions. Occasionally, considerable flow is spilled past
Owyhee Dam.

LIMITATIONS

Use of the formula and nomograph to determine the mean annual
flood should not be extended to include drainage basins of less than
about 10 square miles because of the paucity of information on drain-
age areas of such small size and because of the likelihood of extremely
large variations in magnitude of floods from small basins.

Mean annual floods cannot be computed with accuracy by methods
outlined here for any site on the Salmon River main stem kelow the
mouth of the Pahsimeroi River nor for the Snake River main stem
below the mouth of Greys River. Data for these streams and for
the Clearwater and Owyhee River main stems are given in figures
13 and 14.

Special studies must be made on many streams that are af'ected by
works of man such as storage reservoirs, diversions, and return flows
from irrigation. Flow and storage data for most such streams in the
basin are obtainable from annual streamflow reports of the Geological
Survey. Many other streams are affected by large spring flows and
high base flows and have little or no freshet or overland discharge.
Such streams do not fit into the generalized analyses, and special
consideration of their characteristics is necessary. Mean anrual flood
magnitudes for most other unregulated streams can be compnted with
reasonable accuracy.

The negative geographic factor used for a large zone in the Snake
River plains indicates that the infiltration capacity is greater than
the rainfall or snowmelt rate. The boundary of this area is not well
defined. Very little or no surface flow is generated by storms or
snowmelt within this zone, but much flow is diveried into the area
by irrigation canals and laterals. A large part of the irrigation in
the Snake River basin and much of the most productive irrigated
land are located there. Flow through irrigation laterals, canals,
wasteways, ditches, and original stream channels in this ar-a is con-
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siderable and varied, and flood frequency should not be computed by
methods outlined here.

Information on maximum flows to be expected within the many
irrigated regions of the Snake River basin and below the many stor-
age reservoirs and large diversions can be determined from records in
water-supply papers of the Geological Survey, watermasters’ reports
on file with the Idaho Department of Reclamation, and records of
the U.S. Bureau of Reclamation and various irrigation districts and
companies.

The user of this report should bear in mind that many small areas
are not defined by sufficient data. Occasional thunderstorm-type
floods occur in scattered areas, and flash floods from very small basins
have occurred that far exceeded any magnitude computed by methods
outlined above. Where there is potential loss of life or extreme prop-
erty damage involved, consideration should be given to design to take
care of these unusual events. Extrapolation of the data presented
is not recommended.

The limitations in the use of this report can be removed only by
the collection of more streamflow data, especially on small streams
in different hydrologic regions in the basin. However, the procedures
outlined here are more reliable than procedures based on coefficients
and formulas evolved for other areas, where streamflow characteristics
differ from those in the Snake River basin.

GAGING-STATION RECORDS

The data given are from original records in the files of the U.S.
Geological Survey unless otherwise noted. The data were compiled
under the general direction of Tate Dalrymple, chief, Floods Section,
Surface Water Branch of the Water Resources Division, U.S. Geo-
logical Survey, Washington, D.C., and G. L. Bodhain», northwest
regional flood specialist stationed at Tacoma, Wash. Personnel of
the district offices of the Surface Water Branch of the Geological
Survey at Denver, Colo.; Idaho Falls, Idaho; Boise, Idaha; Portland,
Oreg.; Tacoma, Wash.; and Salt Lake City, Utah, computed peak
data under the general supervision of the respective distri~t engineers.
Considerable descriptive data accompanying the tables herein have
been furnished by these districts. The report was compiled in the
Boise district office under the supervision of T. R. Newell, district
engineer, and his successor, W. I. Travis.

Stations are listed in the same downstream order used in the annual
series of water-supply papers. Those for which the flow is signifi-
cantly affected by works of man or is not representative of the regional
pattern were not used in the analysis. Data are not listed for sta-
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tions having less than 5 years of peak flow record. On the map (pl.
3), solid circles represent stations used in the analysis, and opn circles
represent stations not used.

