Quality of Surface Waters of the United States 1963

Parts 1 and 2. North Atlantic Slope Basins and South Atlantic Slope and Eastern Gulf of Mexico Basins

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1947

Prepared in cooperation with the States of Alabama, Connecticut, Delaware, District of Columbia, Florida, Georgia, Maryland, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Pennsylvania, South Carolina, and with other agencies

Quality of Surface Waters of the United States 1963

Parts 1 and 2. North Atlantic Slope Fasins and South Atlantic Slope and Eastern Gulf of Mexico Basins

Prepared under the direction of S. K. LOVE, Chief, Quality of Water Branch

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1947

Prepared in cooperation with the States of Alabama, Connecticut, Delaware, District of Columbia, Florida, Georgia, Maryland, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Pennsylvania, South Carolina, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

William T. Pecora, Director

PREFACE

This report was prepared by the Geological Survey in cooperation with the States of Alabama, Connecticut, Delaware, District of Columbia, Florida, Georgia, Maryland, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Pennsylvania, and South Carolina, and with other agencies by personnel of the Water Resources Division under the direction of L. B. Leopold, chief hydrologist, and S. K. Love, chief, Quality of Water Branch. The data were collected under the supervision of the following:

N. H. Beamer, district chemist ______ Philadelphia, Pa. G. A. Billingsley, district chemist ______ Raleigh, N. C. S. F. Kapustka, district chemist ______ Baton Rouge, La. K. A. Mac Kichan, district engineer ______ Ocala, Fla. F. H. Pauszek, district chemist ______ Albany, N. Y. J. W. Wark, district chief ______ Towson, Md.

CONTENTS

[Symbols after station name designate type of data: c, chemical; t, water temperature; s, sediment]

	Page
Introduction	1
Collection and examination of samples	3
Chemical quality	4
Temperature	4
Sediment	5
Expression of results	6
Composition of surface waters	9
Mineral constituents in solution	10
Silica	10
Aluminum	10
Iron	10
Manganese	10
Calcium	11
Magnesium	11
Strontium	11
Sodium and potassium	11
Lithium	12
Bicarbonate, carbonate and hydroxide	12
Sulfate	12
Chloride	13
Fluoride	13
Nitrate	13
Phosphate	14
Boron	14
Dissolved solids	14
Chromium	15
Nickel and cobalt	15
Copper	15
Lead	16
Zinc	16
Barium	16
Bromide	17
Iodide	17
Properties and characteristics of water	17
Hardness	17
Acidity	18
Sodium-adsorption-ratio	19
Specific conductance	19
Hydrogen-ion concentration	20
Color	20
Oxygen consumed	21
Organics	21

Composition of surface watersContinued	
Properties and characteristice of	
waterContinued	Page
Temperature	21
Turbidity	23
Sediment	23
Streamflow	24
Publications	26
Cooperation	27
Division of work	34
Literature cited	34
Chemical analyses, water temperatures, and	
sediment	37
Part 1. North Atlantic slope basins	37
St. Croix River basin	37
St. Croix River at Baring, Maine t	37
Dennys River basin	38
Dennys River at Dennysville, Maine t	38
Sheepscot River basin	39
Sheepscot River at North Whitefield,	
Maine t	39
Blackstone River basin	40
Blackstone River at Woonsocket, R.I. t	40
Pawtuxet River basin	41
Pawtuxet River at Cranston, R.I. t	41
Potowomut River basin	42
Hunt River near Davisville, R.I. t	$\overline{42}$
Thames River basin	43
Quinebaug River at Jewett City, Conn. ct	43
Connecticut River basin	45
West River at Newfane, Vt. t	45
South Branch Ashuelot River at Webb, near	
Marlboro, N.H. t	46
Farmington River at Rainbow, Conn. t	47
Housatonic River basin	48
Housatonic River at Falls Village, Conn. t	48
Housatonic River at Stevenson, Conn. t	49
Hudson River basin	50
Hudson River at Hudson Falls, N.Y. t	50
Glowegee Creek at West Milton, N.Y. t	51
Kayaderosseras Creek near West Milton,	
N.Y. t	52
Hudson River at Mechanicville, N.Y. t	53
Mohawk River at Utica, N.Y. t	54
Mohawk River at Vischer Ferry Dam, N.Y. t.	55
Hudson River at Green Island, N.Y. ct	56
Hudson River at Poughkeepsie, N.Y. t	57
Fishkill Creek at Beacon, N.Y. ct	58
Hudson River at Peekskill, N.Y. t	59
Passaic River basin	60
Passaic River at Two Bridges, N.J. ct	60
Pompton River at Two Bridges, N.J. ct	61
Passaic River at Little Falls, N.J. ct	62
Raritan River basin	63
South Branch Raritan River near High	00
Bridge, N.J. ct	63
n+ + apo, no a o a a a a a a a a a a a a a a a a	00

Chemical analyses, etcContinued	
North Atlantic slope basinsContinued	
Raritan River basinContinued	Page
Spruce Run at Clinton, N.J. s	65
South Branch Raritan River at Stanton,	
N.J. cs	66
Baldwin Creek at Baldwin Lake, near	
Pennington, N.J. cts	70
Stony Brook at Princeton, N.J. cs	74
Great Egg Harbor River basin	78
Great Egg Harbor River at Folsom, N.J. cts	78
Delaware River basin	81
Delaware River at Montague, N.J.	
(Milford, Pa.) c	81
Delaware River at Belvidere, N.J. ct	82
Lehigh River at Bethleham, Pa. c	84
Lehigh River at Easton, Pa. ct	85
Delaware River at Trenton, N.J.	
(Morrisville, Pa.) cts	87
Delaware River at Bristol, PaBurlington,	
N.J. Bridge ct	92
McDonalds Branch in Lebanon State Forest,	
N.J. ct	95
Delaware River at Torresdale intake,	
Philadelphia, Pa. ct	97
Delaware River at Lehigh Avenue,	
Philadelphia, Pa. c	100
Delaware River at Philadelphia, Pa	
Benjamin Franklin Bridge (Philadelphia-	
Camden Bridge) ct	101
Delaware River at Wharton Street,	
Philadelphia, Pa. c	104
Delaware River at League Island,	
Philadelphia, Pa. c	104
Schuylkill River at Berne, Pa. cts	105
Schuylkill River at Pottstown, Pa. c	109
Schuylkill River at Manayunk,	
Philadelphia, Pa. s	110
Schuylkill River at Philadelphia, Pa. ct	114
Delaware River at Eddystone, Pa. c	116
Delaware River at Chester, Pa. ct	117
Delaware River at Marcus Hook, Pa. c	119
Red Clay Creek at Wooddale, Del. t	120
Delaware River at Delaware Memorial	1.01
Bridge, Wilmington, Del. ct	121
Nanticoke River basin	124
Nanticoke River near Bridgeville, Del. c	124
Susquehanna River basin	125
Tioughnioga River at Cortland, N.Y. t	125
Susquehanna River at Vestal, N.Y. t	126
Corey Creek near Mainesburg, Pa. cs	127 131
Elk Run near Mainesburg, Pa. cs	131
Susquehanna River at Danville, Pa. ct Sinnemahoning Creek at Sinnemahoning,	100
Da c	137

VIII CONTENTS

Chemical analyses, etcContinued North Atlantic slope basinsContinued	
Susquehanna River basinContinued West Branch Susquehanna River at Lock	Page
Haven, Pa. ct	138
North Bald Eagle Creek at Blanchard, Fa. c	140
Juniata River at Huntingdon, Pa. c Raystown Branch Juniata River near	141
Huntingdon, Pa. c	142
Juniata River at Newport, Pa. s	143
Bixler Run near Loysville, Pa. cts	146
Susquehanna River at Harrisburg, Pa. c	151
Conestoga Creek at Lancaster, Pa. cts	154
Potomac River basin	159
Abram Creek at Oakmont, W. Va. s	159
North Branch Potomac River at Kitzmiller, Md. t	160
North Branch Potomac River at Luke, Mc. t.	161
	101
South Branch Potomac River near	162
Petersburg, W. Va. ts	102
South Fork of South Branch Potomac River	101
near Moorefield, W. Va. s	164
South Branch Potomac River near	
Springfield, W. Va. s	165
Cacapon River at Great Cacapon, W. Va. t	166
Potomac River at Hancock, Md. t	167
Back Creek near Jones Springs, W. Va. s	168
Opequon Creek near Martinsburg, W. Va. s	169
Antietam Creek near Sharpsburg, Md. t	170
Shenandoah River at Millville, W. Va. s	171
Potomac River at Point of Rock, Md. ts Monocacy River at Jug Bridge, near Fred-	172
erick, Md. ts	176
Watts Branch at Rockville, Md. t	180
West Fork of Northwest Branch Anacostia	
River at Layhill, Md. s	181
at Lutes, Md. s	183
Colesville, Md. s	184
Rappahannock River basin	188
Rappahannock River at Remington, Va. s Miscellaneous analyses of streams in North	188
Atlantic slope basins cs	191
of Mexico basins	215
Pasquotank River basin	215
Pasquotank River near Elizabeth City,	
N.C. ct	215
N.C. ct	218
Chowan River basin	221
Chowan River at Winton, N.C. ct	221
Chowan River near Edenhouse, N.C. ct	224

CONTENTS

Chemical analyses, etcContinued	
South Atlantic slope and eastern Gulf of	
Mexico basinsContinued	Page
Roanoke River basin	227
Roanoke River (Staunton) at Randolph,	
Va. s	227
Dan River at Leaksville, N.C. ct	230
Dan River at Paces, Va. s	232
Roanoke River at Jamesville, N.C. ct	235
Cashie River at Windsor, N.C. c	237
Albemarle Sound	238
Albemarle Sound near Edenton, N.C. ct	238
Scuppernong River basin	241
Scuppernong River near Creswell, N.C. ct	241
Pamlico River basin	244
Fishing Creek near Enfield, N.C. ct	244
Tar River at Tarboro, N.C. cts	246
Tranters Creek near Washington, N.C. ct	250
Pamlico River at Washington, N.C. ct	253
Neuse River basin	256
Little River near Orange Factory, N.C. ct.	256
Neuse River at Falls, N.C. ct	258
Neuse River at Smithfield, N.C. c	261
Neuse River at Goldsboro, N.C. ct	262
Nouse Piver at Whitehall N C a	265
Neuse River at Whitehall, N.C. c Neuse River at Kinston, N.C. c	266
	200
Neuse River at Cowen Landing, near	267
Vanceboro, N.C. ct	201
Neuse River at Streets Ferry, near	269
Vanceboro, N.C. ct	271
Swift Creek near Vanceboro, N.C. ct	273
Neuse River at New Bern, N.C. ct	276
Trent River near Trenton, N.C. ct	
Trent River at Pollocksville, N.C. ct	277
Cape Fear River basin	279
Haw River near Benaja, N.C. ct	279
Haw River at Altamahaw, N.C. c	281
Haw River at Bynum, N.C. ct	282
New Hope River near New Hill, N.C. ct	285
Deep River at Moncure, N.C. ct	288
Cape Fear River at Lillington, N.C. ct	290
Cape Fear River near Acme, N.C. c	292
South River near Parkersburg, N.C. ct	293
Cape Fear River at Royster, N.C. ct	295
Cape Fear River at Navassa, N.C. ct	299
Northeast Cape Fear River at Castle Hayne,	
N.C. ct	303
Northeast Cape Fear River near Castle	000
Hayne, N.C. ct	308
Northeast Cape Fear River near	
Wrightsboro, N.C. ct	308
Waccamaw River basin	311
Waccamaw River at Freeland, N.C. ct	311
Pee Dee River basin	313
Yadkin River at Wilkesboro, N.C. ct	313

X CONTENTS

Chemical analyses, etcContinued	
South Atlantic slope and eastern Gulf of	
Mexico basinsContinued	
Pee Dee River basinContinued	Page
Forbush Creek near Yadkinville, N.C. c	315
Yadkin River at Yadkin College, N.C. cts	316
South Yadkin River near Mocksville,	
N.C. cts	321
Rocky River at Gaddy, near Norwood,	
N.C. ct	326
Pee Dee River near Rockingham, N.C. ct	330
Pee Dee River at Peedee, S.C. c	332
Lynches River at Effingham, S.C. ct	333
Drowning Creek near Hoffman, N.C. ct	335
Black River at Kingstree, S.C. c	337
Black River near Rhems, S.C. ct	338
Black River near Plantersville, S.C. ct	340
Santee River basin	343
Catawba River at Lookout Shoals Dam,	0 -0
N.C. ct	344
Indian Creek near Laboratory, N.C. ct	345
South Fork Catawba River near Stanley,	0.10
N.C. C	347
Broad River near Boiling Springs, N.C. ct.	348
Broad River near Carlisle S C C.	350
Broad River near Carlisle, S.C. c Saluda River near Pelzer, S.C. c	351
Edisto River basin	352
South Fork Edisto River near Denmark,	502
S.C. ct	352
Savannah River basin	354
Keowee River near Jocassee, S.C. ct	354
Savannah River near Iva, S.C. ct	356
Savannah River at Burtons Ferry Bridge,	500
near Millhaven, Ga. t	358
St. Johns River basin	359
St. Johns River near Cocoa, Fla. ct	359
Lake Okeechobee and the Everglades	361
Kissimmee River near Basinger, Fla. ct	361
Middle River Canal at Fort Lauderdale,	001
Fla. ct	364
Miami Canal east of levee 30, near Miami,	
Fla. ct	366
Miami Canal at N.W. 36th Street, Miami,	000
Fla. (below control) c	370
Taylor Slough near Homestead, Fla. ct	371
	373
Everglades P-33 near Homestead, Fla. t Everglades Station P-35 near Homestead,	373
Fla. ct	374
Peace River basin	376
Peace River at Arcadia, Fla. ct	376
	381
Myakka River basin	381
Manatee River basin	385
Manatee River hasin	385
manatee river near bradenton, ria, Ct.,,,	200

chemical analyses, etccontinued	
South Atlantic slope and eastern Gulf of	
Mexico basinsContinued	Page
Suwannee River basin	389
Santa Fe River at Worthington, Fla. t	389
Apalachicola River basin	390
Flint River near Culloden, Ga. t	390
Econfina Creek basin	391
Econfina Creek near Bennett, Fla. ct	391
Mobile River basin	394
Coosawattee River at Pine Chapel, Ga. cts.	394
Conasauga River at Tilton, Ga. cts	401
Etowah River at Canton. Ga. s	408
Coosa River near Rome. Ga. ct	412
Coosa River near Rome, Ga. ct	415
Coosa River at Childersburg, Ala. t	416
Coosa River at Wetumpka, Ala. t	417
Alabama River at Selma, Ala. t	418
Cedar Creek at Minter, Ala. t	419
Limestone Creek near Monroeville, Ala. t	420
Tombigbee River at Gainesville, Ala. t	421
Black Warrior River at Tuscaloosa, Ala. t.	422
Tombigbee River near Jackson, Ala. t	423
Pearl River basin	424
Pearl River at Jackson, Miss, t	424
Pearl River near Bogalusa, Ala. ct	425
Miscellaneous analyses of streams in South	120
Atlantic slope and eastern Gulf of	
Mexico basins c	428
	469
Index	403
When the same of t	
ILLUSTRATION	
	Page
Figure 1. Map of the conterminous United States	rage
showing basins covered by the five water-	
supply papers on quality of surface waters	2
in 1963	2

QUALITY OF SURFACE WATERS OF THE UNITED STATES, 1963

PARTS 1 and 2

INTRODUCTION

The quality-of-water investigations of the United States Geological Survey are concerned with chemical and physical characteristics of the surface and ground water supplies of the Nation. Most of the investigations carried on in cooperation with State and Federal agencies deal with the amounts of matter in solution and in suspension in streams.

The records of chemical analysis, suspended sediment, and temperature for surface waters given in this volume serve as a basis for determining the suitability of the waters examined for all uses. The discharge of a stream and (to a lesser extent) the chemical quality are related to variations in rainfall and other forms of precipitation. In general, lower concentrations of dissolved solids may be expected during the periods of high flow than during periods of low flow. The concentration in some streams may change materially with relatively small variations ir flow, whereas for other streams the quality may remain relatively uniform throughout large ranges in discharge. The quantities of suspended sediment carried by streams are also related to discharge, and during flood periods the sediment content in streams may vary over wide ranges.

In 1941, the Geological Survey began publishing annual records of chemical quality, suspended sediment, and water temperature. The records prior to 1948 were published each year in a single volume for the entire country, and in two volumes in 1948 and 1949. Beginning in 1950, the records were published in four volumes and beginning in 1959 in five volumes. The drainage basins covered in the five volumes are shown in Figure 1. The data given in this volume were collected during the water year October 1, 1962, to September 30, 1963. The records are arranged by drainage basins in downstream order according to the Geological Survey method of reporting streamflow. Stations on tributary streams are listed between stations on the main stem in the order in which those tributaries enter the main stem.

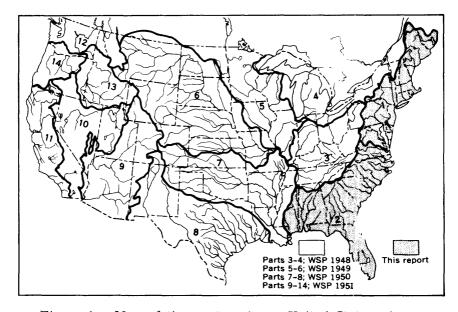


Figure 1.—Map of the conterminous United States showing basins covered by the five water-supply papers on quality of surface waters in 1963. The shaded portion represents the section of the country covered by this volume; the unshaded portion represents the section of the country covered by other water-supply papers.

A station number has been assigned as an added means of identification for each stream location where regular measurements of water quantity or quality have been made. The numbers have been assigned to conform with the standard downstream order of listing gaging stations. The numbering system consists of two digits followed by a hyphen and a six digit number. The notation to the left of the hyphen identifies the Part or hydrologic region used by the Geological Survey for reporting hydrologic data. The number to the right of the hyphen represents the position of the location in the standard downstream order listing measuring stations within each of the 14 parts. The assigned numbers are in numerical order but are not consecutive. They are so selected from the complete 6 digit number scale that intervening numbers will be available for future assignments to new locations. The identification number for each station in this report is printed to the left of the station name and contains only the essential digits. For example, the number is printed as 4-100 for a station whose complete identification number is 04-0100.00.

Descriptive statements are given for each sampling station where chemical analyses, temperature measurements, or sediment determinations have been made. These statements include the

location of the station, drainage area, periods of records available, extremes of dissolved solids, hardness, specific conductance, temperature, sediment loads, and other pertinent data. Records of discharge of the streams at or near the sampling station are included in most tables of analyses.

During the water year ending September 30, 1963, the Geological Survey maintained 172 stations on 114 streams for the study of chemical and physical characteristics of surface water. Samples were collected daily and monthly at 119 of these locations for chemical-quality studies. Samples were also collected less frequently at many other points. Water temperatures were measured daily at 128 stations. Not all analyses of samples of surface water collected during the year have been included. Single analyses of an incomplete nature generally have been omitted. Also, analyses made of the daily samples before compositing have not been reported. The specific conductance of almost all daily samples was determined, and as noted in the table headings this information is available for reference at the district offices listed under Division of Work, on page 34.

Quantities of suspended sediment are reported for 32 stations during the year ending September 30, 1963. Sediment samples were collected one or more times daily at most stations, depending on the rate of flow and changes in stage of the stream. Particle-size distributions of sediments were determined at 15 of the stations.

COLLECTION AND EXAMINATION OF SAMPLES

Samples for analyses are usually collected at or near points on streams where gaging stations are maintained by Surface Water Branch of U.S. Geological Survey for measurement of water discharge. The concentration of solutes and sediments at different locations in the stream-cross section may vary widely with different rates of water discharge depending on the source of the material and the turbulence and mixing of the stream. In general, the distribution of sediment in a stream section is much more variable than the distribution of solutes. It is necessary to sample some streams at several verticals across the channel and especially for sediment, to uniformly traverse the depth of flow. These measurements require special sampling equipment to adequately integrate the vertical and lateral variability of the concentration in the section. These procedures yield a velocityweighted mean concentration for the section in contrast to the average concentration that existed without regard to the variable velocities of the individual fluid elements.

The near uniformly dispersed ions of the solute load move with the velocity of the transporting water. Accordingly, the mean section concentration of solutes determined from samples is a precise measure of the total solute load. The mean section concentration obtained from suspended sediment samples is a less precise measure of the total sediment load, because the sediment samplers do not traverse the bottom 0.3 foot of the sampling vertical where the concentration of suspended sediment is greatest and because a significant part of the coarser particles in many streams move in essentially continuous contact with the bed and are not represented in the suspended sediment sample. Hence, the computed sediment loads presented in this report are usually less than the total sediment loads. For most streams the difference between the computed and total sediment loads will be small, in the order of a few percent.

CHEMICAL QUALITY

The methods of collecting and compositing water samples for chemical analysis are described in a manual by Painwater and Thatcher (1960, 301 p.). No single method of compositing samples is applicable to all problems related to the study of water quality. Although generally holding to the principle of 10 day periods or equivalent to three composite samples per month modifications are usually made on the basis of dissolved-solids content as indicated by measurements of conductivity of daily samples, supplemented by other information such as chloride content, river stage, weather conditions and other background information of the stream.

TEMPERATURE

Daily water temperatures were measured at most of the stations at the time samples were collected for chemical quality or sediment content. So far as practicable, the water temperatures were taken at about the same time each day for an individual station in order that the data would be relatively unaffected by diurnal variations in temperature. Most large, swiftly flowing streams probably have a small diurnal variation in water temperature, whereas sluggish or shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. The thermometers used for determining water temperature were accurate to plus or minus 0.5°F.

At stations where thermographs are located, the records consist of maximum and minimum temperatures for each day, and the monthly averages of maximum daily and minimum daily temperatures.

SEDIMENT

In general, suspended-sediment samples were collected daily with U.S. depth-integrating cable-suspended samplers (U.S. Interagency, 1963, p. 56-77 and U.S. Interagency, 1952, p. 86-90) from a fixed sampling point at one vertical in the cross section. The US DH-48 hand sampler was used at many stations during periods of low flow. Depth-integrated samples were collected periodically at three or more verticals in the cross section to determine the cross-sectional distribution of the concentration of suspended sediment with respect to that at the daily sampling vertical. In streams where tranverse distribution of sediment concentration ranges widely, samples were taken at two cr more verticals to define more accurately the average concentration of the cross section. During periods of high or rapidly changing flow, samples were taken two or more times throughout the day at most sampling stations.

Sediment concentrations were determined by filtration-evaporation method. At many stations the daily mean concentration for some days was obtained by plotting the velocity-weighted instantaneous concentrations on the gage-height chart. The plotted concentrations, adjusted, if necessary for cross-sectional distribution were connected or averaged by continuous curves to obtain a concentration graph. This graph represented the estimated velocity-weighted concentration at any time, and for most periods daily mean concentrations were determined from the graph. The days were divided into shorter intervals when the concentration and water discharge were changing rapidly. During some periods of minor variation in concentration, the average concentration of the samples was used as the daily mean concentration. During extended periods of relatively uniform concentration and flow, samples for a number of days were composited to obtain average concentrations and average daily loads for each period.

For some periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately preceding and following the periods, and suspended-sediment loads for other periods of similar discharge, the estimates were further guided by weather conditions and sediment discharge for other stations.

In many instances where there were no observations for several days, the suspended-sediment loads for individual days are not estimated, because numerous factors influencing the quantities of transported sediment made it very difficult to make accurate estimates for individual days. However, estimated loads of suspended sediment for missing days in otherwise continuous period of sampling have been included in monthly and annual totals in order to provide a complete record. For some streams, samples

were collected weekly, monthly, or less frequently, and only rates of sediment discharge at the time of sampling are shown.

In addition to the records of quantities of suspended sediment transported, records of the particle sizes of sediment are included. The particle sizes of the suspended sediment for many of the stations, and the particle sizes of the bed material for some of the stations were determined periodically.

The size of particles in stream sediments commonly range from colloidal clay (finer than 0.001 mm) to coarse sand or gravel (coarser than 1.0 mm). The common methods of particle-size analyses cannot accommodate such a wide range in particle size. Hence, it was necessary to separate most samples into two parts, one coarser than 0.062 mm and one finer than 0.062 mm. The separations were made by sieve or by a tube containing a settling medium of water. The coarse fractions were classified by sieve separation or by the visual accumulation tube (U.S. Interagency, 1957). The fine fractions were classified by the pipet method (Kilmer and Alexander, 1949) or the bottom withdrawal tube method (U.S. Interagency, 1943, p. 82-90).

EXPRESSION OF RESULTS

Quantities of water for analysis are most conveniently measured in the laboratory by use of volumetric glarsware. The analytical results thus obtained in this report are expressed in weights of solute in a given volume of water. To express the results in parts of solute per million (ppm) of water the data must be converted. For most waters this conversion is made by assuming that the liter of water sample weighs 1 kilogram; and thus milligrams per liter are equal to parts per million.

Equivalents per million are not reported, although the expression of analyses in equivalents per million is sometimes preferred. An equivalent per million (epm) is a unit chemical combining weight of a constituent in a million unit weights of water. Chemical equivalence in equivalents per million can be obtained by (a) dividing the concentration in parts per million by the combining weight of that ion, or (b) multiplying the concentration (in ppm) by the reciprocal of the combining weights. The following table lists the reciprocals of the combining weights of cations and anions generally reported in water analyses.

The conversion factors are computed from atomic weights based on carbon-12 (International Union of Pure and Applied Chemistry, 1961).

Results given in parts per million can be converted to grains per United States gallon by dividing by 17.12.

Conversion factors: Parts per million to equivalents per n	Conversion fa	ctors: Parts	per million	to equivalents	per million
--	---------------	--------------	-------------	----------------	-------------

Ion	Multiply by	Ion	Multiply by
Aluminum (Al+3) Arsenic (As+3) Barium (Ba+2) Beryllium (Be+2) Bicarbonate (HCO ₃ -1) Bromide (Br-1) Cadmium (Cd+2) Calcium (Ca+2) Carbonate (CO ₃ -2) Chloride (Cl-1) Chromium (Cr+6) Cobalt (Co+2) Copper (Cu+2) Fluoride (F-1) Hydrogen (H+1)	0.11119 .04004 .01456 .22192 .01639 .01251 .01779 .04990 .03333 .02821 .11539 .03394 .03148 .05264 .99209	Hydroxide (OH-1) Iodide (I-1) Iron (Fe+3) Lead (Pb+2) Lithium (Li+1) Magnesium (Mg+2). Mickel (Ni+2) Nickel (Ni+2) Nitrate (NO 3-1) Phosphate (PO 4-3) Potassium (K+1) Sodium (Na+1) Strontium (Sr+2) Sulfate (SO 4-2) Zinc (Zn+2)	

The hardness of water is conventionally expressed in all water analyses in terms of an equivalent quantity of calcium carbonate. Such a procedure is required because hardness is caused by several different cations, present in variable proportions. It should be remembered that hardness is an expression in conventional terms of a property of water. The actual presence of calcium carbonate in the concentration given is not to be assumed. The hardness caused by calcium and magnesium (and other cations if significant) equivalent to the carbonate and bicarbonate is called carbonate hardness; the hardness in excess of this quantity is called noncarbonate hardness. Hardness or alkalinity values expressed in parts per million as calcium carbonate may be converted to equivalents per million by dividing by 50.

The value usually reported as dissolved solids is the residue on evaporation after drying at 180°C for 1 hour. For some waters, particularly those containing moderately large quantities of soluble salts, the value reported is calculated from the quantities of the various determined constituents using the carbonate equivalent of the reported bicarbonate. The calculated sum of the constituents may be given instead of or in addition to the residue. In the analyses of most waters used for irrigation, the quantity of dissolved solids is given in tons per acre-foot as well as in parts per million.

Specific conductance is given for most analyses and was determined by means of a conductance bridge and using a standard potassium chloride solution as reference. Specific conductance values are expressed in micromhos per centimeter at 25°C.

Specific conductance in micromhos is 1 million times the reciprocal of specific resistance at 25°C. Specific resistance is the resistance in ohms of a column of water 1 centimeter long and 1 square centimeter in cross section.

The discharge of the streams is reported in cubic feet per second (see Streamflow, p. 24) and the temperature in degrees Fahrenheit. Color is expressed in units of the platinum-cobalt scale proposed by Hazen (1892, p. 427-428). A unit of color is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Hydrogen-ion concentration is expressed in terms of pH units. By definition the pH value of a solution is the negative logarithm of the concentration of gram ions of hydrogen. However, the pH meter that is generally used in Survey laboratories determines the activity of the hydrogen ions as distinguished from concentration.

An average of analyses for the water year is given for most daily sampling stations. Most of these averages are arithmetical, time-weighted, or discharge-weighted; when analyses during a year are all on 10-day composites of daily samples with no missing days, the arithmetical and time-weighted averages are equivalent. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the river each day for the water year. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all of the water passing a given station during the year after thorough mixing in the reservoir. A discharge-weighted average is computed by multiplying the discharge for the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. Discharge-weighted averages are usually lower than arithmetical averages for most streams because at times of high discharge the rivers generally have lower concentrations of dissolved solids.

A program for computing these averages on an electronic digital computer was instituted in the 1962 water year. This program extended computations to include averages for pH values expressed in terms of hydrogen ion and averages for the concentration of individual constituents expressed in tons per day. Concentrations in tons per day are computed the same as daily sediment loads.

The concentration of sediment in parts per million is computed as 1,000,000 times the ratio of the weight of sediment to the weight of water-sediment mixture. Daily sediment loads are expressed intons per day and except for subdivided days are usually obtained by multiplying daily mean sediment concentration in parts per million by the daily mean discharge, and the appropriate conversion factor, normally 0.0027.

Particle-size analyses are expressed in percentages of material finer than indicated sizes in millimeters. The size classification used in this report is that recommended by the American Geophysical Union subcommittee on Terminology (Lane and others, 1947, p. 937). Other data included as pertinent to the size analyses for many streams are the date of collection, the stream discharge, sediment concentration when sample was collected, and the method of analysis.

COMPOSITION OF SURFACE WATERS

All natural waters contain dissolved mineral matter. Water in contact with soils or rock, even for only a few hours, will dissolve some mineral matter. The quantity of dissolved mineral matter in a natural water depends primarily on the type of rocks or soils with which the water has been in contact and the length of time of contact. Some streams are fed by both surface runoff and ground water from spring or seeps. Such streams reflect the chemical character of their concentrated underground sources during dry periods and are more dilute during periods of heavy rainfall. Ground water is generally more highly mineralized than surface runoff because it remains in contact with the rocks and soils for much longer periods. The dissolved-solids content in a river is frequently increased by drainage from mines or oil fields, by the addition of industrial or municipal wastes, or—in irrigated regions—by drainage from irrigated lands.

The mineral constituents and physical properties of natural waters reported in the tables of analyses include those that have a practical bearing on the value of the waters for most purposes. The analyses generally include results for silica, iron, calcium, magnesium, sodium, potassium (or sodium and potassium together calculated as sodium), alkalinity as carbonate and bicarbonate, sulfate, chloride, fluoride, nitrate, boron, pH, dissolved solids and specific conductance. Aluminum, manganese, color, acidity, oxygen consumed, and other dissolved constituents and physical properties are reported for certain streams. Phenolic material and minor elements including strontium, chromium, nickel, copper, lead, zinc, cobalt, arsenic, cadmium, and others are occasionally determined for a few streams in connection with specific problems in local areas and the results are reported when appropriate. The source and significance of the different constituents and properties of natural waters are discussed in the following paragraphs. The constituents are arranged in the order that they appear on standard analytical statement cards which are used to process the chemical quality data in this report.

MINERAL CONSTITUENTS IN SOLUTION

Silica (SiO₂)

Silica is dissolved from practically all rocks. Some natural surface waters contain less than 5 parts per million of silica and few contain more than 50 parts, but the more common range is from 10 to 30 parts per million. Silica affects the usefulness of a water because it contributes to the formation of boiler scale; it usually is removed from feed water for high-pressure boilers. Silica also forms troublesome deposits on the blades of steam turbines.

Aluminum (Al)

Aluminum is usually present only in negligible quantities in natural waters except in areas where the waters have been in contact with the more soluble rocks of high aluminum cortent such as bauxite and certain shales. Acid waters often contain large amounts of aluminum. It may be troublesome in feed waters where it tends to be deposited as a scale on boiler tubes.

Iron (Fe)

Iron is dissolved from many rocks and soils. On exposure to the air, normal basic waters that contain more than 1 part per million of iron soon become turbid with the insoluble reddish ferric oxide produced by oxidation. Surface waters, therefore, seldom contain as much as 1 part per million of dissolved iron, although some acid waters carry large quantities of iron in solution. Iron causes reddish-brown stains on white percelain or enameled ware and fixtures and on fabrics washed in the water.

Manganese (Mn)

Manganese is dissolved in appreciable quantities from rocks in some sections of the country. It resembles iron in its chemical behavior and in its occurrence in natural waters. However, manganese in rocks is less abundant than iron. As a result the concentration of manganese is much less than that of iron and is not regularly determined in many areas. Waters impounded in large reservoirs may contain manganese that has been dissolved from the mud on the bottom of the reservoir by action of carbon dioxide produced by anaerobic fermentation of organic matter. It is

especially objectionable in water used in laundry work and in textile processing. Concentrations as low as 0.2 part per million may cause a dark-brown or black stain on fabrics and porcelain fixtures. Appreciable quantities of manganese are often found in waters containing objectionable quantities of iron.

Calcium (Ca)

Calcium is dissolved from almost all rocks and soils, but the highest concentrations are usually found in waters that have been in contact with limestone, dolomite, and gypsum. Calcium and magnesium make water hard and are largely responsible for the formation of boiler scale. Most waters associated with granite or silicious sands contain less than 10 parts per million of calcium; waters in areas where rocks are composed of dolomite and limestone contain from 30 to 100 parts per million; and waters that have come in contact with deposits of gypsum may contain several hundred parts per million.

Magnesium (Mg)

Magnesium is dissolved from many rocks, particularly from dolomitic rocks. Its effect in water is similar to that of calcium. The magnesium in soft waters may amount to only 1 or 2 parts per million, but water in areas that contain large quantities of dolomite or other magnesium-bearing rocks may contain from 20 to 100 parts per million or more of magnesium.

Strontium (Sr)

Strontium is a typical alkaline-earth element and is similar chemically to calcium. Strontium may be present in natural water in amounts up to a few parts per million much more frequently than the available data indicate. In most surface water the amount of strontium is small in proportion to calcium. However, in sea water the ratio of strontium to calcium is 1:30.

Sodium and potassium (Na and K)

Sodium and potassium are dissolved from practically all rocks. Sodium is the predominant cation in some of the more highly mineralized waters found in the western United States. Natural waters that contain only 3 or 4 parts per million of the two together are likely to carry almost as much potassium as sodium. As the total quantity of these constituents increases, the

proportion of sodium becomes much greater. Moderate quantities of sodium and potassium have little effect on the usefulness of the water for most purposes, but water that carry more than 50 or 100 parts per million of the two may require careful operation of steam boilers to prevent foaming. More highly mineralized waters that contain a large proportion of sodium salts may be unsatisfactory for irrigation.

Lithium (Li)

Data concerning the quantity of lithium in water are scarce. It is usually found in small amounts in thermal springs and saline waters. Lithium also occurs in streams where some industries dump their waste water. The scarcity of lithium in rocks is responsible more than other factors for relatively small amounts present in water.

Bicarbonate, carbonate and hydroxide (HCO_3 , CO_3 , OH)

Bicarbonate, carbonate, or hydroxide is sometimes reported as alkalinity. The alkalinity of a water is defined as its capacity to consume a strong acid to pH 4.5. Since the major causes of alkalinity in most natural waters are carbonate and bicarbonate ions dissolved from carbonate rocks, the results are usually reported in terms of these constituents. Although alkalinity may suggest the presence of definite amounts of carbonate, bicarbonate or hydroxide, it may not be true due to other ions that contribute to alkalinity such as silicates, phosphates, borates, possibly fluoride, and certain organic anions which may occur in colored waters. The significance of alkalinity to the domestic, agricultural, and industrial user is usually dependent upon the nature of the cations (Ca, Mg, Na, K) associated with it. However, moderate amounts of alkalinity does not adversely affect most users.

Hydroxide may occur in water that has been softened by the lime process. Its presence in streams usually can be taken as an indication of contamination and does not represent the natural chemical character of the water.

Sulfate (SO₄)

Sulfate is dissolved from many rocks and soils—in especially large quantities from gypsum and from beds of shale. It is formed also by the oxidation of sulfides or iron and is therefore present in considerable quantities in waters from mines. Sulfate in waters that contain much calcium and magnesium causes the

formation of hard scale in steam boilers and may increase the cost of softening the water.

Chloride (C1)

Chloride is dissolved from rock materials in all parts of the country. Surface waters in the humid regions are usually low in chloride, whereas streams in arid or semiarid regions may contain several hundred parts per million of chloride leached from soils and rocks, especially where the streams receive return drainage from irrigated lands or are affected by ground-water-inflow carrying appreciable quantities of chloride. Large quantities of chloride may affect the industrial use of water by increasing the corrosiveness of waters that contain large quantities of calcium and magnesium.

Fluoride (F)

Fluoride has been reported as being present in some rocks to about the same extent as chloride. However, the quantity of fluoride in natural surface waters is ordinarily very small compared to that of chloride. Investigations have proved that fluoride concentrations of about 0.6 to 1.7 ppm reduced the incidence of dental caries and that concentrations greater than 1.7 ppm also protect the teeth from cavities but cause an undesirable black stain (Durfor and Becker, 1964, p. 20). Public Health Service, 1962 (p. 8), states, "When fluoride is naturally present in drinking water, the concentration should not average more than the appropriate upper control limit (0.6 to 1.7 ppm). Presence of fluoride in average concentration greater than two times the optimum values shall constitute grounds for rejection of the supply." Concentration higher than the stated limits may cause mottled enamel inteeth, endemic cumulative fluorosis, and skeletal effects.

