Geology and Ground Water of the Tualatin Valley Oregon

By D. H. HART and R. C. NEWCOMB

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1697

Prepared in cooperation with the office of the State Engineer of Oregon

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

The U.S. Geological Survey Library catalog card for this publication appears after index.

· CONTENTS

Abstract	
Introduction	
Purpose of the investigation	
Location and extent of the area.	
Natural resources and cultural features	
History of the investigation	
Acknowledgments	
Well and spring numbering system	
Geography	
Climate	
Precipitation	
Other climatic features	
Landforms	
Drainage	
Streams	
Lakes and marshes	
Geology	
Occurrence and relationships of the stratigraphic units	
Volcanic and sedimentary rocks of Eocene age	
Sedimentary rocks of Oligocene and Miocene(?) ages	
Columbia River basalt	
Troutdale formation	
Boring lava	
Tertiary and Quaternary valley fill undifferentiated	
AlluviumAlluvium	
Structure of the rocks	
Importance of rock structure	
Inclination of the rocks	
Master shape of the tectonic structures	
Secondary tectonic elements	
Types of displacements	
Effects of tectonic structures on the ground-water resources_	
Ground water	
General hydrologic features	
Unconfined ground water	
Confined ground water	
Perched ground water	
Principal aquifers	·
Valley fill	
Columbia River basalt	
Boring lava	
Recharge and discharge of the ground water	
Recharge	
Discharge	

IV CONTENTS

Use of water		
Irrigation Public supply Domestic supply Industrial supply Surface water Irrigation Public supply Dependability of the ground-water supply Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index		
Public supply Domestic supply Industrial supply Surface water Irrigation Public supply Dependability of the ground-water supply Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt. Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water. References cited Index IIILUSTRATIONS Plate	Gro	
Domestic supply Industrial supply Surface water Irrigation Public supply Dependability of the ground-water supply Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geo'ogy and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation the average annual precipitation at Forest Grove 2. Annual precipitation and the cumulative departure from the average annual precipitation at Two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Turlatin Valley.		3
Industrial supply Surface water Irrigation Public supply Dependability of the ground-water supply Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geo'ogy and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley.		
Surface water		
Irrigation	a .	** *
Public supply Dependability of the ground-water supply Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited. Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis. 4. Aerial view of the northeastern part of the Turlatin Valley.	Suri	
Dependability of the ground-water supply Past records Prospects for the future Construction of wells. Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited. Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Torest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis. 4. Aerial view of the northeastern part of the Turlatin Valley.		
Past records Prospects for the future Construction of wells Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS (Plates are in pocket) PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley	т.	
Prospects for the future	Дер	
Wells in valley fill Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geo'ogy and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis. 4. Aerial view of the northeastern part of the Tualatin Valley.		Past records
Wells in the Columbia River basalt Chemical character of the ground water Overall quality of the ground water Hardness. Chloride, sulfate, and nitrate. Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited. Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation. 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove. 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis. 4. Aerial view of the northeastern part of the Tualatin Valley.	α	
Wells in the Columbia River basalt. Chemical character of the ground water. Overall quality of the ground water. Hardness. Chloride, sulfate, and nitrate. Minor constituents. Fluoride. Iron. Suitability of water for irrigation. Temperature. Records of wells, springs, and quality of water. References cited. Index. ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation. 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove. 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis. 4. Aerial view of the northeastern part of the Tualatin Valley.		
Chemical character of the ground water Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley		
Overall quality of the ground water Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley		
Hardness Chloride, sulfate, and nitrate Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] Plate 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley		
Chloride, sulfate, and nitrate		
Minor constituents Fluoride Iron Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geo'ogy and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest G-ove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley		
Fluoride		• •
Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis	Min	
Suitability of water for irrigation Temperature Records of wells, springs, and quality of water References cited Index ILLUSTRATIONS [Plates are in pocket] Plate 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation 2. Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis 4. Aerial view of the northeastern part of the Tualatin Valley		
Temperature	a	
References cited		•
References cited		
ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		
ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		
PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation	Index	
PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		
PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		
PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation		ILLUSTRATIONS
PLATE 1. Map of the Tualatin Valley showing the geology and the location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. FIGURE 1. Map showing location of the area covered by this investigation		*
location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. 1. Map showing location of the area covered by this investigation		[Plates are in pocket]
location of representative wells and springs. 2. Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. 1. Map showing location of the area covered by this investigation	PLATE	1. Map of the Tualatin Valley showing the geology and the
 Map showing altitude of the top of the Columbia River basalt beneath the Tualatin Valley. Geologic sections of the Tualatin Valley. Map showing location of the area covered by this investigation		
basalt beneath the Tualatin Valley. 3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		•
3. Geologic sections of the Tualatin Valley. Figure 1. Map showing location of the area covered by this investigation		
1. Map showing location of the area covered by this investigation		-
tion		
 Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove	FIGURE	1. Map showing location of the area covered by this investiga-
 Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove		1 3
the average annual precipitation at Forest Grove 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis		
 3. Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis		1 1
Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis		
and average evaporation at Corvallis4. Aerial view of the northeastern part of the Tuelatin Valley_		
4. Aerial view of the northeastern part of the Tuelatin Valley_		,
o. Flow of the Luaiaum River near Williamette. Ureg., inclining		5. Flow of the Tualatin River near Willamette, Oreg., including

the Oswego Canal diversion

13

CONTENTS V

FIGURES	6-8. Photographs showing:
	6. Weathered Columbia River basalt
	7. Features of the Boring lava
	8. Views near Cooper Mountain
9-	-11. Graphs of water levels measured:
	9. In four wells showing seasonal recharge and local controls of water levels
	10. In three wells tapping water in the Columbia River
	basalt
	11. In two wells tapping water in the valley fill
	12. Graphs of levels of ground water in two wells
	13. Graphs of water levels measured in two wells
	14. Graphs showing the magnitude and timing of seasonal recharge and drainage of ground water at shallow and deep positions
	15. Comparison of chemical constituents in ground water of the Tualatin Valley
	 16. Sketches showing schematically the geologic structure and and the stratigraphic conditions that permit saline ground water to migrate into the Columbia River basalt and younger deposits. 17. Diagram for the classification of irrigation waters.
	11. Diagram for the chassinession of Higasion wassis
	TABLES
TABLE 1.	Records of wells
2.	Drillers' logs of representative wells
	Descriptions of springs
4.	Chemical analyses of water from representative wells and springs
5.	Ground-water levels in observation wells

GEOLOGY AND GROUND WATER OF THE TUALATIN VALLEY, OREGON

By D. H. HART and R. C. NEWCOMB

ABSTRACT

The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland.

Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains.

Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial equifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development.

The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers.

The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor quality contaminates the fresh-water aquifers.

Detailed hydrologic and geologic conditions are presented in 5 tables, 7 pictures, and 17 graphic figures and plates.

INTRODUCTION

PURPOSE OF THE INVESTIGATION

Historically, the Tualatin Valley has been a difficult area in which to obtain good supplies of water from wells. Many landowners have found it necessary to plan thier expenditures, and drillers to drill, without knowing what earth materials would be penetrated. The lack of information on the geology, on the probable position, quantity, and character of water-bearing units of the substrata, and on the chemical quality of the ground water has been a deterrent to the efficient and economical development of good supplies of water from wells. This investigation attempts to fill some of these needs for information, and was made by the U.S. Geological Survey in cooperation with the office of the State Engineer of Oregon.

Since about 1940 there has been a great increase in population and development of the Tualatin Valley. Much of the eastern part of the Tualatin Valley is rapidly becoming a part of metropolitan Portland. Along with this suburban encroachment has come the need for more irrigation water, required to secure larger returns per acre. Growth of suburban areas has increased the demand for domestic and public water supplies. In addition, the manufacturing and processing plants in the area require substantial supplies of water.

LOCATION AND EXTENT OF THE AREA

The Tualatin Valley is the northwestern part of the Willamette Valley of Oregon. It consists of the low-lying plairs and the lower slopes of the Tualatin River drainage basin, which extend across the boundary between two physiographic sections—the Puget Trough section and the Oregon Coast Range section of the Pacific Border physiographic province (Fenneman, 1931).

The Tualatin River drainage basin ranges in altitude from about 60 feet near the river's mouth at the southeasternmost point to about 3,000 feet at its western limits along the divide of the Coast Range. The lower part, which lies in the Puget Trough section, is commonly termed the "Tualatin Valley." As used in this report, however, the term "Tualatin Valley" includes the slopes and interstream divides up to about 1,500 feet altitude, as well as the main valley plains.

The Tualatin River drainage basin has a total area of about 712 square miles. Of that area, the main valley plain includes nearly 350 square miles in a rudely rectangular shape about 30 miles long and 10 miles wide. The area described in this report overlaps slightly into the adjacent drainage basins. An important part of the overlapping area extends southward from Tonquin station to the Willamette River at Wilsonville (pl. 1) and was included because hydrologically and topographically it is nearly continuous with the Tualatin Valley area.

The general location and extent of the area are shown on figure 1; the locations of wells and springs and the areal geology are shown on plate 1.

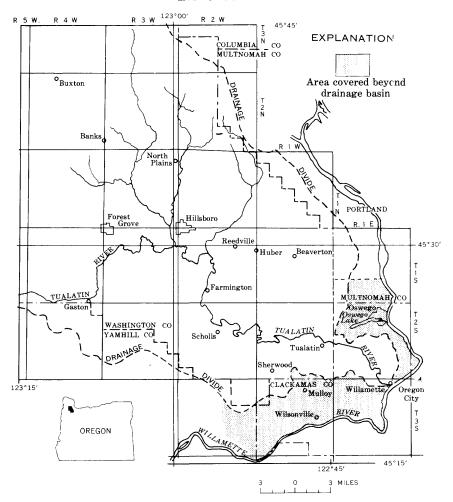


FIGURE 1 .- Map showing location of the area covered by this investigation.

NATURAL RESOURCES AND CULTURAL FEATURES

Since the original settlement of the area, during the period from 1834 to 1850, the fertile soils of the Tualatin Valley plain and the adjacent gentle hill slopes have been the outstanding natural resource. Originally the plain was partly open prairie, and the margins of the valley and the adjoining slopes and mountains were forested. The forests have been logged off so that they are now confined mostly to the steeper slopes. Lumbering and processing of forest products are now secondary industries, generally located adjacent to the timber stands in the Coast Range.

Until the coming of rapid transportation, the valley was rural. Since 1940 the eastern part of the valley has been undergoing urbanization and is now a part of metropolitan area of Portland. In 1950 Hillsboro, the largest city in the valley and the county seat of Washington County, had a population of 5,142. Forest Grove had 4,343 and Beaverton had 2,512. North Plains, Banks, Helvetia, Verboort, Orenco, and Gaston, each had a population of less than 1,000. Much of the recent suburban growth in the eastern part of the valley lies outside incorporated communities. Cedar Mill, West Slope (near Cedar Mill), Bonny Slope, Raleigh Hills (near Raleigh), and other centers are rapidly growing communities.

The area is crossed by two main east-west highways from Portland to the coast, U.S. Highway 26 and State Highway 6. Two main north-south highways, U.S. 99 and U.S. 99W, traverse the south-eastern part, and a network of secondary and local roads cover the area. Two branchline railroads cross the area.

HISTORY OF THE INVESTIGATION

The Tualatin Valley is a small part of the area covered in a report by Piper (1942), in which the area was briefly described and data for a few wells were presented. The general geologic features of the Tualatin River basin were shown on a map by Warren and others (1945).

This investigation was started in 1951. It consisted of canvassing the area for water facts, collecting water data from organizations and individuals, mapping and describing the geology, and studying the hydrology. In the canvassing for ground-water data, the entire area was studied in detail, and wells and springs that afforded the most reliable information were selected for location on the map (pl. 1). Additional data were collected from well drillers, public water-supply officials, State and county agencies, and managers of ir dustrial plants.

The geologic work consisted of compiling the geologic map, principally from field-checked parts of previous maps (Piper, 1942; Trimble, 1957; Treasher, 1942; Warren and others, 1945), constructing geologic sections, and compiling a structural contour map from records of subsurface materials. Some additional data were obtained from a few electric and gamma-ray logs of drill holes.

The hydrologic study consisted of distinguishing between the different types of occurrence of the ground water—unconfined (water table), confined (artesian), and perched—and of collecting data regarding the characteristics and behavior of the ground water in each type of occurrence and in each type of aquifer. Records of water

¹An aquifer is a saturated unit or earth material from which ground water can be extracted in usable amounts.

level and well yield were compiled for each type of aquifer. These data indicate the capacity of an aquifer to transmit water to a well. Periodic observations of the water level in selected wells were made to determine the time and manner in which water enters (reclarges) and leaves (discharges from) the ground-water reservoirs.

The fieldwork was done during 1951 and 1952. A report was written in 1954 and released in duplicated form in 1956. The present report includes streamflow and water-level records through 1958.

ACKNOWLEDGMENTS

The help of well owners and operators is gratefully acknowledged. Well drillers and pump companies were universally cooperative in giving access to their records of ground water and subsurface data and in granting their time and facilities to aid the investigation.

Municipal and public water-supply district officials and operating personnel contributed data on their areas. The Portland General Electric Co. made available the ground-water records compiled by Clyde Walker, agricultural engineer specialist. Drillers' logs of subsurface materials were furnished by the Oregon State Department of Geology and Mineral Industries, and records of chemical analyses of ground water were furnished by Charlton Laboratories, Inc., of Portland.

F. J. Frank of the U.S. Geological Survey assisted in the collection of the basic data and in the geologic interpretations.

Concurrently with this investigation the Engineering Geology Branch of the Survey mapped the adjacent metropolitan Portland area. Geologic data were exchanged with Donald E. Trimble, geologist in charge of the mapping project. Part of the results of that investigation have been published (Trimble, 1957 and 1963).

WELL AND SPRING NUMBERING SYSTEM

In this report, wells and springs are designated by symbols which indicate their locations according to the official rectangular survey of public lands. (See diagrams on p. 6.) For example, in the well 2/3-W-26J1, the two numerals before the hypen indicate the township and range south and west of the Willamette base line and meridian (T. 2 S., R. 3 W.), respectively; in those townships north of the base line and west of the meridian, the respective numbers are followed by the letters "N" and "W." The number after the hyphen indicates the section (sec. 26); the letter denotes the 40-acre subdivision of the section, according to the following diagram; and the final digit is the serial number of the well or spring in that particular 40-acre tract. Thus, well 2/3W-26J1 is the first well listed in the NE½SE½ sec. 26, T. 2 S., R. 3 W.

D	С	В	A
E	F	G	Н
М	L	К	J
N	Р	Q	R

The original metes and bounds of the donation land claims prevail as the land boundary system in parts of the valley. The authors have projected the township, range, and section system of land subdivision across those donation land claim areas and numbered the wells and springs in these parts in the same manner as in the rest of the drainage basin. This projection allows uniformity in the numbering of wells and springs and affords ready location on the map of any well or spring from the number.

In table 1 these location symbols are not given in full for each well. Rather, the symbols are grouped by townships under appropriate subheads and only that part of the symbol is tabulated which indicates the section, 40-acre tract, and serial number. In tables 1–5 the order of listing the townships is as shown numerically on the following diagram. All wells and springs listed in the tables are located on plate 1.

	<u>5</u> W	4 W	<u>3</u> W	<u>2</u> W	$\frac{1}{W}$	1 <u>1</u> E	
2N		9	8	7	6	MERIDIAN	
1N	5	4	3	2	1	₩ E BASE	LINE
18	14	13	12	11	10	15	
2S		19	18	17	16	20	
38				22	21	23	
							ı

GEOGRAPHY

CLIMATE

The Tualatin Valley has an equable climate—a long frost-free growing season and a mild winter. The seasons are characterized by marked differences in precipitation: the winters are wet and cloudy, the summers are generally dry and clear. In the winter most of the storms move in from the west, but occasionally subarctic air from the east or north brings freezing and even near-zero temperatures to the valley. The summer climate is more of a continental type, driest and hottest during periods of high barometric pressure. Occasionally dry air from the east brings conditions of low humidity for short periods.

PRECIPITATION

The average annual precipitation at the Forest Grove station of the Weather Bureau during the climatic years (October through September) 1921–45 was 43.56 inches (fig. 2). The annual precipitation varies somewhat from place to place in the valley and is much greater on the higher divides of the drainage basin, as shown by the Timber station (fig. 3) located in the Nehalem River basin 6 miles northwest of Buxton. The records for Forest Grove given in figure 2 shows that the annual precipitation ranged from as little as 28 to as much as 58 inches over the period 1891–1958. The long-term trends are shown by a curve of cumulative departure from average precipitation, which indicates a period of excess precipitation from 1891 through 1911, near-normal precipitation from 1912 through 1923, generally deficient precipitation from 1924 through 1931, and slightly greater-than-average precipitation from 1937 to 1958.

The precipitation occurs mainly in the winter months; its monthly distribution is shown for two stations on figure 3. Generally, December is the wettest month and July is the driest. About 80 percent of the annual precipitation falls during the 6-month period, October through March.

In the valley areas nearly all the precipitation occurs as rain, but some snow falls on the higher parts of the watershed. The snow accumulation on the Coast Range seldom reaches great depth; in most years it does not exceed 2 or 3 feet and does not remain long after the rainy season begins in the spring. There are some years when the valley floor receives as much as a foot of snow. The last year in which a great amount of snow was received was 1937, when Hillsboro had a total snowfall of 31.3 inches and Forest Grove had 34.4 inches.

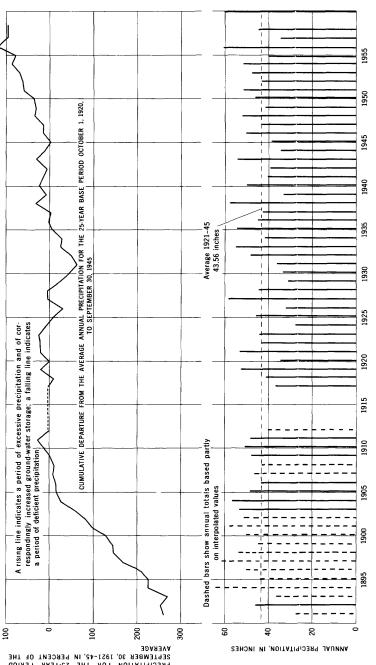


FIGURE 2.—Annual precipitation and the cumulative departure from the average annual precipitation at Forest Grove, 1891-1958.

CUMULATIVE DEPARTURE FROM AVERAGE ANNUAL PRECIPITATION FOR THE 25-YEAR PERIOD SEPTEMBER 30, 1921-45, IN PERCENT OF THE

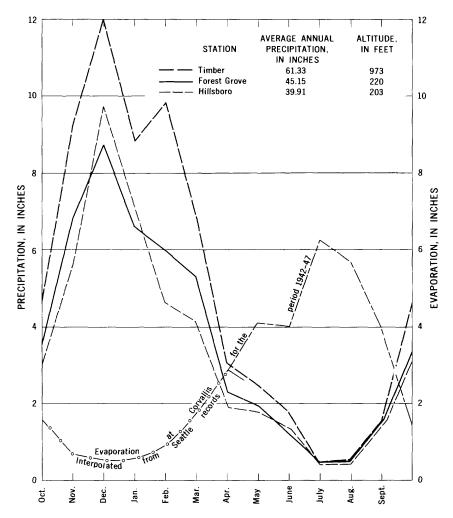


FIGURE 3.—Average monthly precipitation at two stations in the Tualatin River basin and at Timber farther northwest, and average evaporation at Corvallis, Oreg.

OTHER CLIMATIC FEATURES

The monthly average evaporation at the State College station in Corvallis, a terrain roughly comparable to that of the Tualatin Valley, is shown on figure 3. The total average evaporation recorded only for the 6-month growing season at Corvallis, and—by correlation—in the Tualatin Valley, is about 27 inches. If the additional evaporation for the winter months, as approximated from annual records of stations having complete data, is included, the total annual evaporation for the Tualatin Valley is estimated to be about 30 to 32 inches.

The average annual temperature for the 16-year period 1937 through 1952 was 52.6° F. at the Hillsboro station according to records of the U.S. Weather Bureau. The temperature is generally uniform and comfortable; extreme cold and hot weather occur only with uncommon movement of airmasses from the north and east, respectively. During the same 16-year period the extreme high and low temperatures observed were 104° F. and -10° F. The average of the 13 annual maximum temperatures was 99.5° F, and the average of the annual minimum temperatures was 13° F. January was the coldest, and July was the warmest month of the year.

In general, there is little strong movement of air across the valley floor; extremely high or property-damaging winds are rare, and tornadoes are practically unknown. The prevailing air movement is from the southwest in winter and from the northwest in summer. Occasionally, a high-pressure airmass centered in the east moves west through the Columbia River Gorge or across the Cascade Range in such strength as to cause the so-called east winds in the Tualatin Valley. These east winds are predominantly cold and dry in winter, hot and dry in summer.

During the 10-year period 1938-47, annual averages of 118 clear, 79 partly cloudy, and 168 cloudy days were recorded; however, periods of sunshine and cloudiness vary greatly from year to year. For example, the clear days during the period 1938-47 ranged from 78 to 167 days per year. Cloudy days predominate in the winter and the sunny days in the summer.

LANDFORMS

The Tualatin Valley comprises a broad extensive valley plain, the adjacent slopes and side valleys, and a few minor hills.

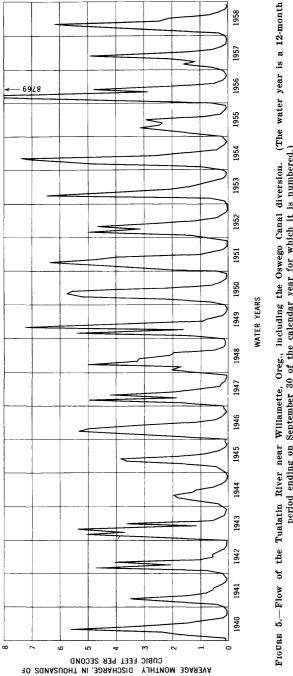
The main valley plain is about 30 miles long and 10 miles wide, extending around the Cooper Mountain-Bull Mountain hill land, which is a few miles southeast of the geographic center of the plain. The plain has an average altitude of about 200 feet, but ranges from 120 to 250 feet. It extends up the tributary valleys for several miles at a much steeper gradient than that of the main valley floor.

The hill slopes that rise from the valley floor are gentle ramplike surfaces, and are steep only in some streams canyors and areas of structural deformation. The marginal slopes rise gradually to reach mountainous heights on the drainage divides at the north, west, and southwest sides of the valley. On the east and southerst the valley is separated from the floor of the lower Willamette Valley by low ridges (fig. 4) such as Palatine Hill, Petes Mountain, and an unnamed upland sometimes called "West Linn Heights" extending between West Linn and Oswego. The upland north of the Tualatin Valley is formally

FIGURE 4.-Aerial view of the northeastern part of the Tualatin Valley, looking northeast.

named the Tualatin Mountains which extend southeast as far as Oswego Lake, though this extension is better known locally as the Portland Hills or as the West Portland Hills.

Cooper and Bull Mountains are gentle dome-shaped bills that rise 500 to 600 feet above the valley plain just southeast of the center of the valley. The valley plain, although broad and uniform in altitude over large areas, has a few wide terraces which slope gently toward the Tualatin River.


DRAINAGE

STREAMS

The upper reaches of the Tualatin River, above Gaston, drain a part of the east slope of the Coast Range. The river flows eastward through a mountainous terrain for about 13 miles before reaching the extension of the Tualatin Valley at Gaston, where it is joined by Wapato Creek. Flowing 4 miles northward, the Tualatin River is joined by Scoggin Creek and Gales Creek before turning eastward onto the main Tualatin Valley plain, at an altitude of about 120 feet. While flowing 45 sinuous miles across the valley plain, the river descends only 20 feet in altitude before meeting the bedrock reef in the gap 4 miles north of the town of Willamette. Within that gap the river drops 40 feet in 4 miles and empties into the Willamette River at an altitude of about 60 feet.

During the 21-year period, July 1928 to September 1949, the Tualatin River (including diversion to Lake Oswego) discharged at an average rate of 1,376 cfs (cubic feet per second) (Paulser and others, 1951). In the 19-year period 1940–58, shown in figure 5, the flow at the town of Williamette ranged from an average wintertime maximum of about 5,370 cfs to less than 50 cfs during the late summer of most years.

Wapato, Scoggin, Gales, Dairy, Rock, McFee, Chicken, and Fanno Creeks are the larger tributaries of the Tualatin River. Wapato, Scoggin, and Gales Creeks drain part of the Coast Range; Dairy and Rock Creeks drain the mountainous spur of the Coast Range that extends north of the Tualatin valley plain as well as part of the valley floor; and McFee, Chicken, and other creeks drain the northeast slopes of the Chehalem Mountains, whereas Fanno Creek arises largely as drainage from the valley floor and the southwest slope of the Portland Hills. The first five creeks named above have deeply dissected the slope of the Coast Range to a mature topography. Their profiles have steep gradients in the higher catchment areas, moderate gradients through the intermediate, canyon zones, and relatively low gradients over their lower, aggraded courses that merge with the

period ending on September 30 of the calendar year for which it is numbered.)

Tualatin Valley plain. Because of those characteristics, the secondary streams have a strong tendency to flood along their lower reaches and are actively aggrading the side valleys and the parts of the Tualatin Valley plain near their channels.

The secondary streams draining the Chehalem Mountains, Portland Hills, and Cooper Mountain are not so deeply incised and seem to be less subject to flooding.

All the drainage basin of the Tualatin River, except the highest headwater areas at the west and north, is shown on plate 1.

LAKES AND MARSHES

Wapato Lake, near Gaston, a shallow lake which covered a considerable area during wet years, was the only large natural lake in the Tualatin River basin. Now, largely diked and drained, its floor furnishes more than a square mile of rich farmland.

The only large lake in the area of this investigation is Oswego Lake. Its shape and position indicate that it was formerly a channel of the Tualatin River or possibly of the Willamette River. The lake has been enlarged by a dam, and manmade diversions from the Tualatin River keep it at controlled levels for scenic, recreation, and hydroelectric power purposes.

Marshy areas are confined to the lowlands near the Tualatin River and its tributaries on the valley floor. These areas are wettest in the winter and spring; one of the largest marshy areas is near the east fork of Dairy Creek in the vicinity of Verboort.

In the parts of the valley where the slope of the valley floor is gentlest, such as along Wapato Creek and the main stem of the Tualatin River north nearly to Forest Grove and in the embryment of the valley plain northwest of Verboort, the land was marshy and waterlogged until drainage was provided. Some of that land is subject to overflow or backwater during times of excessive rainfall and is still characterized by the shallowness of the water table.

GEOLOGY

OCCURRENCE AND RELATIONSHIPS OF THE STRATIGRAPHIC UNITS

VOLCANIC AND SEDIMENTARY ROCKS OF EOCENE AGE

As shown on plate 1, the mountain slopes in the western part of the Tualatin drainage basin are underlain by igneous and sedimentary rocks that originated in the Eocene epoch of the Tertiary period of geologic time.

The oldest rock unit is composed of lava interbedded with tuff. It underlies the highest part of the Tualatin River basin; the main areas

occur south of Gales Creek and west of the general locality of Cherry Grove. These volcanic rocks consist mainly of a sequence of basaltic lavas and tuffs that apparently includes the continuation of the rocks mapped as the Siletz River volcanics 20 miles to the southwest of the Tualatin basin (Baldwin and Roberts, 1952), but they may include some strata that are being mapped in later work as separate units. The volcanic rocks are a thick unit, but only the top part of these rocks is exposed in the Tualatin Basin.

The volcanic unit is overlain by a sequence of sedimentary rocks, also of Eocene age, consisting largely of shale, claystone, sandstone, and siltstone. In places, the sedimentary sequence contains a basal conglomerate composed of basaltic cobbles and gravel. These Eocene sedimentary rocks likewise may be the equivalent of several formations (such as the Burpee and Nestucca formations of Baldwin and Roberts, 1952) mapped separately in studies of neighboring areas. The sedimentary rocks are not thick; probably no more than 1,000 feet of strata is exposed in the band that underlies the lower mountain slopes of the western part of the Tualatin River headwater catchment area. That band of sedimentary rocks broadens out beneath the rolling hill lands and plains in the Yamhill River basin farther south.

Both the Eocene volcanic rocks and the overlying sedimentary rocks have a general dip of about 6° to the east. Where they continue to the east, the Eocene rocks underlie younger rocks and are at great depth beneath the main part of the Tualatin Valley. Their continuation beneath the valley may be the strata penetrated below a depth of about 8,000 feet in the Texas-Cooper Mountain oil test (well 1/2W-25J1).

Basaltic lava flows exposed in the Willamette River Gorge at the southeast end of Petes Mountain underlie the Columbia River basalt. This older lava dips 20°-40° NE., makes the strike-ridge reefs in the river 2½ to 4 miles above Oregon City, and passes beneath the more nearly horizontal Columbia River basalt. Only the pre-Cclumbia River basalt aspect of this rock's age was determined. For lack of more precise correlation, this exposure of older lavas was rnapped (pl. 1) as volcanic rocks of possible Eocene age.

These older rocks are more altered and more impregnated with zeolites and secondary minerals than the Columbia River basalt; hence, they would probably afford poorer yields of water to wells.

SEDIMENTARY ROCKS OF OLIGOCENE AND MIOCENE(?) AGES

Sedimentary rocks of Oligocene and Miocene (?) ages occur in the belt of hill land extending northward into the Wapato Creek Valley. They continue along both slopes of the Tualatin River valley from Gaston to Forest Grove. These sedimentary rocks make up the west

slope of David Hill and form the broad expanse of mountainous slopes that comprises the headwater areas of the two forks of Dairy Creek. They are also exposed beneath a small area in the canyon of McKay Creek.

The sedimentary rocks of Oligocene and Miocene (?) ages extend upward from the top of the Eocene rocks to the base of the overlying Columbia River basalt. As grouped on Warren's (1945) map and on plate 1, this sequence may contain strata equivalent to several formations described in more detailed treatises.

The sedimentary beds consist of shaly and tuffaceous sandstone, sandy shale and tuff, and some conglomeratic material. The beds consist of marine sediments and contain minor amounts of near-shore brackish and possibly fresh-water deposits. The beds that crop out in McKay Creek near the bridge in the SW½ sec. 18, T. 2 N., R. 2 W., are massive medium-hard blue-gray tuffaceous sandstone containing many marine shells. The rock is composed largely of rounded siliceous medium and coarse sand grains; interstitial filling consists of tufaceous and pumiceous material.

The beds dip inward toward the center of the Tualatin Valley from the southwest, west, and north (pl. 1). They also are presumed to dip into the syncline, at depth, from the anticlinal ridges along the east side of the valley. A period of subaerial erosion must have occurred between the deposition of these sedimentary rocks and the outflow of the lavas of the Columbia River basalt. However, where the stratification of the Oligocene and Miocene (?) sedimentary rocks can be observed close below the basalt (in the Dairy Creek, McKay Creek, David Hill, and Chehalem Mountain exposures), the bedding of the sedimentary rocks is in general accordance with the base of the basalt and the layers within it; at least, any discordance in these exposures is too small to be conspicuous. The contact between the sedimentary rocks of Oligocene and Miocene (?) age and the overlying Columbia River basalt indicates that the sedimentary rocks had been eroded to a low-lying, gentle plain (probably having a southward slope) when extrusion of the Columbia River basalt took place in Miocene and Pliocene (?) time.

COLUMBIA RIVER BASALT

Overlying the sedimentary rocks of Oligocene and Miocene (?) ages is a series of lava flows known collectively as the Columbia River basalt. This basalt sequence is an aggregation of lava flows that lie layer on layer without appreciable interflow sediments. These flows consist largely of blocky, jointed lava and contain only very small amounts of breecia. The basalt is a brown, black, or dark-gray dense

rock that has a pronounced vesicular structure near the tops of most of the individual lava flows.

Each flow has its own system of joints and cracks, resulting largely from contraction during cooling. The most common joint systems are columnar, cubic, and sheeting. Columnar jointing separates the flows into rudely hexagonal columns, which extend perpendicular to the cooling faces—generally at the top and bottom of the flow. Rectangular jointing separates some flows into rudely cubic blocks that commonly range from 2 to 12 inches in dimension. Both the columnar and cubic systems of jointing exist in some flows, but in most flows one is more extensive than the other. Sheeting joints occur in some flows and are conspicuous near the top and bottom of the flows, whose surfaces they roughly parallel.

The Columbia River basalt ranges in thickness from zero in the northern part to about 1,000 feet beneath the central and southern parts of the drainage basin. The main mass in its vast occurrence east of the Cascade Mountains in central Washington is regarded as belonging to the Miocene epoch and possibly also to the early part of the Pliocene epoch. West and north of the Tualatin Valley, its supposed extensions are interbedded with the upper part of the Astoria formation and are therefore considered to be of Miocene age in that locality. This Miocene age is probably applicable to at least a major part of the Columbia River basalt in the Tualatin River basin.

The base of the basalt is a regular and consistent plane in most of the basin, although it has some irregularities. The thickness of the basalt changes evenly and gradually. Presumably, before deformation and erosion took place, the top of this accumulation of highly fluid lava was a fairly level plain. Now mildly warped, the top of the basaltic lava, deeply weathered and moderately eroded, forms the surface in many of the upland slopes, such as the slopes in the Chehalem Mountains, Cooper and Bull Mountains, Parrett and Petes Mountains, and the highest ridges of the Portland Hills (fig. 8 and pl. 3).

Eastward from the rim of the Chehalem Mountains near Gaston and the rim of David Hill, the Columbia River basalt forms the general bedrock, the uppermost consolidated rock of the whole basin area—except in places along the west slope of the Portland Hills where the younger Boring lava lies above it and in areas of sedimentary rock in upper McKay and Dairy Creeks from which the basalt has been stripped by erosion. The basalt itself is visible in only a few places other than in the steepest cliffs or stream bluffs and in artificial exposures, such as quarries and roadcuts.

In most of the upland areas, the top 20 to 200 feet of the basalt is weathered to residual lateritic soil. This deeply weathered material

forms some of the distinctive "red land" soils of the area. In places, the laterite also forms an important low-grade deposit of aluminum ore (Libbey and others, 1945). A similar thickness of weathered material at the top of the basalt extends beneath most of the valley-fill deposits.

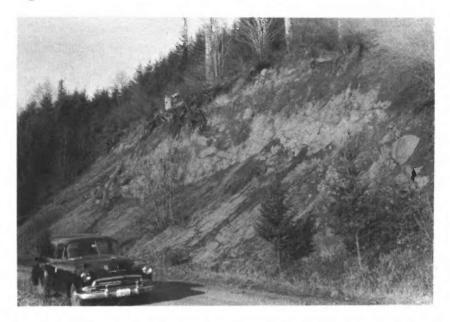


FIGURE 6.—Photographs showing weathered Columbia River basalt.

TROUTDALE FORMATION

Overlying the downwarped parts of the Columbia River basalt is a deposit of semiconsolidated silt, clay, and sand, chiefly of lacustrine origin. Part of the deposit has been correlated (Treasher, 1942) with the Troutdale formation of Pliocene age, an old alluvial fan deposit that is extensive along the western front of the Cascade Mountains 20 miles east of the Tualatin River basin.

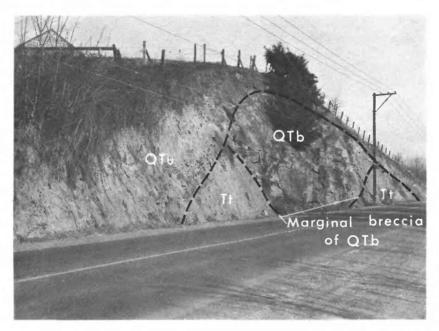
The Troutdale formation occurs in the linear downwarps (synclines) of the bedrock in the Portland Hills (pl. 1) and can be traced northward and westward beneath the later Boring lava to the edge of the Tualatin Valley plain. West of where it is capped by the Boring lava, the Troutdale formation is overlapped by younger valley fill, and is not differentiated west of the Metzger and Raleigh localities. Undoubtedly an extension of the Troutdale formation makes up much of the deep sedimentary fill beneath the main valley plain. Deposits similar to the Troutdale formation are included in the broad classification "Tertiary and Quaternary sediments, undifferentiated" that is used (pl. 1) to designate all the main body of older unconsolidated deposits that underlie the Tualatin Valley plain and that extend down to the basalt bedrock. The detailed studies necessary to differentiate the sediments of Troutdale age from younger deposits are beyond the scope and immediate needs of this report.

The Troutdale formation in the Tualatin Valley consists of clay and silt and contains some sand and a few gravel beds. On the whole, the materials are finer grained than in the type locality of the Troutdale formation in the eastern part of the terraces east of Portland, but the deposits here have an otherwise similar lithology, stratigraphic position, structural relationship, and erosional history. Though deposits of the Troutdale occur in a few places at altitudes as great as 600 feet and possibly even 700 feet, they probably did not at any time overlie the Columbia River basalt, where it now forms the crest of the higher ridges of the Portland Hills. In a few places along these hills the thickness of the Troutdale formation exceeds 500 feet; however, the total maximum stratigraphic thickness is unknown. The deposition apparently was entirely in fresh water; at least no evidence of marine fossils and no traces of saline connate 2 water are known to the writers.

Truncating the Troutdale strata is an old erosion surface, parts of which are preserved at the base of the Boring lava. It had a general slope toward the Tualatin Valley plain. A cross section of Boring lava that flowed downslope in a rill of that old erosion surface is

²The term "connate" is applied to the water trapped in a sedimentary rock when it was deposited. Newly deposited clays, silts, and sands commonly contain 20 to 50 percent pore space which can hold water. In places, this connate water is retained for a long time, especially in the clay and silts.

shown in figure 7. Undoubtedly the erosion that produced this surface on the Troutdale formation, in the uplifted belt along the Portland Hills, contributed much sediment to the alluvial fill that covers the deposits of Troutdale age beneath the main Tualatin Valley plain.


BORING LAVA

A later volcanic extrusive rock, named by Treasher (1942) the Boring lava, lies upon the Troutdale formation and the Columbia River basalt in a roughly linear band along the west flank of the Portland Hills. The known occurrences of this lava extend southward from the ridge crest east of Cedar Mill through Sylvan and Multnomah to Mount Sylvania. Farther south and east these rocks occur outside the Tualatin Valley in Mount Scott and the hill lands of the Beaver Creek, Damascus, and Boring (city) areas. Apparently the lava was extruded from local fissures and from central vents, such as Mount Sylvania and Mount Scott.

The Boring lava is a gray basaltic rock containing nearly microscopic phenocrysts of olivine and plagioclase feldspar in a rather stony and, in part, microcrystalline groundmass. It has a distinctive bluishgray color and, in places, a porous appearance. In some places a widely spaced columnar jointing has formed and in others, closely spaced flagstonelike platy jointing. The rock is not known to have been deformed tectonically in the Tualatin Valley area.

In its original extrusion the Boring lava was probably not much more extensive in the Tualatin Valley than it is at present (pl. 1). The fact that its outflow on the surface followed the details of the erosional surface is proof that some time elapsed between the deposition of the Troutdale formation of Pliocene age and the extrusion of the Boring lava. Whether that time lapse was sufficient to place the Boring lava in the Quaternary period is not known; hence, the nonspecific age assignment of late Pliocene to late (?) Pleistocene to the Boring lava (pl. 1). Logs of wells, such as 1N/1W-20H1, -35M1, and 1/1W-11L1 (table 2), show the Boring lava over the deposits of the Troutdale formation. Apparently the Boring lave flowed from many small vents along linear structural fractures. Some of the outlets, such as Mount Sylvania and the twin hills southeast of Cedar Mill, acquired and still retain the conical shape commonly associated with vents of explosive extrusion or with orifices from which highly viscous lava flowed. Only in one place (West Burnside Road, sec. 6, T. 1 S., R. 1 E.) did the lava accumulate high enough to flow eastward over the divide and be preserved downslope on the Willamette River side.

There has been but little erosion of the Boring lava. Consequently, the areas where it occurs still depict many of its original depositional

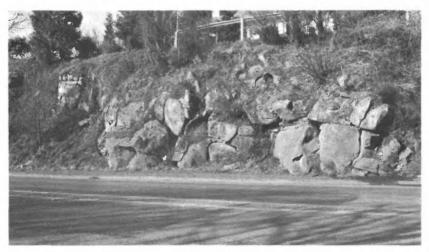


FIGURE 7.—Photographs showing features of the Boring lava.

details. Where the Boring lava abutted against the mountain slopes of the Columbia River basalt, which had 50 to 200 feet of residual and alluvial soil cover, and where it abutted against a layer of Troutdale age that thinly covered parts of the basalt, stream entrenchment has removed the intervening soft material. Thus, narrow stream valleys now isolate many of the areas of Boring lava from the slopes

against which it originally abutted. Because the higher parts of the areas of Boring lava are covered with 5 to 30 feet of soil and alluvial material, the lava crops out in only a few places, except where it is artificially exposed. Along the Portland Hills the base of the Boring lava occurs at an altitude of about 300 to 350 feet, and at its western extremity it extends to a minimum altitude of 150 to 160 feet, some 50 feet below the present general plain on the valley fill. The downslope edges of the Boring lava are now covered with as much as 30 to 50 feet of the undifferentiated valley fill.

TERTIARY AND QUATERNARY VALLEY FILL UNDIFFERENTIATED

Beneath the main part of the valley plain, and lapping up along the margins, are unconsolidated sediments that cover the irregularities in the bedrock surface and underlie a smooth valley plain. This fill ranges from a featheredge at the margins to a common thickness of 300 to 600 feet beneath the lowest parts of the valley plain. The fill also extends at many places to a depth of 900 feet and has a maximum known depth of 1,480 feet at Hillsboro in the deeper trough that lies north of Cooper and Bull Mountains.

The valley fill includes deposits that range in age at least from the time of the earliest warping of the Columbia River basalt (in pre-Troutdale or Troutdale time) to the present time, as the alluvium is

still accumulating in places (pl. 1).

The undifferentiated sediments of the valley fill have been arbitrarily separated from the Troutdale formation where the two abut in the Raleigh and Metzger districts. Elsewhere in the valley the age of any part of the undifferentiated valley fill is not known to be equivalent to the Troutdale formation. It is possible that only along the flank of the Portland Hills uplift does the Troutdale formation occur at such a high level. Through the rest of the undifferentiated fill, the equivalents of the Troutdale formation must lie at considerable depth.

Because of the difficulty in distinguishing the deposits of Trout-dale age from the alluvium and because the hydrologic features and lithologic characteristics of the two materials are similar, most of the deposits were grouped together in this report as Tertiary and Quaternary valley fill, undifferentiated (pl. 1). The older alluvium was mapped separately only along the Willamette River, the east fork of Dairy Creek, and the Tualatin River near Forest Grove. The younger alluvium was differentiated in the flood plains of most of the larger streams of the area. Elsewhere alluvial deposits of comparable age were grouped in the undifferentiated valley fill.

The undifferentiated fill is largely clay and silt. Sand beds occur at widely separated vertical intervals, and a few of these sand zones

seem to have widespread though not universal extent. The sand is mostly very fine grained, well sorted, and lacustrine in character. Very few gravel beds have been found in the valley fill except beneath the area where Gales Creek passes onto the valley plain; there, some long gravel lenses occur, diminishing in thickness and extent eastward from Forest Grove. Some sand zones occur in the valley fill beneath the Hillsboro district and, to a lesser extent, beneath the Beaverton district. At these two places the sand zones have been drilled sufficiently to establish their local continuity.

The best known of the gravelly beds occurs at a depth of 95 feet in a number of wells at Forest Grove and at a depth of 110 to 120 feet in some wells, such as 1/3W-4Q1 and -5F1, farther east. Apparently a 10-foot thick marginal phase of this gravelly sand bed was reached at about 120 feet in a well just northeast of Cornelius in the NW1/4SW1/4 sec. 34, T. 1N., R. 3W., in 1960.

The following size analysis was obtained by screening a bailed sample of the gravelly sand from the well in sec. 34:

Openings per inch-			
Retained on—	Percent	cf	sample
8M		1.4	
16M		24	
30M		26	
42M		1.7	
50M		5	
80M		7	
Passed through—			
80M		7	

The pebbles and coarse gravel are composed of fine-grained sandstone and siltstone, basalt, quartzite, nodules of cemented shale, or chert, quartz, and other silicas. The sand grains are composed of the same materials, but quartz and other silicas are more abundant and compose about 20 percent of the grains.

The undifferentiated fill of the Tualatin Valley is probably entirely a fresh-water deposit. None of the many wells are known to have encountered saline water that could be considered connate and therefore indicative of marine or brackish water deposition. Because finegrained materials tend to retain some part of the water in which they were deposited, the absence of marine-type water indicates that fresh water was the most likely environment of this valley fill. Moreover, no marine fossils are known to have been found in the valley fill. Samples from well 1N/3W-7A2 at 660 feet and well 1/1W-17A2 at 750-800 feet were examined by Dr. Weldon W. Rau (oral communication) who found no micro-organic fossils. Furthermore, the fact that much uncarbonized wood has been found in the upper 300 feet of the deposits during the construction of many wells in the valley fill suggests fresh-water deposition.

In the main valley, only the deposits underlying the flood plains and channels of the present streams are mapped separately (pl. 1) from the main body of the valley fill; however, other parts of the undifferentiated valley fill may be as young as the older alluvium that is distinguished at other places in the valley.

ALLUVIUM

The flood plains of the present streams and the slightly higher areas of former flood deposition, as well as a few pocketlike areas where water-borne debris has accumulated, are the principal sites underlain by alluvium sufficiently thick to map. The older alluvium lies generally above the level of present deposition. Younger alluvium is still being deposited during periods of flood. In most parts of the basin the alluvium is relatively thin. The alluvium along Gales Creek averages less than 20 feet in thickness, and most of the younger alluvium along the channels of Dairy and McKay Creeks across the valley plain is less than 10 feet thick. The alluvium along the flood plain of the main stem of the Tualatin River from Gaston and Forest Grove downstream may be considerably thicker, in places as much as 30 feet thick. Along the Willamette River, at the south edge of the area covered in this report, the younger alluvium is 40 to 50 feet thick.

The alluvium below the flood plains in the Tualatin Valley is almost all fine-grained material—silt, clay, fine sand, and peaty material. The younger alluvium of the smaller Creeks (Dairy and others) consists of a shallow deposit of reworked material and a transient channel bedload. The large lowland northeast of David Hill, which is poorly drained by the West Fork of Dairy Creek, appears to be underlain by a thick deposit of younger alluvium deposited in an area of subsidence. An area in Wapato Creek valley just southeast of Gaston is poorly drained because of the damming effect of the alluvial fan of the Tualatin River where that river enters the broader Wapato Creek valley. The younger alluvium along Gales Creek and the main stem of the Tualatin River is a backfill and flood deposit that accumulated as the streams swept their channel beds laterally across the valley plains. This younger alluvium consists entirely of fine-grained materials and underlies wet, poorly drained land.

In general, the older alluvium is composed of similar fine-grained materials except along the Willamette River, where gravels and sands are present. Great quantities of older alluvium, which accumulated largely in Pleistocene time, are part of the extensive deposits of the Willamette River.

Where the alluvium abuts against the mountainous slopes, it is overlain by some slope-washed detritus. The overlying accumula-

tions at the landward edge and erosion at the streamward edge have given a pronounced slope to most of the terrace surfaces on the older alluvium; in some places this steepening has accentuated the criginal terrace slope. The areas of older alluvium along Chehalem, Vapato, and Gales Creeks are remnants of former valley plains that now remain as terraces along the sides of the present flood plains. These deposits of older alluvium are thin and rest on eroded bedrock surfaces. Southward through Tonquin to Mulloy, a train of rock rubble extends from a former spillway across the bedrock divide. That rubble train is included with the older alluvium of the Wilsonville plain of the Willamette Valley proper.

STRUCTURE OF THE ROCKS

IMPORTANCE OF ROCK STRUCTURE

Because most of the rocks in the Tualatin River basin were originally sedimentary deposits, volcanic lava flows, or sedimentary accumulations of volcanic fragmentary debris, we know the original bedding of each rock unit was nearly horizontal. The present position and inclination of these beds are measures of the earth's deformation since the rocks were formed. A knowledge of the condition and attitude of the rocks affords a means by which their continuity and depth can be determined. Thus, the exploitation of any resources in a rock formation requires that the structure of the rock be known. This need for structural information is particularly vital to the development of ground water known to occur in some of the lava-rock units. At places the availability of ground water can be determined if the position of certain rock units is known underground. This determination can be made by graphic projection of the rock units from places where they are exposed, if their structure and continuity are reasonably well known.

INCLINATION OF THE ROCKS

The Eocene and other Tertiary sedimentary and volcanic rocks that crop out in the mountain slopes of the west side of the Tualatin River basin dip generally eastward. Those same rock units exposed on the north side of the basin dip generally southward. Some of the observed dips are shown on plate 1.

The Columbia River basalt is inclined generally in accordance with the underlying Tertiary rocks. It dips northward off the Chehalem Mountains north of Newberg and eastward off the extension of the Chehalem Mountains and David Mountain, south and north of Forest Grove, respectively. The Columbia River basalt dips southward in the mountains near North Plains and Helvetia, westward in the western part off the Portland Hills, and outward away from the center of Cooper and Bull Mountains. The upper surface of the basalt is, in general, a subdued replica of its original constructional surface, which has been modified slightly by weathering and erosion and deformed by folding and faulting.

There are very few places where the structure can be observed in the beds of the Troutdale formation. The presence of the Troutdale, almost exclusively in the structural sag of the Columbia River basalt, indicates that its deposition followed part of the folding of the basalt but that it may have been involved in later moderate displacements (pl. 3). Mr. Robert Murphy (oral commun.) reported that he found steeply inclined beds of semiconsolidated clay and siltstone below a depth of 12 feet while digging a well some years ago at his house near Fanno Creek in the NE½ NW¼ sec. 27, T. 1 S., R. W. That location is near a known displacement in the underlying Columbia River basalt, and the inclined beds may represent deformed beds of Troutdale age along that structural lineament. The actual deformation of the Troutdale formation may be more extensive than can be inferred from the few exposures of it.

The Boring lava and the alluvial deposits are not tertonically deformed.

MASTER SHAPE OF THE TECTONIC STRUCTURES

The main structural feature of the Tualatin Basin is a shallow bowl-shaped syncline which contains an interior, centrally located anticlinal ridge—the Cooper Mountain-Bull Mountain ridge. The form of that structure, at least as it affects the water resources, is shown on the geologic map (pl. 1) and the structural contour map of the Columbia River basalt (pl. 2). The basinwide synclinal structure is divided by the Cooper Mountain-Bull Mountain ridge, so that the bedrock lies in separate synclinal troughs to the north and the south of that ridge.