Records of stage and measurements of discharge collected at gaging
stations are the basic statistics from which the flood data are com-
puted. In general, the records of stage were obtained fromr a graph
made by a water-stage recorder or from direct observations by an
observer on a nonrecording gage. Peak discharges are determined
from the peak gage heights by using a stage-discharge relation defined
by direct measurements with a current meter and sounding devices
or, occasionally, by indirect methods using cross sections and profiles
of high-water marks. For records computed from nonrecording
gages, maximum observed gage heights rather than the maximums
from graphs based on gage readings were used in most instances for
the annual peaks. Most nonrecording gages were observed only once
or twice daily; and the diurnal variation of discharge during periods
of snowmelt, when most peaks occur, makes computation of a graph
based on-gage readings very difficult and uncertain. A footnote to
the table or a note in the remarks paragraph of a gaging-station
record indicates whether the discharge is maximum observe1 or from
a graph based on gage readings.

Accompanying each table of peak stages and discharges is a descrip-
tion of the gaging station, including the location of the present gage
or the most recent one with respect to principal features; drainage
area, in square miles above the gage site; and mean altitude of the
basin, if it has been determined; type of gage; datum of gage; his-
tory of changes of gage; adequacy of definition of the stage-discharge
relation; bankfull stage, if determined; historical data when this
information is accessible; remarks relating to diversions and regula-
tion and their effect on flood flows; the base discharge for tl*s partial-
duration series of peaks; and other miscellaneous information that
will aid in interpreting the data in the table.

Bankfull stage is the gage height at which the river overtops one
or both of its banks in the vicinity of the gage and begin= to inun-
date the surrounding land. It is also considered to be the stage at
which flood damage begins. Minor flooding of unimportant lowlands
is often not considered in arriving at bankfull stage. The mean alti-
tude of the basin was found to be a measurable characteristic that has
considerable effect on the runoff pattern and flood expectancy in Snake
River basin. Readily attainable historical data are meager for the
area covered by this report, because permanent settlements in the area
did not antedate the beginning of records by many years. Consider-
able information might be found by research in old newspapers and
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from other written accounts, but lack of funds and time precluded such
a study for this report.

Annual peaks are given for each year of record. Peaks above a
selected base are listed for all years when peaks were not significantly
affected by works of man, and if the gage-height record was obtained
from a recording gage or if accurate graphs could be drawn from the
observed gage heights. In addition to the peak discharges above a
base, peak stages that occurred during periods of ice effect are listed
without the discharge if the discharge corresponding to the gage
height under open-water conditions would have exceeded the base
discharge. Peak discharges above the base seldom occur in the Snake
River basin during periods of ice effect because the large change in
altitude above the gage usually delays runoff until aft>r the chan-
nels clear. The amount of backwater caused by ice cover or ice jams
is not given, because in most instances the backwater, in feet, is so
variable in streams in the Snake River basin that momentary back-
water is not readily determinable.

Peaks are arranged by water years that end on September 30.
Underlines in the tabular data have the following significance: A
line under “water year” means a break in the record; a line begin-
ning at the “date” column and extending through the “discharge”
column means a change in the site and datum with no breck in record;
a line under “gage height” only means a change in datum; a line under
the “date” and “discharge” columns only means a changs in site and
no change in datum; a line under all columns means a clange in site
and datum as well as a break in the record. No underlines are used
for slight changes or if datums have been adjusted to a common base.