Nitrate (NO₃)

Nitrate in water is considered a final oxidation product of nitrogenous material and may indicate contamination by sewage or other organic matter. The quantities of nitrate present in surface waters are generally less than 5 parts per million (as NO_3) and have no effect on the value of the water for ordinary uses.

It has been reported that as much as 2 parts per million of nitrate in boiler water tends to decrease intercrystalline cracking of boiler steel. Studies made in Illinois indicate that nitrates in excess of 70 parts per million (as NO_3) may contribute to methemoglobinemai ("blue babies") Faucett and Miller, 1946, p. 593),

and more recent investigations conducted in Ohio show that drinking water containing nitrates in the range of 44 to 88 ppm (as NO_3) may cause methemoglobinemia (Waring, 1949). In a report published by the National Research Council, Maxcy (1950, p. 271) concludes that a nitrate content in excess of 44 parts per million (as NO_3) should be regarded as unsafe for infant feeding. U.S. Public Health Service (1962) sets 45 ppm as the upper limit.

Phosphate (PO₄)

Phosphorus is an essential element in the growth of plants and animals, and some sources that contribute nitrate, such as organic wastes and leaching of soils, may be important as sources for phosphate in water and its occurrence may add to the apparent alkalinity. The addition of phosphates in water treatment constitutes a possible source, although the dosage is usually small. In some areas, phosphate fertilizers may yield some phosphate to water. A more important source is the increasing use of phosphates in detergents. Domestic and industrial sewage effluents may therefore contain considerable amounts of phosphate.

Boron (B)

Boron in small quantities has been found essential for plant growth, but irrigation water containing more than 1 part per million boron is detrimental to citrus and other boron-sensitive crops. Boron is reported in Survey analyses of surface waters in arid and semiarid regions of the Southwest and West where irrigation is practiced or contemplated, but few of the surface waters analyzed have harmful concentrations of boron.

Dissolved solids

The reported quantity of dissolved solids—the residue on evaporation—consists mainly of the dissolved mineral constituents in the water. It may also contain some organic matter and water of crystallization. Waters with less than 500 parts per million of dissolved solids are usually satisfactory for domestic and some industrial uses. Water containing several thousand parts per million of dissolved solids are sometimes successfully used for irrigation where practices permit the removal of soluble salts through the application of large volumes of water on well-drained lands, but generally water containing more than about 2,000 ppm is considered to be unsuitable for long-term irrigation under average conditions.

Chromium (Cr)

Few if any waters contain chromium from natural sources. Natural waters can probably contain only traces of chromium as a cation unless the pH is very low. When chromium is present in water, it is usually the result of pollution by industrial wastes. Fairly high concentrations of chromate anions are possible in waters having normal pH levels. Concentrations of more than 0.05 ppm of chromium in the hexavalent form constitute grounds for rejection of a water for domestic use on the basis of the standards of the U.S. Public Health Service (1962).

Nickel and cobalt (Ni, Co)

Nickel and cobalt are very similar in chemical behavior and also closely related to iron. Both are present in igneous rocks in small amounts and are more prevalent in silicic rocks. Any nickel in water is likely to be in small amounts and could be in a colloidal state. Cobalt may be taken into solution more readily than nickel. It may be taken into solution in small amounts through bacteriological activity similar to that causing solution of manganese. However, few data on the occurrence of either nickel or cobalt in natural water are available.

Copper (Cu)

Copper is a fairly common trace constituent of natural water. Small amounts may be introduced into water by solution of copper and brass water pipes and other copper-bearing equipment in contact with the water, or from copper salts added to control algae in open reservoirs. Copper salts such as the sulfate and chloride are highly soluble in waters with a low pH but in water of normal alkalinity these salts hydrolyze and the copper may be precipitated. In the normal pH range of natural water cortaining carbon dioxide, the copper might be precipitated as carbonate. The oxidized portions of sulfide-copper ore bodies contain other copper compounds. The presence of copper in mine water is common.

Copper imparts a disagreeable metallic taste to water. As little as 1.5 ppm can usually be detected, and 5 ppm can render the water unpalatable. Copper is not considered to be a cumulative systemic poison like lead and mercury; most copper ingested is excreted by the body and very little is retained. The pathological effects of copper are controversial, but it is generally believed very unlikely that humans could unknowingly ingest toxic quantities from palatable drinking water. The U.S. Public Health

Service (1962) recommends that copper should not exceed 1.0 ppm in drinking and culinary water.

Lead (Pb)

Lead is only a minor element in most natural waters, but industrial or mine and smelter effluents may contain relatively large amounts of lead. Many of the commonly used lead salts are water soluble.

Traces of lead in water usually are the result of solution of lead pipe through which the water has passed. Amounts of lead of the order of 0.05 ppm are significant, as this concentration is the upper limit for drinking water in the standards adopted by the U.S. Public Health Service (1962). Higher concentrations may be added to water through industrial and mine-waste disposal. Lead in the form of sulfate is reported to be soluble in water to the extent of 31 ppm (Seidell, 1940, p. 1409) at 25°C. In natural water this concentration would not be approached, however, since a pH of less than 4.5 would probably be required to prevent formation of lead hydroxide and carbonate. It is reported (Pleissner, 1907) that at 18°C water free of carbon dioxide will dissolve the equivalent of 1.4 ppm of lead and the solubility is increased nearly four fold by the presence of 2.8 ppm of carbon dioxide in the solution. Presence of other ions may increase the solutility of lead.

Zinc (Zn)

Zinc is abundant in rocks and ores but is only a minor constituent in natural water because the free metal and its oxides are only sparingly soluble. In most alkaline surface waters it is present only in trace quantities, but more may be present in acid water. Chlorides and sulfates of zinc are highly soluble. Zinc is used in many commercial products, and industrial wastes may contain large amounts.

Zinc in water does not cause serious effects on health, but produces undesirable esthetic effects. The U.S. Public Health Service (1962, p. 55) recommends that the zinc content not exceed 5 ppm in drinking and culinary water.

Barium (Ba)

Barium may replace potassium in some of the igneous rock minerals, especially feldspar and barium sulfate (barite) is a common barium mineral of secondary origin. Only traces of barium are present in surface water and sea water. Because

natural water contains sulfate, barium will dissolve only in trace amounts. Barium sometimes occurs in brines from oil-well wastes.

The U.S. Public Health Service (1962) states that water containing concentrations of barium in excess of 1 ppm is not suitable for drinking and culinary use because of the serious toxic effects of barium on heart, blood vessels, and nerves.

Bromide (Br)

Bromine is a very minor element in the earth's crust and is normally present in surface waters in only minute quantities. Measurable amounts may be found in some streams that receive industrial wastes, and some natural brines may contain rather high concentrations. It resembles chloride in that it tends to be concentrated in sea water.

Iodide (I)

Iodide is considerably less abundant both in rocks and water than bromine. Measurable amounts may be found in some streams that receive industrial wastes, and some natural brines may contain rather high concentrations. It occurs in sea water to the extent of less than 1 ppm. Rankama and Sahama (1950, p. 767) report iodide present in rainwater to the extent of 0.001 to 0.003 ppm and in river water in about the same amount. Few waters will contain over 2.0 ppm.

PROPERTIES AND CHARACTERISTICS OF WATER

Hardness

Hardness is the characteristic of water that receives the most attention in industrial and domestic use. It is commonly recognized by the increased quantity of soap required to produce lather. The use of hard water is also objectionable because it contributes to the formation of scale in boilers, water heaters, radiators, and pipes, with the resultant decrease in rate of heat transfer, possibility of boiler failure, and loss of flow.

Hardness is caused almost entirely by compounds of calcium and magnesium. Other constituents—such as iron, manganese, aluminum, barium, strontium, and free acid—also cause hardness, although they usually are not present in quantities large enough to have any appreciable effect.

Generally, bicarbonate and carbonate determine the proportions of "carbonate" hardness of water. Carbonate hardness is

the amount of hardness chemically equivalent to the amount of bicarbonate and carbonate in solution. Carbonate hardness is approximately equal to the amount of hardness that is removed from water by boiling.

Noncarbonate hardness is the difference between the hardness calculated from the total amount of calcium and magnesium in solution and the carbonate hardness. If the carbonate hardness (expressed as calcium carbonate) equal the amount of calcium and magnesium hardness (also expressed as calcium carbonate) there is no noncarbonate hardness. Noncarbonate hardness is about equal to the amount of hardness remaining after water is boiled. The scale formed at high temperatures by the evaporation of water containing noncarbonate hardness commonly is tough, heat resistant, and difficult to remove.

Although many people talk about soft water and hard water, there has been no firm line of demarcation. Water that seems hard to an easterner may seem soft to a westerner. In this report hardness of water is classified as follows:

Hardness range (calcium carbonate) in ppm)	Hardness description
0-60	Soft
61-120	Moderately hard
121-180	Hard
more than 180	Very hard

For public use, water with hardness above 200 parts per million generally requires softening treatment (Durfor and Becker, 1964, p. 23-27).

Acidity (H⁺¹)

The use of the terms acidity and alkalinity is widespread in the literature of water analysis and is a cause of confusion to those who are more accustomed to seeing a pH of 7.0 used as a neutral point. Acidity of a natural water represents the content of free carbon dioxide and other uncombined gases, organic acids and salts of strong acids and weak bases that hydrolyze to give hydrogen ions. Sulfates of iron and aluminum in mine and industrial wastes are common sources of acidity. The presence of acidity is reported in those waters which have a pH below 4.5.

Sodium-adsorption-ratio (SAR)

The term "sodium-adsorption-ratio (SAR)" was introduced by the U.S. Salinity Laboratory Staff (1954). It is a ratio expressing the relative activity of sodium ions in exchange reaction with soil and is an index of the sodium or alkali hazard to the soil. Sodium-adsorption-ratio is expressed by the equation:

$$SAR = \frac{Na^{+}}{\frac{Ca^{++} + Mg^{++}}{2}}$$

where the concentrations of the ions are expressed in milliequivalents per liter (or equivalents per million for most irrigation waters).

Waters are divided into four classes with respect to sodium of alkali hazard: low, medium, high, and very high, depending upon the SAR and the specific conductance. At a conductance of 100 micromhos per centimeter the dividing points are at SAR values of 10, 18, and 26, but at 5,000 micromhos the corresponding dividing points are SAR values of approximately 2.5, 6.5, and 11. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Specific conductance (micromhos per centimeter at 25°C)

Specific conductance is a convenient, rapid determination used to estimate the amount of dissolved solids in water. It is a measure of the ability of water to transmit a small electrical current (see p. 8). The more dissolved solids in water that can transmit electricity the greater the specific conductance of the water. Commonly, the amount of dissolved solids (in parts per million) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream or from well to well and it may even vary in the same source with changes in the composition of the water (Durfor and Becker, 1964, p. 27–29).

Specific conductance of most waters in the eastern United States is less than 1,000 micromhos, but in the arid western parts of the country, a specific conductance of more than 1,000 micromhos is common.

Hydrogen-ion concentration (pH)

Hydrogen-ion concentration is expressed in terms of pH units (see p. 8). The values of pH often are used as a measure of the solvent power of water or as an indicator of the chemical behavior certain solutions may have toward rock minerals.

The degree of acidity or alkalinity of water, as indicated by the hydrogen-ion concentration, expressed as pH, is related to the corrosive properties of water and is useful in determining the proper treatment for coagulation that may be necessary at water-treatment plants. A pH of 7.0 indicates that the water is neither acid nor alkaline. pH readings progressively lower than 7.0 denote increasing acidity and those progressively higher than 7.0 denote increasing alkalinity. The pH of most natural surface waters ranges between 6 and 8. Some alkaline surface waters have pH values greater than 8.0, and waters containing free mineral acid or organic matter usually have pH values less than 4.5.

The investigator who utilizes pH data in his interpretations of water analyses should be careful to place pH values in their proper perspective.

Color

In water analysis the term "color" refers to the appearance of water that is free from suspended solids. Many turbid waters that appear yellow, red, or brown when viewed in the stream show very little color after the suspended matter has been removed. The yellow-to-brown color of some waters is usually caused by organic matter extracted from leaves, roots, and other organic substances in the ground. In some areas objectionable color in water results from industrial wastes and sewage. Clear deep water may appear blue as the result of a scattering of sunlight by the water molecules. Water for domestic use and some industrial uses should be free from any perceptible color. A color less than 15 units generally passes unnoticed (U.S. Public Health Service, 1962). Some swamp waters have natural color in excess of 300 units.

The extent to which a water is colored by material in solution is commonly reported as a part of a water analysis because a significant color in water may indicate the presence of organic material that may have some bearing on the dissolved solids content. Color in water is expressed in terms of units between 0 and 500 or more based on the above standard (see p.8).

Oxygen consumed

Oxygen consumed is a measure of the amount of oxygen required to oxidize unstable materials in water and may be correlated with natural-water color or with some carbonaceous organic pollution from sewage or industrial wastes.

Tolerances for oxygen consumed in feed water for low-and high-pressure boilers are 15 and 3 ppm, respectively (Northeast Water Works Association, 1940). Wash water containing more than 8 ppm has been reported to import a bad odor totextiles; concentrations for water used in beverages and brewing range from 0.5 to 5.0 ppm (California State Water Pollution Control Board, 1952, 1954).

Organics

Phenols.—Phenolic material in water resources is invariably the result of pollution. Phenols are widely used as disinfectants and in the synthesis of many organic compounds. Waste products from oil refineries, coke areas, and chemical plants may contain high concentrations. Fortunately, phenols decompose in the presence of oxygen and organic material, and their persistence downstream from point of entry is relatively short lived. The rate of decomposition is dependent on the environment.

Very low concentrations impart such a disagreeable taste to water that it is highly improbable that harmful amounts could be consumed unknowingly. Reported thresholds of detection of taste and odor range from 0.001 to 0.01 ppm.

Detergents (ABS).—The chief surfactant in commercial detergents is anionic alkylbenzenesulfonate (ABS). ABS and other anionic surfactants resist chemical oxidation and biological breakdown. Their persistence in water over long periods of time contributes to pollution of both ground water and surface water. Some of the effects produced from detergent pollution are unpleasant taste, odor, and foaming (Wyman, Robertson, and Page, 1962). Although the physiological implications of ABS to human beings is unknown, prolonged ingestion of this material by rats is believed to be nontoxic (Paynter, 1960). The U.S. Public Health Service (1962) recommends that ABS should not exceed 0.5 ppm in drinking and culinary waters.

Temperature

Temperature is an important factor in property determining the quality of water. This is very evident for such a direct use as an industrial coolant. Temperature is also important, but perhaps not so evident, for its indirect influence upon aquatic biota, concentrations of dissolved gases, and distribution of chemical solutes in lakes and reservoirs as a consequence of thermal stratification and variation.

Surface water temperatures tend to change seasonally and daily with air temperatures, except for the outflow of large springs. Superimposed upon the annual temperature cycle is a daily fluctuation of temperature which is greater in warm seasons than in cold and greater in sunny periods than with a cloud cover. Natural warming is due mainly to absorption of a solar radiation by the water and secondarily to transfer of heat from the air or from the bottom. Condensation of water vapor at the water surface is reported to furnish measureable quantities of heat. Heat loss takes place largely through radiation, with further losses through evaporation and conduction to the air and bottom. Thus the temperature of a small stream generally reaches a maximum in mid-to late afternoon due to solar heating and reaches a minimum from early to mid-morning after nocturnal radiation.

Temperature variations which commonly occur during summer in lakes and reservoirs of temperate regions results in a separation of the water volume into a circulating upper portion and a non-circulating lower portion. Separating the two is a stratum of water of variable vertical thickness in which the temperature decreases rapidly with increasing depth. This physical division of the water mass into a circulating and a stagnant portion is the result of density differences in the water column associated with the temperature distribution. Knowledge of the stratification in a body of water may result in increased utility by locating strata of more suitable characteristics. For example, the elevation of an intake pipe may be changed to obtain water of lower temperature, higher pH, less dissolved iron, or other desirable properties.

Temperature is a major factor in determining the effect of pollution on aquatic organisms. The resistance of fish to certain toxin substances has been shown to vary widely with temperature. The quantity of dissolved oxygen which the water can contain is also temperature dependent. Oxygen is more soluble in cold water than in warm water, hence the reduction of oxygen concentrations by pollution is especially serious during periods of high temperature when oxygen levels are already low. Increased temperatures also accelerate biological activity including that of the oxygen-utilizing bacteria which decompose organic wastes. These pollutional effects may be especially serious when low flow conditions coincide with high temperatures. Summary temperature data of water are essential for planning multiple uses of water resources.

Turbidity

Turbidity is the optical property of a suspension with reference to the extent to which the penetration of light is inhibited by the presence of insoluble material. Turbidity is a function on both the concentration and particle size of the suspended material. Although it is reported in terms of parts per million of silica, it is only partly synonymous with the weight of sediment per unit volume of water.

Turbid water is abrasive in pipes, pumps, and turbine blades. In process water, turbidities much more than 1 ppm are not tolerated by several industries, but others permit up to 50 ppm higher (Rainwater, Thatcher, 1960, p. 289). Although turbidity does not directly measure the safety of drinking water, it is related to the consumers acceptance of the water. A level of 5 units of turbidity becomes objectionable to a considerable number of people (U.S. Public Health, 1962).

Sediment

Fluvial sediment is generally regarded as that sediment which is transported by suspended in, or deposited by water. Suspended sediment is that part of it which remains in suspension in water owing to the upward components of turbulent currents or by colloidal suspension. Much fluvial sediment results from the natural process of erosion, which in turn is part of the geologic cycle of rock transformation. This natural process may be accelerated by agricultural practices. Sediment is also contributed by a number of industrial and construction activities. In certain sections, waste materials from mining, logging, oil-field, and other industrial operations introduce large quantities of suspended as well as dissolved material.

The quantity of sediment, transported or available for transportation, is affected by climatic conditions, form or nature of precipitation, character of the solid mantle, plant cover, topoggraphy, and land use. The mode and rate of sediment erosion, transport, and deposition is determined largely by the size distribution of the particles or more precisely by the fall velocities of the particles in water. Sediment particles in the sandsize (larger than 0.062 mm) range do not appear to be affected by floculation or dispersion resulting from the mineral constituents in solution. In contrast, the sedimentation diameter of clay and silt particles in suspension may vary considerably from point to point in a stream or reservoir, depending on the mineral matter in solution and in suspension and the degree of turbulence present. The size of sediment particles in transport at any point depends on the type of erodible and soluble material in the drainage area, the

degree of flocculation present, time in transport, and characteristics of the transporting flow. The flow characteristics include velocity of water, turbulence, and the depth, width, and roughness of the channel. As a result of these variable characteristics, the size of particles transported, as well as the total sediment load. is in constant adjustment with the characteristics and physical features of the stream and drainage area.

STREAMFLOW

Most of the records of stream discharge, used in conjunction with the chemical analyses and in the computation of sediment loads in this volume, are published in Geological Survey State reports on the surface-water supply of the United States. The discharge reported for a composite sample is usually the average of daily mean discharges for the composite period. The discharges reported in the tables of single analyses are either daily mean discharges or discharges for the time at which samples were collected, computed from a stage-discharge relation or from a discharge measurement.

State reports containing more complete records of stream discharge may be obtained by writing to the responsible District Engineer, Surface Water Branch, U.S. Geological Survey. For the area covered in this volume, the States, drainage basins, and locations of the district engineers are listed below.

State	Drainage area	Surface Water Branch district office
Alabama	South Atlantic slope and eastern Gulf of Mexico	P.O. Box V University of Alabama Tuscaloosa, Ala. 35486
Connecticut	North Atlantic slope	203 Federal Bldg. P.O. Box 715 Hartford, Conn. 06101
Delaware		106 Engineering Bldg. University of Maryland College Park, Md. 20740
Florida	South Atlantic slope and eastern Gulf of Mexico	Room 244 Federal Building Ocala, Fla. 32670
Georgia		Room 164 Peachtree Seventh Bldg. Atlanta, Ga. 30323

STREAMFLOW

State	Drainage basin	Surface Water Branch district office
Maine	North Atlantic slope	Vickery-Hill Building Court Street Augusta, Maine 04330
Maryland		106 Engineering Bldg. University of Maryland College Park, Md. 20740
Mississippi	South Atlantic slope and eastern Gulf of Mexico	Room 302 Post Office Building Jackson, Miss. 39295
New Hampshire	North Atlantic slope	Room 205 211 Congress Street Boston, Mass. 02110
New Jersey		P. O. Box 967 Room 433 Federal Bldg. Trenton, N. J. 08605
New York		P. O. Box 948 Federal Building Albany, N. Y. 12201
North Carolina	South Atlantic slope and eastern Gulf of Mexico	P. O. Box 2857 Federal Building Raleigh, N. C. 27602
Pennsylvania	North Atlantic slope	1224 Mulberry Street Harrisburg, Pa. 17104
South Carolina	South Atlantic slope and eastern Gulf of Mexico	Room 121 1801 Assembly Street Columbia, S. C. 29201
Virginia	North Atlantic slope South Atlantic slope and eastern Gulf of Mexico	P. O. Box 3327 University Station Charlottesville, Va. 22903
West Virginia	North Atlantic slope	Room 3303 New Federal Building 500 Quarrier St., East Charleston, W. Va. 25301

PUBLICATIONS

Reports giving records of chemical quality and temperatures of surface waters and suspended-sediment loads of streams in the area covered by this volume for the water years 1941-63, are listed below:

Numbers of water-supply papers containing records for
Parts 1 and 2, 1941-63

Year	WSP	Year	WSP	Year	WSP	Year	WSP
1941 1942 1943 1944 1945 1946	942 950 970 1022 1030 1050	1947 1948 1949 1950 1951 1952	1102 1132 1162 1186 1197 1250	1953 1954 1955 1956 1957 1958	1290 1350 1400 1450 1520 1571	1959 a1960 a1961 1962 1963	1641 1741 1881 1941 1947

^aIn preparation.

Geological Survey reports containing chemical quality, temperature, and sediment data obtained before 1941 are listed below. Publications dealing largely with the quality of ground-water supplies and only incidentally covering the chemical composition of surface waters are not included. Publications that are out of print are preceded by an asterisk.

PROFESSIONAL PAPER

*135. Composition of river and lake waters of the United States, 1924.

BULLETINS

*479. The geochemical interpretation of water analyses, 1911. 770. The data of geochemistry, 1924.

WATER-SUPPLY PAPERS

- *108. Quality of water in the Susquehanna River drainage basin, with an introductory chapter on physiographic features, 1904.
- *161. Quality of water in the upper Ohio River basin and at Erie, Pa., 1906.

- *193. The quality of surface waters in Minnesota, 1907.
- *236. The quality of surface waters in the United States, Part 1, Analyses of waters east of the one hundredth meridian, 1909.
- *237. The quality of the surface waters of California, 1910.
- *239. The quality of the surface waters of Illinois, 1910.
- *273. Quality of the water supplies of Kansas, with a preliminnary report on stream pollution by mine waters in southeastern Kansas, 1911.
- *274. Some stream waters of the western United States, with chapters on sediment carried by the Rio Grande and the industrial application of water analyses, 1911.
- *339. Quality of the surface waters of Washington, 1914.
- *363. Quality of the surface waters of Oregon, 1914.
- *418. Mineral springs of Alaska, with a chapter on the chemical character of some surface waters of Alaska, 1917.
- *596-B. Quality of water of Colorado River in 1925-26, 1928.
- *596-D. Quality of water of Pecos River in Texas, 1928.
- *596-E. Quality of the surface waters of New Jersey, 1928.
- *636-A. Quality of water of the Colorado River in 1926-28, 1930.
- *636-B. Suspended matter in the Colorado River in 1925-28, 1930.
- *638-D. Quality of water of the Colorado River in 1928-30, 1932.
- *839. Quality of water of the Rio Grande basin above For Quitman, Tex., 1938.
- *889-E. Chemical character of surface water of Georgia, 1944.
- *998. Suspended sediment in the Colorado River, 1925-41, 1947.
- 1048. Discharge and sediment loads in the Boise River drainage basin, Idaho, 1939-40, 1948.
- 1110-C. Quality of water of Conchas Reservoir, New Mexico, 1939-49, 1952.

Many of the reports listed are available for consultation in the larger public and institutional libraries. Copies of Geological Survey publications still in print may be purchased at a nominal cost from the Superintendent of Documents, Government Printing Office, Washington, D. C. 20402, who will, upon request, furnish lists giving prices.

COOPERATION

Many Municipal, State, and Federal agencies assisted in collecting records for these quality-of-water investigations. In addition to the cooperative programs, many stations were operated from funds appropriated directly to the Geological Survey.

The table on p. 28 lists State and local agencies that cooperated in quality-of-water investigations in the drainage basins included in this volume, and the locations of quality-of-water district offices responsible for the data collected.

28	QUA	LITY OF	SURFACE	WATERS	, 1963
District office	Room 201 Prudential Bldg. 6554 Florida Blvd. Baton Rouge, La. 70806	P. O. Box 948 Room 348, Federal Bldg. Albany, N. Y., 12201	Room 1302 U. S. Custom House 2nd and Chestnut Streets Philadelphia, Pa., 19106	724 York Road Towson, Md. 21204	Room 244 Federal Bldg. Ocala, Fla. 32670
Drainage basin	South Atlantic slope and eastern Gulf of Mexico	North Atlantic slope			South Atlantic slope and eastern Gulf of Mexico
Cooperating agency	Alabama Water Improvement Commission, A. N. Beck, technical secretary.	State Water Resources Commission, William S. Wise, director.	Delaware Geological Survey, J. J. Groot, State Geologist.	Department of Sanitary Engineers, David V. Auld, director.	Florida Geological Survey, Dr. Robert O. Vernon, director, includes: Southwest Florida Water Management District, Alfred A. McKethan, chairman.
State	Alabama	Connecticut	Delaware	District of Columbia	Florida

State	Cooperating agency	Drainage basin	District office
Florida	Florida Geological Survey, Sarasota County, Board of County Commissioners, Warren S. Henderson, ohairman. Central and Southern Florida Flood Control District, G. E. Dail, Jr., executive director. Metropolitan Dade County, Public Works Department, F.D.R. Parks, chief engineer. Hillsborough County, Board of County Commissioners, E. G. Simmons, chairman. Orange County, Board of County Commissioners, F. B. Surguine, Jr., chairman. Broward County, Board of County Commissioners, F. B. Surguine, Jr., chairman. Grounty Commissioners, F. B. Surguine, Jr., chairman. County Commissioners, F. B. Surguine, Jr., chairman. Broward County, Board of County Commissioners, F. B. Surguine, Jr., chairman. City of Miami, Department of Water and Sewers, C. F.	South Atlantic slope and eastern Gulf of Mexico	Room 244 Federal Bldg. Ocala, Fla. 32670

30	1	QUALITY	OF SURFACE WATER	RS, 1963	
District office	Room 224 Federal Bldg. Ocala, Fla. 32670	Room 244 Federal Bldg. Ocala, Fla. 32670	724 York Road Towson, Md. 21204	P. O. Box 948 Room 348 Federal Bldg. Albany, N. Y. 12201	6554 Florida Blvd. Baton Rouge, La. 70806
Drainage basin	South Atlantic slope and eastern Gulf of Mexico		North Atlantic slope		South Atlantic slope and eastern Gulf of Mexico
Cooperating agency	City of Miami Beach, O. M. Pushkin, City Manager.	Department of Mines, Mining and Geology, Captain Garland Peyton, director.	Maryland Department Geology, Mines and Water Resources, Dr. J. T. Singewald, Jr. succeeded by Dr. Ernst Cloos, acting director. Natural Resources Institute, University of Maryland, Dr. L. Eugene Cronin, director.	State Water Resources Commission, C. H. W. Foster, chairman and C. I. Sterling, Jr., chief engineer.	Mississippi Board of Water Commissioners, S. A. Thompson, chairman.
State	Florida	Georgia	Maryland	Massachusetts	Mississippi

State	Cooperating agency	Drainage basin	District office
New Jersey	Department of Conservation and Economic Development, Robert A. Roe, Commissioner. Division of Water Policy and Supply, George R. Shanklin, acting director and chief engineer. Division of Fish and Game, L. G. MacNamara, director. New Jersey State Department of Health, Dr. Roscoe P. Kandle, Commissioner, Division of Environmental Health, Alfred H. Fletcher, director. New Jersey State Department of Agriculture, Phillip Alampi, secretary. State Soil Conservation Committee, Grant F. Walton, executive secretary. Passaic Valley Water Commission, Charles G. Bourgin, general superintendent and chief engineer.	North Atlantic slope	Room 1302 U.S. Custom House 2nd and Chestnut Streets Philadelphia, Pa., 19106

32	QUALITY OF S	URFACE V	VATERS, 1903
District office	P. O. Box 948 Room 348 Federal Bldg. Albany, N. Y., 12201	P. O. Box 2857 Raleigh, N. C. 27602	Room 1302 U.S. Custom House 2nd and Chestnut Streets Philadelphia, Pa., 19106
Drainage basin	North Atlantic slope	South Atlantic slope and eastern Gulf of Mexico	North Atlantic slope
Cooperating agency	New York State Department of Commerce, Bureau of Industrial Development, Henry Gallien, director. New York State Conservation Department, Division of Water Resources, F. W. Montanari, assistant commissioner.	North Carolina Department of Water Resources, H. E. Brown, director.	Pennsylvania Department of Agriculture, Leland H. Bull, secretary. Pennsylvania Department of Forests and Waters, Maurice K. Goddard, secretary. Soil Conservation Commission, Charles Hess, director City of Philadelphia, James H. J. Tate, Mayor.
State	New York	North Carolina	Pennsylvania

sin District office	Room 1302 U.S. Custom House 2nd and Chestnut Streets Philadelphia, Pa., 19106	pe and P. O. Box 2857 Mexico Raleigh, N. C. 27602
Drainage basin	North Atlantic slo	South Atlantic slope and eastern Gulf of Mexico
Cooperating agency	Department of Water, Samuel S. Baxter, Water Com- missioner. Conestoga Valley Association, John Kitch, president.	South Carolina State Develop- ment Board, W. W. Harper, director.
State	Pennsylvania	South Carolina

DIVISION OF WORK

The quality-of-water program was conducted by the Water Resources Division of the Geological Survey, L. B. Leopold, chief hydrologist, and S. K. Love, chief, Quality of Water Branch. The records were collected and prepared for publication under the supervision of district engineers or district chemists as follows: In Delaware, New Jersey, and Pennsylvania, N. H. Beamer; North Carolina, South Carolina, and Virginia, G. A. Billingsley; Alabama and Mississippi, S. F. Kapustka; Florida and Georgia, K. A. MacKichan; New York and New England, F. H. Fauszek; and District of Columbia, Maryland, and West Virginia, J. W. Wark. Any additional information on file can be obtained by writing the responsible Survey Quality of Water district office.

LITERATURE CITED

- American Society for Testing Materials, 1954, Manual on industrial water: Am. Soc. for Testing Mat., Philadelphia, Pa., p. 356.
- Baker, M. N., 1949, The quest for pure water: Am. Water Works Assoc., New York, N.Y.
- Brandt, H. J., 1948, Intensified injurious effects on fish, especially the increased toxic effect produced by a combination of sewage poisons: Chem. abs. 42, p. 9015.
- Busch, Werner, 1927, The applicability of electrometric titration to the determination of the solubility of slightly soluble oxides; Zeitsche. Anorg. Chem., v. 161, p. 161-179.
- Durfor, C. N. and Becker, E., 1964, Public water supplies of the 100 largest cities in the United States; 1962: U.S. Geol. Survey, Water-Supply Paper 1812, p. 17-29.
- California State Water Pollution Control Board, 1952, Water-quality criteria: California State Water Pollution Control Board, pub. 3., p. 291-292, 377-378.
- ————1954, Water-quality criteria: California State Water Pollution Control Board, pub. 3, Addendum no. 1., p. 291—292.
- Eriksson, E., 1952, Composition of atmospheric precipitation II; sulfur, chloride, iodine compounds, bibliography: Tellus, v. 4, p. 280-303.
- Faucett, R. L. and Miller, H. C., 1946, Methemoglobinemia occurring in infants fed milk diluted with well waters of high nitrate content: Jour. Pediatrics, v. 29, p. 59?.
- Hazen, Allen, 1892, A new color standard for natural waters: Am. Chem. Jour., v. 12, p. 427-428.
- International Union of Pure and Applied Chemistry, 1961, Table of Atomic weights based on carbon-12: Chem. and Eng. News, v. 39, no. 42, Nov. 20, 1961, p. 43.

- Kilmer, V. J. and Alexander, L. T., 1949, Methods of making mechanical analyses of soils: Soil Sci., v. 68, p. 15-24.
- Lackey, J. B., and Sawyer, C. N., 1946, Plankton productivity of certain southeastern Wisconsin lakes as related to fertilization: Sewage Works Jour., v. 17, p. 573.
- Lane, E. W., and others, 1947, Report of the Subcommittee on Terminology: Am. Geophys. Union Trans., v. 28, p. 937.
- Magistad, O. C., and Christiansen, J. E., 1944, Saline Soils, their nature and management: U.S. Dept., Agriculture Circ. 707, p. 8-9.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council, Bull. Sanitary Eng. and Environment, App. D., p. 271.
- Moore, E. W., 1950, The desalting of saline waters, a review of the present status: Natl. Research Council Comm. on Sanitary Eng. and Environment, Rept. to Subcomm. on Water Supply.
- National Research Council, 1954, Sodium restricted diets: Natl. Research Council, pub. 325.
- Northeastern Water Works Association, 1940, Progress report, Committee on quality Tolerances of Water for Industrial Uses: Northeast Water Works Assoc. Jour., v. 54.
- Paynter, O. E., 1960, The chronic toxicity of dodecylbenzene sodium sulfonate: U.S. Public Health Conference on Physiological Aspects of Water Quality Proc., Washington, D.C., Sept. 8-9, 1960, p. 175-179.
- Pleissner, M., 1907, Arb. Kais, Gesundheitsamt, v. 26, r. 384-443.
- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U.S. Geol. Survey Water-Supply Paper 1454, 301 p.
- Rankama, K., and Sahama, T.G., 1950, Geochemistry: Chicago Univ. Press, Chicago, Ill., p.767.
- Riffenburg, H. B., 1925, Chemical character of ground waters of the northern Great Plains: U.S. Geol. Survey Water-Supply Paper 560-B, p. 31-52.
- Seidell, Atherton, 1940, Solubilities of inorganic and metal organic compounds, 3d ed., v. 1, D. van Nostrand, New York.
- U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurement and analysis of sediment loads in streams:
 - Report 6, 1952, The design of improved types of suspendedsediment samplers: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., p. 86-90.
 - Report 7, 1943, A study of new methods of size analysis of suspended-sediment samplers: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., p. 82-90.

- U.S. Inter-Agency Report 11, 1957, The development and calibration of the visual-accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., p. 1-109.

 Report 14, 1963, Fluvial sediment discharge: U.S. Govt. Printing Office, Washington, D.C., 20402, p. 57-77.
- U.S. Public Health Service, 1962, Drinking water standards: U.S. Dept. Health, Education, and Welfare, Public Health Service: Pub. no. 956.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture, Agriculture Handb. 60, p. 1-160.
- Waring, F. H., 1949, Significance of nitrates in water supplies: Am. Water Works Assoc. Jour., v. 41, no. 2., p. 147-150.
- Wayman, C. H., 1962, Limitations of the methylene blue method for ABS determinations: U.S. Geol. Survey, Prof. Paper 450-B, art. 49, p. B117-B120.
- Wayman, C. H., Robertson, J. B., and Page, H. G., 1962, Foaming characteristics of synthetic-detergent solutions: U.S. Geol. Survey, Prof. Paper 450-D, art. 178, p. D198.