Over broad areas of the basin the general structure is a gently sloping part of the overall synclinal fold, but locally there are abrupt changes to steeply dipping folds and fault displacements. The major known fault displacements include the northeast-trending fault that separates Parrett Mountain from the east end of the Chehalem Mountains and the southwest-trending fault followed by Gales Creek (pl. 1).

By comparing the altitude of the surface as shown on the topographic map (pl. 1) with the altitude of the bedrock beneath the valley floor (pl. 2) the general depth to bedrock can be calculated at a proposed well site. The bedrock contour map is generalized and later refinements may be warranted as more information is obtained from

additional wells. For example, a shallow buried ridge in the bedrock surface is reported to extend north from Cooper Mountain to Huber but was omitted because of the lack of data on it. It is apparent that many minor irregularities of the bedrock surface beneath the valley fill are not adequately shown by the information now at hand.

SECONDARY TECTONIC ELEMENTS

The major deformation which produced the bowl-shaped structure in the bedrock of the Tualatin Valley also produced many subordinate structural features that affect the occurrence and development of ground water.

Structurally, the Portland Hills are mainly an assemblage of separate linear folds extending from Oregon City to where they merge with the uplands north of Portland. As shown on plate 1, the deposits of Troutdale age and the Boring lava have filled some of the linear synclines; so, the topography is gentle between the higher parts of some of these en echelon anticlinal ridges.

The Bull Mountain-Cooper Mountain upland is ringed in part by linear topographic sags that apparently represent lines of steep folding or steplike fault displacements. A similar linear depression separates Bull Mountain and Cooper Mountain. Other such displacements of the bedrock are visible on the topography.

Within the Tualatin River basin, the Chehalem Mountains consist mainly of the Columbia River basalt dipping monoclinally inward. Near the northwest end the mountain is a tilted block whose western limb, if any ever existed, had been upfaulted and subsequently eroded in the Gaston area.

The course of Fanno Creek roughly parallels the axis of a complex and moderately steep syncline between the Portland Hills and the Cooper Mountain-Bull Mountain anticline. A buried "high" in the Columbia River basalt extends westward through Progress (pl. 2) and bisects the complex north-south syncline beneath the Fanno Creek valley. The steeply dipping beds of probable Troutdale age, found in the Murphy dug well as previously mentioned, and the badly fractured basalt in the saline-water well (1/1W-27C1) lie along the north edge of this bedrock "high."

The low bedrock ridge which connects the north ends of Parrett Mountain and Petes Mountain is an anticlinal warp between the sharp syncline under the main stem of the Tualatin River to the north and the southeastward-plunging synclinal basin in which Wilsonville is located.

Although the major structures of the bedrock are more readily apparent, many minor structures are particularly significant to the

development of the ground-water resources because, in many places, their structure controls the vertical position and horizontal extent of the water-bearing rocks.

TYPES OF DISPLACEMENTS

Most of the major bedrock structures of tectonic origin are due to folding, though some, such as Parrett Mountain and the highlands south of Gales Creek, are largely due to displacement along faults.

Of the minor structures, both folds and faults are known. The earth stresses that produced the major structures undoubtedly produced many minor displacements, only a small part of which can be delineated on the basis of the present information.

Some steplike displacements are present in the bedrock below the valley fill, as indicated by steep linear slopes shown on the bedrock contour map (pl. 2). Particularly significant is the bedrock displacement that trends east-west just north of Farmington and seems to form the northern limit of an area of flowing wells; also significant is the displacement that trends generally east-west through well 1/1W-27C1 just west of Progress. Apparently the bedrock is similarly displaced, between wells 1/1W-33P1 and -P2, in the depression that separates Bull Mountain from Cooper Mountain. Many of those sharp changes in the level of the bedrock surface may be due to sharp folds, but some are known to occur at fault zones such as that penetrated by well 1/1W-27C1.

EFFECTS OF TECTONIC STRUCTURES ON THE GROUND-WATER RESOURCES

The sand aquifers in the alluvium and the upper part of the valley-fill deposits are virtually horizontal and have not been affected by tectonic movement. However, tectonic structures do largely control the availability of ground water in the Columbia River basalt, which is the most productive aquifier in much of the Tualatin Valley. Whether the basalt is economically within reach beneath the valley plains or whether it stands so high above the water table in the uplands that all but meager pockets of perched water are drained out is determined by its position in the tectonic structures.

The ease with which fresh water can enter the porous zones in the basalt is largely controlled by the tectonic structures. Water can most readily enter and recharge these porous zones through the gravelly beds of streams which flow across the beveled edges of the basalt layers. Recharge is poorest in flat-lying basalt which is deeply covered by relatively impervious beds of valley fill. Some areas of good recharge are along the margins of the Tualatin Valley plain;

some of the areas of poorest recharge are in deep parts of the synclines beneath the central part of the valley plains.

Because of the layered arrangement and the irregular continuity of the porous zones in the basalt, a progressive decline in the volume of water transmission can be expected away from the points where fresh water recharges to the basalt. However, wells downdip from and relatively near points of recharge may be advantageously located for large sustained yields of water from the basalt.

Other investigations have revealed that lines of severe flexure, resulting from both tight folding and faulting, may act as barriers to the lateral transmission of ground water in the basalt (Newcomb, 1959, p. 10-12). In some places such barriers may be responsible for the high levels of the ground water found on the updip side and the nearby lower water levels on the downdip side of a fault. Locally, parts of some fault zones in basalt may provide a vertical passage for small amounts of ground water. Such vertically permeable parts of the fault zones may serve as discharge routes from the basalt to the overlying alluvial materials or to the surface. Likewise, permeable parts of fault zones may allow some water of poor quality to rise from the older rocks that underlie the basalt. Such may be the situation in the shattered rock, in which saline water was tapped by well 1/1W-27C1, as described in the section on "Chemical quality of the ground water" (p. 52).

GROUND WATER

GENERAL HYDROLOGIC FEATURES

Beneath a given level, not far below the surface of the valleys, all the materials of the outer part of the earth's crust are saturated with water. The upper surface of this water-saturated zone of the earth is called the water table, except where that surface lies within an impermeable body. The water in the rocks below the water table is said to occur under water-table conditions and is called unconfined ground water. Despite the fact that all the rocks below the water table are saturated, only certain parts of some rock units have sufficiently large and interconnected pores to transmit water readily. Ground water in the Tualatin Valley occurs chiefly under water-table conditions.

In some places, extensive layers of rock in the zone of saturation consist of tight, impermeable materials of sufficient lateral extent to deny the ground water ready passage upward. Ground water below such an impervious layer is under a hydrostatic pressure, which is determined by the altitude of the water table beyond the edges of the confining layer. Where such a confining stratum is perforated

and an aquifer below is tapped by a well, the ground water rises to an altitude equal to the hydrostatic pressure in the aquifer. Such ground water is said to be confined or artesian.³ Some confined water exists in the Tualatin Valley, as described in the sections below.

In some places, layers or zones of impermeable material hold the infiltrated water above the regional water table. Such conditions result in small areas of saturation and are called "perched" ground water. At many places in the higher parts of the Tualatin Valley, perched ground water occurs, as described in later sections.

The availability of ground water occurring under unconfined, confined, or perched conditions, and the uses that can be made of it are determined largely by: (1) physical character of materials in which the ground water occurs, (2) the manner and place of recharge, (3) the characteristics of movement or transmission of water through the rock material, (4) the place of discharge—either natural (springs and seeps) or artificial (wells), and (5) the chemical and physical changes that take place during the water's passage underground.

UNCONFINED GROUND WATER

Throughout the greater part of the Tualatin Valley plain, the ground water, in both the valley fill and the underlying older rocks, stands in wells at a uniform level. The water table lies not far beneath the surface of the main valley plain and slopes generally toward the Tualatin River and its tributaries at about the same rate as the land surface. Beneath the hill and mountain slopes around the margins of the valley and the Cooper Mountain-Bull Mountain hill land, the level of the water table is continuous with the level of the water table beneath the valley plains. It is a level of saturation that cuts across geologic units of different lithology.

The unconfined ground water is tapped by several thousand wells, many of which are listed in table 1. Water-level records for some of these wells are shown graphically on figures 9-14.

The water table fluctuates in conformity with the annual rainfall cycle. The hydrographs (such as figs. 11 and 14) show that the level of the water in the shallower wells of the valley fill fluctuates as much as 15 to 20 feet. Apparently, recharge during the months of heavy rainfall is so great that it fills all the available pore space of the valley-fill deposits nearly to the land surface. The water tapped by deeper wells in the valley fill is partly confined. This water does not show so great an annual fluctuation, ranging from 5 to 10 feet per year (fig. 13).

³ Most hydrologists apply the term "artesian" to any ground water that rises above its confining layer. Some dictionaries, however, use the older definition of "artesian." applying it to ground water that flows at the land surface.

CONFINED GROUND WATER

Some of the deeper strata of the valley fill and, in places, the Columbia River basalt at depth beneath the valley fill contain ground water that rises in wells above the level of the water table. In general, wells that tap the confined water with the greatest head above the water table are located around the sides of the valley floor. Water flows from several of these wells near Cedar Mill, North Plains, Helvetia, Kansas City, Farmington, and Mulloy (on the Willamette slope south and outside the Tualatin Valley proper). The wells with the greatest confined water pressure are the Hartung well (1N/1W-28P2) and the Gent well (1N/4W-15C1), in which the pressure is sufficient to raise water about 50 feet above land surface.

PERCHED GROUND WATER

Beneath the slopes and uplands around the margins of the Tualatin Valley, ground water occurs above the regional water table in relatively small quantities. Ground water percolating downward toward the water table in places encounters impermeable layers which impede its movement and produce relatively small saturated zones above the regional water table. Such water is perched on impermeable layers in the soil zones and in relatively high parts of valley-fill deposits, as well as on impermeable layers in the Columbia River basalt and the Boring lava.

These pockets of perched water are especially important for providing household supplies in areas where the water table lies at great depth or lies in impermeable materials from which little water of good quality can be extracted. Places like Petes Mountain, the Portland Hills, the Chehalem Mountains, and the north slope of the Tualatin Valley (north of Helvetia and North Plains) are characterized by many perched-water bodies. Many small seeps and springs that provide household and stock water are outlets for perched water in the Chehalem Mountains. Ground water in the basal part of the Poring lava, such as that tapped by well 1/1–31C1, and in isolated porous streaks of the Columbia River basalt, such as that tapped by well 2/1–31P1, is perched and is developed for household use.

In some circumstances, perched ground water occurs under semi-confined or confined conditions. Where the perched water fills a porous zone below a local inclined confining layer, the water in the lower end of that water body is confined, even though the whole body is perched above the regional water table. Such is probably the situation in wells like 1N/2W-3K1.

PRINCIPAL AQUIFERS

In addition to the classification based on the hydraulic conditions under which ground water occurs, aquifers are classified on the basis of the geologic unit in which the ground water is found. Because the water-bearing characteristics are somewhat different in the various geologic units, this system of classification also includes a general evaluation of the yields of water that can be obtained by wells. The surface extent of the geologic units is shown on plate 1. Their subsurface continuation is shown on plate 3 and is described in the text and the data tables.

VALLEY FILL

As described previously under "Geology," the unconsolidated materials that have been deposited within the Tualatin Valley structural syncline are largely clay, silt, and fine sand. Thin beds of fine to very fine, well-sorted sand occur in the upper 300 to 400 feet of the valley fill throughout much of the area.

Beneath some places in the western part of the valley floor, sand beds, and even a few beds of granular gravel, make up an unusually large part of the valley-fill material. In an area of several square miles centered around Hillsboro, sand beds are present at depths of about 40, 100, 200, and 300 feet beneath the surface. Not all these zones are present beneath any one place, but the general sequence has been found in enough wells to indicate its presence under a fairly extensive area. Those sand beds supply most of the water now pumped from wells in this area. The number of producing wells in the 40-foot sand indicates that the zone is relatively widespread and continuous in the Hillsboro area.

A sand and granular gravel stratum, about 10 feet thick, occurs in limited extent at a depth of about 95 feet beneath the north and east edges of Beaverton but is not penetrated by wells in the St. Marys district, a mile to the west. Wells 1/1W-16A1 and -22F1 tapped water in that sand-and-gravel bed, which contains some black volcanic lapilli, BB-sized volcanic ejecta.

A number of gravel layers occur in the valley fill of the Forest Grove district, where presumably, they were deposited by an ancestral Gales Creek. Some of these gravel layers may be traced in wells through Forest Grove and east nearly to Hillsboro, where they seem to be alined with sand zones. Those gravel strata lie at depths of about 50 feet in Gales Creek valley (well 1/4W-2H1) and at about 100 feet below land surface at Forest Grove.

Aside from extensive sand zones beneath the Hillsboro area, the beds of fine sand that serve as water-bearing strata cannot now be related to sources or to definite stratigraphic positions in the valley

fill. The fine-sand beds seem to represent deposition by the shifting and vagrant currents of a lake, and they occur at irregular and unrelated places and positions within the great mass of valley fill, most of which is clay and silt.

Nearly all of the valley fill is below the level of the water table, and most of the ground water therein is unconfined. However, confined ground water occurs at a few places in the valley fill. Many of the fine-sand strata that lie deep beneath clay and silt layers in the valley fill contain water under a small confining pressure. When these strata are reached by wells, the water rises slightly above the local water table and in low areas may even flow at land surface.

The part of the valley fill at relatively high altitude along the west side of the Portland Hills, shown on the geologic map (pl. 1) as the Troutdale formation, contains ground water in a few gravelly or sandy zones and in a position that definitely is perched above the regional water table (see wells 1N/1W-23N1 and -26E1).

COLUMBIA RIVER BASALT

The Columbia River basalt lies deep below the Tualatin Valley plain and crops out in the adjacent slopes and hills. The basalt consists of a series of individual lava flows. Between some of the successive flows are zones of breccia, "cinders" or broken rock, which are porous enough to permit a comparatively free movement of water. It is mostly in these interflow zones that the percolation of ground water takes place in the Columbia River basalt. Cracks and fissures in the dense part of a lava flow may contain some ground water and, in a few places, may act as passages for water moving vertically between interflow zones; but in general those cracks and joints within the centers of individual lava flows yield little water to wells. Any particular interflow zone, even one that is highly permeable, may contain isolated sections or pockets of impermeable material. For this reason, even wells drilled close together may obtain water from different interflow zones and may have slightly different static water levels.

Ground water occurs under water-table conditions in the Columbia River basalt at Cooper Mountain, Bull Mountain, and some of the slopes along the margins of the valley. Well 1/1W-30L1 (table 1) illustrates water-table conditions. In this well, drilled almost on the summit of Cooper Mountain at an altitude of 790 feet, water was first found at the regional water table, at about 215 feet altitude. Many other wells in this area and the Bull Mountain area are reported to have static water levels at about that altitude (table 1).

Confined ground water in the Columbia River basalt occurs mostly under a pressure head, depending on the altitude of the regional water

table either nearby or at some place upslope from the well. Consequently, wells tapping water in the Columbia River basalt below the valley fill in most areas have a static water level that stands at about the level of the valley floor. Wells of this type are common in most parts of the valley; examples listed in table 1 include the north well of the city of Beaverton (1/1W-11L1), the city wells of North Plains (1N/3W-1K1 and -K2), the Al Peters well (1N/3W-8E1), and the S. R. Rotchstrom well (2/2W-6D1).

Only a few wells have been drilled into the Columbia River basalt where it lies more than 1,000 feet below the valley floor. Two such deep wells, the Birdseye Cannery well (1N/3W-36R3) and the Oregon Nursery Co. well (1N/2W-34H1), were drilled many years ago and were abandoned after penetrating less than 200 feet of basalt. The authors believe this penetration was not enough for an adequate test of the water-bearing properties of the Columbia River basalt. The latest deep well (1/1W-17A2), for St. Mary's School near Beaverton, entered the basalt after penetrating 1,170 feet of valley fill; it produced 115 gpm (gallons per minute) at a drawdown of 200 feet. However, the water was saline as described in the section on "Chemical quality of the ground water."

Locally, along the margins of the valley in the Portland Hills, in the Helvetia area, and in the vicinity of Kansas City, perched artesian water occurs in wells penetrating the Columbia River basalt. The water in these wells stands considerably above the regional water table. Partial stratigraphic traps, in which some of the permeable interflow zones within the basalt have become thin or have pinched out, are the probable cause of these occurrences of perched artesian water.

Structural displacement due to faulting or sharp folding, which causes permeable interflow zones to terminate against less permeable rock, is another possible cause for confined water found by wells at some places in the basalt. Examples of such wells are the Lindow Bros. well (1N/1W-28E1) north of Cedar Mill and the Goff well (1N/4W-23R1) south of Kansas City.

Most of the wells that tap large supplies of water in the Columbia River basalt penetrate at least 200 feet of the basalt. The large-capacity wells in the Farmington area obtain most of their water by penetrating about 300 to 400 feet of basalt. The Schallberger well (1/2W-29P1), known as the "old Dalby well," penetrated about 300 feet of rock before obtaining a flow of about 120 gpm. Mr. Schallberger (oral communication) reports that the well can be pumped at 600 gpm with a drawdown of less than 25 feet. On the south side of Cooper Mountain, the Bierly Bros. well (2/2W-1J1) penetrated

about 550 feet of Columbia River basalt before obtaining a yield of about 600 gpm (fig. 8).

An aquifer test at well 2/2W-1J1 indicated a coefficient of transmissibility 4 of 23,000 gpd per ft for the Columbia River basalt in that vicinity. At present, only wells in Columbia River basalt have yields greater than 200 gpm.

BORING LAVA

The Boring lava underlies large parts of the eastern slopes and uplands of the Tualatin Valley (pl. 1). It is similar in many respects to the Columbia River basalt, but its lava flows are more irregularly layered than those of the older basalt. Because most of the Boring lava is about 200 feet in altitude, the greater part of it lies above the regional water table. This high position and the lack of permeable material in the small, irregular interflow zones give it only limited importance as an aquifer. In places the lava contains small amounts of perched (both confined and unconfined) ground water. Several

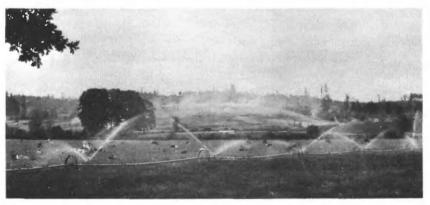


FIGURE 8.—Photographs showing views near Cooper Mountain.

⁴The coefficient of transmissibility is the number of gallons of water per day that will pass through a vertical section of the aquifer 1 foot wide at a hydraulic gradient of 1 foot per foot at the prevailing water temperature (Theis, 1935).

wells—1/1-29N1, -30J1, and -31C1—near Mount Sylvania tap perched water. Ground water that is both perched and confined within the Boring lava north of Cedar Mills is tapped by a few wells, such as 1N/1W-34D2, that produce enough water to supply a household. One well (1N/1W-21J1) tapping the lava is at an altitude low enough to allow the water to flow at the surface.

The confined and perched bodies of water in the Boring lava are probably caused by stratigraphic traps, as are many similar water bodies in the Columbia River basalt. These saturated layers, however, are less extensive than are the similar zones in the Columbia River basalt. Because of the erratic distribution of the water-bearing zones, it is difficult to predict at what level ground water will stand if found in the younger lava.

In most places the Boring lava is underlain by the Troutdale formation—a series of interstratified clay, sand, and gravel beds. At the contact between these two formations, some ground water was obtained in a few wells. A well, such as 1N/1W-26E1, tapping the perched water in these aquifers, produces enough water for one domicile.

North of Beaverton, two large springs known as Johnson Spring (1/1W-4H1) and Wessinger Spring (1/1W-10H1) flow either directly from the Boring lava or from its contact with the Troutdale formation. These two springs each had a discharge of about 340 gpm on April 4, 1951.

RECHARGE AND DISCHARGE OF THE GROUND WATER RECHARGE

The records of the water levels in wells show that the ground-water levels start to rise as the precipitation and infiltration become greater during November and December, continue at a high level during the rainy winter months, and decline as rainfall diminishes and evaporation and transpiration increase during the spring and summer months (see figs. 9–14 and table 5). The ground-water levels in most wells reach the low part of their annual range in the summer and their lowest points in September or October of each year. The levels of the unconfined ground water beneath the valley floor agree well with the annual rainfall cycle. There is little lag between the time of the increase and decrease in rainfall and the corresponding response in the levels of the unconfined ground water. Such correlation strongly indicates that the source of the unconfined ground water in most of the Tualatin Valley is from the precipitation that has infiltrated in the immediate vicinity.

The confined water in the Columbia River basalt, and possibly in the deeper parts of the unconsolidated deposits, percolates laterally in the direction of the hydraulic gradient from either nearby or distant areas of recharge toward areas of discharge. The levels of this confined water fluctuate in general conformity with the precipitation (see figs. 9, 10, and 13). The recharge to the confined water may

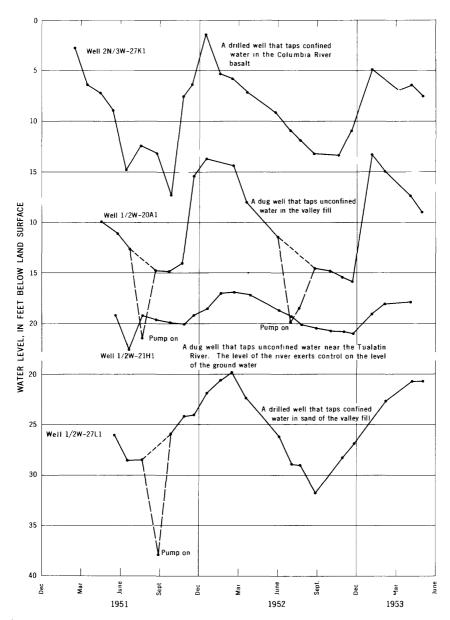


FIGURE 9.—Graphs of water levels measured in four wells showing seasonal recharge and local controls of water levels.

FIGURE 10.—Graphs of water levels measured in three wells tapping water in the Columbia River basalt.

accrue directly to a water table at some distance from the observed wells and by pressure transfer cause the water level to rise in the observed wells. Probably a main source of recharge to the deep sand aquifers in the valley fill is water from the unconfined zone leaking through the clay and silt layers between the aquifers. Well 1N/3W-13F3 taps water which is probably recharged by this interaquifer transfer; however, part of its annual fluctuation (table 5) may be caused by pressure due to the loading and unloading of the overlying deposits with water in the zone of unconfined ground water.

The water levels in wells that tap perched water (see table 5) also vary in general with the annual cycle of precipitation.

As previously described in the section on "Geology," the slopes and uplands at the north and west ends of the Tualatin Valley are underlain chiefly by impermeable rocks. Such a condition precludes the transfer of significant amounts of ground water to the valley from those directions and also renders improbable the interbasin transfer of ground water into or out of the Tualatin Valley.

The soils, the valley-fill deposits, the Boring lava, the Columbia River basalt, and parts of the Troutdale formation are the main rock units that are sufficiently permeable to yield water to wells and to accept recharge for the ground-water body. The valley fill is recharged directly by precipitation and also by infiltration of water running off across the valley floor. The volcanic rocks and the Troutdale formation are recharged directly by infiltration of precipitation where those rocks are near land surface in the slopes around the edges of the valley; also, they are recharged indirectly by water percolating downward through soils and overlying alluvial deposits. However, a large part of the precipitation runs off the slopes and uplands and the recharge to the volcanic rocks and the Troutdale formation is only a small part of the precipitation in those areas.

Much of the precipitation that falls on the valley floor infiltrates and descends to the water table. After the first autumn rains replenish the summer-depleted moisture content of the soils, some of the rain percolates through the soils. By December or January the water table has risen high enough that its hydraulic gradient is steep toward the nearest surface drainage. This steepened gradient may induce lateral discharge until it equals the rate of recharge and the water table will rise no higher. If the recharge predominates, the water table may rise to the land surface. Such a waterlogged condition, with some of the subsequent precipitation standing rejected on the surface, is characteristic of many of the flattest parts of the valley plains in late winter.

Comparison of rainfall records at Forest Grove with the groundwater levels given on figure 11 and in table 5 shows that 22.37

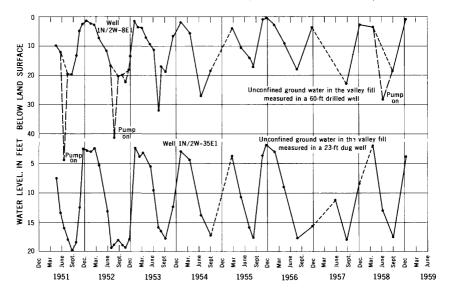


FIGURE 11.—Graphs of water levels in two wells tapping water in the valley fill, showing effects of seasonal recharge and drainage of water and local drawdown by pumping.

inches of rain during October, November, and December of 1951 coincided with a 25-foot rise of the water level in well 1N/3W-8P1 and about 17 feet in well 1N/2W-35E1. In addition, the levels show that the water table did not rise farther during the ensuing 3 months, when an additional 16.79 inches of rain fell, and that the water table declined thereafter during the spring and summer months until it stood near the level of the previous summer.

During the months October to December the average evaporation from open water bodies (fig. 3) totals only 2.8 inches, and the transpiration probably is even less. Well 1N/3W-8P1, in particular, lies in a flat area where little or no runoff occurs during the fall months. Consequently, after allowing about 6 inches for evaporation, transpiration, and the small amount of runoff, it may be assumed that a minimum of 16 inches of rainfall produced the 25-foot rise in the water level shown in figure 11. Such a rise from 16 inches of infiltration would indicate an effective porosity of 5.3 percent for the valley-fill deposits and the soils in this zone of water-level rise.

The average annual fluctuation during 1951 and 1952, measured in 12 valley-floor wells tapping unconfined water to the valley fill, was 17.7 feet. (See figs. 9 and 11-14.) If it is assumed that the 5.3-percent effective porosity indicated by well 1N/3W-8P1 is representative of the valley fill, then the average annual fluctuation indicates that an average of about 11 inches of water recharged the valley

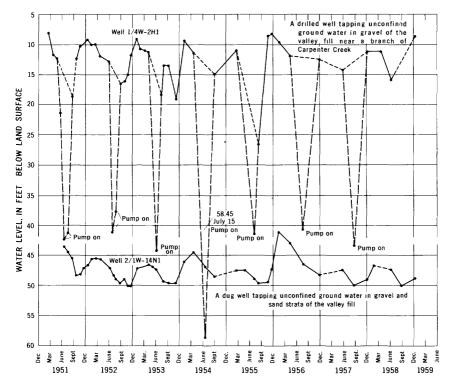


FIGURE 12.—Graphs of levels of ground water in two wells, showing seasonal fluctuations and great drawdown during pumping.

fill during the 3-month period October to December, 1951. The water-level records show that the water table approximately reached the surface at some of the wells. The water levels also indicate that part of the precipitation that fell on the valley plain could not percolate into ground-water storage because the storage space was full during the ensuing 3-month period, January to March.

Though these estimates of the average annual recharge are rough, they show that a large amount of water infiltrates to the valley-fill deposits under natural conditions and that still larger amounts might infiltrate if the ground-water levels in the valley fill were lowered by pumping. The average amount of water that recharges naturally the ground-water reservoir in the valley fill may be equivalent to, or greater than, the 18 inches of water that is considered to be the annual requirement for irrigation in this valley.

The means by which the unconfined water in the basalt beneath the Cooper Mountain-Bull Mountain upland is recharged is not entirely known. The water table there is roughly continuous with that in the valley fill and the basalt beneath the valley floor on both sides of this upland. The ground water in the basalt of this upland is of good

quality, though saline water is present at places in the upper part of the basalt in the synclinal troughs to the north and south. Thus, the quality of the water beneath the upland suggests either that some recharge percolates vertically through the basalt beneath the upland or that water of good quality was present before the saline water entered the basalt in the synclinal areas north and south of Cooper and Bull Mountains.

DISCHARGE

Some of the precipitation that infiltrates to the soil of the upland slopes is discharged to the surface through small seeps and springs that abound in ravines and other irregularities of the upland surfaces. Many of the small upland creeks, such as Tryon (north of Oswego) and Chicken Creeks, are fed during the summer months by this type of ground-water discharge. Small and moderate-sized springs, having discharges of as much as 100 gpm, occur in the uplands where ravines and escarpments intersect perched or unconfined water bodies in the porous zones of the lava rocks and the Troutdale formation. A line of such springs, one of which is spring 2/3W-4F1 discharges at the base of the Columbia River basalt in the escarpment of the Chehalem Mountains east of Gaston.

The ground water in the Boring lava is largely perched above the level of the regional water table. Small springs from perched water

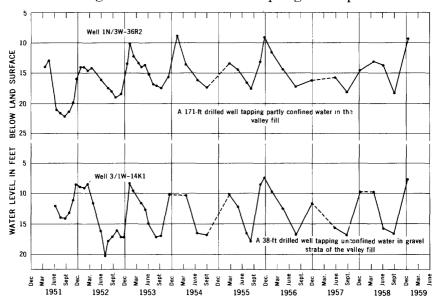


FIGURE 13.—Graphs of water levels measured in two wells, showing snnual variations in the amount of seasonal recharge and drainage.

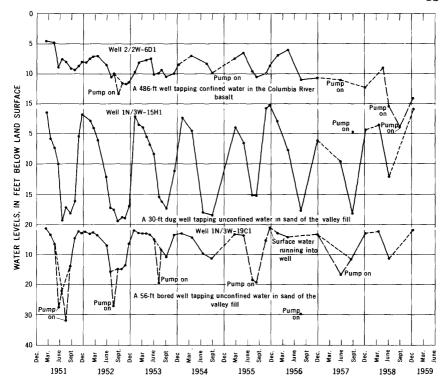


FIGURE 14.—Graphs showing the magnitude and timing of seasonal recharge and drainage of ground water at shallow and deep positions.

bodies flow into the ravines and creeks along the west slope of the Portland Hills. Also, large springs, such as 1/1W-4H1 and -10H1 (table 3), flow from the lower ends of the westernmost extensions of the Boring lava. Apparently the lava moved down former valleys and, in at least these two points, lies below the altitude of the water table. These long extensions of the lava serve as drains for the ground water in the Boring lava, as well as for that in the adjacent unconsolidated deposits.

The ground water which percolates through the aquifers of the Columbia River basalt toward the central part of the basin presumably has outlets to the surface, as its piezometric surface, in most places, is close to the level of the water table. Possibly, the ground water moves from the basalt up into permeable zones of the overlying unconsolidated deposits, discharges to the surface streams, or both, through vertical fracture zones like that penetrated by well 1/1W-27C1.

Along the east side of the Tualatin Valley the piezometric surface of the ground water in the Columbia River basalt stands at an altitude of about 200 feet in the wells near Lake Grove, 185 feet just west of Sylvan and 215 feet just east of Bethany. Just east of the Portland Hills and outside the Tualatin River basin, the water level in the basalt stands at an altitude of about 40 feet in the wells at Oswego and at altitudes of 9 feet and 1 foot in the wells of the Equitable Building in downtown Portland and the Pennsylvania Salt Co. at St. Johns, respectively. This drop of about 160 feet in the altitude of the water in the basalt coincides with the location of the anticlinal axis of the Portland Hills ridge. Though shale beneath the basalt is probably high enough to form a subsurface dam more than 200 feet in altitude beneath much of this anticline, the low sags undoubtedly contain routes for passage of the water underground across this structural divide and out of the Tualatin Basin. Similarly, ground water may also pass through the basalt across the low ridge along the south side of the Tualatin Basin between Parrett Mountain and Petes Mountain.

The water recharged to the unconsolidated deposits underlying the valley plains is discharged principally by seepage to the streams. Although the amount of discharge by evaporation from the land surface (as capillary draft) and by the transpiration of plants is minor, it is nevertheless significant. A large part of the valley plain is planted to crops that do not draw large amounts of water directly from the zone of saturation. The summertime base water level observed in most wells is practically equivalent to the altitude of the local stream drainage. Usually, the low part of the annual water-level cycle is approached in July. An average of 11 inches of recharge during the preceding fall and early winter, as well as a lesser but unknown amount of late winter and spring recharge, ordinarily has been discharged to the local streams and transpired or evaporated by July.

USE OF WATER

GROUND WATER

The principal uses of ground water in the valley are: (1) irrigation, (2) public supply, (3) domestic supply, and (4) industrial supply. Of the 3,680 acre-feet of water estimated as the total annual withdrawal of ground water in 1952 and 1953, irrigation accounted for 1,700, public supply 1,200, domestic supply 630, and industrial supply 150 acre-feet.

There has been little change in the pattern for the withdrawal of ground water during the ensuing years. Some suburban homes, public supply systems, and industrial establishments have added wells; others have obtained water from the expanding service connections of the city of Portland and decreased their use of ground water. A few new irrigation wells have been added in various parts of the val-

ley, but the increase in irrigation use has been slight during these years when generally above-average precipitation prevailed.

IRRIGATION

Most of the ground water withdrawn for irrigation is used for dairy pasture and field crops, but the irrigation of vegetables and berries for fresh-market produce and frozen-food processing plants is becoming of major importance. The latter use probably will increase as more successful irrigation wells are constructed in the valley-fill materials. The water is applied exclusively by means of sprinkler systems (fig. 8). On the farms using ground water for irrigation, the number of acres irrigated ranges generally from 1 to 50. Of 75 farms irrigating 3 acres or more in 1953, the average area irrigated was about 15 acres. In addition, 100 acres of a large golf course was irrigated from two wells.

In 1953 an estimated 1,125 acres of land was irrigated with ground water in the Tualatin Valley. That figure includes all the farms on which an acre or more was irrigated. Irrigation experts agree that the average application of irrigation water required for most crops in this area is about 18 inches per growing season. That amount of irrigation approximately doubles the yield of field and row crops and much more than doubles the pasture production (Marvin N. Shearer, Irrigation Specialist, Oregon State College, oral communication, 1959).

From the acreage and the duty of water, the total withdrawal of ground water for irrigation is estimated to have been nearly 1,700 acre-feet during 1953, or about 46 percent of all the ground water used in the valley. The following wells supplied water to irrigate 5 acres or more during 1953:

TF7-27	Acres	117.11	Acres	Well	Acres irrigated
Well	irrigated	Well	irrigated		•
1N/1W-28E1	35	1/1W-2L2		1/1-6C1	} 15
28P2	10	2P1		6D1	}
1N/2W-1G2	15	6F1		8E1	
2N1	15	24D1	}100		10
3R1	30	24D3		2/1W-4B1	40
5R2	50	24 F1	30	17B1	
21P1	11	25M1	6	18J1	20
26P1	6	1/2W-8C3	20	2/2W-1J1	50
30G1		8K1	10		
1N/3W-7E1	10	8L1	7	2/3W-1R1	15
25A1		11 F2		2/1-14C1	} 50
29M1	5			14F1	
31G1		19A1	20	3/1W-2Q1	20
32P1	12	23Q2	40	10K1	
32P2	5		8	14K1	
1N/4W-23R1	7		30	23A1	6
237 (07T) 243 f 4	8	4 In 1777 HTT4	5	3/1-7E1	25
1/1W-1B1	4.0		16		1 5
2.11	20		35	18C1	15
2L1			10	100111	

The large-capacity irrigation wells, such as 1N/1W-28E1 and 2/2W-1J1, obtain water from the Columbia River basalt. Most of the wells that tap water in the basalt are near the outer margins of

the valley plain or near Cooper and Bull Mountains. At those places, the basalt is so near to the surface that drilling is economically feasible, the water level is so high that pumping costs are low, and the distance to points of recharge is so short that the water is generally of good quality. However, some irrigation wells centrally located in the valley plain also draw water from the Columbia River basalt. These wells are especially numerous in the Farmington area, where the basalt is at moderate depth (see pl. 2).

In many places smaller irrigation wells produce 25 to 50 gpm from the valley fill. Very few of these wells are more than 300 feet deep, and the majority are less than 150 feet. The extent of the known sand zones in the valley fill has been discussed on pages 22 and 23.

PUBLIC SUPPLY

Seven small cities and towns and one private water district are supplied principally by ground water from 19 wells and 2 springs. The total quantity of ground water used in 1962 by these communities, which had a population of about 18,000, is estimated to have been about 1,200 acre-feet. This amount is about 33 percent of the total quantity of ground water used in the valley. All 19 wells draw water from the Columbia River basalt. Their depths range from 188 to 980 feet and their yields, from as little as 35 gpm to more than 500 gpm.

The cities of Beaverton and Oswego have water mains connecting with the Bull Run supply of the city of Portland. The West Slope and Metzger Water Districts use Bull Run water to serve most of the suburban area in the eastern part of the valley. The Wolf Creek Water District uses Bull Run water to supplement its supply from Johnson Spring (1/1W-4H1).

Table at top of page 47 gives incorporated cities and towns that use ground water as their main source of supply. It shows the estimated amount of ground water used by each in 1952, and the amount which went to industrial establishments. These figures show an average daily use per capita of about 60 gallons in 1952.

DOMESTIC SUPPLY

The rural population, which depends on private wells for its water supply, is estimated at 23,400 as of 1952 (based in part on the U.S. Census of 1950). Domestic water was pumped from about 5,000 to 6,000 wells.

If an average per capita consumption of 30 gallons per day is assumed, then the amount of water used for domestic purposes in 1952 was about 630 acre-feet, or 211 million gallons. This is about 17 percent of the total estimated ground-water withdrawal from the valley.

Use of ground water in 1952 by cities, towns, and water districts

City, town, or water district used (millior gallon		population		
		served	Industry	Millions of gallons
Beaverton 85 North Plains 4 Oswego 130	.30 2 springs 2 wells 2 wells 4 wells	4, 500	{Cannery	13. 84
Tualatin 7 Lake Oswego Water District 93	2 wells 2 wells 3 wells	2, 240 460 5, 000	{Cannery {Dairy	1. 34 2. 70 . 23

Most of the domestic wells tap shallow sand strata of the valley fill; however, along the margins of the valley where sand strata are not found, many domestic wells draw water from the Columbia River basalt. These wells are generally deeper than those in the valley fill. Most of the rock wells obtain sufficient water for household use by penetrating 50 to 100 feet of basalt below the water table.

INDUSTRIAL SUPPLY

Outside the incorporated cities and towns, the use of ground water for industry is relatively small. Sawyers, Inc., a camera-manufacturing and film-processing plant at Progress reported a withdrawal of 27 million gallons in 1953 from a well tapping the Columbia River basalt. This plant is probably the largest industrial establishment that uses ground water entirely.

Other industrial users include: the Portland Gas & Cole Co., which uses 2 million gallons per year for cooling purposes at two gaspumping stations; two meat packing plants near Hillsboro; two sawmills; a pickle cannery northwest of Oswego; a horseradish-processing plant at Beaverton; and numerous greenhouses and refrigerator-storage rooms. The total use of ground water by industry, not supplied from public systems, is estimated to be about 50 million gallons per year (150 acre-feet), or about 4 percent of the total ground water in the valley.

SURFACE WATER

The amount of ground water used in the valley in 1952 was compared with the quantity of surface water used by municipalities and water districts and for irrigation.

IRRIGATION

According to records of the Portland General Electric Co., 8,640 acres was irrigated with surface water in 1952. If an application

of about 12 inches per year (lower than full irrigation requirements because of some shortages of water) is assumed, the total diversion of surface water for irrigation was about 8,600 acre-feet, or about five times the volume furnished by ground water.

At present, all the available surface water is being used; hence, no further expansion of surface-water irrigation can take place unless additional storage is provided or interstream diversions are made.

A plan to construct storage dams is now under discussion as a means of providing water to irrigate about 44,800 acres, nearly 4½ times the area irrigated in 1952. If such a project were placed in operation, it would still leave some 60,000 to 70,000 acres dependent on irrigation from ground water or from other sources.

PUBLIC SUPPLY

The two largest cities in the valley, Hillsboro and Forest Grove, are supplied entirely by surface water. At present, the supplies are said to be taxed to the limit, and other sources may be needed in the near future.

The amount of surface water used by each city or water district in 1952 is shown below. The average daily use per capita was about 80 gallons.

	Total amount		Esti- mated	Industrial use				
City, town, or water district	used (mil- lions of gallons)	Source of supply	popu- lation served	Industry	Millions of gallons			
Hillsboro	420. 92 235. 06 28. 00 80. 66 166. 29 140. 47 69. 45	Seine Creek and Tualatin River. Clear Creek and Gales Creek Hillsboro systemdo. Bull Run-Portlanddo.	11, 000 6, 000 500 3, 000 6, 400 7, 925 4, 775	Cannery Milling Co. Failroad Cannery				
Total	1, 140. 85		39, 600		559. 90			

Use of surface water in 1952 by cities, towns, and water districts

DEPENDABILITY OF THE GROUND-WATER SUPPLY

PAST RECORDS

Only within one small area (or possibly two) have the water levels been lowered substantially by withdrawals of ground water from wells. In the Sexton Mountain district south of Beaverton, the pumping of the Beaverton municipal well 2 lowers the water level in some nearby wells that also tap water in the Columbia River basalt. Figure 10 shows the effect on the water level in one such well. The

water-level decline in this well (1/1W-21R1) was about 20 feet in the 3-year period 1948-51 and was about 30 feet during the 10-year period 1948-58. A decline is reportedly occurring also in wells near Tigard well 3 (2/1W-4G1). The Farmington artesian area is the only other area in which a decline below the normal water level is known to have occurred. The water-level in well 2/2W-6D1 (table 5) has lowered about 2 feet in 3 years. This decline may be temporary, reflecting a lower-than-average recharge in some past year, or may be due to other causes. Longer records of the water levels in wells of this area should permit better evaluation of the long-range effect of precipitation and other factors on the ground-water levels.

Even though long-term records are not available for the wells drawing water from the valley fill, it is reasonable to assume that no appreciable decline in the ground-water level has occurred as a result of pump withdrawals of water. Present records show that much of the water-bearing material fills each year nearly to the surface and rejects further recharge.

PROSPECTS FOR THE FUTURE

The records of the wells indicate that ground water in both the Columbia River basalt and the unconsolidated valley fill, is available for further development without serious danger of depleting the resources. Along the north and south sides of the valley the Columbia River basalt is at relatively shallow depths and will yield several hundred gallons of water per minute to properly constructed wells penetrating it a few hundred feet. Typical wells tapping this unit include 1N/3W-1K2 at the town of North Plains, 1N/3W-5Q1 at Roy, 1/2W-29Q1 in the Farmington artesian area, and 2/1W-23N1 near the town of Tualatin. Contours showing the approximate altitude at which the top of the basalt occurs are shown on plate 2. Plate 1 gives the land-surface contours from which the altitude of any proposed drilling site may be determined approximately. Thus, the depth to the basalt can be readily computed by comparison of the two maps.

The sedimentary deposits underlying the main valley plains are chiefly lacustrine. Except for some layers of coarse sand and fine gravel beneath the Forest Grove-Hillsboro district, the most permeable materials are uniform fine sand and very fine sand. Nevertheless, a great quantity of water can be extracted from these fine-grained deposits if wells are properly constructed for that purpose. This source of water is now tapped for domestic use by wells of small capacity. The newer method for the construction of wells by packing fine gravel or coarse sand around well screens set in these deposits is described

below in the section on "Construction of wells." If ground water is drawn from the fine-sand aquifiers of the valley fill, a large quantity of additional water can be developed for use. As shown under the subsection on "Recharge," the amount of precipitation that becomes available for recharging the ground water beneath the valley floor in the fall, winter, and spring months of the year generally ranges from 11 to 20 inches. Thus, the water withdrawal for irrigating a tract on the valley floor need not exceed the in situ infiltration. Any lowering of the water table by pumping might have additional beneficial results, inasmuch as late winter and spring runoff may be diverted to become ground water, thus easing land-drainage problems. The possible salvage for use of 11 to 20 inches of additional water over the whole valley plain is sufficient to warrant extensive research for developing suitable wells to tap this resource.

CONSTRUCTION OF WELLS

WELLS IN VALLEY FILL

The common domestic wells that tap the sand units of the valley fill are 6 inches in diameter and are cased with standard welded or coupled steel pipe. The casing is either perforated or left only with an open end in the water-bearing zone. In either type of construction, the finishing and development of the well consists of removing the adjacent sand until an opening or pocket has been formed in the waterbearing material. Many wells finished only in this manner have been damaged by collapse of the sand walls and of unsupported silt or clay strata immediately above the aquifer. Many such collapsed wells and wells producing excessive amounts of sand were seen during examination of wells in the valley fill. To alleviate such sand pumping, many drillers have tried improvisations, such as filling the pocket and the bottom of the casing with pea-sized gravel. As with other improvisations, few benefits have resulted from placing gravel in the casing. In most wells, such gravel fill has been penetrated by the fine sand as the pump drew down the level of the water in the well and induced a hydraulic lift on the gravel filling. Thus, the sand-filled gravel plugged the casings and reduced the yield of the wells without lessening the amount of sand in the water.

In recent years, as the demand has increased for more irrigation water, some drillers have been installing wells equipped with a partly effective gravel pack, or gravel envelope. In general, these wells are drilled at 18 or 20 inches diameter and are finished with a pack of ½- to ½-inch gravel around a 6-, 8-, or 10-inch perforated casing. One of these wells, 1/2W—8C3, 196 feet deep, reportedly produced 200 gpm of sand-free water on test after completion. The average

productivity of the first few wells is about 100 gpm. Gravel-packed wells are developed by gentle surging or pumping until the fine-gravel envelope has subsided compactly in support of the fine-sand walls of the aquifer as the larger casing is withdrawn. Gravel is then added until the well will take no more packing material. The gravel envelope around the perforated casing holds the fine sand of the aquifer in place during development and use of the well. As most of these gravel-packed wells have been in production for only a short period, this method of constructing wells in these fine-sand aquifers still is in the experimental stage. Many construction factors, such ts the hydraulic conditions that might cause the fine sand to penetrate the gravel pack and to clog its interstices, are just now being determined. According to the common methods of calculating the correct grain size of a granular envelope for wells in these fine-sand aquifers, the proper size of envelope material lies in the coarse-sand sizes.

Several drilling companies are experimenting with sand-packed wells that utilize a well screen instead of a perforated casing. A coarse sand or very fine gravel can be used for the pack, the correct grain size being selected to hold the aquifer material in place and to prevent the penetration of the coarse-sand envelope by large quantities of fine sand. Also, the support of the aquifer sand in its original position is desirable in order to retain the horizontal permeability of the water-bearing formation. The facts collected so far indicate that permanent wells yielding 100 gpm or more will commonly be obtained from sand aquifers of the valley fill when this method of well construction is perfected.

WELLS IN THE COLUMBIA RIVER BASALT

While the hole is being made, drillers drive casing through the residual soils and the unconsolidated sediments and as far as possible into the basalt. Then, an open hole is drilled into the basalt until the desired quantity of water is obtained or the planned depth is reached. Other things being equal, the greater the number of permeable interflow zones that are cut by the well, the greater the yield.

Most domestic wells drilled in basalt are 6 inches in diameter, although 8-inch-diameter wells are becoming popular. Many demestic wells do not open up a sufficient thickness of the basalt below the water table to insure an adequate supply if the water table declines. Stopping the drilling when only 20 or 30 feet below the water level results in false economy, paid for by low well yields, excessive pumping lifts, or expensive deepening work at a later date.

Most irrigation wells in basalt are about 12 inches in diameter. In addition to the larger diameter required to accommodate an irrigation pump, the heavy string of 12-inch tools probably helps to fracture

the rock in the vicinity of the well, thus increasing its effective diameter and its yield.

It is not easy to drill a straight well of uniform diameter in the basalt. The section of a well in which a vertical-shaft pump is to be set is the part of the well for which alinement requirements are most necessary. Straightness requirements commonly are incorporated in contract specifications, and wells are tested by alinement surveys. Drillers prevent a well bore from drifting out of vertical by stopping the drilling at the first sign that the drilling cable is leaving the center of the hole at the surface. The deviating section is then filled with hard rock and carefully redrilled until the bit is cutting new hole plumb with the upper part of the well bore.

Wells in the basalt must be cleaned and developed in much the same manner as wells in sand aquifers.

CHEMICAL CHARACTER OF THE GROUND WATER OVERALL QUALITY OF THE GROUND WATER

Comprehensive chemical analyses of water samples from 13 wells and 2 springs and partial analyses of water from 18 wells are presented in table 4. In addition, the hardness and chloride content of water from practically all the wells inventoried were determined by field methods (table 1). Figure 15 is a graphical presentation of the analyses of the water from 13 representative wells.

In general, the quality of the ground water is good. The formations younger than the sedimentary rocks of Oligocene and Miocene (?) ages contain fresh water of good chemical quality, little color, and nongaseous nature. Where saline water has been found, the geologic and ground-water conditions suggest that it came from rocks older than the Columbia River basalt. These older rocks contain water of connate origin. The saline ground water, and the places it has intruded into the younger rocks, can be avoided by the proper location and construction of wells.

HARDNESS

Calcium, magnesium, and other soap-consuming constituents in water cause hardness, which is commonly expressed as an equivalent quantity of calcium carbonate in parts per million and is an indication of the soap-consuming capacity of the water. A commonly used scale for expressing the relative hardness of water is as follows (U.S. Geol. Survey, 1953):

Hardness as CaCO ₃	
(parts per million)	Classification
0-60	Soft.
61-120	Moderately hard.
121-200	Hard.
201	Very hard.

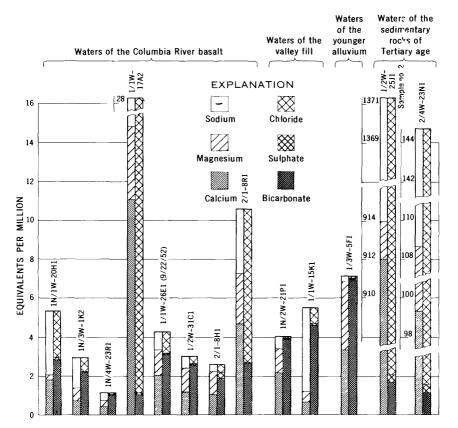
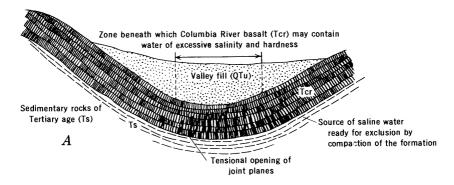
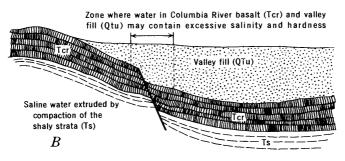




FIGURE 15.—Comparison of chemical constituents in ground water of the Tualatin Valley, Oreg.