Flood data for the 82 gaging stations listed in table 2 ave not tabu-
lated because they had less than 5 years of annual-peak records.
Canal data are not tabulated. Peaks for many streams ware adjusted
for diversions or storage change before being used in the analysis
section of this report, but tabulated discharges are as recorded unless
otherwise shown by footnotes.
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MAXIMUM KNOWN FLOODS
Table 1.--Gaging-station data used in multiple correlations
2:::13:_ Drainage Mean M;g:ézgg?l Geo-
No. Gaging station nual flood area altitude tation graphic
(ofs) (sq mi) | (feet) (inches) factort
Snake River maln stem
100 | Snake River at south boundary of 5,700 485 8,220 47 99
Yellowstone Natlonal Park.
110 | Snake River at Moran, WyO......... 9,350 824 8,040 43 113
Pacific Creek basin
115 [ Pacific Creek near Moran, Wyo.....| 2,300- | 160 | 8,160 | 0 | 1%
Buffalo Fork basin
120 | Buffalo Fork near Moran, Wyo......] 3,920 | 378 | 8,850 | 45 90
Gros Ventre basin
14g176ros Ventre River at Kelly, Wyo.. 3,120 l 622 ( 8,850 i 27 | 90
Flat Creek basin
180 [Fﬂat Creek near Jackson, WyO...... 275 I 40.7[ 8,980 30 J 90
Hoback River basin
195 | Hoback River near Jackson, Wyo....l 3,610 l 564 k 8,000 L 32 90
Greys River basin
230 | Greys River above reservolr, near 3,100 451 8,080 34 90
Alpine, Wyo.
Snake River main stem
235 | Snake River below Greys River, at 29,500 3,940 8,140 35 94
Alpine, Idaho.
Salt River basin
240 | Salt River near Smoot, Wyo........ 273 47.8 8,050 33 64
245 | Cottonwood Creek near Smoot, Wyo.. 268 26.3 8,560 41 74
250 | Swift Creek near Afton, Wyo....... 470 27.4 8,400 59 70
270 | Strawberry Creek near Bedford, Wyo. 298 21.3 8,470 58 57
285 | Salt River at Wyoming-Idaho State 2,140 890 7,190 25 53
line.
McCoy Creek basin
295 | McCoy Creek above reservoir, near 855 108 6,960 29 100
Alpine, Wyo.
Bear Creek basin
320 | Bear Creek above reservolr, near 500 77.1 7,130 31 83
Irwin, Wyo.
Snake River mailn stem
375 [ Snake River near Helse, Idaho..... 34,000 4{ 5,752 l 7,770 | 32 83
Henrys Fork basin
415 | Sheridan Creek near Island Park, 350 82.1 7,080 31 60
Idaho.
425 | Henrys Fork near Island Park, Idaho 1,850 481 7,080 32 &80
440 | Henrys PFork at Warm River, Idaho.. 2,500 656 6,860 30 63
445 |Warm River at Warm River, Idaho... 425 178 6,830 28 70
455 | Robinson Creek at Warm River Idaho 680 129 6,450 34 70
460 |Henrys Fork near Ashton, Idaho.... 3,880 1,040 6,710 29 66
475 | Fall Rlver near Squirrel, Idaho... 3,600 351 7,520 52 77
495 | Fall River near Chester, Idaho.... 3,990 520 6,370 43 75
S05 | Henrys Fork at St. Anthony, Idaho. 7,500 1,770 6,670 32 69
510 |Teton Rlver near Victor, Idaho.... 360 47 .6 8,240 48 44
515 [Teton Creek near Driggs, Idaho.... 905 33.8 8,870 S0 140
525 |Horseshoe Creek near Driggs, Idaho 70 11.7 7,020 26 81
530 |Packsaddle Creek near Tetonia, 47 6.8 7,690 26 83
Idaho.
545 | Canyon Creek near Newdale, Idaho.. 367 68 7,000 24 100

+ Weighted factor from pl. 5.
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Table 1,--Gaging station data used in multiple correlations--Continued