CHEMICAL ANALYSES, WATER TEMPERATURES, AND SEDIMENT

PART 1. NORTH ATLANTIC SLOPE BASING

1-210. ST. CROIX RIVER AT BARING, MAINE ST. CROIX RIVER BASIN

LOCATION. "Temporature recorder at grading station at site of destroyed international highway bridge at Baring, Washington County, MADIAMON TO THE TABLE THE STATE APPROXIMENT OF APPROXIM

Temperature °F of water, water year October 1962 to September 1963

								<u>-</u>	Ö	Į i	80	ot p	-	do)	-	真っ	a ted	Ē	er w	Continuous ethyl-alcohol-actuated thermograph	졒											
															Ω	Day																America
Month	-	2	3	4	5	9	7	8	6	101	Ξ	12 1	13	14	15 1	16 1	17 1	18	61	20	21	22 ;	23	24	25 2	26	27	28 ;	53	8	31	Surre
October Maximum	3,	55	55	ž.	55	45	3		53	52	25	25	52	27	50	20	50		27	0.0	22	21	40	6	6,4	84		5	\$	4	\$	12
Minimum	23	53	23	<u>*</u>		4		22						_				-	_	_				-			_	÷	_	4	4	9
lovember Maximum	46	45	4	44	_	42		3	43		4 4	-		_	-									35			_			37	1	04
Minimum	45	7.7	45	45	7 7	41	45	7	41.4			41	413	39		37	37	37		35	36	36	35 3		34	36	35 3	35	98	36	1	38
December Maximum	37	37	37	37		37		37		3.7			35											_	_					33	33	35
Minimum	37	37	36	37	37	37	37	36	37	37	36	35		35	34 3	34	34	34	34	34	34	34	34 3	34	34	33	33 3	33	33	33	33	35
January Maximum	9.3	33	32	32	33	33	33	33	33	33	33	33	33	333	33	33	33	33	88	33	33	33	33	33	33	33	33	32	32	32	32	33
February	32	33	33 6	33		33		35		33																				: 1	: 1	33
Minimum	32	35	33	32	32	32	32	32	35	32	32	35	32 3	35	32 3	33		33	33	33	33	33	33	34	34 3	34	34	34	Ť	1	ī	33
March	34	34	34	34		34	_	34		34		34	33			33														34	36	34
Minimum	34	34	34	34	34	34	33	33	33	33	33	_		33	33		33	33	33	33	33	33	33	33	33	33	33	33	33	34	34	33
April	36	36	36	35	_	37		35		36								_									_	_		4	ŀ	36
Minimum	33	34	*	34	35	34	34	34	35	35	36	36	36	36	36	37	38	39	39	39	39	39	38	38	38	36	9	9	42	43	1	37
ay Maximum	45	45	45	9,4		8		20	52	- 19					54		_				_								_	63	67	35
Minimum	44	45	4.5	45	9 4	47	47	64		20	20	20	3	25		53	545	- 52	55	55	65	19	9	65	50	6	50	200	8	7	62	53
June	67	69	7.1	73	10	7.2	2	17	69	0,			69	70		- 19	7.1	2	12	0.	-89	67	- 69	73	72 7	73	- 92	- 52	2	- 62	1	11
Minimum	63	61	63	99		69		29		89		9																_	_	2	1	99
ıly Maximum	7.8	76	4	73	_	74		-1.		74										18	_									- 62	79	11
Minimum	7.1	72	72	2	7.	2	2	69	69	69	20	69	69	7	69	2	72 7	73	72	73	5	13	72 7	73	7.	. 22	7	. 82	11	9,	4.	72
August Maximum	73	76	77	74	7.7	27	76	7.7	73	42	77	75	73 7	70	70 7	119	699	8 9	129	6.5	29	2 9	29	7.49	+	11	65	96	63	63	9 5	71
eptember Maximum Minimum	63	69	11	66	99	63	58	59	62	4.2	70	19	58	62	57 5	0.8	59.9	60		63	5 9		57		- 9 9 2 9 9	9.9		8 98	2 2	4 6	11	65 59
		•	•			•	•		٠	-				Ī		_		•		•	٠	•	1			1	٠		٠	•	٠	

DENNYS RIVER BASIN

1-212. DENNYS RIVER AT DENNYSVILLE, MAINE

LOCATION.—Temperature recorder at gaging station just upstream from raliroad bridge, 0.9 mile upstream from Cathance Stream and 1 mile west of hemnywills, Washington County.
DRAING ARM.—96.4 square miles:
CRECORD ANALMER.—Whether temperatures: October 1958 to September 1963.
RXTREMES, 1962-63.—Whether temperatures: Maximum, 1787 bluy 28; minimum, freezing point on many days from December to March.
RXTREMES, 1962-63.—Whater temperatures: Maximum, 1787 bluy 28; minimum, freezing point on many days from December to March.
REMINERS, 1965-63.—Whater temperatures: Maximum, 22; Funge 11 temperatures 32; Funge 12; Funge 135; Funge 135; Funge 136; Funge 136; Funge 136; Funge 116; Fu

Temperature of water, water year October 1962 to September 1963

									S	Continuous	Snc	ethyl		1cob	-101	alcohol-actuated	ated	т ф	thermograph]	a L	큠										,
7															Day	y															Amerik
Month	-	2	3	4	5	9	7 8	8	-	10	드	2 13	13 14		5 16	-1	18	19	20	2	1 22	23	24	25	56	27	28	53	ဗ္က	31	VACIARE.
October Maximum		55													50							5	_	64	84	43	43	4	4 4	4 4	50
Minimum	54	54	54	54	53 5	53	52 5	52 5	52 5	52 5	52 51		20 20	48		4	20	49	6 4	20	20	4	4	4.7	4	45	45	43	43	45	64
November Maximum	47	47					_	_		_								_				38		39		39	39	38	37	1	42
Minimum		46	45	£.	4 6 4	45 4	43 4	43	45 4	45 4	43 44		43 41	36	6 37	38	33	37	35	38	35	35	37	38	38	37	37	35	35	í	4
December	_									_		_						_										_			
Minimum	36	36	36	37	96	37	380	200	38	37 3	34 32		33 32	32	33	9 6	33	3 6	32	1.1	Ц	1 1	Ш	1 1	11	1 1	П	1.1	11	11	1 1
January				-															-	_								_ :			
Minimum	1 1		1 1	1 1	-		1 1	<u> </u>		_						1 1	1 1	1 1	<u> </u>	1 1		2 6	5 6	4 6	4 6	5 6	2 0	5 6	25	2 6	1 1
February									_					_				_						}		'	1	*	1	*	
Maximum	33	33			33		33	32	32 3	32 3	32 32		32 32	32	2 32	35	32	32	33	33	33	32	32	32	32	32	32,	1	1	;	35
Minimum		32	35	93		33								-~-				ñ		_				35		32	32	1	1	ŧ	32
Maximum		32				_																		32		35		3.	4	34	32
Minimum	32	32	32	35	32	32	32 3	32	32 3	32 3	32 32		32 32	32	2 32	32	32	32	32	35	32	35	32	32	35	33	34	34	34	34	35
April					-		_			-				_				_					_								
Maximum	36	36	37	37	36 3	37	37 3	37	37 3	37 3	37 38		38 38		38 38	38	38	38	38	38	33	38	38	39	9	4	7.	43	43	ŀ	38
mumimim		ç		_	_	_	_							_				_	-			-	_	38		\$	4	7	7.	ì	37
Maximum	_	4.1	-7		47-4		48 4		50	50 4	49 47		64 64	64	9 50	52	54	56	5,	56	56	5.5	55	57	58	59	29	59	29	9	52
Minimum	41	4,1		41		7 7 7 7		46 4			9 42		6 48			_	_	2,		'n		_			54	26	_	26	26	26	64
June Maximum		6.5				_			_													99		73		7,		73	7	l	8,4
Minimum	22	58	62	62	62 6	62 (60 5	66	9 66	61 6	61 62		62 63		63 62	5	63	65	67	67	1 64	6.4	49	68	2	2	2	8	69	1	64
July	7,5	-,-		_									_					_	_					,			_	- *	4	ç	12
Minimum	7.7	2	68	99	65.6	88	65 6	63	63.	64	64 65		67 68	200	7 66	6.7	68	- 6	88	6.8	8 2	68	69	69	2	72	3.5	2.5	22	12	7 89
August							_			_								_								;		_;		:	;
Minimum	68	89	69	99	99	- 59	99		68	67 6	66 66		65 65	64	4 63	2 4	9 50	9 3	2 9	2 6	8 60	2 6	9 9	3 6	3 5	109	7 7	5 2	9 6	2 0	6 6
September				_																				: :		3		1 1			
Minimum	63	63	62	62	200	26	26.5	200	57 5	58	58 57	_	55 54		52 54	25	270	57	265	2 80	57	2,7	5 6	5.7	2.2	52	4 4	2 0	9.0	11	26

SHEEP SCOT RIVER BASIN

1-380. SHEEDSCOT RIVER AT NORTH WHITEFIELD, MAINE

October 1987 to September 1963. Asximum, 86°F July 29; minimum, freezing point Jan. 14, 15. Maximum, 86°F July 29; minimum, freezing point on many days during winter months.

Temperature °F of water, water year October 1962 to September 1963 (Continuous ethal alcohol-actuated thermograph)

								_	5	Continuous etuyi	200	9		TCC	Tou	arconol-actuated	na r	2	Ter	ruermograph	app	_										
Meash															^	Day															_	900
Month	-	2	Э	4	5	9	7	80	6	0	Ξ	12 1	13	14	15 1	16 1	17 1	8	19	20	21 2	22	23 2	24	25	26 2	27 2	28 2	29	30	31	Merage
October Maximum	\$ ¥	56	57	55	57	55	555	53	534	54	44	53.4	53 5	53	52 5	52	53 5	205	52 5	52	52 5	52	52 5	2.2	501	48	48 47		44 44	4 9 4	L 4 4	52 52
November Maximum	47	44	4 4	4 4	‡ ‡	444	404	10	42 4	4 7 7 7	4 4 2	41	39 3	39	39 3	38	38 3	37	37 3	37	38 3	3.8	38 3	36	36 3	34	36 36		36 3	36	11	39
December Maximum	36	36	36	37	37 2	37	36	36	36	35	35	35	35 3	35	35 3	35	36 3	35	35 3	34	35 3	3 4 4	34	34	36 3	34	37 37		33 3	34	33.4	36
January Maximum	34	35	34	34	34.4	34	34	34	34	3 4	34	34 4	34 3	32	34 3	33	333	333	33 3	333	33 3	333	33 3	333	33 3	33	33 34		34 3	33 4	33	33
February Maximum Minimum	3 4	34	33	34	34	33	333	33.4	34	34	34	3,4	33 3	333	33 3	33	35 3	33.4	33 3	33	33 3	33.4	34 3	33	33 3	34 3	34 34		+	$\frac{1}{1}$	11	33
March Maximum Minimum	33	33	33	33	333	33	334	333	334	33	334	34	33 3	333	33 3	33	34 3	3 4	34 3	4 4	33 3	3.5	35 3	33	34 3	34.	35 34 34 33	-	33 3	33	33	33
April Maximum Minimum	33	33	33	33	34	35	35	35	3 4	35	36	36	37 3	38	2 0 4	7 0 7 7 0 7	404	, 1	40 4	417	7 4 4 7 7 4	44	45 4	14	4 4 4 4 4 4 4	44 4	44 43 44 43		48 4	45	11	38
May Maximum Minimum	4 4 6 4	4 3	4 4	8 4	44	50	51	50	52	20	20 4	8 4	50 5	50	52 5	53	54 5	53	56 5	54	54 5	57	57 5	54	58 6	57 5	61 62 57 58		60 61 59 60		59	54 51
June Maximum	66	67	68	6.5	699	99	717	99	69	- 7 4	67	63	63	9 7 9	65 6	99	67 6	899	68 6	22	76 7	12	71 7	42	76 7	79 8	80 79 76 76		78 87	77	11	17 68
July Maximum Minimum	78	80	7.5	75	74	73	73	73	12 69	72	81 7	77	79 7	77	76 7	77	79 7	78	76 7	6 9 2	78 7	78	80 8 76 7	90	83 8	79 7	83 85 79 79		86 83 81 81		82	78 75
Angust Maximum	80	78	78	75	72	77	7.2	73	73	77	75 7	74	72 6	69	69 7	2 9	68 6	8 9	64 6	9 5	69 49	75	69 69	64	64 6	61	67 67		65 65	449	63	71
September Maximum	66	66	65	63	2.2	60	59	59	69	61	59 6	60	58 5	56	57.5	55	58 6	58	60 6	601	58 5	28	58 5	54	53.5	5.5	56 56 55 56		54 5	5 4 4	11	58

BLACKSTONE RIVER BASIN

1-1125. BLACKSTONE RIVER AT WOONSOCKET, R. I.

LOCATION .-- Temperature recorder at gaging station on right bank at Moonsocket, Providence County, 500 feet downstream from Peters

RIVET.

DRAINGE ARRA.—416 square miles.

RECORDS AVAILABLE.—Mater temperatures: M
EXTREMES, 1962-63.—Mater temperatures: M
and Pebruary.

EXTREMES, 1961-63.—Mater temperatures: M

Maximum, 87°F July 28, 29, 1963; minimum, freezing point on many days in 1962 and 1963. November 1961 to September 1963. Maximum, 87°F July 28, 29; minimum, freezing point on many days in December, January

Temperature 'F of water, water year October 1962 to September 1963

	Avenue	26 27 28 29 30 31 Avelage	49 46 46 46 47 55	39 39 39 39 42	36 36 36 35 37 36 36 36 32 32 37	33 33 32 32 32 32 34 33 32 32 32 34	1 37 37 35 1 34 36 33	43 43 43 45 40	54 55 56 57 52 3 53 54 55 56 51	7 68 66 68 69 64 4 62 65 66 66 66 61	74 82 83 77 77 73	84 86 87 87 85 77 78 78 75 82 82 74 76 75	71 71 71 68 69 70 75 68 66 65 67 67 71	58 59 60 59 59 64
		25	52 50 50 49	41 41 41 39	36 36 36 36	34.	37 37	42 43	54 53	65 64	72 70 7	80 8	72 7	58 27 2
		23 24	54 54	41 41	36 36 36 36	33 33 32 32	38 37 34 34	41 41	56 55	69 67	70 71 69 69	75 78	73 76	61 59
n n		22	34	t 0 4 0	36	34	34	39	56	70	55	76	76	62
ograp		20 21	4 4 4 4	90	37 36 36 36	3,4	37 38 36 37	9 41	56 57 54 56	63 64	73 71 64 70	82 77 77	73 75 66 71	63 62
alcohol-actuated thermograph		19 2	56 54 54 54	40 40	36 37 36 36	34 34	33 3	38 39	5 5 5 5	63 6	74 7	78 87	74 7	61 6
ated		17 18	56 56 55 56	41 41	36 36	34 34	37 37 33 33	38 38	53 54 53 53	66 65	70 72 67 68	77 77 74 76	74 75	61 61
-actu	Day	16	55 55	41 4	36 3	34	39 3	38	53 5	64 6	68 7	82 7	74 7	61 6
[coho]		15	56	43	36	35	35	38	53	*09	89	77	73	62
ethyl a		13 14	58 58 58 56	44 43 43	37 36 36 36	36 36	33 34	38 38	52 52 50 52	57 62 56 57	68 68 66 68	73 79	75 71 69 70	66 63
as et		12	288	11	38	3.6	33	3,8	4,9	5 58	2 70	1 72 1	3 77	69
Continuous		1.01	58 58 58	44 43 44 44 44 43	39 38	35 35	32 32 32 32	38 38 38 36	50 50	66 65	76 72 72 70	17 17	80 78 76 68	70 68
Con		6	8 8	6,4	0.60	3.5	32	9 8	6 0	65	76	73	80	0.4
		8	60 59 59 58	44 42	41 41	35 35	32 32 32 32	37 38	4 8 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	63 63	78 76	75 74 71 71	81 81 76 76	66 67
		9	61	2 4	44	35	32	39	9 4	61	78	73	980	65
		2	19 1	2 4 2 4	39 41	35	32 32	1 39	8 4 4	59	77 2	5 76	82 2	69
		۵ 4	61 61 59 61	47 45	39 39	35 35	32 32 32 32	35 37	50 50	57 59 55 56	75 72 69 70	80 79 79 76	78 79 75 75	72 71
		2	59	47	39	35	32	36	50	57	72	80	77	71
		-	59		39	35	33	34	 7 4	52		77	. 75	70
	, , , , , , , , , , , , , , , , , , ,	Month	October Maximum Minimum	November Maximum	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	June Maximum	July Maximum Minimum	August Maximum	September Maximum

PAWTUXET RIVER BASIN

1-1165. PAWTUXET RIVER AT CRANSTON, R. I.

LOCATON, Properture recorder at gaging station on left bank at Cranston, Providence County, 0.7 mile upstream from Pocasset River. DRAINGE AREA, -200 square miles (Newmber 1961 to September 1963.
RECORDS ANAILARE, "Fast remperatures: Kevember 1961 to September 1963.
RECORDS ANAILARE, "Fast remperatures: Maximam 84.º DNI 2. minimam, 34.º DNI 2. minimam, 34.º DNI 2. minimam, 34.º DNI 2. minimam, 34.º DNI 3. minimam, 33.º Doce, 31 to Jan. 2, 1962.

November 1961 to September 1963. Maximum, 84°F July 2; minimum, 34°F on many days during December, January and February. Maximum, 84°F July 2, 1963; minimum, 33°F Dec. 31 to Jan. 2, 1962.

Temperature (°F) of water, October 1962 to September 1963

,							_	00	Continuous	one	eth	Z,	1100	ethyl alcohol-actuated thermograph	act	uate	ğ	her	Igo	aph	_											
															_	Day																Average
Month	-	7	6	4	5	9	7	8	6	10	Ξ	12	13	4	15	16	1	18	6	2	21	22	23	24	25	26	27	28	29	30	31	
October Maximum Minimum	62 58	60	63	63	62 6	62	200	59	88	5.8	58	58	58	5.8	55	55	57	57	55	5.5	53	53	54	53	53 51	51	4 4 8 4	4 8 4 8	0, 8¢	8 t 4 7 t	6 t t	70 10 40 10
E 8	6 4	64	6 4 4	8 4 4	47	45	0 4 0 4	4 4	44	8 4 5	4 4	6 4	9 4 4	44	413	41	404	104	39	45	43	43	44	4 7	42	t 0 4 0	9 4	41 40	99	4 4	11	4 4
December Maximum	4 4	040	4 4 4 6 4 6	43	4 13	6 4 6 9	4 4	# 4	39	39	36	3.8	35	35	34	37	36	37	37	38	34	3,6	35	36	36	37	37	37	37	35	34	39
January Maximum Minimum	36	35	36	36	3.4	36	3.6	36	35	37	36	36	38	3.5	36	36	36	36	38	36	36	35	36	37	36	35	35	3,6	36	36	36	35
February Maximum Minimum	35	36	36	35	36	38	38	35	35	35	37	36	37	37	36	36	35	35	35	37	36	37	35	35	36	36	36	36	11	11	11	35
March Maximum Minimum	36	35	36	36	36	35	35	37	37	37	38	38	38	38	39	41	94	99	0,4	39	39	39	99	40	43	43	50	0 4 4 6 6	474	8 t 4	4 4 6 4	1,0
April Maximum	50	50	50	648	8 4	5 t	42	4 6	4 4 8	4 8	44	6 4 9	51	56	46	50	53	52	53	5.8	58 55	53	55	54	53	54	53	55	51	3.4 5.3	11	50
May Maximum Minimum	58	55	55	5.6	58	62	59	63	64	61	61	57	55	59	58	62	4.0	61	62	66	67 65	67 64	69	69	63	63	63	63	67 65	9 4 9	68 65	63
June Maximum Minimum	69	7.1	72	72	75	75	72	71	45	72	63	66	67	67	63	63	22	72	73	72	72	70	73	76 66	78	80 67	85 68	79	72	75	11	72
July Maximum Minimum	81	84	83	76	7.7	74	7,0	72	73	57	73	74	74	75	22	79	81	82	83	76	75 72	73 71	73	75	78 67	81 6 9	72	80	83 75	42	79 69	72
August Maximum Minimum	77	76	92	75	75	77	92	75	76	74	73	74	71	99	71	72	70	69	72	70	72	73	44	70	70	0,4	70	70	89	6.5	89	72
September Maximum Minimum	70	49	69	71	65	63	99	65	63	69	63	7.9	65	60	61 58	59	59	59	66 60	62 62	62 61	61	60 58	60 58	58	58	62 59	60	60	59	11	61

POTOWOMUT RIVER BASIN

1-1169.1, HUNT RIVER NEAR DAVISVILLE, R.I.

LOCATION .--Temperature recorder at gaging station at downstream side of bridge on U.S. Highway 1, 1.5 miles north of Davisville,

Meahington County.
Meahington County.
Methington County.
Methington County.
MECORDS Available.—Fater temperatures: January 1962 to September 1963.
MECORDS Available.—Fater temperatures: January 1962 to September 1963.
SETEMBES, 1962-63.—Fater temperatures: Maximum, 1962 to September 1963.
SETEMBES, 1962-63.—Fater temperatures: Maximum, 1967 to Manuary 1962 to September 1963.—Fater temperatures: Maximum, 1967 to September 1963.—Fater temperatures: Maximum, 867 July 26, 1963; Minimum, 337 on many days during winter many fater temperatures: Maximum, 1967 to September 1963.—Fater temperatures: Maximum, 1967 to September 1963.—Fater temperatures: Maximum, 1967 July 26, 1963; Minimum, 337 on many days during

Temperature °F of water, water year October 1962 to September 1963

								<u> </u>	Cont	Continuous ethyl alcohol-actuated	snc	ethy	1 a1	copo	1-a	tuat	pe	ther	thermograph]	raph	_										
*															Day															_	900
Month	-	7	က	4	2	9	7	8	- 6	0-	=	12 13	14	15	7	17	18	2	2	21	22	23	24	25	26	27	28 2	29 3	30	-	Average
October	5.8	5.8	57	09					57 5	57 5	57 57	- 57	7 56			5.5	5.5	5.	52		52		21	4	48			- 4			4
Minimum	57	96	57	24	65	09	58		57 5	57 5	56 56		56 55	53	53	54	53	52	20	52	52	20				43 4	43 4	46 45		46	53
	50	64	7.4	9,	7 1.4	9 †	7 7 7	43	- 1	4 6 7	4 9		45 44	1	39	39	39	39	39		44		4.5		-04					-	43
Minimum	6 7	14	94	46	94	44	42 4		43 4	7 77	48 45	_		39		39	39	39	39	39	41	42		40 3	_	38	38	37 37	_	1	42
December	38	38	30	36	7	- 24	4 2 4		30	30	37 34	3		-	6	ç	23	36	3.6	4	45		-	_						4	3,6
Minimum	38	38	38	38		10	_								-	33	33	33	3.4		34	34	34	34	34	34 34		34 34	_	34	35
January Maximum	34	34	34	34	34	35			35	35 3	35 35	35	35			34	34	35	35		34										34
Minimum	34	34		34		34	35 3	35 3	35 3		35 35		35 35	34	34	34	34	34	35	34	34	34	33	33	33 3	33 3	33 3	33 33		33	34
February Maximum	w w	33	33	33	3.3	33	333	333	333	9.9	35 35		34 34	4.6	33	33	34	34	3.4	4 6	33	33	88	33.4	3.4	34.9	4 4	<u> </u> 		11	34
March	3, 4	7.		, 4		. 4		_		_						, ,	, 0) 4	, ,		7							47			, ,
Minimum	. 6	33		32		35.		_			_	_			-	36	38	37	3,5		37	37		39		47			_	64	38
April Maximum	4 8	52		6,4		9	47			4 8 4	46 50		2 52	50	20	8.4	53	53	57	56	57	52		4.8	50 -2	50	52 5	55 52		-	51
Minimum	43	47	64	45	7 7	7 7	43	45 4	45 4		77 77	-	46 48			47	84	20	25		51	_	84		-					1	47
May Maximum	54	53			19	61	61 5	65	61 6		57 51		7 56	57	09	62	09	09	62	61	63	3		61	- 28	60 61		09 09		63	29
Minimum	21	64	48	23		24				57 5	51 46	64				26	57	26	58	_	28							_		6	55
June Maximum	99	99	99	9		2		_	_							49	67	69	99		99			717		73 7		73 70		-	29
Minimum	9	09	62	65	99	67	9 49	9 79	9 79	62 6	69 09	_	58 61	9	58	9	62	49	49	49	61	79	63		9 69	_	17	99		-	63
July Maximum		14	7.4	7.1		95	67 6	9 19	999		99 29		89 89	70		73	62	79	75	_	69	~~~			_						72
Minimum		7.1		69	69	63	63 6	9 69	63 6		62 64	99	6 67		99	69	7	72	17	69	29	65		69	72 1	73 7	73 7	74 72		20	89
August	7.2	7.2		20	7	7.7	76 8	80 7	79 7	70	68 76		71 68	67		65	65	70	67		72		89		_					-	1,
Minimum		20	68	69		89			9 69			_	66 67		7	63	65	63	65	67	99	67		57 5	26	26 5	28	62 62		61	65
September Maximum	67	7.1		6.8	79	58	99	64	72 7	70 7	72 68		94 60	5.8	58	9	19	63	63	62	61	59	69	63	26	59	- 09	69 09		-	63
Minimum	58	55	61	59		96						-	60 58	_		58	59	9	62		- 65							_	_	1	58

1-1270. QUINEBAUG RIVER AT JEWETT CITY, CONN. THAMES RIVER BASIN

LOCATION.--Water-stage recorder in rear of high school on Slater Avenue at Jewett City, New London County, 570 feet downstream from outlet of canal from Wedgewood Wills Rak moth of Pachaug River, and 1,000 feet downstream from railroad bridge.

DRAINGER ARK.--711 Square miles.

RACORDA MAINGER.--Cheanical analyses October 1855 to September 1856.

Water temperatures: October 1855 to September 1856.

RACORDA MAINGER.--Cheanical Rakes September 1856.

EXTREMES, 1852-83.--Water temperatures: Minimum, freezing point on many days in January, February, and March.

EXTREMES, 1855-64. 1855-65.

EXTREMES, 1855-65. 1855-65. 1855-65.

RAGORDA MAINGER.--RACORDER REMAINGER.--RACORDER REMAINGER.--RACORDER RACORDER REMAINGER.--RACORDER REMAINGER REMAINGER.--RACORDER REMAINGER REMAI

Chemical analyses, in parts per million, October 1962

Tur- bid- ity	6.4
ABS	0.1
Hd	*.
Specific conduct- ance (micro-	25°C) 141 7.4 0.1 0.4
Hardness as CaCOs	o ate
Hare as C Cal- clum,	magne - stum 21
Dissolved solids (residue	2,6 88
Ni- trate (NO ₃)	2.6
Fluo- ride (F)	
At- Sulfate Chloride ride trate (SQ ₁) (C1) (R) (NO ₂) (residual clum, carbon, march and (R) (NO ₂) (residual clum, carbon, march at try	4.0 0.29 0.00 6.4 1.2 18 2.1 39 15 10
Sulfate (SO ₄)	15
Bicar- bonate (HCO ₃)	39
Po- tas- sium	(m)
Mean Silica hum. Iron ga- clum ne- clum sium (Re) ness (Cas) nam (Re) ness (Cas) nam (Re) ness (Cas) nam (Ra) nam (Ro) ness (Cas) nam (Ra) nam (Ro) (Ci)	18
Mag- ne- stum	1.2
Cal- clum (Ca)	6.4
Man- ga- nese	00.00
Iron (Fe)	0.29
Alum- inum (A1)	
Silica (SiO ₂)	
Mean discharge (cfs)	300
Date of collection	Oct. 3, 1962 300

THAMES RIVER BASIN--Continued

1-1270. QUINEBAUG RIVER AT JEWETT CITY, CONN. -- Continued

	Amenda	2000	5.5	41	36 35	88	32	36	0.0 8.0	60 59	27 07	11	275	63
		5	7.4	11	11	32	11	41	11	67	11	81 76	72	11
		30	44	38	34	32	11	141	52 51	65	78 77	11	69	61 59
		29	48	38	34 34	32	11	41	52 50	63	82	11	70 69	62 60
		28	47	38	34	32	32	42	51	62	83	11	72	63
		27	49	38	34	33	33	45	50	63	81 74	11	72	61 59
		26	51	38	34	33	333	45	20	64	78	11	72 69	6.2 5.8
		25	53	39	34	333	333	0,0	51 50	64 63	79 72	11	420	62 58
196		24	5.4	39	34	33	33	39	53	63	75	11	75	62 58
ber		23	55	38	34	33	33	38	54	65	74 69		76 71	62 59
water, water year October 1962 to September 1963 is ethyl alcohol-actuated thermograph]		22	55	38	3 4	33	33	38	55	64	71		70,	63
Se d		21	56	38	3 4	32	32	37	54 54	63 63	72	11	4 2	64
· 1962 to Se thermograph		20	55	38	34	33	32	37	52	63	22	11	17.07	64
1962 1erm		19	55	38	34	333	32	37	52	61	71	11	42	69
م <u>و</u> ت		18	57 56	39	3 %	33	32	37	52	61	69		77	63 62
ctob		17	57	39	34	34	32	36	50	61 59	6.5	11	73	62
is cto	Day	16	56	0 4	34	33	32	35	52 50	57	66 64	11	74 70	64
yes hol-		15	56	42	34	33	33	35	49	57 55	65	TI	74	65
ter		14	55	\$ 7	34	33	32	34	50 48	55	67	11	73	66 62
, wa		13	56 55	4 4 2 2	35	33	32	34	44	56	68	11	75	67
ter		12	55	46	36	33	33	34	8 4 4	58	70 67	11	77	68
f we		Ξ	55	44	36	9 9	9 9	34	47	61 58	71		78	71
of innor		2	55	44	38	33	33	34	47	62	72		79	69
<pre>lemperature (*F) of water, water year October [Continuous ethyl alcohol-actuated</pre>		٥	55	42	38	34	33	933	4 4 6	59	73	11	77	69
Ture _		æ	52	43	3 tc	34	32	32	4 4 6 4	53	73	11	9 7	6.5
era		7	58 57	43	3 3	34	32	32 32	4 4	5.8	7.3		77	68 63
Temp		9	58	4 ¢ 5 c	39	3,4	32	33	3 4	2 8	73	11	90	67 64
•		5	60	4 4 6 4	39	34	32	33	4.5	5 4	73	11	77	70
		4	58	49	38	3,4	32	33	4 4 4 7 4 7	54 52	72 70	11	78	72 69
		က	61	4 7	38	34	32	33	4 8 4 6	52 51	0.2 6.8	11	25	69
		2	61 58	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	37 37	3,4	32	33	4 6 6 4 3	52	6.8	11	79	73 68
		-	9*	47	37	34	32	32	4 4 2	52	66	11	78	73
	7	MOIII	October Maximum	November Maximum	December Maximum	January Maximum Minimum	February Maximum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	June Maximum Minimum	July Maximum	August Maximum Minimum	September Maximum Minimum

CONNECTICUT RIVER BASIN

1-1560. WEST RIVER AT NEWFANE, VT.

LOCATION. -- Tomperature recorder At gaging station on right bank 600 feet downstream from highway bridge, and 1 mile northeast of Newfane, which as Tandam 200mit.

DRIANG ARM. -- 308 square miles.

RECORDS ANAILABLE. -- Water temperatures: October 1854 to September 1963.

EXTRESS, 1686-63. -- Water temperatures: Maximum, 76°F July 28-31; minimum, freezing point on many days in January, February, and March.

EXTRESS, 1686-63. -- Water temperatures: Maximum, 86°F Aug. 5, 6, 1855; and July 29, Aug. 17, 1859; minimum, freezing point on many days during winter months.

Temperature 'F of water, water year October 1962 to September 1963

		Average	50	37	3.4	333	33	33	38	0 B	63	12	69	61 58
	_ :	4												
i		8	24		4 4	33	11	33	11	55	11	73	96	11
1		30	44	34	34	33	_11	333	4 4	53	679	76	5.5	51
-		5	44	4 4	33	34	11	33	43	53	89	22	65	57 53
		28	44	2.2	33	33	32	32	47	53	8 8	9 2	65	57
		27	45	34	33	33	33	32	14	53	68	2.2	65	5. 5.4
		56	47 45	35	33	33	32	33	9 9	53	65	22	69	55
ļ		25	4 4 7	35	333	33	32	33	4 9	53	63	73	269	53
-		24	0 4 0 8	35	33	33	33	32	4 0 4 1	52	63	72	22	52
		23	64	35	34	33	33	32	111	52	62 61	22	25	55
4		22	50	34	34	33	32	32	41	50	62 61	12	689	58
rap		21	51	34	3,4	33	32	32	14	50	62 62	22	68	61 58
r BO		20	51	35	33	33	32	32	140	50	62	17	19	63 61
thermograph		19	51	35	3.4	33	32	32	104	50	61	22	67	62
ted		18	52	35	34	33	33	32	0 0	5 6 4	69	22	67	61 60
te		17	52	35	34	33	33	32	404	50	59	2 8	67	009
-1	Day	16	51	36	34	33	33	32	41	49	58	69	67	60 57
g Q		15	501	37	34	33	32	32	39	48	59	6,9	62	58
Ĭ		14	52	38	35	33	32	32	39	47	59	02	67	59
IA		13	52	38	35	32	33	32	38	4 5	5.0	69	69	58 4
		12	52	39	35	32	333	32	42	42	59	62	69	65
non		11	52	39	34	32	33	32	38	44	63	65	72	63
Continuous ethyl alcohol-actuated		0.	52	38	34	33	33	32	41	64	63	66	72	63
<u> ೭</u>		٥	52	38	35	93	33	32	37	49	64	65	72	63
ı		8	53	38	35	33	33	32	37	4 6	63	99	72	29 62
		7	53	38	35	33	32	32	35	4 9	\$ 63	99	22	62 62
		9	55	9.9	33	33	33	32	34	4 4 4 6	63	67	17	64
ı		2	57	39	33	93	33	32	35	4 5	63	69	72	64
		4	52	39	33	33	933	32	35	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	60	72	72	99
		က	57	40	34	33	33	32	35	44	59	72	22	6.5
		7	57	7 7	34	33	99	32	34	643	59	72 7.1	17	99
		-	57	45	34	34	33	32	34	6 4	52	71	7.7	65
1			::	<u> </u>	::	::	::		::	::	::	::		11
	Month	MOIN	9 0	88	mum mum	E E	imum imum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	June Maximum Minimum	Maximum	8.8	Maximum

CONNECTICUT RIVER BASIN--Continued

1-1600, SOUTH BRANCH ASHUELOT RIVER AT WERB, NEAR MARLBORO, N. H.

LOCATION.—Temperature recorder at gaging station on right bank 15 feet downstream from bridge, 800 feet southwest of Webb Station on Soston and Maine Railroad, and 2.5 miles south of Marlboro, Cheshire County.

BROODES WAILABLE.—18.0 quarte miles:

RECORDS WAILABLE.—18.1 temperatures: October 1984 of Sostemen 1983.

RECORDS WAILABLE.—18.2 temperatures: October 1984 of Wife Days freezing point on many days from December to March. RETREENES, 1984-63.—Water temperatures: Maximum, 877* July 26; minimum, freezing point on many days from December to March.

Temperature 'F of water, water year October 1962 to September 1963

								_	Cont	Continuous	870	ethy1		100	-10	alcohol-actuated	ate	d t	Herm	thermograph	aph.											
Meash															Q	Day															-	Average
Month	-	2	3	4	5	9	7	8	ا 6	0	=	2 1	3	4	15 1	16 1	17 1	18 1	19 2	20 2	21 2	22 2	23 2	24 2	25 2	26 2	27 2	28 2	29 3	30 3	_	30
October Maximum	57	59	51	53	52	53	533	53	53	53	53	55	50.0	50 4 8	50 52 46 48		52.0	52 54	52 52		0.4 0.4	-15 40 40	48 47 46 45	<u> </u>	42 43 41 41		45 44 39 40 40		44 40 40 30	47		51 48
November Maximum	11	4 7	47	41	14	41	39 4	38	39 4	47	44	4.3	39 3	39	37 3	36 3	36 36	36 3	36	3.6	37 3	36 3	37 36 36 36		36 35		35 35		35 35			39
December Maximum	36	36	36	36	36 8	36	34	3.86	36 3	35 3	35 3	32 3	33 32		33 32		333	32 3	32 32 32 32		32 3	32 3	32 32 32 32		32 32 32 32		32 32 32 32		32 33 32 32			34
anuary Maximum	33	33	32	32	32	32	32 3	32	32 3	32 3	32 3	32 3	32		32		32 32 32 32		32 3	33 3	33 3	33	33 33 32 32		33 33		33 33 33 32		33 32	2 32		32
February Maximum	33	32	33	33	33	32	32 3	33	32 3	32 3	32 3	32 3	33 3	33	33 34 32 33		34 3	33 3	32 32		33 3	33	33 32		32 32 32 32		33 32 32 32		-	- 11		33
Maximum	32	32	32	32	32	32	32 3	23	32 3	32 3	33 3	33	33.4	33	34 34		34	33 3	34 34 32 33		33 4	33	34 35		34 33		32 33		33 33		34	33
April Maximum Minimum	34	35	35	36	34	35	36 3	33	37 3	38	38 4	38	39 3	43 4	44 47		9 4	4 5 4	48 49		4 4	4 6 4 4 4 5 4 4	47 43		43 44		45 47		50 48 43 48	11		4 4 9
May Maximum Minimum	4 4	48	50	56	2,0	56	57 5	53	55 5	51 4	51 4	87	52 5	57 5	57 58 54 52		59 57 54 55		54 5	55 5	57 5	56 5	58 58		62 58 52 54		63 62 53 55		60 61 57 59		57	57
June Maximum	71	71	27	74	9 9 9	76	107	17	70 6	62 5	9 6 5	969	68 69		63 63 59 56		57 58		72 71		71 6	67 7	70 76 61 59		77 80 63 67		80 77 66 69	-	71 82		11	71
Maximum	10	7.1	67	72	71	71	72 6	89	9 69	65 6	72 7	75 7	78 7	77 7	74 76 68 67		81 81		72 7	78 7	74 47	76 78	78 84 68 67		86 87		84 85 72 72		86 84 75 76		67	78 67
August Maximum Minimum	75	74	73	76	44	99	79	0.89	78 7	7 9 4 6	76 7 62 6	47.	649	64 6	72 7	63 6	63 76	63 5	70 67 59 64		76 7 61 6	76 49	74 71 68 64		70 69 62 57		70 70 60 59		65 65	2 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		73
Maximum	73	73	72	74	588	7.0	57 5	71 28	73 6	69	55 6	66	65 64 57 52		63 63 51 56		63 71		71 68		63 60 59 56		56 58		59 61		63 63 53 57		57 58 54 52			57

1-1900. FARMINGTON RIVER AT RAINBOW, CONN. CONNECTICUT RIVER BASIN -- Continued

LOCATION: --At dam of Farmington River Power Co., Hartford County, 0.4 mile upstream from gaging station, and 6 miles downstream from Emon Brook.

RADIANGE AREA. --591 square miles, approximately.

BALIANGE AREA. --591 square miles, approximately.

Water temperatures: October 1957 to September 1963.

EXTREMES, 1962-63. --Water temperatures: Maximum, 82°F July 29; minimum, freezing point on many days from December to March.

GARREMES, 1975-63. --Water temperatures: Maximum, 82°F July 29; minimum, freezing point on many days during winter months.