The average hardness of the water from 500 wells tapping all the known fresh water aquifers is about 115 ppm. According to the above scale, such water would be moderately hard.

Water from the Columbia River basalt has an average hardness of about 100 ppm (from 342 wells) and ranges from 800 (well 1N/1W-28E1) to less than 10 ppm. No single area contains all hard or all soft water, but the most highly mineralized ground water in the basalt occurs in areas having unusual geologic relations (fig. 16). Basalt wells that yield hard water, as well as those that yield soft water, are scattered throughout the valley. Thus, in some places, a well that yields hard water may be very close to one that yields soft water. For example, the water from well 2/3W-11C1, 183 feet deep, has a hardness of 352 ppm, whereas water from well 2/3W-11K1, about half a mile away and 150 feet deep, has a hardness of only 46 ppm.

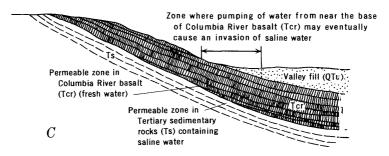


FIGURE 16.—Sketches show (A) upward migration of ground water from sedimentary rocks, by way of tension cracks in a syncline, (B) upward migration through basalt along broken rock of a fault zone, (C) stratigraphic connection of basalt to saline aquifers that permit saline ground water to migrate into the Columbia River basalt and younger deposits.

Field tests of water from 259 wells tapping the uppermost 100 feet of the valley fill show an average hardness of 97 ppm. Water having this hardness is classed as moderately hard, but the hardness of water in individual wells ranges from 334 ppm (well 1/1W-34A1) to only a few parts per million.

Fifty-seven of the deeper type of wells in the valley fill, ranging in depth from 100 to 400 feet, yield water having an average hardness of 124 ppm, which is hard according to the above scale. The hard waters in the valley fill are not restricted to any one particular area but are scattered throughout the valley.

The average hardness of the water from the basalt is similar to that of water from the valley fill probably because the water-bearing sands in the valley fill consist partly of fragments of basaltic and other volcanic material.

CHLORIDE, SULFATE, AND NITRATE

In general, the chloride content of waters in the Columbia River basalt does not exceed 20 ppm. There are places, however, under certain geologic conditions, where saline water from rocks underlying the basalt (see fig. 16) moves into parts of the basalt. An example of such an occurrence of saline water in the basalt is the Murphy well (1/1W-27C1), which apparently was drilled into a fault zone. It tapped water having a chloride content of 1,840 ppm. Another example is the well drilled at the St. Mary's of The Valley Academy. This well (1/1W-17A2), which is 1,500 feet deep, tapped water having a chloride content of 960 ppm. The water has probably worked upward along tension cracks along the axis of the sharp synclinal fold in the bedrock beneath that part of the valley.

To date, the saline waters obtained at places in the basalt are predominantly of the calcium chloride type, but some waters contain nearly equal amounts of calcium chloride and sodium chloride. These are similar to the waters in the underlying sedimentary rocks. Water from well 1/1W-17A2 (fig. 15) illustrates a sodium and calcium chloride type.

Water from the valley fill is generally low in chloride. The range of chloride content in most waters is 5 to 50 ppm, but a few well waters have as much as 100 ppm, and one water (from well 1N/1W-30P1) contains 307 ppm chloride (table 1).

The 14 analyses of water from the basalt show negligible amounts of sulfate and nitrate, except for the saline water which has 15 to 25 ppm sulfate—considerably higher than most water in the basalt but still a low concentration. Analyses of water from four wells (table 4) tapping the valley fill at varying depths show the sulfate and nitrate content to be negligible.

MINOR CONSTITUENTS

FLUORIDE

A concentration of about 1.0 ppm fluoride in drinking water lessens the incidence of dental cavities in children's teeth, but amounts greater than about 1.5 ppm may cause a dental defect known as mottled enamel (Dean, 1943, p. 1161-86). The analysis of water from well 2/1-8R1, tapping water in the basalt, shows a fluoride content of 0.9 ppm. All the other analyses show fluoride content ranging from 0.1 to 0.3 ppm. (See table 4.)

IRON

A concentration of about 0.3 ppm iron is considered the allowable limit in water of good quality for domestic use. Greater concentrations may stain laundry and plumbing fixtures. Almost any concentration is permissible for irrigation water. Iron occurs in ground water usually as a bicarbonate, although it may also occur as a sulfide and sulfate. Owners of several wells located in different parts of the valley report undesirable amounts of iron in their well water. In many wells excessive iron has been found to be entering from one particular stratum, and the iron content of the well water has been decreased by casing off or cementing off that stratum. Improvised or simple commercial iron-removal equipment, if built and operated properly, should be sufficient to remove excess concentration of iron where they are present in ground waters of the valley.

SUITABILITY OF WATER FOR IRRIGATION

The principal chemical characteristics that govern the suitability of a water for irrigation are, according to the Department of Agriculture (U.S. Salinity Laboratory Staff, 1954), (1) the total concentration of soluble salts, (2) the relative proportion of sodium to other cations, and (3) the concentration of boron.

The electrical conductivity is the simplest measure of the approximate concentration of soluble salts in water. It is generally called the specific conductance and is expressed in micromhos per centimeter at 25°C.

According to the classification proposed by the U.S. Salinity Laboratory Staff (1954), the sodium (alkali) hazard of an irrigation water is the proportion of sodium to the other principal cations, calcium and magnesium. Before the sodium-adsorption-ratio (SAR) was used, the relative proportion of sodium to other cations in irrigation water was expressed in terms of the soluble-sodium percentage (percent sodium). The sodium-adsorption-ratio of a soil solution is simply related to the adsorption of sodium by the soil; consequently, this ratio has certain advantages over percent sodium as an index of the sodium (or alkali) hazard of the water. It is defined by the following equation where all cations are expressed in equivalents per million:

$${\rm SAR} {=} \frac{{Na^{{\scriptscriptstyle +}1}}}{{\sqrt {\frac{{Ca^{{\scriptscriptstyle +}2} + Mg^{{\scriptscriptstyle +}2}}}{2}}}} \cdot$$

If the proportion of sodium to calcium and magnesium is high, the sodium (alkali) hazard is high.

Figure 17 shows the classification of water in terms of the sodium-adsorption-ratio and the electrical conductivity. This diagram classifies irrigation waters from low salinity (C1) and low sodium (S1) to very high salinity (C4) and very high sodium (S4). Water classified as C1–S1 is excellent for irrigation and can be used on practically all soils and crops with little danger of damage. Water classified as C4–S4, however, is generally unsuitable for irrigation except under special conditions. The suitability of waters which fall into one of the other 14 classifications depends on the permeability of the soil, the drainage conditions, the type of crops to be grown, and other factors.

Of the analyses made of the water from irrigation wells, only four were comprehensive enough to permit classification of the water on the basis of the sodium-adsorption-ratio. Three of these waters, two from wells tapping water in the valley fill (1N/2W-21P1 and 1/3W-5F1) and one from a well tapping water in the basalt (1/2W-31C1), were classified as C2-S1. Waters having this classification can be used on plants having moderate salt tolerance if a moderate amount of leaching occurs. The other water from the basalt (well 1N/4W-23R1) was classified as C1-S1. This type of water can be used on most soils and crops with little danger of damage to soil or crops.

The other waters, for which the analyses were sufficiently comprehensive for only approximate classification, were classified as either C1–S1 or C2–S1, except the waters from wells 1/1W–17A2 and 2/4W–23N1. Waters from these wells were classified as C4–S2 and C4–S1, respectively. Well 2/4W–23N1 taps water in the sedimentary rocks of Oligocene and Miocene(?) ages, and the water from well 1/1W–17A2 is from the Columbia River basalt but apparently is contaminated by water that has migrated upward from the underlying sedimentary rocks. These two waters are generally unsuitable for irrigation but may be used occasionally if drainage is adequate, if very salt-tolerant crops are grown, and if the soils have a high permeability.

Boron is necessary in small amounts for the growth of all plants, but is injurious when present in amounts only slightly greater than optimum. The permissible boron concentrations vary with each type of plant. The plants most sensitive to boron may be damaged by a concentration slightly greater than 0.33 ppm, whereas the most toler-

ant plants will be undamaged by a concentration as high as 3.75 ppm (Scofield, 1936).

Of the five waters in which boron was analyzed (table 4), only one has a boron content of more than 0.33 ppm. Water from well 2/4W-23N1, tapping the sedimentary rocks of Oligocene and Miocene (?) ages, contains 2.1 ppm boron.

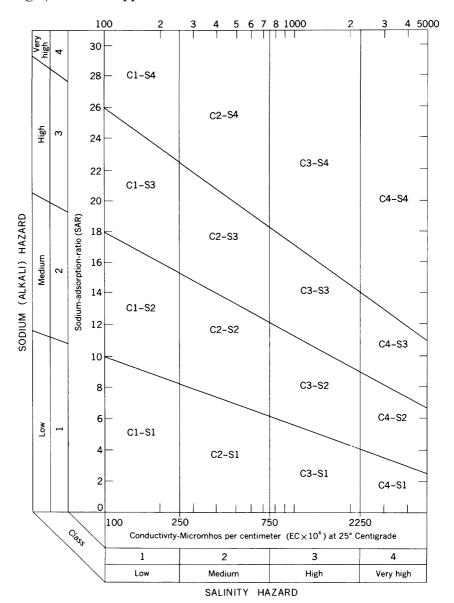


FIGURE 17.—Diagram for the classification of irrigation waters.

TEMPERATURE

The temperature of ground water is fairly constant throughout the valley and differs only slightly from the mean annual air temperature (52°F), if the earth-temperature gradient is taken into consideration. The "normal" earth temperature increases about 1.8°F for each 100 feet below the first 100 feet of depth.

Water from four wells that tap basalt at various depths from 314 to 585 feet ranges in temperature from 55° to 58°F. The deepest water from a well tapping the basalt (1/1W-17A2) has a temperature of 73°F, which is only 2°F lower than the temperature calculated from the earth's temperature gradient for the depth at which the water enters the well.

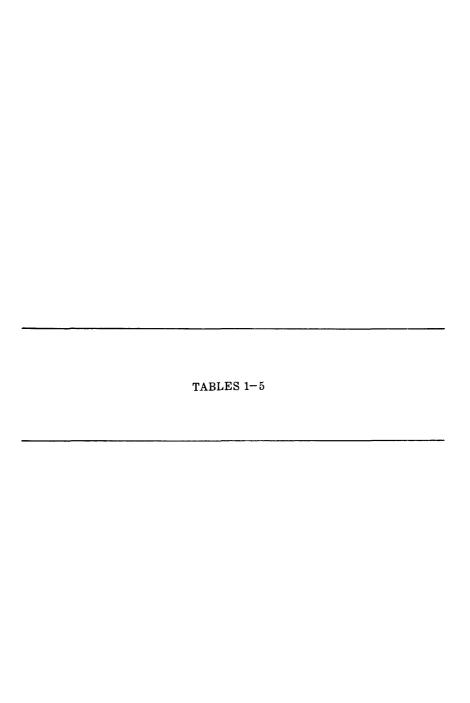
The water from well 1N/4W-14Q1, 132 feet deep, drilled in the valley fill, has a temperature of 58°F, which is about 5°F warmer than that calculated from the normal-earth-temperature gradient.

RECORDS OF WELLS, SPRINGS, AND QUALITY OF WATER

Detailed information collected in the course of the investigation is given in five tables containing pertinent data on the representative wells and springs. Table 1 gives descriptions of representative wells and table 2, the stratigraphic information contained in drillers' logs. Table 3 lists the data on springs and table 4, the chemical analyses of the ground water. Table 5 gives water levels measured periodically in 32 wells from 1951 to 1953. Other measurements of water levels are shown graphically on figures 9–14.

The listed depth of most wells (table 1) is based on reports by owners or drillers because only part of the wells could be entered for measurement. Those depths shown to the nearest tenth of a foot were measured by the U.S. Geological Survey.

Water levels are expressed in feet below a land-surface datum, a plane of reference at each well which coincides with the general level of the land immediately adjacent. Those levels given to the nearest tenth of a foot were measured by the Geological Survey; those given to the nearest foot were reported and are considered dependable within a few feet.


Except for those wells for which drillers' logs were available, the character of the water-bearing material (table 1) is generally that reported by the owner.

Statements on occurrence of the ground water at each well (table 1) have been interpreted from the record of that particular well and may seem to involve some inconsistencies. For example, for certain wells that tap the regional body of unconfined water, the occurrence may be listed as "confined" because beds of clay or silt slightly con-

fined the water locally or excluded water from the well until it extended some depth below the normal water table in the vicinity.

All data on capacity of the pump (table 1) are approximate. They do not indicate the maximum possible yields of all the wells, some of which have permanent capacities that are much greater or less than the current rate of use.

The chemical analyses of ground water listed in table 4 were made by the Geological Survey and by other laboratories as indicated in the footnotes.

5 Used for irrigating garden

100 82

D,S

-51 P,3

9-

225 90

--------do------op--

-- P,10 D,Irr -51 P,10 D,Irr

-51 P.3 D.S -47 T.20 Ind

3-

345 323

Ö

---op-----op-----op--

> 185 00 184 340

64 85

10 9

310+ 407 550 110

Dr Dr Dr Dr Dr Dr

U,830

5B1 J. Kesswetter

5C1 S. Luethe 5D1 | Multnomah County --6E1|Paul Boeckli -----

U,820 U,750 184 10

186 350

U,695

8,370 U,910

5J1 Edwin G. Boynton ... 6H1|Harry Frace -----

343 38

64

L; supplies rock quarry

5 Used by two families.

Small yield, Aquifer re-

ported to be gravel.

and 254 ft of rock above

aquifer.

130

Ω

П Е,

Д Ö Ö

6 Reported 105 ft of clay

128

Д

51 P.5

င်္

450

136 Basalt ---

359

31

9

495

4L1|J. E. Kielhorn.....|U,1,020|Dr

R. 1 W.

T. 1 N.,

Table 1.-Records of wells

Type of pump: B, bucket; C, centrifugal; J, jet; P, plunger; T, turbine. Topography at well: P, plain; S, slope; U, upland. Altitude interpolated Water level: Depths and water levels expressed in feet and decimals Ground-water occurrence: C, confined; P, perched; U, unconfined. measured by the Geological Survey; those in whole feet were Type of well: Bd, bored; Dg, dug; Dn, driven; Dr, drilled. reported by owner or driller. F indicates flowing. Well: See text for description of system. from topographic maps.

feet or foot; gpm, gallons per minute; H figure, hydrograph on figure indicated; L, log in table 2; ppm, parts per million by weight; temp, Remarks: Ca, chemical analysis of water in table 4; dd, drawdown; ft, emperature of water in degrees Fahrenheit, W, water-level record Use of water: D, domestic; Ind, industrial; Irr, irrigation; N, none; Chemical character: Determinations made by field methods. O, observation; PS, public supply; S, stock. in table 5.

GROUN	ID WATER, TUALATIN									
	Remarks									
hemical naracter (ppm)	Chloride									
Chemic charact (ppm)	Hardness as CaCO3									
	əsN									
(mqg)	Type of pump and yield									
Water level	Date									
Water	Feet below or above (+) land surface									
ээт	Ground-water occurrer									
Vater-bearing zone or zones	orateer of the state of the sta									
r-bearing or zones	(təət) asəmdəidT									
Water	Depth to top (feet)									
	Depth of casing (feet)									
	Diameter (inches)									
	Depth (feet)									
	Type of well									
imate (level	Topography and approx									
	Owner or occupant of property									
	118									

					REC	OKDS U	r WEL	LD				63
	ary. Provides water for two families.	Used for irrigating garden, Reported 5 ft of clay, then	Obtained water near base	of the pasalt. Excellent supply of water	reported. Inadequate; abandoned. Casing perforated near		350 ft, and basalt 350-	Entered basalt at 224 ft.			some from, casing perior rated 144-162 ft. W. Aquifer reported to be	clay. Reported 213 ft of clay overlies aquifer.
144	4	5	4 !	2	. c 4	4 20		2	∞	5	14	
377	110	92	112	16	74	130		38	78	172 142	122	!
-51 J,20 D,Irr	D,S	D D,Irr D	ДQ	Q	99	D D,S	Ļ	D,S	D,S	ΩΩ	ДΩ	А
J,20	3,5	J,8 P,5 J,10	P,5 T,5	1,3	P,3	J,3 J,5 -51 P.10	ρ v		8,4	J,3 P,5	J,8 P,5	P,5
-51	-51		-51		6-51	1.1		7-15-54	4-11-51	4-11-51	4-11-51 451	
4-	6	+ + +	- 6	1	1 9-	1 1 6						-
20	90		235 580	1	50.11	108		62.06	24.71	36.92	51.68	
Ö	υ	0 0	n	ပ	CCC	CCC		υυ	Þ	od	βO	υ
Basalt	op	do Basalt	op	op	do Pebbies	Basalt do do		Basalt		Basalt	Quicksand	Rock
!	15	2	45	70	200 4 15	15 25 36		100		2	9 :	30
	95	100	195 717	110	120 81 70	60 75 350		30		155	65	246
100	110	99	38	115	81	37		30	63	162	71 150	246
9	9	999	8 9	9	4 9 4	999	ď	ာ ဖ	40	9	48	4
130	110	65 240 105	245 733	180	320 85 85	75 100 386	180	130	62.5	97	70.7	276
Dr	Dr	D D D	Dr	Dr	Dr	D Dr		<u> </u>	Dg	Dr	Dg Dr	Dr
S, 230 Dr	S,435	U,1,050 S,560 S,560	S,650 U,900	U,1,050	U,900 U,920 U,975	U,1,070 S,350 S,410	200	S, 330 S, 325	8,270	S,275 S,260	S,260 S,255	8,260
7L1 George Dickson	8E1 Frieburg and Carlson.	9A1 A. W. Anderson 9E1 R. D. Congdon 9E2 F. D. Welsh	9Q1 H. Granat	10E1 K. M. Bartlett	10M1 Skyline Store 10M2 A. J. Koeps	15H1 Dale Stahl	7B.1 Wilhur Meenen	Walter Nichol	erian Church. 17N1 B. D. Graf	18G1 J. W. Dixon	2do	19B1 B. D. Graf
$^{1}\Gamma$	8E	9A 9E 9E	9Q1 10D1	10E	10M 10M 10N	15H 16D 16E	17B	17E1	17N	18G 18J	18J2 18P1	19B

_
à
-
.5
•
5
ιÌ
_
U
=
0 (11
=
ţ
•
u
፻
5
Spanda
ч
1
_
Ì
ŧ
μ

ł	G.	EOLOGY AND GROUND) WA	ren,	1	UAL	ΑΙ	IIN	V A	LLL	ΕX	, Or	LEG	•									
		Remarks			Water carries fine sand;	casing perforated near bottom.	Reported 338 ft of clay	overlies aquifer. Ca. L.	Reportedly gives inade-	quate water in dry season.	W; well bottomed on boring Boring lava.	Nearby 85 ft well did not	reach basait.	Bailed at 15 gpm without	lowering water level. Materials reported as soil	0-47 ft; Boring lava 47-100 ft; clay of Troutdale							
	Chemical character (ppm)	Chloride		80	9		:	45			c	10	38		:								
	Chemical character (ppm)	Hardnes as CaCO3		116	372			120	78		26	124	202	142									
		əsN		D,S	Д		Ω	S	S,O		Ω	D,S	D	D	Irr								
	(mqg)	Type of pump and yield		J,15	P,3		P,5	<u>ς</u>	1,5		ر. در ا	P,5	J.5	J, 20	J,12								
	level	Date			4-19-51		1944	451			4-10-51		4-10-51	750	4-14-53								
	Water level	Feet below or above (+) land surface	ned	-	42.97		40	100			19	-	Ĺτ	က	7.99								
,	əə	Ground-water occurren	Contin	n	ပ		ပ	Ç	Þ		Þ	Ö	υ	ນ	Þ								
()	Water-bearing zone or zones	Character of material	N., R. 1 W.—Continued	Sand	op		Gravel	and sand Basalt			Rock	Basalt	op	op	Boring	lava.							
	r-bearing or zones	Thickness (feet)	N.				16	84			-		12	2	53								
	Wateı	Depth to top (feet)	T. 1		-		338	396					16	129	47								
		Depth of casing (feet)							115		338	398			-		16	123	47				
		Diameter (inches)									9	8		9	4	m		48	9		9	9	
		Depth (feet)								114	115		354	480			40	100		134	390		
		Type of well		Dr	Dr		Dr	Ę	_		 g	Dr	Dr		Dr								
	etsm (Ieve	Topography and approxi		8,260	P,215		P,240	\$ 350	8,350		8,320	8,250	S,280	8,280	S,300								
		Owner or occupant of property		19K2Julius Jacroeni	19M1S. R. Berger		19P1Ed East	20H1C E Wismer	20J1E. Waerner, Jr.		2012Bethany Baptist Church.	20N1 John Morty	21J1M. A. Kirkpatrick	21K1H. Olson	21L1C. C. Schaefer								
		W e11		19.	191		19	201	20		20	20	21	21	21								

							RE	CCC	ORL	os ()F	W.	ELI	_S									
	April 1951. Reportedly yields insuffi-	cient water. Well no. 3: test numped	224 gpm for $33\frac{1}{2}$ hr with 40 ft of drawdown.	L; oil test well.	Basalt 30–465 ft, sand-	stone 465-515 ft; well	abandoned. Not used; materials re-	ported as clay and gravel	for entire depth; casing	periorated 212-232 it.		Reported 100 ft of clay and	aquifer.	Used for irrigating two	lawns.	No basalt found; platy	524-525 ft, contained	shell fragments.	Casing perforated near	bottom.		A 42-ft dug well furnishes	domestic water; casing perforated near bottom.
14	44			1	i					:		4		1		:			5		5	:	
104	148 144				i		į		•			92		-		-			20		64	-	
D,S	D	-		Z	-		z			z		Ω		Irr		-			D,S		D	ß	
J,15	ر ا ا ا ا			z	z		z					٦, د ,		Д					J,15	Δ.	9, d	3,5	
9-50		-54		1	!		-50			-48		-46 P,5				i			-51		-51	-51	
4 -	11	-5)		- !		11-			-11		-		;		!			-6		-6	-6	
ĮΉ		431					282			396		200							89		162	20	
ϋ	C	Д.	1		i		Д			д	1	٦,		1 1		1			Ы	1	ŭ	n	
Basalt	op	do			!					Sandstone	- ک ک	Basait							Gravel.	Rock	Basalt	Gravel	
2	80 80	121					20					8									20		
363	300	431		-			272			-		31.4 4				-			167	45	162	46	
363		1		811			292			68	G	20 50							168			80	
9	5	12-	10	12-	12		9			9	,	٥		-	c	0			9		9	9	
365	385 129	552		7,885 12-	515		292			096		400		90	i.	070			168	95	182	80	
Dr	Dr Dr	Dr		Dr	Dr		Dr			Dr		Ļ		Dr		5		_	Dr	Dr		Dr	
8,335	S,500 S,700	U.1.050		U,1,030	S,1,000		U,750			U,1,100	•	C40,1,U		S,650	0	000,0			S,610	S.560	S,485	S,490	
21Q1 George Finley	22P1J. Strope22R1H. M. Valentine	23E1Northwest MemorialU.	Gardens Associ- ation.	23K1Richfield Oil Co U,	23M1 Northwest Memorial S,	Gardens Associ-	ation. 23N1E. Stahly			23R1 Alfred H. Corbett U,1,100		ZoAl F. C. McDonald U, 1, 065		26D1 C. D. Brisum	The transfer of the cross	Gardens Associ-	ation.		26E1 C. E. Olson	27B1F. Probaska	27D1 V. Richardson	27M1 E. H. Haskell	

66	G	EOLOGY AND GROUNI) WA	TER,	TU	IA LA T	IN V.	ALL	EY,	ORE	G.	
1		Remarks		Materials reported as clay to 30 ft, Boring lava to 93	ft, and clay of Troutdale	formation to 250 te; casing perforated 80–190 ft. Reported 470 ft of clay and	sand above aquifer; flow is 80 gpm; when pumped at	Blue clay overlies aquifer.	65 Flows 40 gpm; drilled in	basalt 595-755 ft.	Used for irrigating lawn;	water carries some sand; dd is 110 ft when pumping 10 gpm.
	Chemical character (ppm)	Chloride		8		908				:	, ,	
	Chemical character (ppm)	Hardness as CaCO3		86		800		156	148	010	017	
		Dae				Irr		D,S	D,Irr	D,S	Irr	
	(mq3)	Type of pump and yield		P,3		T,230		T,30	3,20	P,5	P,8	
	Water level	Date				3- 1-52 T,230		451	4-13-53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 !	
inved	Water	Feet below or above (+) land surface	panu			Ĭ±,		10	+50.6	000	3 !	
ပို	əɔ	Ground-water occurren	Contir	Ω		Ü		C	ာ ပ	טנ) D	
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	T. 1 N., R. 1 W.—Continued	Boring lava.		Basalt		op	Basalt	op	do	
-Reco	r-bearing or zones	Thickness (feet)	N. F	10		106		20	105		വ	
Table 1.	Wateı	Depth to top (feet)	T. 1	80		470		330	650		170	
		Depth of casing (feet)		190		481		330	909	2	175	
		Diameter (inches)		4.5		12		9	9	വ	9	
		Depth (feet)		250		576		350	755	250	175	
		Type of well		Dr		Dr			Dr	Dr		
i		Topography and approxi altitude (ft above sea le	i	8,500		8,290		P,260	S,260	S,455	S,250	
		Well Owner or occupant of property		27R1 Mrs. Sutton	•	28E1 Lindow Bros		28M1 Clifford Bauer	28P2 Fred E. Hartung	28R1 J. Peterkort	29H1 V. H. Potter	

307 Materials reported as 160 ft of sand and silt, 100 ft of sticky clay; well has been plugged back to 100 ft; water from 266 ft	7 Purackish 98 5 Water has an iron taste; casing perforated near	bottom. Has tile casing. 67 Casing pulled back to 85 ft and perforated 75-85 ft; water below 85 ft carried	sand. Sand. Sand. Casing pulled back to 398 It; hole filled with pea gravel below casing; ma- terial reportedly fine sand	32 Pumps dry in 2 hours at 3 gpm.	Drilled gravel and boulders 0-35 ft; Boring lava 35- 90 ft; clay (Troutdale formation) 90-410, basalt 410-447 ft.	5 W. Well abandoned; insufficient supply. 4 Dd 160 ft pumping 175 gpm for 36 hours.
324	260 286 268	90	166	152 52 105	; ; ;	216
ω 	S D,S 2	D,S 1	<u>- 1</u>		2 O	1 1
,10	P,8 P,10 J,10		شر ئی			P,8 D 51 C,15 Irr 53 T T,175 D,Irr
1949 J,10	451 P	451 3,15	4-20-51 J, 5 1952 J	4	0.1.1.00.00.00.00.00.00.00.00.00.00.00.0	F 4-10-51 C 5- 4-53 7
50	14	10	35	0.	103 6	6.78
D	CCD	n	C	ט ממ	טט	UDU U
Sandy clay.	do Sand	Sand	Gravel, fine.	Sand	Basalt	Basalt Alluvium Boring lava, Basalt
166		10		က	37	80
100	1 1 1	20	1 1 1 1 1	240	410	09
153	75	8 2 2	398	240	411	09
9	9 9	6 9	48	18	တ	6 6 6 6
266	148 152 76	65 400	25.8 600		447	107 110 33 140 200
Dr	ŭ ŭ ŭ	Bd Dr	Dg Dr		ŭ ŭ	Dr. Dr. Dr.
S, 185	P,240 P,200 P,210	P,210 P,180	P,180 P,230	S,240 P,230 P,230	S,420	P,255 S,395 S,450 S,450 S,310
30Pl Albert Maier	31B1 F. J. Zuercher 31D1 Jesse Hansen 31E1 G. E. Thompson	31L1 S. Ferrell31Q1 Emil Trachsel	31R1 E. L. Pritchett	32C1 Ernest Lehman 32J1 Luker	33A1 S. H. Bloedon	33F1 Herman Jenne 34C1 John Christianson 34D1 S. H. Bloedon 34D2do

	_	
	à	
	Ξ	
	٠.	
	ŧ	
	٩	
	Ļ	
	ł	
	i	
1	=	
	0	
	of m	
	₹	
,	ě	
	=	
	Č	
	Spanna	
	۹	
	- 1	
	•	
1		
	4	
	5	
1	٦	

	EOLOGY AND GROUNI			, TUA				EY, O	iida.
	Remarks		ن	L; reportedly can be	pumped ary. L; pumps 350 gpm with 35	it of dd.		Soft rock 6—70 ft; hard	rock 70–79 ft. Reportedly 20 ft of clay and 90 ft of rock above aquifer; irrigates 15 acres.
cal	Chloride		Ī	2 2	Ī	2		2	
Chemical character	Hardness as CaCO3			84	-	99		108	1 1
	əsn		-	rr,D Irr	Ind	D		<u>-</u> 0	Z Irr
(mqg)	Type of pump and yield			-51P,20 I	!	P,10		P,8 P,5	N T,100
Water level	Date		1148	951	-			8,911991 3,9	10-5 -51 10-5 -51
Water	Feet below or above (+) land surface	pa	200	09	265			80	34.81
ə	Ground-water occurrence	ntinu	ပ	ບບ	ပ	ပ	ͺ.	CC	ບບ
Water-bearing zone water or zones	Character of material	N., R. 1 WContinued	Conglom-	Rock	Basalt	op	N., R. 2 W	Basalt	op
r-bearing or zones	Thickness (Feet)	N. R	35	20	9		T. 1	1	10
Water	Depth to top (feet)	T. 1	597	230	406			139	110
	Depth of casing (feet)		624	145 70	65	-		20 10	110
	Diameter (inches)		9-8	8 9	12	9		8	12 8
	Depth (feet)		633	238	421	432		140	155
	Type of well		Dr	Dr	Dr	Dr		Dr	Dr Dr
mate (Ieve	Topography and approxi altitude (ft above sea le		8,650	S,550 S,455	S,720	S,780		S,460 S,425	P,230 P,230
	Well Owner or occupant of property		35H1 W. M. Perrault	35K1 Leahy Greenhouses . 35M1 West Hills Nursery.	36E1 Portland Gas and	36N1 W. Strowger		1A1 Ben Thomas	1G1 J. G. Densen

				RE	COR.	DS OF	WE	LLS			69
Pumps dry with heavy use; penetrated 34 ft of clay and 86 ft of rock above	aquirer. Basalt from 175 ft down. Reportedly 104 ft of clay above rock; casing perfo-	Frated 157-177 ft. Flows about 3 gpm; only	the overnow is used. Struck basalt at 160 ft; used for irrigating 30	acres of pasture; reported 190 ft dd pumping 110 gpm.	Holes drilled laterally	used for irrigating garden. Water used for lawn and	garden. Basalt entered at 342 ft;	pumped 300 gpm with 86 ft dd. Flows about 4 gpm; main	Clay and sand entire depth; gravel packed upper 200	ft; lower part of hole plugged. H figure 11; drilled in blue clay 50-102 ft; no water below 50 ft; casing	perforated 29-60 ft. Casing perforated near bottom.
4 .	8	9	;	α	10			21			-
120	108	110		108	100			89			160
Ω	Irr	Ω	Irr	U	Ω Ω	Irr	Irr	D,S	-	D,S	D,S S
P, 5	08'1 2'2	3,5	£_	r.	1,15	r,	-53T,250	-50J,15		,15	,15 ,5
	1952T,80 -49P,5	4-11-51P,5	-53T	1 030 D	-50J,15		-53	- 50		2-51 5,15	-50J,15
	- 2	4-1	- &		-2		8	11-	-	- 4	8-10-
	90	ᅜ	80	36	12		19	Ľή		4.55	23
C	ပပ	υ	ပ	ر	Þ	Ω	Ü	Ü	Ω	n	υυ
op	op	op	op	Ç	Sand,	Sand and	gravel. Basalt	op	Sand	Quick- sand,	Sand
20	293		10	6.4	300		86	125		40	
120	250 157	1	387	o r	30	1	449	327		20	1 1
35	175		165		30		345	327	1	09	8.5
9	9 9	9	∞	ď	48	9	9	9	∞	9	& 4;
160	543 228	145	397	101	30	80	547	452	9603	09	110 85
Dr	Dr	Dr	Dr	ç	Dg	Dr			Dr	Dr	Dr
S,440	S,320 S,410	S,285	S,300	0 8 8	P, 205	P. 205	P.220	μ,	P,170	P,200	S,210 P,205
2A2 A. K. Borgeson	2N1 D. Hebeisen3D1 Helvetia Church	3K1 Mrs. Nussbaumer	3R1 Ben Nussbaumer	A 1 Course Diceson	5M1 Clyde Lincoln	5N1 Trene Jackson	5R2 E. Batchelder	6M1 John A. Van Domelen.	7E1	8E1 T. R. Connell	9D1 W. Batchelder 9Q1 R. D. Hays
.,				`		-		ų.	-	~	2. 0.

70
Ü
ā
Ē
.=
-
_
್ಲಂ
u
7
- 1
S
Ell
w
ωe
-3
of
0
_
S
d _S
-
0
$^{\circ}$
0
Record
7
- 1
_;
=
- i
Je 1.
ble 1.

		Remarks					H figure 10.	Easily pumped dry in summer and fall.	Water used for garden.			Drilled in red clay and red "shot soil" to 1.3 ft.		Dry in summer	Casing perforated 307-	Used by service station; clay and silt over and clay under aquifer,
	nical ncter m)	Chloride		12	1	1	4	1	2	4	о	9	က	ία	14	ro
	Chemical character (ppm)	Hardness as CaCO ₃		176	1	-	300	!	164	88	258	у́р	138	38	138	216
		əsU		D,S	: :	-	А	<u>a</u>	Q	S, U	S, O	č,	D,S	٦ ٢	D,S	Ind
	(mqg)	Type of pump and yield		J .10	z	z	3,5	ຊຸ້	P,5	1,5	-50 J,15	-51 J,10	۳, ۲	01, L	P,15	-51 J,10
	Water level	Date		1	4-11-51	4-11-51		451	1	647	950	451	-51		845	451
	Water	Feet below or above (+) land surface	led		33,23 4		14	12	55	20	33	35		12.05	40	22
3	əɔ	Ground-water occurren	rtinu	υ			ນ		1	Ö	υ	Ŋ) Ü	Ü
cita la cuinani.	Water-bearing zone or zones	Character of material	R. 2 W.—Continued		1	1 1 1 1 1 1 1 1 1	20 Basalt	Sandy clay.	Basalt	Sandy gravel.	40 Rock	10 Pea	10 Sand	1 1 1 1 1 1 1 1	Pea	graver.
	r-bearing or zones	Thickness (feet)	1 N., B	1	1	1	20	40	;	9	40	10	10	1 1 1	3	1
	Wate	Depth to top (feet)	Ë		-	1	10	0	1	190	120	163	215	1	312	102
		Depth of casing (feet)			1	1 1 1	105	40	1	140	120	09	215	44	315	102
		Diameter (inches)		9	9	9	9	48	9	ı	9	9	9	10	9	9
		Depth (feet)		180	127	74	125	40	195	196	160	173	225	44	315	102
		Type of well		Dr	Dr	В	Dr	Dg	Dr	Dr	Dr	Dr	Dr	ų d	הַה	Dr
	mate vel)	Topography and approxi altitude (ft above sea le]	S.230	\$,250	S,260	S,250	S,255	8,270	S,305	S,240	s,300	S,250	S,225	S,245 S,240	S,225
		Owner or occupant of property		Al Grossen		Ralph Kind	Albert Zander	F. J. Schmidt	Leroy Barker		Louis Zurcker	Chris Reichen	Jaggi Brothers	J. L. Copeland	John Babcock	Alvin Hergert
		Well		10N1	11B1	11C1	11C2	11K1	11L1	12J1	12P1	12Q1	13F1	13H1	14F1 14Q1	14 R1

									1.	11,0	Ο.	ינוו	U.	r	vv.	ىرى	درد	,												
7 L; pumps large amounts of fine silt.	Produced sufficient water	pumped sand; reported 220 ft of clay and sand	above aquifer; bottom 6 ft	or casing periorated.	w.	Concrete tile casing;	every third tile perfo-	rated; blue clay reportedly	above and below aquiler.		Water used for garden;	drilled much wood and	vegetation.			Irrigates garden.		W.	Co. iswainston 11 nounce of	+Ca, ii ligates ii acies oi	pasture. Waters 40 head of cattle	13 Reported never dry.	Penetrated clay 0-120 ft;	water-bearing blue sand	120-289 ft; "shale" 289-	290 ft; casing perforated	270-290 ft.	Casing gravel-packed in	20-inch hole.	_
	18				6	;			16	6	9			1	∞	9		∞		1	ſ.	13	2					<u> </u>	u	, —
72	88				132	į			134	120	132			1	106	94		240		! ! !	178	120	230					! !	110	118
PS	Q				D	Q			D,S	D,S	Ď,	lrr		w	D,S	D,	Irr	Ď,	Irr	1	ς. 	2	ß					Ind	۲	2
3,40	J, 10			z	3,8	J,4			J, 5	9,8	3,5			1,15	5,5	5,20		,25	7	00.0	1 10	5-51 P. 10	P, 10					J,10	10	4- 4-31 3,10
1948 P,40	2-51 3,10			2-51	2-51	-52 J,4			- 20	1950 J,8	-		-	3-28-51 J,15	3-28-51 P,5	3-28-51 P,20		3-28-51 P,25	1	2	-51	5-51	-51	- 684				1	2	70.1
-	4- 2			4- 2	4-2	-01			- 8					3-28	3-28	3-28		3-28	0	ı 0	4- 2	4	4-					;	-	1, I
35	50.67			4.86	7.2	25			45	25	-			71.97	6.56	6.59		5.27	7.0	بر د	34.0	2.46	45					-	C	0.0
υ	υ			U	Þ	D	_		υ		D			υ	þ	Þ		b_	F	<u> </u>		Þ						Þ		
230 Basalt	10 Sand and	Stavel.		Sand		15 Sand	-		do	do	1			1 1 1 1 1 1	- Sand	op		op	7		do	25 Alluvium.	69 Sand					Sand,	very line.	- Saud
23(Ä			1		-			1	1	1			1	1			1	20	1		2	16					1		1
330	220					20				-	1 1			1		38		1	-	2		0	120					-		-
330	230				53	98			:	28				150	25	38		32	-	?		25	290					270	33	7
9	9			9	09	12			9	9	9			9	12	9		9	u	-	· ·	48	9					∞	αV	о г
260	230			108	53	86			125	28	09			150	25	45		35	0.40	O.F	φ 52	24	290					270	39	, 1
Dr	Dr			Dr	_				Dr	Dg	Dr				Dg			Bd	р	7	'n							Dr		20
P,210	S,200			P.185	P,200	P,200			P,175	P,190	P,160			P,190	P, 185	P,180	1	P,170	D 105	, 100	P 200	P.215	P,220					P,225	D 190	L, 130
15C1 West Union School	Walt Erdman			W. F. Evans	Ernest Zurcker	do			R. Kauer	R. Scherrer	W. J. Smith			W. J. Vanderzanden -	Joe Vanderzanden	Ben Coussens		G. P. Frost	Soottu I offices	acoustines of e	Carl Voges	Perry Stream	Carl G. Bechen					Bonneville Power	T N Toffwion	F. IN. U CLILLES
15C1	16P1		_~	16R1	17F1	17F2			1731	18A1	18E1			1811	19R1	20P1	,	21D1	9101	7 117	22D1	22N1	23F1					23K1	9.4H1	111147

Table 1.— Records of wells—Continued

		EOLOGI AND GROUND	WAI	ı E.N.,	, 10
		Remarks		5 Reportedly a good well.	9 Reported 78 ft of clay
	Chemical character (ppm)	Chloride		ريا ا	
	Chemica characte (ppm)	Hardnes as CaCO3		266	106
		əsn		D,S	D,S
	(mq3)	Type of pump and yield		P,5	-49 J,10 D,S
	Water level	Date			1149
)	Wate	Feet below or above (+) land surface	ned	1	15
	əc	Ground-water occurrence	ontinı	1	C 15
out of the contract of	Water-bearing zone or zones	Character of material	T. 1 N., R. 2 W.—Continued	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gravel
	r-bearing or zones	Thickness (feet)	1 N., R.		10
	Wate	Depth to top (feet)	H		78
•		Depth of casing (feet)			88
		Diameter (inches)		9	9
		(təət) (tqəU		160	118
		Type of well		Dr	Dr
		Topography and approximal altitued (ft above sea le		P,230	P,180 Dr
•		Owner or occupant of property		24J1 Marie Berger	25N1 G. Krautscheid
		Well		2431	25N1

WAI	5 Reportedly a good well.	above and 30 ft below aquifer; casing performation and another and a second appropriate the	d Casing perforated 120-	Casing perforated near bottom.	LE I	, 0	rrigates garden.	Water used on 7 acres of	6 W. Water contains some sand.
	5 Repo	9 Repo	4 Casing	Casing I	& <u>u</u>	2 0	6 Irrig	Wate	5 Water co
	50		N	<u>;</u>	9 4	. 0	0 9		
	266	106	302		126	110	r 150		r 104 r 142 112
	D,S	-49 J,10 D,S	D,S	Irr	0 0	ם ם	D,Irr D	Irr	D D,Irr D
	P,5	J,10	P,8	P,30		ر بر در کر	J, 5	J, 20	-50 J,5 7-51 J,5 -51 J,3
		1149	1950 P,8	4-16-51 P,30	1951	4- 5-51	4- 2-51 J,5	351 J,20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1					7.8	4.45		7 1.96 4
tinue	1	C 15	C 30	C 31.0	U 16	n	U 4		U 7 U 1
Con	-	nd.			- ;	<u> </u>	-	; ;	
T. 1 N., R. 2 W.—Continued		Gravel and sand.	Sand	op	op	Alluvium.	Sand	op	do
N. H		10	20			26		- ω	4
F.	-	78	120			0	1 8 6	30	58
		88	140	290	55	26	27.	30	27
	9	9	9	9	ω (48	1 4	9	9
	160	118	140	339	55	26	32	88	35 23 31
	Dr	Dr	Dr	Dr		Dr. Dg			Dr Bd Bd
	P,230	P,180 Dr	P,210	P,210	P,170	P, 185 P, 185	P,195	P, 190	P,185 P,190 P,180
	24J1 Marie Berger	25N1 G. Krautscheid	26G1 Berger Brothers	26P1 Rich and Sons	26R1 R. E. Klinger	28K1 James A. Gibbs	29G1 Gus Johnson	30G1 C. W. Wright	30R1 Henry Arp 32C1 C. J. Wojahn
	24J1	25N1	26G1	26P1	26R1	28K1 28K2	29G1	30G1	30R1 32C1 32R1

W. Reportedly entered	basalt at 1,335 ft; some water in sand at 50 ft, none 50–1,385 ft; hole caved 500–1,385 ft; ery Co.	<u> </u>	_	1		Entered basalt at 509 ft;	reported that sand is coming in above basalt;	produces 8 gpm with 280	Drilled in 1903; now	standby well.	Flows about 5 gpm;	pumped at 75 gpm with 150 ft of dd.		Reported to go dry in summer; 83 ft drilled	well 60 ft to west yield iron-bearing water.
14	; i i i	16	61	4		-			-	23	13				
154	1	166 366	286 256	78						70	72		† -		
000	1	D Irr	D,S D	D,S					PS	PS		6		Д	
J, 55	1 1 1	J,3 J,5	J,8 J,10	P,10		z			-50 P,20	-48 T 35		-	0,10	5, o	
3-30-51	1	4-16-51	450	4-20-51		8-10-53			-50	-48	9-13-51		1	-50	
- 8 - 1	 	4-1	4-1	4-2		8-1			11-	8	9-1		!	-1	
9 24.0	i i i i	4.8	40	9.83		37.0			18	18	Ĺτι			12	
d d	i i	Cd	ပပ	U		ပ			ပ	U	Ü	7	ر	D	
op	1 1 1 1 1 1	Sand	Sandy	do	T. 1 N., R. 3 W	Basalt			op		Basalt	7 1 0	oalla	Silty clay.	
		9 4		4	T. 1	4			146	324	115			24	
	, 	17 196		34		909			360	386	325			C	
25		23	133	38		509			360	386	324			cı eı	
36 6	>	36	4 9	44		9			9	9	9	Ü	o	35	
37 42 25 1 385		23	135 120	40	,	654			506	710	440	7	# -	C.I	
Dr Dr Dg		Dg Dr	Dr	Dg		Dr			Dr	Dr		Ļ	DI	Ŋĝ	
P, 195 Dr P, 150 Dr P, 200 Dg	2	P,195 P,150	P,180 P,220	P,205		P,210			P,190	P. 190	P,185	t.	1,410	P,170	
33R1 Jesse Gallop 33R1 Robert Rice 34G1 E. F. Brauer		35E1 E. L. Lewis	35R1 W. L. Steed	H. E. Scruggs		M. V. Jackson			North Plains	Water District.	C. M. Bates	4 c	w. C. Daugn	Damon Leonard	
33M1 33R1 34G1		35E1 35P1	35R1	36R1		161			1K1	1K2	1M1	Ç	4D1	231	

					•					
		Remarks		3 Flowing about 1 gpm; used	for garden irrigation. Water level low in sum-	mer. Flowing about $\frac{1}{2}$ gpm.	Water contains large	amount of iron and has sulfur taste.		Flowing about 3-5 gpm; water from 335-ft sand
	ical cter m)	Chloride		3	က	4	2		6	:
	Chemical character (ppm)	Hardnes as CaCO3		116	38	46	46		92	-
		Jae		S,Irr 116	D	D,S	S,Irr		Д	Q
	(mqg)	Type of pump and yield		- c.	,20					
	Water level	Date		11-21-50 J, 15	11-21-50P,5	2- 4-50	1150P,10		11-21-50 J,5	2-12-51 3,20
inued	Water	Fleet below or above	ned	F	5.68		24		10.82	E ₁
Con	əo	Ground-water occurren	ontin	O	ב		Ö		ပ	υ
Table 1 Records of wellsContinued	Water-bearing zone or zones	Oharacter of material	T. 1 N., R. 3 W.—Continued	Basalt	1	125 Basalt	Rock		Sand	Basalt
-Recor	r-bearing or zones	Thickness (feet)	N., R		41	125	1		-	10
rable 1.	Wate	Depth to top (feet)	H.		0	475	-		1	513
	'	Depth of casing (feet)			41	475			21	512
		Diameter (inches)		9	48	9	∞		18	9
1		Tepth (feet)		449	41	009	104		51	523
		Lype of well		Dr	Dg	Dr	Dr		Bd	Dr
		ixorqqa bas ydqragoqoT altitud (if above sea le		P,205	P,205	P.200	P,205		P,205	P,175
		Owner or occupant of property		5A1 George Corey	op	Joe Duyck	William Meeuwsen -		op	J. J. Moore
		Well		5A1	5A2	5H1			5K2	5Q1

L; well destroyed; pumped 10 Ca; pumps dry in summer. ness of 20 ppm and chlohas sulfur taste, a hard-Casing perforated 45-65 ride of 3 ppm. much sand. 2 ---4 40 40 PS D,S PS 12-18-52 20 11- -50 J,10 1-27-50 J, 40 -50C,5 8-F) 20 ſτι ပ ပ Þ Ö 1 Basalt ... Sand Sand. Sand 19 $\frac{105}{20}$ 387 528 45 528 65 20 359 9 9 24 406 20 633 65 Dr Dr Bd Bd P,175 P,200 August Vandehey --- P, 200 Roy Catholic School- P,175 William Herinchx ---

6E1

5R2 6B1

5R1

						F	RECO	ORDS	OF	WE	LLS	,								75
7 Sand in water.	Water level low in sum- mer	L. Water level about 14 ft	from surface in summer,	Water carries some sand.	Estimated flow about 1/60 gpm; entered basalt at	ato it. W.	- 02	dry in summer. Iron precipitates from	air; water from shallow	well nearby contains 208 ppm hardness and 12 ppm	chloride. Water level low in sum-		wood and "fir" cones at 300 ft depth.		4 Used for irrigating lawn		W; reportedly pumps same. H figure 14.	Gravel packed well; con-	crete casing perforated 0-100 ft; pumped 100 gpm for 90 hours with 25 ft	of dd; use for irrigating 15 acres of pasture.
7	6	7	9		;	-	9	4			:	13		10	4	ď	2 0	-		
138	92	24	92		-	!	143	94			-	276		162	122		242	1		
S,Irr 138	D,S	D	D,S	D,S	D,S	D,S.	Ω	D,S			D	D,S		Д	D,S,	Irr	- Q			
	1,5	r, 40 r, 50	1,5	1,20	,25	1,5	1,5	,10			1,5	P,10		6,3	1,5	2	ζ.	4-22-52 J,100		
-50 C, 10	-50 J,5	-51 J,40 -50 J,50	11-21-50 J,5	- 50	11-21-50P,25	-50	- 50	1938 P, 10			- 50	:		-20	1	Ü	2-50	-52		
11-	11-	4-	11-21	1150 J,20	11-21	11-21-50 J,5	11-17-50 J,5	П			11-17-50 J,5	1		11-24-50P,3	J, 5	- 1	11 - 24 - 50 $11 - 17 - 50$	4-22		
		ᅜᅜ	2.5	20	r.	3.75	2.72	18			2,55			4.68		0.0	22.92	90.9		
υ 	n 8	CC	n	<u>ر</u>		n	þ	ر ت			Þ	 ပ		Þ	. ပ		<u>·</u> ط د	n		
uick-	Sand	Basalt	Quick-	Gravel.	Basalt	Aluvium	op-			_,	1	Basalt		Alluvium	Sand		00	Sand		
Quick-	43 S	46 B	_ 		35 B	33 A	25	- 2				92 B		24 A				30 S		
<u>;</u>	0	900 36		372	930		0	100				553		0	83			7.0		
+	43	907 9	85		930	33	25				29	553		24	-		30	100		
9	09	6-4 91 18 11	12	6 3		36	48	9			48	6 5		36	9		36			
125	43	946	85	376	965	33	25	102			58	645		24	104	0.70	30	100		
Dr	Dg	Dr	Bd	Dr	Dr	Dg	Dg	Dr			Dg	Dr		Dg	Dr	Č	De	Dr		
P,200	P,190	P,175 P,170	P,165	P,180	P,190	P,170	P,180	P,195			P,195	P,205		P,195	P, 195	101	P, 185	P,180		
op	I G. P. Vandehey	L. J. Spiering	Leo Akerman	Julius Duyck	Al Peters	1 G. H. Vander-	10F1 James Vander-	Zanden. 11A1 R. N. Shearer			11J1 Clarence Dykes	12E1 Floyd Beach		-	13F2 Edwin Simantel	(1	15H1 Art Salzwedel	-		
6E2	7A1	7A2 7E1	7H1	8B1	8臣1	8P1	101	117			11.	121		13	13]	101	151	151		

		Remarks
	mical acter pm)	Chloride
	Che char (p	Hardness as CaCO3
		əsU
	(mq3	Type of pump and yield (
	Water level	Date
ntinued	Wate	Feet below or above (+) land surface
ڙ	ə:	Ground-water occurrenc
able 1.—Records of wells—Continued	ter-bearing zone or zones	Character of material
Reco	r-bearing or zones	Thickness (feet)
Table	Wate	(teet) dot ot atged
		Depth of casing (feet)
		Diameter (inches)
		Depth (feet)
		Type of well
		Topography and approximative sea le
		Well Owner or occupant of property
		Well

	3 Test pumped at 10 gpm	for 7 days; casing perfo-	rated 50-70 ft; a "dry	hole" 260 ft deep drilled	50 ft to north.	6 H figure 14.	- Abandoned; reported	black clay entire depth.	2 Pumps dry in summer.		Penetrated clay 0-70 ft,	black, sticky clay 70-150	ft, whitish clay 150-219	ft, and gravel 219-220 ft.	2 Test pumped 50 gpm for	7 hours.	2 Used for irrigating lawn	and garden; water has	slight sulfur odor.	
	3					9			2		1				2		2			2
	162					106			88						106		88			116
	D,S					О	1		О		Q				D,S		Irr			D,S
	1949 J,10 D,S					J,10	-		P, 5		1947 J, 20				J, 30		J, 10			P, 5
	1949		****			11-22-50			4.74 11-22-50 P,5		1947				J, 30 D,S 106		7.0 11-24-50 J,10 Irr			U 4.1 11-24-50 P,5 D,S 116
ned	8					2.5			4.74		C 15						7.0			4.1
ontir	Ω					Þ	1		D						Þ		D			n
T. 1 N., R. 3 W.—Continued	Sand					do U 2.5 11-22-50 J,10 D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27 Quick-	sand.	1 Gravel				Sand		op			
N., R	20					2			1		1						1			0 22
T. 1	20					54					219				1		1			0
	20	_				54	320		27		6-5 220				45		38			22
	9					9	9		30		6-5				8		4			48 22
	10					99	320		27		220				45		40			22
	Bd					Bd	Dr		Dg		Dr				Bq		Bq			Dg
	P,170 Bd					P,180 Bd	P,170 Dr		P,185 Dg		P,180 Dr 220				P,185 Bd		P,180 Bd			P,185 Dg 22
and the second	18J1 Clarence VanDyke -					19C1 A. J. Giesbers	20H1 Bill Marsh		20P1 W. M. Hermens		21L1 Bill Marsh				22G1 A. F. Delplanche		22R1 Martin Vander-	Zanden.		23R1 VanDomelen
	18J1					19C1	20H1		20P1		21L1				22G1		22R1			23R1

				RECO	ORDS	OF WE	LLS					• • •
Water used for irrigating	14 acres; reported 40 ft of clay above aquifer. Some iron in water at 101	it; materials penetrated were sand to 75 ft, ce- mented gravel 75-95 ft, pea gravel 95-101 ft.	water reported to contain much iron.	W; water carries sand	and contains iron. W. Water used for irrigating	7 acres; materials re- ported as clay, silt and sand to 106 ft.	Well 22 of Piper (1942); lower 50 ft of 8-inch	casing perforated; pumped 50 gpm with 5 ft dd	Ca; originally owned by Hillsboro.	Replaced 65-foot well that pumped sand. Nearby	1,000-100f well did not reach bedrock basalt. Water irrigates lawn and	garden. Water used for irrigating lawn, garden and 2 acres of pasture.
	8 4	4	16	5	12		4		-		10	!
	133	164	106		180		224		<u> </u>	i	174	!
Irr Irr	D,S D,S	Α,	Irr D,S	Irr	D	<u>ر</u>	Irr		Irr	Ind	Ω	Irr
-50	1-50 P,3 -50 J,10	J, 5	-50 3,20	-50 P,15	J,5 J,20	06	1929 J, 60		:		-48 J,10	- J,20
11-24-50 351	11-24 11-	11-29	068	850	11-29-50 J,5	11 - 97 - FO T 90	1929		12-13-50	 	848	
3.0	3.59	4.87	20	99	5.08	9	25		23.22		20	1 1 1
n n	CG	Þ		ŭ	ρü		υ U		ם	Þ	Þ	n
Sand	Pea	gravel.	and silt.	op	Silt		Gravel		Sand	Sand and gravel.	Sand	op
20	9	! ! ! 0	3 8	! ! !	13		5			က	10	15
40	95	1 0	103	!	106		141		-	97	62	20
57 50	22 85	54	02		32 119	ر ب	177			100	62	45
12 8	36	12	12	9	12	36	10-8		12	9	9	9
57	22	45	73	195	32 119	с п	177		288	100	72	65
Bd	Dg Dr	Вд	Bd	Dr	Bd	2	J L		Dr	Dr	Dr	Bd
P,195 P,185	P,190 P,150	P,180	F, 180 Dr	P,170	P,170 P,185	D 175	P,175		P,175	P,175	P,150	P,160
24C1 A. Griffing 25A1 Clarence Rice	26G1 Dale Sheller	28K2 J. N. Jepson	30D1 George	Spiesschaert. 30L1 Rod Vander-	30L2do	1981 G I Moellen	32P1 Masonic and East- ern Star Home.		32P2 Fowles	34M2 Arrow Meat Co	35M1 Vincent Henrich	35P1 Fred Gordon
24. 25.	26	28]	30.	30	30.	3.9	32.		32	34	35]	35.