Station Meqn annual
- mean an- |Drainage| Mean precipi- Geo-
No. Gaging station mal flood' area [(altitude]| “tation [8raphic
(cfs) (sq m1) | (feet) | (yncnes) |Pactort
Blackfoot River basin
630 | Blackfoot Rlver above reservoir, 900 360 6,940 22 67
near Henry, Idaho.
635 | Little Blackfoot River at Henry, 120 34.6 6,600 18 87
Idaho.
Portneuf River basin
730 | Portneuf River at Topaz, Idaho.... 460 570 6,080 18 28
740 | Birch Creek near Downey, Idaho.... 39 3.5] 6,830 18 100
755 | Portneuf River at Pocatello, Idaho 700 1,250 5,850 17 27
Raft River basin
790 ] Clear Creek near Naf, Idaho....... 109 r 19 | 7,860 23 100
Goose Creek basin
825 | Goose Creek above Trapper Creek, 260 633 6,030 15 20
near Oakley, Idaho.
830 | Trapper Creek near Oakley, Idaho.. 57 53.7 6,360 24 19
920 | Rock Creek near Rock Creek, Idaho. 245 80 6,330 26 52
Salmon Falls Creek basin
960 | Salmon Falls Creek above upper 600 461 6,760 21 35
Vineyard ditch, near Contact, Nev.
1050 | Salmon Falls Creek near San 760 1,410 6,350 16 27
Jacinto, Nev.
Mud Lake basin
1085 [ Camas Creek at Eighteenmile shear- 720 237 6,970 33 40
ing corral, near Kilgore, Idaho,
1120 | Camas Creek at Camas, Idaho....... 360 404 6,450 27 22
1130 | Beaver Creek at Spencer, Idaho.... 260 120 7,110 23 45
1135 | Beaver Creek at Dubois, Idaho..... 245 220 6,760 22 27
1140 | Beaver Creek at Camas, Idaho...... 105 510 6,190 17 12
Big Lost River basin
1200 | Big Lost River at Wildhorse, near 680 | 114 8,540 24 105
Chilly, Idaho.
1205 | Big Lost River at Howells Ranch, 2,200 448 8,590 24 105
near Chilly, Idaho.
1255 | Surface inflow to Mackay Reservoir 1,570 766 8,060 21 68
near Mackay, Idaho.
Big Wood River basin
1355 | Blg Wood River near Ketchum, Idaho 860 137 8,120 34 13
1365 |Warm Springs Creek at Guyer Hot 450 96 7,560 38 50
Springs, near Ketchum, Idaho.
1400 | Combined discharge of Big Wood 2,450 640 7,620 30 66
River and Big Slough at Hailey,
Idaho.
1415 | Camas Creek near Blaine, Idaho.... 3,350 648 5,600 18 183
1480 | Little Wood River at Campbell 850 267 7,160 18 105
Ranch, near Carey, Idaho.
1490 | Fish Creek above dam, near Carey, 92 38 6,860 15 82
Idaho,
Clover Creek basin
1540 lClover‘ Creek near Bliss, Idaho.... 750 | 150 J 4,700 L 14 L 200
Little Canyon Creek basin
1555 [Little Canyon Creek near Glenns 290 44 .4 4,660 18 174
Ferry, Idaho.
Bennett Creek basin
1565 |Bennett Creek near Bennett, Idaho l 97 l 21.5[ 5,2401 22 [ 87

t Weighted factor from pl. 5.
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Table 1.~-Gaging-station data used in multiple correlations--Continued
St Mean anmual
iﬁ?ﬁ “an- |Prainage| Mean precipi- | Geo
No, Gaging station nual f£lood area |altitude| "{gyion |Braphic
(efs) (sq mi) | (feet) (inches) |factort
Bruneau River basin
1625 | East Fork Jarbidge River near Three 540 839 7,600 6 99
Creek, Idaho.
1685 | Bruneau River near Hot Spring, 2,010 2,630 5,600 13 53
Idaho.

1695 | Wickahoney Creek near Bruneau, Idaho| 220 253 5,150 12 55
1700 | Jacks Creek near Bruneau, Idaho.... 125 101 5,020 10 93
Owyhee River basin
1745 | Owyhee River near Gold Creek, Nev.. 820 209 6,720 12 200
1750 | Owyhee River at Mountain City, Nev. 1,140 350 6,650 13 178
1760 | Owyhee River above China Diversion 800 249 6,520 16 143