Temperature °F of water, water year October 1962 to September 1963

Month	L													Day		Day																Aver-
MOINT	-	2	က	4	5	9	7	80	٥	10	=	12	13	14	15	91	17	81	61	20	21	22	23	24	25	26	27	28	29	30	31	age
October November December	56 45 34	56 44 34	56 44 34	56 44 35	56 643 36	58 43 37	5.8 4.2 3.8	56 40 38	56 41 37	57 41 36	55 43 33	54 43 34	54 42 32	56 42 33	55 42 32	55 41 32	54 39 32	54 38 32	54 37 32	54 37 32	54 37 32	54 36 32	55 36 32	53 38	51 37 32	51 37 32	37	48 36 32	46 35 32	46 35 32	44	54 40 33
January February March	32 32 32	32 32 32	32 32 32	32 32 32	32 32 32	32	32 32 32	32 32 32	32 32 32	32 32	32 32 32	32 32	32 32 32	32 32 32	32 32 32	32 32	32 32	32 32 36	32 32 36	32 32 36	32 32 36	32 32 36	32 32 35	32 32 35	32 32 36	32 32 38	32	32 32 38	33	32	4 1 3	352
April May June	500	4 52 60 60	53	4 5 6 4 6	41 52 66	40 52 68	5.5 5.6 6.9	43 56 70	59 72	45 60 72	44 61 71	4 % % 4 % %	4.5 5.8 6.5	4 6 8 6 6 6	5.0	8 4 5 6 8 3 6 8	000	63	50 62 62	50 64 64	52 61 64	54 61 66	53	53	50 62 68	50	4 9 9 9 0 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	51 60 72	52 60 71	131	58 58 57
July	78 70	4 6 0	74 78 78 68	77 76 68	75 77 68	42 29	72 75	75 76 62	72 76 62	02 44	68 77 66	67.2	02 26 49	71 75 64	72 23	70 71 62	22.45	74 66 62	74 68 62	76 69 63	76 70 63	76 76 70 71 63 62	72 72 71 74 72 58	72 74 58	76 72 57	74 72 56	70 20	76 70 58	82 70 58	78 56	681	74 73 63

HOUSATONIC RIVER BASIN

1-1990, HOUSATONIC RIVER AT FALLS VILLAGE, CONN.

LOCATION: --At dam upstream from hydroelectric plant of Connecticut Power Co., and about 1.1 miles upstream from gaging station at Falis village, il.ticifical County.

DRAING AREA.--62 square miles, approximately.

EXTRAINER.--62 square miles, approximately.

The constrainer of the constrainer with the constrainer of the constrainer with the constrainer.

The constrainer of the constrainer with the constrainer of the constrainer.

EXTRAINER, 1925-63.--Maker temperatures: Waxfaum, 79°F July 30; minimum, freezing point on many days during winter months.

EXTRAINES, 1935-63.--Maker temperatures: Waxfaum, 79°F July 30; minimum, freezing point on many days during winter months.

- 1							Temp	era	Temperature	°F of		water,		water	r ye	year October 1962 to September 1963	9cto	ber	196	2	Š	pte	nber	19	63		1			Ì	
															Day	ı,															Aver-
	-	2	6	4	5	9	7	8	6	10 1	=	12 1	13 1.	14	5 14	15 16 17	7 18	8 19	-	20 21	-	22 2	23 24		25 26	5 27	28	29	30	31	age
October November December	57 45 35	56 46 34	35 4 4 5	57 35	58 542 2	57 42 38	39 4	57 40 36	57 40 40 35 35	56 40 35 35	56 55 44 43 33 32		55 55 41 40 32 32		55 55 38 37 32 32		55 54 36 37 32 32		53 53 35 35 32 32		53 35 32 32 32		53 51 37 37 32 32		50 48 36 35 32 32	35	325	3 3 4 5	34	44	333
January February	32	32	32	32 32	32 32	32 32 32	32 32 3	32	32 32 32 33 32 32		32 32 33 33 33 33		32 32 33 32 33 33		32 32 32 32 33 33		32 32 32 32 33 33		32 33 32 33 33 33		33 32 33 33		32 32 32 32 33 36		32 32 32 32 37 37	32 32 37	32	36	32	32	3 3 2 5
April May	39 50 62	41 48 65	474	43 50 69	39	37 51 72	37 4 56 5	43 72	44 59 6 70 70	45 63 63 60 70	44 45 60 53 68 64		45 45 53 55 61 63		45 46 57 58 63 62		48 48 59 61 61 64		49 50 61 61 65 67		50 60 66 66 64		50 47 61 57 66 68		46 45 58 57 69 70	4 6 7 2	73 65	4.7 60 7.4 7.4	52 60 73	121	57 67
JulyAugust	75 78 67	77 75 67	75 75 68	75 72 68	74 73 67	73 72 67	70 70 72 73 65 65		67 67 73 74 66 67		66 66 73 73 66 67		69 72 73 73 66 65		71 71 73 73 62 62		72 73 72 68 62 62		75 76 67 68 63 62		75 73 69 70 62 62		70 71 71 70 61 58		73 75 69 69 57 56	77 69 55	568	77 68 57	79 68 56	78 67	73 71 63

HOUSATONIC RIVER BASIN---Continued

1-2055, HOUSATONIC RIVER AT STEVENSON, CONN. (Formerly published as 1-2050, Lake Zoar at Stevenson, Conn.)

LOCATION. --At tailrace of dam of Connecticut Light and Power Co. at Stevenson, Pairfield County, 0.2 mile upstream from gaging scatton, and 0.4 mile upstream from Rightmile Brook.
DRAINGE ARB. --1, 545 separe miles.

TREADES ANALDER. --- after temperatures: October 1960 to September 1963.
EXTRACES, 1962-63. -- mater temperatures: Maximum, 88 % July 28; analmum, freezing point on many days from December to March. SETRES, 1962-63. -- mater temperatures: Maximum, 88 % July 28; analmum, freezing point on many days from December to March. SETRES, 1960-63. -- mater temperatures: Maximum, 88 % July 28; analmum, freezing point on many days from December to March. SETRES, 1962-63. -- mater temperatures: Maximum, 87 % July 28; analmum, freezing point on many days during winter months.

Temperature °F of water, water year October 1962 to September 1963 Ønce-daily measurement at approximately 13007

	į	ļ					į		Ì	-	3	Conce-dairy measurement at approximatery 1300	CRO	1	110	3		1	100	١		7		- Carried Control	ļ							
Month															Day	_															Aver-	į.
MORE	-	2	3	4	5	6 7	7 8	6 8	2	11	1 12	13	14	115	16	17	18	19	20	121	22	23	3 24	1 25	26	27	7 28	3 29	9 30	31	ğ	
October November December	66 55 43	55	66 55 55 55 55	55 5 6 4 7 5 5	65 64 53 50 42 42		64 64 50 52 40 40		64 63 52 52 40 40	50	3 62 0 48 8 34	96 36	34	92	61 647 32	61 47 35	1 46	0 9 4 6 4 6 5	3 4 5	35	34.6	34.5	844 844	844	3 4 5 8	58 44 32	3 57 3 32	56 44 32	444 444 444 444	32	97	
January February March	32	32	322	322	32 32 32 32 32 32		32 32 32 32 36 33		33 33 32 34 33 33		33 33 32 32 33 32	33	33 33	32	3333	999	333	33.34	34	33.34	333	334	333	34	3 8 3	33	325	32	2 32	40 32	333	
April May June	53	0 8 8	4 6 8 9 4 9 4 9 4 9 4	70 4 5 7 2 4 4 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41 42 56 55 70 68		44 44 55 57 68 70		44 56 56 70 70		57 57 69 68	4.5 6.8	5 2 2 8 9 9 9 9	57 69	5 6 8 8 9 8	58 68	8 8 8	8 8 8	0.00	3 3 8	682	4 8 6 2 6 9	1 2 6 6 1	4 8 7 2	7 6 8	617	4 6 7 4 8 7 4 8	4 8 7 8	8 4 8 7 8 4 8	131		
JulyAugust	78 82 73		80 7 81 8 72 7	76 7	77 78 78 78 71 71		78 76 78 79 70 73		74 73 79 78 73 73		76 73 80 79 73 73	75	2 4 6 9 6 9	73	6 2 2 6 9	75 73 69	8 2 2 6	8 2 4 4	23	8 22	8 9 9	76 79 70	57.5	83 75	2 4 8	85 77 67	98 77 77 67	85 44 66	5 82 6 74 6 65	9 t 7 t	77 78	

HUDSON RIVER BASIN

1-3277, HUDSON RIVER AT HUDSON FALLS, N. Y.

LOCATION .--West shore of river at Arkell and Smiths Plant, Hudson Falls, Saratoga County.

MARAL.-3, 495 square arises, apportance arises, apportance of the supportance arises, apportance arises, moreover 1957 to September 1963.

EXTRARES, 1962-63, --water temperatures: Manhaum, freezing point on many days from Dacember to March.

EXTRARES, 1967-63, --water temperatures: Maxhaum, freezing point on many days during without many days during records available.

Temperature of of water, water year October 1962 to September 1963

	Aver-	age	55 41 34	32 5 35 2 5	55.	27 17 65
		31	32	32	THI	18
		30	47 37 32	32	£!!	51 65
		29	49 37 32	32 39	58 11	78 70 59
		58	51 37 32	32	4 8 1	6 6 8 6 9 6 0 9
		27	51 37 32	32	401	47 68 61
1		26	37	32	4 50	77 68 61
		25	52 37 32	332	55	552
		24	53 37	382	4 to 1	5.7 6.1
1		23	54 37 32	3 2 4	5 to 1 to	75 70 62
		22	54 37 32	32 32 36	59	269
060		21	54 38 32	32	4 0 1	1 8 9
91y		20	54 38 32	32	1 26 8	\$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
approximately 0900/		6	35 32	32 32	545	75 68 65
Š		18	56 40 32	35	4. 6.2 1	52 59
appi		17	35 39	32	57	404
at	Day	2	55 44 32	32 32 32 32 35 35	56	73 64
measurement		15	55 42 32	32	56	72 70 65
uren		7	24.6	322	040	22.9
e a.s		13	33	35	55	74 72 68
ly m		12	0 4 6 4 4 4	35	1 50 1.	179
da 1		=	56 45 35	35	541	57 58
Once-daily		2	0 4 4 0 0 0	32 35	911	0 4 4 9 4 8
9		٥	65 64 60 40	32 32 35	57	72 75 68
		80	39	32	38	42 68
		_	59 42 38	32	37	74 74 67
		9	5.9 4.4 3.8	32 32 32	36	74 73 67
		2	2 4 4 36	32	53	74 73 68
ı		4	36	32 32	35	74 73 68
		က	38	32	35	76 72 68
		2	59 45 36	32	36	8 1 6 9
		_	046	32	£ 4 1	69
	7474	Month	October November December	January February March	April May. June	July August September

HUDSON RIVER BASIN--Continued

1-3300. GLOWEGEE CREEK AT WEST MILTON, N. Y.

LOCATION.—Temperature recorder at gaging station on left bank at upstream side of highway bridge, 0.5 mile south of West Milton, Sarkoga County, 1.5 miles upstream from mouth, and 4 miles northwest of Ralliston Spa.

BRANDARA.—26.0 square miles.

RROODAS ANIALMELE.—Chemate miles.

RROODAS ANIALMELE.—Chemate miles.

RROODAS ANIALMELE.—Chemate miles.

RATHERES, 1962-63.—Water temperatures: Maximam, 77°F June 27, 30 and July 1, 2; minimam, freezing point on many days from Kovember to March.

EXTREMES, 1962-63.—Water temperatures: Maximam, 82°F July 24, 1961; minimam, freezing point on many days from EXTREMES, 1953-63.—Mater temperatures: Maximam, 82°F July 24, 1961; minimam, freezing point on many days during winter months.

1963	
1962 to September	raph
\$	NO.
1962	d thermograp)
October	Continuous ethyl alcohol-actuated
year	copol-
ter	Ť
	Ā
ž,	et
Wat	STO
ų	Tun
β4 O	Sont
Temperature "F of water, water year October 19	

				Day										Day	Эау		, }	;														
1 2 3 4 5 6 7 8 9	3 4 5 6 7 8	4 5 6 7 8	5 6 7 8	6 7 8	7 8	8	\vdash	0	-	0	Ξ	12	2	4	15	9	7	2	6	20	21	22	23	24	25	28	27	28	50	8	हि	Average
56 56 55 55 54 54 57 55 55 59 59 59 59 59 59 59 59 59 59 59	55 55 54 54 57 55 52 53 54 53 54 52 53	55 55 54 54 57 55 53 54 53 54 52 53	55 54 54 57 55 54 53 54 52 53	54 54 57 55 53 54 52 53	54 57 55 54 52 53	57 55 52 53	55		un un	53	53	55	53	51	500	52	52	52	0.8	0.8	0 0	0.80	0, 80	8 4	0.4	2 t	64	644	43	277	36	51
41 41 40 39 39 37 37 40 42 4 40 37 39 38 37 36 33 37 40 4	40 39 39 37 37 40 42 39 38 37 36 33 37 40	39 39 37 37 40 42 38 37 36 33 37 40	39 37 37 40 42 37 36 33 37 40	37 37 40 42 36 33 37 40	37 40 42 33 37 40	40 42 37 40	4 4 0		4 4	41	4 4 4 2 4	42	38	35	335	34	32	34	34	33	3.5	35	34	36	34	35	32	3.2	34 32	32	11	35
34 35 35 35 38 39 39 34 34 34 32 32 32 33 34 34 38 34 34 34 34 38	35 35 34 38 34 34 34 33 33 34 38 34 34 34	35 34 38 34 34 34 33 34 38 34 34 33	38 39 39 34 34 34 38 34 34 33	39 39 34 34 38 34 34 33	39 34 34 34 34 33	34 34 34 33	34		60 60	34	32	32	32	32	32	32	33	33	32	33	33	33	32	32	32	32	33	333	33 3	333	333	33
33 33 33 32 32 32 33 33 34 34 39 33 32 32 32 32 33 32 32 32	33 32 32 32 33 33 34 32 32 32 32 32 33 32	32 32 32 33 33 34 32 32 32 33 33 32	32 32 33 33 34 32 32 32 33 32	32 33 33 34 32 32 33 32	33 33 34 32 33 32	33 34 33 32	34		9.9	+ 01	333	33	33	33	33	33	33	33	33	34	34	33	33	33	33	34	333	333	34	8.8	33	33
34 34 34 33 33 33 34 33 33 33 33 33 33 3	33 34 33 33 33 34 33 33 33 33 33 33 33 33	34 33 33 33 34 33 33 33 33 33 33 33	33 33 33 34 33 33 33 33 33 33	33 33 34 33 33 33 33 33	33 34 33	34 33	33		33		88	33	333	33	33	33	33	33	333	33	33	33	34	33	33	33	33.	33	11	11	11	33
33 33 33 33 33 33 33 34 34 33 33 33 33 33 33 33 33 33 33	33 33 33 33 34 33 33 33 33 33 33 33	33 33 33 33 34 33 33 33 33 33 33	33 33 33 34 33 33 33 33 33	33 33 34 33 33 33 34	33 33 34 33 33 33	33 34 33 33	33		9.6 9.3		334	33	3 4	34	4 4	34	3, 4,	34	34	33	34	33	35	33	34	33	3.6	32	35 3	334	33	34
36 36 36 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	36 36 36 37 38 39 39 37 37 37	36 36 37 38 39 39 35 35 37 37 37	36 37 38 39 39 35 35 37 37 37	37 38 39 39 35 37 37 37	38 39 39 37 37 37	39 39 37 37	39		9 9		37	38	39	70	20,	43	47	43	6.4	45	43	2 4 5	9 4	104	417	41	4 4 6 4 1 4 6	5.6	53	524	11	45 39
45 49 55 59 59 59 59 57 63 63 43 42 44 49 55 49 49 53 49 47	55 59 59 59 59 57 63 44 49 55 49 49 53 49	59 59 59 59 57 63 49 55 49 49 53 49	59 59 59 57 63 55 49 49 53 49	59 59 57 63 49 49 53 49	59 57 63 49 53 49	57 63 53 49	6 4		63		r 9 1	47	53	57	6 6 4	52	53	3 %	50	54	5 6 4 9	55	508	56	0.04	56	200	5.8	54	55	55	57 50
57 58 59 63 63 63 69 64 68 64 57 58 59 63 63 63 60 50 55	70 70 72 70 68 64 68 59 63 63 63 69 60 60	70 72 70 68 64 68 63 63 63 60 60	72 70 68 64 68 63 63 63 60 60	70 68 64 68 63 63 60 60	68 64 68 63 60 60	64 60 60 60	6.8		57		5.5	5.5	53	563	9 4	57	54	52	58	99	56	63	57	73	74	49	7.4	92	74 4 1	22	11	67 59
77 77 76 69 68 66 65 69 64 62 69 71 67 64 62 62 61 63 60 59	76 69 68 66 65 69 64 67 64 62 62 61 63 60	69 68 66 65 69 64 64 62 62 61 63 60	62 65 65 69 64 62 62 61 63 60	66 65 69 64 62 61 63 60	65 69 64 61 63 60	69 64 63	40		59		500	59	69	02	99	72	7.1	74	22	11 67	71	71	4.9	73	11	22	73	47.	45	7 69	44	17
11 69 73 71 69 71 71 70 71 70 64 64 68 65 64 66 67 66 66	73 71 69 71 71 70 71 64 68 65 64 66 67 66	71 69 71 71 70 71 68 65 64 66 67 66	69 71 71 70 71 65 64 66 67 66	71 71 70 71 64 66 67 66	71 70 71 66 67 66	70 71 67 66	71		23		68	899	919	63	57	909	58	99	59	61	209	53	40	C #	55	54	509	565	97	829	62	6 8
67 67 68 67 63 60 65 66 67 66 60 59 61 63 56 57 58 59 61 61	68 67 63 60 65 66 67 61 63 56 57 58 59 61	67 63 60 65 66 67 63 56 57 58 59 61	63 60 65 66 67 56 57 58 59 61	60 65 66 67 57 58 59 61	65 66 67 58 59 61	66 67 59 61	67		9 9	.0 -1	4 8	* 0 0	5 83	58	54	54	58	55	58	58	5.8	57	53	54	50.	52	56	57	55	25	11	61 57

HUDSON RIVER BASIN -- Continued

1-3305, KAYADEROSSERAS CREEK NEAR WEST MILTON, N. Y.

LOCATION.—Temperature recorder at gaging station on right bank 500 feet downstream from Glowegee Creek, 1 mile east of West Milton, Startoge County, and 5.5 miles northwest of Ballston Spa.

DRAINGE AREA.—50 square miles, approximately.

BRACHES AREA.—50 square miles, approximately.

WACHES CHANKER.—Chemical analyses: October 1952 to June 1955.

Water temperatures: October 1952 to September 1963.

Sediment records: Pebruary 1952 to June 1955.

EXTREMES, 1962—3.—Water temperatures: Maximum, 78°F July 25; minimum, freezing point on many days from November to March.

EXTREMES, 1962—63.—Water temperatures: Maximum, 83°F July 10, 1955; minimum, freezing point on many days during winter months.

Temperature °F of water, water year October 1962 to September 1963

	Average	١	13	~ \$		2 2	2 2	6.5	4		4 0	9.1	4 -	
	A vo		53	36	333	32	32	33	4 7	57	59	11	64	61 58
		9	44	11	32	32	11	36	11	55	11	6.3	9 4	11
		8	4 4 2	32	32	32	11	34	15 48	59	11 67	5.69	63	54
		29	2. £.	32	32 32	32 32	11	35	52	56	69	55	63	56 54
		28	4 5 7	32	32 32	32	32	35	12 4	53	69	22	99	59
		27	41	33	32 32	32	32	33	4 4 5	62 52	6,4	2.2	63	59 55
		26	4 7	33	32	32	32	35	4.5	28	6 4	77	63	51
		25	43	36	32	32	32	33	4 4	58	67	7,4	63	54
		24	50	36	32	32	32	32	4 1 1 1	56	26	7.1	69	53
		23	50	36	32	32	32	32	49	50	56	75	57	56 53
_		22	501	38	32	32	32	32	51	260	54	6.9	68	58 56
rapl		21	52	33	32	32	32	32	51	56	52	12	63	59
rinog.		20	51	32	32	32	32	32	50	58	62	72	7 7 9	62 59
thermograph		19	52	34	32 32	32	32	32	50	58 53	59	74	64	62 60
with		18	54	34	32	32	32	32	5 4	5.4	62	72	63	62 57
	ĺ	1	5 4	34	32 32	32	32	32	4 4 7 4	5.0	5.4	74	63	59
	Day	2	54	33	32	32	32	32	£4 43	2 60	54	72 67	63	5.9
reco		15	52	33	32	32	32	32	45	5.4	55	12	60	59 54
stage		4	54	37	32	32	32	32	44	53	59	71	65	58 54
		13	53	39	32	32	32	32	4.5	4.6	58	71	65	64 58
water		12	52	39	32	32	32	32	39	6 4	53	69	67	64
A .		Ξ	55	44	32	32	32	32	38	50	57	66	69	59
nuon		2	52	43	35	32	32	32	39	50	52	63	69	66 63
Continuous		٥	58	410	35	32	32	32	4138	61 56	59	63	70 67	66
S		æ	59	37	35	32	32	32	37	56	62	9 7	70	65
		^	59	39	36	32	32	32	3 8	50	67	63	68	59
Ď		9	58	39	36	32	32	32	35	51	68	43	69	61
		2	58	0 4	36	32	32	32	36	5,4	68	5 9	65	60
		4	58	0 0 4	33	32	32	32	35	50	62	9 19	68	67 65
		ო	59	43	33	32	32	32	3.5	53	59	72	6.8	65
		7	5.5	4 4 6 6	32	32	32	32	36	4 4 6 4	59	4202	69	99
		-	59	44	34	32	32	32	33	4 4 5 7	57	76 68	70	66
			: :					::	::	- : :		::	::	::
	Month	THOM	October Maximum . Minimum .	November Maximum . Minimum .	December Maximum . Minimum .	E 5	February Maximum . Minimum .	March Maximum . Minimum .	April Maximum . Minimum .	May Maximum. Minimum.	ximum	July Maximum . Minimum .	88	

HUDSON RIVER BASIN--Continued

1-3355, HUDSON RIVER AT MECHANICVILLE, N. Y.

October 1954 to September 1963. Maximum, 84°F June 29 (a.m.): minimum, freezing point on many days from December at West Virginia Pulp and Paper Company, Mechanicville, Saratoga County. LOCATION, --At west shore of Hudson River DRAINAGE AREA, --4, 500 square miles. RECORDS AVAILABLE. -- Water temperatures: River EXTREMES, 1962-63. -- Water temperatures:

Maximum, 84°F June 29 (a.m.), 1963; minimum, freezing point on many days during winter records available discharge Š West Virginia Pulp and Paper Company, taken from their recorder. EXTREMES, 1954-63. -- Water temperatures: þ REMARKS, -- Reported months.

to March

HUDSON RIVER BASIN -- Continued

1-3400. MOHAWK RIVER AT UTICA, N.

LOCATION:--at intake of Skenandok Rayon Corp., Broad Street, Route 55, 1 mile downstream from Genesee Street Bridge, in Utica, Oneida County.

DRAINGR ARRA.—514 square miles.

RECORDS AVAILABLE.—fitter temperatures:

EXTREMES, 1962-63.—fitter temperatures:

EXTREMES, 1960-63.—fitter temperatures.

October 1960 to September 1963. axiams 33°F on several days in December, January, and February. Maximum, 79°F July 29, 1963; minimum, 33°F on several days during winer months.

HUDSON RIVER BASIN--Continued

1-3560, MOHAWK RIVER AT VISCHER FERRY DAM, N. Y.

LOCATION --4t bridge crossing headrace of Vischer Ferry Dowerplant, operated by New York State Department of Public Works.

DRAINING AREA.-3,586 square miles.

RECORDS AVAILABLE.-Chemical analyses: October 1951 to September 1953.

When temperatures: October 1951 to September 1857 to September 1953.

EXTRACES: 1952-63.-Water temperatures: Maximum, 82 F July 26-28, 31, (p.m.); minimum, freezing point on many days from December to March.

EXTRACES: 1952-63.-Water temperatures: Maximum, 85°F Jug. 5 (p.m.), 1955; minimum, freezing point on many days during winter

EXTRACES: 1951-63.-Water temperatures: Maximum, 85°F Aug. 5 (p.m.), 1955; minimum, freezing point on many days during winter

months. REMARKS. -- No discharge records available.

Temperature 'F of water, water year October 1962 to September 1963

		ĺ				7	/Twice-daily	9-90	atly	mea	Sur	measurements		t an	pro	at approximately	tely	080	8	and 1	1600/										Ì
															Day															-	900
Montn	-	2	3	4	5	9	7 8	8 9	10	-	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28 2	29 3	30 3	=	Average
October ,			_	<u> </u>			_			-				_ ;					-						_					_	. ;
B. B	10	10	_	70	070	000	66.09		60 00	66	5	v So	28	56	٠,	9	é	96	96	26	5	2	ŝ	5.5	25	22	25	52.4	4 64	5	` ·
D.B			6 2	_	_	_	_					_		29	29		- 95		99							_	_		_	6	57
November		-				-	-					_	_	•			-		-		_		-	_	_		_		_		
		94		ψ.		45-4	_							9	04		04		0,4	_	38		_	_	38		36	37 3	36	1	41
р.п.	8 7	94	49		454	_	44 43		43 43	43	45	45	41	0,7	0,4	0,4	0,	38	0,4	38		38 3	38	38		37 3			-	-	41
December	,					_				-				-		_	,			_			_		_			_	-	_	
B. H	35	36	36	36	36 3	36	36 36		36 35	32	33	32	32	32	32	32	32	35	32	32	35	32 3	32	32	35	32	32	32 3	32 3	32	33
D.m.	35	36		_	_	_						32		32	32		35		32	_			_			_	_	_	_	7	33
January			_	_			_	_				_	-					_	_		_		_		_		-	_	-		
B. H	35	32	32	35	323	32 3	32 32	-	32 32	32	32	32	32	35	32	35	32	32	32	32	35	32 3	32	32	35	32 3	32	32 3	32	32	32
D. II.		32					_			_		_		32	32	_	32	_	32									_	_	2	32
February				_	_			_		_		-											_	_	_			_	-	_	
в. в.	32	32	_	32	32 3	32 3	32 32	_	32 32	32	32	35	35	32	32	32	32	32	32	32	35		32		35	32 3	32	1	-	1	32
:		32	32	_	_	_		_		-		-		32			32		32		-	32 3	2	32	_			1	_	!	32
March			_	_	_	_		_	_	_														_			-				
a. ii	32	32		35	32 3	32	32 32	_	32 32	32	35	32	32	32	32	32	32	35	32	32	32	32 3	32	32	35	32 3	32	32 3	35	35	32
р.ш.		32	32	_	-	_	_		_	_		32	-	32	32	32	35		32		_		7	_			_		_	-	32
April								_				è		1	į		- 6	-			_				_						;
a.n.	'n	0	*	7	34	**	46	_	34 34	*	3	5	ç	33	?	2	96	9	9		200		9	2	ž	5	5	<u>د</u>	5	<u>.</u>	9
D. B.		35	_			_						35	-	35	37		38	_	38	38		38	<u>.</u>		_			_		1	36
May	-		_		_	_	_	_				_	_				- ;	_	:		-		_		_		_	_	_	_	;
а.п.		35		-	_		04 0	-		- 58 	28	96	ç	26	,	9	2	9	7	_	-		_		70	9	-	9 79	29	70	Š.
D. H.	39	0 4	9	42	20 2	53	_	_	58 58			56	_	96	22		9		9	3	- 62	61	9	7	_		**	_	-	5	21
June		_;		_				_		_	-		_	-		:	•		9				-		-		-	_	-		1
B. H		0 !	_	0 1	60	7	* :	_	1	2 !	6	8	00	80	6	ò	9	2 9	2 9	2 9	_		9	7	2	-	2	*	0 1	-	2 ;
D.m. C	69		89			_	_		_	_	_	9		9	9	69	69		2		89	99	7			_		_	-	!	1,
July						_					_	7.5		75	7.4	75	75		1,6	17			7.8		_		_			α	42
а.ш.	,	200			7 2 7		76 72	_	7.7				1 2	1,0			4		-			1 :									: :
D.m					_	_		_	_	_	_	-	_	2	:	:	2	_	-									_	_	_	-
August		18			-		<u> </u>			7.5		75		7.2	11	73	17	-	7.2			72 7	-	_			_	_	_	_	74
a d	80	7.8	80	7.	77 7	77	75 7	76 7	77 78	-	7.7	7.5	73	73	73	7.2	12	73	1.	12	12		- 22	73	2	747	147	73 7	74 7	74	7.5
D.H.		•							_	_		: 		:	:	:		_	:										-		:
Septemer a m		72				_	70 70		02 69		0/10	_	67	2	70	89	99		65		-		9		_				_	_	19
	73	72	7	7.2	72 7	17	72 7			70		69		2		68	89	67	67		9	64 6	99		_		62 6	62 6	- 29	1	89
			1	1	1	1	1	1	$\frac{1}{2}$	-	4								1		Ī	-		-	1		_	_		_	

Tur-bid-ity

-i -i

HUDSON RIVER BASIN -- Continued

1-3580, HUDSON RIVER AT GREEN ISLAND, N.Y.

LOCATION.--At gaging station at Green Island, Albany County, just upstream from Troy lock and dam, and 0.5 mile downstream from 5th branch Mohawk River. BRAINGS REA. 8-809 ognetare miles, approximately (including that above site of former auxiliary gage).

RECORDS AVAILABLE. --Water temperatures: October 1864 to September 1963.

RECORDS AVAILABLE. --Water temperatures: Maximum, 83°F July 27-30; minimum, freezing point on many days from December to April.

EXTREMES, 1862-63.--Water temperatures: Maximum, 83°F July 27-30; minimum, freezing point on many days during winter months.

6.6 26 0.4 Hd ance (micromhos at 25°C) Specific conduct-182 solids Cal- Non- (residue cium, carbon- at 180°C) magne- ate m 19 Hardness as CaCO, 63 Dissolved 110 Ni-trate (NO₅) 3,1 Fluo-ride (F) 0,3 Chemical analyses, in parts per million, June 1963 Chloride (C1) # Sulfate (SO₄) 20 Bicar-bonate (HCO₃) 28 Po-tas-stum (K) 8.0 Sodium (Na) 7 Mag-ne-sium (Mg) 3.8 Cal-clum (Ca) 13 Man-ga-nese (Mn) 0.36 0.03 Iron (Fe) Alum-inum (AI) Silica (SiO₂) 3,6 | Mean | discharge | (cfs) 5,630 June 27, 1963. Date of collection

Temperature ('F) of water, water year October 1962 to September 1963

ļ	ٺ	.				
	Aver	age	56 41 34	32 32	40 57 70	77 44 96
		31	48	32	131	82 72
		30	97 32	32	49 62 76	8 0.0 0.0
ı		29	49 37 32	32	4.8 6.0 7.8	83 71 61
		28	49 37 32	352	46 62 76	6223
Ì		27	52 37 32	32	45 00 70	83 72 61
		26	32 32	32 32	4.5 7.4	81 71 61
		25	53 38 32	32 32 32	45 60 71	80 73 61
j		24	38	32	4 6 0 0 7 0	273
		23	3.2	32	48 60 67	75 75 63
		22	38	32	64 09 89	77 72 65
8		21	38	32	58 70 70	11.
		20	38	32	7400	77 72 68
appropriately cook		19	38	32	47 60 70	77 17 67
5		18	56 38 32	32	7.4 6.0 6.8	77 22 65
		17	56 40 34	32	47 58 67	75
	Day	16	5.5 4.0 3.6	32	45 57 66	73
		15	52 34 34	32	44 57	75 72 65
Ouce-daily measurement at		14	55 41 32	32 32	32 55 67	74 75 66
		13	58 44 33	32 32	32 54 66	74 76 65
		12	58 44 34	32 32	32 54 68	42 92 93
		Ξ	58 46 35	32	32 55 70	72 77 70
3		10	59 43 37	32 32	32 60 72	27 77 70
j		6	59 43 37	32 32 32 32 32 32	32 56 72	73 78 69
		æ	58 43 37	32	32 56 71	* 22
		7	60 44 37	32 32	32 56 73	75 76 68
		9	944	32	32 55	75 76 72
		5	60 45 37	32	32 55 71	77 07
		4	60 45 37	32	32 47 70	78
		3	60 46 37	32	32 47 63	81 77 71
		7	60 48 37	32	32 47 62	79 79 71
		-	60 48 37	32	32 50 62	0007
	Month	MORE	October November December	January February March	April May June	July 7 August 8 September

HUDSON RIVER BASIN .- Continued

1-3720,43, HUDSON RIVER AT POUGHKEEPSIE, N. Y.

LOCATION. --At city pumping station on east bank at Poughkeepsie, Dutchess County, 0.3 mile west of North Road, and 1.4 miles north DRATMAGE AREA.--11,700 square miles.

RECORDS ANTILEDE.-- "After temperatures: June 1959 to September 1963.

RETREMES, 1962-63.-- "After temperatures: Minimum, 33 P on many days from December to March.

EXTREMES, 1992-63.-- "After temperatures: Maximum, 80 P Aug. 29, 1999; minimum, 33 P on many days during winter months.

Temperature °F of water, water year October 1962 to September 1963 /Once-daily measurement at approximately 08307

	Aver-	26 27 28 29 30 31 age	58 58 58 58 56 47 40 40 40 40 5- 47 47 33 33 33	33 3- 34 34 34 3- 33 33 33 33 33 33 33 33 33 34 34 34 34	48 48 48 49 43 60 61 61 62 55 69 70 71 71 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		24 25	58 58 43	33	59 68 68	19
		23	604	933	4 0 1 0 0 1	118
,		21 22	33	3333	4 50 6 8 8 8	111
5		20 21	33	888	1 2 8	113
ret		19 2	60 60 45 44 34 33	33 33	44 1 1 2 6 6 7 6 8	110
XIMA			35		452	
Ouce-daily measurement at approximately uesu/		81 21 91 51	960	33 33	400	1 1 02
31.	Day	91	09 74 1	333	5.5	112
enc		15	61 48 36	883	5 4 3	111
-		3 14	61 49 49 36 36	33 33	45	10 10
meas		2 13				
113		11 12	61 49 36 36	33 33	42 42 52 1- 66 66	72 70
6-103			164	211	45 52 66	
5,		8 9 10	161	3333	51	13 27
			68 09 39	3333	41 51 65	111
		7		333	51	111
		9	146	33 33	40 51 64 64	211
		5	54			
		ر س	55 39	33 33	36 38 50 50 62 63	111
		7	55	666	1 9 9	
		-	56	33	3 4 5 7 6 7	72
	Mean	Month	October November December	January February March	April May	JulyAugust

HUDSON RIVER BASIN--Continued

1-3735. FISHKILL CREEK AT BEACON, N. Y.

	1									
		Tur- bidity	0.1	•	₹.	٥.	۳.	1.0	69.	4.
		Color	3	7	4	9	•	80	7	~
		Hď	6.7	7.9	6.8	7.0	7.0	7.2	7.0	7.0
	Specific conduct-	ance (micro- mhos at 25°C)	337	256	202	181	241	242	263	318
	lardness s CaCO,	Non- carbon- ate	23	56	27	20	18	20	21	61
_	Harr as C	Cal- cium, magne- sium	117	93	92	78	111	110	123	137
smber 1963		solids (residue at 180°C)				100				
Sept		trate (NO ₃)	12	2.9	3.6	2.0	1.8	2.1	1.0	2.6
1962 to	Ē	ride ride (F)	0.1	.1	1,	۲.	۲.	۲.	۲.	2.
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	24	13	9.0	5.4	6.1	6.2	7.3	11
water year		Sulfate (SO ₄)	25	33	56	19	81	19	23	27
110n,	1	bonate (HCO ₃)	114	82	79	70	114	110	124	144
per mil	Pot-	2.3	1.0	6.	œ,	œ,	1.4	1.0	1.7	
in parts		Sodium (Na)	19	13	4.0	3.5	3.8	4.7	5.8	12
yses,	Мад-	Mag- ne- sium (Mg)				6.1	8.8	9.0	=	12
cal anal	- 5	cium (Ca)	31	52	24	21	30	59	31	32
Chemi	Man-	ga- nese (Mn)	0.15	8	.03	. 03	90 .	01.	1	.07
		Iron (Fe)	0.09	69	.04	90.	. 12	. 12	;	.17
		Silica (SiO ₂)	7.6	7.3	6.9	5.3	4.4	5.5	3.6	3.4
1	Moon	discharge (cfs)	32	22	189	559				
	, to d	Date of collection		Nov. 20.		Apr. 4	May 17	June 26	Aug. 20	Sept. 18

1963	
September	
1962 to	
water year October	
year	ç
water	
water,	
of	
•	
ωl	

	ے					1
	Aver	age	10.6	32 32 36	4 6 6 8 8	73 62
		31	45	32	181	76 10 11
		30	45 35 32	45 1 32	53 60 73	78 67 57
		29	46 35 32	45 32	53 60 77	78 67 60
١		28	35 32	32 4 6	50	59
		27	335	32 47	47 58 73	76 67 56
		26	35 32	435	757	58 58 54
7907		25	38 32	32	4.5 6.0 6.0	72 70 53
		24	32	32	4 B 5 B	68 69 72 73 58 55
E De		23	55 39 32	32 32	52 61 65	68 72 58
ebre		22	55 38 32	32	5.5 6.5 6.5	74 70 68 69 63 59
year october 1902 to september		21	55 36 32	32 34	55 62 68	74 68 63
70		20	35 36 32	32 32	53 63 70	77 67 65
2		19	35 35	32	52 60 67	76 62 62
000		17 18	57 38 32	32 32	50 63 65	75 68 61
3			38 32	32	51 60 62	72 67 60
ear	Day	16	37	32 33	58 58 62	70 67 60
		15	38	32	0 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	70 67 61
Water		14	 40 32	32 33	4 0 8 0 0	74 74 71 70 66 63
		13	43	32	54 54 62	7.7 7.1 6.6
Water,		11 12	32	32 32 32 32 32 32	5.5 5.5 4.6	68 71 66
티			47 32	32 32 32	65 65	67 71 65
remperature r		10	32	32 32 32 32 32 32	48	66 66 73 73 65 67
in in		6	41	32 32	48 62 68	66 73 65
į.		8	36	32	47 61 68	70 72 63
emi		7	16.04	32	47 60 72	70 72 63
1		9	136	32	44 27 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70
١		5	38	32 32	302	73 71 67
		4	37.51	32 32	5.2 5.4 6.8	7.4 7.0 6.8
		3	37	32	52 49 67	77 68 67
		7	15 36	32	4 4 9 6 4 9	72 24
-		-	46	32	6.5	47 76 67
	Month	Molini	October November December	January February March	April May June	July

HUDSON RIVER BASIN--Continued

1-3743,1, HUDSON RIVER AT PREKSKILL, N.