				ĸ	ECOF	CDS OF	WE	LLS				
		after a rain. Started flowing 4 or 5 years after drilling in	1929. Flowing ½ gpm; clay 0-200	it; temp. 34. Flows 10 gpm. Flows when not used; some iron reported in	water. Flow $\frac{1}{2}$ gpm when not in	use. L; flows 8 gpm; temp. 56°. Capped; reported "saline"	water.	Drill penetrated wood at 137 ft; 225 ft of clay above aquifer; flows 2	gpm. Gravel packed on outside	of casing 15-85 ft. Flows 3 gpm; temp. 58°.		if of pressure head; yield reported same with 200- th drawdown. Water reportedly has sulfur taste.
<u> </u>	9 4	9 :	4,	2	4	4	<u>б</u>	4		41	4	12
1	62 20	40	78		27	74	99	28	92	28	84	ū
D	D,S D	D D,S	D,S	D	D,S	D,S	Q	-50 J,10 D,Irr	D,S	D,S	D,S	D, Irr
J, 10	-50 P,10 -51 J,10	C,5 P,15	12-13-50 J,10	Z r	P,5	J,25 N	P,10	J,10	J,10	-50 J,10	z	J,10 D,Irr
!	1250 P,10 11-17-51 J,10	11-29-50 C,5 12- 4-50 P,15	3-50	453 11-21-50	-50	11-29-50	11-29-50 P,10	-50	;	- 50	-50	!
-		11-2	12-1	4-	11-	11-2	11-2	11-	:	11-	12-	
	5 15.54	6.2 F	Į.	لتا لتا با	ĮΉ	ᅜᅜ	7.9	ĮΉ		ĒΉ	<u>[</u> 4	
Þ	n	טם	υ	υυ	υ	ບບ	n	υ	Þ	Ü	ပ	Ü
Gravel	op	Gravel(?) Fine sand.	Sand	Basalt		Basalt		Basalt		Sand and	Basalt	OC
30	4	1 1 1 1 1 1	Ξ	54	1	62		57			23	165
0	34	1 1	200	356	!	200	;	363	[!	323	36
100	36	212	211	356	!	380	!	237	85	1	324	36
æ	മഹ	12	9	6-4	9	9	12-	9	9	9	9	9
417	75	212	211	410	240	585	09	420	85	132	343	201
Dr	Dr	Dg Dr	Dr	Dr	Dr	Dr	Dg	Dr	Bd	Dr	Dr	Dr
P,290	P,300 S,350	P,300 S,240	P,170	P,175 P,185	P,175	P,165 P,170	P,170	S,180	S, 185	S,170	8,175	S, 255
5M1 Lars Larson	Emil JossyAlbert Jesse	Tom HeislerJennsen	10A1 John C. Aydelott P,	11D1 Vernon Lyda P,	12Q1 Agnes Malensky	14B1 L. J. Heesacker P., 14J1 Ernest Heesacker P.	op	14L1 George Hostyneh	N. S. Willis	R. Lepschat	15C1 B. W. Gent	21C1 George McDonald S
5M 1	6G1 7C1	8M1 9M1	10A	11D 12A	12Q	14B1 14J1	1432	14L	14P1	14Q1	15C	21C

_
₹
.5
٠
•
- 2
٠,
7
- 1
u
~
-
0
-
=
7
•
-
6
0400
>
0
٥
_
- 1
0
_
•
-
-

	r	Remarks		2 Ca, L; flows 15 gpm; test	pumped 35 gpm with dd 166 ft below surfaceFlows in winter; water level about 12 ft in sum-	mer. Water contains iron; sup-	plies three houses. 4 Readily pumped dry; casing perforated 138-158 ft.		-Readily pumped dry in summer.	4 Do.	
	Chemical character (ppm)	Сһіотіdе			<u> </u>				<u> </u>		
	She Ch	Hardness as CaCO3		38		16	09		1	16	
		əsU		5 Irr	0 Irr	Д	Q		5 D,S	Q	
	Water level	Date Type of pump and yield		1150 T,35	J,10	8,T	T, 5		1151 J,15	Р, 3	
ontinued	Wate	Feet below or above (+) land surface	pent	Ħ	ſΞų	 		۸.	32		
ပ္ခ		Ground-water occurren	ontii	ນ.	ن	!	Ω	t. 5 W.	ם	מ	
able 1.—Records of wells—Continued	Water-bearing zone or zones	o retaracter of fairterial	. 4 W.—Continued	Basalt	Silt	1	Rock (shale)	T. 1 N., R.	Soap- stone	(snale)	
.—Rec	r-bearing or zones	(teet) asanyoidT	N., R.	1		-	1		17	10	
Table	Wate	Depth to top (feet)	T. 1 N.,	261	1 1 1	!	140		30	40	
		Depth of casing (feet)		165	115	1	158		47	1	
		Diameter (inches)		9	9	9	9		12	22	
		Depth (feet)		301	173	57	225		47	20	
		Type of well		Dr	Dr	Dr	Dr		Bd	Dg	
		Topography and approx altitude (ft above sea l		S,245	P,180	S,250	S,200		S, 460	U1,100	
		Well Owner or occupant of property		23R1 Arnold Goff	24D1 M. H. Lull	26J2 Frank Russel	35F1 E. A. Rueter Est		1R1 John Wilson	12Q1 F. S. Rohr	
		>						i	ĺ		

		١
111	5	
•		
¢	I	
ř	2	
c	١	į
r		

	Reported 45 ft of clay and 10 ft of hard rock just above aquifer.	L; supplies water for two families.		L; well destroyed.		Entered basalt at 100 ft.		Readily numbed dry.	water sometimes has a	reddish color.		Water sometimes has a	reduisii cotor.	-	Yield is small.	Entered basait at 70 it; small vield.	•	Reported 127 ft of clay	overlying aquifer. Shells found in blue shale	at 625 ft.	Reported 160 ft of clay	above aquifer. Entered rock at 70 ft.
	9	5			বা ব	ייט		ıc.			e 0	9	5	4	9	-	4	4			14	
	138	120 134		;	80	138	104	5.2	1		30	8.5	104	70	28	!	94	10			. 88	
	Ω	ΩΩ		;	ם נ	J U 1	о С	ר. ב	<u>.</u>		S, C	χ, Ω	D.S	D,S	D,S	-	Ω	Ω			S, C	D,S
	P,8	P,8		-	ر د د	, Dr. (ກ່ຽ ບັບ				ر د ر	ਮ ਪ			Р,3	;	J, 5	P, 5	z		1951 P,8 1942 P,5	P,8
	9- 5-51	1951			8-24-51	1 1							8-29-51	1951	1	-	1921	1951	9- 3-52		1951 1942	
	102	332			65,5		1 1		! ! !		1 1 1 1	1 1	54,4	06	1	1	2	7	38.7		120 65	1
1 W.	Ω	U	2 W.	1	D a		ļ A,	===)	,	D.	1	n		n:		D	D.	Ö.		b ∪	<u> </u>
. 2 N., R.	Basalt	op	T. 2 N., R.		Basalt	op	Basalt		! ! ! !	;	Basalt		1	Basalt	1	Basalt	1 1 1 1 1 1	Basalt	1		Basalt	op
Ţ.	55	161	T			30	1 1		! !	,	9			100	-	7	15	30	1		30	- 2
	101	256			81	170	 		! ! !	(08	: : :	1	80	1	104	40	127	1 1 1 1		256 130	152
	52	100±		-	12	1	77		! ! !			!	90	80	!	-	45	157	300		256	-
	9	9 8		9	40	9 9	9 9	9	>	,	9 0	٥	48	9	48	ه	9	4			∞ √	9
	156	592		545	88	200	150	110		Ċ	88	200	90	180	45	104	55	157	625		346	156
	Dr	Dr Dr		Dr	Dg C	7 7 7	הַ הַ	Į.	<u> </u>	í	ă d	วี	Dg	Ω̈́	Dg	Ur	Bd	Dr	Dr		Dr.	Dr
	S,600	U,745 S,710		U,910	U,910	U,830	U,930 U,975	11 720	•			0,810	U.780	U,730	8,210	3,400	P, 165	S,210	S,225		S,480	U,535
		31M1 L. Stieger		Otto Solberger	Clan Mineball	C. Christiansen	24M1 Bessie M.	Flanegan,	l l !		npergh -	27E1 Joe Meyer	27Q1 C. Ritter	ach	ŀ	Zaki i. w. Lucas	W. H. Wainscott	31K1 John Vanmoock	32L1 Walter VanDer-	Zanden.	Ed Meyer Emile Vork	34G1 Jim Dixon
	31L1	31M1 31Q1		20A1	20A2	22M1	23P1 24M1	25N1			26B1	27E1	2701	28E1	29N1	29K1	30J1	31K1	32L1	-	33G1 33N1	34G1

Table 1.—Records of wells-Continued

GI	EOLOGY AND GROUND	, WA	rer,	, 1	JAL	ATIN	VALLEY	, OR	EG.		
	Remarks		Water sometimes has a reddish color	• 10100 110100		Aquifer reported as "sand-	Water level reportedly 68 ft in August 1950; pumps	ary in summer. W.	W; casing perforated 152-165 ft.		Vields 20 gpm with 40 ft of dd; used for irrigating 2 acres.
iical icter m)	Chloride		5	4		8	ক ক	S 70		-	12
Chemical character (ppm)	Hardness as CaCO3		98	72		14	70	9	100	!	48
	9¤U		D,S	D		D D	QQ	s,c S,G	Ω	Ω	D, Irr
(mqg)	Type of pump and yield		Р,8	J,5		J, 10	P,10	ъ.3	P,5	P,1	P, 20 D, Irr
Water level	Date		1921			151 1953	99	1- 9-51	1- 6-51		850
Wate	Feet below or above (+) land surface	ned	09			15 9	48	59.63	87.84		7
əən	Ground-water occurren	ontir	ပ	Þ	3 W.	СЪ	рС	<u>а</u> , д	ပ	n	ပ
Water-bearing zone or zones	Character of material	2 W.—Continued	Basalt	op	2 N., R. 3	Basalt	Basalt Silt	Basalt	op	Sand and	gravel. Gravel
r-bearin or zones	Thickness (feet)	2 N., R.		19	T.	111	200	83	3	25	1
Wate	Depth to top (feet)	T. 2		5			300	0	160	0	88
	Depth of casing (feet)			S		65 57	300	0 83	165	25	88
	Diameter (inches)		9	9		9	54	50	6-5	36	80
	Depth (feet)		370	23		65 61	500	C1 C2	165	25	83
	Type of well		Dr	Dr		Dg Dr	Dr	Dg Dg		Dg	Dr
	Topography and approx		U,550 Dr	S,450 Dr		U1,175 P,350	S,585 U1,175	U1,959 U.970	U,800	S,250	P,215
	Owner or occupant of property		34R1 Ed Meier	35A1 G. W. Bentley		John Hurnesh Bradford Fowles	10Q1 N. H. Welch	11G1 Charles Adams	O'Connor and	ີ່ວ	15N1 D. Denison
	Well		34R1	35A1		2P1 4F1	10Q1 11F1	11G	1431	15K1	15N

16A1	16A1 Dennis Hall	P,275 Dr	Dr	150	9	33	34	21	Gravel	n l	5.3	1- 3-51		Irr		-	W; material 55-150 ft
				***	_		_		and boul-								possibly marine shale. Used for irrigating about
16H1	16H1 J. H. Powers	P,225 Dr	Dr	65	- 80	65			ders.	n	40	847	J,5	D,S	94	12	ı acıe,
1901	19Q1 Hubert Davies	S,680	Dr	260	9			-		;	1		- 1		-	-	Dry hole; "basalt" at 80-
							<u>-</u>										90 ft; "sandstone" from 200-260 ft.
22E1	22E1 S. A. Appleton	8,200	Dr	300	9	208	280	20		-	8.4	4-19-51	J,5	Ω		1	Aquifer reported as "sand-
	*																stone".
23E1	23E1 Martin Stadelman	S, 380 Dr	٦̈́	275	4	125	125	150			40	1951	P, 10	D.S	62	က	Reported 125 ft of clay
																	above aquier carred saind-
24P1	24P1 A. M. Anderson	S,640 Dr	Dr	457	9	201	201	4	Basalt	<u>.</u> ပ			ъ,5 5	D,S	158	Ŋ	Γ.
25J1	25J1 Roy Bills	S,460 Dr	Dr	140	9	122	90	32	op	ŭ	30	1050	_		64	4	4 Water has a reddish
				-													color during times of
																	little pumpage.
25M1	25M1 Fred Miller	S,240 Dr	Dr	80	9	43	79	-	op	ပ	ſΉ	1- 9-51 T,25		D,Irr	20	4,	Flows about 3 gpm; used
							-										for irrigating 8 acres of
																	pasture.
25P1	25P1 Charles Huber	S,325 Dr	Dr	177	9	170	170	2	op	ر ت	35	1951	P,5	Ω	80	S	Water contains some iron.
27K1	G. C. Connelly	P,185 Dr	Dr	98	9	85	85	-	op	C	2,89	3-16-51	P.6	Ω	130	6	H figure 9; produces
																	about 6 gpm with 8 ft dd.
27L1	27L1 C. B. Henderson	P,200 Dg	Dg	54	48	35	0	35	35 Alluvium	Þ			J,15	D,S	146	9	Inadequate during dry
																	season,
2911	29J1 Schlegel Bros	U,450	Dr	622	9	<u> </u>	-		1 1 1 1 1	þ	250	1950	!	z		1	Produced 35 gpm; not used
																	because of high lift.
31R1	31R1 David Vandehey	P,205 Dr	Dr	22	9	55	-		1 1 1	'n	13	10 - 48	-48 C,3	Д	28	4	Casing perforated from
																	15-55 ft; 18-inch drill
																	hole, gravel packed,
32B1	32B1 W. H. Rufner	P,200 Dr	Dr	150	9	140	140	10	Sand	ر ت	ſΞι	1 - 3 - 51	3-51 [J,10	D,S,	28	4	Flows about 8 gpm; clay
														Irr			for 140 ft above aquifer.
32,1	32J1 Rieben Bros	8,200		160	9	<u>:</u> :		1	op	ာ	18.64	18.64 11-22-50 J,5	3,5	D,S	28	3	
36A1	36A1 J. Ryan	8,350	Dg	09	36	2	-		Rock +	n	40.07	40.07 11- 8-51 J,5	5,5	Д	72	13	13 Easily pumped dry in
				_		_		_					_				summer.

04	G	EOLOGY AND GROUN	UW.	AIL	1K, 1	UA	LA	TIIN	V 2	4 L. I	ĿΙ,	On.	LG.		
		Remarks		7 Water level low in Septem-	ber. Water is slightly murky.		Water level low in sum-			Pentrated log at 200 ft,	aquifer called "sand- stone;"	Water level low in late	Bottom 25 ft of casing	periorated.	
	Chemical character (ppm)	Chloride		2	<u>е</u>	9	4	က	9	4		20	က	က	4 κ
	Cher char (pt	Hardness as CaCO ₃		28	102	90	10	10	20	70		9	90	13	20
		əsN		D	J,10 D,Ind	S,Q	D,S	Ω	Ω;	z C		Z	D,S	Д	D,S
	(mdg)	Type of pump and yield		P,4	J,10	P, 5	J, 5	C, 5		P, 5		Z	J,15	В	В.
	evel	Pate		8-50IP,4	:	8-50 P,5	8-50	8-50	8-50	8-50 P,5		8-50	1950 J,15		8-50 B 1950 P,5
	Water Level			8.2112-		3.77 12-	2.22 12-	12-	8112-	0.00 12- 56.5 12-		8,1612-			12-
tinued	Wat	Fleet below or above (+) land surface		8.2		3.7	2.2	5.6	8.181	0.00 156.5		8.1	09	24.3	21.0
ပီ	ə	Ground-water occurenc	, V	D	υ	Ω	Þ	Þ	b:	၁ ပ		Þ	ပ	n	o d
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	2 N., R. 4 W.		Gravel	Alluvium.	op	do	qo			Colluvi-	op	op	do Basalt
1.—Record	r-bearing or zones	Thickness (feet)	T. 2			16	22	14	18	36			21	1	
Table 1.	Wate	(teet) dot ot dtge7				0	0	0	0	0 !		1 1 1	95	!	!!!
		Depth of casing (feet)		1	-	16	22	14	18	36		-	116	z	1 1
		Diameter (inches)		48		36	48	36	48	9		95	9-8	48	48
		Depth (feet)		30	100	16	22	14	18	396		2,5	116	200	68 305
		Type of well		Dg	ņ	Dg		Dg		D D		Dg	Dr	Dg	Dg Dr
	ətsmi ([əvə	xorqqs and yangoqoT altitude (ft above sea I		8,290	P,250	P,270	S,320	P,220	P,240	5,410 U,420		S,415	S,240	S,280	S,280 S,250
		Owner or occupant of property		R. B. Powers	Sun Valley Gas	McCall	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N. H. Baker	Morgan Brothers		op	Julius G. Winter-	Noby Eberly	William Eberly
		Well		4E1	4P1	5H1	10F1	14L1	15B1	26E1		2652	33G1	35A1	35A2 35E1

Thompson Nursery - U,895 Dannyslope Cemetery S,700 DAssoc. J. R. Dant S,530 D. Peterkort S,425 D. Commonwealth, Inc. S,426 D. J. Peterkort S,426 D. J. Peterkort S,375 D. Commonwealth S,420 D. C. Houk P,225 D. C. Houk P,225 D. C. Houk P,200 D. Alan Moore P,200 D. J. A. McKnight P,200 D. Dan Ryan S,235 D. Hirschberger S,236 D. Hirschberger S,230 D. Hirschber
ary -
etery S, 700 Dr 900 S, 530 Dr 904 S, 415 Dr 580 S, 425 Dr 208 Inc. S, 420 Dr 875 S, 375 Dr 292 P, 190 Dr 165 P, 255 Dg 22 P, 255 Dg 27 P, 255 Dg 27 P, 255 Dg 27 P, 255 Dg 380 P, 200 Bd 70 P, 205 Dr 380
etery S,700 Dr. S,415 Dr. Inc. S,425 Dr. Inc. S,425 Dr S,375 Dr P,225 Dg P,225 Dg P,200 Bd P,205 Dr S,235 Dr S,235 Dr.
etery S, 700 S, 530 S, 415 S, 425 Inc. S, 420 S, 420 S, 425 P, 190 P, 225 P, 205
etery

00	_	SEOLOGY AND GROUN	υw	AI	Ŀк,	1 (JAL		IIN	V	√ 1	ظب	Υ,	O	ίĽ	u.			
		Remarks		- Dd 34 ft while bailing 10	gpm. L; City well no.1.	Materials penetrated were	clay and sand to 401 ft, and basalt 401-415 ft;	bottom of casing deformed	while blasting rock to	straighten hole; well	destroyed: Dd is 200 ft after 1 hour	bailing 30 gpm.	Hit basalt bedrock at 707;	best water zones in rock	at 750 and 850 ft. Tested	at 190 gpm with 250 ft dd.		Supplies three families.	
	Chemical character (ppm)	Chloride			48												-	12	
	Chemic charact (ppm)	Hardness as CaCO3		-;	95	-							-				1	120 148	
		əsN		Ω	P,S	-							1				!	D	
	(mqg)	Type of pump and yield		10										-			7.75	P,10 P,8	
	Water level	Date		1946	1-29-54T,420						749		8-18-58					8-22-51	
inved	Water	Feet below or above (+) land surface		101	174.98						06		10				-	11,15	
-Cont	ə	Ground-water occurenc	inue	ပ	Ü	1					υ		ပ			(ပ	ပပ	
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	1 W.—Continued	Basalt	op						Basalt		op				Silt and	op	
-Reco	r-bearin or zones	Thickness (feet)	S., R.	80	85						09		310					 	
Table 1.	Wate	Depth to top (feet)	T. 1 S	460	650						420		170					1 1	
• !		Depth of casing (feet)		464		401					420		-				707	92	
		Diameter (inches)		4	10-8	9					9					Ç	٥	9 8	
		Depth (feet)		468	735	415					480		1,080			9	102	94	
		Type of well		D	Dr	Dr					Dr		Dr			ſ	Ü	Dr	
	imate evel)	Topography and approx altitude (ft above sea l		S,245	8,350	P,270					8,300		P,245			i C	2,265	S, 255 P, 185	
		Owner or occupant of property		10H2 Ivan Clark	11L1 City of Beaverton	11Q1 M. B. Hinds					12N1 Allen	-	14H1 Jesuit High School -				14K1 Kleser Francesing Inc	14Q1 Denny	
		Well		101	111	110					121		141				141	140 150	

				RECOR	DS OF	WELLS			87
16 Ca.	Pumped 15 gpm with 110 ft dd; materials reported as sand and clay entire depth; well deepened after unsupported aquifer	(sand) at 103 ft depth collapsed. Drilled through layers of fine sand and clay for entire death	9 Reported clay and sand above aquifer.	Bailed at 25 gpm with 35 ft dd; one of three similar wells; pumped sand;			erly finished in sand at 95 ft; drilled to deeper sand; casing perforated 218-22 ft.	7 Reported 56 ft of clay above aquifer; when completed was bailed at 30 gpm; casing perforated 46-66 ft.	Reported 98 ft of sand and clay above aquifer; casing perforated 60-68 ft and 94-101 ft.
16		4	6		096	17			2
40	İ	170	118	!	740	134	146		104
z	Ind	Д	Д	Irr	z	DDD	Ω	Irr	Ł
-	10	J,10	3,5	T,30	115	P,3 J T,10	5,8		8,
-48	-50	1945	5-11-51	5-14-51	3-54	5-11-51 P, 3 J 5-11-51 T, 10		-51	1
2-5	-	=	5-11	5-14	1-18-54	- 1	5-11-51	4	i 1 1
<u>. F4</u>	35	20	30.8	56.9	17.65	6.05	46.95	20	
C	υ	υ	υ	υ	ပ	n C	Ü	U	Ö
Sand	Silty sand	Sand	Gravel	Sand	Basalt	Sand	Quicksand-	Gravel	Sand and gravel.
į	27	121		S	235	2	1 1 1	ľ	ო
1	313	189	63	215	700 1,270 1100	220	 	56	86
1	340	297	63		700	20	 	99	101
-	∞	9	8	∞	8 9	36 6 6-4	9	9	5-4
390	340	310	64	220	Dr 1,507	20 90 222	101		101
Dr	Dr	Dr	Dr	Dr		D D D	Dr		Dr
P,180	P, 190	P,210	S, 225	P,205	P, 205	P,200 P,210 P,225	P.230	P, 200	P,245
15K1 Southern Pacific	16A1 Horseradish Processing Co.	16M1 Carmen Gallucci	16N1 Harry Hanson	17A1 St. Mary's of the Valley Academy.	17A2do	17H1 C. J. Redfield 17L1 L. F. Pike 17R1 Moe Gollock	17R2 E. P. Headberg	1811 L. R. Martyn	18Q1 George Heitzman
151	16,	16]	16	17.	17.	17. 17. 17.	17	18	100

		Remarks
	hemical naracter (ppm)	Chloride
	Che chan (p)	Hardness as CaCO ₃
		əsU
	(mqg)	Type of pump and yield
	Jater level	Date
tinued	Wate	Feet below or above (+) land surface
اق	90	Ground-water occurren
Table 1Records of wells—Continued	'ater-bearing zone or zones	Character of material
Rec	r-bearing or zones	Thickness (feet)
Table 1	Water	(1991) qot ot diqəU
		Depth of casing (feet)
		Diameter (inches)
		Depth (feet)
		Type of well
	etemi ([eve	Topography and approx
		Owner or occupant of property
		Well

) V	ΑT	ER,	Т	Ū.	ALAI	'IN	V.	ΑL	LE	Υ,	ORE	EG.			
	7 Adequate to irrigate a	few acres.	7	Reportedly the most pro-	ductive well in vicinity; has been pumped at 95	gpm.		10 Water has reddish stain	after standing.	26 L; test pumped 950 gpm	with dd of 80 ft; city well 2.	water; well 49 of Piper (1942).	10 Materials reported as 18	ft of clay and 146 ft of rock.	11 H; figure 10.
	100	146	100	-				75 1	70 1	95	60		70		95 1
				<u> </u>			-				···				
	P,8 Irr	Ω.	P, 10 D,S	1	T14-114	P,S		Ω 8	<u>0</u>	Д,	Ω				0 0 0 0 0 0 0
	P.	P, 5	<u>Ч</u>			_.		P,8		H					<u>~</u>
			1	149		1 1		1	73.04 2- 3-48 J,10 D	155.23 3-12-48 T P,S	1-20-48 P,8		1 - 23 - 48		2-26-48
ned				C 100				1 1	73.04	155.23	99.5		153,16		100.21
ontin		ບ	υ	υ		υ		i	Ω	ပ	Þ		D		Þ
T. 1 S., R. 1 W.—Continued		Sand C	Rock	Basalt		op		1 1 1 1 1 1	Basalt	op	op		do U 153.16 1-23-48	,	do U 100.21 2-26-48 P,10 D,S
S		1		1		10		!	1	190	13		80		
Ŧ.		1				140			1	06	111		84		1 1 1 1
		-	14						45	63	40		162	;	21
	9	9	9	9				-	9	16	9		9		9
	200	127	145	312		150		138	96	800	124		164		141
	Dr	Dr	Dr	Dr		Dr		Dr	Dr	Dr	Dr		Dr		Dr
	8,250	Д,	ഗ	S,300		S,325		S, 265		S,330	S, 305		S,345		S, 290
	19A1 Henry Nielson	19D1 Paul Leopold	19E1 K. Amstad	19J1 Barron		19R1 Cooper Mountain	School Dist. 3.	20R1 O. C. Norvell	21K1 R. M. Steward	21P1 City of Beaverton	21Q1 A. E. Hansen		21Q2 Guy Woodworth		21R1 Mrs. W. H. Shively - S.
	194	19L	19E	19J		19F		20F	21K	21F	216		216	,	417

RECORDS OF WELLS														89										
5 Bailed 18 gpm for 2	nours with 35 it daPartly filled with sand. 70 Bailedat 5gpm for I hour with 60 ft dd; casing per-	forated 346-367 ft; re- ported 358 ft of clay and	sand above aquifer Can readily be pumped dry.	Used for grounds and pond; well 51 of Piper (1942)	temp 56°.	L; casing perforated 410-	430 It and 400-500 It; test pumped 1,000 gpm with	190 ft dd.	W; water contains iron;	well 52 of Fiper (1942)	saltat 350 ft.	Reported 460 ft of clay	above basalt; well 53 of	Piper (1942).	water.	4 L; used for irrigating 6	acres; yields 105 gpm	for 48 hours with 110 ff dd.	4 Reported 48 ft of clay	above aduifer.	6 Water reportedly con-		120 5 Used for irrigating garden. 1.485 1.839 Ca. L. Sealed with	
100	140		1		1] 			1 1 1 1				152			140		130		120 1.485	
Ind	ZΩ		z c	Irr	Irr	Irr			Š,	IJI		Z		Z	i	Ū,	Irr		na C	Irr			Irr	
J,15 Ind	P,5		8,1	-36 T,450 Irr	1	z			5-14-53 T, 500 S,			Z		53		T,30D,		9	49 T.8 D.	5	J,10		J. Z	
-49				-36	1	8-51			-53			6- 4-53					09-		1949		1951		1951	
-9	8-23-51 1047			5-		4- 8			5-14			-9				3-	11-						μ	
15	29.04 35		1 1	25	1	30,17		-	53.0			28.16		1		14	16		15		40		60 F	
ာ	υυ		טם	Ö	υ	υ			υ			ပ		υ		υ		7	ט ט		υ		ບບ	
Sand	op		do Basalt	op	do	op			Basalt			op		op		op		1	ao		op		do	
80	6		4	100		06			20			330		40		2	11	97	22		82		100	
06	358		191	300		410			450			470		160		236	242	•	48		20		288	
06	367		1 1		1 1	200			1			470		160		134		5	62		20		280	
9	90 6 367 6 - 5		4	80	12	14-	77		∞			œ		9		9		-			9		$\begin{vmatrix} 128 & 6 \\ 314 & 16 - 8 \end{vmatrix}$	
86	367		60	400	515	200			220			800		200		253		160	707		102		128 314	
Dr	Dr		Dr	Dr	Dr	Dr			Dr			Dr		Dr		Dr			הַ הַ		Dr		ם ה	
P,230	S,205 P,195		S,235 S,235	P,220	P,230	P,220			+ P, 265			P,220		S,245		S,200		036	F,230		8,255		S,250 P,170	
22F1 Ralph Beck	22K1 Tony Ghiglietti 23F2 L. Milne		E. B. Helfrich	24D1 Portland Golf Club.	2do	3do			24F1 Aaron Frank			2do		24N1 M. Murugg	}	25M1 Warren Forsythe		Source Troo	26G1 L. E. Byrne	,	26M2 Henry Erickson	,	27C1 Robert Murphy	,
22F1	22K1 23F2		23P1 1	24D1	24D2	24D3		į	24F'1			24F2		24N1		25M.		96171	26G1		26M:	(26Q1 27C1	

inued
į
ن ا
wells
we
b
Secords
~ -
۰
Table

		Remarks			_	sofi	rock for 151 ft; well 54 of		iposeu basait, basalt above	aquifer.		ft and rock 35-126 ft.	Inadequate during dry		pumping 6 gpm.	ing 15 gpm; solid basalt entered at 115 ft.	
	Chemical character (ppm)	Chloride		∞	10			6			~		+			i ! !	_
	Chemic charact (ppm)	Hardness as CaCO ₃		170	45			20		50	09		!	65		! ! !	
		əsU		D,S	Q			D,S		C.	ļΩ			D,S	<u></u>	j	
	(mq3)	Type of pump and yield		3,15	C,20			Р,5		Δ 2	5,5		z	3,8		 	_
	Water level	Date			643			1-21-48		1-21-48			1-27-48	38.91 1-27-48		! ! ! ! ! !	
itinued	Wate	Feet below or above (+) land surface	led		2			83.6		139.30	96		11.37	38,91		 	
ة 	тсе	Ground-water occurrer	ntinu	Ü	ပ			ŭ		ت	Ü		n	D	נ)	
able 1.—Records of wells—Continued	Water-bearing zone or zones	o retreacter of farterial	S., R., 1 W.—Continued	Basalt	op			op		ç	op		Silt	Basalt	Ç		
.—Keca	r-bearin or zones	Thickness (feet)	S., R,	4	151			15							7	•	
aple	Wate	Depth to top (feet)	T. 1	120	159			90						-	175	-	_
		Depth of casing (feet)		120	234			64		20	35		-	20		! ! !	
		Diameter (inches)		9	9			9		9	9		1	9	y	>	_
		Depth (feet)	•	124	310			105		158	126		1 1 2	09	189	3	_
		Type of well		Dr	Dr			Dr		Ţ	Dr		Dg	Dr	ئ م	1	_
		vorgeraphy and approx sea sea littabove sea l		S,200	5,285			P,275		\$ 325	8,290		5,280	S,290	20 20		_
		Owner or occupant of property		R. J. Thomas	G. G. Brinsley		-	B. F. Blethen		14E) 1 2			George Davies	op	Whoolon		
		Well		27R1	28A1			28B1		280.1	28G1		28M1	28M2	1906	1	

					CORDS	OF W	/ELL	S		
Bailed 3 gpm for 1 hour with 170 ft dd; reported 279 ft of clay above aquifer		Entire depui. L; reportedly bailed 25 gpm for 1 hour with 90 ft		Flows 2 gpm. Water level low in summer.	Flows when not pumped for 3-4 days; water has sulfur taste.			_	Casing perforated 142-150 ft; penetrated clay 0-145 ft, gravel 145-148 ft, clay 148-412 ft, basalt 412-600	it; used for irrigating 2 acres of lawn. Clay overlying aquifer.
	9	46	1 10	53	412 450	96	9	120	!	
84	106	300		334	412	126 78	162	346		
Ω	D,S	D,S		A A	ω	0,8 D,8	Ω	T,25 Irr	J,10 Irr	9.0
P,3	T,5 P,12	P,2 J,20		ຸນ	P,10	J,8 J,5	9,t	T,25	J,10	P,8 J,15
1951 P.3	-50	651 5-18-52	1949	6-11-51 950	-51	13-51	1951		1 1 1	
	7-	5-1		-6	- 9	8				
30	390 575	20 30.85	142 F	20	ĹΉ	15.92 8-13-51	16	1	; ; ;	
υ	n	CC	ບບ	o p	ບ	C	ນ	Ö	υ	ບບ
Basalt	op	Basalt	op	Sand	Basalt	Sand	Basalt	op	Gravel	Sand Basalt
15		. 8	- 1-	2	S		53		က	
279		380	150 438	20	245	 	75	1	145	1 1 1 1 1 1 1 1
279		40 383	438		250	1 1	30	-	6-4 510	
9	9	36	9	42	9	9	9		6-4	9
294	450 592	40 390	157	25	250	90	128	200	009	165 465
Dr	Dr.	Dg Dr	Dr.	Dg	Dr	Dr Dg	Dr	Dr	Dr	Dr
8,260	S,615 U,775	S,230 S,210	S, 260 S, 190	s, 170 S, 180	S, 180	S,230 U,240	P,185	P,190	S,230	S,215 S,215
Adam Miller	ReedJ. D. Kemmer	E. H. HiteGeorge N. Clark		william Kobinson -	op	R. H. Savage W. A. Butler	Ben Carsh	Doty and Dorner	E. C. Hall Co	SchenTower
29R1	30F1 30L1	33H1 33N1	33P1 33P2	34A1 34C1	34C2	34L1 34L2	35A1	35B1	36L1	36Q1 36Q2

Table 1.—Records of wells—Continued

	Remarks
emical aracter ppm)	Chloride
Cher char (pp	Hardness as CaCO ₃
	əsN
(mqg) i	Type of pump and yield
Vater level	Date
Wate	Feet below or above (+) land surface
əsu	Ground-water occurre
ater-bearing zone or zones	Character of material
r-bearin or zones	Thickness (feet)
Water	Depth to top (feet)
	Depth of casing (feet)
	Diameter (inches)
	Depth (feet)
	Type of well
	Topography and appro
	Owner or occupant of property
	W ell

. •
≥
2
ρį
'n
-
Ė

** 27	LIL	,,,	-		л	-47	11	ΤA	V 2			- 1	,	O1		ч.					
	J,25 D, 124 57 Used for potato-processing	plant; casing perforated	near bottom.	8 Water level reported low	in dry season.					4 Reported 40 ft of silt and	25 ft of clay above aquifer;	casing perforated 65-75 ft.	27 Reported 92 ft of sand and	clay above aquifer and 11	ft of clay below aquifer;	casing perforated 90-115	ft; flows about $\frac{1}{2}$ gpm.	Materials reported as clay	and sand entire depth; 5-	inch casing perforated	125-141 ft.
	57			8		5	104		4	4			27					-			
	124			62		134	360 104		98	156			170					-			
	D,	Ind		Д		D,S 134	Ω		Q	Ω			D,	Irr				Д			
	J,25					J,4	J,3		1,5	3,5			3-30-51 J,3 D,								
	-			4-17-50 J,3		1	-	_	-48	850 J,5		_	-51					-51			_
				4-17		-	1		- 2	-8			3-30					6 - 29 - 51			
				5.8		J,4	J. 3		20	34			ഥ	-				2			
	Þ		_	n		ပ	υ		_							_		ပ			
.∨							-			1			and	el.							
χ. χ	148 Sand			20 Alluvi-	um.	Sand	Quick-	sand.	3 Sand C	10 op			12 Sand and C	gravel.				11 Sand			
Т. 1 S., К. 2 W.	148			20			-		က	10			12					11			
	20			0	•				52	65		_	92					130			
	6 198			20		1	:		52	75			6-5 115					6-5 141 130			
	9			48		4	9		9	9			6-5				_	6-5			
	198			20		300	125		55	7.5			115					141			
	Dr			Dg		Dr 300	Dr		Bd	Dr			Dr 115					Dr 141			
	P,175 Dr 198			P,180		,185	P,170		P,175	P,185	_		P,170					P,175			_
	-			<u>ц</u>		<u>н</u>	<u>н</u>		<u>ц</u>	<u>ц</u>			-								
	1H1 E. Beshore			1L1 R. Schoales		Fisher	2C1 A. Milligan		2H1 John Walters	Sinclair			Don Wick					3K1 E. F. Bonegard			
	E. Bes			R. Sch		A. F.	A. Mil		John V	€. ₩.			Don W					E. F.			
	1H1			11.1		1N1	2C1		2H1	2P1			3A1				_	3K1			

RECORDS	$_{ m OF}$	WELLS
---------	------------	-------

									R.	EC	OR.	DS	OI	₹ V	VΕ	LL	.S											
14 Pumps dry in summer, but	reported to recover in 20 minutes.	Used for filling small mill	pond. Water level is low in sum-	mer.		-	Reported clay and sand	Gravel packed.	"Dry" hole; casing removed	Well caved in; abandoned;	nearby 120 ft well also	Penetrated alternating	layers of sand and clay;	20-inch rotary hole gravel	2/4-inch minns grayal	around perforated 10-inch	casing.	3 W; used for irrigating 10	acres.	Used for irrigating 7 acres.	3 Supplies two families.		entire depth; casing perfo-	rated 77-88 ft.	,	5 Water level is low in sum-	mer and fall.	3 Used by four families.
		1	9		1		1	_	-			-								!		3						
142	126		92		!	112	 	154	-	160		-						118		:	09	144				100	-	158
Irr	Д		Ω	1,1		Irr	ß	Ind	į	D		Irr						Irr			Ω			1	Irr	۵		a
1,5	J. 5	J,15	J,10	ι.	•	1,5	1	J,5		J,10		F,	190					J,25	,	J, 25	J, 5	J,10			ر د ر			J, 25
4- 3-51	750	8	1 3 1 1 1 1	3-27-51			251	851		1		1953						2-23-51		950	1020	1 1 1 1 1 1 1			4- 3-51	4-24-51		
11,38	20	2.82	1	4 96		1	15	10	1	 		20						2.82		ç	10	-		,	4.18	7.7		-
Þ	Ω	Þ	Þ	=======================================)	D	n	D		Þ		Þ						D	,		Þ	ပ		;) 	Þ		1
Alluvi-	um. Sand	op	op	Quick-	sand.	op	op	op	-	Sand		op						op		op	op	op			op	Quick-	sand,	!
28	10		!				32	20	-	1									1	12	1 1	11				10		
0	35	1	J 1 1 1		; ; ;	1 1	99	15	, , ,	1										40	1 1	7.7			1 1 1	12		! ! !
28	45	30	!		1	62	87	85	1	-		196						; ;		43	33	88		6	33	42		!
40	9	9	9	ω.	,	9	9	9	9	12		10					_	4		٥	9	9		,	۰	42		ω
28	55	30	42	42	3	62	86	85	200	22		196						32	į	22	39	88		Ċ	38	22	,	112
Dg	Bd	Dr	Dr	Ç	i	Dr	Dr	Dr	Dr	Dr		Dr						Dr			Dr	Dr		í	Вd	Dg		Dr
P,175	P.175	P, 180	P,170	D 155		P,180	P,170	P,180	P,178	P,170		P,170						P,155	1	P,170	P, 160	P,190		,	P, 180	P,195		P, 210
L. C. Johnson	Albert A. Lewis	sawmill	D. O. Kimberling	A Mohr		H. E. Susbauer	E. Johnson	Hughes and Son	City of Hillsboro	H. Freudenthal		do						A. Hornecker		K. M. Alden	Joan Waters	M. Baughman		;	Clyde Yount	C. C. Johannensen	:	11F1 Community Water Co.
3Q1	4B1		4R1	25			5P1	6A1	6H1	8C1		8C3						8K1			901	10B1		ļ	1.401	10R1	į	11F1

									п	EC	On	بر,	3	OF	W.	CL	ة سلام	· ·											
	pumped 12 gpm. Reported clay and sand	entire deptn; weil de- stroyed.			Pump tested at 16 gpm for	2 days.	Reported 140 It of sand,	siit and ciay above aquiler; bailed 10 gpm for 1 hour	with 144 ft dd.	W; used for irrigating 8	acres.	Ca, L; test pumped 100	gpm for 1 hour with 200	ft dd; casing perforated 232-269 ft.		H figure 9.	Reported 140 ft of clay	above aquifer; test pumped	at 100 gpm with 150 ft dd.	Water level is low in fall.	Benowted 170 ft of sand and	or a read and and	clay above aquirer.	ingare of	Ca; water-bearing sand at	water reported unfit for	human consumption or	irrigation; well destroyed	Ca.
2		u		11	4		n —			2		l			8	2	į					1	<u> </u>	•	-				i
120		9	122		89	•	180			Irr 153		-			36	132	1			178			0.0	3	1				!
D,S			ם ב	D.S	Ď,		۵				,	Irr			Ω	Ω	Irr			D,S	, ,		¢	ב	 				Ω
J,10 D,S 120		-	C 1, L	J-15 D,S	J, 5		CT.			J,50		Ι,	100		C, 5	J,5	z	100		J, 5	2	,,	100	,	!				1,3
	i		4-24-51	-51	-46		-			1 - 30 - 51		9-23-50	1953		2-26-51	2-26-51	-53				ر ب	3	9-97-61		-				
	1		,		-		-			1-3	d	8-2			2-2		11-			!	9	•	6	1	1				1
1	!		5 84	, , ,	20					3.6		40	21		10.8	4.05	11			1	8	3	7 2	2.5					-
ပ	-		=	Þ	n	(ر			D	(ر				Þ	ပ			Þ	ر)) (ن				Þ
Sand and gravel.			Alluvium	Sand	op	7	Sand and	graver.		Sand	+	ao	Basalt		Sand	op	Basalt			Quick-	Sand, Rasalt		A 11	ALL VIGILI	Sand				Alluvium U
87	i				r.		t 1			1		_	81 81			-	310			-				-	-				1
					45		>	_		-		7 (~		-	1				+		1		1	1				1
5 225	- !		: :	2		-				-		207 6	822 822				0 140	-		- 		-		! !	<u>:</u> :				
4 225	9			48 32	6 45	7				9	- 0	ř	4		40 22		10 140			<u> </u>	10 172	_	~	Ĺ	-				-
				4	_							-	_		4	~ ~	_			48	_	-	48	-	-				48
225	735		11	32	55	-	C# T			70	Š	202			23	37	450				425	Ì	94	100	00/				20
Dr	Dr	, c		Dg						Dr		֡֞֟֝֟֝֟֟֝֟				Dg				Dg	۲			0 5					Dg
P, 195	P, 195	908	F, 203	P, 155	P,175	100	001,			P,185	0	001,7			P,150	P,170	P, 180		•	P, 180	P 180		P 160	150	L, 1 50				P,150
	-			-	7		- -			Ŧ		-			7	7	- -			-		_			-				7
;	; ; ;	ţ	20	er.	s		į			sky	(י ע			ede -	į				:	ηφh								
Tagg-		, c	los	Geen	erkin	5	are.			Talen	101101	HILER			nsch	/olf	ımna			ckso	vana		ķ	1	out.y-				
14K2 Oscar Hagg-	op	FA 1 Drogton Voung	15R1 Pete Bilos	16M1 Albert Geener.	17C1 R. J. Perkins	101 1 D I Maios				18P1 Louis Malensky -	1041 1 2000	i sinc			R. C. Enschede	. W. Wolf	John Kamna -		ı	20Q1 Ole Erickson	2002 Lohn Cavanaugh		91H1 O Slater	9149 17 17 17 18411	ر ب				op
22 0	,1 		31 Pe	11 A1	21 R.	-	<u>:</u>			<u>۲</u>	-	<u> </u>	,					-	- 3	<u>5</u> 5)2 Lro	,	<u></u>	1 2					
14k	14L1	- -	155	161	170	101	101			18 E	0	181			19K1	20A1	20P1			20%	206	,	91E	110	117				21H3

ntinued
ദ
wells—
0
1Records
_
Table

	Chemical character (ppm)	Hardness as CaCO ₃ Chloride Remarks		212 5 Water has reddish	194 3	128	S 182 5 S 76 6 Water reported to contain	9 89	124 4 1	test pumped 220 gpm. r 102 5 Penetrated 210 ft of brown	108 11 102 5 80 5
	(mqg) i	Type of pump and yield		J,5 D	J,15 D	J.5 D		J,10 D	Irr	J,8 Irr	P,5 D P,10 D T,500 P,S
	Water level	Date		1946 J	J	F	4-24-51 P	649 J	1152	f	5- 7-51 P
tinued	Wateı	Feet below or above (+) land surface	panı	16	 	 	47.4	09	ĹΉ	1	38,56
Ö —	ээи	Ground-water occurren	Contir	၁	ပ	ŭ	υυ	υ	ပ	υ	ÞUUU
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Thickness (feet) Character of material	S., R. 2 W.—Continued	Sand	9 op	Gravel	Sand Basalt(?)	50 Basalt	op	4do	10 do
able 1.—	Water-b or	Depth to top (feet)	T. 1		100			65		210	130
_		Depth of casing (feet)		85 -	100	-		65	42	210	130
		Diameter (inches)		9	9	9	9 8	9	12	4	36 6 4 16- 10
		Depth (feet)		85	106	165	175 300	115	139	214	49 140 220 720
		Type of well		Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dg Dr Dr
		conqqa and gpprox sea svoda ft sbutitla		P,190	P,180	P,215	P,180 P,190	S,255	5,215	S, 225	S,240 S,285 S,310 S,320
		Well Owner or occupant of property		22G1 Jose Churchley	22M1 O. G. Grove	23C1 A. O. Neal	23E1 Santoro Brothers	23Q1 L. W. Taute	23Q2 Santoro Brothers	24H1 C. W. Koch	24H2 W. A. Hayes 24J1 A. D. Keller 24J2 M. Falb 24J3 Aloha-Huber Water Dist,