dam, near Owyhee, NeVv., less in-
flow above Wildhorse Dam.
1770 { Jack Creek near Tuscarora, NevV..... 226 26 7,580 32 100
1780 | Jordan Creek sbove Lone Tree Creek, 1,750 450 5,780 16 150
near Jordan Valley, Oreg.
1810 | Owyhee River near Rome, Oreg.......| 10,100 8,000 £,500 12 111
1840 | Owyhee River near Owyhee, Oreg.....| 10,100 |11,300 5,120 1z 91
Bolse River basin
1850 | Boise River near Twin Springs, Idaho| 7,400 830 6,350 31 150
1860 | South Fork Bolse River near 4,400 €35 6,840 31 108
Featherville, Idaho.
1865 | Lime Creek near Bennett, Idaho..... 655 131 6,140 21 123
1870 | Fall Creek near Anderson Ranch Dam, 490 55,3 6,070 25 146
Idaho.
1910 | South Fork Boise River near ILenox, 5,620 1,090 6,270 27 113
aho.
1965 | Bannock Creek near Idaho Clty, Idaho 155 5.7 5,240 26 50
2005 | Roble Creek near Arrowrock, Idaho.. 70 15.8] 4,960 26 64
2010 | Moore Creek near Arrowrock, Idaho.. 2,200 426 4,960 26 92
2020 | Boise River near Bolse, Idaho......| 13,800 2,850 5,910 27 122
Malheur River basin
2140 | Malheur River near Drewsey, Oreg... 2,350 910 4,900 16 100
2165 { North Fork Malheur River above 795 355 5,360 15 100
Agency Valley Reservolr, near
Beulah, Oreg.
2205 | Malheur River near Hope, Oreg., 2,600 1,490 4,210 12 100
less the drainage above Warm-
springs and Agency Valley
Reservoirs.
2205 | Malheur River near Hope, Oreg., 2,100 1,930 4,420 12 101
less the drainage above Warm-
springs Reservolr.
2270 | Bully Creek near Vale, Oreg........| 1,550 570 4,150 12 160
2280 | Malheur River at Vale, Oreg., less 4,600 2,340 4,070 12 115
the drainage of Warmsprings and
Agency Valley Reservolrs.
2280 | Malheur River at Vale, Oreg., less 2,570 2,780 4,240 12 114
the drainage of Warmsprings
Reservolr,
2295 | Willow Creek near Malheur, Oreg.... 195 250 4,620 10 100
Payette River basin
2345 | Clear Creek at Lowman, Idah0....... 800 598.8 8,340 38 100
2350 | South Fork Payette River at Lowman, 4,500 456 6,780 40 104
Idaho.
2365 | Deadwood River below reservoir near| 1,840 108 6,630 46 118
Lowman, Idaho.
2370 | Deadwood River near Lowman, Idaho, 1,320 122 5,920 36 120
less the drainage above Deadwood
Dam.
2375 | South Fork Payette River near 7,600 779 6,400 39 108
Garden Valley, Idaho.
2380 | South Fork Payette River near 9,850 1,200 6,020 37 112
Banks, Idaho.
2390 | North Fork Payette River at McCall, 3,000 144 6,520 40 200
Idaho.
2405 | Lake Fork Payette River above 1,800 54,56 6,950 45 200
reservolr, near McCall, Idaho.
2450 | North Fork Payette River at 6,520 626 5,960 34 141
Cascade, Idaho.
2460 | North Fork Payette River near 7,800 933 5,800 33 128