LOCATION. -- At Charles Point on Lent Cove at Peekskill, Westchester County.

Maximum, 80°F on several days in 1959; minimum, freezing point on many days during winter July 1959 to September 1963. Maximum, 79°F on several days in July and August; minimum, freezing point on many days PRAINAGE AREA.-12,600 square miles.
RECORDS AVAILABLE.—Twater temperatures:
EXTREMES, 1982-63.-Fatter temperatures:
in January, Poblumary, and March.
EXTREMES, 1950-63.-Fatter temperatures: months. REMARKS. --No discharge records available.

Temperature °F of water, water year October 1962 to September $\angle O$ nce-daily measurement at approximately $0900\overline{Q}$

PASSAIC RIVER BASIN

1-3820. PASSAIC RIVER AT TWO BRIDGES, N. J.

LOCATION: --At partial-record gaging station at bridge on Two Bridges Road, in Two Bridges, Essex County.
DALINGE ARA: --380 square miles, approximately.
RECORDS AMILIABLE: --Rater temperatures: October 1862 to September 1963.
SETTREERS AMILIABLE: --Rater temperatures: ST 1912 SP: Mult 2018; minimum, freezing point on several days in December, January and February.
REMARKS.--Records of water temperatures provided by Passato Valley Water Commission. Discharge records at time of sampling.

		-	2	ρφφ
	Specific conduct-	(micro- mhos at 25°C)	475	438 569 496
	iness aco,	Non- carbon- ate	10	208
	Hare as C	Calclum, magne- sium	109	1088
. 1963	Dissolved	O ₃) at 180°C) magne-carbon- sium ate at	268	350 297
tember	Z	žž l	4.0	.8 1.0 .7 13
to Sep	Fluo-	ride (F)	4.	, wi .
Chemical analyses, in parts per million, water year October 1962 to September 1963	A)	(CI)	\$	4.2 4.2 4.0 4.0
r year Oct		(30°)	63	2 4 6
1, wate		bonate (HCO ₃)	126	162
11110r	Po-	sium (K)	4.0	4.0.0.
rts per 1	milpoo	(Na)	47	50 52
3, in ps	-geW	sium (Mg)	10	2. 2. 2.
nalyse	Cal-	ctum (Ca)	27	8 8 8
mical a	Tann	(Fe)	0.16	1.1
Che	Collina	(SiO ₂)	13	1288
	Mean	discharge (cfs)	8.07	107 44.8 56.1
		Date of collection	June 25, 1963	July 30 Aug. 27 Sept. 24

Color

뙾

Temperature (°F) of water, water year October 1962 to September 1963

1						
	Aver-	age	56 42 36	333	53 61 70	75 72 63
		31	 24	32 50	1.4	159
		30	38	33	58	81 71 59
		29	48 43 35	32	56 61 77	81 70 61
i		28	45 38 34	32 46	55 61 77	83 70 59
		27	45 37 33	33	54 75	79 72 58
		26	4 9 38 33	4 33	54 61 73	77 71 56
		25	49	33	53	76 70 58
		24	54	333	53	77 75 59
ı	l	23	55	334	73.8	73
6		22	54 33	33	58	73
100		21	39	35	63	78 73 66
and		20	57 38 35	334	59	78 71 66
(Once-daily measurement, between 0800 and 1000)		19	57 41 35	333	100	78 70 65
o u		8	57 444 33	332	54 64	77 70 63
wee		17	60 44 32	33	56 66 67	74 69 61
ě	Day	9.	39	333	5 4 5 4 5 6	73 70 61
ent,		15	340	333	55 64 67	71 70 70 61
rem		4	59 42 32	34	109	71 72 63
88n		13	33	34	53	72 73 65
y B		12	62	3 1 8	57	70 73 66
191		=	52	333	4 8 6 2 6 8	71 73 65
Ce		2	62 49 35	3 4 4 8	49 67 71	70 75 65
Š		٥	61 42 38	33	64 96 68	70 74 65
		80	59	33	4 4 8 6 4 4 8	72 23
		^	604 004 004	666	49 62 72	72 74 64
		9	410	333	46 62 69	75 74 65
		5	61 43	33	63	74 75 68
		4	58 44 41	333	53	75
		က	4 5 6 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32	4.00	78 74 68
		2	4 4 4 7 7 8 8	32	48 51 68	80 75 68
i		-	57 47 40	33	46 55 67	81 77 68
	Mensh	Month	October November December	January February	April May June	July August

PASSAIC RIVER BASIN--Continued

1-3890. POMPTON RIVER AT TWO BRIDGES, N. J.

		Color	m	10 9
		_	6.9	0.7 6.8 6.7
	Specific conduct-	(micro- mhos at 25°C)	213	223 242 258
	dness aco,	Non- carbon- ate	27	6 55 W
	Har as C	Calcium, magne- stum	92	42 73 74
ar 1963	Dissolved	(residue Calcium, Non- (micro- pH at 180°C) magne-carbon- mhos sium ate at 25°C)	117	148 144 151
ptembe	Ni-	trate (NO ₃)	4.3	0.4.8 0.4.4
2 to Se	Fluo-	ride trate (F) (NO ₃)	0.0	
Chemical analyses, in parts per million, water year October 1962 to September 1963	Chloride	(C1)	15	20 g
er year Oc		(80,	25	34 34 34
n, wat		bonate (HCO ₃)	09	999
m1111c	Po-	stum (K)	1.0	0.0.
arts per	anipos	(Na)	27	15 19
a, in	Mag-	sium (Mg)	6.3	7.1
analys		ctum (Ca)	20	222
enical		(Fe)	0.12	8 5 6 6 4 6 6
ទី	Strice	(810,	4.1	5.6
	Mean	discharge (cfs)	106	47.4
		Date of collection	June 25, 1963	July 29Aug. 27Sept. 24

Temperature (°F) of water, water year October 1962 to September 1963

	Aver-	age	34.56 36.26	3 3 4 8 8	51 59 70	75 72 63
		31	147	32	163	121
		30	38	4 1 9	73	80 70 57
		29	344	32	52	81 69 58
1		28	3 8 8 4 8	32 33 46	54 61 78	92 67 61
		27	334	4 60 4	51	70 29
١		26	338	433	52 59 75	79 67 54
		25	611	683	7380	55
		23 24 25	8.3.1	33 34 38	49	75 75 56
		23	2001	888	69	73
6		22	54	33	55 61 68	
8		21	2000	488	58	75 75 73 73 65 62
pur		20	35	35	57 62 72	79 70 67
8		19	3397	333	23 62	71 68
(Once-daily measurement, between 0800 and 1000)		18	57 45 33	35 32 38	53 62 67	73 70 63
Wee		17	45	333	63	75 69 60
bet	Day	16	57 40 35	323	6.9	73 69 59
ij	_	15	57 40 34	323	61	70 68 58
геше		14	57 42 32	4 6 6 6	60	71 71 62
asu		13	0 4 E	333	53	74 73 65
Уп		12	61 -2 33	38	47 54 65	70 73 67
111		11	59	33	47 56 7	69 71 67
ce-		ō	5£ 67 09	34 37	47 66 71	69 75 67
9		6	61 43 38	34	47 65 67	68 73 66
		80	58 42 37	33	47 62 65	71 73 64
		^	61 41 39	933	49 60 71	71 74 62
		9	62	333	47 60 69	74 72 63
		2	43	33 1- 35 33	47 62 69	72 73 68
		4	411	33	51 58	122
		6	2004	32	54 53 67	77 75 68
		7	24 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	333	4 4 9 6 6 9	82 74 66
		-	58 41 41	32	53	81 77 68
	7	Монси	October November December	January February March	April May. June	Iulv August September

30 20 20 20 20 20 20 20 6.5

196 222 222 222 223 333 333 341

PASSAIC RIVER BASIN -- Continued

1-3895. PASSAIC RIVER AT LITTLE FALLS, N. J.

INCATION.--At gaging station at Passate Valley Water Commission intake, in Little Falls, Passate County.
MINIMAGE REAL--762 gauges makes.
RECORD'S AVAILABLE.--Water temperatures: October 1962 to September 1963.
RECORD'S AVAILABLE.--Water temperatures: Barxians, 87% July 28; minimans, freezing point Dec. 16, 23, 24, 31 and Jan. 1.
REMARKS.--Records of water temperatures provided by Passate Valley Water Commission.

	Hardness as CaCO,	Non- carbon- ate	40	29	24	31	34	56	22	31
		Calcium, magne - sium	99	55	20	85	94	68	85	96
r 1963	Dissolved	(residue at 180°C)	120	144	1	172	186	206	205	225
ptemb	Ni-	trate (NO ₃)	4.8	2.8	4.7	8.4	8.8	3,9	9.6	14
toS	Fluo-	ride (F)	0.3	6	1	63	۲.	οij.	۲.	₹.
Chemical analyses, in parts per million, water year October 1962 to September 1963	(p)=0[45	(CI)	12	56	16	23	28	31	28	30
r year oc	o, Marko	(80°)	37	30	29	32	42	39	42	53
on, wate	Bicar-	bonate (HCO ₃)	32	32	26	99	74	92	82	8
m1111c	Po-	Sturn (K)	1.5	2.2	ŀ	2,0	2.5	2	3.1	3.5
arts per	- Pool	(Na)	9.0	19	12	18	28	28	30	36
s, in p	Mag-	sium (Mg)	5.6	4.1	1	7.3	8.3	7.5	7.8	8.8
апалуве	Cal-	cium (Ca)	17	15	1	22	24	23	24	24
emical	1	(Fe)	0.48	.62					.31	
Ch	04116	(SiO ₂)	12	8.7	1	7.7	7.8	21	9	Ħ
	Mean	discharge (cfs)	840	1820	545	120	102	162	32	62

Nov. 27, 1962 May 23. May 23. June 19. June 19. June 35. Juny 30. Aug. 27.

Date of collection

Color

Έ Specific conduct-ance (micro-mhos at 25°C)

Temperature (°F) of water, water year October 1962 to September 1963 (Oncompanies patement between 0800 and 1000)

1]	Day						Day																Aver
Month	-	64	3	4	5	9	7	8	01 6	-	1 12	2 13	3 14	15	15 16	17 1	18	19	20	21	22	23	24	25	26	27	28	29	30	3)	age
October November December	9 6 9	0.4.4 0.4 0.4	4129	0,44	61 64 4 47 47 47 47 47 47 47 47 47 47 47 47	432 64	61 61 43 43 42 40		61 60 44 47 38 37		61 62 49 48 35 33	33	3 4 5 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	60 42 33	3 32	61 42 33	33	58 41 33	57 41 35	57 41 35	57 33	56 41 32	55 41 32	52 40 33	50 39	47 39 33	47 39 33	48 39 33	48 39 33	48	57 35
January February March	33	333	888	33.4	3333	334	33 34 35 35		34 34 33 33 35 35		35 36 33 33 35 35	333	36 3	33	333	333	4 6 9 4 6 9 9	34	38	36	688	933	33 39	33	4 6 3 3	4 8 8 8	6 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33 4 8	33	48	4 8 8 9 9 9
April May June	55	53	7022	4 6 6 9	50 48 61 62 71 72		50 63 63 64 73 70		51 51 66 67 70 72		48 49 63 60 70 69		51 52 58 60 66 69	53 62 67	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.6 6.5 6.8	70 22	57 62 72	58 67 72	60 65 73	58 70 70	58 70 70	53 61 72	53 74	54 62 76	54 61 78	5.6 6.3 8.0	57 62 80	58 62 77	1991	53 71
JulyAugust	78 80 72	82 76 71	80 72	77 72	75 7 75 7	74 76 76 69	75 76 78 77 68 68		73 73 77 78 69 70		73 75 77 77 68 70		75 75 77 73 70 67	73 70	4 64		76 78 71 71 64 64	79 71 64	73	73	77 74 65	77 76 63	76 74 61	78 74 60	80 72 60	81 72 60	83 72 62	82 72 63	82 71 58	81	77 74 66

RARITAN RIVER BASIN

1-3965. SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, N. J.

from		Color	15	ı,	n i	م
Tream		드	6.1.	9.1		.:
dles ups	Specific conduct-	(micro- mhos at 25°C)	188	168	197	188
nd 4.4 m	Hardness as CaCO,	Non- carbon- ate	15	11	,	0
inty a	Har as C	alchum, magne - sium	82	63	8	15
r months.	Dissolved	"E #	114	66	127	121
winter Winter Winter	Ni-	trate (NO ₃)	1.4.	9.1	3.0	2.3
Bridge uring days c	-Juo-	ride (F)	0.0	7.	٠.	4.
aging station at bridge on Cregar Road, 1 mile northeast of High Bridge, Hunterdon County a se: October 1960 to September 1963. Set Raximum, 80°P July 2; minimum, freezing point on many days during winter months. Set Maximum, 80°P July 2; 1963; minimum, freezing point on many days during winter months. Chemical analyses, in parts per million, water year October 1962 to September 1963	Chlorida Fluo-	(C)	7.0	8.	e .	5.0
e northeas point on s ezing poin	94.5	(30)	16 18	12	4.6	8.2
1 ml] ezing m, fre	Bicar-	bonate (HCO ₃)	17	64	106	113
Road, 63. mn. fre minimu	Po-	Stan (X)	1.8	0.1	0.1	1.6
atation at bridge on Cregar Ro October 1960 to September 1963, Maximum, 80°F July 2; minimum, Maximum, 80°F July 2; minimum, Maximum, 80°F July 2, 1963; min cal analyses, in parts per mill	See of the		4.6	5.0	4.5	5.2
bridge 0 to Sel F July F July F July F July	Mag-	sium (Mg)	8.5	8.9	0.6	10
ton at ber 196 mum, 80 mum, 80 num, 80	Cal-	ctum (Ca)	17 12	14	77	20
Octob Maxim Maxim	100	(Fe)	0.50	9.	.31	.16
at gag. S. atures atures	4110	(SiO _s)	12 12	17	27	7.0
e recorder aquare mile ater temper ater temper	Mean	discharge (cfs)	40 105	65	33	21
LOCATIONTemperature recorder at gaging station at bridge on Cregar Road, 1 mile northeast of High Bridge, Hunterdon County and 4.4 miles upstream from BAPTUCE BILL. BANDARGE AREA65.3 square miles. RECORDS AVAILABLEmater temperatures: October 1960 to September 1963. RECORDS AVAILABLEmater temperatures: Nations, 80°F July 2; animums, freezing point on many days during winter months. EXTREMES, 1960-63mater temperatures: Maximum, 80°F July 2; 1963; minimum, freezing point on many days during winter months. Chemical analyses, in parts per million, water year October 1963 to September 1963		Date of collection	Oct. 1, 1962	Feb. 26, 1963	July 1	Sept. 10

RARITAN RIVER BASIN--Continued

1-3965, SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, N. J.--Continued

	Arreston	4	55	53	44	43	35	*	93	2	32	32	98	37	55	8	61	8	69	4	4.8	. :	2 59	53
	_					_		_		_	_	_				_						_		
		3	4.7	4		1	33	33	35	7	!	1	4	47		1	89	ઉ	1	!	2 8	: :	\$ 3	11
		ၕ			7	ç	33	33	32		1	1		_	58	_	6,	28	73	69	2.5		8 6	
		29	8	4	4.	33	33	33	33	2	1	1	48	4.7	3	36	58	57	7	2	7.9	: :	3 3	60
ĺ		28	47	43	36	38	33	33	33	2	32	32	4	45	9	55	59	8	73	69	79		<u>د</u> و	59
1		27	5	£	7	36	33	35	33	ņ	33	32	\$	£	59	5	61	21	76	5	5 2	: :	6 2	61 55
		26	47	44	42	41	33	32	33	5	33	33	44	7	55	47	59	58	7.5	65	7.8	:	61	57
		25	64	45	43	42	32	32	33	5	33	32		38			61	57		49	78	;	87	55
1963		24	52	64	4	43	32	32	34	5	32	32	39	37	51	47	09	57	72	62	76	;	99	56
1		23	53	52	45	‡	32	32	3,	ŧ	32	35	38	37	53	64	-09	28	17	9	72	5	4 8	
e q		22	55	25	45	44	32	32	4.	4	33	32	38	36	57	52	19	59	69	9	72	3	67	57
Sept		21		54		45	32		36		_	33		36	58			29		\$	75		11	
to a		20	55	51	43	42	32	32	36	9	34	32	36	36	63	99	62	9	69	49	73		65	63
962 att		2		25		43		32		5		32	36					28		63	47		5 6	
er year October 1962 to September with temperature attachment)		18	58	7.	4	44	32	32	33	?	33	32	-96	36	9	53	61	56	17	63	9,5	•	65	69
obe		17		28		43	32			25	32			36	24			59		09	75		6.4	
em De	Day	9	9	57	43	41	32	32	33		32	35	96	35	58		62	65	67	65	72	;	9 7	5.80
ear h t	_	15		55	43	41	32		33		33			34	57		62		49		17.5		68	
₽₽		14	82	55	45	43	33	32	34	_	33	33	9	35	57	27	09	8	- 49	9	6.8		64	
wat		13		86		45	34		35		33			34		15	09	_	-69	_	69		69	
er,		12	53	59	48	47	34	34	35	٠ <u>-</u>	32	35		34	55	48	59	9	65	3	7.5	-	0 4	5.7
of water, water		=		57		-84	36		35			35		34	20		9		69		69		65	
		0	69	57	64	45	38	36	34	<u> </u>	32	32		35	-12	48	63	9	72	9,0	69	_	44	
er-		٥		28	45	7 5 5			33		_	32	_	34	8,					63	69		22	
re (¶at		8	5	20	45	43	38	7	32	25	32	25	- 5	34	52	-	63	6	- 19	63	89		67	59
atu		7		28	4,4	45		38	32			32		34	50	_	62	_		67	-0.4	_	67	
Temperature (°F)		9	9	59	45	4		0 4	32		32	~		34	0.	45		-	-17	.Ž	72		44	59
Te		5		59	454	45.4	41.	404	32	_		32		36	8 4		63	_		64	72		72	
		4	29	58		45	04	38	32	2	32	2		35	-	48	62	_	67	<u>.</u>	73		4 4	9 4 9
		3	20		46	45	41	40		32		32 3	35_			51 4	61		-9		77.		717	
		2	1	1	47	4		0,4	32			35		32	- 12		- 25		- 29	_	9.5		1,2	
		_	i	÷		7/4	404	404	33			32 3		32 3	64		57		89		8 2		72	
		-						_		_		_		_				_		_		_		
	1	Month	October	a	Maximum	8	December Maximum		January Maximum	Minimum	Maximum	Minimum	March Maximum	Minimum	April Maximum	Minimum	May Maxímum	Minimum	June Maximum	Minimum	July Maximum	August	Maximum	

1-3968. SPRUCE RUN AT CLINTON, N. J.

LOCATION. --At gaging station 0.5 mile north of Clinton, Hunterdon County, 0.6 mile upstream from confluence with South Branch Raritan River, and 1.9 miles southwest of High Bridge. High Bridge. Manuer and the Bridge. Manuer and the Bridge. Ask. --41.3 equare miles.

	Medical	jo.	analysis											
			. 000											
			000											
	i	ters	500		_							_		
		illime	250 0	_		-			_					
1961 9r;	ent	d, in	125 0.						_			_		
ember ve wat	Suspended sediment	ndicate	062 0.					_	_		_			
o Septin nati	spende	size i	031 0.	\vdash						_				
1960 t lon; N,	San	er than	0.0	-	_		_			_	_			
tober scantati led wat		Percent finer than size indicated, in millimeters	908	_									_	
ear Oc I; D, de n distil		Per	0. 002 0. 004 0. 008 0. 016 0. 031 0. 062 0. 125 0. 250 0. 500 1. 000 2. 000	_			_		_					
persed			0.0	_	_							_		
ge, we			_											
t dischar , chemica	0.41-0.00	discharge	tons per day)	7.9	5.7	4.0	1.1	11	6.6	102	275	230	13	170
tube; (visual	• 	• ਚ	<u>§</u>	8	ø	Ø			•	۵	00 1	ω		o o
tions of suspended-sediment discharge, water year October 1969; B. bottom witherwan lube; C, chemically dispersed; D, decautation; P, pipe; S, sieve; V, visual accumulation tube; W, in distilled water)	Sediment	concen- tration	(mdd)	28	* 60	4 2	9	28	15	65	190	179	22	97 145
Periodic determinations of suspended-sediment discharge, water year October 1960 to September 1961 (Methods of analysis: B, bottom withdrawal the; C, chemically dispersed; D, decadation; M, in mative water; P, pipet; S, sieve; V, Y stanal accumulation tube; W, in distilled water)	Kean	Discharge (cfs)	ì	79	38 146	108	65	220	220	009	400	344	220	339
c dete ds of au	Water	ber-	C.F.		_									
erlodi (Metho	į	ling	point											
ra,		Time (24 hour)												
		Date of collection		Oct. 20, 1960	Jan. 1, 1961	Jan. 2	Jan. 16			Feb. 26.		Mar. 23	Mar. 24	Apr. 13

S Computed by subdividing day.

1-3970. SOUTH BRANCH RARITAN RIVER AT STANTON, N. J.

LOCATION.—At gaging station on right bank at downstream side of highway bridge at Stanton railroad station, Readington Township, Hunterdon County, 0.4 mile upstream from Present Brobk.

DRAIGAG ARRA—147 aquare males.

RECORDS AVAILABLE.—Exter temperatures: December 1954 to November 1961.

SECHEMICA ARRA—147 aquare males.

SecHEMICA ARRA—1959 to September 1959 to September 1963.

SecHEMICA SECHEMICA CONCENTRATIONS: Maximum daily less than 0.50 ton on many days during lune to September.

SecHEMICA SECHEMICA CONCENTRATIONS: Maximum daily, 250 ton Mar. 6; 1961; minimum daily, point on many days during lune to September.

SecHEMICA SECHEMICA CONCENTRATIONS: Maximum daily, 1000 ton many days during winter months.

SecHEMICA SECHEMIC

		Color	2	20	2	2	2	10	7
		뙾				0.9			
Specific	conduct-	(micro- mhos at 25°C)		_	_	116	_		
Jardness	as CaCO,	Calchum, Non- magne-carbon- sium ate	20	22	50	16	17	6	4
H	as (Calchum magne- stum	80	28	73	34	89	83	88
	Dissolved	(residue at 180°C)	122	102	112	65	ŀ	123	96
	Ni.	trate (NO ₃)	3.5	2.1	2.1	8.8	4.0	6.2	1.0
	Fluo-	ride (F)	0.1	•	•	٦:	1	7	۳.
	Chlorida	(C1)	6.8	7.0	9.3	6.1	7.0	7.0	8.9
	- Gulfoto	(30°,)	20	24	18	16	19	14	13
		bonate (HCO ₃)	7.4	44	64	22	62	06	104
	Po-	Stum Stum (K)	2.0	2.0	1.6	3.0	!	1.2	1.8
Į.	and pro	(Na)	5.7	4.7	7.2	3.5	7.4	4.9	5.7
	Mag-	stum (Mg)	8.5	5.6	7.3	3.5	1	8.0	ខ្ព
	Cal-	ctum (Ca)	18	14	17	8.4	1	20	19
		(Fe)	;	0.37	.32	ł	.48	.79	.63
	2170	(810,	12	12	=	5,3	1	2	4.7
	Mean	discharge (cfs)	70	215	130	2250	180	26	27
		Date of collection	0ct. 1, 1962	Nov. 5	Feb. 25, 1963	Mar. 6	Apr. 11	July 1	Sept. 10

NORTH ATLANTIC SLOPE BASINS

RARITAN RIVER BASIN--Continued

1-3970. SOUTH BRANCH RARITAN RIVER AT STANTON, N. J.--Continued

Suspended sediment, water year October 1962 to September 1963

		OCTOBER	ended sedimen ?	, nates ye	NOVEMBE		50	l .	DECEMBER		
Ì			ded sediment				ediment			ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	70	5	1	127	8		3	142	4		2
2	67	5	1	93	6		2	137	4	1	1
3	62 60	5	1	166 521	35 110		16 150	132 129	4		1
5	170	27	S 17	215	20		12	142	7		ۇ
6	195	23	12	147	12		5	424	180	s	330
7	129	7	2	122	10	1	3	422	85	s	110
8	95	5	1	110	8	1	2	241	22	1	14
9	123	16	. 5	104	430	_	2 990	215	15		9
10	194	24	13	778	1	S	990	208	10	ļ	6
11	120	7	2	497	48	S	72	185	10		5
12	102 95	5 4	1	283 235	18 11	ì	14 7	170 155	9		4 3
14	83	4	1	211	9		5	150	7	ĺ	3
15	76	4	1	174	8	1	4	150	8		3
16	76	4	1	163	7		3	150	7		3
17	72	4	i	155	6		3	155	10		4
18	68	4	1	180	10		5	157	8		3
19	68 65	5	1	241 189	20 13	l	13 7	155 150	7 6	l	3 2
1		1									
21	65 62	5	1 1	177	10 62	s	5 95	140 140	7 8		3 3
22	63	5	l i	542 322	23	13	20	150	27]	11
24	63	5	1	235	13		8	145	12	ĺ	5
25	62	5	1	202	6		3	140	10		4
26	70	6	1	186	5		3	130	9	1	3
27	80	6	1	172	5		2	125	9	ŀ	3
28	74 70	6	1	163	5		2	120	8 7		3
30	67	6	1	155 147	4		2	120	5	1	2 1
31	163	24	11			1		100	5		1
Total	2829		86	7012			1460	5189			549
		JANUARY	1		FEBRUAR	Y			MARCH		
1	90	6	1	150	6		2	130	4		1
2	95	7	2	140	5		2	160	6	ĺ	3
3	100 105	9	2 3	230 195	15 11	l	9	130 120	5	ļ	2
5	110	10	3	180	9		4	800		Ε	200
6	110	10	3	170	8		4	2250	920		5600
7	110	9	3	160	7		3	1300	220		770
8	110	9	3	150	7	1	3	780	45	1	95
9	105 105	8	2	140 145	6		2	628	27 34		46
10		1	2				2	675	_		62
11	110	9	3	150	7		3	670	34		62
12	225 325	23	9 20	170 195	8]	4 5	670 560	26 14		47 21
14	210	12	7	160	8		3	540	15		22
15	160	11	5	140	6		2	535	18		26
16	145	10	4	130	5		2	470	12		15
17	135	9	3	150	5		2	690	25		47
18	145	9	4	160	5	1	2	616	17		28
20	140 450	8	3 E 40	150 135	5 4		2 1	490 580	10 15		13 23
21	350		E 20	120	4		1	570	22		34
22	175	11	5	110	4		1	438	10		12
23	167 140	10	5 3	128	5		2	392	9		10
24	155	8	3	130 130	6		2	370 374	9		9 8
1	175	10	5	125	5		2	374	8		8
26	160	8	3	130	5	1	2	560	27		41
28	158	7	3	130	5	1	2	415	11	}	12
29	158	7	3					358	10		10
30	155 155	7 7	3					326 314	10		8
		<u> </u>			-				<u> </u>	-	
Total	5033		178	4203			77	17285		<u> </u>	7245
E E	stimated.										

E Estimated. S Computed by subdividing day.

1-3970. SOUTH BRANCH RARITAN RIVER AT STANTON, N. J.--Continued

Suspended sediment, water year October 1962 to September 1963 -- Continued

Mean dis- harge (cfs)	Mean concen-	ed sediment	Mean		ed sediment	Mean		ed sedimen
dis- harge		_		34 -		Ivieati	1 1	
	tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
286	8	6	365	45	44	76	3	1
286	8	6	186	15	8	70	3	1
269 252	8 8	6 5	142 122	5 3	2	76 106	8	1 2
224	8	5	110	3	i	91	4	1
218	7	4	108	3	1	89	4	1
215	7	4	102	3	1	83	3	1
205	7	4	95	3	1	81	3	1
195 186	7 7	4	93 120	3 5	1 2	81 76	3	1
	i 1			1 1		l .		
180	7	3	174	10	5	78	3	1
172	7	3	137	7	3	76	3	1
163 157	7 7	3	112 102	5	2 1	72 68	3 3	1
150	1 71	3	97	3	î	78	5	î
				1			1 1	
147	7	3	89	3	1	83	4	1
142	7 7	3	81 166	3 15	1 7	67 62	3 3	1 1
144	7	3	166 196	15	7 6	62 55	3	T T
127	6	2	120	11	2	53	3	÷
	1 1	J		1 . 1				_
117	6	2	134	8	3	60	3	Ţ
115	7 8	2	215 134	10	6 3	58 50	3 3	T T
117 120	8	3	108	5	í	48	1 3 1	i
112	7	2	100	3	î	47	3	Ť
	1 1							_
112	7	2	95	3	1	47	3	Ţ
110 104	6	2	95 87	3 3	1	49 44	3 3	Ţ
100	6	2	87	3	1	55	4	'n
195	20	11	91	1 3 1	ī	78	7	ī
			81	3	1			
5057		108	3944		111	2057		25
	JULY			AUGUST			SEPTEMBER	
56	3	ī	59	8	1	26	3	7
48	3	÷ !	93	5	1	24	3	i i
46	3	Ť	72	3	î	26	3	Ť
38	3	T	50	2	T	78	18	4
37	3	T	41	2	T	33	8	1
36	3	т	38	2	T	30	7	1
37	3	Ť	38	2	Ť	30	6	Ť
46	4	Ť	38	2	Ť	28	6	T
48	4	1	36	2	T	27	6	Ţ
42	3	т	36	2	т	27	6	T
37	3	т	33	2	т	23	6	т
37	3	Ť	32	2	i	47	12	2
36	3	T	32	2	T	310	160	130
36	5	Ţ	79	6	1	174	70	3.3
58	7	1	85	8	2	102	24	7
50	7	1	53	6	1	105	16	5
40	5	1	42	5	1	218	43	25
34	5	ī	44	5	1	120	26	8
33	4	Ţ	47	5	1	76	12	2
53	7	1	55	5	1	56	6	1
68	8	1	48	5	1	47	4	1
62	7	1	38	4	Ŧ	32	4	T
46	5	1	37	4	Ĩ	39	8	1
40 37		1					6	1 T
21	, ,	1		1 1	'	"	,	1
33	4	T	32	3	Ŧ	33	4	T
31	4	T	32		T	32		T
30	4	Ţ	31		Ī	27	3	
31								
37 44	4			3	i i	120	13	4
	+			++		2025		
100-			i				1	57369
1307								10133
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33 31 30 31 37 44	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0 5 1 17 5 T 133 4 T 131 4 T 10 4 T 117 4 T 147 5 1	10 5 1 33 107 5 T 31 133 4 T 32 131 4 T 32 100 4 T 31 117 28	00 5 1 29 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10	10 5 1 33 3 T 38 3 T 38 3 T 38 3 T 34 34 35 3 T 34 35 3 T 34 35 3 T 35 35 3 T 35 35 3 T 35 35 3 T 35 35 35 T 35 35 35 T 35 75 75 75 75 75 75 75 75 75 75 75 75 75	00 5 1 33 3 T 38 6 5 7 31 31 3 T 34 5 5 7 31 31 3 T 34 5 5 7 31 31 3 T 32 3 T 33 4 5 5 7 5 7 7 31 31 3 T 32 3 7 32 3 7 32 3 7 32 3 7 32 3 7 32 3 7 32 3 7 32 7 3 7 116 58 17 7 4 T 31 3 T 116 58 17 7 4 T 31 3 T 120 13 14 5 5 1 28 3 T

RARITAN RIVER BASIN -- Continued

1-3970. SOUTH BRANCH RARITAN RIVER AT STANTON, N. J. --Continued

i	Mothod	Jo .	analysis	SCBW	SCBW	SCBW
			2,000		_	
			000		_	
		eters	. 500	66	66	100
		millim	0.250	86 26	96	66
ter;	ment	ed, in	. 125	97	91	86
r 1963 five wa	ed sedi	indicat	0.062	96	83	97
ptembe 1, in na	Suspended sediment	an size	031	96 88 04	99	32
to Se ation; N	8	iner th	0.016	20	46	8
decant		Percent finer than size indicated, in millimeters	. 008	┝	33	_
Octobe sed; D, in dis		ď	. 004 0	38	20	21
disperiupe; W			0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000		9	
Particle-size analyses of suspended sediment, water year October 1982 to September 1963 (Methods of analysis: B, bothom withdrawall bubs; C, chemically dispersed; D, decantation; N, in mattwe want P, pipet; S, sieve; Y, visual accumulation bubs; W, in distilled water)	Sediment	discharge	(tons per day)			
s of suspender om withdrawal to ; S, sieve; V, vi	Sediment	concen- tration	(mdd)	551	1480	142
-size analyse nalysis: B, botto P, pipet		Discharge (cfs)	Ì	744	1750	241
article ods of a	Water tem-	per-	(*F)	20	34	62
(Metho	Comm	III.	point			
		Time ling per-	,	1045	0922	1435
		Date of collection		Nov. 10, 1962	Mar. 6, 1963	Sept. 29

RARITAN RIVER BASIN--Continued

1-4009.32. BALDWIN CREEK AT BALDWIN LAKE, NEAR PENNINGTON, N.J.

LOCATION.--At gaging station about 200 feet upstream from earthfill dam, about 1,000 feet above Stony Brook, and 1.1 miles northeast of Pennington, Bopewell Township, Mercer County.

BANIAGE ARRA.--25 square miles.

RECORDS ANALIABLE.--Refer temperatures: November 1963 to September 1963.

Sediment records: October 1962 to September 1963.

Sediment records: October 1962 to September 1963; Maximum daily, 90°F July 28; minimum daily, freezing point Feb. 21, 22.

Sediment concentrations: Maximum daily, 88 ppm Mar. 5; minimum daily, 0.00 tons on many days during year.

water year October 1962 to September 1963 Chemical analyses in narts her million

		Color	е о	30
			7.2	8.5
	Specific conduct-	(micro- mhos at 25°C)	393	295
	dness CaCO,	, Non- carbon- ate	42	12
	Har as (Calchum magne stum	166	128
2007 19	Dissolved	residue at 180°C)	231	
manda a	Ni-	trate (NO ₃)	0.3 1.8	4.6
	Fluo-	ride (F)	6.3	123
chemical analyses, in parts per militon, water year october 1902 to September 1903	100	(C1) (F) (NO ₂) at 180°C) magne-carbon mhos slum at 25°C)	16	17
ar year	on Market	(30,	42	13
M. W. C.	Bicar-	bonate (HCO ₃)	5.5 152	137
****	9	Stum (K)	5.5	2.5
ומו נט הפו	L	(Na) stum (K) (K)	15 40 16 11	12
117 '69		sium (Mg)	16	14
MINELY S	Cal-	(Fe) clum	40	88
THE THE		(Fe)	16	1.5
3		(SiO ₂)	15	8.2
	Mean	discharge (cfs)	15	(a)
		Date of collection	Oct. 17, 1962	July 12

a Less than 0.01 cfs.