					RI	ECO	RDS	OF	WE	LL	s						97
6 Aquifer is alternating	6 Supplies two families Ca, L; drilled as oil test.	7 Supplies five families;	6 Reported to have penerated 2 ft top soil, 343 ft	hard and soft rock.	6 Drilled in rock 10-145 ft. 4 Penetrated clay to 22 ft	and rock 22-88 it. 5 Reported 60 ft of clay	above aquifer. 5 Pumped 10 gpm for 24	hours with 60 ft dd. 8 H figure 9; water ob-	tained near top of basalt	8	11 W.	7 Entered rock at 30 ft below	surface. 38 Had 18 ft shut-in presure	when drilled; test pumped 600 gpm with less than 30 ft dd.	gpm.	3 water has a yellow color. 29 Water flows 3 gpm.	11 Ca, L; used for irrigating 30 acres.
4.	84	82	92	122	80	130	122	18		140		130	168	162		168	144
S 124	<u> </u>																
D,S	ΩZ		D,S	o D, Irr		s	<u>п</u>			<u>D</u>		D, 3	<u>О</u>	D,S		<u> </u>) D,
1951 P, 10	P,10	P,20	P, 5	T,40	P,20 J,10	J,10	T,10	J, 5		J,10		J, 10	J,50	C, 50	P,15	J, 5	C, 300
1951	741	7 - 1 - 58		1	4-25-51	1 1 1	351	4-24-51		1	24	837 451	2- 9-51	2-27-51	151	10	1149
06	444	542	1	! ! !	20°€	1	12	19,97			7.55	22	Ĺτι	Ĺτ	15	т —	2.5
ပ	n	n	Þ	n	ນ	၁	ပ	Ú		U	n	၁ ပ	ນ	υ	ບ:	ວບ	Ö
op	op	Basalt	op	op	op	Basalt(?).	Basalt	Sand		op	op	Basalt	op	op	op	20 Basalt	op
70	15	102 210	10	130	1	35	40	15				33	300	09		20	449
110	444	390	335	270	88	09	20	350			1000	302 90	450	445	73	353	266
	18	47	:	!	29		20	350		-	24	37.1	1	445	5		266
9	6 20-7	9	4,	9	8	9	9	4		9	4 0	9	9	9	9 (9 9	φ
180	459 9,263	662	345	400	145	95	06	365		09	24	102	750	505	66	373	715
Dr	Dr	Dr	Dr	Dr	Dr	Dr	D	Dr		Dr		n n	Dr	Dr	Ď.	בֿב	
S, 330	S,600 U,765	U,740 S,600	S, 525	S,460	S,275 P,215	S,190	P,185	P,185		P,185	P,175	S, 205	P,165	P, 155	S, 170 Dr	P, 180	P,175
24M1 George Altishin	25F1 O. Pierson	25K1 R. Ferrier	25N1 Fred Kelly	26A1 R. H. Jenkins	26L1 J. K. Frazer 26M1 W. P. Brisbine	27J1 A. VanPoucke	27K1 Edwin C. Lux	27L1 E. H. Butcher		1		29C1 E. Lorenrehse	29P1 W. Schallberger	29Q1 W. T. Putnam	C1 E. Burkhalter	30R1 S. Dalby	31C1 C. E. Asbahr
24.	25.	25 25	25.	26,	26. 26.	27,	27	27]		27	28.	229	29.	290	30	30	31

	_
	4
	2
	ŧ
1	2
	Ĭ
	J
	-
	ž
•	=
٠	pro
	·
	0
	-
	ı
٠	-
	٩
٠	£
ı	F

		w w
		Remarks
•	ical cter m)	Chloride
	Chemica characte (ppm)	Hardness as CaCO ₃
		JaeU
	(mq3) b	Type of pump and yiel
	ater level	Date
	Water	Feet below or above (+)
	əou	Ground-water occurre
	Vater-bearing zones or zones	Character of nnaterial
	r-bearing or zones	Thickness (feet)
	Water	Depth to top (feet)
		Depth of casing (feet)
		Diameter (inches)
		Depth (feet)
		Type of well
		Topography and approversea is altitude (ft
		Owner or occupant of property
		Well

	3 Reported 364 ft of sand	and clay, 256 ft of rock.	₩.	Supplies two families;	reported 464 ft of clay	and sand above aquifer;	flows about 3 gpm.	Flows about 3 gpm.		74 17 Tested 3 gpm with 217 ft	dd.	11 Well flowed $\frac{1}{2}$ gpm in	1937; bailed 20 gpm with	180 ft dd.	Reportedly test pumped	75 gpm with 210 ft dd.	Reported 80 ft of sand	above aquifer; casing	perforated 96-113 ft.
			-	4				23		17		_			 1		2		
	2		68	100				142	-			26			j		80		
	Ω		Δ	Ω				Ω	Ω	Q		D,S			-		D,S		
	750 J,20 D		J,3	2- 8-51 J,30 D				2- 9-51 J,10 D	4-24-51 P,5	837 P,3		J,10			1		251 J,5 D,S		
	-50		-51	-51				-51	-51	-37		-51			-54		-51		
	- 2		2- 9	2-8				2-9	4-24	8-		4-24			4-20		2-		
ned			10.06 2- 9-51 J,3	ſΞι				Ę,	6.63	2		22.3			3.13 4-20-54		4		_
ontin	၁		Þ	ပ				ပ	Þ	Ö		ပ			U		þ		
T. 1 S., R. 2 W.—Continued	425 195 Basalt C 5		Sand	463 115 Basalt C				op	0 18 Alluvium	340 5 Sand(?)		10 Basalt C 22.3 4-24-51 J,10 D,S			600 40do		30 Gravel		
S.,	195		1	115					18	5		10			40		30		
T.	425			463				1 1	0	340		365			009		80		
	6 425		27	6 463					19	6-4 319		355			610		113		_
	9		9	9				9	72	6 - 4		9			12-6		6-5 113		
	620		27	578				330	19	345		375			640 12-6 610		113		
	Dr		Dg	Dr				Dr	Dg	Dr		Dr			Ď		Dr		
	P,175 Dr		P,160	P,170				P,140	P,175	P,175		P,150			P,185 Dr		S,170		
	31F1 Julius Christenson -		J. C. Jones	F. O. Erickson				Edwin Jesse	Emily Boge	Loyal Davis		Lloyd Bellamy			F. M. Thomas		W. F. Gembella		
	31F1	_	31H1	31R1	_			32D1	33A1	33C1		33E1			 34C1		34E1		

					REC	CORDS C	OF W	ELL	S				99
Barely adequate in sum- mer; replaced by drilled	well.				Water level in summer is about 5 ft below surface:	water used for irrigating $1\frac{1}{2}$ -acre nursery. Used for irrigating gar-	Bailed at 30 gpm with 35	Ca; used for irrigating 5	W.	W; gravel packed 6-47 ft;	used for irrigating garden. Bailed 30 gpm with 20 ft dd; used for slaughter house.	W. Barely adequate in dry	Reportedly drilled in shale; dry hole.
9	5		7	2	1	വ	1	8	က၊	2 !		e 4 e	4
82 118	106		44	82	1 1 1	86	1 1 1	293	16	37	!	143 82 31	157
o,s N	D D,S		D,S	D,S	Irr	D,S	Irr	D,	,	D,S	Ind	D,S,	Ω
J,10 D,S J,5 D,S N N	J,8 P,10		3,10	3,15	J,15 Irr	J,15 D,S	3,15	T,30 D,	C, 3	P, 10 J, 10	J,20	J,10	J,5
	1950		-51	-51	-51	-51	-50	-51			-50	-51	
5- 9-51 5-14-51 5-14-51	1		3-14-51	3-14-51	د ا	င်္ဂ	11-	3-14-51	1-25-51	3-14-51	7 -	111	
32.57 2.43 8.11	170		1.0	35.74	0	12	30	14.58	.55	6.25	18	3.3	!!!
doo	C	3 W.	Þ	ပ	D	ت ت	<u>ပ</u>	Ü		D D	Ü	adc	<u> </u>
Basalt Basalt(?)_ Alluvium .	Basalt	T. 1 S., R.	Quick-	Sand and	Sand	Gravel	op	op	Alluvium.	Sand	Sand		
23			∞	က	1	9	4	16	24	39	13		
54			20	86	 	114	126	96	0	10	65		
20	27		28	98	20	120	126	112	24	21	78	148 20 24	
36	4 9		36	9	12	9	9	9	48	12	8-7	6 60	9 9
55 200 23	86 222		28	101	20	120	130	112	24	21	78	148 20 24	320
Dr	Dr		Dg	Dr	Bq	Dr	Dr	Dr		Dg	Dr	Dg Dg	Dr
S, 235 P, 175 P, 175	P,185 S,410		P,180	P,180	P,160	P,155	P,170	P,165	S,170	P,155	P,150	P,180 P,175 P,185	P,165 P,185
C. J. Wollertz Ann Algesehimer	E. L. Cox		A. Hadley	W. F. Robinson	J. F. Sunko	D. W. McBeth	W. E. Stevens	West and Scott	J. W. Nelson	A. DuncalfE. F. McCormacke.	Kummer Meat Co	R. A. Furby W. Demmin F. Krahmer	D. Miller Forest Hills Golf Course.
35D1 35N1 35N2	35P1 36D1		2B1	2G1	4H1	4Q1	5C1	5F1	8L1	9M1 10A1	1131	12R1 14G1 15D1	15D1 15M1

		Remarks		Water level reported low	in summer. W.	Reportedly in shale for 157 ft below aquifer;	casing perforated 97–145 ft.	Used for irrigating garden	orted to	saline taste; well de- stroyed. Water level reportedly	varies little during summer.	Pumped 80 gpm with 200 ft dd when well was 529 ft deep. Entered basalt bedrock at 300 ft.	
•	ical cter n)	Chloride		14	2			2	!	4,		9	•
	Chemical character (ppm)	Hardness as CaCO ₃		114	18	192		80	1	72		8 1	
	<u> </u>	əsU		D,S	А	Д		D,S	z	Д		D,S Irr	-
	(mqg) b	Type of pump and yiel		J,30	P.5	J,15		J,15	z	J.10		P, 5 80	
ontinued	level	Dste		950	1-29-51	-	*	1950	1	151		950 1-18-56	•
inved	Water level	Feet below or above (+) land surface	ned	112 25	46.68			18	1	84		F 23	-
Ö	əəu	Ground-water occurre	Conti	рÞ	Þ	Þ		ပ	1	Þ		υd	_
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	R. 3 W.—Continued	Basalt Quick-	sand. Alluvium.	Clay and sand.		Sand	Shale	Residual	soil.	Basalt	_
-Rec	r-bearin or zones	Thickness (feet)	T. 1 S.,	73		40		-	1	1		10	_
Table 1.—Rec	Water	Depth to top (feet)	Ţ.	88		103		-		 		009	_
		Depth of casing (feet)		88 48		145		100	1	48		400	_
		Diameter (inches)		9 48	48	6-4		9	1	09		8-6	_
		Depth (feet)		161	65	302		125	200	09		28	_
		Type of well		Dr	Dg	Dr		Dr	Dr	Dg)	Dg Dr	
		Topography and appro altitude (it above sea		, P, 310 S, 200	S, 340	S,190		P,180	S,660	8,560		P,200	-
		Owner or occupant of property		V. Lorenz F. J. Brandaw	L. Newburg	B, Grimson		P. L. Liebeck	Kant	R. P. Nixon		E. Meyerdo	-
		Well		16E1 16N1	17B2	17D1		18K1	20E1	20M1		21C1 21C2	,

	RECORDS OF WELLS																		10												
Used for irrigating 16 acres of pasture; flows	about ½ gpm.	4 Yielded 76 gpm with 150	ft dd. 12 Reported 160 ft of clay	above aquifer; flows	about 8 gpm; used for irrigating about 35 acres.	_	It. Materials reported: 75 ft	of clay, 100 ft of rock	above aquifer.	-	and sand above adulier;	test pumped 40 gpm with	Used by two familes and	for irrigation of lawn	and garden.	3 Inadequate.	3 Reported 83 ft of clay and	sand above aquifer; liner	perforated 88-128 ft;	flows about $\frac{1}{2}$ gpm.	Reported 42 ft of clay	above aquifer.	Casing perforated and	gravel packed.	Inadequate supply of	water.		4 Casing perforated 108-	128 ft and gravel packed.	Used for sawmill.	
	9					4					_		_								-	_			-					÷	4
102		156	Irr Irr 125			D,S 144	1		1 9 9	771			-	-,-			100				!		28		!			 8c		!	!
D, Irr	D,S		Irr										D.	Irr		Ω					D'S		Ω		z —		ro.	<u>-</u> -		_	Ω Ω
T,80	J,10		Ļ	200		J, 10			Ę	1,4			Р.8			P,8	P, 5				J,10		3,8		z			., 15		_	3,15
151	; ; ; ; ;	151	1-30-51			2-14-51			1016	0461			1			1 1 1 1 1	2-14-51				1		1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1921	1 1 1 1 1 1 1			2- 5-51
দ	1	2	۲ı			45,33	1		-							1 1 1	ᅜ						1 1 1 1		1 1 1		40			15.1	20
Ö	į	Ö	υ			Ö	ŭ		7	ر			ט			Þ	r)				ت		D.		Þ		ت ر	ن ·		O.	
op	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Basalt	op			op	Basalt		7				op			Alluvium_	Basalt				op		op		Shale		Basalt	1 1 1 1 1 1 1 1 1		Basalt	op
61	1	-	200			1	ū	ı	00	00			1			43	45				13		20		42		30	20		1	
100	 	459	160				175		7				1				83				42		0		∞			108 108		!	
116	;	459	106			65	180		170	0#1			!				128				20		20		!		80	1.78		 	1
9	9	6-4	9			80	6-4			- -			9			48	6-5				6		18		48		4	ç		9	9
161	42	460	604			265	180		170	0 1			110			43	128				22		20		53		110	138		28	80
Dr	Dg		Dr			Ω̈́	Dr		ځ				Dr				Ö				Dr		D _g		Dg			7.			Dr
S, 220	P,200	P,180	P,160			P,210	S.200		101				S.410			S,220	P,200				P, 365		S, 210		S, 265		S,405	5,375		U, 700	U,910
R. Meyer	G. Kennel	Simpson Brothers	F. McDonald			E. Simantel	J. T. Roberts		Mottio Dobosa	nettre Der ora			Beevor			W. L. Redding	B. L. DeFord				J. Dober		Frank Winners		W. R. Withycombe		George Withycombe-	Tony Hardebeck		J. W. Dixon	op
22E1	23A1	24K1	24R1			25P1	2501	•	1026	1407			26E1			26P1	26R1				27A1		30C1		31B1		31,11	31M1		32Q1	33M1

36L1

36R1

1N1

2H2 2L1

2H1

 $2L_2$

Well

												R	ЕC	O	RDS	0	F	WI	ΞL	LS
136 215 Water reportedly has	saline taste; casing per- forated 80-90 ft.	228 L; W.		Reportedly sand and clay	entire depth to aquifer.	5 Barely adequate during	dry season,		Insufficient supply of water.		3 Barely adequate during	dry season.	4 Pumps dry during sum-	mer.		3 Inadequate supply of	water.	4 Easily pumped dry in	September; recovers in	about 12 hours.
215				- !				9	1		က			_	4,	· co				
		88		1		38		34	1	42	4		22		16	80		34		
S		z		D,S		Ω		z	z	Ω	Irr		Ω		D,			Ω	_	
-50 J,8		z		9,5		-46 P,3		P,3	z	C,3	1-24-51 J,8		3,5		J,8	J, 5		3,5		
-50		2-51		-50		-46		1-12-51 P,3	1-12-51	C,3	4-51				1			- 50	_	
12-		1-12-51		12-		-6			1-1	1	1-2				1	1		-6		
2		3.02		30		20		3,38	18.4	-	ſΞų				1	1		15		
ບ		υ		υ		υ	_	Þ	υ	Þ	ပ		n	-		U		Ω		
15 Sand and	gravel.	27 Shale and	sand-	3 Gravel1		Silt		45 Alluvium -		25 Alluvium.	1 1 1 1 1 1		10 Sandstone			Rock		4 Sand		
15		27		3				45	7	25			10		!			4		
85		65		109		1		0		0			36			1		16		
06		73		111		408		45	- ! !	25	80		1		06	i		20		
9		9		9		9		48	9	48	9		48		9	48		52		
100		92		112		480		45	140	25	84		46		90	11		20		
Dr		Dr		Dr		Dr		Dg		Dg			Dg		Dr	Dg		Dg		
200		P,190		S,235		S,240		S,230	S,240	S,260	8,260		P,200		S,250	S.260		P, 180		
2N1 R. Curtis Ritchey P.	,	R. Ritchey	,	Fred Lunger)	A. A. Rogers)	V. E. Koshi		Charlie Scott.	1		E. F. Blackmore		Virginia Bridges	E. P. Hoodenbyl		George V. Heagy P,180	3	
2N1		2N2		3B1		3G1		301	302	17E1	23F1		23H1		24A1	28R1		36K1		

•
≥
2
댐
s;
Н
Ė

								10	3
950 J,5 D Reported 15 ft of soil and 57 ft of rock above aqui-	fer.		3 Flows in winter; water	level about 12 ft below	surface in summer,	Water reported to come	from fractured zone in	basalt at depth of 41 ft.	
						; ;			
-			26			1			
Д			Q			-			
3,5			3,5			z			
50			1-29-51 J,5 D			-24-51			-
			<u> </u>			<u></u>			-
12			ĹΉ			3.15			
υ			ပ			ပ			
22 Basalt of C 12 the Til-	lamook	series.	48do C			41 Basalt C 3.15 1-24-51 N			
22			48			1			•
51	_		23						-
18			26			16		_	-
9			9			9			_
73			71			,350 Dr 105			
,340 Dr			,360 Dr			Dr			_
N.			5,360			8,350			_
25K1 Earl Wells			25Q1 Dorand			25R1 Wicklund			_
25K1			25Q1			25R1			•

		Remarks		Penetrated 59 ft of clay,	211 ft broken rock and 562 ft of basalt. Penetrated 92 ft of clay	and 804 ft of basalt; pumped 280 gpm with 62 ft dd,	clay 0-50 ft, rock 50-515 ft.	Reportedly once used for irrigating 15 acres; now used for school and to	irrigate 4 acres. Used for irrigating 5	acres; basalt at 40 to 502 ft; well 61 of Piper (1949)	Entered basalt at 100 ft.
	al	Chloride		<u>г</u>		ο pr 4-15	· 1	4. 	i U		<u>н</u>
	Chemical character (ppm)	Hardness as CaCO3	-	-	280		i 	106	<u> </u>		
	ਹੁ ਬੁ	esU		lrr	Irr 2		1	H	Irr		
	(mqg) b	Type of pump and yiel		1			:	-	80 I		-
					-54	84		 101	-29		-47
	level	Date			- - -				-8		10-
pen	Water level	Feet below or above (+)			423	400			350		75 1
Contin	əəu	Ground-water occurre	ы.	<u>L</u>	Д.	=======================================)	.i ပ	ŭ		υ
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	T. 1. S., R. 1	Basalt	op	Ç		op	op		op
.—Re	r-bearin or zones	Thickness (feet)	L		6	ر د			7		59
Table 1	Wate	Depth to top (feet)			829	480	2		500		110
	·	Depth of casing (feet)		1	520	179	-		!		110
		Diameter (inches)		12	16-	10	>	 	12-	10	8
		Depth (feet)		832	896	ب ب		499	502		169
		Type of well		Dr	Dr	Ę	3	Dr	Dr		Dr
	stamix ([evel]	Corqqs and spyror altitude (ft above sea		S,975	U,1,025	8		S, 385	S,610		S, 375
		Owner or occupant of property		Mt. Calvary Cem-	entery Assoc.	W I. Cowhin		Columbia Prepar- atory School.	Robert Dant		Kaufman Mortgage Co. (former).
		Well		6C1	6D1	7 4 1		7K1	8E1		8N1

							F	RECO	ORDS	OF V	VELLS	3					105
	Pumps dry with heavy	nse.	L.	Water reportedly stains	porcelain yellow. Materials penetrated were	basait ou-035 it; snaie 695-700 ft. Used for irrigating lawn	and garden. Never used; drilled to	drain surface water;	only clay. Used for irrigating lawn	and garden. L; bailed 28 gpm for $\frac{1}{2}$ hour with 10 4 of $\frac{1}{2}$	down. L; test pumped 35 gpm	for 12 hours with 30 ft dd. Materials reported, 138	ft of rock (Boring lava) over 80 ft of "Shale"	(Troutdale formation?); operates 14 irrigation	sprinklers. Used by two families.	No water to 265 ft; re- ported clay entire depth.	
_	80	5		2	1 1	4	1		က	4	!	9			4	1	
_	06	130	!	86	!	114	 		102	120	!	09			102	!	
	Irr	S,		ß	Irr	Irr	1		Irr	Д	1	Ď,	Irr		Д	!	
	Р,5	T,	⊱	P, 5	T,	7, J.	10		J	-51 T,		H	75		J,		
	1951	1	1946	1	8-10-54		! !		-51		-53				11- 1-51	1	
-		!		i !	8	į	i		∞ 1	8	11-				11-	-	
	7	! ! !	250	1	300	! ! !	 		30	80	210				23	! ! !	
	n	υ	υ	Ü	n	υ	1		Ü	д	Ü	Ü			Ü		
-	15 Alluvium.	Basalt(?).	57do	op	395op	10 Boring	lava.		78 Boring	lava. 5do	214 Basalt	1			47 Boring	tava.	
-	0	!	200	-	300	20			72	136	396	!			20		
-	15	<u>i</u> _	43	3	412		i		73		396				20	<u> </u>	
	98	12-	3 8 4)	12	9	9		9	9	9	9-8			9	9	
•	15	400	557	200	100	80	450		150	175	610	218			97	265	
	Dg	Dr	Dr	Dr	Dr	Dr	Dr		Dr	Dr	Dr	Dr			Dr	Dr	
•	S,400	8,330	S, 435	S,400	U,450	8,600	S.500		S,610	S, 425	S, 400	S,475			S,460	S, 500	
	Doty Nursery, Inc.	Alpenrose Dairy	R. C. Coffell	Ann Tannler	Riverview Cem-	etery. John J. Wojcik	First Federal	Savings and Loan.	L. Rosellini	Mrs. Francis	Cathryns Charcoal	Broiler Restaurant. Earl Gunther			Charles E. Kern	McKinney	
	17Q1	18N1	19 P 1	20D1	27D1	29N1	30F1		30.11	31C1	31D1	31M1			31P1	32B1	

		Remarks		Apparently followed down volcanic eruptive con-	duit and found mostly mixed types of lava. Yielded about 50 gpm.	Entered rock (Boring lava) at 25 ft; struck basalt at 256 ft.		Water carries much sand.	Water supply for two	lamines.	Filled back to 100 ft to shut off running sand.
	ical cter m)	Chloride							-		
	Chemical character (ppm)	Hardness as CaCO ₃									
		Jse				Ind		Q	D,S	Q	
	(md3) b	Type of pump and yie						Р,8	P,8	J, 5	Р,8
	level	Date		1961		1945		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
inved	Water level	Feet below or above (+)	pər	190		260		1	-	1	!
Cont	euce	Ground-water occurre	ontin	n		C		ပ	Þ	υ	υ
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	R. 1 E.—Continued	Lava	Д +1 e s e 1+	op	2 S., R. 1 W.	Quick -	Alluvium-	100 Boring	Sand
—Rec	r-bearin or zones	Thickness (feet	1 S.,			88	H		20	100	
Table 1.	Water	Depth to top (feet)	T.	1		256	•		0	10	! ! !
		Depth of casing (feet)		!	300	31		-	20	1	
		Diameter (inches)			œ	ο φ		9	36	9	9
		Depth (feet)		1,033	312	344		180	20	100	125
		Type of well		Dr	Ę	ដែ		ų	Dg	Dr	Dr
		Topography and approses		S,680	2. 5.45.	S, 525		S,230	P,175	S,255	S, 230
		Owner or occupant of property		Alto Park Water Dist.	Ç			Ann Raymond	E. C. Hunziker	E. C. Metzger	L. H. Nichols
		Well		32K1	33E1	33M1		1B1	1D1	1K1	11.1

					TULL	COILD	OI	** 11	LLO							-	
Entered basalt at 610 ft;	110w was '\(\frac{7}{2}\) gpm. Reportedly pumped 5 gpm	for 1 hr with 145 ft dd. Supplies large poultry farm; nearby 350-foot	well entered basalt. Drilled 660 ft through	clay; destroyed; well 68 of Piper (1942). Well 69 of Piper (1942).	Well readily pumped dry.	Reportedly entered	basalt 135–385 ft.	L; city well 3; test	pumped 380 gpm with 153 ft dd after 24 houng	Drilled in basalt 8-230 ft.	Reported 29 ft of clay and 152 ft of rock above aquifer.	•	L.	Reported 15 ft of top soil and 285 ft of "rock" above aquifer.	•		Ca; city well 2; test pumped 400 gpm for 1 hr with 90 ft of dd.
		!	:			4				7	14	8	6	2	13		1
						82		-		114	160	136	128	130	100		
D,S	D	w	1	P,S	ΩZ	D,S	D,S	P,S		D,S	Ω	D,S	Д	D,S	ДΩ		5
	Ę,	T, 15		-29 P, 5		P,8	300 T,	10 T			P,		P,8	8, 6	9, q.	35	T, 500
9-20-61	-51		-	.29	-53 1-51	; ;	-49	7-17-58		1924 P,8	-48 P,	1951 J,8	1	1949 P,8	1950 T,		4-30-49 T,
9-2	4	!	1	8	7 - 8 -		- 2	7-1			-6		;				4-3
F	31		1 1	65	23 F	1 1	142	215		195	143	8	397	200+	130		190
υυ	ນ	υ	1	ນ	ပပ	ບບ	υ	n		n	υ	Ω	n	þ	n n		υ
do Basalt		lava. Basalt	None	Sand	14 BasaltSand	Basalt	op	op		op	Basalt	Silt	Basalt	op	do		op
7.5		-		∞	14		-	279		105	17	30	105	33	125		255
678	125	!	1	252	496		1	215		125	181	0	395	300	130		192
680	6-5 148	! ! !	 	260	362		42	91		20	32	30	13	18	10		342
6-4	6-5	10		9	99	ယထ	9	12		9	9	48	9	9	10		01
340 753	148	625	099	260	510 110	190	170	494		230	198	30	200	339	500		453
Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr		Dr	Dr	Dg	Dr	Dr	Ur Dr		Dr
S,250 P,145	S,215	S,230	S,185	8,210	S,230 P,180	S,335		S,350		8,350	5,325	S,255		S,480	S, 530 S, 300		S, 340
Raymond EmsJ. A. Wiley	Gus Greco	Kertis	Tigard High School_S,	Tigard Public	E. W. Bredmeier O. H. Herbig	LoomisR. Sunamoto	Sandness	City of Tigard		Frank Roshak	C. R. Walstrom.	Ed Roshak	John J. Bushnell	M. H. Bishop	Paul Haberfeld H. H. Foskett.		City of Tigard
1L2 1M1	1Q1	1Q3	2A1	2M1	2M2 2R1	3N1 4B1	4C2	4G1		5N1	6J1	6R1	8G1	8K1	9G1 9Q2		10C1

08	ı G.	EOLOGY AND GROUNI) WA	TER,	, T	UA L	ATII	V V	AL	LEY	, 0	REG	i .		
		Remarks			Has dd of 60 ft after	Several mours pumping 35 gpm.	28 ft.	L; city well 1.	Reportedly supplies inad-	equate water.	Used by two families. Reported 66 ft of sand	clay and 10 ft of basalt	above aquifer; bailed 25 gpm for 1 hr with 30 ft	•	
	ical cter n)	Chloride		5	9		r	1 1	5	10	4 %)		18	4
	Chemical character (ppm)	Hardness as CaCO ₃		100	124	a	000	1	64	130	128			162	162
		əsN		ДΩ	Ind	ב	ב	r, x	Д	D,S	D 5	1		Ω	D,S
	(mqg)	Type of pump and yield		T,10 1946P,8	T,35	u H	, ,	T, 200	-P,4	F, 8	1947 I 10			1P,5	3,8
	level	Date		1946	448	2 2 1 1		447T,			1947			8-4 - 51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ntinued	Water level	Feet below or above (+) land surface	nued	200	70	17 60	00.	188	1	1)		11.1	
ပို	əɔ	Ground-water occurren	onti	υυ	ت ص	<u> </u>)	ပ	υ	₽	ט ט)		Þ	
Table 1Records of wellsContinued	Water-bearing zone or zones	Character of material	R. 1 W.—Continued	Basalt	op	, 0	one c	Basait	1 1 1 1 1 1	Sand	do Basalt			Sand	Gravel
-Rea	er-bearir or zones	Thickness (feet)	2 S.,	101	173			121		1	34			6	1
Table 1.	Water	Depth to top (feet)	H	210	10		1	760	1 1	1	80	:		9	
		Depth of casing (feet)		210			<u> </u>	7.	1	1	68			1	1 1
		Diameter (inches)		9	9	5	7 ;	1.5	9	09	9 9			48	9
		Depth (feet)		400	183	86	3	381	135	16	114			15	87
		Type of well		Dr	Dr	Ļ	7	Dr	Dr	Dg	טַ הַ	1		Dg	Dr
	mate evel)	Topography and approxist alogography and approxist sea 1		S,475 S,365	S,315	0 935	2 1	8,373	8,315		S,225 S,265			တွ	
		Owner or occupant of property		Stewart	J. V. Chandler	Iohn I indlow	domination of	City of Tigard	Olson	Mrs. Sattler	F. A. Stephenson			Albert Scheihla	John A. Sattler
		Well		10E1 10F1	10G1	1001		1311	11F1	1111	11K1 11L1	İ		11Q1	11R1

		RECORDS (LLS					109
Reported materials, clay and sand entire depth; casing perforated 257—274 ft.	Ca; penetrated gravel and boulders 0-60 ft, black clay 80-640 ft with sand seam at 630 ft; well had small yield; abandoned because of high chloride water;	well 71 of Piper (1942). Ca; reported sand, clay, and boulders 0-60 ft, blue clay 60-90 ft, sand 90-92 ft, clay 92-162 ft; casing pulled back to 92	L; reported water-bearing sand 65-135 ft and clay 148-150 ft.	L; supplies 7 families; casing perforated 80—104 ft.	Reported 2 ft topsoil, 48 ft gravel and boulders above aquifer.		H figure 12.	Penetrated layers of	Reported 15-121 ft. Penetrated 175 ft of clay and gravel above aquifer; casing per- forated 168-188 ft.
9 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	ω	2-	2	<u> </u>	2	თ თ	2
136		92	136	09	09	 		102	94
D,S	۱ ا	D, Irr	P,S	P,S	Ω	P,S	D,S	D,S D,S	ΩΩ
8 - 51 J, 3	10,70	J. 15	9,1	1941 J, 30	1950J,15	853 T,20	6-24-51 J,5		89
	 N N	 	1	80	99	-	44.0	1 1	40
C C	υ υ	O	Þ	Þ	Þ	Ü		ממ	υ υ ———————————————————————————————————
Sand	2 Sand	2do	13 Gravel	25do	34do	3 Basalt	10 Sand and gravel.	Sand	121 Basalt
257	000000000000000000000000000000000000000	06	135	08	20	299	41	1 1	175
		92	142 1	110	င	664 6		42	188 1
36 32 6-5 274	9	1 1	6 1	8	9	10 6		36	6-51
32 274		162	150	120	84	089	51	42	121
Dg Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dg	Dr Dg	Dr
P,180 P,145	P,160	P, 160	P,170	P,185	P,180	P,190		P,140 P,160	S,215 P,175
J. R. Ridgeway Carl Huber	 	op	Durham School	M. Eastham	Otto P. Boeckel	Tigard Senior High School.	zzi	C. E. Dean P, R. Van Mere P,	V. Aguino 5,2 R. E. Woods P,1
12E1 12G1 12N1	1381	13B2	13D1	13L2	13P1	14A1	14N1	15K1 15P1	16D1 16F1

	al er	Chloride Re Barks		Penetrated clay and sand 0-20 ft, sand 20-69 ft	and rock 69-161 it.	Log reported as clay 0-	clay and rock 40-58 ft, and rock 58-105 ft. 8 Reported rock 10-130 ft;	insufficient supply of water. Owner to irrigate about	30 acres of berries and vegetables; drill entered basalt at 8 ft. 6 Reported rock from 10 ft	down. Reported 165 ft of clay	and sand above aquifer; test pumped 20 gpm with
	Chemical character (ppm)	Hardness as CaCO ₃			96		114	<u>-</u>	130		
	0.9	əsN		D -		_ <u>-</u>	Ω	Irr -	Ω	<u>_</u> _	
	(mq3) b	Type of pump and yield		J,10	ъ,5	J,10	3,5	E E	J, 5	-	
	Water level	Date		551	1951	849	1250	1953	1921	1946	
inved	Wateı	Feet below or above (+)	ned	40	10	30	126	218	69	34	
Cont	əsu	Ground-water occurre	Contin	C	Ω	ນ	n	U	D	Ü	
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	R. 1 W.—Continued	90 Basalt	2 Pea	14	op	do	5 Basalt	43do	
-Reco	r-bearin or zones	Thickness (feet)	2 S.,	06	2	47	4	1		43	
Table 1.	Water	Depth to top (feet)	Ţ.	71	40	58	126	1	70	165	
		Depth of casing (feet)		71	42	54	1	12	10	183	
		Diameter (inches)		9	- 73	9	9	13	9	9	· ,
ļ		Depth (feet)		161	42	105	130	993	85	208	
		Lype of well		Dr	Dr	Dr	Dr	Ŋŗ	Dr	Dr	
		Topography and approversea		P,160	P,135	P,150	S, 250	5,275	S, 200	P,135	
		Well Owner or occupant of property		16G1 W. G. Boehmer	16K1 R. C. Holmes	16M1 E. C. Walls	17A1 N. E. Holmgren	17B1 T. Hasnike	17H1 W. K. Scott	17L2 Stewart B. Strong	

							R	EC	OF	RDS	OF	· WE	LLS	;									111
Used for irrigating about 20 acres of berries and vegetables; struck basalt	Entered basalt at 350 ft.			No rock found, material	all clay, sand and silt.				W; used for irrigating	10 acres. Water has a sulfur odor.	Reportedly test pumped	110 gpm with 35 ft of drawdown after	pumping 11 hours;	į			and blue clay entire	depth to aquifer; water	reported to contain iron.	after 1 hour pumping	(10 gpm.		L; casing perforated 424-450 ft.
	53	80	œ		55	2	6	11	9	132	1				4	2 +					6		34
	190	80	80	1	20	82	78	118	120	196	1			!	152	62	70		!		82		62
Irr	D	D,S	D,S		D,S	Ď,	lrr D		Ď,	lrr D	P,S			P,S	D,S	D, S	ς , Ω		D.S.C		Q		Ind
T,	J,10	J,15	J,10	1,3	P, 5	-46 J,20 D,	C, 3	P,3	30	P ₅ 5	ī,	150		Т,	P,8	ب ھر د	o,		1.		۲,		P, 10 Ind
10. 5.53 T,	5-53		3-51	-48	1951 P,5				11-27-51	1	1951			7-11-51		28-51	0 4 0		6-28-51		1921		1947
	10-			- 2		1-	1		11-								5	_	9				
.41	11,8	14,94	23,35	80	26	50	1	4.90	0.9	; ;	က			17.40	80	10.02	9		55.81		18		40
υ	U	n	D	ပ	Þ	υ	Þ	n	ပ	1	ပ			υ	ບ	ם כ	۔ ر		ט	1	n		Ü
op	42do	- Aluvium -	- Sand	2 Gravelly	clay. - Quick-	sand. - Basalt	- Sand	op	60 Basalt		200 Basalt			52do	14 Gravel	15 70 11 11	Dasait		50 Gravel		Quick-	sand.	17 Basalt
1 1 1		!	-		!		- 1	1		- !						+							
	364	;	1	415		1			65		78			273	190		ğ		190		j		433
48	364		30	404	30	220	18	30	65	1	78			172	204	31	2		240		20		450
10	6-	48	48	9	48	9	36	48	9	9	8			∞		09	4		9		36		6-4
161	406	26	30	200	30	253	18	30	125	165	278			325	204	31	0		240		20		450
Dr	Dr	Dg	Dg	Dr	Dg	Dr	Dg	Dg	Dr	Dr	Dr			Dr	Dr	Dg	<u> </u>		Ļ		Dg		Dr
P,150	P,160	P,170	S,150	P,175	S,140	S,160	P.135	S,140	S,150	P,130	P,120			P,120	8,200	S, 200	677,6		\$.220	ì	S, 215		P,225
18J1 James Hasuike	18Q1 R. Livingston	19F1 E. Schlichting	20K1 Eoff Brothers	21A1 Oregon State High-	way Dept. 21F1 Chester Feschbuch -	22A1 F. F. Eberly	22H1 R. F. Brink	23C1 W. Pickens	23N1 G. Kogiso	24C1 E. T. Schultz	24M1 City of Tualatin			do	24Q1 A. E. Dunstan		and Son.		1 Alice S. Peterson		1 J. F. Johnston		26B2 Portland Gas and Coke Co.
1811	18Q	19F	20K	21A	21F	22A	22H	23C	23N	24C	24M			24M2	24Q	25D1	7 C 2		25P1	:	26B1		26B

		Remarks				Reported 50 ft of clay	above aquifer.	Materials reported were	12 It of soil and 83 It of	basait above aquiier.	L; bailed 21 gpm for 1 hr	with 80+ ft of drawdown.	Can be pumped dry but	recovers in a few hours.	Reported 10 ft of soil, 78	ft of rock above aquifer.	Used by five families.		Casing perforated near	bottom.
	ical cter n)	Chloride		5	6	9		on .		7	2		21	σ	- ∞			2	9	9
	Chemical character (ppm)	Hardness as CaCO ₃		09	20	110		204		24	102		196	64	74		120	62	132	70
		əsN		Ω		Ω	1	υ, S		D.S	D,S		D,S		D,S		D,S	S, C	Д	Д
	(mqg) b	Type of pump and yield		8,1	P, 10	3,8	1	J, 10D,S		J.5	J,10D,S		8, T	1.	1947 J, 10 D,S				J,15	J,5
	Water level	Date		6-28-51	1951	1949		1050		7- 2-51	1948		6-26-51	7-23-51 I 10	1947		6-26-51	1921	1150	6-21-51
inved	Water	Feet below or above (+) land surface	ned	6.33	80	52	;	70		24.08	20		27.52	19 27	09		19.79	37	20	25.30
-Cont	əəu	Ground-water occurre	.—Continued	Þ				ပ		n	ບ		D	E	Ö		Þ	Þ	D D	n
Table 1.—Records of wells—Continued	ring zone es	Character of material	В. 1 W.—С	Sand	op	Basalt	,	op		Sand	Basalt		Sand		Basalt		Sand	op	Silt	Quick-
-Rece	r-bearir or zones	Thickness (feet)	2 S.,		1	9		24			81		о		16				12	1 1
Table 1.	Water-bearing or zones	Depth to top (feet)	T.		1	20		G 6		 	242		23		88		1 1	1 1 1 1 1	354	1
		Depth of casing (feet)		15	435	51		45		32	245		32		30		30	43	366	35
		Diameter (inches)		36	9	9		 		48	9		48	36	9		09			36
		Depth (feet)		15	435	110	;	119		32	323		32		104		30	43	366	35
		Lype of well		Dg	Dr	Dr		Dr		Dg	Dr		Dg	ڔ	D.		Dg	Dg	Dr	Dg
	simate level)	Topography and appro: altitude (ft above sea		S,220	S, 250	S,280	1	S, 195		P.180	P,205		P, 170	\$ 200	S,210		P,215	P, 190	P, 185	P,205
		Owner or occupant of property		J. W. Demke	Sunde	G. E. Berry	,	Joe Itel		C. L. George	Bryan Tykeson		A. S. Peterson	Glen Orr	James R.	McPoland.	Fred Langer	Arthur Rupprecht	LeRoy Hornschuh	Arnold Borchers
		Well		26F1	26G1	26Q1		27E1		27G1	27H1		28F1	28H1	28L1	-	29M1	30B1	30E1	30H1

Pumps dry in about an	nadequate in summer.	Reported 48 ft of soil	above basalt. Reported 40 ft of soil	and 20 ft of rock above	r.	L; test pumped at 500	ell 3.	City well 1; well 73 of	Piper (1942).	City well 2, about 14 ft	well 1.	Reportedly inadequate.		Log reported as 35 ft of	soil and decomposed	rock; 55 ft of rock.	•			•	Inadequate during dry	is.	Reported rock entire		Basalt 18—123 ft; can be	pumped dry.	L; used by two families.			Basalt reported 21-112	ft. December dans in obsert of	hour; basalt 12-224 ft.
Pumps	Inadeq	Report	above Report	and 20	aquifer.	L; test	gpill with	City we	Piper	City we	from well 1	Report		Log re	soil a	rock;					Inadeq	months	Report	depth.	Basalt	dund	T; nse			Basalt	£.	hour;
4,	12	5	! ! !		,	23						4	9	2			9	9		-	,		4		2		2	S	2	32	_	r
116	124	104	1		ě	34				1		94	68	20			64	44		:	42		74		82		82	82	110	84	1	<u>+</u>
D,S	D	D,S	Д		(or, Si		P,S		P,S		Ω	D,S	Д			Ω	D,S		-	a		D,S		Ω		D,S		Ω		Ç	ŭ,
1951 P,5		J, 10 D,S	J.10			T,	000	Ţ,	125	Ţ,	125	J, 8	P,5					P,4			구 쇼,		J,10D,S		J, 15		Д	P,5	J,8	1,5	þ	o, L
1951	8-13-51	1 1 1 1 1 1	1 2 3 3 1			746		751		1 1 1 1 1		1 1 1 1 1	1951	6-28-51			6-29-51	7- 2-51		,	1921		1943		1947		1947	1951	1951			
35	24.5		1			38		29		1 1 1		1 1 1 1 1	09	39.41			45.98	10.5		•	1.2		38		82		125	15	9	1		1
D +		O I	<u>ت</u>		,	ပ •		ت ر		; ;		ე ქ	ن ا	O,			υ +	D			<u> </u>		ņ		D		D		n	ن ص	ŗ	ц
op	1	Basalt	op			Basalt		op		op		op	op	op			op	Weath-	ered ba	salt.	Weath-	ered ba	Basalt.		op		op	op	Sand	Basalt		op
80		48	20			202		145		151		1 1	1	50			75	11		-	20		11		12		48	1	-	-		1
35	 	53	09			137		130		130		1 1		35			20	12			16		89		111		150	1 1	1	1		1
140	26	49	46	-	,	113		06		120		1		39			70	12		,	2		7		24		49	1	18	1		71
9	48	9	9			16-	7	9		4		9		9			9	09			36		9		9		9	9	36	9		
140	26	101	80			339		275		281		92	165	85			115	23		,	18		100		123		200	65	18	1113	200	* 777
Dr	Dg	Dr	Dr			Dr	_	Dr		Dr		Dr	Dr	Dr			Dr	Dg			Dg		Dr		Dr		Dr			ŗ		<u></u>
P,190	S,180	8,210	S.250	,	,	P, 190		P,190		P,190		S, 300	S,230	S,350			8,350	S,320			8,235		S,285		S,300		S, 340	8,300	S, 295	8,325	2	0,4,0
Labahan	Albert Johnson	H. H. Unger	Elmer Lewis			City of Sherwood		qo		op		R. Schlarbaum	G. Lampart	E. R. Hughes			G. E. Bradley	op			J. T. Curtis		Charles Manewell.		Dr. Pennington		Ben Andrews	Betty Mitchell	D. C. Rumrey.	Howard Ellman		E. A. Engsen
30M1	30Q1	31C1	31N1		,	32D1		32F1		32F2		32R1	33E1	34A2			34H1	34J2		į	34P1		35E1		35F2		35K1	36C1	36D1	36E1	9	30K1

		Remarks
•	ical cter 1)	Chloride
	Chemical character (ppm)	Hardness as CaCO3
,		əaU
	(mqg) t	Type of pump and yield
	Water level	Date
tinued	Wate	Feet below or above (+) land surface
ပို	əsu	Ground-water occurre
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material
-Rec	er-beari or zones	Thickness (feet)
Table 1.	Water	Depth to top (feet)
·		Depth of casing (feet)
		Diameter (inches)
		Depth (feet)
		Type of well
		Topography and approx
		Owner or occupant of property
		=

	9	L; used for irrigating 50	acres of pasture; pumped	at rate of 588 gpm with 45	ft of dd after 4 hours.	-	4 Reported 38 ft of clay	above aquifer.	11 Water supply for three	families.	Materials reported; clay	and sand to 86 ft, rock	to 91 ft, clay to 150 ft,	rock to 193 ft, clay to	196 ft.	5 Plugged at 250 ft.	6 Materials reported, clay	17 ft, hard and soft rock	51 ft; bailed 18 gpm for	1 hour with 37 ft dd.
ļ	38	÷				92	44	_	10					_		82	94			
	S. 15	Irr				Ω	S 144		1.		-				_			_		_
	D,		290				Ω		0 0		.5 D					0.	1948 J, 10 D,S			
	٦,٠	51/T,				я, П	3,5		5 <u>1</u> C, 1		1953 J, 15					51 <mark>C,1</mark>	18 J, 1			_
	J,5 D,S 188	9-20-6				1 1 1 1			13.98 5-15-51 C,10 D,S 110		195					5-15-51C,10 D,S	194			
						P,8	D,S				10					ᅜ	31			
	ပ	ပ				ပ	ပ		n		ပ					ပ	ပ			
T. 2 S., R. 2 W.	Basalt C	57 368 220do C					52do C		Sand		33 Basalt					op	op			
. S.	-	220				-	52				33					!	က			
T.	1	368				1	38		1 1 1 1		160						65			
		22				20	40		2		6 158					250	15			
	9	12				9	9		36		9					10-6	9			
	65	588				Dr 126	06		29		196					Dr 400 10-6 250	89			_
	Dr	Dr					Dr		Dg	_	Dr					Dr	Dr			
	S,240	5,285				5,265	8,200		P,165		P,160					S,175	P,175			
	1D1 Bert Sparks	1J1 Bierly Brothers				Alice E. Richards			2N1 H. L. Flint		Waldo B. Flint					Fred Groner	E. Hesse			
	1D1	1.51					2B1		2N1		2P1					3K1	3R1			

	4 Flowing $\frac{1}{2}$ gpm.	5 H, figure 14; L; used for irrigating 10 acres;	reportedly pumped 150 gpm with little dd.	17 Water level low during	summer. Reported 218 ft of clay	above aquifer; flows $\frac{1}{2}$	gpm.	7 4 Water reported to con-	tain iron.	used by unree rainines	4 Ca.	Sand and silt drilled to	basalt at 234 ft.	Reported materials, 512	ft of clay and sand; 41 ft	of rock; flows about 2	gpm.		11 Reportedly found no	rock.		Materials reported, 410	It of sand and silt above aquifer.	_
5	4 4	2		17	2			4	u	0	4	1		3 1			•	11	11	•	v	!	2	
108	158	82		122	98		i	54 106	Ç	7	90	1						118	84	(20		84	-
D,S	Ω	Irr		ß	D,S		ļ	Ω Ω	ρ	<u> </u>	Ω	Irr		D S			ţ	v, U	S	1	J V	D,S	D,S	-
	J,10	100		Р,3	J,8		,	P,5	٥	 ر	J, 10			C, 10	•			-51C,8 -51P.5	T,75		-51 F, 5	1	J,10	-
1950 J,10	2-23-51 J,10 2- 8-51 J,10 2-23-51 C			2-23-51 P,3	2-23-51 J,8				0	000	1	7- 5-56		5-15-51C,10 7-31-51 J.10				5-15-31C,8 551P.5			IGG	1 1 1 1 1	1	_
2	표 표 4	•		7.30	ĮΞĄ		,	150		r	1	10		12.04 F				86	! !		ດ	1	f 1 1 1	_
Ö	000)		n	ပ		;	ວ ບ	1	>	ပ	ပ		Þυ			:	ם כ	Ö		<u> </u>	Ö	Ü	_
4 Gravel	Sand Basalt			4 Quick-	sand. Basalt		;	Basalt do	- 0	Sand	Basalt	op		op			7	Basalt	Sand		Quick- sand.	Basalt	op	
4	7 4	•		4	219		í	73	-	2	1	22	27	15				19	-		1	16	47	_
09	158	2		20	218		,	120	-	-	1	310	585	152				85	1		 	410	20	
09	50))	-	24	218		,	40 195	7.0	7	1	227		23			c	18	300	9	35	418	20	_
9	999)		48	9		,	တ တ	0	t 0	9	∞		72			ç	9	9	9	36	9	9	_
64	50 165 486	2		24	437			215	2	- -	260	612		553			6	104	300	2	07	426	29	_
Dr	D Dr.	į		Dg	Dr		,	ğ Ö	<u>}</u>	30	Dr	Dr		Dg Dr			Ĺ	D Z	Dr	,	g T	Dr	Dr	_
P,140	P,140 P,175 P,180	•		P,175	P,180		(S, 350 P, 185	5	L, 130	P,190	P,125		P,150 P.135	•			F,145	P,155	,	P, 135	P,135	P,180	_
Christianson Brothers.	William Waibel J. E. Hiatt			Ernest Losli	J. Spiering)	;	E. H. Taylor Robert Hiatt	on officers of	C. Armidage	John Raymond	F. H. Mott		10L1 J. A. Rowell	Church.			11C1 watdo b. Fiint	12L1 A. O. Oleson	-	12P1 Ed Mulenburgh	13A1 H. Unger	13Q1 E. T. Sheppart	_
5G1	5Q1 6A1 6D1	1		6M1	6P1		Č	7.Q1 8E1	1.40	140	8L1	9D1		10L1 10P1			:	12B1	12L1		12P1	13A1	13Q1	