Banks, Idaho,

t Weighted factor from pl. 5.
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Table 1.~-Gaging-statlon data used in multiple correlations--Continued
Station Mean annua,
meen an- |Drainage| Mean precipi~ Geo-~
No. Gaging station mual flood area_ |altitude| “tation |graphic
(cts) (sq mi) | (feet) | (i1nches) [Factort
Payette River basin--Continued
2470 | Porter Creek near Gardena, Idaho.. 116 17.3| 4,800 26 100
2475 | Payette River near Horseshoe Bend, 17,800 2,230 5,850 35 118
Idaho.
Weiser River basin
2515 | Weiser River at Tamarack, Idaho... 465 36.5| 4,690 29 171
2525 | East Fork Weiser River near 64.4 2.0 6,900 48 160
Council, Idaho.
2535 | Weiser River at Starkey, Idaho.... 1,130 106 5,010 32 147
2545 | Lost Creek near Tamarack, Idaho... 330 29.4| 5,460 33 119
2550 | West Fork Weiser River near Fruit- 670 78 4,940 31 107
valé, Idaho.
2555 | Hornet Creek near Council, Idaho.. 670 107 4,670 27 100
2560 | Weiser River near Council, Idaho.. 2,880 390 4,680 29 116
2570 | Middle Fork Welger River near Hesa{ 950 86.5 5,430 34 116
daho.
2575 | Johnson Creek below Johnson Park, 138 5 6,290 36 160
Idaho.
2585 | Welser River near Cambridge, Idaho 4,440 805 4,650 28 121
2595 | Rush Creek at Cambridge, Idaho,... 334 32 5,070 28 148
2600 | Pine Creek near Cambridge, Idaho.. 285 54 4,730 30 71
2610 | Little Weiser River near Indian 745 81.9 5,300 31 112
Valley, Idaho.
2635 | Weiser River above Crane Creek, 8,300 1,160 4,280 25 187
near Weiser, Idaho,
2655 | Crane Creek at mouth, near Welser, 950 46 3,340 18 350
Idaho, less runoff above Crane
Creek Reservoir.
2670 | Mann Creek near Weiser, Idaho..... 445 56 4,860 22 160
Snake River maln stem
2690 L§?ake River at Weiser, Idaho t"'ﬁ} 48,200 lss,zoo ] 5,400 | - -
Powder River basin
2755 | Powder River near Baker, Oreg..... 780 219 5,170 21 90
2840 | Wolf Creek near North Powder, Oreg. 275 32.9 5,080 20 190
Imnaha River basin
2910 | Imnaha Rlver above Gumboot Creek, 1,670 98 6,400 52 87
Oreg.
2920 | Imnaha River at Imnaha, Oreg...... 2,800 640 5,690 33 64
Salmon River basin
2925 | Salmon River near Obsidian, Idaho. 580 94.7 8,140 35 68
2930 | Alturas Lake Creek near Obsidlan, 530 35,7 8,110 37 128
Idaho.
2950 | Valley Creek at Stanley, Idaho.... 1,050 147 7,400 29 111
2955 | Salmon River below Valley Creek, at 3,430 501 7,800 30 108
Stanley, Idaho.
2960 | Yankee Fork Salmon River near 1,900 195 7,980 30 160
Clayton, Idaho,
2965 | Salmon River below Yankee Fork, 5,800 802 7,790 29 121
near Clayton, Idaho.
2980 | East Fork Salmon River near Clayton, 2,130 536 8,100 18 142
Idaho,
2985 | Salmon River near Challis, Idaho.. 8,400 1,800 7,820 23 134
2990 | Challls Creek near Challis, Idaho. 278 85 7,830 31 45
3025 | Salmon River at Salmon, Idaho..... 9,000 3,760 7,380 20 88
3060 | North Fork Salmon River at North 645 214 6,220 24 66
Fork, Idaho.
3065 | Panther Creek near Shoup, Idaho... 1,600 529 7,030 24 75
3070 | Salmon River near Shoup, Idaho.... 13, 600 6,270 7,140 13 77
3085 | Middle Fork Salmon River near 1,800 138 7,370 35 160
. Cape Horn, Idaho.
3090 | Bear Valley Creek near Cape Horn, 2,400 180 7,040 45 100
Idaho.
3095} Middle Fork Salmon River near 13,700 2,020 7,180 28 180
Meyers Cove, Idaho.
3100 | Big Creek near Big Creek, Idaho... 3,600 470 7,000 29 133
3105 | South Fork Salmon River near Knox, 1,130 g2 6,630 49 100
Idaho.

T Welghted factor from pl. 5.
+ This main stem Snake River station not used to compute formula but included here for
comparative purposes.