RARITAN RIVER BASIN--Continued

1-4009.32. BALDWIN CREEK AT BALDWIN LAKE NEAR PENNINGTON, N. J .-- Continued

															Day																
Month	-	7	3	4	5	9	7 8	0	2	Ξ	12	13	4	15	9-	17	18	62	20	21	22	23	24	25	26	27	78	29	8	3	Average
November	┼	1		50	⊢	50 49	4 8	9 51	2	55	55	+-	52		64	8 7	4.1	1,	4,1	4,1	1.7	1,		43	6,4	£ 3	77	17	0,	0,	-
Minimum		:	-	40		64 68					53	25	52		4 8	0.4	4.1	41	0 4	4.1	41	41	43	43	43	4.2	<u>+</u>	0 7	39	39	1
Secember Maximum.	-										36		35		36			36		36		36	36	36		37		37			37
E	_	39 3	39	39 39	_	0 7 0 7	39	38	37	36	35	33	34	35	35	36	36	36	36	36	36	36		36	36	37	37	37	37	37	-
January Maximum	:	37.3	37	37 37		37 37	37	7 37	37	37	37	37	34	33	33	35	35	35	35	36	35	35	35	36	36	36	36	36	36	36	36
Minimum . February	:										5		2		9		3	<u> </u>		3		· :		3		2		2	_		
Maximum.	:		_				_				3,4		33	-	33		33	34		34		33		33		33		33	_	_	-
in the		36	36	35 35	_	35 34	33	333	33	33	33	33	33	33	33	33	33	33	34	33	32	32	93	33	33	<u> </u>	5	6	i	<u>.</u> 1	1
March Maximum.	:	33	34	33 33		34 35		35 35	35	35	35	36	36	36	37	37	37	38	37	37	37	38	39	0,4	7 7	47	20	52	25	52	52
imum				33		33 37	35				3.5		36		36		37	37	37	37		36		39		7.7		20			=
April			_		_	5.3	_	55 56	_		50	5,3	5,6		5.7		ď	0.9	0.4	63	6.3	09		5.5		- 95		22		_	;
Minimum	: :	511	2.2	54 53			_	3 52	25	20	4.0		51	52	53	53	56	99	58	9	9	28	55	53	53	24	54	26	29	. 09	_
May		- 0				71 67	48	9	69	73	7	69	7.0		7.1	73	7.2	7	7.2	7,	7.2	7.1	89	67	89	67	67	67		- 12	
Minimum			52	57 59	_		_			_	9	67	99	67	67	8.8	7.1	69	99	7.	7.1	67		65		99	_	65	99		99
fune Maximum		727	- 22	71 75		77 80		79 75	76	- 2	75	7.	70	69	69	7.2	75	78	80	79	79	75	80	81			85	87	78		-!
Minimum						-					74		67	69	6.8		69		75	76	73	72		75	78	46	_	83		_	1
July Maximum		86.8		84 79		76 79		77 08	79	78,	77	7	77	77	79	82	85	87	87	98	85	82	81	87	88	88	68	06	88	- 6	88
Minimum			_		_								76		76		80	83	83	85	82	81		79		83		98		_	82
lugust				200			- 6				ď		70	7.8	7.7	10	7.7	7.8	7.8	0,	2	0	8	~		7.7		- 22	_		
Minimum		83						_	_		79		7.8		7.2		73	92	73	1.	77			92	73	7.2	72	17	73		73
	:		_								7.5		1,2		47		4.5	44	7	7.5	7.2	1,4	45	44	4	,		8 4	74	9	-;
	:		_		_																	֡						֡			

1-4009.32. BALDWIN CREEK AT BALDWIN LAKE, NEAR PENNINGTON, N. J.--Continued

Suspended sediment, water year October 1962 to September 1963

L		OCTOBER			NOVEMBE	٠		ECEMBER	
ſ		Suspend	led sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	0.01	0	0.00	0.01	0	0.00	1.4	15	0.0
2	•01	0	•00	•01	0	•00	1.3	12	•0
3	•01	0	•00	.01	0	•00	1.2	11	•0
5	•01	0	•00	.01	0	.00	1.1	13 15	•6
6	•01	0	.00	.01	0	.00	27		4.0
7	•01	ا ہ ا	.00	.01	0	.00	9.6		1.0
8	•01	o	.00	•01	i o	•00	4.8		••
9	•01	9	•00	•01	0	•00	3.8	63	•
10	•01	0	•00	18		2.4	2.8	48	•:
11	•01	0	•00	3.9		•30	2.0	45	•
12	•01	0	.00	1.9	41 36	•21	1.5	47	•
13	•01 •01	0	•00	1.3	34	•13 •09	1.1	46	:
15	.01	ŏ	.00	.71	35	.07	.81	34	• 6
16	•01	0	•00	.61	18	•03	.81	51	•:
17	•01	0	•00	•53	12	•02	•71	67	•
18	•01	0	.00	4.8	16 19	•21	.71 .81	47 28	•
19	.01 .01	0	.00	5.7 3.5	11	.10	.81	21	:
21	.01	0	.00	3.1	10	.08	.61	22	
22	.01	0	•00	36	40	S 3.6	1.2	47	
23	.01	0	•00	7.7	42	•87	1.3	28	
24	.01 .01	0	•00	4.3 2.8	36 25	•42 •19	.81 .71	22 20	:
26	•01	0	.00	2.5	18	•12	.91	19	
27	•01	0	.00	2.0	15	-08	•91	14	
28	•01	0	.00	1.8	15	•07	.71	13	
29	•01	0	•00	1.8	32	•16	•61	13	•
30	.01 .01	0	•00	1.6	21	-09	.61 .32	14 19	
Total	0.31		0.00	105.64		9.53	73.36		8.
		JANUARY			FEBRUAR	Ý		MARCH	
1	0.28	17	0.01	0.45	8	0.01	0.32	15	0.4
2	•28	17	•01	1.3	8 15	•03	24 5•3	41 52	S 2.
3	•32 •32	19 20	•02 •02	6.4 1.8	12	•26 •06	13	46	5 2.
5	.32	13	.01	1.6	10	.04	20	88	4.
6	•38	19	.02	9.9	22	s •91	49	64	5 9.
7	•38	9	.01	5.5	49	5 .73	5.7	28	
8	• 45	15	.02	2 • 2	22 17	.13	2.8	38	
9	• 53	18	•03	•71	17	•03	2.2	53	•
10	.81	15	.03	•71	13	•02	2.4	58	•
12	1.7 18	11 32	.05 S 1.6	7•0 46	19 82	A .36	1.9 14	52 36	s 1.
13	9.2	49	1.2	4.1	65	.72	5.3	37	
14	3.4	33	•30	1.6	50	•22	4.0	36	
15	1.6	27	•12	• 91	48	•12	2.8	36	•
16	1.1	24	•07	.81	42	•09	2.5	36	
17	•91	21	•05	-81	40	•09	15	36	2.
18	.91 1.1	19 32	•05 •10	•71 •71	34 40	.07 .08	7.6 4.3	36	
20	15		S 1.6	18	62	s 3.3	18		2.
21	4.9	23	•30	3.6	22	•21	7.5		
22	1.8	20	•10 •12	.81 .71	20 17	.04	4.3 3.5		:
23	2•2 2•7	17	.12	•53	20	.03	3.5		:
25	1.2	15	.05	.45	21	.03	3.8		:
26	•71	11	•02	•45	17	.02	6.3		
27	• 71	12	•02	•32	13	•01	10		1.
28	• 71	12	•02	•32	12	.01	4.3	12	:
30	•61 •61	13	•02 •02				3.1 2.8	10	:
31	.53	1 9	.01				2.4	12	

S Computed by subdividing day.
A Computed from partly estimated-concentration graph.
J Computed from partly estimated-concentration graph and subdividing day.

NORTH ATLANTIC SLOPE BASINS

RARITAN RIVER BASIN--Continued

1-4009.32. BALDWIN CREEK AT BALDWIN LAKE, NEAR PENNINGTON, N. J.--Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

			ere no concen	racions ar		u, loaus are	estimateu/		
		APRIL			MAY			JUNE	
	Me 2m	Suspen	ded sediment	M	Suspen	ded sediment		Suspen	dec' sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	2.0	33	0.18	0.71	C 7	0.01	0.07	49	0.01
2	2.4	16	•10	•45	C 7	.01	.03	42	Ţ
3 4	2 • 1 1 • 3	16 27	.09	•32 •28	C 7	.01 .01	.03 .12	27	.01
5	.61	32	•05	•22	12	•01	.11	24	•01
6	•91	14	.03	•12	9	т	•11	26	•01
7	•91	14	•03	•16	10	T	.09	49	.01
8	•81	13	•03	• 12	16	.01	•05	57	,•01 T
9	1.0 .81	34 41	•09 •09	•16 •53	13	.01 .02	.01 .01	36 0	•00
					10	•01	•01	_ a	•00
11	•53 •53	31 12	•04 •02	.53 .32	13	.01	.01	0	•00
13	• 53	8	•01	•22	13	•01	.01	0	•00
14	•45 •38	8	•01 •01	•19 •16	12 12	.01 .01	.01	0	•00
i		ľ							
16	•38	7	•01	•12	13	T	.01 .01	0	•00
17	•45 •45	8 11	.01 .01	•11	14.	.01	:01	0	.00
19	•45	8	•01	.45	12	•01	.01	0	•00
20	•28	7	•01	•32	14	•01	•01	0	•00
21	•19	8	т	-38	14	•01	.01	0	.00
22	•19	11	•01	•28	16	•01	.01	0	•00
23	•19 •16	11 11	, · 01	•19 •11	17 25	•01 •01	•01 •01	0	•00 •00
25	•12	15	Ť	.09	27	.01	.01	ŏ	•00
26	•16	14	.01	.09	25	•01	.01	ا ه	.00
27	• 16	C 4	т т	.09	26	.01	.01	ő	.00
28	•16	C 4	Ţ	•07	32	•01	•01	0	•00
29	•19 •38	C 4	Ţ	•09 •11	41 49	.01 .01	.01 .01	0	•00 •00
31				•09	51	-01			
Total	19 • 18		0.97	7.40		0.29	0.83		0.07
		JULY			AUGUST		,	EPTEMBER	
1	0.01	0	0.00	0.01	0	0.00	0.01	0	0.00
2	•01	٥	•00	•01	0	.00	.01	0	.00
3	.01 .01	0	•00	.01 .01	0	.00	.01 .01	0	•00
5	•01	ő	•00	.01	0	•00	.01	ő	•00
		0	•00	•01	0	•00	.01	0	•00
7	•01 •01	0	.00	•01	0	•00	.01	0	.00
8	•01	0	•00	•01	0	.00	•01	0	•00
9	•01 •01	0	•00	.01 .01	0	.00 .00	.01 .01	0	•00 •00
10					l i				
11	•01	0	•00	•01	0	•00	.01	0	•00
12	•01 •01	0	•00 •00	•01 •01	0	.00	.01	0	•00
14	•01	0	.00	•01	0	.00	.01	0	•00
15	•01	0	•00	.01	0	•00	.01	0	•00
16	•01	0	•00	.01	0	•00	.01	0	•00
17	•01	0	•00	•01	0	.00	.01 .01	0	•00 •00
18	•01 •01	0	•00	•01	0	•00	.01	0	.00
20	•01	ō	•00	•01	0	•00	.01	0	•00
21	•01	0	•00	.01	0	• 00	.01	0	•00
22	.01	0	•00	•01	0	.00	.01	0	•00
23	•01 •01	0	•00	•01	0	.00	.01	0	•00
24	•01	6	.00	.01	0	•00	.01	ő	.00
ا ء.	^*	0	•00		0	•00	.01	o	-00
26	•01 •01	0	•00	•01	0	•00	.01	0	•00
28	•01	0	•00	•01	0	•00	.01	0	•00
29	•01	0	•00	•01	0	•00	.01 .01	0	•00 •00
30	•01 •01	0	•00	•01 •01	0	•00	•==		
Total	0.31		0.00	0.31		0.00	0.30		0.00
	discharge	for year	(cfs-days)		1		L		651.34
W-+-1	1	/	:						77.19

Total discharge for year (cfs-days). 651.34
Total load for year (tons). 77.19
T Less than 0,005 ton.
C Composite period.

1-4010. STONY BROOK AT PRINCETON, N. J.

LOCATION .--At Lawrenceville Road Bridge on U.S. Highway 206 in Princeton Township, Mercer County, 1.6 miles southwest of Princeton, and 4 miles

upstream from Carnegie Lake

Upstream From Carnegie Lake

BATMALARIE.—Water temperatures: October 1956 to September 1962.

Sediament records AVAILARIE.—Water temperatures: October 1956 to September 1962.

Sediament records AvAILARIE.—Water temperatures: October 1950 to September 1956.

Sediament records Maximum dally.

Sediament tought Maximum dally.

Sediament loads: Maximum dally.

Sediament sedes.

Water temperatures (1956-62): Maximum dally.

Sediament sediament sediament dally.

Sediament dally.

Sediament sediament dally.

Sediame

		Color	01	ß	ß	15	77
		띥	6.9	9.9	6.9	7.1	0.7
	Specific conduct-	(micro- mhos at 25°C)	202	199	205	265	240
	Hardness as CaCO,	Non- carbon- ate	39	36	30	6	14
	Harc as C	Calcum, magne- sium	29	62	63	87	77
1963	Dissolved	residue Calcium, Non- (mat 180°C) magne-carbon- n slum ate at	123	145	128	168	139
ешрег	N1-	(NO _s)	5.1	1.0	1:1	1:1	6.
Sept	Fluo-	ride trate (F) (NO ₃)	0.2	e.	٦:	2	e,
Chemical analyses, in parts per million, water year October 1962 to September 1963	10	(CI)	10	175	12	23	21
year Octo	ot of the	(80°)	41	36	35	21	24
water	Bicar-	bonate (HCO ₃)	34	ᄄ	41	95	7.2
llion,	Po	Sturn (K)	2.0	2.5	5.0	2,4	3.6
ts per mi	1000	(Na)	9.0	9.0	10	18	15
in par	Мад-	stum (Mg)	9.9	2.8	8.9	0.6	7.8
lyses,	Cal-	ctum (Ca)	16	12	14	20	18
ical an	اِ	(Fe)	1		.59		
Chem	27118	(310,	1.5	14	9.2	4.6	3.5
	Mean	discharge (cfs)	34	30	29	6.	89.
		Date of collection	Nov. 30, 1962	18	6	July 1	July 10

1-4010. STONY BROOK AT PRINCTON, N.J.--Continued

Suspended sediment, water year October 1962 to September 1963 (Where no concentrations are reported, loads are estimated)

		ОСТОВЕ	(Where no con		NOVEMBE			DECEMBER		
			nded sediment			ded sediment		Suspended sediment		
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	
1	8.6	C 1	Т	5.4	5	0.1	31	C 4	0.3	
2 • •	7.2	C 1	Ī	6.0		B 20	28	C 4	•3	
3	10 5•7	C 1	T	62 108	120 130	B 20 B 40	26 25	C 4	•3	
5	13	č i	Ť	38	20	2.1	33	5	•4	
6	10	c 1	т	24	15	1.0	391	180	S 500	
7	10	C 1	Ţ	19	13	• 7	175	48	S 28	
8	7.8 15	5 24	5 1.1	16 15	11 10	•5	85 64	10	2 • 3 1 • 2	
10	16	16	3 .7	289	10	90	51	5	• 7	
11	11	10	.3	125	20	6.8	38	4	•4	
12	10 8.9	10	•3	62	10	1.7	33 28	C 2	• 4	
14	7.9	8	•2	48 39	9 8	1.2	29	C 2	•2	
15	7.0	c 6	•1	33	14	1.2	24	C 2	1	
16	6.4	c 6	•1	29	9	.7	26	C 2	•1	
17	6.2	C 6	•1	27	5	• 4	25	C 2	•1	
18	5 • 6 5 • 8	C 6	•1	79 158		20 20	24 24	C 2	•1	
20	5.2	C 6 C 6 C 3	τ**	83	22	4.9	22	C 2	:1	
21	4.7	С 3	Т	66	14	2 • 5	14	C 2	•1	
22 • •	4.5 4.5	C 3	Ţ	684		850	29	3	• 2	
23	4.5	C 3	, T	161 89	22 11	9 • 6 2 • 6	38 26	C 2	•4	
25	4.0	C 5	:1	64	8	1.4	21	c 2	i	
26	7.2	C 5	•1	54	C 5	•7	25	C 2	•1	
27	8 • 5 7 • 2	C 5	•1	45	C 5 C 5 C 5	•6	23 20	C 2	•1	
29	6.2	c 4	•1	40 36	C 5	•5 •5	17	C 2	•1	
30	5.4	C 4	1 •1	34	Č 5	•5	18	C 2	• 1	
31		C 4	•1				8.9	C 2	т	
Total	239•2		4.5	2538.4		1081.5	1421.9		537.0	
		JANUAR	Y		FEBRUAR	r		MARCH		
1	11	C 1	Ţ	16	5 8	0.2	12 275	5	0•2 80	
3	12 12	C 1	T	22 142	19	s 8•1	210		40	
4	13	C 1	T	52	3	•4	169		20	
5	14	C 1	т	34	4	•4	414		200	
6	13	c 1	т	90	24	5 • 8	925		1000	
7	13	C 1	Ţ	110	20	5.9	177 90		30 10	
8	14 16	C 1	Ť	58 36	11 3	1.7	71	15	2.9	
10	19	C 1	0.1	25	4	• 3	71	10	1.9	
11	29	5	.4	58	33	s 6.9	63	7	1 • 2 B 70	
12	261 220	30 26	21 15	748 162	210 38	S 520 S 19	226 115	120 70	22	
14	102	- 4	1.1	71	18	3.5	85	30	6+9	
15	48	3	•4	42	14	1.6	68	20	3•7	
16	34	3	-3	23	9	•6	57	15	2 • 3	
17	28 30	C 1	•1	20 18	7 6	•4	238 140	30	50 B 11	
19	31	5	.4	22	8	•5	88	10	2•4	
20	238	43	S 33	206	140	S 140	196		50	
21	126 45	C 10	4.8 1.2	135 32	35 9	13 •8	124 87	40 25	13 5•9	
23	44	c 10	1.2	23	8	•5	66	15	2.7	
24	62 26	c 10	1.7	19 17	6	•3	58 59	10 10	1•6 1•6	
ì		5	1				67	1	2.2	
26	24 36	12	.3 I.2	17 11	6 5	•3	161	12	20	
28	29	7	•5	12	4	•1	97	30	7.9	
29 • •	20	C 3	•2				71	15	2.9	
30	17 19	C 3	•1	==		==	62 56	10 10	1•7 1•5	
31	17									

S Computed by subdividing day.
T Less than 0.50 or 0.05 ton.
B Computed from estimated-concentration graph.
C Composite period.

1-4010. STONY BROOK AT PRINCETON, N. J.--Continued

Suspended sediment, water year October 1962 to September 1963--Continued

+		APRIL	ad andiss t		MAY	dad sadi		JUNE	
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
2	48 66	7 8	0.9	23 22	28 12	1•7 •7	4.0 3.6	5	0. T
3	60	6	1.0	15 12	7	•3	6.9	8	
4	50	6	•8		6	•2	7 • 2	C 3	т'
5	36	5	•5	11	6	• 2	5+2		'
6	29	5	.4	12	6	•2	5.2	C 3	Т
7	27	5	• 4	10	5	•1	4.7	C 3	Ţ
9	26 28	5	.4	8 • 2 6 • 8	5 7	•1	3.8 3.6	C 3	Ţ
ó	25	5	.3	11	10	.3	3.4		Ť
1	23	5	•3	6•2	5	•1	3.2	C 4	т
2	20	5	• 3	7.5	6	•1	3.0	9	T T
3	19 18	5 4	•3	7•8 6•9	C 6	•1 •1	2.7	6 4	ť
5	16	4	• 2	6.6	c 6	•1	3.8	6	•
6	15	4	•2	6.9	5	•1	2.5	4	т
7	14	4	•2	5.7	4	•1	2.2 1.9	9	Ţ
8	15	4	•2	9.0 10	5 C 3	•1	1.9	6 3	T T
9	14 13	3	•2	9.7	c 3	•1	1.8	3	÷
1	12	3	•1	10	4	•1	1.6	3	т
2 • •	11	3	•1	10	5 4	•1	1.4	5 4	Ţ
3	11 11	3	•1	7.8 6.2	3	•1 •1	1.1	4 4	T T
5	10	3	.1	5.2	4	•1	1.0	- 4	Ť
6	9.7 10	3	-1	5.2	c 4	•1	1.0	5 4	Ţ
7	10	4	:1	4•9 4•7	C 4	•1 •1	.9	- 4	Ť
9	8.6	16	. 4	5.7	6	•1	.9	. 4	Ť
0	17	38	1.7	6.0 4.5	6 5	•1	1.0	5 4	T
otal	672.3		11.6	277.5		6.0	83.9		1
	, y	JULY			AUGUST		ļ	SEPTEMBER	
1	0.9	4	Т	5 • 8		0.3	0.6	c 8	т
2	.8	4	÷	5.2		•2	•5	C 8	T T
3	•6	4	T	3.0	8	•1	. • 5		Ţ
5	•4	3 3	T T	2•2 1•7	6 4	T T	1.2	10	T T
6	.3	3	7	1.5	4	т.	.7	10	T
7	•3	4	i l	1.1	4	i l	1.2	10	Ť
8	2.0	35	A 0.2	1.5	4	Ť	.9	6	T
9	1.4	20	T.1	1.4 1.0	4 3	† †	•6	6	Ţ
0					1 1			1 - 1	
1	• 5	5	Ţ	•8	3	Ţ	•6	4	Ţ
3	•4	5 4	Ţ	•7 •8	3 5	T T	2•3 18	15 50	0 2
5	1.5	10	T	.9	6 5	Ť	4.9 3.8	10	_
- 1	2.8		•1		1				
7	1.2	5 3	Ť Ť	•6	4	T T	5.2 6.0	12	
8	.8	3	ŕ	•6	3	i i	4.2		
9	•7	3	T	•4	3	Ť	3 • 6	C 1	Ţ
0	•9	4	т	5.6		•2	3.0	C 1	T
1	2.5	10	01	1.8	10	Ţ	3.6	C 1	Ť
	2•2 1•6	6 4	T T	1.1 1.0	3	Ť Ť	4.2 6.9	5	
	1.4	4	÷ l	1.0	c 2	,	6.6	3	
3		4	i	.9	C 2	Ť	4.0	3	T
3	1.2			.7	C 2	Ţ	1.2	3	Ţ
2 · · · · · · · · · · · · · · · · · · ·	1.2	3	Ī			Ť	1.0	3	Ť
3 4 5 6	1.0	3	T	.6	C 2	· ·	ه.	1 2	Ť
3 4 5	1.2	3	7 •6 2•0	•6	C 2 C 2 C 2	Ť	34	29	i 3
3 5 6 7 8 9	1.2 1.0 .9 5.1 35 4.6	3	.6 2.0	.6 .6 .8	C 2	† † †	• 9	3	
3 4 5 6 7 8 9 0	1.0 1.0 .9 5.1 35 4.6 2.5	3	7 •6 2•0 •1	.6 .6 .6 .8	C 2	† † † †	34 16 	29	3
6 7 8 9 0	1.2 1.0 .9 5.1 35 4.6 2.5	3 6 5	.6 2.0	.6 .6 .8 .8	C 2	† † †	34	29	

S Computed by subdividing day.
T.Less than 0.05 ton.
A Computed from partly-estimated concentration graph.
C Composite period.

RARITAN RIVER BASIN--Continued

1-4010. STONY BROOK AT PRINCETON, N. J. -- Continued

Particle-size analyses of suspended sediment, February 1962 to September 1963 (Methods of analysis. B. bottom withdrawal tube; C., febrically dispersed, D. decantalon; N. in marive water; P. p. pipes; S. sieve: Y. visani accumulation tube; W. in distilled water)

	Mathed	Jo .	SCBW	SCEW	SCB	
			2,000			
			1.000			
		eters	0.500	100	1	66
		millim	0.250	66	200	86
	Iment	ated, in	86			
	Suspended sediment	Percent finer than size indicated, in millimeters	97	86	96	
	Suspen	han siz	82	96	93	
1000		finer (65	84	11	
Permen		Percent	0.008	53	2	61
, 11			0.004	96	26	39
, more,			0.003	25	39	21
piper, 3, sieve, v, visual accumulation mue, w, in distinct water,	Sedimont	discharge	(tons per day)			
D, Bleve, V, VI	Sediment	concen- tration	(mdd)	566	108	303
r, piper,		Discharge (cfs)		1990	1490	1810
	Water tem-	per-	(F)	37	42	37
	9	ling	point			
		Time ling per-		1915	1845	1330
		Date of collection		Feb. 26, 1962	Dec. 6	Feb. 12, 1963

GREAT EGG HARBOR RIVER BASIN

1-4110. GREAT EGG HARBOR RIVER AT FOLSOM, N. J.

LOCATION .-- Temperature recorder at gaging station at bridge on State Highway 54, 1 mile south of Polson, Atlantic County, and 2 miles upstream from Poingrof Stream.

Poingrof Stream.

RECORDS AVAILABLE.—Wher temperatures: October 1960 to September 1963.

RECORDS AVAILABLE.—Wher temperatures: Maximum, 70°F blay 30°, Aug. 4; minimum, 33°F on serveral days in January and February.

EXTREMES, 1960-63.—Where temperatures: Maximum, 71°F on serveral days in 1961; minimum, freezing point Jan. 4, 1961.

		pH Color	88	65	35
ĺ		뛵	4.5	4	2.1
	Specific conduct-	(micro- mhos at 25°C)	64 4.5 88	11	33
	dness	Non- carbon- ate	10 10	6	o
	Har as C	Calctum, magne- stum	10	6 6	9
	Dissolved	(residue at 180°C)	09	20	31
	ž	trate (NO ₃)	1.4		2.1
:	Fluo-	ride (F)	0.3 1.4	7.	•
	0.1144	C(1) (F) (NO ₃) at 180°C) magne-carbon mhos sum ate at 25°C)	6.0	80.	0.5
	40	(30°)	10	13	9.
	Bicar-	bonate (HCO ₃)	٥	۰.	-
	Po-	Sturn Sturn (K)	1.2	1.2	ĸ.
	on the co	(Na)	0.47 2.4 1.0 2.3 1.2	2.1	7. 2.
		stum (Mg)	1,0	ĸ,	Ŋ.
	Cal-	clum (Ca)	2.4	8.8	2.0
		(Fe) clum	0.47	.28	.48
	941400	(S10 ₂)	6.7	9.9	5.
!	Mean	discharge (cfs)	93	166	27
!		Date of collection	Nov. 16, 1962	Mar. 12, 1963	May 29

GREAT EGG HARBOR RIVER BASIN--Continued 1-4110. GREAT EGG HARBOR RIVER AT FOLSOM, N. J.--Continued

	A	-Guin	5 <i>7</i> 55	4 2	39	38	36	43 41	51	5.6 5.3	63	11	66	53 61
	-	_			-0.0	-0 -+				n -	11	0.00	10. at	
		3	51	11	36	34	11	53	11	63		6 8	6.5	11
		8	2 6	4 4	38	333		5.5	22	2 8	67	5.69	636	60
		3 29	50	4 4	38	33	11	51	22	58	65	11	63	60
		28	0.8	3.0	38	35	35	48	52	53	66	11	63	58
		27	50	38	39	36	35	52	51	53	65		19	58
		26	51	3 6	38	35	35	47	2 8 8 8	52	65	11	\$ 5	57
		25	53	404	38	35	333	43	2 8 2 8	52	62	11	67	52
1963		24	52	7 7	38	35	33	4 0 4	2 8 2 8	54	63	11	299	59
		23	55	45	39	35	33	40	53	56	61	6.5	65	62 59
September ment)		22	55	45	38	36	33	40	53	55 54	63	65 66	65	64
Sept		21	55	43	38	42 36	36	47	5. 5.4	55	63	64	64 64	6.5
to a		20	55	42	4 t c	41	35	43	57	57	63	69	63	65 63
62 att		19	57	44	41	39	35	44	55	56	62	69	64	63
<pre>ce (°F) of water, water year October 1962 to Septe (Water-stage recorder with temperature attachment)</pre>		18	59	4 4	39	39	33	44	52	55	63	68	63	61
obe		17	200	\$3	9.80	34	33	4 1 2	6 4 6	55	61	68	64	60
oct mp	Day	16	59	40	39	36	333	39	2 8 4	53	61	66	63	09
ear h t	1	15	57	4 7	37	36	333	39	284	53	61	63	63	000
r Ttγ		4	60	44	36	36	33	45	0.84	53	62	63	65	60
of water, water tage recorder wi		3	61	42	36	39	34	39	45	200	63	63	999	63
cor		12	61	44	36	417	39	37	4 8	55	65	63	65	63
wate re			59 6	51 4	3.8	4104	31	37	42 4	5.9	99	63	65	63
of		0	5.9	51	38	93	34	37	148	60	65	63	65	63
F)		6	58 5	46 4	42 4	404	35	37 4	4 4 8 4	59 6	9 49	63 6	65 6	63 6
#at(8	59	9 1 1	43	39	35	36	8 4 9	55	65	5 7 9	69	62
tur		_	60 5	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4	39 3	36 3	36 3	4 9 4	55 55	65 6	64 6	68 6	63 6
Temperature (°F)		9		42		39	3.6	37	42	5.88	999	63	69	63
Ten		5 (09 69 29 60	† † † † †	46 47	39 4	35 3	37 3	52 4	54 5	63 6	63 6	69 69	9 59
		4						36	55	5.5		- 69	020	65
		3	58 59 57 57	50 50	45 45	39 40	37 36	36 3	54 5	53	61 63	9 69	69 7	63 6
		2	11	52 51	44 44	36 36	35 35	36 37	51 51	52 51	62 62	68 69 67 67	68 68 68 67	65 64
ı		_												
		MOIIII	October Maximum Minimum	November Maximum Minimum	December Maximum	January Maximum Minimum	February Maximum	Maximum	April Maximum Minimum	Maximum	June Maximum Minimum	Maximum	August Maximum Minimum	September Maximum

GREAT EGG HARBOR RIVER BASIN -- Continued

1-4110. GREAT EGG HARBOR RIVER AT FOLSOM, N. J.--Continued
Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963
(Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decanaton; N in native water;

	Mathe	o Jo	analysis											
			2.000								_			
			1.000											
		eters	0.500	Г				_						
		millim	0.250											
	liment	ated, in	0.125											
	Suspended sediment	e indic	0.062											
	Suspen	han siz	0.031											
water)		t finer	0.016											
istilled		Percent finer than size indicated, in millimeters	0.008											
W, in d			0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	L										
n tube;			0.00	L							_			
P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	Sodi	discharge	(tons per day)	0,9	1.6	2.3	۲.	9.	1.4	5.1	2.9	1.6	1.0	1.3
S, steve; V, vi	Sediment	concen- tration	(mdd)	10	13	14	ıo	ın	12	52	14	•	s	ď
P, pipet		Discharge (cfs)	Ì	34	47	61	22	41	4	92	78	92	74	53
	Water	ber-	(F)					_						
	į	ling	point											
		Time (24 hour)				_		_			_			
		Date of collection		July 9, 1963	Aug. 20	Aug. 21	Aug. 22	Sept. 4	Sept. 5	Sept. 18	Sept. 19	Sept. 20	Sept. 21	Sept. 29

DELAWARE RIVER BASIN

1-4385. DELAWARE RIVER AT MONTAGUE, N. J. (MILFORD, PA.)

LOCATION:--At center of toll bridge at Montague, Sussex County, 0.4 mile downstream from gaging station and approximately 1.2 miles downstream from Saw Kill. PRAINAGE, ARSA,--15.46 square miles:
RECORNS AYALIARE,--Chand namyses: October 1956 to September 1963.
Water temperatures: October 1956 to December 1957.
REMANS.--Recorde sportface and temperatures of daily samples for 1956-57 available in district office at Philadelphia, Pa.

		Color	2	-	1	'n	'n	2	4	က	S	'n	~	2
		抵	6.4	6.2	6.4	6.3	6.3	6.1	7.3	7.3	9.9	6.3	9.9	9.9
	Specific conduct-	(micro- mhos at 25°C)	84	89	20	77	73	99	9	62	99	89	29	61
	Hardness as CaCO,	Non- carbon- ate	13	2	2	13	77	16	10	10	#	œ	G.	6
	Hard as C	Calcum, Non- magne-carbon- sium ate	28	55	22	24	24	22	21	21	56	56	24	24
1963	Dissolved	a C)	26	47	49	22	20	44	37	39	i	22	20	48
ptember	Ni-	trate (NO ₃)	0.4	٤.	9.	1.0	ĸ.	2.3	4.	6.	1:1	۳.	9.	.3
to Se	Fluo-	ride (F)	0.0	٦.	۰.	۰.	۲:	۲:	0.	۰.	1	٥.	٥.	٥.
Chemical analyses, in parts per million, water year October 1962 to September 1963	9	(C1)	3.6	2.9	3.1	3.6	3.7	3.8	3.2	3.2	1.0	3.6	3.6	3.2
r year Oct	o de la constante de la consta	(30°)	12	13	11	12	12	12	10	11	10	9.6	10	10
ı, wate	Bicar-	bonate (HCO ₃)	19	13	13	14	12	œ	14	14	19	55	18	18
n 1110n	Po-	Stum Stum (K)	1.2	1.0	1.2	1.0	1.0	ĸ.	2.	80.	!	s.	٠.	4.
arts per	1	(Na)	2.3	1.5	2.1	2.3	2.1	2.5	2.1	2:1	1.2	3.0	3.0	3.0
a, in pa	Mag-	sium (Mg)	1.5	1.0	1.2	1.0	1.5	1.0	1.7	1.7	;	1.5	1.5	1.5
nalyses	Cal-	Cium (Ca)	8.8	7.2	8.9	0.8	7.2	7.2	2 6	5.6	1	8.0	7.2	7.2
mical a]	(Fe)									0.21			
Che	90,00	(SiO ₂)	1.8	2.5	2.5	2.1	2.5	3.5	1.4	1.6	;	1.7	G.	.
	Mean	discharge (cfs)	1460	0099	3200	2400	3200	13000	4230	3790	4230	2210	2050	1610
		Date of collection	Oct. 18, 1962	Nov. 14	Dec. 13	Jan. 15, 1963	Feb. 13	Mar. 20	Apr. 17	May 15	May 23	July 24	Aug. 21	Sept. 27

DELAWARE RIVER BASIN--Continued

1-4448. DELAWARE RIVER AT BELVIDERE, N. J.

LOCATION.--At highway bridge in Belvidere, Warren County, 550 feet upstream from gaging station.

DRINKIGE AREA.--4,380 equate alies, approximately.

RECORDS ANNILABLE.--Chemical analyses: October 1844 to September 1847, october 1862 to June 1963.

Water temperatures: October 1844 to September 1847, october 1862 to September 1867.

Water temperatures: October 1844 to September 1847, october 1862 to September 1867.

Water temperatures: Maximum, 86° y July 30; minimum, freezing point Oct. 24, Dec. 12-17

EXTREMES 1944-47, 1962-63.--Specific conductance: Maximum daily 155 micrombos May 29, 1945; minimum, 42 micrombos May 19, 1945.

Water temperatures: Maximum, 86° y July 30, 1963; minimum, freezing point on many days during winter months.

		Color	2	œ	3	8	r.	ຜ	ဗ	!	ຄ	7
		EH.	8.5	8.8	7.1	7.1	6.8	7.1	8.8	8.2	8.7	6.9
	Specific conduct-	(micro- mhos at 25°C)		_		100						
	Hardness as CaCO,	Calcium, Non- magne-carbon- stum ate	12	15	14	17	14	15	14	12	æ	=======================================
			32	35	32	38	33	34	33	18	27	35
r 1963	Dissolved	(residue at 180°C)	54	26	20	57	61	23	92	62	;	63
tempe	Ni-	trate (NO ₃)	1.1	1.1	1.1	1.9	1.0	7.	1.7	2.9	9	1.1
to Ser	Fluo-	ride (F)	0.1	N.	•	۳.	ŕ.	٥.	ď	•	;	۰.
Chemical analyses, in parts per million, water year October 1962 to September 1963	(H)	(CI)	3.6	3.6	3.2	3.6	4.0	3.9	4.0	2.8	1.0	3.0
r year oc		(30°,)	12	12	14	16	16	14	14	12	91	14
n, wate	Bicar-	bonate (HCO ₃)	25	21	22	24	24	24	24	œ	24	30
11110	ė.	Sturn Sturn (K)	0.0	۰.	ı.	'n	1.0	ī.	0:1	ı.	1	٥.
arts per	1000	(Na)	2.6	9.7	2.0	2.2	3.7	2.3	3.3	5.9	2.3	3.5
s, in p	Mag-	stum (Mg)	1.9	1.9	2.7	5.9	1.9	6.0	1.9	1.2	;	4.2
analyse	Cal-	ctum (Ca)	9.6	9.6	8.4	9.6	9	80.80	10	5.2	l	01
mtcal a		(Fe)										
g	, ,	(810 ₂)	2.3	3,0	5.7	3.4	8.8	3.9	3.2	3.6	1	2.7
	Mean	discharge (cfs)	2660	5170	5810	2720	3300	4020	3150	65700	6360	2090
		Date of collection	Oct. 1-10, 1962	Nov. 1-10	Dec. 1, 3-10,	Jan. 3-10, 1963	Jan. 29	Feb. 1-10	Feb. 27		Apr. 26	June 27

tinued	, N.JContinued
R BASINCon	AT BELVIDERE
DELAWARE RIVE	DELAWARE RIVER
	1-4448.

Ver	age				
<	æ	24 24 35	3 4 4 6	49 60 71	79
	31	 24	# 1 #	1 4 1	72
	ဗ္ဂ	47 38 35	613	400	86 73 58
	\$	48 38 34	8104	48 60 79	84 72 60
	28	38 34 34	6 4 0 4 4 0	8050	83 70 55
	27	38 34	888	50 58 75	84 71 58
	26	3.8 3.5 3.5	4333	49 60 76	81 70 57
6	25	39.86	33	48 61 75	80 77 57
196	24	34	333	28 4 4 4	75
Der	23	34 33	35 33 37	54 61 69	74 77 60
ten	22	35 42 33	33 36	55 62 69	78 76 64
year October 1962 to September 1963 Day	21	35 40 33	34	56 60 72	80 76 66
t	20	37 38 34	35	57 62 75	82 72 67
1962	19	38	35	54 60 71	83 72 67
TO.	18	35	35	54 63	80 74 65
ctop	17	43 40 32	33	51 64 66	80 72 65
Lr O	9-	44 40 32	34	50 64 66	76 70 65
	15	44 40 32	33	4.6 6.0 6.6	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
water	4	44 42 32	34 34 35	47 58 68	78 76 66
*	13	48 44 32	35	4 5 8 6 6	78 77 70
Temperature ('F) of water,	12	50 44 32	36	46 58 69	75 76 70
A.	=	4 4 W	35	4 6 2 7 2 2 3	77 77 68
Ö	10	50 46 35	35.5	45 68 75	77.2
:	٥	51 44 35	33	47 65 71	77 63
ure	æ	54 42 38	33	55	76 76 88
erat	7	52 40 38	35 35	45 74	78 77 67
Gue	9	54 42 38	35.45	45 62 72	80 75 68
	5	58 45 40	35	44 58 69	75 25
	4	60 45 38	33	48 55 67	82 78 74
	က	58 47 39	36 34 35	46 54 67	81 78 70
	2	60 47 38	35	2 4 4 8	81 79 68
	-	60 47 38	1 4 4	44 53 66	82 80 70
,	Month	October November December	January February March	April May. June	July August September

DELAWARE RIVER BASIN---Continued

1-4530. LEHIGH RIVER AT BETHLEHEM, PA.

LOCATION. --At gaging station 120 feet upstream from New Street Bridge at Bethlehem, Northampton County, and 1,800 feet upstream from Monocacy Creek. DRAINAGE AREA. --1,279 square miles, includes that of Monocacy Creek. RECORDS AVAILABLE. --Chemical analyses: October 1962 to September 1963.