~	
9	
=	
2.	
- 1	
5	
ď	
_	
~	
_	
901	
=	
j	
·	
7	
-	
~	
spando	
Ω	
_	
_9	
Table	
7	
-	

-	cal :er	Chloride E E B arks		2	3 Basalt found at bottom,	12 Readily pumped dry in	summer. Reportedly bailed 15 gpm	 က	4 Reported plugged back to	6 Water has slight yellow	_	3 Water reportedly con-	4 Water reported to flow	gpm from December to	3 Water sometimes has		5 Small flows in winter	only.
Ę	Chemical character (ppm)	Hardness as CaCO3		50	44	120		 99	74	142		06	80		22		48	_
f	- 0	əsU		Q	Д			 Д	Ω	Д		Ω	Q		D.S		s'c	_
	(md3)	Type of pump and yield		3,5	C, 10	P,5	1	P, 5	J,15	J,10		5,5	C,12		.1.15	•	J, 10	
	Water level	Date		651		6-26-51	853	251		1246		1950	2-28-51		8- 2-51		2-28-51 J,10 D,S	
panu	Water	Feet below or above (+) land surface	nued	24	13,48	14.37	10	 06	1 1 1 1 1 1 1 1	20		20	Ē		60.4		Ē	_
Conti	901	Ground-water occurrer	-Continued	n	n	n	Ü	ပ		Ü		ت ت	ပ		Ü		υ	_
Table 1—Records of wells—Continued	Water-bearing zone or zones	Character of material	R. 2 W.	Quick-	Alluvium	Sand	Basalt	do	qo	op		cp	op		op		qo	
-Rec	ter-beari or zones	Thickness (feet)	. 2 S.,	1	:	1		 1	-	9		-	132		1		11	_
Table 1	Wate	Depth to top (feet)	T	1 1 1	į	1	1	 1		80		1	140				70	_
		Depth of casing (feet)		27	26	31	330	92	 - - -			40	140		30		59	
		Diameter (inches)		36	36	36	9	4	9	9		1	9		5		9	
		Depth (feet)		27	26	31	344	 130	200	86		70	272		100		103	_
		Type of well		Dg	Dg	Dg	Dr	Dr	Dr	Dr		ŗ.	Dr		Dr		Dr	_
		Topography and approx altitude (ft above sea l		P,170	S,265	P,175	P.175	S,265	S,175	S, 185		S, 225	S,165		S. 350		S,410	
		Well Owner or occupant of property		14D1 Jesse Snyder	14Q1 F. E. Jewett	15B1 Fred Barker	15E1 W. T. Jackson	 16E1 C. R. Seiffert	16H1 Scholls Store	16J1 E. J. Bartlett		17E1 D. E. Mann	17F1 Charles Newton		17R1 R. N. McClur		18D1 R. Lorenz	

summer.	Stopped on rock.		Easily pumped ary.	Reported materials, 39 it of clay and boulders. 11	•	W; Reported 10 ft of clay,	62 ft of rock above	aquiler.	Reported 32 it of clay			ς.	5	_	color.	Inadequate yield.	Adequate for domestic			mer.	Darety adequate, pasant 90-429 ft	Reported 55 ft of clay	and 115 ft of rock above	aquifer.	Water sometimes has	reddish color.	_	rials reported as 35 ft	of soil, 100 ft of soft	basalt and 97 ft of hard	basalt.
4	2	0 4	1 , -	4		9		•	11	9	4	C.)	4		-	5		က	_	ť	!			33		4				
20	44	30	0 0	05		34		ć	7	32	20	160)	105		1	78		∞	9	2	!			10		58				
D,S	S,C	ט, ר	ם נ	<u> </u>		D,S		c	ر ر	D,S	D,S		1	Ω		z	D,S		o,s	υ C		1			S, C		Ω				
ъ, 8	8,4	7, -	و د	ນຸ້າ						P,5	3,15	×		P,10		P,3	J,10			10	7,4	Z			Р,8		P,2				_
1	7-51	051		1		6-27-51		ī	76-	27-51	-46]]]] [] []			8- 6-51	-		2-51			7-30-51			1951		1947	-			
1	31.43	30	† 10.†			51.0			1	40.68	49		 	1		61.79	1 1 1 1 1		19.31	390	0	130.25			89		122				
Д	ם כ	: כ	o ;	>		Д		(ر	;	Д	Д	•	Д		д	Ц		Д,	р	4	υ			ц		Þ			_	_
Basalt	Silt	Basalt	Amavium -			op		-	on	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Basalt	Ç		op			Basalt		Clay		ı	op			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Basalt				
140	48	100	2,0	2		16			!	i	23	4.9	,	1		-	75		!	100	3	55			1		182				
20	0	i				72			1		09			!		1	80		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!						1 1						
!	84	9.5	0 4	4.		22		Č	31	52	99	72)	1			1		∞ 	00	000	26			1		49				
9	36	ۍ و د	0,10	٥		9		Ç	٥	36	9	ç	>	9		48	9		8	ď	>	9			9		9			_	
190	48	061	3 0	20		88			103	52	83	68		180		80	155		1	190	67	225			128		232				
Dr	Dg	Dr.	j t	Ľ		Dr		í	i	Dg	Dr	ŋ	i	Dr		Dg	Dr		Dg	Š	3	Dr			Dr		Dr				
U,580	8,525	2,2.75	3,200			S,340		0	2,400	S, 190	U,675	\$ 475	•	U,650		U,830	U,1,200	ļ	U,1,070	0.60 11	0,00	S.470			U,770		8,425				
9G1 Homer Flynn	3L1 Dallas Crawford	4DI Weerre Brothers.	4H1 L. McLougnin	401 Faulin		4M1 Wm. Stenek		(SAI O. Krouse	5K1 E. W. Rehwalt	8E1 C. Allen	6H1 Mrs A Smith		28H1 J. G. Toomey		30G1 James McConn	31A1 L. Clark		33K1 W. M. Strickland	101 Startobox	Tarient in the control of the contro	5A1 Oliver Coleman			35N1 R. B. Joyce		36E1 Carl Schalten-	brand.			
	U,580 Dr 190 6 50 140 Basalt P P, 8 D,S 50 4	U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 S,525 Dg 48 36 48 0 48 Silt U 31.43 6-27-51 J,8 D,S 44 5	U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 5,525 Dg 48 36 48 0 Basalt U 31.43 6-27-51 J,8 D,S 56 6 5,275 Dr 190 6 40 Basalt C 30 651 P,10 D,S 56 6	U,580 Dr 190 6 50 140 Basalt P 17 P P P 9 A A Basalt B A A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B	U,580 Dr 190 6 50 140 Basalt P 17 P,8 D,5 50 4 Sintering S,525 Dg 48 36 48 0 48 Sit 1 31.43 6-27-51 1,8 D,5 44 5 Stopped on rock. S,275 Dr 190 6 40 Basalt C 30 6- -51 P,10 D,5 56 6 Easily pumped dry. S,250 Dg 23 44 23 0 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Easily pumped dry. S,255 Dr 50 6 42 42 42 3 Basalt J J,8 D 30 4 Reported materials,	U,580 Dr 190 6 -1 50 140 Basalt P 17 Dr 190 6 48 10 48 Sitt 11 11 10 15 15 16 16 16 16 17 17 17 17 10 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17	U,580 Dr 190 6 -1 50 140 Basalt P -1 17 P 17 P D,S 50 44 5 Stopped on rock. S,275 Dr 190 6 40 -1 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,275 Dr 190 6 40 -1 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U -14-51 J,8 D 30 4 Reported materials, or classified on rock. S,255 Dr 6 42 42 42 3 Basalt J,8 D 30 4 Reported materials, or classified or classified on rock. S,340 Dr 88 6 22 72 16do	U,580 Dr 190 6 -1 50 140 Basalt P -1 -1- -1- 50 48 81 -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- <td>U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 Summer. S,225 Dg 48 36 48 31.43 6-7-51 1,8 D,S 56 6 510pped on rock. S,275 Dr 190 6 40 Basalt C 30 651 P,10 D,S 56 6 Easily pumped dry. S,255 Dr 50 6 42 42 42 3 Basalt U </td> <td>U,580 Dr 190 6 50 140 Basalt P 140 Basalt P 1,8 D,S 50 4 5 Stopped on rock. S,275 Dr 190 6 40 Basalt C 30 651 P,10 D,S 56 6 S,200 Dg 23 48 23 0 23 Alluvium - D 4.04 6-14-51 J,8 D 38 4 Reported materials, pumped dry. S,255 Dr 42 42 42 3 Basalt U </td> <td>U,580 Dr 190 6 -1 50 140 Basalt P -1 178 D,S 50 4 Summer. S,225 Dg 48 36 48 Sitt -1 Basalt C 30 651 P,10 D,S 56 6 Easily pumped on rock. S,250 Dg 49 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 38 4 Reported materials, of class and boulders and bo</td> <td>U,580 Dr 190 6 50 140 Basalt P 17,8 D,S 50 4 Summer. S,525 Dg 48 36 48 Sitt Basalt C 30 651 P,10 D,S 56 6 S,200 Dg 23 48 23 0 23 Alluvium U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 39 4 Easily pumped on rock. S,255 Dr 42 42 42 3 Basalt U </td> <td>U,580 Dr 190 6 50 140 Basalt P 1,3 6-27-51 1,8 D,5 50 4 Summer. S,525 Dg 48 36 48 61 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 3 Basalt J,8 D 38 4 Reported materials, of clay and boulders for the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diag</td> <td>U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 44 5 Stopped on rock. S,225 Dg 48 36 48 81t Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,250 Dg 48 23 0 23 Alluvium - D U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 30 4 Reported materials, pumped dry. S,255 Dr 6 42 42 3 Basalt U </td> <td>U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 44 5 Stopped on rock. S,225 Dg 48 36 48 61 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,250 Dg 48 23 0 23 Alluvium - D U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 42 42 42 43 Basalt</td> <td>U,580 Dr 190 6 50 140 Basalt P 1,3 6-7-51 1,8 D,S 50 4 Summer. S,225 Dg 48 36 48 61 Basalt C 30 651 P,10 D,S 56 6 Eastly pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 39 4 Reported materials, pumped dry. S,250 Dr 88 6 22 72 16 -do-rock 9 51.0 6-27-51 J,8 D,S 34 6 W; Reported materials, pumped dry. S,200 Dr 88 6 22 72 16 -do-rock 17 4</td> <td>U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 4 Summer. S,525 Dg 48 36 48 81t Basalt C 30 651 P,10 D,S 56 6 A Eastly pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr 50 6 42 42 3 Basalt U 4.04 6-14-51 J,8 D 30 4 Reported materials, S,255 Dr 42 42 3 Basalt U </td> <td>U,580 Dr 190 6 50 140 Basalt P 178 Dr.S 56 6 Stopped on rock. S,225 Dg 48 36 48 Sitter</td> <td>U,580 Dr 190 6 50 140 Basalt C 30 651 1,8 D,5 66 8 Summer. S,255 Dr 190 6 40 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,200 Dg 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,340 Dr 88 6 22 72 16 -do D 51.0 6-27-51 J,8 D,5 34 6 Reported duraterials. S,240 Dr 88 6 22 72 16 -do C 651 J,8 D,5 A</td> <td>U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 Summer. S,525 Dr 36 4 36 48 36 48 5 49 5 49 5 48 51 0 23 41 0 23 Alluvium 0 40 6 42 4 Basalt 6 6 42 4 Basalt 6 6 4 Basily pumped dry. 6 6 6 42 4 Basalt 6 4 Basily pumped dry. 6 6 6 6 6 6 4 Basily pumped dry. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 7 <</td> <td>U,580 Dr. 190 6 50 140 Basalt C 30 6 -51 P,10 D,5 50 4 5 Stopped on rock. S,275 Dr. 190 6 48 23 40 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr. 50 6 42 42 3 Asasilt U 4.04 6-14-51 J,8 D 38 Eastly pumped on rock. S,256 Dr. 50 6 42 42 42 42 42 42 42 43 6 42 42 43 6 44 8 6 6 42 42 42 3 44 6 48 8 6 42 4 48 6 48 8 6 6 6 48 8 6 48 48 48 48</td> <td>U,580 Dr. 190 6 50 140 Basalt. C 30 6 140 Basalt. C 30 6 15 10 D,S 44 5 Stopped on rock. S,275 Dr. 190 6 42 C 30 6 Basalt. C 30 6 J,B D,S 56 6 Basalt. C 30 4 Resported materials, of class and bounders. S,256 Dr. 50 6 42 42 42 42 42 42 42 42 3 Basalt. D 30 4 Resported materials, of class and bounders. S,256 Dr. 88 6 22 72 16 -do 51 p.3 D, 8 F Resported materials, of class and bounders. S,200 Dr. 153 6 31 </td> <td>U,580 Dr. 190 6 50 140 Basalt</td> <td>U,580 Dr. 180 6 P.S. D.S. 44 Basalt</td> <td>U,580 Dr. 190 6 50 140 Basalt Person 12 50 44 Stropped on rock. S,255 Dg 48 36 48 Sit </td> <td>U,589 Dr. 190 6 -14 50 48 Silf</td> <td>U,586 Dr. 190 6 </td> <td>U,580 Dr. 190 6 </td> <td>U,580 Dr. 190 6 </td> <td>U,580 Dr. 190 6 50 44 Basalt. C 48 14.8 6 -51.91 D.S 44 5 Stopped on rock. S,255 Dr. 190 48 48 0 48 Statt. 0 0 48 Statt. 0 0 48 Statt. 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>U,580 Dr. 190 6 50 48 0.5 5 Supped on rock. S,525 Dr. 48 36 48 0 48 Sint</td>	U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 Summer. S,225 Dg 48 36 48 31.43 6-7-51 1,8 D,S 56 6 510pped on rock. S,275 Dr 190 6 40 Basalt C 30 651 P,10 D,S 56 6 Easily pumped dry. S,255 Dr 50 6 42 42 42 3 Basalt U	U,580 Dr 190 6 50 140 Basalt P 140 Basalt P 1,8 D,S 50 4 5 Stopped on rock. S,275 Dr 190 6 40 Basalt C 30 651 P,10 D,S 56 6 S,200 Dg 23 48 23 0 23 Alluvium - D 4.04 6-14-51 J,8 D 38 4 Reported materials, pumped dry. S,255 Dr 42 42 42 3 Basalt U	U,580 Dr 190 6 -1 50 140 Basalt P -1 178 D,S 50 4 Summer. S,225 Dg 48 36 48 Sitt -1 Basalt C 30 651 P,10 D,S 56 6 Easily pumped on rock. S,250 Dg 49 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 38 4 Reported materials, of class and boulders and bo	U,580 Dr 190 6 50 140 Basalt P 17,8 D,S 50 4 Summer. S,525 Dg 48 36 48 Sitt Basalt C 30 651 P,10 D,S 56 6 S,200 Dg 23 48 23 0 23 Alluvium U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 39 4 Easily pumped on rock. S,255 Dr 42 42 42 3 Basalt U	U,580 Dr 190 6 50 140 Basalt P 1,3 6-27-51 1,8 D,5 50 4 Summer. S,525 Dg 48 36 48 61 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 3 Basalt J,8 D 38 4 Reported materials, of clay and boulders for the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diagram of the diag	U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 44 5 Stopped on rock. S,225 Dg 48 36 48 81t Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,250 Dg 48 23 0 23 Alluvium - D U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 30 4 Reported materials, pumped dry. S,255 Dr 6 42 42 3 Basalt U	U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 44 5 Stopped on rock. S,225 Dg 48 36 48 61 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,250 Dg 48 23 0 23 Alluvium - D U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,255 Dr 50 6 42 42 42 42 42 42 43 Basalt	U,580 Dr 190 6 50 140 Basalt P 1,3 6-7-51 1,8 D,S 50 4 Summer. S,225 Dg 48 36 48 61 Basalt C 30 651 P,10 D,S 56 6 Eastly pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr 50 6 42 42 42 3 Basalt U 4.04 6-14-51 J,8 D 39 4 Reported materials, pumped dry. S,250 Dr 88 6 22 72 16 -do-rock 9 51.0 6-27-51 J,8 D,S 34 6 W; Reported materials, pumped dry. S,200 Dr 88 6 22 72 16 -do-rock 17 4	U,580 Dr 190 6 50 140 Basalt P 1,8 D,S 50 4 Summer. S,525 Dg 48 36 48 81t Basalt C 30 651 P,10 D,S 56 6 A Eastly pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium - U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr 50 6 42 42 3 Basalt U 4.04 6-14-51 J,8 D 30 4 Reported materials, S,255 Dr 42 42 3 Basalt U	U,580 Dr 190 6 50 140 Basalt P 178 Dr.S 56 6 Stopped on rock. S,225 Dg 48 36 48 Sitter	U,580 Dr 190 6 50 140 Basalt C 30 651 1,8 D,5 66 8 Summer. S,255 Dr 190 6 40 Basalt C 30 651 P,10 D,5 56 6 Easily pumped on rock. S,200 Dg 23 48 23 0 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,200 Dg 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Easily pumped on rock. S,340 Dr 88 6 22 72 16 -do D 51.0 6-27-51 J,8 D,5 34 6 Reported duraterials. S,240 Dr 88 6 22 72 16 -do C 651 J,8 D,5 A	U,580 Dr 190 6 50 140 Basalt P P,8 D,S 50 4 Summer. S,525 Dr 36 4 36 48 36 48 5 49 5 49 5 48 51 0 23 41 0 23 Alluvium 0 40 6 42 4 Basalt 6 6 42 4 Basalt 6 6 4 Basily pumped dry. 6 6 6 42 4 Basalt 6 4 Basily pumped dry. 6 6 6 6 6 6 4 Basily pumped dry. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 7 <	U,580 Dr. 190 6 50 140 Basalt C 30 6 -51 P,10 D,5 50 4 5 Stopped on rock. S,275 Dr. 190 6 48 23 40 23 Alluvium. U 4.04 6-14-51 J,8 D 38 4 Eastly pumped on rock. S,255 Dr. 50 6 42 42 3 Asasilt U 4.04 6-14-51 J,8 D 38 Eastly pumped on rock. S,256 Dr. 50 6 42 42 42 42 42 42 42 43 6 42 42 43 6 44 8 6 6 42 42 42 3 44 6 48 8 6 42 4 48 6 48 8 6 6 6 48 8 6 48 48 48 48	U,580 Dr. 190 6 50 140 Basalt. C 30 6 140 Basalt. C 30 6 15 10 D,S 44 5 Stopped on rock. S,275 Dr. 190 6 42 C 30 6 Basalt. C 30 6 J,B D,S 56 6 Basalt. C 30 4 Resported materials, of class and bounders. S,256 Dr. 50 6 42 42 42 42 42 42 42 42 3 Basalt. D 30 4 Resported materials, of class and bounders. S,256 Dr. 88 6 22 72 16 -do 51 p.3 D, 8 F Resported materials, of class and bounders. S,200 Dr. 153 6 31	U,580 Dr. 190 6 50 140 Basalt	U,580 Dr. 180 6 P.S. D.S. 44 Basalt	U,580 Dr. 190 6 50 140 Basalt Person 12 50 44 Stropped on rock. S,255 Dg 48 36 48 Sit	U,589 Dr. 190 6 -14 50 48 Silf	U,586 Dr. 190 6	U,580 Dr. 190 6	U,580 Dr. 190 6	U,580 Dr. 190 6 50 44 Basalt. C 48 14.8 6 -51.91 D.S 44 5 Stopped on rock. S,255 Dr. 190 48 48 0 48 Statt. 0 0 48 Statt. 0 0 48 Statt. 0 0 0 0 0 0 0 0 0 0 0 0	U,580 Dr. 190 6 50 48 0.5 5 Supped on rock. S,525 Dr. 48 36 48 0 48 Sint

_
Š
3
1
3
٦
=
0111
4
•
ř
è
0
Ω
_
•
4
ŕ
•

		Remarks		5 Pumps dry in summer.		3 L; dd reported to be 13	ft when pumped at 45	gpm for 5 hours; flowed 10 gpm in 1948.	5 L; reportedly test pumped	3 Water reported to con-	pumped 8 gpm with 70 ft	dd. Reported to flow 3 gpm at times		5 Used by two families;	water reported to have mineral taste.
	ical cter (1	Chloride		5		8			rc.	က		i	10	ري 	
	Chemical character (ppm)	Hardness as CaCO ₃		32		78			124	44		! ! !	26	06	
		əsN		Ω		D			J,15 D,S	D,S		Irr	D,S D,S	D,S	
	(mq3)	Type of pump and yield		1,8		J,5			J,15	1,8		T,80 Irr	J,8 J,8	J,8	
	Water level	Date				2-23-51			350	1945		1051	750 3- 2-51	1 1	
ntinued	Wate	Feet below or above (+) land surface	inued			1.68			45	20		Ĺτ	17 22.93	1	
٥	ээт	Ground-water occurrer	Cont	Þ	. ≥	υ			Ö	Ö		<u>ပ</u>	P	D	
Table 1.—Records of wells—Continued	Water-bearing zone or zones	Character of material	R. 2 W.—Continued	30 Basalt	2 S., R. 3	119 Basalt			op	op		op	25 Alluvium - 52 Alluvi -	um(?) Gravel	
-Rec	r-bearin or zones	Thickness (feet)	2 S.,	30	Ė	119			201	15		101	25	က	
Table 1.	Water o	Depth to top (feet)	Ţ.	18		286			168	155		120	0	09	
		Depth of casing (feet)		35		289			7,60	153		95	25 52	1	
		Diameter (inches)		48		9			9	9		8	48	9	
		Depth (feet)	•	48		405			369	170		264	25 52	63	
		Lype of well		Dg		Dr			Dr	Dr		Dr	Dg Dg	Dr	
		Topography and approx altitude (ft above sea l		S,310		P,180			P,230	P,210		S,175	P,175 S,600	S,210	
		Owner or occupant of property		Don Holmes		Harold Haase			Richard Kiefer	Walter Schmidt		Charles E. Schmidt -	Herman Egger	Andress	
		Well		36J1	,	1A1			1C1	1F1		1R1	1Q1 2Q1	5L1	

						10150	.01	LDS	OF	** 15 [5	מנו					
Inadequate during dry	1,000 Not used. 3 Used by three families;	water said to come from "crevice" in rock. 4 Water level reported to	uraw uown constuerably under normal use.	5 4 "Upper water" lost in	crevices; back-filled to 150 ft; basalt 72-250 ft.	Some water reported at	rated	were: 68 ft of clay, 14 ft of boulders, 28 ft of	broken rock and clay, 25 ft of lava rock, Flows	3 gpm. 3 Water said to have red-	dish color.	4 Water reported to con-	tain iron. 6 Can be readily pumped dry.		3 W; water carries sand. Drv hole: reportedly	drilled through blue clay and shale. Dry hole; shale entire
1	1,000	4	į	c 4		4.				.,	_	7	ŭ			
90	271 24	20	1	352 46		46	110			84		11	190		82	1
Δ	1 !	Ω	z	ДΩ		Ω	Д			D,S	ν.	J, 10 D,S	Ω]	Ω	1 1 1
5,8	z	J,8	! ! !	ъ, д С		J,10	J,8			3,8	-	3,10	3,15		J,10	
1	5-18-51	648		750		949	2-21-51					750	350		1-26-51	
	12.5	20	1	45		52	Ĺη			!		35	360		1,53	1
D	OÞ					Д	ر -					<u>. H</u>	<u> </u>	4 W.	D :	1
Shale(?)	Shale Basalt	op	Alluvium.			op	op			! ! ! ! ! !			376 Basalt	T. 2 S., R.	Sand	1
-	1 1	58				6	25						376			
	1 1	50	1 1 1 6	72		103	110			į			20			
1		20	1 1	72		106	112			35			 		30	! ! !
48	48	9	48	9 9		9	9			48	~	9	9		18	9
34	150	108	25	183		112	135			35	86	120	396		300	480
Dg	Dr Dg	Dr	Dg			Dr	Dr			Dg			Dr		Bd	
8,210	P,210 S,225	U,1,020	U,1,180	S,775 S,690		S,790	P,175			S,200	\$ 455	8,730	U, 1, 275		S,190 S,260	S,500
C. E. Jorrgen	J. N. Strever	S. A. Whitmore	Earl Baker	Max Reeher		M. J. Murphy	Fred Schmidt			M. Cady	E. B. Tompkins		O. J. Ornduff		R. B. McBurney	H. L. Beck
6L1	6R1 7Q1	10B1	10N1	11C1 11K1		11R1	12A1			12H1	13A1	13D1	26J1		1B1 131	2M1

	Gr	COLOGY AND GROUND	, vv	AIL	к,	1 0 2	L	MIIN	V P	7 1-1	LE	Υ,	ORE	G.		
		Remarks		4 6 Readily numbed dry	10 Water level low in sum-	mer.	7 Readily pumped dry in	summer. Do.					35 Inadequate during sum-	mer. Ca.		City well 3.
	tal er	Сијотіде		4 9	10 1	1	7	က	5	4	က	!	35 I	5,010		
	Chemical character (ppm)	Hardness as CaCO3		24	124	i	30	12	18	58	36	1	258	5,400 5		
	D 45	əsN		D,S		<u></u> О	Q					 	Ω	 D		P,S
	(mq3)	Type of pump and yield		P,10 E			1,5	P,8	N . 12			В	3,10	8,t		T, F
	Water level	Date		950 F	12-51		1951		2-12-51	750		2-13-51	1951	945		1951
tinued	Wate	Feet below or above (+) land surface	nued	16	14.8	က	2	12	32.5	29	1	26.4	09	н		20
ပ္ပို	əə	Ground-water occurren	-Continued	۵. ر	, <u>Г</u>	Д	Д	ሷ	Ь		Ь	Ъ	Þ	Ö		C
Table 1Records of wells-Continued	Water-bearing zone or zones	Character of material	R. 4 W	Basalt(?)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Alluvium-	Alluvi-	um(?) do			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Alluvi-	um(?) Sand-	stone(?) "Shale"	R. 1 E.	Basalt
-Rec	r-bearin or zones	Thickness (feet)	2 S.,	14) !	!	24	38	20		က	43		1	. 2 S.,	
Table 1.	Wate	Depth to top (feet)	Ţ.	82	: :	-	0	0	72		84	0			T.	
		Depth of casing (feet)		45	3	12	24	38	32	18	19	z	!	 		25
		Diameter (inches)		9 4	36	33	48	48	9 9	9	9	48	9	9		12
		Depth (feet)		96	45	12	24	38	92	100	8.7	43	120	92		225
		Labe of well		ק ה	Dg	Dg	Dg		Dr			Dg	Dr	Dr		Dr
		Topography and approx		S, 400	S,400	S,380	U,700	S,725	S,450 S.200	S,400	S,525	P,560	S,375	P,255		P,80
		Owner or occupant of property		S. G. Matheson	T. H. Johnson	E. Eddings	S. R. Bristow	W. R. Conn	K. D. Etter.	August J. Lange	R. S. Hudson	Harold Jefferis	R. R. Oester	Lillie Bangs		City of Oswego
		Well		2M2	361	3H1	4R1	10N1	11R1 12L1	12N1	14A1	16C1	22K1	23N1		2N1

				REC	CORDS O	F V	VELLS				121	
City well 4.	L; city well 1.	- Inadequate. 3 Materials, clay and sand	to 55 ft; rock to 210 ft. Penetrated Boring lava to 162 ft, clay 162 to 535, and basalt to bot-	tom. Readily pumped dry. Materials reported, clay 0-6 ft, rock (Boring	lava) 6-143 ft, clay (Troutdale formation) 143-433 ft, rock (basalt) 433-535 ft.		Ca; materials were peat	water company well 1. L.	285 Ca; reported not used because of hardness of	water; water company well 3. 4 Ca, L; water company well 4.	3 Ca, water company well 5, 10-inch casing perforated 130-140 ft and 150-160 ft; 8-inch casing perforated 280-290 ft	alld 33v=34v 1t.
1	! ! !		1	1 1 1 1 1 1		3	1 1 1 1 1 1 1 1	 	285	4	က	
		106	1 1	1 1		122		1 1 1	354	85	63	_
P,S	P,S	0 0	P,S	ДΩ		D,S	D P,S		;	P,S	v.	-
T,	Ē.,	J,8	· H	3,8		J,15	J,5 T,	Z	1	T, 275	T,	_
1951	-39	1946 1-51 1948	1954	-53			1951	1945	!	1946 T,	-48	-
	4 -	111-				-	! ! !		-			_
20	1	130 15.0 73	200	60 210			15	1	1	75	129	
C	Ü	OCCO	υ	υυ		1	C	ပ	υ	Ü	Ü	-
op	op		ор	op		Boring	lava. Sand Basalt	op	op	op	op	
1	23	1 78 23 40	304	80		 	10	159	!	215	20- 60	-
1	957	142 140 16 170	535	155 576			20 178	66		190	140- 280	-
25	762	94 21 39 58	535	155 443		1	30	51	28	20	165, 267- 347	-
16	10-		16-	90 80		œ	36	258 10-	12	405 10	502 10-	_
450	086	175 218 39 210	839	235		06	30	258	209	405	502	_
Dr	Dr	Dr Dg Dr	Dr	Dr		Dr	Dg Dr	Dr	Dr	Dr	Dr	
P,60	S,250	S, 350 S, 400 S, 400	5,350	U,425 S,340		5,315	S,230 S,150	S,115	S,225	5,225	S,240	-
op	op	A. S. Platou H. E. Davis V. R. Casebeer C. E. Yongue	Ketell Construction Co.	W. Bode		op	George H. Carl Lake Oswego Water Co.	op	op	op	ор	-
2N2	3L1	4L1 5K1 5M1 6A1	6D1	6H1 6J1		6R1	8C1 8H1	8N1	8R1	9D1	9J1	

		Remarks			L; reported dd 80 ft	pumping 300 gpm.	L; city well 2. Planned as water supply	for 12-15 families.	237 ft; deepened to	obtain adequate water	supply.	Water will iron-stain	porcelain; inadequate supply of water.	Inadequate supply of	water.		
	Chemical character (ppm)	Chloride		-	-		: 60	~			4	က		വ	10	ကမေ	ი —
	Chemic charact (ppm)	Hardness as CaCO ₃			1 1		98	ď	8		89	110		86	120	96 36	.14
		əsN		350 Irr	D,	Irr	P,S	υ			D,S	0,3		D,S		מחנ	D,S
	(mqg) l	Type of pump and yield		1	T,	200	T T,60	0	1		J,10	P,12 D,3		J,8	P,10	ر ل 8 ر ل آ	ਮੂ ਪੰ
	Water level	Date		1929	647		12-24-48	ינ			1951	1947			1949	1951	
inved	Wate	Feet below or above (+) land surface	per	125	120		364	387	3		26	434		-	400	42	
Cont	əəu	Ground-water occurren	ontinı	υ	υ		n n	F)		Д	; ɔ		Ь	Ω	¦p;	
Table 1.—Records of wells—Continued	ing zone es	Character of material	R. 1 E.—Continued	195 Basalt	op		op	7			op	do			Basalt	do	Gravel
-Reco	r-bearin or zones	Thickness (feet)	2 S.,	195	218		340		 			1 1			1 1	39	
Table 1.	Water-bearing or zones	Depth to top (feet)	ij	305	301		260		 		-	1			1 1	104	<u> </u>
		Depth of casing (feet)		38	81		64		1 1 1		130	120		1		102	22
		Diameter (inches)		12	12		10				9	co		9	9	9 9	9
		Depth (feet)		200	519		640 470	707	2		138	559		90	462	89 105	22
		Type of well		Dr	Dr		Dr	ځ	3		Dr	Dr		Dr	Dr	Dr	Dr
		roydgs bns ydgergogoT ses evods 11) ebutitls		S,210	8,200		S, 560 S, 685	: : :	201.0		8,450	3,550		5,430	S,380	P,145 P,170	P,130
		Owner or occupant of property		14C1 Marylhurst	- 1		City of Oswego		Filling B. Johnston		R. Luscher	Emily B. Jonston		Carl Anderson	H. B. Morse	I. L. Hefford	R. W. Walter
		Well		14C1	14F1		15C1 15G1	7 10	1.101		16K1	15M1		16Q1	17Q1	18H1 18M1	19C1

Deepened, 261-440 ft to	ootain more water. Used by two families. Basalt 4–108 ft.	Materials reported as clay 0-37 ft and basalt 37-228 ft.	L. Reportedly drilled for irrigation but found inadequate.	Basalt entered at 60 ft. Basalt 80-173 ft.	Basalt from 8 ft down. Test pumped 20 gpm	with 200 it dd. Inadequate supply of water	Reported to have produced 250 gpm with a drawdown of 9 ft after	2 hours of pumping; temp 60°. L.	Water reported cloudy after rain. Rock 12—320 ft.	Used by seven families. Inadequate.	Adequate for domestic use only.
316 7 27	4 72 16 4	1	s	4	4	7	e	က	თ თ4-	948	rs.
700 98 74	86 46 140 60		96	122	102	72	90	54	74 56 98	82 124 134	92
D,S D D	D,S D,S	Δ .	Z,	D,S	D,S	D,S	D P D	D,S	D,S	_	Q
J,8 J,5 P,8	P,8 D,S J,15 D J,15 D,S P,8 D,S		T, 33	7,5 8,4	P,8	P,8	P,10 T, 250	1949 P,12 D,S	5-51 J,15 1951 J,10 P.8	P,10 P,10 1944 P,10	3,8
 1951 851	1951		1950	1937	1945 P,8	52.38 10-16-51 P,8	647	1949	52,38 10-15-51 35 1951	1944	
70	37		100	83 108	320 400	52.38	123	335	35.38	50	1 1 1 1
00	ם כן	O (ပပ	<u>ዋ</u> ዋ	n	Д	ر د ا	ū	<u>д</u> дд	C C C	ت ص
10 Gravel 17 Basalt	do			op		op	255 Basalt	op g	do		14 Basalt(?)
	1 1 1	03	525	15	320	! ! !	256	Ä	55	57	
200		119	300	83 153	235 400		20	440	35	197	06
422		L	35	90	13	1	1 1 1 1	50	35	43	06
9 9 9	0000		10-	9 9	9 %	!	9 :	9	9 9	9 9 9	9
150 210 440	208 108 300 240(?)	128	52 <i>1</i> 825	98	410	150	270	455	100 320	226 93 186	104
Dr. Dr.	Dr. Dr.		Dr. Dr.	Dr		Dr	Dr Dr		Dr. Dr.		Dr
P,130 P,210 P,210	S,475 S,150 P,130	S, 230	S,450	S,525 S,575	S,525 S,650	U,730	U,675 P,135	8,620	U, 630	S,425 S,165 S,140	S,160
19G1 E. A. Gates	1 R. L. Hoffman 1 C. J. Mason 1 M. E. Stonebrink		1 K. B. Hall	S. A. Swanson		23M1 W. F. Carrington	H. H. Gewecke I Robinwood Water District.		1 Brownsville Timber Co. 1 G. M. Shearer		11 E. K. Ewald
19G1 19P1 19Q1	20A1 20D1 20E1 20N1	21Q1	22C1	22G1 22G2	22P1 23F1	23N	23N1 24D1	25E1	26B1 26J1 26N1	27G1 27Q1 28B1	20M1

1				
		Remarks		5 Wed by two families
	Chemical character (ppm)	Chloride		Ľ
	Cher chara (pp	Hardness as CaCO ₃		26
		9aU		0
	(mq3)	Type of pump and yield		1 10
	Water level	Date		
ntinued	Wate	Feet below or above (+) land surface	inued	75
ပ္တိ	rce	Ground-water occurrer	Cont	=
Table 1.—Records of wells—Continued	Vater-bearing zone or zones	Character of material	T. 2 S., R. 1 E.—Continued	Crown
-Rec	r-bearing or zones	Thickness (feet)	2 S.,	
Table 1.	Water	Depth to top (feet)	Ŧ.	
		Depth of casing (feet)		ď
		Diameter (inches)		"
		Depth (feet)		Og.
		Type of well		ځ
		Topography and approx		0 180
		Owner or occupant of property		9001 E V Emald
		Well		1000

	Used by two families.	Do.		Bailed 10 gpm for 1 hour.		4 Materials reported, 24 ft	of clay and boulders,	122 ft of basalt.		7 Inadequate; can be	pumped dry in half an	hour.		Rock 34-202 ft.						-
	2	ო	3	4	4	4	_	_	-				4	4	142	250	9	33	<u>س</u>	
		28	78		40				-	64			40	62	88	252	90	98	88	
	D,S	Ω		Ω	I	Д			1	SO			٥	Д	Д	D,S 252		D,S	Д	
	J,10 D,S	1944 P, 10	1916 P,15	-49 J,10	-51 T,20	1948 P,5			Z	P,8			1,5	J, 20	1946 J,8	1943 P, 10	В, В	1943 P,8	-48 J,10	
		1944	1916	-49	-51	1948			751				7-51	1950	1946	1943	1	1943	-48	•
	1			10-	1-		_		-2	-			15,10 10-17-51 J,5	_	_		i		8	
naca	75	35	30	40	60	90			400				15,10	_	10	70	1	400	40	
1110	n.	ນ.	C)	D	υ.				Þ	D			Ξ	n	ပ	ت ر	-	b	凸	
r. co.; ii. c communed	Gravel	13 Basalt	17do	op	do	do			nop	op				7 Basalt	qo	1 1 1 1 1 1		20 Basalt U 400	2do P	
•	-	13	17	42	230	56			35	ည				7	2	2	-	20	2	-
;		172	300	40	09	120			400	395				195	345	426	1 1 1 1	413	105	_
	80	167	20	39	09	23			80	40				34	1	1	180	20	29	
	9	9	9	9	ဖ	9			9	9			œ	9	9	9	9	9	9	
	80	185	317	82	290	146			435	400			24	202	350	428	204	433	107	-
	Dr	Dr	ū	Dr	Dr	Dr			Dr	Dr			į,	Dr	Dr	Dr	Dr	Dr	Dr	•
	S,160	S,265	S,400	S, 330	S,415	S,475			S,510	S,410				S,310					S, 500	-
	28P1 E. K. Ewald	29J1 Earl H. Bywer	11 G. Keller	ID1 Gene Wilhelm	U11 Lloyd C. Tiedeman -	31P1 J. E. Youmans			32A1 S. C. Hill	32E1 Susan Eisele			3B1 D. R. Diebold	33C1 Karl Koch	tG1 H. Rohe	34H1 N. O. Wright	tJ1 Ward Wills	3F1 Lloyd Hinkle	35G1 F. W. Cairy	-
	22	25	ಹ	က	33	က			ñ	ñ			ñ	က်	က်	ň	က်	က်	က်	

11	
ρ	•
c	2
F	;

Basalt 22–165 ft, Basalt 15–117 ft, Aquifer is soft rock, Reported 21 ft of clay, 2 ft of gravel and 52 ft				Penetrated 50 ft of de- composed rock and 64 ft of hard rock.	Inadequate.		i	Reported 65 ft of above aquifer.	Reported 35 ft of clay and 15 ft of rock,	Adequate only for domestic use.	
47.884	n	, 60 r		φ	ω rυ	2	44	2	9	4. ro	8 4 0
88 108 36 66	82			06	82 52	16	84		09	32	30
0,50 0	Ind			o,s	D,S	D,S	D,S	D,S		ΩΩ	D,S D,
P, 20 P, 8 J, 8	P, 20		J. 5.	J,10	1,5 1,8	P, 5	J, 10 J, 10		1,8	J, 10 P,8	J,3 P,5 C,90
1950 651 7-6-51	1041	651	7- 2-51	1	7-23-51	7-23-51	1943	1046	8-13-51	7-25-51	1951 1944 7-11-51
85 101 34 F	19.5	51	18.14	 	5.97	34.75	22.43	72	ĹΉ	56.81	45 206 19.36
DDAO	υ c			<u>ပ</u>	Þυ	Ъ	υ υ • • •	<u>0</u>		<u>н</u>	455
Basalt	op	Basalt	Alluvium.	Basalt	Alluvium. Basalt	Basalt, weath-	ered. Basalt	op	op	Clay Basalt	op
6	100	30	3	22	35	-	93	35	15	84 140	25 15 5
85	200	50		112		36	40	65	35	0 0 .	25 210 16
22 15 94	214	47	3	20		!	20	67	40	84	25 27 21
8 6 48 6-4	12			9	36	48	9	9	9	36	24 6 36
165 132 38 94	300	80	21	114	12 95	43	125 133	100	20	84 210	50 225 21
Dr Dg Dr	ŗ č	5 5 5	Z Z	Dr	Dg Dr	Dg	Dr	Dr	Dr	Dg Dr	Dg Dr Dg
S, 310 S, 350 S, 305 P, 215	P, 239	S,255	F,443	S,250	S,155 S,290	S,325	S,335 S,275	S,410	8,215	U,750 S,540	S, 480 S, 380 P, 155
William Elligsen Sarah Ohling M. Redding	ğ c	Nursery. L. Garfield		C. W. Kemp	Floyd Rains F. G. Chapman	Joe Taylor	Mrs. Hunter	Al Oberst	W. L. Dobson	Neal Dickenson John K. Smeed	Oliver Todd W. Edwards
1K1 1P1 2C1 2N1	2N2	3A1	3Q1	4G1	451 4N1	4Q1	5A 1 5D1	5L1	6D1	7B1 8B1	9E1 9H1 10K1

		Remarks		H figure 10.		M	:		Water has a reddish	color; penetrated 78 ft of clay and 72 ft of rock.	Reported 166 ft of clay and sand above aquifer.			Reportedly water some-	times has reddish color. H figure 13; used for irrigatine 10 acres:	casing perforated 29-36 ft.		
	ical ster 1)	Chloride		5	r.	ď	9	9	C	•	4	2	9	4	2		ر د د	
	Chemical character (ppm)	Hardness as CaCO3		28	56	5	8 8	25	40		84	86	63	40	09		54	22
		əaU		Д	S, O	v.	, C	i Ω	S,O		Д	D,S	S, C	Q	Irr		D,S	χ, Ω
	(mrqg) b	Type of pump and yiel			P,8	r.		, д. 8,			υ. ∞	P,5	_	3,8	°,		1,5	
	Water level	Date			7-24-51	8-90-51	7 - 2 - 7	:	849	,	1944 P,8	I	1	7- 9-51	7- 8-51			
inved	Water	Feet below or above (+) land surface	pen	70.02	38.76	35 89	94	; ;	100		30		2.7	25.41	17.92			!
Cont	əəu	Ground-water occurre	ontin	υ	Þ	===	- -	ပ	ပ		υ		υ	υ	Þ		υ	Þ
Table 1.—Records of wells—Continued	ring zone nes	Character of material	R. 1 W.—Continued	Basalt	Sand and	gravel.	Bogolt	qo		:	14 Basalt (?).	Sand(?)	5 Grave1(?)_	Gravel	36 Gravel, bouldery.		10 Basalt	Basalt, weath-
-Reco	-bearing or zones	(təəl) asəndəidT	3 S.,	-			171	25	20	-	14	:	Ľ	-	36		10	1
Cable 1.	Water-bearing or zones	Depth to top (feet)	H.		59		30	120	130		166	1	85		29		06	
		Depth of casing (feet)						;	130		162		06		38		20	
		Diameter (inches)		9	4	ď	2 6	9 9	9		9	9	e	36	14		9	72
		Depth (feet)		115	09		# ~	145	150		180	106	06	43	38		100	22
		Type of well		Dr	Dg	ċ	ָבְי בְּ	ž Ų	Dr		Dr	Dr	Dr	Dg	Dr		Dr	Dg
		Topography and approxaltitude (ft above sea		S, 235	P,265	0	2, 102	P.225	S, 200		P,215	S. 210	S, 175	P,180	P,155		5,235	5,210
		Owner or occupant of property		H. C. Conklin	10N2 H. H. Bryant	, iii	E. W. Clark	E. Ritter	Don Boeckman		12N1 Henry Lzicar	13E1 Walter Schlickeiser	F. H. Stangel	C. F. Berning	14K1 Susan Seely			Otto Jaeger
		Well		10N1	10N2	1001	1101	1161	111.2		12N1	13E1	13P1	14G1	14K1		15D1	15J1

					RE	CORDS	OF	WE	LLS						12
Clay, 240 ft thick, drilled above bedrock; temp., of water $62\frac{1}{2}$ °F. A second,	similar well, 1,000 ft deep, was pumped at 2,000 gpm.	26 Reportedly 314 ft of clay and decomposed rock	above aquiler. Has supplied about 20			3 Reported 90 ft of soil and decomposed rock above	aquiter. Reported rock entire		5 Reported 20 ft of clay and 52 ft of rock above	aquifer. Water sometimes has	<u> </u>	Do.	Adequate only for	domestic use. Readily pumped dry dur-	ing summer. Inadequate; abandoned.
	············	26	9	26		es	က	4		9	er.	. m	-	4	
] 		162	36	128		120	72	20	94	24	32	40	!	86	
ર. જ.	<u> </u>	Ind	Ω	D,S		Д	D,S	D,S	Д	D,S	ב	<u> </u>	Ω	Ω	z
E1	1040	T,40	J,10	-		-50 J,5	1945 J,10 D,S	J,5	1,5	8,Ł	⊢ .	1,15	ъ,5	1,5	
7- 2-58	1940	7-10-51 T,40 Ind				950	1945	7-31-51 J,5	8-13-51 J,5					1	1
70	90	Ç Fı	54	[± ₁		20	110	39.13	53,79	75			-	1 1 1	1 1 1 1
D.		υυ	Þ	υ.	W.	υ	ፈ	D	υ	Ч		, Д	凸	д	<u>д</u>
670 Basalt	('t	33 do	Boulders -		T. 3 S., R. 2	15 Basalt	26do	Basalt,	weath- ered. 2 Basalt	23do	رن م		129do	: :	76 Basalt
		 	-	<u> </u>											
250		314		-		06	129		80	82	, , , , , , , , , , , , , , , , , , ,		59		4,
252		347	į	; ;		89	41		36	82	00	200	29		
14	α	-	9	9		9	9	09	ဖ	9		9		9	48
920	640	346	71	237		105	155	20	83	176	9	210	188	93	80
Dr	ڋ		Dr	Dr		Dr	Dr	Dg	Dr	Dr	ځ.		ŭ	Dr	Dg
S, 215		P,150	P,140	P,110		S, 225	S, 450	s, 320	s, 200	U,730	11.850	U,850	U,830	s, 330	U,1,080
15L1 Oregon State Hospital.	1 הסוסה ורים הסוסה	23F1 Wilsonville Lumber Products.	'2 Flynn	23M1 Mary F. Jobse		1A1 Jack Grover	1E1 U. A. Brugger	1G1 Mrs. Agnes Dewey	1P1 Ludwig Gimm	2N1 J. R. Blake	3D1 Tones	4R1 N. F. Biesang	10C1 E. Sidel	11Q1 P. B. Wilkins	12Q1 T. G. LandwarhrU,1,080
15L	0.9 A 1	23F	23F2	23M		1A	1E	1G	11	2N.	30	4R.	10C	110	12Q

1			1	1	ىد															
		Remarks		Can easily be pumped	ury. L; water level was 68 ft	when well was 110 ft	deep. Reported 50 ft of clay	and 180 ft of basalt. Used by two families.	Has been pumped dry	occasionally.	Used by two ramilles. Used by 11 families.	Used by three families;	rock 30-413 ft.		Used for irrigating 3	acres; dd is 20 ft with	continuous pumping.	Used for irrigating 25	acres; yields 230 gpm with dd 120 ft after 10	days pumping.
	ical cter n)	Chloride		3	8		4	က	4		3	rc.		2	1 4			4		
	Chemical character (ppm)	Hardness as CaCO ₃		20	64		09	96	84		88	86		62	100			80		
		əsU		D,S	Q		S,U	Д	Ω		ປຸປ ທຸດ -	· C		S, C	, , , ,	Irr		<u>,</u>	Irr	
	(mqg)	Type of pump and yield		P,8	P, 5		P,8	P,10	P,8		F, 10 P, 12				r,8			T,100		
	vel	Date		1930	1945		-51	1947	8-51		1927	-			8-51			-49		
	Water level						-2		3 10-		-	;		+				2		
tinued	Wat	Feet below or above (+) land surface		270	550		203	325	105,38 10-		235	-			Ĺτ		į	62		
نّ	ээт	Ground-water occurrer		Д.	Þ		Þ	<u> </u>	д	7) p	=		<u>ن</u>	<u>ာ ပ</u>		-	<u>ပ</u>		
Table 1.—Records of wells—Continued	ring zone mes	Character of material	R. 1 E.	Basalt			op	op	op		do	do					,	op		
-Rec	-bearing or zones	Thickness (feet)	3 S.,		123		10	1	1						74		,	117		
Table 1.	Water-bearing or zones	Depth to top (feet)	Ţ.		520		220	1	1		1 1	1		11111	-6		,	118		
		Depth of casing (feet)		23	33		20		20		58	30		-	12		,	118		
		Diameter (inches)		9	9		9	9	9	,	9	œ		9	9		,	9		
		Depth (feet)		290	643		230	365	145		340	413		135	85 85			235		
		Type of well		Dr	Dr		Dr	Dr	Dr	ţ	Dr.	ڔ		Dr	ŭ Ľ			Ür		
	etemi: (19v9.	Topography and approx altitude (ft above sea l		U,710	U,810		S,470	S,525	S, 525	0	S, 485	5,560		S, 285	s, 190 S, 180			P,250		
		Owner or occupant of property		Emil Nodurft	R. P. Corderman	,,,	L. A. Read		H. R. Nelson		Walter Moser			1	George Oldstead C. L. Chapman			Harry F. Lane		
		Well		3N1	4C1		4N1		5B1		6C1				6K1 7A1			7E1		

RECORDS OF WELLS

									RE	CC)K.	DS	O	F.	W	E I	ل.	5										
Used for irrigating 10-	-	water.		Drilled through alter-	nating layers of hard and soft rock.					_	acres; has yielded 160	gpm with 60 ft dd after	24 hours pumping.	Well reportedly entered	local high in basalt		Used by three families;	can be pumped dry.	Only clay above aquifer.	Reportedly entered	rock at 10 ft.		Penetrated about 50 ft	of boulder and cobble	gravel and then clay	all way to aquifer. Test	pumped 105 gpm with	250 ft dd.
6	4	രഹ	4	3		2	5	es -	3	3				4			3					99	1					
84	92	94	88	99		108	130	116	54	110				62			54			1		168	! !					
D,	D,S	D,S	S,C	Д			Ω	D,S	D	Ď,	Irr			D,S			Ω		Ω	ß		D,S	P,S					
T,100 D,	P,8	P, 10	, A	T,12		P,8	P,10	1925 P,10	J,5	1950 T,100 D,				P,5			P,5		P,2	3,5		J. 10	P,S					
1 1 1 5 1 1	! ! ! !	1910	1920	1921		1 1 1 1	1930	1925	1925	1950				1			3.67 10- 2-51 P,5		5-30-60 P,2	1 1 1 1		1945	1958					
	1	150	128	271		1	100	10	16	09				1 1 1			3,67		29			20	20					
D C	Ö		Þ			!	ت			Ö				1			<u> </u>		n	ļ		υ.						
op	Silt	169 Basalt	40	op		op		60 Gravel	6 Sand	20 Basalt				op			Sand		5 Gravel	Basalt		op 09	5 Gravel					
	1	20	100	1		1		15	14	230	-						-		355			∞	419					
-	190	20	100	22		1		100	20	230				1			30		326	1		12	1					
	2	9 %		9		-	_	9	48					9			09		9			9	10					
280	203	189	140	311		180	375	135	20	250				09			30		360	100		89	442					
Dr	Dr	Dr	ដ្ឋ	Dr		Dr	Dr	Dr	Dg	Dr				ŭ			Dg		Dr	Dr		Dr	Dr					
S, 205	P,220	S,340	S, 290	S,640		S,600	S,250	S,225	P,200	P,220				P,210			P, 195		P,175	S,95		S, 90	S, 165					
Ed Mosier	Stanley Kruse	John P. Wilkins	E. F. Breckman	10E1 John Hellberg			ker	17A1 William	17F1 George Moser	18C1 W. Bruck				18C2 L. Wolf			18Q1 Kruse and Sons		21A1 F. E. Buckner	22G1 C. P. Pynn		do	Paul Hebb					
7H1	7N1	8C1		10E1		15D1	16C1	17A1	17F1	18C1				18C2			1801		21A1	22G1		2212	22M2					

Table 2-Drillers' logs of representative wells

[Stratigraphic designations by F. J. Frank]

Materials	Thickness (feet)	Depth (feet)
1N/1W-5D1		
[Multnomah County. Altitude about 750 ft. Drilled by R. J. St	rasser Drilling	Co., 1947]
Soil and mantle (undifferentiated):		
Clay	38	38
Columbia River basalt:		
Rock, decomposed, brown	114	152
Rock, hard and soft, brown	46	198
Rock, hard, bray, black and brown	106	304
Rock, medium-hard, brown	19	323
Rock, hard, gray, black and brown	156	479
Rock, brown, creviced	6	485
Rock, soft, brown and black	14	499
Rock, hard, black, water-bearing	24	523
Rock, hard, black	27	550

1N/1W-20H1

[C. E. Wismer. Altitude about 350 ft.]