MAXIMUM KNOWN FLOODS 37

Table 1.--Gaging-station data used in multiple correlations--Continued

Station . Mean annual| -
No. Gaging statlon mean an | Drainage|- Mean |To.qipp_7| Geo
nual flood area |altltude tatlon graphic
(ors) | (saml) | (feet) | (41 cheg) [Factort
) Salmon River basin--Continued
3110 | East Fork South Fork Salmon River 250 19.5 7,780 36 120
at Stibnite, Idaho.
3115 | East Fork South Fork Salmon River 500 42.5 7,640 35 120
near Stibnite, Idaho.
3120 | East Fork South Fork Salmon River 1,210 104 7,420 36 120
near Yellow Pine, Idaho.
3125 | Johnson Creek near Landmark 1,000 54.7 7,210 53 113
ranger station, Idaho.
3130 | Johnson Creek at Yellow Pilne, Idaho 3,320 213 7,170 39 148
3135 | Secesh River near Burgdorf, Idaho. 1,410 104 6,840 34 160
3140 | South Pork Salmon River near 13,900 1,160 6,710 37 153
Warren, Idaho.
3145 | Warren Creek near Warren, Idaho... 435 40.6| 6,960 27 160
3155 | Mud Creek near Tamarack, Idaho,.... 213 15.8 4,660 24 200
3160 | Boulder Creek near Tamarack, Idaho 184 6.5 6,330 38 200
3165 | Little Salmon River near Riggins, 5,600 576 5,430 27 186
Idaho.
3170 | Salmon River at White Bird, Idaho. 65,000 13,5860 6,720 24 117
Grande Ronde River basin
3185 | Grande Ronde Rlver near Hllgard, 2,300 505 4,800 19 154
Oreg.
3190 | Grande Ronde River at LaGrande, 3,400 680 4,640 20 154
Oreg.
3200 | Catherine Creek near Unlon, Oreg.. 840 105 5,320 28 120
3230 | Indian Creek near Imblep Oreg..... 466 22 5,630 37 190
3250 | East Fork Wallowa River near 109 10 7,890 55 60
Joseph, Oreg.
3255 Wallows'ﬁiver above Wallowa Lake, 900 43 7,520 54 90
near Joseph, Oreg.
3295 | Hurricane Creek near Joseph, Oreg. 562 31 7,460 56 90
3300 | Lostine River near Lostine, Oreg.. 1,600 70 6,820 48 133
3305 | Bear Creek near Wallowa, Oreg..... 960 68 5,810 40 120
3330 | Grande Ronde River at Troy, Oreg.. 16,800 3,275 4,460 26 135
Asotin Creek basin
3345 | Asotin Creek near Asotin, Wash... i 340 156 ' 3,760 28 J 40
Clearwater River basin
3365 | Selway River near Lowell, Idaho... 28,700 1,910 5,640 40 190
3370 | Lochsa River near Lowell, Idaho... 21,000 1,180 5,250 45 190
3375 | South Fork Clearwater River near 1,670 261 5,150 32 100
Elk City, Idaho.
3380 | South Fork Clearwater Rlver near 5,500 865 5,160 30 100
Grangeville, Idaho.
3390 { Clearwater River at Kamiah, Idaho. 29,000 4,850 5,010 37 165
3405 | North Fork Clearwater River at 16,800 996 4,930 49 140
alow ranger station, Idaho..
3410 | North Fork Clearwater River near 33,800 2,440 4,220 45 140
Ahsahka, Idaho.
3415 | Potlatch éreek at Kendrick, Idaho. 6,220 425 2,980 29 250
3420 | Mission Creek near Winchester, 154 18 4,410 27 130
Idaho. .
3425 | Clearwater River at Spalding, 98,000 9,570 4,360 39 158
Idaho.
Snake River main stem
3435 | Snake River near Clarkston, 209,000 (103,200 5,280 - -
Wash. %
3435 | Snake River near Clarkston, Wash.,| 168,000 | 34,000 5,040 - -
less the dralnage of Snake River
at Welser, Idaho. #
Tucannon River basin
3440 | Tucannon River near Pomeroy, Hash.—l ess_J 160 ‘ 4,040 | 36 40

t Welighted factor from pl. 5.
¥ This maln stem Snake River station not used to compute formula but included here for
comparative purposes.

690-448 O - 64 - 4
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Table 1.--Gaging-station data used 1n multlple correlatlons--Continued

Station- Drainage| Mean Mean a.rmu_al Geo-

mean an precipl- |

No. Gaglng station nual flood area_ |altitude tation |graphic

(efs) (sa m1) | (feet) | (inches) |factort
Palouse River basin

3465 | South Fork Palouse River near 630 84.4 2,810 22 194
Pullman, Wash.

3480 | South Fork Palouse River at Pull- 1,430 132 2,770 22 214
man, Wash.

3485 | Mlgsourl Flat Creek at Pullman, 500 27.1 2,670 22 250
Wash.

3490 | Fourmile Creek at Shawnee, Wash... 940 71.6 2,640, 22 250

3510 | Palouse River at Hooper, Wash.....| 10,500 2,540 2,410 20 147

t Welghted factor from pl. 5.
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Table 2.--List of short-term stations used to assist in delineating geographic factors
and in defining mean annual flood at ungaged sites