		Col-	က	'n	m	۲	c)	ß	04	ı,	2
		рН	6.7	7.2	8.9	6.7	7.0	6.9	7.0	7.1	7.3
	Specific conduct-	ance (micro- mhos at 25°C)	218	136	160	198	170	158	179	279	325
	Total	acid- ity a.s H ⁺ 1									
	Hardness as CaCO,	Non- carbon- ate	49	31	35	38	34	33	35	53	26
	Harr as C	Cal- cium, magne- sium	42	48	23	63	22	55	63	104	126
63	Dissolved	solids (residue at 180°C)	142	102	06	116	26	93	110	173	203
ber 19		rrate (NO ₃)	1.8	1.7	6.1	3,1	8.2	1.7	4.9	10	12
Septem	i	ride (F)	9.0	ļ	0.	;	4,			1.0	
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chioride (C1)	7.0	5.0	6,0	0.9	7.5	6.0	6.5	10	77
ar Octobe		Suifate (SO ₄)	46	30	31	38	28	33	35	53	25
ater ye		Bicar- bonate (HCO ₃)	37	21	25	31	28	27	38	62	98
ton, w	Po-	tas- sium (K)	1.8	1.4	1.0	1.4	1.8	80	۰.	2.5	2.2
per mill		Sodium (Na)	6.9	4.1	5.2	7.3	5.4	5.0	0.8	10	77
n parts	Мад-	ne- sium (Mg)	7.1	3.6	4.9	5.6	5.4	6.4	5.6	9	13
rses, 11		cal- cium (Ca)	20	13	13	16	14	14	16	52	53
l analy	Man-	ga- nese (Mn)	0.01	6.	e.	.05	.02	-	8	80.	8
Chemica		Iron (Fe)	0.01	.05	8	10.	.02	1	8	10.	8
		Alum- inum (Al)				_		_		_	
		Silica (SiO ₂)	6.7	6.5	8.0	6.4	6.0	4.1	5.9	9.9	9.9
	, , , , , , , , , , , , , , , , , , ,	mean discharge (cfs)	1120	4050	1900	1600	4160		_		377
	4	Date of collection	Oct. 18. 1962.	Nov. 14	Dec. 19	Jan. 31, 1963.	Mar. 14	Apr. 22	June 6	July 7	Sept. 3

DELAWARE RIVER BASIN--Continued

1-4547.2. LEHIGH RIVER AT EASTON, PA.

No discharge records available. LOCATION ...At center of Third Street Bridge, Easton, Pa., Northampton County, on U.S. Highway 611.

BACHANGE AREA....1364 square males as Cotober 1961 to September 1963.

When the Association of Cotober 1961 to September 1963.

When the Association of Cotober 1961 to September 1963.

When the Association of Cotober 1961 to September 1963.

When the Association of Cotober 1961 to September 1963.

When the Association of Cotober 1962 to Markaman daily, 581 micrombos Aug. 19; minimum daily, 89 micrombos May 5.

When the Association of Cotober 1962 to Markaman daily, 581 micrombos Aug. 19; minimum daily, 84 micrombos Sept. 2, 1962.

When the Association of Markaman, 867 Mag. 3, 1962 minimum, freezing point on several days each year.

When the Association of Conductance of daily samples woullable in district of fitting as Philadelphia, Pa. No discubrage records

1969 Chamber of C

		Col-		•	'n	က	ņ	3	က	e	ļ	3	က	က	8	9
		Hď	7.9	:	7.0	6.7	7.3	7.7	6.9	6.9	6.9	7.3	7.2	7.3	7.4	7.2
	Specific conduct-	ance (micro- mhos at 25°C)	197	:	185	85	185	112	223	249	168	188	198	261	267	345
	Total	acid- ity as H ⁺ 1				_										
	Hardness as CaCO,	Non- carbon- ate	143	}	40	16	37	12	4	43	33	34	35	48	20	63
	Harr as C	C. C. L.	7.5	:	89	32	29	43	78	8	57	2	74	103	101	129
ber 1963	Dissolved	solids (residue at 180°C)	120	1	120	;	105	;	1	137	96	118	110	158	159	213
epter	,	rrate (NO ₃)	9	;	3.1	1.2	2.2	1.4	9.2	9.7	6.4	7.1	5.5	2.7	7.8	2
62 to S		ride (F)	0	;	E.	;	٤.	1	1	4.	;	4.	4.	۰.	9.	1.2
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	7.0	:	5.9	2.0	7.0		12	13	5.5	7.8	0.8	9.5	12	16
ter year		Sulfate (SO ₄)	38	}	39	17	34	19	37	38	30	34	34	46	49	09
ton, wa		bonate (HCO ₃)	o e	;	34	23	36	34	46	46	30	44	48	67	62	80
11	P 0-	tas- sium (K)	-	:	2.2	¦	2.3	1	ł	3.5	2.0	2.5	2	2	3.0	4.5
parts per		Sodium (Na)	10	;	5.1	2.5	2.0	!	10	8.6	4.6	6.0	7.0	9.2	91	13
ses, in	Mag.	ne- sium (Mg)	7.3	:	5.6	1	80	;	;	8.9	5.4	9,9	7.1	2.6	2	13
l analy		Cal- Cium (Ca)	81		18	1	17	!	}	21	14	17	18	22	24	30
hemica	Man-	ga- nese (Mn)	0	:	.0	ł	6.	1	}	8	;	8.	8	8.	8.	8.
•		Iron (Fe)	00	:	.02	ì	8.	1	1	8	90.	8.	8	.07	8.	8.
	:	Alum inum (A1)														
		Silica (SiO ₂)	7.8	:	6.5	;	5.8	1	1	6.4	4.8	4.3		9.9	7.0	7.3
	,	mean discharge (cfs)								_		_	_			
		Date of collection	Oct. 1, 2,	Nov. 1. 3.:	5-8, 10	Nov. 2, 4, 9	Dec. 1-8	Dec. 9	Feb. 6, 1963	Mar. 1-10	Apr. 7-10	May 1-10	June 1-10	July 1-10	Aug. 2-10	Sept. 1-10

DELAWARE RIVER BASIN -- Continued

DELLARAGE ALYER BASIN--CONTINUED
1-4547.2. LEHIGH RIVER AT EASTON, PA.--Continued

	Aver-	-Bc		1.1	m -1 0:	
	Y	•	0.9 2.4 3.8	113	53 61 72	92,00
		31	51 32	32 11 48	131	80 73
		30	52 42 35	115	5.5 6.4 8.1	81 72 62
		29	52 40 37	112	818	82 71 61
		28	58 40 36	36	60 62 82	83 72 65
		27	5 0 4 0 3 8	32 36 48	55 62 82	82 75 64
		26	60 40 37	36 48	55 62 78	82 74 62
63		25	58 36	36	53 61 80	81 74 62
. 19		24	55 42 36	32 34 40	54 62 75	82 77 60
mbe		23	0 4 6 0 4 8	32 40	59 60 74	61 63
pte		22	58 41 34	35 41	58 62 70	80 80 78 80 69 70
o S		21	61 42 38	413	59 47	80 78 69
32 t		20	58 42 38	813	60 62 60 64 73 73	82 72 71
19		19	63 44 38	38 40 41	60 73	82 76 72
ber		18	61 42 38	36 42	56 52 65 64 72 72	80 78 65
Oct		17	61 44 36	35	56 65 72	77 72 65
Temperature (°F) of water, water year October 1962 to September 1963	Day	2	60 44 36	34 36 37 42 41	52 61 70	844
F.		-5	345	34 42	54 61 67	78 72 64
wate		7	63 45 32	36	54 61 68	80 80 76 78 71 67
Ι,		13	46 45 49	36	46 61 70	
wate		12	3 4 6	318	49 49 60 62 72 70	74 76 79 78 71 72
Jo		Ξ	64 52 36	39	49 60 72	74 79 71
F		10	60 50 37	40 36 36	 69 71	77 80 78 77 73 72
9		٥	300	311	63	
atur		œ	404	3 1 %	52 65 71	75 78 80 76 69 74
per		7	66 44 42	36	4 4 7 2 7 2	75 80 69
Ten		9	6.2 4.5 4.4	36	46 62 72	75 78 68
		5	65 47 43	37	50 62 72	77 78 72
		4	66 47 43	36 40	51 59 70	80 79 73 70
		3	48	38	54 57 69	80 73
		2	60 50 41	32 32 37 37	46 49 54 48 67 64	82 83 80 73 72
		-	44 47 42			
	Month	Month	October November December	January February March	April May June	JulyAugust

DELAWARE RIVER BASIN -- Continued

1-4635, DELAWARE RIVER AT TRENTON, N. J. (MORRISVILLE, PA.)

LOCATION .-- At gaging station, 450 feet upstream from Calboun Street Bridge at Trenton, Mercer County, and 0.5 mile upstream from Assunpink Creek.

DAMINAGE AREA. --6,780 square miles.

RECORDS AFMILMEE. -Chemical maniyees. October 1944 to September 1963.

Water temperatures: October 1944 to September 1963.

Sediment records: September 1949 to September 1963.

		Color	80	2 ·	· ·	m	'n	2	7	2	m	9	10	٤	s
		푎	7.2	7.3	7.1	6.9	7.5	0.7	7.1	6.5	6.9	6.9	6.9	8.9	6.9
	Specific conduct-	(micro- mhos at 25°C)	178	155	120	184	177	182	2	129	133	148	170	170	187
	Hardness as CaCO,	Calcium, Non- magne-carbon- stum ate	33	27	27	22	22	59	16	55	20	21	55	2	56
			99	24	8	99	88	9	31	2	21	26	64	5	73
	Dissolved	(residue at 180°C)	103	101	8.	110	103	88	22	ł	82	88	ł	105	119
		trate (NO ₃)	_	_		_	_		2.3	3,3	3.0	3.9	4.9	3,6	4.6
2	Fluo-	ride (F)	0.3	7	7.	ب	۲.	4	-:	:	N.	7	ļ	~	۳.
controlly mindle by the party of the control of the	opino(4)	(CI)	7.6	5.5	5.8	7.0	8.5	8.8	3.4	4.0	0.9	6.5	8.0	9.0	10
		(300,	30	56	56	25	56	22	15	24	22	22	25	22	27
	Bicar-	bonate (HCO,)	17	36	36	48	39	38	19	34	38	43	21	49	24
	Po-	Stum (K)	9.0	1.6	'n	1.7	1.7	4.0	1.0	ł	5	1.3	l	1.7	1.8
	on the co	(Na)	6.2	4.5	4.4	6.3	8.9	6.0	2.8	5.1	5.5	5.8	0.6	7.4	8.9
, ,	Mag-	sium (Mg)	6.3	4.6	5.1	6.3	5.1	5.4	2.2	ì	4.4	4.4	1	3.9	9.9
DO CY BY	Cal-	ctum (Ca)	16	15	14	16	15	15	8.8	1	13	15	ì	18	18
1001	į	(Fe)								0.27					
	9	(310,2)	4.4	3.5	4.4	7.8	2.0	4.6	3.8	ł	1.3	3.5	1	2.8	3.8
	Mean	discharge (cfs)	5120	9110	0006	4420	6820	11600	26100	9200	7850	4870	4200	3480	2470
		Date of collection	Oct. 1-10, 1962	Nov. 1-10	Dec. 1-10	Jan. 1-10, 1963	Feb. 1-5, 7-10	Mar. 1-10	Apr. 1-10	Apr. 15	May 1-10	June 1-10	July 1-2	Aug. 1-10	Sept. 1-10

DELAWARE RIVER BASIN---Continued

1-4635. DELAWARE RIVER AT TRENTON, N. J. (MORRISVILLE, PA.) -- Continued

,	ı	1	1						ı
	September	min	7.2 7.4 7.4 6.9	11111	6.8 6.9 7.7	8.2 8.1 8.1	7.8 8.8 9.5 9.5	8.9 7.7 7.7 1.8	7.9
	Septe	max	12.8 12.7 12.9 11.4	11111	13.6 13.0 10.9 12.9 9.5	10.1 11.3 12.5 12.1	10.7 12.6 12.9 12.8 13.1	13.2 12.9 12.8 9.1 11.1	12.0
	ust	min	7.3 6.7 7.1 6.7	11116	7.5 7.1 7.5 6.5	7.6 6.9 7.7	7.4 7.1 6.8 6.9	7.4	1
	August	max	10.9 11.8 11.3 10.6	12:2	12.4 10.9 11.3 4.21	12.3 13.1 12.2 12.2	12.1 11.2 11.8 10.9	12.9 11.7 11.7 12.2	;
	Tully	min	7.2 6.9 7.6	6.9 6.9	8.0 7.2 6.9	7.9	0.9	6.1 6.1 6.8	ı
	P.	max	11.7 11.7 12.0 12.8	13.2	12.5 13.9 11.4 12.8	13.0 12.9 12.9 11.8	10.9	11.6 12.1 12.6	
r 1963		min	8.3 8.1 8.1	7:1111	7.6 7.5 8.3 8.1		7.5	115111	ī
ptembe	June	max	11.9 11.6 10.8 12.3 12.3	12.4	10.7 12.5 11.2	12.2	12.3	118111	1
to Se	.y	min	8.9 9.3 10.0 10.0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.7 8.0 8.8 9.1	8 8 8 8 8 8 4 4 4 4	88	1 4 1 8 8	8.8
million, water year October 1962 to September 1963	May	max	11.7 12.4 12.9 12.9	13.1 13.4 12.7 12.1 11.8	9.8 10.7 11.2 10.7	11.3 11.4 10.3 9.5	10.0	1.11 1.11 1.11 7.11	11.4
Octob	11.	min	12.5 11.2 11.0 11.5	12.1 11.5 11.5 4.11.5	11.2	4.0.0111	11.1 10.9 10.5 11.2	111.4 111.3 110.9 8.8	11.2
r year	April	max	12.8 12.5 11.8 11.8	12.2 12.2 12.2 11.8	12.2 11.9 11.8	13.0 12.7 13.6 14.2	14.5 14.2 13.0 13.7	14.5 14.5 14.5 11.0	13.0 11.2
, wate	March	min	13.5 13.1 13.5 12.8 12.6	12.3 12.7 12.8 12.6	12.6 12.8 12.6 12.6	12.6 12.4 12.3 12.7	11111	13.1	ī
1111or	Ma	max	14.9 14.8 15.0 14.7 12.9	12.7 13.2 13.5 13.5	13.0 13.0 13.0 13.0	13.0 12.7 12.9 13.0	11111	13.0	ŀ
s per	uary	min	13.9 13.3 12.7 12.8	13.0 12.7 13.1 14.3	13.6	12.8	12.6 13.7 14.4 14.2 14.0	14.1	I
part:	February	max	14.2 14.8 13.3 13.1	13.5 13.2 14.3 14.8	13.6	13.8	14.3 15.0 15.0 15.0	15.0	1
gen, in	ary	nin	13.8 13.4 13.2 13.1 12.9	12.7	11111	13.8 13.9 13.7 13.6	13.5	111111	1
Dissolved oxygen, in parts per	January	max	14.3 14.0 13.5 13.3	13.0	11111	14.2 14.8 14.5 13.4 13.5	13.5	111111	1
issolv	mber	min	12.1 12.1 12.1 11.8 11.8	10.7 10.9 11.4 12.0	12.8	13.0 12.5 12.6	12.9 13.6 13.4 13.6	13.9 13.2 13.2 14.2	1
	December	max	12.8 12.9 12.9 13.3	11.4 11.6 12.0 12.4 12.9	13.1 13.6	13.4 13.0	11 41 11 1 1 0 4 4 6 1 0 4 7 6	14.7 13.9 14.5 14.7	1
	November	min	8.7 9.4 9.5 9.5	10.3 10.6 10.8 10.7	9.6 10.1 10.0	11111	11.0 11.0 11.8 12.0	12.6 12.6 12.5 12.5 11.8	10.7
	Nove	max	10.7 10.7 9.9 10.0	11.2 11.6 11.5 11.3	10.1 11.0 10.3 10.3	11111	12.1 11.5 11.8 12.0	13.1 13.1 13.1 12.8	11.4
	ber	min	7.5	1.9 5.7 8.7	24.E.L.	8 8 8 8 8 6 6 6 6 6	8888 67.7.4.1	9.2 9.7 10.3 9.9 9.5	8.2
	October	max	11.3 11.6 11.5 10.3	7.77	4.00.00 7.00 1.00	10.2 10.4 11.4 12.2 12.8	12.5 13.2 11.8 12.0	12.2 13.2 13.4 13.3 11.8	10.8
	200	na)	H 20 24 10	6 8 9 10	1122111	16 17 18 19 20	22 23 24 25	26 27 28 29 30 31	Aver- age

DELAWARE RIVER BASIN -- Continued

1-4635. DELAWARE RIVER AT TRENTON, N. J. (MORRISVILLE, PA.) -- Continued

	Average	TACTOR OF	61 58	4.5	11	11	11	3 8 3 8	52	11	78 73	85	81 75	72 66
		31	64	11	33	11	11	11	11	7.1	11	89 0	80 74	11
		30	649	40,	33	11	11	11	57	70	96	88	81	67
		29	53	41	34	11	11	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	55	63	86 80	83	74 72	67 65
		28	53	4 0	11	11	35	1.1	5.50	63	81	9 4	79	72
		27	51	410	11	11	35	8 4 8	53	61	87 78	91		71 63
		56	52	39	336		35	4 4 5	5.4	62	85	88	11	69
g _		25	52	45	93	11	33	11	52	62	75	80	79	68
FA.)Continued September 1963		24	54	4 5 2	334	333	33	11	53	66	92	11	81	64 59
ont		23	59	44	33	33	33	38	58	69	80	11	78	67
September		22	5 8 8 8	43	333	33	33	38	5.8	63	77	8 8 2 5	81 78	71
		21	4,0	4 2	33	3.4	33	38	62	66		8 8	83	72
t i		20	4.6 8.8	45	35	38	36	39	49 09	67	11	86 81	79	76
1962		-	59	43	33	36	34	41	51	6.8	11	90	78	75
		-8	49	44	333	36	11	4.1	60 54	65	11	88 81	82 75	68
		17	65	44	11	35	11	4 4	55	11	11	86	80	63
, ŏ	Day	2	65	4 4 6 9	11	33	11	4 10 4	53	69	75 69	8% 76	79	63
yea		15	64	4 4	11	11	11	39	54	63	73	73	78	64
water		4	64	44	11	11	11	3 8	54	62	72 70	76	77	71
		5	66	4.5	11	11	11	38	52	11	75	81	77	74
water,		12	63	4 4	33	11	34	3 8	51	11	74	7,4	77	78
of w		Ξ	65	4 9	35	11	33	3.9	4 4 8	11	7.7	80	94	78
5		2	61	4 6	36	33	66	38	4.8	11	75	11	86 79	11
(°F)		٥	62	46	38	11	33	38	4 8	11	76	81	85	
ture		ω	63	4 5	40	11	333	338	4 4 8 4 6 4 6	11	3 75	74	94	77 5
		7	63	4 4 5 6 5	43	333	8 8	36	4 6 4 9		7.8	87	82	74
Temperature		9	11	4 4 5	4 5	4.6	333	38	4 6		7.3	93	9 84	70
1		5	65	44	42	5.6	33	8 8	6 4 4 6 4 4	11	78	81	83	7.3
		4	65	4 5	47	33	333	27.0	11	11	1 69	7.81	9 8 0	77 8
		က	63	4 9	40	233	33	35	11	11	71	11	84	79
		2	6 67	1 50	45	333	333	5 37	11	53 53	7 69	89 90	3 84	2 79
		-	66	51	40	33,	33	35			74		83	79
	Mean	Month	October Maximum Minimum	November Maximum Minimum	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum	April Maximum Minimum	Maximum	June Maximum	July Maximum Minimum	August Maximum Minimum	September Maximum Minimum

DELAWARE RIVER BASIN--Continued

1-4635. DELAWARE RIVER AT TRENTON, N. J. (MORRISVILLE, PA.)--Continued

Suspended sediment, water year October 1962 to September 1963 (Where no concentrations are reported, loads are estimated)

		OCTOBER			NOVEMBER		 	CECEMBER	
	Mean	Suspend	ded sediment	Mean	Suspend	ed sediment	Mean	Suspend	led sedime
Day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	4400	10	120	6800	52	950	6840	2	37
2	4040	9	98	7700	33	690	6400	2	35
3	3450	6	56	8600	30	700	6060	2	33
4	3050	3	25	11500	62	1900	5820	2	31
5	3210	6	52	10500	33	940	5820	2	3 1
6	4640	85	1100	9200	14	350	6920		80
7	7500	95	1900	8700	14	330	11000		200
8	7500	55	1100	8300	14	310	13700		300
9	6880	32	590	7800	6	130	15000		400
10	6500	25	440	12000	140	450U	12400		300
1	5000	,_	-70						
11	5980	17	270 180	18800 1960u	220 230	11000 12000	11000 9740		200
12	5220 5100	111	150	18000	140	6800	8250		100
4	7020		S 570	15700	55	2300	6600		80
5	7000	23	430	13500	19	690	6400		70
		1 1		l.				i	
16	5460	12	180	11900	10	320	6600	4	71
17	4660	3	38	10800	7	200	6600	4	71
18	4110	2	22	10200	6	170	6600	4	7
19	3800	2	21	10300	5	140 48	7200	5	91
20	3310	2	18	8950	2	48	7400	5	100
21	3250	2	18	8800	3	71	7000	4	76
22	3350	2	18	11200	25	760	6500	4	70
23	3250	1	9	11300	14	430	6220	4	67
24	3210	1	9	11300	6	180	6960	4	75
25	3350	1	9	11100	5	150	5660	4	61
. 1	24.20		•	10400	-	1.0		1 . 1	
26	3420 3310	1 2	9 18	10600 8950	5 4	140 97	5100 5180	4	5 5 5 6
27	3720		40	8650	4	97	4630		50
28	3660	4 3	30	7850	3	64	4820	4	52
3ó	3080	2	17	7120	2	38	4940	4	53
31	3520	6	57				3500	2	19
Cotal	139950		7594	325720		46491	226860		3041
		JANUARY			FEBRUARY			MARCH	
		JANOAKI			LEBROART			MAKEN	
1	3300	2	18	6400	5	86	4520	3	37
2	4000	3	32	6000	5	81	5060	4	5 5
3	4500 4750	3	36 38	7000 7300	6	110 120	5060 5580	4 5	5: 71
4	5000		38 54		5	86	9380		500
5	5000	4	24	6400	, ,	80	9380		501
6	4750	3	38	8400	16	230	18600		3000
7	4500	3	36	8000	8	170	21900		3000
8	4100	3	33	7400	6	120	17600		700
9	4500	3	36	6000	5	81	15500		40
١٥	4750	3	38	6900	6	110	13200		200
	4630	3	38	6200	5	84	14900		40
12	5100	4	55	7000	18	340	13400	5	18:
3	8000		300	7000	1 6	110	14800	6	24
	9200		300	7000	8	110	13700	5	18
	8350		200	6500	5	88	14700	6	24
4		1 1		l .					
5		1 1		6400	5	86	15500 18000	8	33
15	8350		200					15	731 851
14	8350 8200	7	150	5460	4	59			
16	8350 8200 7450	7 6	150 120	5460 5340	4	58	20900	15	
16 · . 17 · . 18 · .	8350 8200 7450 7040	7	150 120 95	5460 5340 5220	4 4	58 56	20900 22900	25	150
16 · . 17 · . 18 · .	8350 8200 7450 7040 9150	7 6	150 120 95 400	5460 5340 5220 5700	4	58 56 77	20900 22900 27100	25 75	150 550
16	8350 8200 7450 7040 9150	7 6 5 	150 120 95 400 500	5460 5340 5220 5700 6100	4 4 5 6	58 56 77 99	20900 22900 27100 28300	25 75 75	150) 550) 570)
14 15 16 17 18 19 20	8350 8200 7450 7040 9150 11500 9100	7 6 5 	150 120 95 400 500 300	5460 5340 5220 5700 6100 5380	4 4 5 6 4	58 56 77 99 58	20900 22900 27100 28300 25100	25 75 75 38	1500 5500 5700 2600
14 15 16 17 18 19 20 21 22 23	8350 8200 7450 7040 9150 11500 9100 8450	7 6 5 	150 120 95 400 500 300 200	5460 5340 5220 5700 6100 5380 4630	6 4 3	58 56 77 99 58 38	20900 22900 27100 28300 25100 21400	25 75 75 38 20	1500 5500 5700 2600 1200
14 15 16 17 18 19 20 21 22 23 24	8350 8200 7450 7040 9150 11500 9100 8450 8200	7 6 5 	150 120 95 400 500 300 200 180	5460 5340 5220 5700 6100 5380 4630 4660	6 4 3 3	58 56 77 99 58 38 38	20900 22900 27100 28300 25100 21400 19000	25 75 75 38 20 17	1500 5500 5700 2600 1200 870
14 15 16 17 18 19 20 21 22 23 24	8350 8200 7450 7040 9150 11500 9100 8450	7 6 5 	150 120 95 400 500 300 200	5460 5340 5220 5700 6100 5380 4630	6 4 3	58 56 77 99 58 38	20900 22900 27100 28300 25100 21400	25 75 75 38 20	1500 5500 5700 2600 1200
14 15 16 17 18 19 20 21 22 23 24 25	8350 8200 7450 7040 9150 11500 9100 8450 8200 7200	7 6 5 8 7	150 120 95 400 500 300 200 180 140	5460 5340 5220 5700 6100 5380 4630 4660 4900	6 4 3 3 3	58 56 77 99 58 38 38	20900 22900 27100 28300 25100 21400 19000 18600	25 75 75 38 20 17 15	1500 5500 5700 2600 1200 870 750
14 15 16 17 18 19 20 21 22 23 25	8350 8200 7450 7040 9150 11500 9100 8450 8200 7200	7 6 5 8 7	150 120 95 400 500 300 200 180 140	5460 5340 5220 5700 6100 5380 4630 4660 4900	6 4 3 3 3 3	58 56 77 99 58 38 38 40	20900 22900 27100 28300 25100 21400 19000 18600	25 75 75 38 20 17 15	1500 5500 5700 2600 1200 870 750
14 15 16 17 18 19 20 21 22 23 24 25	8350 8200 7450 7040 9150 11500 9100 8450 8200 7200 6600	7 6 5 8 7	150 120 95 400 500 300 200 180 140	5460 53460 5220 5700 6100 5380 4630 4660 4900 4110 4190	4 4 5 6 4 3 3 3 3	58 56 77 99 58 38 40 33 34	20900 22900 27100 28300 25100 21400 19000 18600	25 75 75 38 20 17 15	1500 5500 5700 2600 1200 870 750 2800 5 43000
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	8350 8200 7450 7040 9150 11500 9100 8450 8200 7200 6600 6600 6600	7 6 5 8 7 6 6	150 120 95 400 500 300 200 180 140 110	5460 5340 5220 5700 6100 5380 4630 4660 4900	6 4 3 3 3 3	58 56 77 99 58 38 38 40	20900 22900 27100 28300 25100 21400 19000 18600 23400 50900 82700	25 75 75 38 20 17 15 45 28∪ 480	1500 5500 5700 2600 1200 874 755 2800 5 43000 11000
14 15 16 17 18 20 21 22 23 24 25 26 28 29	8350 8200 7450 7040 9150 11500 9100 8450 8200 7200 6600	7 6 5 8 7	150 120 95 400 500 300 200 180 140	5460 5340 5220 5700 6100 5380 4630 4660 4900 4110 4190 4520	6 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	58 56 77 99 58 38 38 40 33 34 37 	20900 22900 27100 28300 25100 21400 19000 18600	25 75 75 38 20 17 15	1500 5500 5700 2600 1200 870 750 2800 5 43000
4 5 6 7 8 9 21 22 23 24 25	8350 8200 7450 7040 9150 11500 9100 8450 7200 6600 6600 7000	7 6 5 8 7 6 6 6 5	150 120 95 400 500 300 200 180 140 110 110	5460 5340 5220 5700 6100 5380 4630 4660 4900 4110 4190 4520	5 6 4 3 3 3 3 3 3 3 3 3	58 56 77 99 58 38 40 33 34 37	20900 22900 27100 28300 25100 21400 19000 18600 23400 50900 82700 64900	25 75 75 38 20 17 15 45 280 480 260	150 550 570 260 120 87 75 280 5 4300 11000 4600

DELAWARE RIVER BASIN -- Continued

1-4635. DELAWARE RIVER AT TRENTON, N. J. (MORRISVILLE, PA.) -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

Į		APRIL			MAY			JUNE	
		Suspend	ded sediment		Suspend	ed sediment		Suspende	d sedimer
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	43200	40	4700	8450	8	180	5510	4	60
2	35900	30	2900	9740	12	320	5320	4	57
3	30900	20	1700	10200	10	280	4940	4	53
4	30200	16	1300	9150	5	120	4750	4	51
5	29100	13	1000	8100	5	110	4560	6	74
6	25300	12	820	7350	4	79	4490	8	97
7	20200	12	650	6800	4	73	4560	9	110
8	17100	11	510	6650	5	90	4490	9	110
9	15300	10	410	6060	4	65	5130	9	120
0	14200	11	420	6020	4	65	4980	9	120
1	13200	10	360	7080	9	170	4750	8	100
2	12300	9	300	9050	19	460	4240	8	92
3	11400	8	250	8700	6	140	4060	8	88
5	10200 9500	7 6	190 150	7950 7550	4	86 82	4680 5170	10	100 140
•••	9500	1		",,,,,	"		1	1 1	
6	8850	5	120	7300	4	79	4980	10	130
7	8300	4	90	7040	4	76	5050	10	140
8	7900	4	85	7040	4	76	5050	10	140
9	8200 8450	6 9	130 210	10500 12700	31	880 1200	4830 4240	10	130 110
•••		1 1		12700	"				
1	8600	9	210	12200	19	630	4090	10	110
2	7800	5	110	10500	6	170	4560	10	120
3	7800	6	130	9560	5	130	4060	10	110
4	7750	8	170	8500	5	110	3780	10	100
5	7850	6	130	7650	5	100	3520	10	95
5	8250	8	180	7080	4	76	3120	10	84
7	7950	7	150	6700	4	72	3060	9	74
3	7450	6	120	6400	4	69	3000	9	73
9	6700	4	72	6300	4	69	3000	9	73
0	6500	4	70	6220 6140	6	67 99	3550	9	86
otal	436350		17637	250680		6223	131520	+ +	2947
-	130371	JULY		2,7000	AUGUST			SEPTEMBER	****
					г г				
1	3950	10	110	3520	12	110 94	2420	4	26
3	4450 3920	12	140 95	3850 3550	6	58	2680 2230	6	43 24
4	3490	l á l	75	4790	18	230	2300	4	25
5	3060	7	58	4310	9	100	2600	6	42
6	2400	6	39	3620	6	59	2860	8	62
7	2300	6	37	2920	5	39	2650	6	43
8	2450	6	40	2650	4	29	2450	4	26
9	2520	6	41	2700	3	22	2380	4	26
0	2780	6	45	2860	4	31	2140	4	23
١	3270	8	71	3420	6	55	2040	4	22
2	3030	8	65	3390	7	64	2330	6	38
3	2550	8	55	2570	4	28	3250	13	110
•••	2570	8	56	2400	5	32	2730	12	88
5	2750	8	59	2810	6	46	2700	12	87
5	2840	8	61	2700	4	29	2470	10	67
7	2950	8	64	2330	4	25	2330	10	63
8	2730	8	59	2180	4	24	2330	10	63
9	2550 2980	8	55 80	2500 2700	4	27 29	2550 2700	10 10	69 73
i		1			1 1		l .	l i	
	3620	10	98	2750	4	30	2700	10	73
2 • •	4640	12	150	2890	4	31	2730	10	74
3	4750 4860	10	130 130	303 0 2810	5 4	41 30	2810 2260	10	76 37
5	4060	8	88	2700	4	29	2000	5	27
6	3520	8	76	2600	4	28	2160	4	23
7	3490	8	75	2010	4	22	2280	4	25
8	3300	8	71	2000	4	22	2260	4	24
9	3210	9	78	1970	4	21	2650	9	64
	2680	8	58	1930	4	21	3650	15	150
0									
	2730	8	59	2350 88810	5	32 1438	75640		1593

DELAWARE RIVER BASIN--Continued

1-4646. DELAWARE RIVER AT BRISTOL, PA.-BURLINGTON, N. J. BRIDGE

DOCATION.--Three hundred feet upstream from the Bristol-Burlington Bridge.

BRAINAGE AREA.--7 [35] square miles.

BRONDAR ANILAGE.-Chemical namiyees: August 1949 to September 1963.

Water temperatures: October 1964 to September 1963.

EXTREMES, 1964-63.--Water temperatures: Maximum, 86°F July 30, 31, Aug. 1, 3; minimum, 33°F Jan. 25, 27-31, Feb. 4.

EXTREMES, 1964-63.--Water temperatures: Maximum, 86°F July 30, 31, Aug. 1, 3; 1963; minimum, freezing point in many days during winter months.

EXTREMES, 1964-63.--Water temperatures: Maximum, 86°F July 30, 31, Aug. 1, 3; 1963; minimum, freezing point in many days during winter months.

EXTREMES, 1964-63.--Water temperatures: Maximum, 86°F July 30, 31, Aug. 1, 3; 1963; minimum, 4dditional data published in NSP 1262, Chemical characteristics of Delaware River fact Trenton, N. J. for Maximum fook, Pa. Records of discharge given for Delaware River far Trenton, N. J.

	CE WATERS,	1	96	3				
5	solved oxygen a	11.2	11.6	12.5	12.9	10.2 9.3	3.6	4.5
Bio-	ical de- mand					9 E	ໜູ ຫຼ	3.0
	Col-	2	®	~	ß	55.0	273	4
	Н					6.9	0.00 0.00 0.00	9.6
Specific	ance (micro- mhos at 25°C)					137	180 183 209	
ta 3	actd ity as H ⁺ 1							
Hardness as CaCO ₃	Non- car- bon-	53	25	33	33	2 7	257 345	34
	10289					202	63 73	2
Dissolved	solids (residue at 180°C)	110	100	111	123	52 85	120 111 132	137
, and	(PO.)							
ž	(NO ₃)	7	4.8	1.9	5.9	4.0	7.1 5.1 6.9	8,0
	ride (F)	0.3	٥.	~	~	4.6	ε. - i 4.	
	Chloride (C1)	7.0	6.5	11	13	6 6 6 6	9.0 10.0	12
	Sulfate (SO ₄)	30	58	28	30	7.2	300	37
	\$ # B	L						_
	bon- ate (HCO ₃)	31	34	32	41	33	5 5 8	44
É	[E]							
Po-	stum (K)	2.8	8.1	1.8	53	2.8	20.0	2.2
	Sodium (Na)	6.2	6.0	6.7	0.6	21 to	9.0 9.0	13
Mag-	sium (Mg)	4.6	4.4	5.1	6,3	3.9	6.4 6.1 8.9	6.1
2	cium (Ca)	14	14	16	16	6.8	15	18
Man-	ga- nese (Mn)	0.02	8	8	8	28	888	8
	Iron (Fe)	0.04	.05	60	.07	12.	888	.07
Alu-	Al)			_				
	Silica m (SiO ₂) m (A					e.e.	3.5	8.8
1	Mean discharge (cfs)				9380	35900 6800	3900 4420 2240	3750
Date	Date of collection				Mar. 5	Apr. 2	July 1	Sept. 30

a Collected 3 feet below surface.