		
Soil and mantle (undifferentiated):		
Clay	43	43
Boring lava (basalt):		
Rock	147	190
Troutdale formation:		
Clay	206	396
Columbia River basalt:		
Rock	84	480

1N/1W-23K1

[Richfield Oil Co. Altitude about 1,030 ft. Drilled by Fowler Drilling Co., 1946]

		r
Soil and mantle (undifferentiated):		
Soil and weathered basalt	97	97
Columbia River basalt:		
Boulders, and basalt	84	181
Basalt	500	681
Basalt and shale	2 5	706
Basalt	97	803
Sedimentary and volcanic rocks of Tertiary age:		
Sand and shale, fossiliferous	1,242	2,045
Volcanic sand, agglomerate, shale, clay, and lava flows	2,882	4,927
Basalt	349	5,276
Volcanic agglomerate and lava flows	2,609	7,885

1N/1W-23R1

[Alfred H. Corbett. Altitude about 1,100 ft. Drilled by A. M. Jannsen Drilling Co., 1948]

Soil and mantle (undifferentiated):		
Clay	50	50
Quicksand	10	60
Clay	18	78
Columbia River basalt:	Į į	
Rock, black	397	475

Table 2.—Drillers' lous of representative wells—Continued

Table 2.—Drillers' logs of representative wells—Continued		
Materials	Thickness (feet)	Depth (feet)
1N/1W-23R1—Continued		
Columbia River basalt—Continued:		
Rock, red and brown	85	560
Shale, sandy (basalt?)	290	850
edimentary strata of Tertiary age:	1	1
Clay, sandy and sandstone	110	960
1N/1W-35H1		
[W. M. Perrault. Altitude about 650 ft. Drilled by A. M. Jar	nsen Drilling C	Co., 1948
oil and mantle (undifferentiated):		
Clay	82	82
foring lava:		1.15
Rock, hard, crevice at 115 ft	33	115
Rock, soft	23	138
Rock, hard	101	239
Rock, soft, red, water-bearing	12	251
Rock, broken, red and gray	29	280
Rock, hard, gray	93	373
Control blue	107	510
Clay, blue	137	510
Clay, yellow	17	527
Clay, red	53 17	580
Clay, brown	15	597 612
Conglomerate, water-bearing	3	615
Sand, coarse Conglomerate, water-bearing	18	633
1N/1W-35M1		*
[West Hills Nursery. Altitude about 455 ft. Drilled b	y A. Gaunt, 194	8]
Boring lava (basalt) and interfingered beds:		
Clay	70	70
Rock, hard, water-bearing at 80-100 ft	72	142
Clay	20	162
Rock, hard	43	205
Clay and rock	10	215
Rock	19	234
routdale formation:		
Clay, red	216	450
Clay, black and gray	77	527
1N/1W-36E1		
[Portland Gas and Coke Co. Altitude about 720 ft. Dril	led by Harty Br	·0ɛ.]
oil and mantle (undifferentiated):	1	1
Clay, sandy, yellow	63	63
Boring lava:		
Rock, gray	211	274
Rock, soft, red, water-bearing	36	310
Rock, hard, gray	96	406
	1	
Rock, soft, red, water-bearing	6	412

Table 2.—Drillers' logs of representative wells—Co	ntinued	
Materials	Thickness (feet)	Depth (feet)
1N/1W-36E1—Continued		
Troutdale formation: Shale, blue	9	421
1N/2W-15C1		
[West Union School, Altitude about 210 ft. Drilled	y A. Caunt, 194	8]
Valley fill: Clay and sand, varicolored Clay Columbia River basalt: Rock, fairly hard, creviced toward bottom	190 140 230	190 330 560
1N/3W-1K2.		
[North Plains Water District. Altitude about 190 ft. Dril	led by A. Gaunt,	1945]
Valley fill: ClayClay, sandy	314 21	314 335
Sand, blue, and some gravel, water-bearing Clay Columbia River basalt:	5 46	340 386
Rock, soft Rock, hard Rock, soft	200 28 96	586 614 710
1N/3W-5R1		•
[Roy Catholic School. Altitude about 175 ft. Drilled by Bla	air Drilling Co.,	1950]
Valley fill: Clay, blue and gray	343	343
Wood and vegetation	1	344
Clay, blue Sand, black	43	387 389
Clay, graySand, black	9 8	398 406

1N/3W-7A2

[L. J. Spiering. Altitude about 175 ft. Drilled by A. M. Jan	nsen Dailling Co	., 1951]
Valley fill (and decomposed rock?):		
Sand and clay	368	368
Sand, clay and gravel	63	431
Clay and sand	129	560
Clay	70	630
Rock, weathered	248	878
Columbia River basalt:	l	
Rock, rotten	22	900
Rock, soft lava	30	930
Rock, hard	16	946

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Γ⇔pth (feet)
		

1N/3W-36R3

[Birdseye Cannery. Altitude about 185 ft. Drilled by A. M. Jannsen Drilling Co., 1929]

Valley fill:		
Clay and soil	150	150
Shale, sandy (clay?)	20	170
Sand and gravel, water-bearing	2	172
Shale and hard clay		1,380
Wood and vegetation		1,480
Columbia River basalt:		,
Rock, igneous	20	1,500
Basalt and clay, gray	119	1,619

1N/4W-14B1

[L. J. Heesacker. Altitude about 165 ft. Drilled by Blair Drilling Co., 1950]

Valley fill:		
Clay, blue and gray	483	483
Columbia River basalt:		
Basalt, red, burnt	14	497
Basalt, hard	14	511
Basalt, red	42	553
Basalt, hard	32	585

1N/4W-23R1

[Arnold Goff. Altitude about 245 ft. Drilled by Blair Drilling Co., 1950]

Valley fill:		
Clay, red, yellow	141	141
Columbia River basalt:		
Basalt, weathered, gray	42	183
Basalt, hard, blue	3	186
Basalt, brown, soft	54	240
Basalt, brown	21	261
Basalt, soft, water-bearing	1	262
Basalt, hard, blue to black	39	301

2N/1W-31Q1

[Plainview School, Altitude about 710 ft. Drilled by Steinman Bros. Drilling Co., 1938]

Soil and mantle (undifferentiated):		
Clay	34	34
Columbia River basalt:		
Rock, soft	34	68
Rock, hard, black, water-bearing	123	191
Rock, soft	20	211
Rock, hard, black	28	239
Rock, soft, black	17	256
Rock, hard, black, water-bearing	125	381
Rock, hard, gray and black	34	415
Rock, whitish, talcose	2	417

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
ON /OW OOA1		

2N/2W-20A1

[Otto Solberger. Altitude about 910 ft. Drilled by Hardy Bros., 1949]

Soil and mantle (undifferentiated):		
Soil	5	5
Clay, red	20	25
Clay, brown and yellow, water-bearing at 70 ft.	120	145
Columbia River basalt:		
Rock and clay, soft	30	175
Rock	110	285
Sedimentary strata of Tertiary age:		
Clay, shale	60	345
Silt and sand, fine, black, containing sea shells	180	525
Sand, coarse, black and gray, contains sea shells	20	545

2N/3W-24P1

[A. M. Anderson. Altitude about 640 ft. Drilled by A. Gaunt, 1946]

Soil and mantle (undifferentiated):		
Clay	201	201
Columbia River basalt:		
Rock, soft, water-bearing at top	112	313
Sedimentary strata of Tertiary age:		
Clay and sandstone	144	457

1/1W-2P1

[Commonwealth, Inc. Altitude about 420 ft. Drilled by R. J. Strasser Drilling Co., 1953]

Soil and mantle (undifferentiated):		
Clay and soil	9	9
Boring lava (basalt):		
Rock, broken	18	27
Rock, gray, medium-hard	9	36
Rock, gray, hard	73	109
Rock, gray, hard (some broken crevices with brown seams)		151
Rock, gray, crevices	7	158
Rock, gray, hard	56	214
Rock, gray, very hard	17	231
Rock, brown	8	239
Troutdale formation:		
Conglomerate	14	253
Clay, yellow	44	297
Clay, blue	7	304
Clay, yellow	12	316
Clay, blue	13	329
Clay, yellow	35	364
Clay, blue	129	493
Clay, red	34	527
Clay, blue	66	593
Clay, red and yellow	34	627
Conglomerate	46	673
	1	•

RECORDS OF WELLS

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Lopth (feet)
1/1W-2P1—Continued		
Columbia River basalt:		
Rock, decomposed	44	717
Rock, brown and gray, hard	53	770
Rock, brown, hard, broken	7	777
Rock, gray and black	77	854
Rock, black, water-bearing	18	872
Rock, gray, hard	3	875

1/1W-11L1

[City of Beaverton. Altitude about 350 ft. Drilled by A. M. Jannsen Drilling Co., 1932]

Boring lava (basalt):		
Rock, red and gray (crevice at 59 ft)	59	59
Rock, red (crevice at 88 ft)	52	111
Troutdale formation:		
Clay, yellow, blue, red	442	553
Sandstone, yellow	10	563
Clay, yellow	52	615
Columbia River basalt:		
Rock, with clay	35	650
Rock, black, hard	58	708
Rock, black, very hard	27	735

1/1W-17A2

[St. Mary's of the Valley Academy. Altitude about 205 ft. Drilled by A. M. Jannsen Drilling Co., 1953]

Valley fill:		
Clay, yellow, and soil	25	25
Clay, brown	13	38
Clay, blue	7	45
Clay, yellow	42	87
Clay, blue, gray and green	769	85 6
Sand, gray	19	875
Clay, gray	71	946
Clay, sandy, gray	13	959
Clay, sticky gray	16	975
Clay, sandy, brown and gray	43	1,018
Clay, gray, blue	104	1,122
Clay, brown	48	1,170
Columbia River basalt:		
Rock, hard, broken lower 28 feet	69	1,239
Rock, hard (cavity at 1,249 ft)	14	1,253
Rock, hard, broken (some water)	15	1,268
Rock, hard (cavity at 1,269 ft)	6	1,274
Rock, broken (water-bearing from 1,274 to 1,279 ft)	16	1,290
Rock, hard	14	1,304
Rock, broken (cavity at 1,359 ft; increase in water)	56	1,360
Rock, hard (cavity at 1,369 ft); test pumped 80 gpm with		
230 ft of drawdown	14	1,374
Rock, hard, broken lower 31 ft	113	1,487
Rock, hard (crevice at 1,488 ft)	6	1,493
Rock, broken	1	1,494

Table 2.—Drillers' logs of representative wells—Continued

Materials	Thickness (feet)	Depth (feet)
1/1W-17A2—Continued		
Columbia River basalt—Continued:		
Rock, hard (crevice from 1,494 to 1,495 ft)	3	1,497
Rock, medium-hard	5	1,502
Rock, broken	5	1,507

1/1W-21P1

[City of Beaverton. Altitude about 330 ft. Drilled by R. J. Strasser Drilling Co., 1945]

Soil and mantle (undifferentiated):		
Clay	34	34
Rock, soft, gray (clay?)	4	38
Clay, yellow	16	54
Columbia River basalt:		
Rock, soft, gray, water-bearing from 90 to 96 ft	142	196
Rock, hard, gray to blue	524	720
Rock, hard, blue, with seams	15	735
Rock, soft, water-bearing	1	736
Rock, hard, blue	64	800

1/1W-24D3

[Portland Golf Club. Altitude about 220 ft. Drilled by A. M. Jannsen Drilling Co., 1951]

Valley fill:		
Clay and soil	20	20
Quicksand	22	42
Clay, blue	123	165
Clay, brown	20	185
Clay, red	119	304
Clay, hard, sandy	44	348
Columbia River basalt:		
Rock	20	368
Clay	10	378
Rock	52	430
Clay	8	438
Rock, hard	53	491
Rock, soft, porous	3	494
Rock, hard	6	500

1/1W-25M1

[Warren Forsythe. Altitude about 200 ft. Drilled by John Beck, 1949, deepened in 1960]

Soil and mantle (undifferentiated):		
Clay, blue	88	88
Columbia River basalt:	1	
Basalt, hard	5	93
Shale, soft near top (basalt?)	41	134
Basalt, hard	102	236
Basalt, interflow zone, water-bearing	2	238
Basalt, hard	4	242
Basalt, broken, water-bearing	11	253

Table 2.—Prillers' logs of representative wells—Continued		
Materials	Thickness (feet)	Depth (feet)
1/1W-27C1		
[Robert Murphy. Altitude about 170 ft. Drilled by A. M. Jann	nsen Drilling C	o., 1952
Soil and mantle (undifferentiated):		
Soil, clay, and silt	31	31
Columbia River basalt:		
Rock, soft and rotten	10	41
Rock, soft, caving, water-bearing lower 3 ft	31	72
Rock, soft	3	75
Rock, harder, honeycombed	22	97
Rock, hard with soft layers, water-bearing, with static		
level 3 ft below surface	30	127
Rock, hard, brown	15	142
Rock, soft, honeycombed	12	154
Basalt, harder, gray, water flowing at 184 ft	34	188
Basalt, hard, but broken, loose	22	210
Rock, shale(?), green, soft, mucky	13	223
Rock, gray, crisp, like shale(?)	25	248
Basalt, gray, water-bearing from 250 to 260 ft	13	261
Basalt, broken, rubbly with muck	19	280
Rock, more solid, black	8	288
Rock, soft, black, water-bearing, flowing 10 gpm	15	303
Basalt, rubble, loose, running, in cubical blocks	11	314
1/1W-33N1 [George N. Clark. Altitude about 210 ft. Drilled by Steinman	Bros, Drilling	Co., 195
Valley fill:		
Clay, yellow, sandy	15	15
Muck, blue (almost quicksand)	20	35
Clay, red, brown, and yellow	215	250
Clay, brick-colored	55	305
Clay, yellow	45	350
Rock, soft, brown	2.0	200
	33 7	383 390
Rock, gray		330
[Louis Hilleke. Altitude about 185 ft. Drilled by A. M. Jann	sen Drilling Co	o., 1950]
alley fill:		

Valley fill:		
Clay, brown	15	15
Clay, sandy	10	2 5
Quicksand	35	60
Mud, blue	30	90
Clay and sand, blue	48	138
Clay and boulders, blue	5	143
Clay, with gravel, blue and yellow	117	260
Gravel and sand	7	267
Clay, varicolored	426	693
Clay, red	68	761
Clay, yellow	31	792
Clay, varicolored	26	818
Columbia River basalt:		
Rock, decomposed	14	83 2

Table 2.—Drillers' logs of representative wells—Continued

Materials	Thickness (feet)	Depth (feet)
1/2W-19A1—Continued		
Columbia River basalt—Continued:		
Sand and clay, gray	9	841
Rock decomposed, red and brown	23	864
Rock, gray	9	873
Rock, brown	30	903

1/2W-24J3

[Aloha-Huber Water District. Altitude about 320 ft. Drilled by A. M. Jannsen Drilling Co., 1958]

Soil and weathered rock (undifferentiated):	1	
Clay, brown, yellow, red	45	45
Columbia River basalt:		
Basalt, green and black	40	85
Basalt, decomposed	3	88
Basalt, red, hard	6	94
Basalt, red, soft	4	98
Basalt, black, brown, gray	172	270
Basalt, red and brown, water-bearing	23	293
Basalt, black, broken, water-bearing 300 to 312 ft	19	312
Basalt, gray and black	66	378
Basalt, brown, water-bearing	26	404
Basalt, gray and black	71	475
Basalt, black, soft, water-bearing	6	481
Basalt, black and gray	69	550
Basalt, brown, soft, water-bearing	3	553
Basalt, gray and black	100	653
Basalt, black, soft, water-bearing	4	657
Basalt, black	37	694
Sedimentary rocks of Tertiary(?) age:		
Shale, gray	26	720

1/2W-25J1

[Jane S. Hackman. Altitude about 765 ft. Drilled by The Texas Co., 1947]

Soil and mantle (undifferentiated): Clay and weathered basalt	100	100
Columbia River basalt:		
Basalt	939	1,039
Sedimentary and volcanic rocks of Tertiary age:		
Sand and shale, fossiliferous	1,801	2,840
Volcanic sand, agglomerate, shale	1,430	4,270
Shale, sandstone and agglomerate	4,936	9,206
Volcanic agglomerates and flows	57	9,263

1/2W-29Q1

[W. T. Putnam. Altitude about 155 ft. Drilled by A. Gaunt, 1945]

Valley fill:		
Soil	10	10
Quicksand	70	80
Clay, blue	80	160
••		

Table 2.—Drillers' logs of representative wells—Continued

Table 2.—Drillers' logs of representative wells—Continued		
Materials	Thickness (feet)	Depth (feet)
1/2W-29Q1—Continued		
Valley fill—Continued:		
Sand, brown, contains wood	50	210
Clay, blue	10	220
Sand, brown, contains wood	50	270
Clay, blue	80	350
Sand, dark-brown, contains a logColumbia River basalt:	50	400
Rock, broken	45	445
Rock, solid	50	495
Rock, soft, water-bearing	10	505
1/2W-31C1		
[C. E. Asbahr. Altitude about 175 ft. Drilled by A. M. Janns	en Drilling Co	., 1949]
Valley fill:		
Clay, brown	20	20
Creek sand	2	22
Mud, blue	15	37
Sand, fine, blue	6 34	43 77
Clay, brown and gray	91	168
Clay, sticky, blue	26	194
Clay and gravel	6	200
Gravel	4	204
Clay, red	21	225
Clay, brown	36	261
Columbia River basalt:		070
Rock, decomposedGravel, cemented(?)	9 15	270 285
Rock	143	428
Rock, sand	35	463
Rock, decomposed	6	469
Rock	246	715
1/4W-2N2		
[R. C. Ritchey. Altitude about 190 ft. Drilled by Blair	Drilling Co., 19	950]
Valley fill:	0.0	
Clay and topsoil	30 28	30 58
Clay, blue, containing wood and decomposed vegetation Sedimentary beds of Tertiary age:	20	50
Shale, blue, with thin sandstone strata	34	92
1/1-19P1		
[R. C. Coffell. Altitude about 435 ft. Drilled by Steinman Br	os. Drilling Co	o., 1946]
Soil and mantle (undifferentiated):	2.2	
Clay	30	30
Boring lava (basalt): Rock, red	9	39
Rock, hard, black	38	77
Rock, gray	23	100
Rock, brown	10	110
		,

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
1/1-19P1—Continued		
Troutdale formation:		
Clay, red, yellow, blue	75	185
Clay, red	170	355
Clay, yellow (streaks of sand and gravel)	80	435
Clay, dark	50	485
Columbia River basalt:		
Rock, green	15	500
Rock, black, water-bearing	57	557

1/1-31C1

[Mrs. Francis Connolly. Altitude about 425 ft. Drilled by Steinman Bros. Drilling Co., 1951]

Soil and mantle (undifferentiated):		
Clay, yellow	36	36
Boring lava (basalt):	'	
Rock, hard	15	51
Rock, soft, red	19	70
Rock, hard	66	136
Rock, soft, yellow, water-bearing	5	141
Rock, hard	5	146
Rock, brown, honeycombed	9	155
Troutdale formation:		
Clay, yellow	20	175

1/1-31D1

[Cathryns Charcoal Broiler Restaurant. Altitude about 400 ft. Drilled by A. M. Jannsen Drilling Co., 1953]

Soil and mantle (undifferentiated):		
Clay	12	12
Boring lava:		
Rock, broken, black	14	26
Rock, gray	69	95
Troutdale formation:		
Clay, red	85	180
Clay, brown	4	184
Clay, red and brown	206	390
Sand, fine	2	392
Columbia River basalt:		
Rock, broken	18	410
Rock	200	610

2/1W-4G1

[City of Tigard, Altitude about 350 ft. Drilled by Strasser Bros., 1958]

Soil and weathered rock (undifferentiated):		
Soil and clay	9	9
Shale, red	17	26
Conglomerate, gray and green	28	54
Weathered basalt, soft, gray		86
Columbia River basalt:		
Basalt, red, gray and brown with clay in seams	64	150

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
2/1W-4G1—Continued		
Columbia River basalt—Continued:		
Basalt, red	18	168
Basalt, gray with porous (water) zone 218-263 ft	95	263
Basalt, brown and gray	49	312
Basalt, gray and brown, porous	29	341
Basalt, gray, hard	16	357
Basalt, gray and brown, porous	19	376
Basalt, gray, hard	28	404
Basalt, gray, porous	18	422
Basalt, black	12	434
Basalt, gray, porous	16	450
Basalt, gray, hard	6	456
Basalt, black, porous	27	483
Basalt, gray	11	494

2/1W-8G1

[John J. Bushnell. Altitude about 600 ft. Drilled by Steinman Bros. Drilling Co., 1946]

Soil and mantle (undifferentiated):		
Clay	10	10
Columbia River basalt:		
Rock, brown and red	20	30
Rock, gray, containing crevices	55	85
Rock, brown and gray	185	270
Rock, greenish-gray	66	336
Rock, red, black and gray	59	395
Rock, brown, water-bearing	12	407
Rock, hard, black	20	427
Rock, soft, brown, with seams	9	436
Rock, black and green, crevice at 440 ft	11	447
Rock, soft, red	3	450
Rock, hard, black	38	488
Rock, soft, brown	8	496
Rock, hard, black	4	500

2/1W-11E1

[City of Tigard. Altitude about 375 ft. Drilled by R. J. Strasser Drilling Co., 1947]

Soil and mantle (undifferentiated):		
Top soil	2	2
Clay, yellow	9	11
Hardpan, with some sand	11	22
Silt and clay, yellow	25	47
Columbia River basalt:		
Rock, lava, soft	17	64
Rock, lava, gray and green	20	84
Rock, lava, black, gray, and red, medium hard	84	168
Rock, black and red, medium hard	24	192
Rock, black, hard	10	202
Rock, red and black, soft, porous, water-bearing	10	212
Rock, black, gray, medium hard	48	260
Rock, gray, porous, water-bearing	12	272
Rock, black and red, containing crevices	37	309
Rock, yellow and gray, water-bearing	16	325

Table 2 .- Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
2/1W-11E1—Continued		
Columbia River basalt—Continued:		
Rock, gray, hard	20	345
Rock, gray, medium hard	25	370
Rock, gray, hard	11	381

2/1W-13D1

[Durham School. Altitude about 170 ft. Drilled by Frank Zell, 1951]

Valley fill:		
Sand	45	45
Clay	20	65
Sand	70	135
Gravel	13	148
Clay	2	150

2/1W-13L2

[M. Eastham. Altitude about 185 ft. Drilled by Steinman Bros. Drilling Co., 1941]

Valley fill:	1	
Topsoil and boulders	15	15
Gravel and sand, packed	21	36
Gravel and boulders	44	80
Gravel, loose, water-bearing	25	105
Clay and gravel	15	120

2/1W-14A1

[Tigard Senior High School. Altitude about 190 ft. Drilled by Steinman Bros. Drilling Co., 1953]

Talley fill:		
Clay and sand	18	18
Clay, yellow and blue	48	66
Clay and sand, yellow and blue	50	116
Clay, blue and gray	34	150
Clay and quicksand	40	190
Clay, blue	52	242
Sand and gravel	2	244
Clay, blue-gray	16	260
Sand, water-bearing	1	261
Clay, blue-gray	63	324
Clay, yellow	17	341
Clay, blue	9	350
Clay, brown	10	360
Clay, blue	18	378
Shale, blue-gray	6	384
Clay, blue	46	430
Clay, brown (1 gpm with woody material in water)	7	437
Clay and weathered gravel	8	445
Clay, blue-gray	32	477
Clay, brown, gritty	2	479
Clay, gray	33	512
Clay, chocolate-brown	16	528
Clay, blue, sandy	5	533

Table 2.—Drillers' logs of representative wells—Continued

Materials	Thickness (feet)	Depth (feet)
2/1W-14A1—Continued		
Valley fill—Continued:		
Shale, hard, brown	5	538
Clay, red	21	559
Columbia River basalt:	İ	1
Rock, soft, and clay, red	31	590
Rock, soft, and clay, yellow	37	627
Rock, soft, brown, yellow (5 gpm at 615 ft)	23	650
Shale, blue	7	657
Rock, brown	8	665
Shale, hard, blue	2	667
Rock, black	13	680

2/1W-24M2

[City of Tualatin. Altitude about 120 ft. Drilled by Steinman Bros. Drilling Co., 1951]

Valley fill:		
Top soil	8	8
Gravel, cemented, and boulders	12	20
Clay, blue, sandy	45	65
Clay, yellow	20	85
Clay, red	15	100
Clay, yellow, with a little fine gravel	50	150
Columbia River basalt:		
Rock, soft	22	172
Rock, with a hardpan	10	182
Rock, red and brown	17	199
Rock, soft, brown	37	236
Rock, hard	3	239
Rock, brown, containing crevices	35	274
Rock, red	4	278
Rock, brown, honeycombed	40	318
Rock, hard, containing crevices	7	325

2/1W-26B2

[Portland Gas and Coke Co. Altitude about 225 ft. Drilled by Steinman Bros..Drilling Co., 1947

Valley fill:		
Clay, yellow, sandy	18	18
Quicksand, yellow and blue	42	60
Clay, yellow and blue, sandy	115	175
Clay, red, brown and blue	50	225
Clay or shale(?), gray, soft	145	370
Clay or shale(?), brown, containing wood	40	410
Clay, red, soft	23	433
Columbia River basalt:		
Rock, honeycombed, water-bearing	17	450

2/1W-27H1

[Bryan Tykeson. Altitude about 205 ft. Drilled by Steinman Bros. Drilling Co., 1948]

Valley fill:		
Sand, silty, red and yellow	63	63
Sand, silty, blue, with some clay	12	75

Table 2 .-- Drillers' logs of representative wells-Continued

Materials	Thickness (feat)	Depth (feet)
2/1W-27H1—Continued		
Valley fill—Continued:		
Clay, sandy, blue	10	85
Clay, red, yellow and blue	87	172
Sand and gravel	5	177
Clay, yellow	33	210
Columbia River basalt:		-
Shale(?), blue and yellow	10	220
Shale(?), red and yellow, hard	22	242
Rock, brown	65	307
Rock, dark-brown, hard	16	3 2 3

2/1W-32D1

[City of Sherwood. Altitude about 190 ft. Drilled by A. M. Jannsen Drilling Co., 1946]

Soil and mantle (undifferentiated):	ŀ	
Clay	20	20
Quicksand and clay, blue	18	38
Columbia River basalt:		
Rock, sand	99	137
Rock, lava	38	175
Rock	7	182
Gravel, cemented(?)	24	206
Rock, lava	48	254
Gravel, cemented(?)	15	269
Rock, lava	4	273
Gravel, cemented(?)	23	296
Rock, broken	43	339

2/1W-35K1

[Ben Andrews. Altitude about 340 ft. Drilled by Steinman Bros. Drilling Co., 1947]

Soil and mantle (undifferentiated):		
Soil and clay, sandy	46	46
Columbia River basalt:		
Rock, soft	64	110
Rock, hard, gray, water-bearing	40	150
Rock, brown and gray	30	180
Rock, hard, gray		190
Rock, soft, brown		198
Rock, very hard		200

2/2W-1J1

[Bierly Bros. Altitude about 285 ft. Drilled by A. M. Jannsen Drilling Co., 1950]

Soil and mantle (undifferentiated):		
Clay	30	30
Columbia River basalt:		
Rock	150	180
Rock, gray	37	217
Rock, brown and black	73	290
Rock, hard, gray	78	368
Rock, soft, black, lava	20	388
Rock, brown	32	420

Materials	Thickness (feet)	Depth (feet)
2/2W-1J1—Continued		
Columbia River basalt—Continued:		
Rock, hard, black	80	500
Rock, brown, lava	15	515
Rock, gray	10	525
Rock, brown, lava	8	533
	37	570
Rock, grayRock, black, lava	37 18	570 588
Rock, gray	18	588
Rock, gray	18	Co., 194
Rock, gray	18	588
Rock, gray Rock, black, lava 2/2W-6D1 [S. R. Rotchstrom. Altitude about 180 ft. Drilled by A. M. Janns Valley fill: Clay Columbia River basalt:	18 sen Drilling (588 Co., 194 283
Rock, gray	18 sen Drilling (281 177	28 456
Rock, gray Rock, black, lava 2/2W-6D1 [S. R. Rotchstrom. Altitude about 180 ft. Drilled by A. M. Janns Valley fill: Clay Columbia River basalt: Rock Clay(?)	18 sen Drilling (281 177 1	28 456 455
Rock, gray	18 sen Drilling (281 177	Co., 194

[Harold Haase. Altitude about 180 ft. Drilled by A. M. Jannsen Drilling Co., 1948]

Valley fill:		
Clay	15	15
Sand	5	20
Quicksand	15	35
Clay	251	286
Columbia River basalt:		
Rock	119	405

2/3W-1C1

[Richard Kiefer. Altitude about 230 ft. Drilled by A. M. Jannsen Drilling Co., 1950]

Valley fill (and decomposed rock?):		
Clay, red and boulders	155	155
Columbia River basalt:		
Rock, broken	3	158
Rock, brown and blue	22	180
Rock, soft, porous	35	215
Rock, hard, blue	27	242
Rock, soft	6	248
Rock, hard	1	249
Rock, broken	4	253
Rock, soft	9	262
Rock, broken	40	302
Rock, hard	11	313
Rock, broken	12	325
Rock, hard	10	335
Rock, hard, gray	28	363
Volcanic ash, fine, loose	3	366
Rock, loose	3	369

Table 2.—Drillers' logs of representative wells—Co	ontinued	
Materials	Thickness (feet)	Depth (feet)
2/1-3L1		
[City of Oswego. Altitude about 250 ft. Drilled by A. M. Jan	sen Drilling C	o., 1939]
Valley fill:		
Clay	50	50
Gravel and clay	10	60
Clay	20	80
Clay, red	35	115
Clay, brown	27	142
Clay, dark-brown	53	195
Clay, black	33	228
Columbia River basalt:		
Rock shale(?), hard, brown	14	242
Rock	32	274
Rock, hard	6	280
· · · · · · · · · · · · · · · · · · ·	40	320
Rock	26	346
Basalt, gray	13	359
Rock	1	1
Rock lava, black	3	362
Rock, porous	20	382
Lava, black and red	36	418
Basalt, gray	6	424
Shale(?)	11	435
Clay(?), yellow and red	10	445
Shale(?), gray	45	490
Rock	24	514
Rock, sand, gray	9	523
Rock	83	606
Sand(?)	5	61
Rock, cavey	19	630
Rock, red	25	65
Shale(?), blue	14	669
Rock	56	72
Shale(?), blue	10	73
Rock, hard		74
Clay and rock		82
Rock, red	16	83'
Dools and olors	0.5	02

2/1-8N1

Rock and clay

Rock, blue, gray

Rock, red, water-bearing

Rock, blue, gray

[Lake Oswego Water Co. Altitude about 115 ft. Drilled by R. J. Strasser Drilling Co., 1945]

95

25

15

8

932

957

972

980

Soil and mantle (undifferentiated):		
Clay	10	10
Columbia River basalt:		
Rock, soft, brown	27	37
Rock, hard, blue	5	42
Rock, soft, brown		48
Rock, hard, gray		52
Rock, soft, brown		73
Rock, hard, green	5	78

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
2/1-8N1—Continued		
Columbia River basalt—Continued:		
Rock, hard, gray and black	21	99
Rock, soft, brown, water-bearing	23	122
Rock, hard, black	18	140
Rock, hard, green	19	159
Rock, soft, brown	13	172
Rock, hard, gray	7	179
Rock, soft, brown	12	191
Rock, hard, gray	6	197
Rock, hard, black, water-bearing crevice from 231-234 ft	46	243
Rock	15	258

2/1-9D1

[Lake Oswego Water Co. Altitude about 225 ft. Drilled by R. J. Strasser Drilling Co., 1946]

Columbia River basalt:		
Rock, broken, red	6	6
Rock, solid, red	10	16
Rock, hard, gray		103
Rock, black		128
Rock, hard, gray	37	165
Rock, black		190
Rock, soft, honeycombed, water-bearing		197
Rock, hard, black	3	200
Rock, soft, black, carries some water	4	204
Rock, black	15	219
Rock, hard, black		287
Rock, soft, black, water-bearing	15	302
Rock, gray		309
Rock	96	405_

2/1-14F1

[Marylhurst College. Altitude about 200 ft. Drilled by R. J. Strasser Drilling Co., 1947]

Soil and mantle (undifferentiated):		
Clay	5	5
Sand, brown	13	18
Sand and gravel	17	35
Columbia River basalt:		
Rock, soft	14	49
Gravel, cemented(?)	15	64
Rock, medium hard, brown	17	81
Rock, hard, gray, seams 161-163 ft		163
Rock, hard, gray		174
Rock, brown		181
Rock, hard, gray	12	193
Rock, medium hard, black		209
Rock, gray	45	254
Rock, porous, red and gray, water-bearing	12	266
Rock, brown, green and black	35	301
Rock, hard, gray	50	351
Rock, hard, brown	18	369
Rock, hard, gray and black	78	447

Table 2.—Drillers' logs of representative wells-Continued

Materials	Thickness (feet)	Depth (feet)
2/1-14F1—Continued		
Columbia River basalt—Continued:		
Rock, porous, black, water-bearing	9	456
Rock, hard, gray	20	476
Rock, hard, black	25	501
Rock, broken, water-bearing	11	512
Rock, hard, gray	7	519

2/1-15C1

[City of Oswego. Altitude about 560 ft. Drilled by A. M. Jannsen Dr'lling Co., 1935]

Soil and mantle (undifferentiated):		
Clay	10	10
Columbia River basalt:		
Rock, red and gray	149	159
Rock, brown	24	183
Rock, decomposed, brown	12	195
Rock, gray	20	215
Rock, broken, brown and clay	26	241
Rock, gray, water-bearing 260-265 ft	89	330
Rock, porous	15	345
Rock, black	73	418
Rock, brown, creviced	54	472
Rock, with streaks of shale	27	499
Rock, black, some broken	19	518
Rock, black, with streaks of shale		541
Rock, gray	99	640

2/1-22C1

[K. B. Hall. Altitude about 450 ft. Drilled by A. M. Jannsen Drilling Co., 1945]

Soil and mantle (undifferentiated):		
Clay, sandy, red	35	35
Columbia River basalt:		
Rock, water-bearing at 123 ft	257	292
Rock, black	93	385
Rock, water-bearing	18	403
Rock, black	73	476
Rock, gray	51	527

2/1-25E1

[H. E. Ibach. Altitude about 620 ft. Drilled by Steinman Bros. Drilling Co., 1949]

Soil and mantle (undifferentiated):		
Clay and boulders	30	30
Columbia River basalt:	ĺ	
Rock, soft	20	50
Rock, solid, gray	82	132
Rock, soft, black	10	142
Rock, hard, gray	10	152
Rock, soft, black and gray	72	224
Rock, hard, gray	46	270
Rock, soft, black, with crevices	2	272
Rock, gray and black	75	347

Table 2.—Drillers' logs of representative wells—Continued

Materials	Thickness (feet)	Depth (feet)
2/1-25E1—Continued		
Columbia River basalt—Continued:		
Dools goff blook and mod	8	355
Rock, soft, black and red	ı	379
	24	1 313
Rock, soft, red	24 8	387

3/1W-2N2

[Bonneville Power Administration. Altitude 238.6 ft. Drilled by R. J. Strasser Drilling Co., 1941]

Valley fill (and decomposed rock?):		
Clay with boulders	51	51
Clay, blue, red, and yellow	142	193
Clay, sand, gray	8	201
Columbia River basalt:		
Basalt, water-bearing	99	300

3/1W-5D1

[W. C. Speaks. Altitude about 275 ft. Drilled by Steinman Bros. Drilling Co., 1943]

Soil and mantle (undifferentiated):		
Clay, yellow	14	14
Columbia River basalt:		
Rock, soft	43	57
Rock, fairly hard, water-bearing	47	104
Rock, soft	29	133

3/1-4C1

[R. P. Corderman. Altitude about 810 ft. Drilled by Steinman Bros. Drilling Co., 1944]

Soil and mantle (undifferentiated): Clay Columbia River basalt:	29	29
Rock, some water at 70 ft	81	110
Rock, soft, yellow	45	155
Rock, brown, hard and soft		460
Rock, black, hard and soft	60	520
Rock, brown, water-bearing	123	643

Table 3.—Descriptions of representative springs

Use of water: D, domestic; Irr, irrigation; PS, public supply; Topography: P. plain; S. slope.

supply;		Remarks	Reportedly larger	Ilow in winter. Supplies six fam-	ilies; irrigates garden and lawn. Flow reportedly	drops to 10 or 15 gpm in summer, Irrigates about 5	acres. Reportedly has some flow the	entire year. Reportedly has	tuation. Fluctuates with	season.
71707	formed of	Cloride (Cl ppm)	50 4	4	- - +		. 	<u>ه</u>	4	4
ā, o	tuiuu	Use Hardness as CaCO3		5, 38	Irr , S 14	<u>i</u>	S 44	S 38	s 40	12
ι. La		6511	Ω	D,S,		Irr	D, S	D,S	D,S	Q
irrigatioi	Yield	Date	7- 7-50	30 (r) 12- 4-50	12- 4-50	30 (r) 11-27-50	8-28-51	8-24-51	9- 4-51	1- 9-51
ic, iff,		Gallons per minute	15 (r)		(e) 09		1 (r)	3 (r)	5 (r)	5 (r)
ose or water: L, nomestic; irr, irrigation; rs, public supply; S, Stock.		Occurrence	Intersection of	water table. Fissures in rock-	Hillwash material	Near contact with	underlying marine shale(?). Seep from clay bank.	qo	qo	op
		Water-bearing material	340 Gravels along Gales	Columbia River basalt.	op	ор	underlying marine shale('marine shale('bia River basalt,' bank,'	ор	ор	op
tch weir,	-ixo 9vo	Topography and appr mate altitude (ft ab sea level)	P 340	S 230	P 220	S 220	S 1,280	S 300	s 900	s 700
ith 90° v-no		Name of spring	1	1	1			! ! ! !	1	
lopography: r, plant, s, slope. Yield: (e) estimated; (m) measured with 90° v-notch weir; (r) reported.		Owner or occupant of property	Melvin Green	9Q1 L. E. Bamford	14N1 Beverly Davis	26J1 Frank Russel	A. A. Albright	19R1 A. J. Logan	23R1Oscar Emery	Carl Raddatz
Topography: I		Number	1N/4W-6D1Melvin Green_	9Q1	14N1	26J1	2N/2W-10F1A. A. Albright	19R1	23R1	2N/3W-10H1Carl Raddatz

									CO	RD	s o	F 8	SPI	RIN	GS	3										
Very little fluc-	Flow reportedly about 20 gpm in	summer; used for irrigating	garden. Used for Grade A	dairy; reportedly very little fluc-	tuation.	chemical analysis.		Most of flow wastes	Creek; see table	4 for chemical	analysis. Supplies two	houses and one	dairy; reportedly	very little fluc-	Supplies nine	houses.		5	reportedly 110w =	Ing about the	same for 70	years.	Very little fluc-	tuation reported. Typical of small	springs in	Chenalem Hills.
4	د		2		- 0						3				9		33						···	4		
S 44),S, 14		32		7			35			S 56				40		S 14		#				54	3 10		_
<u>,</u>	, O	· · · · · · · · · · · · · · · · · · ·	Ŋ	···	DG 			<u> </u>			D,S				<u> </u>		D,S		٦ —-				<u>α</u>	D.S		
5 (e) 1- 3-51 D,S 44 4	50 (m) 1- 3-51 D,S, 14 Irr		1- 3-51		7.00	3-25		3-23-51							1-25-51		2-14-51	•	TC=# -2					8- 6-51		
(e)	(m)		5 (e)		(<u>E</u>							(r)		(r)	3	(2)				-	2 (r)		
വ	20		വ		340 (m)			(m) cz9			į				40 (r)		വ	-	-					2		
Near contact with	do		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Wellow fills con	bo		Fissures at base	ing lava.	0	Contact with	marine shale.			do		Seep in soil zone	÷				•	op	op		
S 250 Columbia River basalt . Near contact with	op		S 225 Alluvium		900 Boring love	The state of the s		op			S 440 Columbia River basalt - Contact with						700 Residual soil on	Columbia River basalt,					160 Alluvium	325 Residual soil on	Columbia Riverbasalt.	
S 250	S 220		S 225		0000	1	,	JP 190			S 440				S 300		S 700	066 0				9	1 I I I I	S 325		
-	1		1 1 1		Tohnson	Spring.		Wessinger	-Sp. 1118		1								1 1 1 1 1 1 1 1 1 1					1	-	_
20Q1Jacob Bass	28E1M. L. Smith		31A1H. J. Vandehey		1/1W-4H1 Wolf Creek Highway	Water Dist.		10H1 Poisky	• • • • • • • • • • • • • • • • • • • •		1/3W-19J1 Lena Hinkle		-		19R1 J. T. VanDvke		34K1K. Tupper	35E1 Tohn Hoose	Transcription of the second				2/IW-IILI-Lester Bennett	2/2W-17N1 R. Neugebauer		•
20	28		31		1/1W-4F	: - /-	•	η			1/3W-19J				19		34	ď	8			1111	2/ IW-II	2/2W-17		

Table 3.—Descriptions of representative springs—Continued

2/2W 35G1 2/3W-1L1 4K1	Owner or occupant of property 35G1 Howell	Name of spring	N N N I Opography and approxi- 1.	Water-bearing material Residual soil on Columbia River basalt. Columbia River basalt. Columbia River basalt. Columbia River basalt. Residual soil on Columbia River basalt.	e the factor of	3.40 $\frac{3.40}{(1.5)}$ $\frac{3.40}{(1.5)}$ $\frac{3.40}{(1.5)}$ $\frac{3.50}{(1.5)}$ $\frac{3.50}$ $\frac{3.50}{(1.5)}$ $\frac{3.50}{(1.5)}$ $\frac{3.50}{(1.5)}$ 3.50	Yield 7-30-51 2-21-51 2-5-50 3-2-51 3-2-51	1, 0 D D D D D D D D D D D D D D D D D D	Remarks Typical of small springs in Chehalem Hills, Gused as a standby supply; spring 2/3w-16C1 main source of water for school. Theportedly very little fluctuation; supplies three houses. Measured \(^{\frac{1}{4}}\) mile below source; diversion for school supply. Tused for irri- gating garden;
									reportedly has very small fluc- tuation.

													R	EC	CO	RI	S	Ο.	F
	D,S 22 4 Reported to have	large annual	4 Supplies five	families.		D 20 3 Supplies about 30	families.	5 Large annual	fluctuation.	5 Used for sup-	plying pond in	city park; at one	time sole supply	for city.	Smaller flow	during dry sea-	son.	Called "Ferry	Spring."
	4					-3				- 21					_;		_		
	S 2;		D 82	_		26		Irr 38		-					<u>.</u>		_		
	Ū,					<u> </u>				;					ď				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 (r) 11- 1-51			1 1 1		1 1 1		1 1 1					4 (r) 10- 4-51 D,S			30 (e) 10- 4-51	
	1 1		10 (r)			1 1		100 (r)	٥.	1 1								30 (e)	
	op		Contact of allu-	vium with	Boring lava.	Many small seeps	in soil zone.	do		Interflow zone					Seep in soil zone.			Outflow in river	bank,
-	S 450 Colluvium		S 400 Boring lava			- Community S 300 Columbia River basalt. Many small seeps		P 150 Residual soil on Colum- do 100 (r)	bia River basalt.	S 125 Columbia River basalt_ Interflow zone					275 Residual soil on Colum-Seep in soil zone.	bia River basalt.		S 125 Gravel layer in older	alluvium.
	S 450		S 400			S 300		P 150		S 125				•	S 275			S 125	
•	1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Community	Spring.			1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
	'4W-8H1 J. H. Hoodenply		1-5M2 W. B. Milmont					'1W-3D2 H. Okagakie		1-2F1 City of Willamette					Ben Mosier			21C1 Clackamus Co	
	/4W-8H1		/1-5 M2			33Q1		/1W-3D2		/1-2F1					5L1		_	21C1	

Table 4.—Chemical analyses of water from representative wells and springs

[Analyses by U.S. Geol. Survey except as noted. Values are given in parts per million except as indicated. Data are arranged under indicated well number and date of collection]

G.	EOL	,GI	AND	GROOM	D WAIER,	TUALATIN VA	LLEI, ON	EG.
	1/1W-15K1 ²	11-18-41	25	.16	13 6.6 98 .9	285 .6 29 .1	348 60 0	82
	1/1W-10H1 ²	9-20-41	47	.04	14	3.4	162 64 13	28
	1/1W-4H1 ²	4-23-45	55	41.3	11, 5.4	2.6 1.2 1.2	134 47 1	26 . 5
	$1N/4W-23R1 1/1W-4H1^2 1/1W-10H1^2 1/1W-15K1^2$	6-19-51	42	.12	8.4 7.7 1.8	62 1.4 2.3 1.	988	29 . 55 99 7.4
	1N/3W-32P2 ²	10-17-40	30	43.5	20 8.2 582	2.1	303 85 0	3.9
		5-20-46		1.8	33	136	29	6.9
moreous to came to manual	1N/3W-1K2 1N/3W-6E1	4-3-51	59 49	.03	15 7.9 31 9.0	136 2.1 23 .2 .1	204 70 0	45 1.6 283 7.6
Taguirin	1N/2W-21P1	5-15-51	54 46	³ 2.32	44 15 8.9 9.5	241 .6 2.9 .14 .3	247 172 3	10 .3 383 7.2
	1N/1W-20H1	5-17-51	57 52	.13	37 2.7 68 11	174 6.6 83 .2 .1	346 104 0	56 2.9 541 7.6
			Temperature (°F)	Iron (Fe): Total In solution	Calcium (Ca)	Bicarbonate (HCO ₃)	Dissolved solids (total)	Percent sodium

			RECORDS	OF WELLS A	ND SPRING	S	
1/2W-21H2 ²	2-16-38	0.9		54 0 0 2,000	3,940		6.9
1/2W-10B1 1/2W-13M1 1/2W-19A16 1/2W-21H2 ²		0.1		71	7.2		6.5
1/2W-13M1 ¹	4-2-51	0.8		184	100		7.6
1/2W-10B1 ¹		0.1		344	136		7.5
1/1W-27C1 ²	3-17-52	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	587	1,840	3,640		
1/1W-26E1 ²	9-22-52	47.3	41 16 ⁵ 15.9	192 2.5 38	295	21.68	7.4
1/1W-26E1 ²	12-21-51	51	34 15 ⁵ 9,3	167 2.3 22	293 146 10	.33	8.8
1/1W-26E1 ² 1/1W-26E1 ² 1/1W-26E1 ² 1/1W-27C1 ²	650	30	30 30 ⁵ 9,3	171 3.7 22	224 198 58	9.29	
1/1W-17A2	11-19-53	73 4533	222 45 290 40	63 2.7 960 .1	1,640 739 687	44 4.6 3,140	8.2
		Temperature (°F). Silica (SiO ₂) Iron (Fe): Total In solution	Calcium (Ca)	Bicarbonate (HCO ₃)Sulfate (SO ₄)Chloride (Cl)Fluoride (F)	Dissolved solids (total) Hardness as CaCO3: Calcium, magnesium	Percent sodium Sodium-sodium-adsorption ratio (SAR). Specific conductance (micromhos at 25°C).	pH (hydrogen-ion concentration).

See footnotes at end of table.