Drainage Drainage
Station area Station area
(sq m1) (sq m1)
Spread Creek near ElK, WyO....vess 101 Sucker Creek near Homedale, Idaho. 342
Horse Creek near Cheney, Wyo...... 37.9 || Grouse Creek near Arrowrock, Idaho 8
Fall Creek near Cheney, WyO....... 46,8 || Moore Creek above Granite Creek, 37
Dog Creek near Cheney, Wyo. 14,1 near Idaho City, Idaho.
Cabin Creek near Cheney, Wyo...... 8.8 || Granite Creek near Idaho City, 14.3
Bailey Creek near Alpine, Wyo..... 15.9 aho.
Wolf Creek near Alpine, Wyo....... 13,2 || Moore Creek above Thorn Creek, 113
Crow Creek near Fairview, Wyo..... 114 near Idaho City, Idaho.
Stump Creek near Auburn, Wyo...... 103 Cottonwood Gulch near Bolse, Idaho 16
Indian Creek near Blowout, Idaho.. 41.8 || Spring Valley Creek near Eagle, 20.9
Elk Creek near Irwin, Idaho....... 62,1 Idaho.
Palisades Creek near Irwin, Idaho. 60.8 || Dry Creek near Eagle, IdahO....... 59.4
Fall Creek near Swan Valley, Idaho 77.6 || North Fork Malheur River at 440
Rainy Creek near Swan Valley, Idaho 56.3 Beulah, Oreg.
Pine Creek near Swan Valley, Idaho 63,2 || Deadwood River near Bernard, Idaho 10.4
Burns Creek near Chokecherry Idaho 21.1 || Harris Creek near Horseshoe Bend, 74.6
Buffalo River near Island Park, 36.7 Idaho.

Idaho. Cottonwood Creek near Ola, Idaho.. 29.6
Teton River near Tetonia, Idaho... 471 Little Squaw Creek near Ola, Idahn 75.3
Grays Lake Outlet near Herman 147 Squaw Creek near Sweet, Idaho..... 341

Idaho, Willow Creek near New Plymouth, 138
Meadow Creek near Henry, Idaho.... 75.2 aho.

Portneuf River above reservoir, 68,0 || Little Willow Creek near New 157
near Chesterfield, Idaho. Plymouth, Idaho.
Topons Creek near Chesterfield, 45,7 || Crane Creek above Crane Creek Res- 120

Idaho. ervoir, near Midvale, Idaho.

Pebble Creek near Pebble, Idaho... 27.2 || Hog Creek near Midvale, Idaho..... 25
Marsh Creek near McCammon, Idaho.. 355 Milk Creek near Midvale, Idaho.... 10
Bannock Creek near Pocatello, Idaho 230 South Fork Crane Creek near Mid- 52
Rock Creek near Rockland, Idaho... 182 vale, Idaho.

Shoshone Creek near San Jacinto, 309 Burnt River near Hereford, Oreg... 309

Nev, Pine Creek near Baker, Oreg....... 8.8
Little Lost River near Clyde, Idaho 275 Big Creek near Medical Springs, 35.5
Wet Creek at Clyde School, near 199 Oreg.

Howe, Idaho. Goose Creek near Keating, Oreg.... 41.9
Cedar Creek (below powerplant) 8.4 [ Eagle Creek near Baker, Oreg...... 4.2

near McKay, Idaho. Big Sheep Creek near Joseph, Oreg. 12.5
Antelope Creek near Darlington, 210 Pahsimerol River near Goldberg, 65

Idaho. Idaho.

King Hill Creek near King Hill, 83.6 || Blg Creek near Patterson, Idaho... 66

Idaho. Pahsimerol River near May, Idaho.. 845
Bruneau River near Rowland, Nev... 378 Texas Creek near Leadore, Idaho... 64
Sheep Creek near Tindall, Idaho.,. 180 Timber Creek near Leadore, Idaho.. 57
Marys Creek near Owyhee, Nev,..... 27 Eightmile Creek near Leadore, Idah> 20
Marys Creek at Tindall, Idaho..... 110 Lemhi River near Lemhi, Idaho..... 890
Louse Creek near Wickahoney, Idaho 16 Lemhi River at Salmon, Idaho......| 1,270
East Fork Bruneau River near Three 62 Deer Creek near Winchester, Idaho. 19.1

Creek, Idaho. Meadow Creek near Starkey, Idaho.. 160
Three Creek near Three Creek, Idaho 45 Joseph Creek at Chico, Oreg....... 280
Cherry Creek near Three Creek, 22 Warm Springs Creek near Lowell, 74,7

Idaho. Idaho.

Deadwood Creek near Three Creek, K44 Fish Creek near Lowell, Idaho..... 89.2

Idaho. Paradise Creek near Pullman, Wash. 34,5
East Fork Bruneau River near Hot 620

Spring, Idaho.
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