Toble 4.—Chemical analyses of water from representative wells and springs—Continued

		Cucmical analys	בי מו מחובו וומוו	ione 4.—Circilitati minijosos oj water jioni representative wetis min opitings	egunde nun e	Collinger			
	1/2W-21H3 ²	1/2W-25J1 ^{2,8}	1/2W-25J1 ² .9	$1/2W-25J1^{2,8}$ $1/2W-25J1^{2,9}$ $1/2W-25J1^{1,10}$	1/2W-31C1 1/3W-5F1	1/3W-5F1	2/1W-10C1 ²	2/1W-13B1 ⁶	$2/1W-13B2^{6}$
	1-11-38	5-9-46	5-9-46	2-7-46	5-15-51	9-15-51	4-30-49		
Temperature (°F)Silica (SiO ₂)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	# # # # # # # # # # # # # # # # # # #			44		13	23
ron (re): Total In solution	0.1	1 3 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6		.43	112,16	0.1		3 1 1 1 1 1 1 1 1 1
Calcium (Ca)		15,400 31	17,900 24	15,900 10	24 15	68 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sodium (Na)Potassium (K)	1	809 809	10,000	4,180 75	12 5.3	30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Bicarbonate (HCO ₃)	104	196	66	34	156	428	162	120	171
Chloride (CI)	7.8	16 43,700	49,700	35,500	15	2.4	3.6	350	8.7
Filoride (F) Nitrate (NO ₃) Boron (B)		1 1 1 9 1	1		7	c. I.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dissolved solids (total)	215	68,800	78,300	62,300	200	389	206	780	253
nardness as CaCO3: Calcium, magnesium Noncarbonate	36	38,500 38,300	44,700 44,600	39,700 39,700	122	293	50	240	82
Percent sodiumSodium-adsorption ratio (SAR)		33 20	32 20.6	18 9.3	17	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Specific conductance (micromhos at 25°C)	1 1 1 1 1 1 1 1	1) 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	427	595	1	. !	1
pH (hydrogen-ion concentration)	9.9	 	1 5 6 1 1 1 1	6.9	7.7	7.4	8.9	 	1

	$2/2W-8L1^{12}$	$2/2W-8L1^{12}$ 2/4W-23N1	2/1-8H1 ¹³	2/1-8R1 ²	$2/1-9D1^2$	$2/1-9J1^{13}$
	1-5-51	4-19-51	11-4-53	11-6-45	5-14-46	11-4-53
Temperature (°F)Silica (SiO ₂)	34	19	30	99	49	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Iron (Fe): Total	5.1	71.75	1.	3.52	5.	0.1
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)		1,980 113 824 12	21 14 58,2	92 30 ⁵ 76	21 7.8 517	17 6 56.1
Bicarbonate (HCO ₃)	122 8 10	51 30 5,010	120 15 16	168 .6 285 .9	132 .7 4.3 0	85 10 12 .02
Dissolved solids (total)	1	8,010	163	807	175	158
Hardness as CaCO3: Calcium, magnesium Noncarbonate	84	5,400 5,360	110 12	353 216	84	67
Percent sodiumSodium-adsorption ratio (SAR)Specific conductance		25	.34	32 1.75	31	.33
(Micromhos at 25°C) pH (hydrogen-ion con- centration)	7	13,300		7.4	7.5	6.8
Analysis by Permutit Co., Los Angeles, Calif.	Angeles, Cali		Includes 1.5 p	Includes 1.5 ppm manganese	se.	2 000 0

²Analysis by Charlton Laboratories, Inc., Portland,

Oreg.
³Includes 0.12 ppm manganese.

⁴Includes aluminum. ⁵Sodium and potassium as sodium. ⁶Analyst unknown.

⁸Water sample taken from bottom at depth of 9,203 ft. ⁹Water sample taken from interval 7,862–9,263 ft. ¹⁰Water sample taken from interval 3,505–3,534 ft. ¹¹Includes 0,96 ppm manganese. ¹²Analysis by F. E. Myers Laboratory, Ashland, Ohio. ¹³Data from Oregon State Board of Health.

Table 5. - Ground-water levels in observation wells

[All measurements are below land-surface datum. p, pumping at time of measurement]

Date Wate	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
-----------	------	--------------------------	------	--------------------------	------	--------------------------

1N/1W-18J2

[Sam Joss. Dug well 70.7 ft deep tapping unconfined water in quicksand 65 to 71 ft below land surface]

1951		19	152	ļ	1952	—Cont.		. 1	1953	
May 17 June 18 July 16 Aug 15 Sept. 22 Oct. 22 Nov. 24 Dec. 17	45.82 45.98 46.62 51.92 52.52 47.62	Feb. Mar. Apr. June July	18 17 21 25	P _{57.60} 38,40 38.04	Sept. Oct. Nov. Dec.	21 25 28 20 22	39.25 39.77 41.20	Mer. Apr. May	2 3 6 4	40.20 41.53 44.07

1N/1W-20J2

[Bethany Baptist Church. Dug well 40 ft deep tapping unconfined water in Boring lava]

1951		1951Cont.	_	1952—Cont.		1952—Cont.	
		Nov. 24 Dec. 17		Apr. 21 June 25		Dec. 21	29.01
June 18	36.55			July 28	25.20	1953	
July 16				Aug. 21			
		Jan. 15		Sept. 25	26.96	Mar. 3	10.25
		Feb. 18		Oct. 28	29.54	Apr. 6	14.13
Oct. 23	26.34	Mar. 17	10.55	Nov. 20	28.51]

1N/1W-31R1

[E. L. Pritchett. Dug well 25.8 ft deep tapping unconfined water in sand]

1951		1951-	-Cont.		1951—Cont.		1952Cont.	
Apr. 20 May 17 June 18	9,51	Sept.	22	20.55			Feb. 19 Mar. 17 Apr. 22	7.71
July 16						7.04		12.23

1N/1W-34D1

[S. H. Bloedon. Dug well 33 ft deep tapping unconfined water in alluvium]

1	.951		1951-	1951—Cont.		1952—Cont.			19	53	
	20		t I	17			30			3	
	17 18			952		_	21			4	
July	16	8.71	Jan.	15	1,08	Oct.	28	14.33	May	4	6.85
Aug.	15	10.09	Feb.	18	1.53	Nov.	20	14.77	June	1	7.05
Sept.	22	12.29	Mar.	17	1.99	Dec.	22	15.10			
Oct.	22	13.05	Apr.	21	7.02				}		
Nov.	24	7.68	June	25	8.15						

Table 5.—Ground-water levels in observation wells—Continued

Date Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
-------------------------	------	--------------------------	------	--------------------------	------	--------------------------

1N/2W-17F1

[Ernest Zurker. Dug well 53 ft deep tapping unconfined water in the valley fill]

1951		1951—Cont.		1952—Cont.		1953	
•	11.46 16.45 20.85		4.78	July 30 Aug. 21 Sept. 25 Oct. 28 Nov. 20	23.01 27.50 28.05	Feb. 2 Mar. 3 Apr. 6 May 4 June 1	6.71 6.44 9.13
Sept. 22 Oct. 22	27.80 24.38	Mar. 17 Apr. 21 June 25	5.67 9.82	Dec. 22	26,00		14.47

1N/2W-21D1

[G. P. Frost. Bored well 35 ft deep tapping unconfined water in sand]

1951		1951—Cont.		1952—Cont.		1953	
Mar. 28 May 16 June 19 July 16 Aug. 15 Sept. 22 Oct. 22 Nov. 24	5.93 6.89 9.55 11.14 12.43 4.93	Feb. 18 Mar. 17	5.71	July 28 Aug. 21 Sept. 25 Oct. 28 Nov. 20 Dec. 22	11.58 12.09 12.69	Feb. 2 Mar. 3 Apr. 6 May 4 June 1	4.39 5.13 5.07 P9.28 5.52

1N/2W-32C1

[C. J. Wojahn. Bored well 23 ft deep tapping unconfined water in sand]

1951	1951—Cont.		1952—Cont.		1953	
Mar. 27 1.96 May 17 4.14 June 19 7.00 Aug. 15 71.5.2 Sept. 22 12.94 Oct. 22 9.71 Nov. 22 2.65	1952 Jan. 15 Feb. 18 Mar. 17	1,54 1,60 1,63	Sept. 25 Oct. 30 Nov. 20	16.86 12.19 12.96 13.47 13.35		2.24 2.20

1N/2W-33R1

[Robert Rice. Drilled well 42 ft deep tapping unconfined water in sand]

1951		1951—Cont.	1952—Cont.			19:	53	
Mar. 30	24.58 25.82 937.58 26.51	1952 Jan. 16 Feb. 19	26.34 25.53	July 31 Aug. 21 Sept. 25 Oct. 30 Nov. 20	27.49 27.67 26.05 27.82	June	3 3 6	
	27.63	Mar. 17 Apr. 22 June 30	27.30 25.55 26.66		27.85			

728-196 O-64-12

Table 5.—Ground-water levels in observation wells-Continued

Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------	--------------------------	------	--------------------------	------	--------------------------	------	--------------------------

1N/3W-8P1

[G. H. VanderZanden. Dug well 33 ft deep tapping unconfined water in alluvium]

1950		1951	—Cont.		1952	—Cont.		19	53	
Nov. 21	3.85	Oct.	23	25.70	Apr.	22	9.29	Feb.	2	4.08
		Nov.	24	12.66	June	30	19.89	Mar,	3	5.77
1951		Dec.	24	4.97	July	28	27.99	Aor.	6	5,88
Apr. 19	9.34	Ι.			Aug.	21	29.61	May	4	7.87
May 16	11.67	1 1	952		Sept.	25	30.17	June	1	11,53
June 18	17,37	Jan.	15	8.05	Oct.	28	31.16			
July 17	30.39	Feb.	18	4.75	Nov.	20	29.79	 		
Sept. 25	30.79	Mar.	17	4.87	Dec.	22	28.40			
		<u> </u>			U			L		L

1N/3W-13F3

[Edwin Simantel. Drilled well 340 ft deep tapping confined water in sand strata of the valley fill]

1950		1951—Cont.		1952—Cont.		1953—Cont.	
Nov. 24	19.83	Dec. 18	21.26	Sept. 25	23.20	June 1	22,29
1951		1952		Oct. 30 Nov. 20		July 1 Aug. 10	22.45 22.83
Mar. 16	21,29	Jan. 16	21.21	Dec. 22	21.70	Aug. 31	22,93
Apr. 19	21.62	Feb. 19	21.33			Opt. 5	23,08
May 16	21,77	Mar. 18	21.48	1953		Dec. 3	22.45
June 18	21.14	Apr. 21	21.99	Feb. 2	23.55	10-1	
Aug. 16	22.14	June 30	22.73	Mar. 3	22.47	1954	1
Sept. 25	22.56	July 30	23.09	Apr. 6	22.55	Feb. 4	22,26
Oct. 22	21.77	Aug. 21	23.18	May 4	22.19	Apr. 20	22.07
Nov. 24	21.32			<u> </u>			İ

1N/3W-28K2

[J. N. Jepson. Bored well 54 ft deep tapping unconfined water in "silt" of the valley fill]

1950		1951—Cont.		1952—Cont.		1952Cont.	
Nov. 29	4.87	Oct. 23	15.70	Mar. 18	5.35	Dec. 22	13.74
		Nov. 24	8.02	Apr. 22	8,60		
1951		Dec. 18	3.92	June 30	12.56	1953	
Apr. 19	8.50		}	July 30	15.24	Feb. 2	3.39
May 17	9.60	1952		Sept. 25	16.93	Mar, 3	6.05
Aug. 16	16.52	Jan. 16	4.14	Oct. 28	17.95	Apr. 14	7.00
Sept. 25	17.53	Feb. 19	4.96	Nov. 22	17.44	June 1	11.44

1N/3W-30L1

[Rod VanderZanden. Drilled well 195 ft deep tapping confined water in sand]

1	1951		1951—Cont.		1952—Cont.			1953			
Apr.	19	9.64	Dec.	17	12.50		28				
May	16	13.75	1			Aug.	21	P128.86	Mar.	3	12.99
June	18	P109.22	1	952		Sept	25	48,80	Apr.	6	14.11
July	17	P _{108.09}	Jan.	15	11.65	Oct.	28	26.51	May	4	13,58
Aug.	16	P _{102.25}	Feb.	18	10.98	Nov.	20	18,10	June	1	13.30
Sept.	25	43.82	Mar.	17	11.14	Dec.	22	17.29			
Oct.	23	18.00	Apr.	22	11.02						
Nov.	24	13.63	June	30	21.31				1		

Table 5 .- Ground-water levels in observation wells-Continued

Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------	--------------------------	------	--------------------------	------	--------------------------	------	--------------------------

1N/3W-30L2

[Rod VanderZanden. Bored well 32 ft deep tapping unconfined water in silt]

1	951		19	952		1952—Cont.		19	153	
Apr.	19	14.30	Jan.	15	4.51	Aug. 21	18.56	Feb.	2	4.40
May	16	10.74	Feb.	18	5.00	Sept. 25	20.79	Mar.	3	7.60
June	18	12.60	Mar.	17	5.95	Oct. 28	20.90	Apr.	6	7.10
Aug.	16	16.38	Apr.	22	8,99	Nov. 20	20.24	May	4	8,73
Sept.	25	19,10	June	30	13.81	Dec. 22	14.85	June	1	11.44
Oct.	22	14.95	July	28	18,55			ļ		
Nov.	24	6.63								ļ
Dec.	17	6.60								

2N/3W-11G1

[Chas. Adams. Dug well 82 ft deep tapping perched water in Columbia River basalt]

1951		1951	Cont.		1951—Cont.	1952—Cont.	
Mar. 16 Apr. 19 May 16 June 18 July 16	65.90 68.28 70.25	Sept. Oct. Nov.	22 22	72.36 74.83	1053	Feb. 18 Mar. 17 Apr. 22	61.40

2N/3W-14J1

[O'Connor and Corriery. Drilled well 165 ft deep tapping confined water in the Columbia River basalt]

1951		1951	Cont.		195	1Cont.		1	952	
Jan, 6	88.84	June	18	89.97	Oct,	23	99.43	Jan.	15	89.49
Mar. 16	90.55	July	16	P _{121.27}	Nov.	24	87,13	Feb.	18	90.70
Apr. 19	89.05	Aug.	16	93.47	Dec.	17	86,68	Mar.	17	90.90
May 16	87.79	Sept.	22	89.17		'				ì

2N/3W-16A1

[Dennis Hall. Drilled well 150 ft deep tapping unconfined water in gravel and boulders of the alluvium at a depth of 34 to 55 ft]

1951		1951	Cont.		1951—Cont.		1952——Cont.	
Jan. 3	6.30	July	16	P53.70	Dec. 17	6.46	Mar. 17	4.53
Mar, 16	4.88	Aug.	16	P51.49			Apr. 22	5.10
Apr. 19								
May 16	6.32	Oct.	22	10.59	Jan. 15	5.24		
June 18	7.10	Nov.	24	7.88	Feb. 18	4.60		
		1			1 02. 101111			

Table 5.—Ground-water levels in observation wells-Continued

Date le	Vater Level Date feet)	Water level (feet)	Date	Water level (feet	Date	Water level (feet)
---------	------------------------------	--------------------------	------	-------------------------	------	--------------------------

1/1W-24F1

[Aaron Frank, Drilled well 520 ft deep tapping confined water in the Columbia River basalt. Airline measurements reported by owner]

1939		1940-	Cont.		1941—Cont.		1943	
Apr. 15	52.0	Aug.	15	53,75	Nov. 15	47.0	Jen. 15	45.0
May 15	51.25	Sept.	15	50.0	Dec. 15	46.0	Feb. 15	45.0
June 15	45.5	Oct.	15	47.0	10.12		Mar. 15	44.0
July 15	51.25	Nov.	15	47.0	1942		June 15	44.0
Aug. 15	53.5	Dec.	15	46.0	Jan. 15	46.0	July 15	50
Sept. 15	47,75	Ι.			Feb. 15	44.0	Aug. 15	50,5
Oct. 15	46.5	13	941		Mar. 15	43.5	Sept. 15	47.0
Nov. 15	46.0	Jan.	15	46.0	Apr. 15	43.0	Dec. 15	47.0
Dec. 15	46.0	Feb.	15	45.0	May 15	43.5		
		Mar.	15	44.0	June 15	45.0	1944	
1940		Apr.	15	44.5	July 15	48.0	Jan. 15	47.0
Jan. 15	45.0	May	15	46.3	Aug. 15	49.0	Apr. 15	47.0
Mar. 15	43.25				Sept.15	47.0	May 15	46.5
Apr. 1	43.0	July	15	53.0	Oct. 15	47.0	June 15	51.0
May 15	44.75	,,	15	47.65	Nov. 15		July 15	54.25
June 15		Oct.	15	47.0	Dec. 15	45.0	Aug. 15	55.0
July 15	53.0						J	

1/2W-8K1

[A. Hornecker. Drilled well 32 ft deep tapping unconfined water in sand]

1951		1951—	Cont.		1952—Cont.		195	53	
Feb. 23 May 18 June 19 July 17 Aug. 16 Sept. 22	P _{18.96} P _{20.98} P _{23.29} P _{23.57}	Dec. 1 1952 Jan. 1 Feb. 1	8 ? 6	3.86 2.26	July 31 Aug. 22 Sept. 27 Oct. 30 Nov. 28 Dec. 23	17.29 22.97 12.1	Mar. May June	3 3 5 2	1.75 3.34 4.30 6.16
Oct. 24 Nov. 25	8.66			P _{14.43} P _{17.10}					

1/2W-18P1

[Louis Malensky. Drilled well 70 ft deep tapping unconfined water in sand]

1951		1951-	Cont.		1952—Cont.		19	53	
Jan. 30	3.60	Nov.	25	15,12	July 1	15.24	Feb.	3	3.29
Mar. 16	2.83	Dec.	18	3.74	July 30	14.95	Mar.	3	4.52
May 16	10.80				Aug. 22			5	7,23
June 19	13.78	19	952		Sept. 27	22.08	June	2	9.90
July 17				3.51	Oct. 28	19.60	}		
Aug. 20	P36.27	Feb.	19	3.76	Nov. 28	18.40			
Sept. 26	17.85	Mar.	18	3,55	Dec. 23	18.15	İ		
Oct. 24	17.27	Apr.	22	7.27					

Table 5.—Ground-water levels in observation wells—Continued

Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------	--------------------------	------	--------------------------	------	--------------------------	------	--------------------------

1/2W-28H1

[G. E. Garrison. Dug well 24 ft deep tapping unconfined water in sand]

1951		1951Cont.		1952—Cont.		1953	
Apr. 24 June 20 July 20	10.00	11 1057 1		July 1 Aug. 1 Aug. 22	8.73	Feb. 3 Mar. 3 May 5	
Sept. 27 Oct. 24	14.33 14.15	Jan. 17 Feb. 20 Mar. 18 Apr. 28	1.77 1.75	Sept. 27 Oct. 30 Nov. 28 Dec. 23	15.02 15.50		5.61

1/2W-31H1

[J. C. Jones. Dug well 27 ft deep tapping unconfined water in sand]

1951		1951—Cont.		1952—Cont.		1952—Cont.	
Mar. 16 1	12.30		23.98	Feb. 19 Mar. 18	17.85	1 1057	24.15
May 18 1 June 19 1 July 17 2	19.90			Apr. 28 July 1	21.05	Feb. 3 May 5	
Aug. 20 2 Sept. 26 2	22.38	Jan. 16		Aug. 1 Aug. 22			19.77

1/3W-8L1

[J. W. Nelson. Dug well 24 ft deep tapping unconfined water in alluvium]

1951		1951—Cont.		1952—Cont.		1953	
Aug. 16 Sept. 26	13.85 15.89 16.53 17.93 20.07 20.72	II 1052 I	1,37 2,91 2,02	June 30 July 30 Aug. 22 Sept. 27 Oct. 30 Nov. 28 Dec. 22	17.17		5,57

1/3W-10A1

[E. F. McCormacke. Bored well 47 ft deep tapping unconfined water in sand]

1951		1951—Cont.		1952—Cont.		1953	
Mar. 14	6.25	Nov. 24	15.50	Apr. 22	13.54	Feb. 3	7.12
Apr. 17	13.54	Dec. 18	8.26	June 30	16.65	Mar. 3	12.34
May 17	15.23			July 30	P28.35	Apr. 14	12.40
June 18	15.67	1952		Aug. 21	P _{26,25}	May 4	13.20
July 17	16.80	Jan. 15	8.57	Sept. 25	20,64	June 2	15.20
Aug. 16	17.58	Feb. 18	9,60	Oct. 28	19.73	İ	
Sept. 25	18.57	Mar. 17	9.30	Nov. 20	P20.49	1	
Oct. 23	18.15						

Table 5.—Ground-water levels in observation wells—Continued

Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------	--------------------------	------	--------------------------	------	--------------------------	------	--------------------------

1/3W-14G1

[W. Demmin. Dug well 20 ft deep tapping unconfined water in sand]

195	51		1951	Cont.		1952Cont.		1953	
Jan.	30	3.30	Dec.	18	2.10	July 1	11.57	Feb. 3	2.60
May	18	7.91	Ι.	053		July 31	13.59	Mar. 3	5.33
June	30	10.85		952		Aug. 22	14.30	Apr. 14	4.93
July	17	12.90	Jan.	16	4.30	Sept. 27	16.32	June 1	7.32
Aug.	20	14.61	Feb.	19	3.19	Oct. 30	16.47		
Sept.	26	15.50	Mar.	18	3.20	Nov. 28	15.84		
Oct.	23	13,56	Apr.	22	6.19	Dec. 23	13.20	ļ i	
Nov.	25	4.20	_					1	
								<u> </u>	

1/3W-17B2

[L. Newburg. Dug well 65 ft deep tapping unconfined water in alluvium]

1951		1951—Cont.		1952—Cont.		1952—Cont.	
Jan. 29	46,68	Nov. 25	60.95	Apr. 28	57.05	Dec. 23	60.78
May 18	61.78	Dec. 18	56.27	June 30	59.28	1953	
June 20	60.39			July 31	60.49	1933	
July 17	59.71	1952	}	Aug. 22	58,96	Feb. 3	52.60
Aug. 16	58.92	Jan. 16	52.54	Sept. 27	60.28	Mar. 3	59.44
Sept. 26	60.97	Feb. 19	55.65	Oct. 30	62.98	June 1	60,66
Oct. 23	61.13	Mar. 18	55.00	Nov. 28	62.76		

1/3W-25P1

[E. Simantel. Drilled well 565 ft deep tapping confined water in the Columbia River basalt]

1951		1951—Cont.		1952—Cont.		19	53	
Feb. 14 May 18 June 19 July 17 Aug. 20 Sept. 26 Oct. 24 Nov. 25	41.55 51.58 53.89 54.69 48.72 49.32	1952 Jan. 16 Feb. 19 Mar. 18 Apr. 28	43.16 45.70	Sept. 27 Oct. 30 Nov. 28 Dec. 23	51.13 P61.70	May June	3 5	42.28

1/4W-2N2

[R. C. Ritchey. Drilled well 92 ft deep tapping confined water in shale and sandstone strata of Tertiary age]

1951		1951—Cont.		1952—Cont.		1953	
Jan. 12	8.02	Oct. 23	10.39	Apr. 28	10.58	Feb. 3	8.71
Mar. 19	8.26	Nov. 24	9.22	June 30	12.23	Mar. 2	10.31
Apr. 17	9.14	Dec. 18	7.09	July 31	12.99	Apr. 9	10.63
May 18	9.62	1052		Aug. 21	13.36	May 4	10.45
June 19	10.69	1952		Sept. 27	13.72	June 1	11.67
July 17	11.84	Jan. 16	8.98	Oct. 30	13.97		
Aug. 16	12.62	Feb. 19	9.40	Nov. 20	13.73	i i	
Sept. 25	12.82	Mar. 18	9.42	Dec. 22	11.23		

Table 5.—Ground-water levels in observation wells—Cantinued

Date Water Date (feet)	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------------------------------	--------------------------	------	--------------------------	------	--------------------------

2/1W-23N1

[G. Kogiso. Drilled well 125 ft deep tapping confined water in the Columbia River basalt]

1951		1952-	-Cont.		1952-	Cont.		1953—Cont.	
Aug. 21	P70.15	Feb.	20	4.76	Dec.	23	7.28	Oct. 5	8.80
Sept. 27	11,24	Mar.	19	4.73				Dec. 7	1.59
Oct. 24	6.85	Apr.	28	4.40	19	953		1954	
Nov. 26	5.06	July	1	5.30	Feb.	4	4.43	1334	
Dec. 19	4.84	Aug.	22	15.61	May	5	5.46	Feb. 4	(1)
1053		Sept.	27	17.05	June	2	5.92	Apr. 20	(1)
1952		Oct.	30	9.34	July	1	5.16		
Jan. 17	4.85	Nov.	28	7.72	Sept.	1	9.73		

¹Flowing.

2/2W-24M1

[Wm. Stenek. Drilled well 88 ft deep tapping perched water in the Columbia River basalt]

1951		19	952		1952Cont.		19	53	
June 27 July 17 Aug. 20 Sept. 27 Oct. 24 Nov. 26 Dec. 19	60.20 55.90 55.14 54.80	Feb. Mar. Apr. July Aug.	17 20 19 26 1	39.56 40.33 45.57	Aug. 21 Sept. 27 Oct. 30 Nov. 28 Dec. 23	55,62 56,38	May		34.00 46.73 47.81

2/3W-2Q1

[John Will. Dug well 52 ft deep tapping perched water that apparently occurs in alluvium]

1951		1951—Cont.		1952—Cont.		1952—Cont .	
Mar. 2	23,97	Nov. 26	12.23	Apr. 28	31,29	Dec.23	26,20
May 18	44.00	Dec. 18	13.40	July 1	32.67	10.53	
June 19	32.88			Aug. 1	33.47	1953	
July 17	34.40	1952		Aug. 22	37.89	Feb. 3	12.89
Aug. 20	38.53	Jan. 16	15.58	Sept. 27	37.23	Mar. 2	25.37
Sept. 26	41.16	Feb. 19	17.09	Oct. 30	44.15		
Oct. 24	23.24	Mar. 18	14.57	Nov. 28	40.70		

2/4W-1B1

[R. B. McBurney. Bored well 30 ft deep tapping unconfined water in sand]

1951		1951-	Cont.		1952Cont.		19	953	
Jan. 26	1.53	Oct.	23	14.28	Apr. 28	3,30	Feb.	3	0.76
Mar. 19	1.45	Nov.	25	.87	June 30	9.30	Mar.	2	2.53
Apr. 17	3.03	Dec.	18	.50	July 31	10.24	June	1	5.08
May 18	5.58		053		Aug. 22	9.99			
June 19	6.50	1	952		Sept. 27	11.84			
July 17	9.91	Jan.	16	.95	Oct. 28	12.58	1		
Aug. 20	15.07	Feb.	19	1.04	Nov. 20		,		
Sept. 25	13.30	Mar.	18	.75	Dec. 22	11.97	1		

Table 5.—Ground-water levels in observation wells—Continued

Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)	Date	Water level (feet)
------	--------------------------	------	--------------------------	------	--------------------------	------	--------------------------

3/1W-10R1

[R. W. Clark. Drilled well 45 ft deep tapping unconfined water in sand and gravel]

1951		1951—Cont.		1952—Cont.		1952—Cont.	
Aug. 20	35.82	Dec. 19	26.82	Feb. 20	28.05	Aug. 1	34.29
Sept. 27	36.18	1052				Aug. 22	
Oct. 27	29.76	1952	[Apr. 28	30.32		
Nov. 26	27.29	Jan. 17	27,49	July 1	31.89		

RÉFERENCES CITED

- Baldwin, E. M., and Roberts, A. E., 1952, Geology of the Spirit Mountain quadrangle, Oregon: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 129.
- Dean, H. T., 1943, Domestic water and dental caries. Jour. Am. Water Works Assoc., v. 35, p. 1161-86.
- Fenneman, N. M., 1931, Physiography of western United States; New York, McGraw Hill Book Co., Inc.
- Libbey, F. W., and others, 1945, Ferruginous bauxite deposits in northwestern Oregon: Oregon Dept. Geol. and Min. Industries Bull. 29.
- Newcomb, R. C., 1959, Some preliminary notes on ground water in the Columbia River
- basalt: Northwest Sci., v. 33, no. 1, p. 1-18.
 Paulsen, C. G., and others, 1951, Surface water supply of the United States, 1949: U.S. Geol. Survey Water-Supply Paper 1154.
- Piper, A. M., 1942, Ground-water resources of the Willamette Valley, Oregon: U.S. Geol. Survey Water-Supply Paper 890.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1935,
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of the discharge of a well using ground-water storage: Am. Geophys. Union Trans., p. 520.
- Treasher, R. C., 1942, Geologic map of the Portland area, Oregon: Oregon Dept. Geol. and Mineral Industries.
- Trimble, D. E., 1957, Geologic map of the Portland quadrangle, Oregon-Washington: U.S. Geol. Survey Geol. Quad. Map GQ 104.
- -1963, Geology of Portland, Oregon, and adjacent areas: U.S. Geol. Survey Bull. 1119, 119 p.
- U.S. Geological Survey, 1953, Quality of surface waters of the United States, 1948: U.S. Geol. Survey Water-Supply Paper 1132, p. 13.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture, Agriculture Handb. 60.
- Warren, W. C., Norbisrath, Hans, and Grivetti, R. M., 1945, Geology of northwestern Oregon west of Willamette River and north of latitude 45°15': U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 42.

[Italic page numbers indicate major references]

A	P	age			ge
Acknowledgments			Claystone		15
Al Peters well	. 	3 4		7,	9
Alluvium	19,	24,		7, 3	
2	5, 26,	39	Coast Range section		2
See also Older alluvium;			Coefficient of transmissibility, defined		35
Younger alluvium.			Columbia River basalt 15		16,
Aluminum ore		18	19, 20, 21, 22, 25, 2€, 31		
Analyses of water	52,	55	34, 35, 36, 39, 43, 45, 46	5, 4	47,
Anticlinal axis of the Portland Hil	ls		48, 49, 51, 52, 53, 57.		
ridge		44	springs at the base of		42
Anticline		27	supplies of water in		34
Aquifer	_ 28,	32,	Confined water 36		
	50,	53	Connate water		5 2
defined		4	defined		19
fine-sand		51	Cooper Mountain 10		
Artesian water, defined		30	14, 15, 17, 22, 26, 27, 28	, :	33,
Artesian wells		34	41, 42.		
Astoria formation		17	Cornelius	- 2	23 3
Average annual recharge	- 	41	Cultural features)
-			D		
В			ь		
Banks, town of		4	Dairy Creek 12	2. :	14.
Basalt			16, 17		
35, 44, 5			Damascus.		20
Beaver Creek			David Hill 16	, 1	17
Beaverton	_ 4.	23.	David Mountain	2	25
	2, 46,	48	Discharge of ground water 5	٠, :	36,
Bethan/		44	37	, 4	44
Bierly Bros. well		34	Displacements, types of		28
Birdseye Cannery well		34	Domestic supply		46
Bonny Slope, town of		4	Drainage		12
Boring, city of		20	_		
Boring lava	_ 19.	20.	E		
26, 27, 31, 35, 3	-	-			
Boron			Electrical conductivity 56	, 5	57
Breccia	-		Eocene rocks, sedimentary	1	15
Bull Mountain			volcanic	1	15
17, 22, 26, 27, 28, 3			Evaporation 36	, 4	40
			estimated annual total		9
C			Extent of area		2
Calcium		52	F		
Calcium chloride		55			
Cedar Mill	. 4,	31	Fanno Creek 12		
Charlton Laboratories, Inc., of		_	Farmington 28		
Portland		5	Farmington artesian area		49
Chehalem Creek		25	Faults 26 29, 34		
Chehalem Mountains			Field tests of water		54
17, 25, 26, 2			Fieldwork		5
Chemical analyses of water sample Cherry Grove		15	Fine sand, as water-bearing strata	,	32
Chert		23	Fluoride 55		
Chicken Creek			Folds 26		
Chloride		55	28, 29		
Cinders		33	•	•	15,
Classification of water		57	23, 24, 25, 32		
		- 1	Forest Grove weather station		7
24, 32, 33					
- // -			•		

G	Pa	ıge	Invigation Continued	age
			Irrigation—Continued use	48
Gales Creek	12,	15,	wells, production	
23, 24, 25, 26,	28,	32	weirs, production	40
Gaston	4,	12,	J	
15, 17,			_	
Gent well		31	Johnson Spring 36	
Geography	-	7	Joints 17	, 20
Geology		14		
Gravel	19,	23,	K	
	36,			
layers in the valley fill		32	Kansas City	31
Ground water			_	
43, 44, 48,			L	
artesian, defined		30		
chemical character	- .	52		43
			Lakes	14
defined		29	Landforms	10
discharge			Lava flows	, 20 2
A	37,		Location of area	
drop in altitude		44 29	M	
hydrologic features		47	141	
industrial supplyinterbasin transfer of		39	Magnesium	52
irrigation		45	Marine sediments	16
levels			Marshes	14
mineralized		53	McFee Creek	12
past records		48	McKay Creek 16	. 17
perched		28.	24	
30, 31, 36,			Measurements of water levels	59
prospects for future development	`	49	Metzger Water District	46
public supply	46,	48	Miocene rocks 16	, 17
quality of			Mount Scott	20
recharge	5,	28,	Mount Sylvania	20
29, 36, 37, 39,	42,	44	Mulloy	31
resources, effects of tectonic				
structures		28	N	
storage	41,	48		
unconfined			Natural resources	3
36,	39,	59	Nehalem River basin	7
use	46,	47	Newberg	25
			Nitrate	55
H			North Plains4	
			31	, 49
Hartung well		31	city wells	34
Helvetia	4,	26,	0	
TT* -1	31.		0	
Highways		4	Older alluvium	24
Hillsboro23,			Olivine	20
Hydrostatic pressure	-	29	Oregon City	15
nydrostatic pressure		23	Oregon Nursery Co., well	34
I			Orenco	4
•			Oswego	46
Industrial supply of ground water		47	Oswego Lake12	. 14
Infiltration			S .	
Interflow zones			P	
Introduction		1		
Investigation, history of		4	Palatine Hill	10
purpose of		1		
Iron		56	27, 28	
Irrigation		45,	Pennsylvania Salt Co	44
	47.		Perched ground water 4	, 28
guitability of water for		56	30, 31, 36, 39	. 43

I a	ge		Pa	
Petes Mountain 10,		Springs 4	2 ,	59
17, 27, 31,	-	State College weather station		9
	43	Storage dams		48
9	20	Stratigraphic units, occurrence of		14
<u> </u>	17	Streams		12
Population	4	Structure		25
Portland	4	Sulfate		55
	47	Surface water		47
Portland General Electric Co 5,		Sylvan		44
Portland Hills 12,		Syncline 1	6,	19
17, 20, 22, 27, 31, 33,	43	26, 27, 29, 3	32,	42
Precipitation 7,	39,			
49.		T		
infiltration of	39			
records of	7	Tectonic elements, secondary		27
Public supply of ground water 46,	48	Tectonic structures, shape of		26
Puget Trough section	2	Temperature1	0,	59
	- 1	Tertiary valley fill undifferentiated		22
Q	- 1	Texas-Cooper Mountain oil test		15
		Timber weather station		7
Quartz	23	Topography		12
Quartzite	23	Transpiration 3	36,	40
Quaternary valley fill undifferentiated.	22	Transportation		4
	- 1	Troutdale formation l	19,	20
R	l	22, 26, 33, 36, 3	39,	42
		Tryon Creek		
Railroads	4	Tualatin Basin 1	5,	26
Raleigh Hills	4		!4 .	
,	28,	Tualatin River		14
29, 36, 37, 39, 42,	44	Tualatin River drainage basin		
	12		7,	
	34	Tuff		16
Roy	49	Tuffaceous sandstone	•	16
Runoff	40			
		TT		
		Ŭ		
S				
		Unconsolidated deposits 2	2,	36
S Saline water 34,	42,	Unconsolidated deposits2	ŀ4,	51
Saline water 34, 52.	55	Unconsolidated deposits 2	ŀ4,	51
Saline water 34, 52.	55	Unconsolidated deposits2	ŀ4,	51
Saline water 34,	55 22,	Unconsolidated deposits2	ŀ4,	51
Saline water 34, 52, Sand 19, 24, 32, 33,	55 22,	Unconsolidated deposits 2 4 U.S. Weather Bureau	14, 7,	51 10
Saline water 34, 52, Sand 19, 24, 32, 33, size analysis	55 22, 36	Unconsolidated deposits 2 4 U.S. Weather Bureau	14, 7,	51 10
Saline water 34, 52, Sand 19, 24, 32, 33, size analysis zones	55 22, 36 23 23	Unconsolidated deposits2 4 U.S. Weather Bureau	14, 7,	51 10 24
Saline water	55 22, 36 23 23	Unconsolidated deposits 2 4 U.S. Weather Bureau V Valley fill 2	14, 7, 23,	51 10 24 50
Saline water	55 22, 36 23 23 23	Unconsolidated deposits2 U.S. Weather Bureau V Valley fill2 32, 33, 3 average recharge	14, 7, 23,	51 10 24 50 41
Saline water	55 22, 36 23 23 23 16	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 32, 33, 3	14, 7, 23, 39,	51 10 24 50 41 40
Saline water 34, 52, 19, 24, 32, 33, size analysis zones 15, Sandstone 15, Sandy shale Sawyers, Inc Schallberger well Schallberger well	55 22, 36 23 23 23 16 47	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 32, 33, 3 average recharge effective porosity	14, 7, 23, 39,	51 10 24 50 41 40 14
Saline water 34, 52, Sand 19, 24, 32, 33, size analysis 20, zones 15, Sandstone 15, Sandy shale 5 Sawyers, Inc 5 Schallberger well 5 Scoggin Creek 5	55 22, 36 23 23 23 16 47 34 12	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge	14, 7, 23, 39,	51 10 24 50 41 40 14 15
Saline water 34, 52, 19, 24, 32, 33, size analysis zones 15, Sandstone 15, Sandy shale Sawyers, Inc Schallberger well Schallberger well	55 22, 36 23 23 23 16 47 34 12	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge	14, 7, 23, 39, 4,	51 10 24 50 41 40 14 15
Saline water 34, 52, 19, 24, 32, 33, 24, 32, 33, size analysis 2000 zones 15, Sandstone 15, Sandy shale 5 Schallberger well 5 Scoggin Creek 5 Sedimentary deposits 14,	55 22, 36 23 23 23 16 47 34 12	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge	14, 7, 23, 39, 4,	51 10 24 50 41 40 14 15
Saline water	55 22, 36 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge effective porosity Verboort Volcanic rocks 1	14, 7, 23, 39, 4, 4,	51 10 24 50 41 40 14 15 39
Saline water	55 22, 36 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge effective porosity Verboort Volcanic rocks 1	14, 7, 23, 39, 4, 4,	51 10 24 50 41 40 14 15 39
Saline water	55 22, 36 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 32 , 33 , 3 average recharge effective porosity Verboort V W Wapato Creek 1	14, 7, 23, 39, 4, 44, 25,	51 10 24 50 41 40 14 15 39
Saline water	55 22, 36 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge effective porosity Verboort Volcanic rocks 1 W Wapato Creek 1	14, 7, 23, 39, 4, 44, 25,	51 10 24 50 41 40 14 15 39
Saline water	55 22, 36 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 32 , 33 , 3 average recharge effective porosity Verboort V Valley fill 2 we wapato Creek 1 Wapato Creek Valley 1 Wapato Lake 1	14, 7, 23, 39, 4, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	51 10 24 50 41 40 14 15 39
Saline water	55 22, 36 23 23 23 16 47 34 12 15, 58	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 32, 33, 3 average recharge effective porosity Verboort Volcanic rocks 1 W Wapato Creek 1 Wapato Creek Valley 1 Wapato Lake 1 Water, hardness 1	14, 7, 23, 39, 4, 12, 12, 15, 15,	51 10 24 50 41 40 11 15 39 14 24 14 52
Saline water	55 22, 36 23 23 23 16 47 34 12 15, 58 23, 15 23, 39	Unconsolidated deposits 2 U.S. Weather Bureau V Valley fill 2 average recharge effective porosity Verboort Volcanic rocks 1 W Wapato Creek 1 Wapato Creek Valley 1 Wapato Lake Water, hardness 1 level 3	14, 7, 23, 39, 4, 4, 125, 125, 125, 125, 125, 127, 127, 1280	51 10 24 50 41 40 11 15 39 14 24 14 52
Saline water	55 22, 36 23 23 23 16 47 34 12 15, 58 23, 15 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,	Unconsolidated deposits 2 U.S. Weather Bureau 2 V Valley fill 32, 33, 3 average recharge effective porosity 2 Verboort 2 W Wapato Creek 1 Wapato Creek Valley 1 Wapato Lake 3 Level 3 Level 4	14, 7, 23, 39, 4, 4, 125, 125, 125, 120, 100.	51 10 24 50 41 40 14 15 39 14 24 14 52 33
Saline water	55 22, 36 23 23 16 47 34 12 15, 58 23, 15 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,	Unconsolidated deposits	14, 7, 13, 39, 4, 4, 12, 15, 10,	51 10 24 50 41 40 14 15 39 14 24 14 52 33 44
Saline water 34, 52, 19, 24, 32, 33, size analysis zones 15, Sandstone 15, Sawyers, Inc Schallberger well Scoggin Creek 14, Sedimentary deposits 14, 16, 25, 49, 52, 55, 55, See also Sandstone; Shale; Silt; 15, Siltstone 15, Siltz River volcanics 51ica Silt 19, 24, 32, 33, Siltstone 15, Size analysis of sand 56, Sodium-adsorption-ratio (SAR) 56,	55 22, 36 23 23 23 16 47 34 12 15, 58 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,	Unconsolidated deposits	14, 7, 13, 39, 14, 15, 15, 15, 10, 10, 15, 15, 15, 15, 15, 15, 160, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	51 10 24 50 41 40 14 15 39 14 24 14 52 33 44 60
Saline water	55 22, 36 23 23 16 47 34 12 15, 58 23, 15 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,	Unconsolidated deposits	14, 7, 13, 39, 14, 15, 15, 15, 10, 10, 15, 15, 15, 15, 15, 15, 160, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	51 10 24 50 41 40 14 15 39 14 24 14 52 33 44

Pa	ge	F	ag	ŗе
Waterlogged condition	39	Willamette		12
Wells 30,	31,	Willamette River 1	2,	14
34, 35, 44, 50, 51,	52	2	0,	24
construction of	50	Willamette River Gorge		15
screens.	51	Willamette Valley	2,	25
water quality	59	Wilsonville	2,	27
yields of 29,	35,	Wilsonville plain		25
51.	Ī	Wolf Creek Water District		46
Wessinger Spring	36			
West Linn Heights	10	Y		
West Portland Hills	12			
West Slope, town of	4	Yamhill River basin		15
		Younger alluvium		24

The U.S. Geological Survey Library has cataloged this publication as follows:

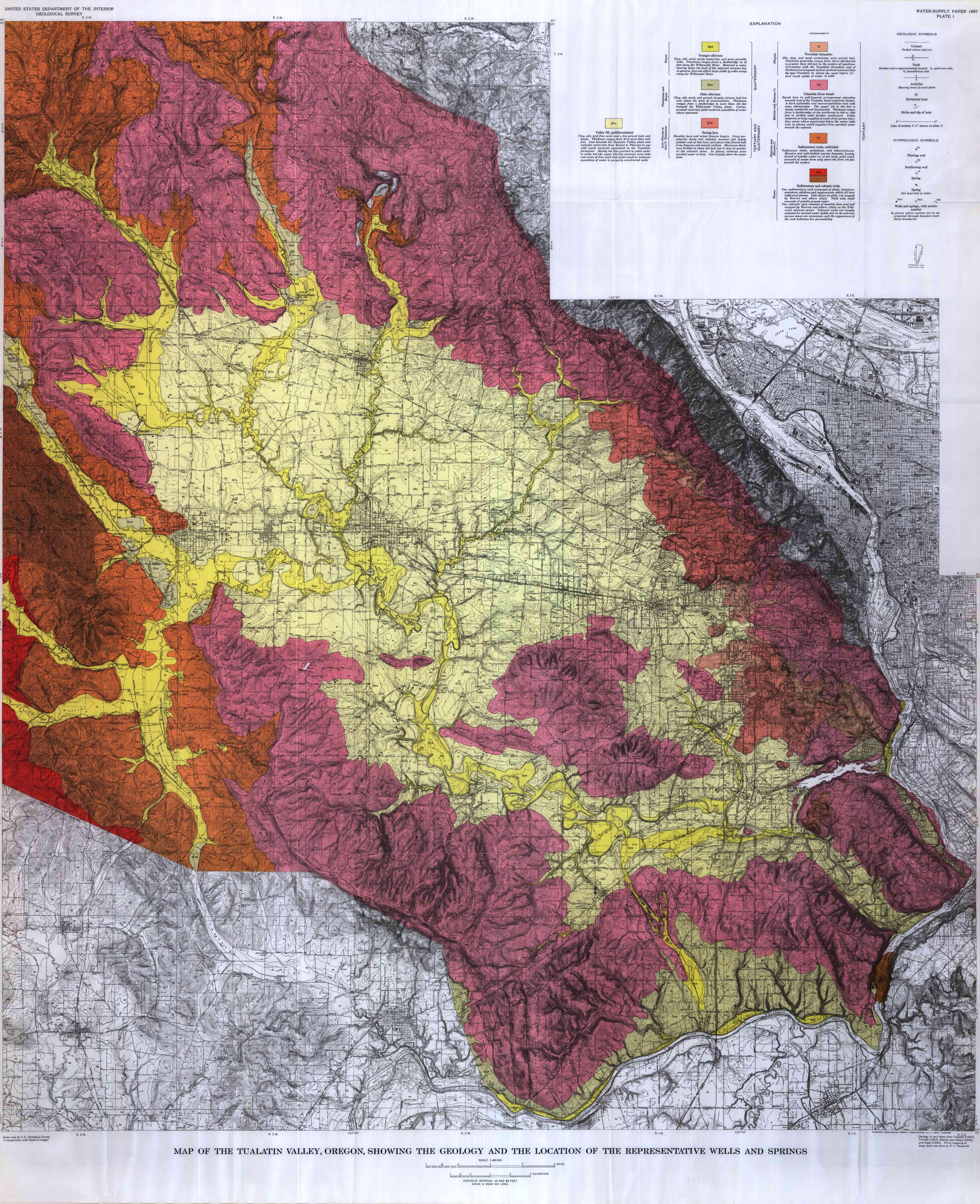
Hart, Donald H 1925-

Geology and ground water of the Tualatin Valley, Oregon, by D. H. Hart and R. C. Newcomb. Washington, U.S. Govt. Print. Off., 1965.

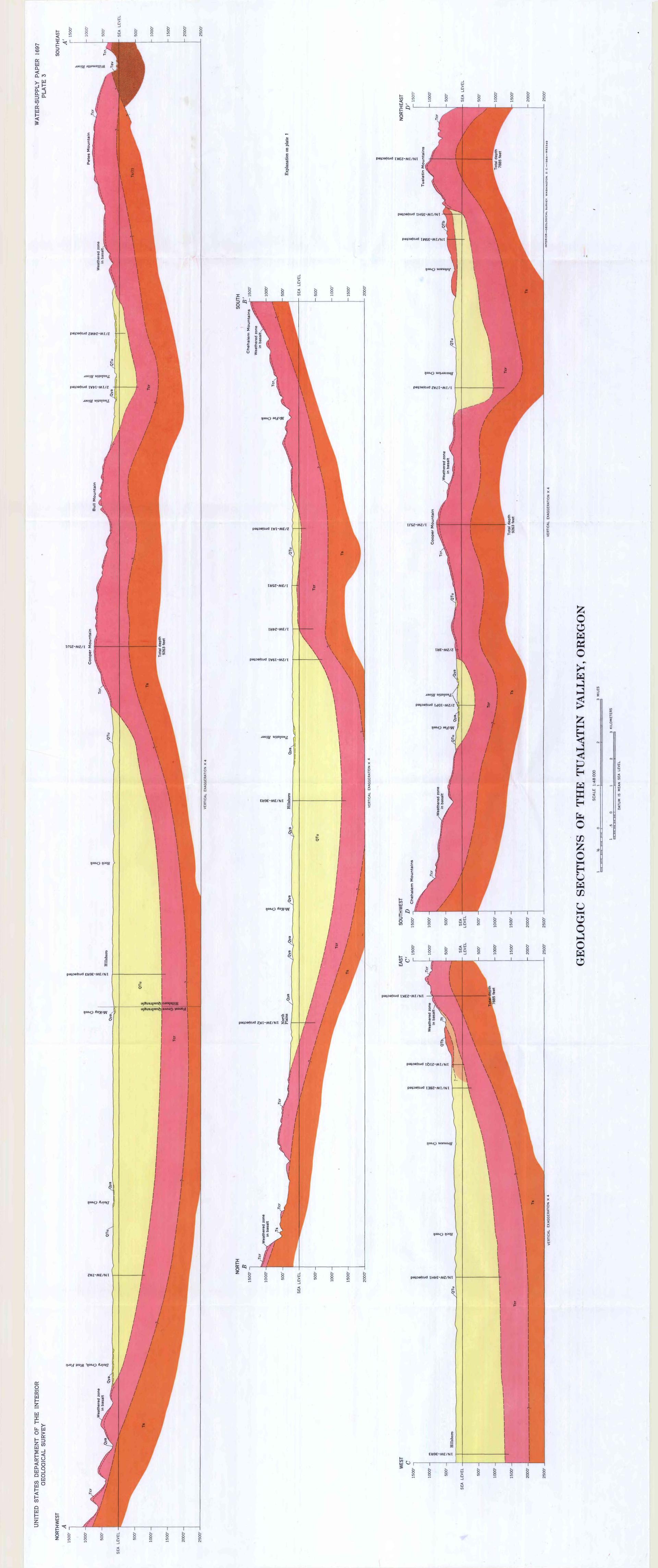
v, 172 p. illus., maps (2 col.) diagrs., (1 col.) tables, 24 cm. (U.S. Geological Survey. Water-supply paper 1697)

Part of illustrative matter fold. in pocket.

Prepared in cooperation with the office of the State Engineer of Oregon.


Includes bibliography.

(Continued on next card)


Hart, Donald H 1925- Geology and ground water of the Tualatin Valley, Oregon. 1964. (Card 2)

1. Geology—Oregon—Tualatin Valley. 2. Water-supply—Oregon—Tualatin Valley. 3. Water, Underground—Oregon—Tualatin Valley. 4. Borings—Oregon—Tualatin Valley. I. Newcomb, Reuben Clair, 1909— joint author. II. Oregon. State Engineer. III. Title: Tualatin Valley, Oregon. (Series)