DELAWARE RIVER BASIN -- Continued

1-4646, DELAWARE RIVER AT BRISTOL, PA,-BURLINGTON, N. J. BRIDGE -- Continued

1 1	1							I
September	uta	1.8 1.9 1.9 2.0	2 2 2 2 1 1 7 2 2 4 4	11.6	1 1 8 8 8	23.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	1.2222.	2.6
Septe	max	2.8 3.3 4.1	22.23.3	4.0.111	1.4.1.2.5.5.5	E E 4 4 E	3.7. 7.1.4 1.9	3.5
ust	min	8.11	2.3	7.11.15.11.19	2.1. 2.4.8.1.	00000	4.5.5.5.5.	1.2
August	max	0.010 0.014	7.7.04	200000 200004	0 0 0 0 0 0 5 0 6 6 4	7.1 8.8 8.1	112222	2.5
ľ	mtn	1.0	22.0	11.8 1.1.6 1.6	r.o.r.4.0	∾ ಹ ∾ 4.4	1118	1
July	max	3.6	4.4 10.	33.25.6	0.8.0.0.4	7.1.1. 8.1.1.	2.9	1
۰	ntn	00000 000-4	44.6.6. 0.0.6.4.	4.1.1.1	11088	25.8.4	1.90	1
June	max	2.7. 2.7. 6.0 6.0	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.9	1 2 9 1	4.4.E E.S.C.	18.8111	1
F.	ntm	0 8 8 8 0 4 7 4 6 6	8.1 7.6 7.0 6.8	6.22	6.32	11811	6.2	7.1
May	max	10.0 9.5 9.5	4.88.7.	7.1 6.8 6.7 7.3	4.7.7 8.9 8.4	11511	7.7	7.9
ı.	mln	11.6	11111	10.6	11.4 111.1 10.3 10.3	10.1 9.1 8.8 9.0	≈ ∞ 0 0 0 0 - ∞ 10 ∞ 4 1	1
April	max	11.7 12.0 11.7	11112	1.11	11.7 11.3 11.0 10.7	10.9 10.5 9.5 9.5	9.7 10.4 10.4 10.5	1
ę,	ntn	13.0 13.6 12.7 12.4	11.3	11.11	12.1 11.8 11.8 10.9	11111	11.9 10.9 11.5 11.7 11.6	T
March	max	13.4 13.8 13.9 13.6	12.0	11.8	122.3	11111	12.5 11.9 11.7 12.0 11.8	;
ıary	nta	13.7 13.5 13.2 13.5	13.3	13.1 12.5 12.5	12.6 12.8 12.9 13.0	13.3 12.7 12.5 12.5	12.9	13.0
February	max	13.9 13.8 13.7 13.7	13.6 13.6	13.5 13.5 13.2	13.1 13.2 13.4 13.5	13.6 13.5 12.8 12.8	13.3	13.4
ary	min	11111	11111	12.9 12.6 12.3 12.3	12.3 12.9 13.6 13.7	13.3 13.0	13.7 14.0 13.8	1
January	max	11111	11111	13.2 12.9 12.7 12.8	12.9 13.8 13.9 13.9	13.5	10000000	1
nber	mtm	12.3 12.3 11.8 11.6	24.5.5.	12.7 12.7 12.8 13.1	13.5 13.5 13.5 13.5	13.2 12.9 13.0	13.5	12.7
December	max	12.8 12.7 12.6 12.5 11.9	12.1 11.8 11.7 11.7	13.0 13.5 13.9	13.9 14.0 13.9	13.5 13.3 13.8 13.8	14.0	13.2
mber	nta	8.3 9.2 9.7 9.9	10.5 10.5 10.5 10.5	9.8 9.8 4.01	11111	22222 22222	111221 7.1221 7.1221 1.53	10.6
Novembe	max	9.7 10.1 10.1 10.3 10.8	11.0 11.0 11.0 10.6	10.7 9.9 110.4 11.0	11111	11111 13.8.8.1 15.3.8.1	122.6	11.2
ber	mtm	7.0 6.7 6.3	9,00	99999	00000 0464	6.5	7-8-8-8-8 6-1-4-8-4-6	8.9
October	max	7.8 7.6 7.1 6.9	7.2	6.7 7.2 7.2	7.1	7.6	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.7
Dav	3	-0.64·0	6 8 9 10	125145	11 11 11 11 12 13	12222	33 53 53 53 53 53 53 53 53 53 53 53 53 5	Aver-

DELAWARE RIVER BASIN---Continued

DELAWARE RIVER AT BRISTOL, PA.-BURLINGTON, N. J. BRIDGE.-Continued

	Amerane	nerage.	49 79	46	38 37	11	3.6 3.5	1 1	11	65	76 74	11	81 80	11
		3	53	11	11	33	11	9 4	11	99	11	86	79	
		စ္တ	55	47	36	33	11	44	59	8 9	11	85	79	6.8
		29	56	33	35	333	11	64	52	8 9	ΤŢ	11	18	289
		28	5.56	417	36	33	3.5	46	58	65	81	11	79	69
(qd		27	5.5	5 5	35	3.6	356	8 4	5.8	67	79	Ħ	78	69
H63 thermograph)		26	09	44	35		35	43	58	11	80	11	80	689
ermo		25	61	44	35	34	35	11	58	11	77	83	90	2 8
		24	63	4.5	35	11	35	11	58	11	79	84	980	6,0
		23	64	4 6	36	11	36	11	61	99	78	84	81	69
to September 19		22	11	44	35	38	36		60	11	77	83	79	269
Sep 1		21	11	44	35	39	37	11	59	11	76	83	79	122
to g		20	6.4	1 1	36	36	36	11	60	69	92	83	79	122
er year October 1962 t		19	65	4.5	35	36	35	45	5.50	68	75	83	79	120
er 1		18	65	£ 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	35	36	34	43	54	66	72	810	79	12
tobe		17	99	45	35	37	35	6 4 2	53	67	11	81	79	TI
r Oc	Day	16	99	7 4 7 4	36	38	35	40	52	65	11	80	78	11
yean		15	67	4 4	35	38	35	4 4	11	66	11	79	90	11
water, water tachment, con		14	66	47	35	39	37	11	11	69	76	77	81	11
ut,		13	66	4 4 4 7	3.5	38	34	11	11	6.5	44	81	81	11
ter,		12	99	64	35	37	36	11	51	68	76	81	81	76
		11	65	4 4 0 60	38	37	35	39	4 9 0	68	77	81	83	77
		10	11	48	40	11	35	39	11	69	78	800	883	75
ature (°F) (temperature		6	11	24	404	11	35	11	11	65	7.7	11	984	76
ure		8	67	46	42	11	35	11	11	66	75	11	83	77
		7	68 67	4 4 6 5	4 3	11	11	39	11	64	76	82	83	76
empe. with		9	57 67	47	643	11	11	39	11	62	74	83	82	75
ler		5	67 67	40	43	11	34	39	11	58	73	83	11	77
, (Recorder		4	67 67	50	43	11	33	36	51	58	72	83	11	11
æ		3	67 66	52	43	11	35	35	11	58	7.9	11	85	77
		2	67	523	43	11	34	36	11	58	70	83	85	78
		-	11	53	43	11	346	35	11	5.8	69	11	85	77
	Month	Month	October Maximum Minimum	November Maximum	Maximum	Aaximum	February Maximum Minimum	Maximum	April Maximum	Maximum	Maximum	Maximum	August Maximum Minimum	September Maximum Minimum

DELAWARE RIVER BASIN--Continued

1-4665. McDONALDS BRANCH IN LEBANON STATE FOREST, N. J.

LOCATION. --Temperature recorder at gaging station in Lebanon State Forest, Burlington County, 25 feet upstream from Butterworth Road Bridge, 3.4 miles upstream confluence with Cooper Branch, and 7 miles southeast of Browns Mills.

DRAINGE AREA. -- 2.3 square miles.

EXTREMES, 1862 ANAILABLE. -- Water temperatures: October 1960 to September 1963.

EXTREMES, 1962-63. -- 1962-63. -- Mater temperatures: Maximum, 66° F Aug. 24-29, 1961; minimum, freezing point Jan. 1, 2, 1963.

DELAWARE RIVER BASIN--Continued 1-4665. McDOWALDS BRANCH IN IEBANON STATE FOREST, N. J.--Continued

Importance 7 or water, with temporature attachment (Water-stage recorder with temporature attachment Day
4 5 6 7 8 9 10 11 12 13
54 56 57 57 57 56 56 56 57 57
94 54 54 54 54 54 54 84
24 94 94 94
44 44 45 45 42 41 40 39 38 43 44 44 43 42 41 40 39 38 38
35 36 36 37 38 39 39 39 39 38 38 34 35 36 36 37 38 39 39 39 38 37
38 38 39 39 39 39 38 38 38 35 38 38 38 39 39 30 38 38 35 35
39 38 37 35 36 36 36 36 36 35 38 37 35 35 35 36 35 36 35 35
47 47 46 45 45 44 44 44 45 46 46 46 46 45 45
49 51 52 53 53 54 55 56 56 56 49 49 51 52 53 53 54 55 56 55 55
57 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58
61 61 60 60 59 59 59 58 58 58 58 58 58 58 58
09 09 09 09 09 09 09 09 09 09 09 09 09
58 58 58 57 57 57 57 58 58 58 58 58 57 57 57 57 57 58

DELAWARE RIVER BASIN -- Continued

1-4670.3. DELAWARE RIVER AT TORRESDALE INTAKE, PHILADELPHIA, PA.

LOCATION.--In river opposite intake building of the Torresdale Filter Plant.

RECORDS AVAILABLE.--Chemical analyses: August 1949 to September 1963.

Dissolved oxygen: October 1961 to September 1963.

Water temperatures: October 1955 to September 1957, October 1960 to September 1963

EXTREMES, 1962-63.--Specific conductance: Maximum daily, 460 micromhos Feb. 3; minimum daily, 90 micromhos Jan. 13, Mar. 29 to Apr. 1.

Dissolved oxygen: Maximum daily, 12.9 ppm Mar. 2, 3; minimum daily, 0.8 ppm June 29,30.

Water temperatures: Maximum, 85°F July 27, 28; minimum, freezing point on several days im December and January.

REMARKS.-Samples collected at center of stream approximately 3 feet from bottom. Additional data published in WSP 1262, Chemical characteristics of Delaware River water, Trenton, N. J. to Marcus Hook, Pa. Records of specific conductance available in district office at Philadelphia, Pa. Records of discharge given for Delaware River at Trenton, N. J.

Date of collection	Mean discharge (cfs)	Chloride (C1)	Specific conduct- ance (micro- mhos at 25°C)	рĦ	Biochemical oxygen demand a	D'esolved oxygen a
Oct. 1, 1962	4400 8700 6060 4500 6200 9380	12 8.5 7.0 9.5 9.5	222 192 155 193 194 215	7.3 7.1 7.1 7.1 7.1 7.2	2.5 1.2 4.7 2.5 4.5 5.0	6.5 10.3 10.2 11.8 12.0
Apr. 2	35900 6800 3950 4319 2230 3650	2.0 6.5 10 10 12 16	78 168 187 187 211 235	6.9 7.2 6.8 7.0 7.0	3.1 6.7 .9 1.4 .5	10.5 8.7 2.1 3.6 5.1 5.6

a Obtained from surface samples.

DELAWARE RIVER BASIN---Continued

1-4670.3. DELAWARE RIVER AT TORRESDALE INTAKE, PHILADELPHIA, PA.--Continued

1	1							
September	a ta	3.990	3.0	20.00	6.4.4.6. 6.1.1.6.6.	33.33	80.66.4	3,2
Sept	max	6.6 7.2 6.6	2.2.4.6 2.0.4.6	0.7 4.7 1.1 6.3	6.00 6.00 6.00 6.00 7.00 8.40	44608	6.9	6.4
ust	mtm	5.5 4.4 	3.5	11150	01 + 01 02 4 0 0 4 4 01	40000	4400000 000184	ł
August	max	7.5	6.6.2	11166	8.0 6.0 6.3	6.1 6.1 6.3 7.6	8.8 7.1 7.1 7.1 6.9	1
<u>~</u>	ain	11111	11118	22.22 0.14.0 14.10	888888	2.6 4.6 1.6	1 4 6 6 6 6	١
July	max	11111	11115	44040 800ru		8 14	00000	1
er 1963	ntm	3.4.4.4 0.4.4.7 7.	44000	0.11 0.12 1.14 0.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15	1:9	1.7		
September 1963	TO 8.X	6.9 6.3 6.3	8 5 5 4 4 8 7 5 8 5	44444 600000	44	11118.	88488 87.088	
의느	min	8.8 8.2 7.7	7.0	6.53	8.4.488 8.0.518	7.55.3 6.50 1.1	444444	6.0
198	max	6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.5 4.8 7.8 7.8	7.5 7.1 7.1 7.3 6.7	9.00	6.6 6.9 7.7	000000	7.4
April	ata	11.5 11.5 11.2 10.8	10.6 10.7 10.7 11.1	10.1 9.9 9.6 9.7	6.00 6.00 6.00 7.4.1.00	8.8 8.5 8.1 7.7	r.:	4.6
	X8.0	12.0 12.1 12.1 11.3	4.11 7.11 6.11	4.01 4.4.01 0.01	10.2 10.1 10.2 9.7	0 0 0 0 0 8 4 0 6 1	99988	10.3
March	ata	11.9 11.3 11.9 11.7	11.9	10.3	11.6 11.7 11.5 12.0	2.21 2.21 2.4.4.2 2.21	11.0	1
Ma Ma	max	12.9 12.9 12.5 12.5	12.6	11.5	2.21 2.21 2.21 4.21 4.44	12.6 12.6 12.7 12.7	112.4	1
February Mar	mtn	1111	10.4	10.6 10.5 10.8 11.1	10.5	11111	111111	1
February	Max	11.8	11.0	1.11 9.11 4.11 7.11	10.9 11.4	11111	111111	1
January	atm	10.8	10.7 10.4 10.6 10.6	10.7 10.8 10.9 11.0	11.1 10.9 10.7 10.9	10.9 10.8 10.8	111111	1
	max	11.11	11111 1011111 101111111111111111111111	11.5 11.9 11.9 11.9	11.9 12.0 11.2 11.7	4.1111	111111	1
December	mtm	10.3 10.3 10.2 10.2 10.2	10.9 10.8 10.7 10.6	10.6 10.8 11.1 11.4	11.12 2.11.11 1.4.11	11233	11.0	-
Dece	max	10.8 10.9 10.7 10.8	111111	11.5 11.6 12.0 12.1	121.1	11.7	141111	1
November	ata	6.0 6.3 6.4 7.1	7.1	8.88 4.8.0.8 4.0.8	800 0 000 0	00000	00000 -00000	8.4
Nove	max	7.0 8.7 8.0 8.0	7.8 7.9 9.0	99899	4.00	10.0 10.0 10.1 2.01	10.3	9.2
October	mtm	4.8.8.8.8.9.4.8.1.8.1.1.1.8.1.1.1.8.1.1.1.1.8.1	1 14.8	9.9.9.9.	. 4 4 6 4 7 0 0 0 H	46448 H869H	8.6.6. 8.7.7.8.	4.3
Oct	EDBX	1.88 1.88 1.80 1.80	1 4:4:	4444 6.4.4.4.	0.0000 1.0000 7.7000	មម្គម ឧត្តម្ភិ	6.08887.0 6.0227.0	5.8
1	Day	12648	6 8 9	1122112	16 17 19 20	22222	26 28 30 31 31	Aver-

DELAWARE RIVER BASIN--Continued

1-4670.3. DELAWARE RIVER AT TORRESDALE INTAKE, PHILADELPHIA, PA. --Continued

Average 1.1 - 1-1 52 53 54 74 75 1.1 6.1 1 1 ; ; ! ! ! ! 2 2 3.8 1.1 1 1 1 1 5.2 2.0 4 6 4 7 7 1 1 1 1 \$ £ 6 4 4 4 Temperature (°F) of water, water year October 1962 to September 1963 (Recorder with temperature attachment, continuous resistance bulb-actuated thermograph) 9 4 2 2 3 4 1 1 1 1 2 2 6 4 1 1 1 1 5 2 7.4 5.5 4 43 3 6 1 1 ! ! \$ 6 5 t 56 4 1 1 3 6 2 5 5 4 5 50 2 4 1 1 9 62 3 3 **2 2** 1.1 2.2 Day 4 4 4 4 2 8 8 4 9 49 £ 4 3.5 8 4 9 69 11 12 £4 4.7 1 1 6 6 П 4 4 3.5 6 4 3.3 1 1 9 4 4 6 8 8 4 2 1 1 1 1 8 8 8 4 1.1 4 4 9 $\overline{\Box}$ 1.1 1.1 6 4 1.1 1 1 56 67 $\overline{\Box}$ က 1.1 £ 5 2 4 1.1 2 2 3.5 Π Maximum
Minimum
Mosember
Maximum
December
Maximum
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum
Maximum
Maximum
Minimum
Maximum
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum
Maximum
Maxi Maximum
Minimum
May
Maximum
Minimum Maximum
Minimum
September
Maximum Maximum : Minimum Month Maximum

1-4671, DELAWARE RIVER AT LEHIGH AVENUE, PHILADELPHIA, PA.

LOCATION. --Between river end of pier 11 of Port Richmond Terminal, Lehigh Avenue, Philadelphia, and west bank of Petty Island, N. J.
DRAINAGE AREA. --7, 935 square miles.

EECORDS AVAILABLE. --Chemical analyses: August 1949 to September 1963.

REMARKS. --Samples collected at center of stream approximately 3 feet from bottom. Additional data published in WSP 1262, Chemical characteristics of Delaware River water, Trenton, N. J. to Marcus Hook, Pa. Records of discharge given for Delaware River at Trenton, N. J.

Chemical analyses, in parts per million, water year October 1962 to September 1963

Date of collection	Mean discharge (cfs)	Chloride (C1)	Specific conduct- ance (micro- mhos at 25°C)	рĦ	Biochemical oxygen demand	Dissolved cxygen 2
Oct. 1, 1962	4400	14	239	6.8	3.2	5,9
Nov. 7	8700	12	228	7.0	2.8	7.8
Dec. 3	6060	7.5	158	7.2	6.2	10.1
Jan. 9, 1963	4500	18	261	6.8	5.7	8.0
Feb. 11	6200	12	202	7.0	3.9	11.1
Mar. 5	9380	18	249	6.9	4.4	7.9
Apr. 2	35900	3.0	87	6.9	3.0	10.1
May 7	6800	7.5	174	7.1	3.9	7.3
June 3	4940	6.5	160	6.5	1.0	2,5
July 1	3950	16	248	6.8	1.8	1.1
Aug. 5	4310	14	227	7.0	2.1	4.1
Sept. 3	2230	22	270	6.9	1.3	2.7
Sept. 30	3650	48	404	6.8	.8	1.5

a Obtained from surface samples.

DELAWARE RIVER BASIN--Continued

1-4672. DELAWARE RIVER AT PHILADELPHIA, PA.-BENJAMIN FRANKLIN BRIDGE (PHILADELPHIA-CAMDEN BRIDGE)

MECORDIA VALIABLE.—Chemical analyses: August 1946 to September 1963.

PRECORDS VALIABLE.—Chemical analyses: August 1946 to September 1963.

Dissolved coxygen: November 1960 to September 1963.

Mater temperatures: November 1960 to September 1960 to September 1960 to September 1960 to June 1963.

Mater temperatures: November 1960 to June 1963.

Mater temperatures: Miniman, freezing point on many days during winter months.

Mater temperatures: Maximum adily, 14.1 ppm Dec. 14, 1962; miniman adily, 0.0 ppm on many days during year.

Mater temperatures: Maximum, 857 on several days in September 1961; miniman, freezing point on many days each year.

Mater temperatures: Maximum, 857 on several days in September 1961; miniman, freezing point on many days during winter months.

Mater temperatures: Maximum, 857 on several days in September 1961; miniman, fatering point on many days during winter months.

RABANES.—Samples onliced at conter of areas approximately 2 feet from bottom, Additional data published in MSP 1262, Chemical obstavate when three months are the former many days during winter months.

000

ļ	Bio- chem- ical	oxy- gen de- mand a	1.8		5.5	2.5	4.9	2.3	2.2	1.9	1.6	6.1	∞.	1.2	
		-j 8		۳ ç		_	s	'n	2	-	9		'n	ഹ	İ
		Hd		0 W					8.9	9.9	6.3	8.9	8.9	6.2	
	Specific	ance (micro- mhos at 25°C)		234							252				
	F 글	ity as H+1													Ī
	Hardness as CaCO,	Non- car- bon-	33	2 42 2 8 8	20	39	39	20	28	88	22	33	20	82	
_	Hard as C	Cal- ctum, mag- nestum	7.	73	74	65	73	30	53	21	72	74	80	86	
mber 196	Dissolved	sonds residue t 180°C)	145	154	175	133	148	22	104	103	153	145	174	248	
epte	Phos	phate (PO.)													
to to	ž	trate phate (NO ₃) (PO ₄)	9.9	2 4 6 4	2	5.9	8.9	3.2	5.5	7.4	유	8.9	9.	I .	
196	Fluo-	ride (F)	0.0	w.c	· "	er.	e.	∾.	87	~	۲.	ď	e.	4.	
water year October 1962 to September 1963	Orland.	(CI)	16	17	20.	14	19	5.0	8.0	9.0	17	16	56	75	
ater yea	7		43	4.0	26	36	44	11	27	88	25	41	23	75	
		188										_	_	_	I
million,	Bi-	HCO,	20	32	18	31	41	12	31	28	56	45	36	5 4	
per 1	녉	(L1)													
arts	Po-	Stun (K)	3.3		0.	2.4	3.0	s.	1.0	1.6	2.8	8	3.5	8.	
Chemical analyses, in parts per		(Na)	14	23	16.0	10	14	3.1	8.1	9.4	14	16	23	38	
naly	Mag-	sium (Mg)		. 4 . 6							9.				
mical a		ctum (Ca)	61	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	19	17	17	9.7			19				
Che	Man-	ga- nese (Mn)	0.00	88	8	10	.03	8	8	8	8	ŝ	8	8	
		(Fe)	00.0	-03	8	.12	.07	.07	.04	8	8.	8	8.	8.	
	Alu-	- GAI)													
		(SiO ₂)	6.0	9.00	7.3	4.8	9	3.9	1.2	3.3	1.9	ıç.	۳.	6.	t top
	Mean	discharge (cfs)	4400	8700	4500	6200	9380	3 2 9 0 0	6800	4900	3900	4420	2240	3750	feet fro
	Date	of collection	0ct. 1, 1962.	Nov. 7	Jan. 9, 1963.	Feb. 11	Mar. 5	Apr. 2	Мау 7	June 3	July 1	Aug. 5	Sept. 3	Sept. 30	a Collected 3 feet from

DELAWARE RIVER BASIN--Continued

1-4672. DELAWARE RIVER AT PHILADELPHIA, PA.-BENJAMIN FRANKLIN BRIDGE (PHILADELPHIA-CANDEN BRIDGE)--Continued

١ ١	1							
September	min	00400	46666		00000	66646	000001	0.0
Septe	max	0.00,000	अंअं चंअंअं	6.011	44666	ဝဝစ်စွဲစွဲ	4446¢!	0.3
131	min	00000	00000	00000	00000	00000	000000	0.0
August	max	O 80 44 6	4.0004	addicio	8. C. L. 4.		8.1 0.0 1.0 0.0	0.5
À	min	.00.44	86.644	44664	44444	44666	444444	0.1
July	max	2,2,5,6,2	287.60		ູດ ຄ. 4. ເ ບໍ່ພໍ	فظظنف	1.08	9.0
	min	00000	00000	00000	00001	00000	000441	0.0
June	max		ичооо	00000	00041	ou i i i i i	जंधवंद्यं ।	0.2
	min	23.23.42	1 55.00	4446	40000	88848	446666	0.7
May	max	0 4 6 6 6 0 6 6 7.	1 50.6	32222	84.48	80468	004064	2.5
-	min	10.6 10.3 9.8 9.2	0 8 8 8 8	8.77 7.8 8.7 7.6 8.7	00460 004	8 1 3 6 4 8 1 8 6 4	88444 648691	6.2
April	max	11.0 10.5 10.5 10.6 10.5	0.00 0.00 0.00 0.00 0.00	10.0 9.8 9.9 9.1	87.7.8		88888	7.6
ę,	min	4.2.8.6.4.	88.9.0	8.9 6.6 7.0	2.7.8 4.7.4 0.0	8.01 8.01 9.9	110.01	8.2
March	max	7.8 8.0 7.9 8.5	10.8 10.8 9.8 9.9	8.4.7.8.9	9.1 10.7 10.6 10.4	1111110	110.2	9.7
ary	min	8.7.7.8 8.2.7.2 8.3	7.7. 7.7. 7.7.	2.00.00 2.00.00 2.00.00	0.888.	P. 88 8 P. 0. 4 E. 1. 8	5.00.0	7.8
February	max	9.7 9.4 10.2 10.7	10.0 9.6 9.7	9.0 10.0 10.0	10.3 10.3 9.7 9.1	10.3 10.4 10.1 9.8	4.0.0.	7.6
ary	min	7.8	0.7. 0.0. 0.0. 0.0.	0.00.00.00 0.00.00.00	7.5 7.6 6.9 6.9	9.88.6	11117.2	1
January	max	11186	0 0 0 0 0 0 0 0 0 0	888000 646	0 0 0 0 0 0 0 0 0 0	10.2 10.5 4.01 11.3	10.6	T
nber	min	8.6.6.4.08.	4.0.888 6.4088	00000	11.2.8	8.7.7.4 8.1.8 0.8	8.5 6.5 1.7	7.5
December	max	7.9	7.0 10.2 10.5	1.61	10.9	0.0000	99999	10.3
nber	min	0.7 1.0 2.3	44446	4.07.7.8	9.00.00	1.92	8.5.0.8.4.1	5.4
November	max	8.52.4	80.4.2.8	7.88.87	87.7.8	8.4 10.7 10.3	တွယ္လလ္လ လူကုမ္းကို	7.5
ber	min	0,1 2,2 1,	44460	04660	81114	40000	468104	0.3
October	max	2.1 2.0 1.0 1.8	. 424.00		E. 8.	99565	89.6 69	2.0
3	VEQ.	11 S S 4 40	9 - 8 6 0	12222	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3008878	Aver-

DELAWARE RIVER BASIN -- Continued

1-4672. DELAWARE RIVER AT PHILADELPHIA, PA.-BENJAMIN FRANKLIN BRIDGE (PHILADELPHIA-CAMDEN BRIDGE)--Continued

Average 3.0 64 1 1 5 5 5 6 £ 7 4 7 1.1 4 7 4 8 Temperature ('F) of water, October 1962 to June 1963 (Recorder with temperature attachment, continuous resistance bulb-actuated thermograph) 8 8 4 7 4 7 1 1 6.5 4 4 1 1 1 1 Day 1.1 5.2 410, 6.5 4 6 1 1 1 1 1 1 6.5 $\overline{1}$ 4,7 œ 6 5 4 4 3.8 1 : • !! 4 7 9.9 6.6 0 6 1: 2 5 3 6 4 9 4 9 9 6 IIn 4.5 5.4 0 0 6 A 0 Minimum
November
Maximum
December
Maximum
December
Minimum
Minimum
Minimum
Minimum
Maximum
Max Maximum
Minimum
April
Maximum
Maximum
May
Maximum
May
Maximum
June
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum
Minimum Maximum Month

1-4673. DELAWARE RIVER AT WHARTON STREET, PHILADELPHIA, PA.

LOCATION .-- Between pier 55 south, Wharton Street, Philadelphia, and Kaighn Point, Camden,

DRAINAGE AREA. -- 7,998 square miles.

DRAINAUS AREA.--', 996 square miles.

REMARKS.--Samples collected at center of river approximately 3 feet from bottom. Additional REMARKS.--Samples collected at center of river approximately 3 feet from bottom. Additional data published in WSP 1262, Chemical characteristics of Delaware River water, Trenton, N. J. to Marcus Hook, Pa. Records of discharge given for Delaware River at Trenton, N.J.

Chemical analyses, in parts per million, water year October 1962 to September 1963

Date of collection	Mean discharge (cfs)	Chloride (C1)	Specific conduct- ance (micro- mhos at 25°C)	рĦ	Biochemical oxygen demand a	Dissolved oxygen a
Oct. 2, 1962	4040 8300 5820 4750 5580 43200	21 15 8.5 14 22 3.0	296 250 173 225 307 86	6.6 7.0 7.0 6.9 6.9	3.0 .2 2.2 4.0 4.7 1.2	3.6 3.6 8.1 10.5 7.1 10.3
May 8	6650 4750 4450 3620 2300	9.0 10 18 20 57	191 173 255 271 455	7.0 6.5 6.7 6.9 6.5	2.2 .6 2.5 1.3 1.0	6.1 2.0 .7 1.8 1.8

a Obtained from surface samples.

1-4674. DELAWARE RIVER AT LEAGUE ISLAND, PHILADELPHIA, PA.

LOCATION. --Between pier 2, U.S. Naval Base, League Island, Philadelphia, and a point 100 feet offshore, adjacent to, and downstream from ferry slip, National Park, N. J. DRAINAGE AREA. --8,072 square miles. ECONDS AVAILABLE. --Chemical analyses: August 1949 to September 1963. REMARKS. --Samples collected at center of river approximately 3 feet from bottom. Additional data published in WSP 1262, Chemical characteristics of Delaware River water, Trenton, N.J. to Marcus Hook, Pa. Records of discharge given for Delaware River at Trenton, N.J.

Chemical analyses, in parts per million, water year October 1962 to September 1963

Date of collection	Mean discharge (cfs)	Chloride (Cl)	Specific conduct- ance (micro- mhos at 25°C)	ΡĦ	Biochemical oxygen demand a	Dissolved oxygen a
Oct. 2, 1962	4040	29	362	6.8	1.7	3.1
	8300	18	294			
Nov. 8				6.9	.5	.5
Dec. 4	5820	11	196	6.7	2.9	5.5
Jan. 10, 1963	4750	22	304	6,6	5,6	7.0
Mar. 4	5580	22	326	6.9	5,1	6.2
Apr. 1	43200	3.5	97	6.8	1.5	10.5
May 8	6650	12	220	6.8	2.1	3.1
June 4	4750	14	229	6.7	.1	1.3
July 2	4450	22	295	6.5	3.3	.7
Aug. 6	3620	27	321	6.7	.9	1.6
Sept. 4	2300	104	641	6.6	1.4	2.8
		1		L		L

a Obtained from surface samples.

1-4705. SCHUYLKILL RIVER AT BERNE, PA.

LOCATION. --At highway bridge, 50 feet downstream from gaging station at Berne, Berks County, 0.5 mile upstream from Mill Creek, and 6.5 miles downstream from

Militie Gould Militie Conductation and the state of the s

Chemical analyses, in parts per million, water year October 1962 to Santamber 1963

	- to 2	2	ß	S	က	e
	pH Col-	5.1 5	4.8	5.2	3.8	3.8
Specific	ance (micro- mhos at 25°C)	317				- 1
Total	ity as Hri	1	1	ł	0.3	89.
ness aco,	Cal- Non- ity (r cium, carbon- as (n sium	114	125	109	224	462
Hard as C	Cal- cium, magne- sium	116	126	110	224	462
1 8	solids (residue at 180°C)	199				
,	rrate (NO ₃)	1.1	2,5	1.0	12	14
	Fluo- ride (F)	0.0	۲.	•	۳.	۲.
Man- Mar- Do Dissolv	Chloride (C1)	3.5	4.0	3.0	8.5	8.0
	Sulfate (SO ₄)	120	129	113	235	484
	bonate (HCO ₃)	8	N	N	•	•
P ₀	tas- sium (K)	2,3	1,5	1.8	5,5	3.2
	Sodium (Na.)	7.3	7.0	7.0	16	17
Mag-	ne- sium (Mg)	13	16	14	27	90
	ctum (Ca)	25	24	21	45	98
Man-	ga- nese (Mn)	0.79	1.7	1.3	3.2	6.2
	Iron (Fe)	0.01				- 1
	(F)	1	1.0	1	.5	4.2
	Silica (SiO ₂)	8.5	9.7	8.3	8.5	10
, in	mean discharge (cfs)		434			
	Date of collection	0ct. 1-10,1962	oct. 17	Nov. 1-8, 10	Aug. 16-25,1963	Sept. 1-10

DELAWARE RIVER BASIN--Continued 1-4705. SCHUYLKILL RIVER AT BERNE, PA.--Continued

						Temp	erat	ure	(}	ţ	wate	er,	wate	r ye	ar	Scto	ber	1962	to	Sep	temp	Temperature (°F) of water, water year October 1962 to September 1963	963							
-														L	Day															Aver-
Month	-	2	3	4	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	5	8	٥	2	=	12	13	4	15	191	7	8	9 2	0 2	22	23	24	25	26	27	28		30	31	age
October 61 62 November 47 47 December 41	61 47		58 60		60 60 45 45 43		61 58 48 46 38		0909		63 66 48 48 32 32	61 32 32		58 61 32 32		61 57 45		55 53		60 58 32 32	32	344		50 45	46 50		315	32	37	811
January February	32 32 32 32 32 32		32 32 32 32 32 32		32 32 32 32 34		32 32 32 32 36 36		32 32 32 32 35		32 32	32 32 32 32 		32 32 32 32 41		32 32	133	32 32 32 32 		32 32 32 32 	32	32 32 32 32 32 32 32 32 40		32 32	32 32 32 32 50 50	32	32 32		32	32
April	7.3		111	151	4		1 1 9		111	1 65	1 6 6	1 20	111	1159	111	111	1 0 1	111		60	111	111	161	111	911	111	112	111	111	111
July 76 74 August 76 74 September 65 65	765		74 75		73 70 70 65	9-41	71 70 61 63	127	72		68 68 71 69 61 68	72 71 73 67 62 59	71 67	72 71 70 71 73 77 77 74 74 74 74 74 75 65 65 69 69 69 69 69 71 72 62 59 59 56 61 60 63 63 65 63 56	7 9 7	73 77 69 69 60 63	2 6 7	77 77 65 69 63 65	6 7 7	74 74 71 72 63 56	57.	74 74 74 73 75 78 77 77 77 71 72 73 75 54 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 68 68 68 68 68 68 68 68 68 68 68 68 68	25 50 50	75 78 67 64 50 52	77 77 63 64 55 58	77 64 58	77 77 67 68 58 57		44	125

NORTH ATLANTIC SLOPE BASINS

DELAWARE RIVER BASIN--Continued

1-4705. SCHUYLKILL RIVER AT BERNE, PA. -- Continued

Suspended sediment, water year October 1962 to September 1963

		OCTOBER	ended sedimen	t, water ye	NOVEMBE		premper 196	DECEMBER	
			ded sediment	<u> </u>		ded sediment			ided sediment
D	Mean		dea sediment	Mean		ded sealment	Mean		ded rediment
Day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	368	4	4	536	C 3	4	559	4	6
2	312	C 6	5	454	C 3	4	543	4	6
3	275 328	C 6	4 5	545 863	18	A 26	513 490	4	6
5	1770	98	5 490	863	c 5	12	475	4	5
6	1300	13	45	799	C 5	11	1190	89	\$ 540
7	907	C 5	12	700	C 5	9	2010	71	5 410
8	691 738	C 5	9 10	644 593	C 5	9	1460 1200	10	39 26
10	1140	c 6	18	2910	105	\$ 1090	1070	8	23
11	940	C 6	15	2820	34	260	860	8	19
12	799	C 6	13	1970	13	69	740	8	16
13	663 568	C 6	11 9	1510 1210	6 5	24 16	700 660	8	15 14
15	513	c 6	é	998	5	13	600	8	13
16	468 434	C 6	8 7	874 779	4	9	620 580	8	13 13
18	393	c 6	6	769	5	10	551	8	12
20	368 348	C 4	4	779 654	5 4	11 7	528 498	8	11 11
21	336	C 4	4	627	4	7	440	8	10
22 • •	312 305	C 4	3	944 998	12	31	460 440	14	17 13
24	281	c 7	5	918	1 7	17	410	9	10
25	269	C 7	5	841	6	14	410	9	10
26	275	C 7	5	769 700	5	10	406	8	9
27 • • 28 • •	24 6 240	C 7	5 5	644	4	7	380 390	8	8
29	246	C 6	4	593	4	6	370	9	9
30	264	C 6	4	559	4	6	330	9	8
71 Total	772 16869		749	28863		1778	270		1312
	10007	JANUARY		20005	FEBRUAR			MARCH	
1	370	12	12	430	7	8	300	10	8
2	340	9	8	460	12	15	320	10	9
3	320	8	7	590	18	29	290	10	8
5	300 290	8	6	510 450	12	17 12	290 908	10 28	8 A 70
İ					1				
7	290 280	7 7	5	450 490	10	12 15	1860 1880	99 50	S 550 250
8	270	5	4	450	10	12	1600	33	140
9	260	5	4	410	10	11	1440	18	70
10	250	5	3	360	10	10	1420	15	58
11	290 400	5 8	4 9	410 470	10 12	11 15	1640 1510	18	80 37
13	800	16	35	450	11	13	1520	8	33
14	720 6 3 0	12	23 12	400 350	10	11	1570 1770	9 10	38 48
16	580	5	8	310	10	8	1750	13	61
17	540	4	6	300	10	8	2110	15	85 97
18	500	4	5	310	10	8	2560	14	
19	470 730	5 10	6 20	350 390	11	10 12	2640 2720	18 24	130 180
21	760	11	23	410	12	13	2410	17	110
22	600	8	13	350	11	10	1970	14	74
23	580 500	8	13 11	320 300	11	10	1720 1530	12 10	56 41
25	460	6	7	290	10	8	1520	9	37
26	430 520	8 6	9	280 280	10 10	8	1600 2110	8 18	35 100
28	450	6	7	270	10	7	1830	10	49
29 • •	360	6	6				1570	8	34
30	360 380	9	9		==	==	1390 1240	6 5	23 17
Total	14030		303	10840		319	48928		2536
8 C	omputed by	enhdivid	ling day	<u> </u>	•			-	

S Computed by subdividing day.
A Computed from partly estimated-concentration graph.
C Composite period.

1-4705. SCHUYLKILL RIVER AT BERNE, PA.--Continued

Suspended sediment,	water	year	October	1962	to	September	1963Continued

1		APRIL	11 1/		MAY	. 1 1/	!	JUNE	
	Mean	Susper	ded sediment	Mean	Suspen	ded sediment	Mean	Suspen	ded sedimen
Day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	1080	5	15	753	22	A 44	400	2	2
2	1030 918	5	14 12	543 483	8 5	12	374 374	2	2
3	841	5	11	447	4	5	400	2	2
5	738	5	10	434	3	4	380	3	3
6	663	5	9	413	3	3	830	14	A 32
7	635	4	7	400	3	3	505	6	8
8	601	4	6	387	3	3	543	5	7
9	576	4	6	387	3 5	3	468	5	6
۰۰۰	551	4	6	461	'	6	447	6	7
1	505	3	4	513	6	8	490	7	9
2	475	3	4	427	5	6	420	5	6
4	447 427	3	4 3	393 380	5	5	380 368	5 4	5 4
5	406	3	3	374	1 4	4	534	9	13
- (1	[1
5	406	3	3	368	4	4	420	6	7
7	400 400	3 3	3 3	355 1110	4 44	s 160	361 342	5 4	5 4
	374	3	3	1100	15	45	318	3	3
	368	4	4	852	9	21	312	2	2
1	342	4	4	769	7	15	342	3	3
2	330	4	4	700	5	9	299	2	2
3	336	5	5	593	4	6	269	1	1
4	348	4	4 3	551 513	3 2	3	258 240	1	1 1
5	318	4	,	213	2	,	240	1	1
5	305	4	3	551	5	7	235	2	1
7 • •	293	4	3	543 483	4 3	6	223	2 2	1 1
9	281 275	4	3	483	3	1 2	244	6	4
0	462	16	A 20	513	6	8	393	10	11
1				454	4	5			
otal	15131	T	182	16711		422	11392		154
		JULY			AUGUST			SEPTEMBE	R
1	269	3	2	320	13	A 12	142	1	Т
2	212	2 2	1	392	10	11	132	1	Ť
3	179		1	206	2	1	127	2	1
5	179 174	2 2	1 1	179 148	C 1	Ţ	240 174	6 3	4
		_					1	1	l
6	158	2	1	137	C 1	Ţ	148	C 3	1
7	168 196	2 2	1 1	142 142	C 1	T	137 122	C 3	1 1
9	184	2	i	137	C 1	Ť	117	C 3 C 3	i
0	179	2	1	132	2	1	122	C 3	1
1	168	c 2	1	117	C 2	1	122	C 5	2
2	196	c 2	1	108	C 2	1	132	C 5	2
3 [168	C 2	1	120	C 2	1	168	C 5	2
4	168	C 5	2	362	18	18	127 99	C 5	2
5 • •	223	C 5	3	163	1 2	1	99	C 5	1
6	179	C 5	2	137	C 1	Т	94	C 3	1
7	163	C 2 C 2	1	127	C 1	Ţ	112	C 3	1
9	153 158	C 2	1	127 112	C 1	T	127 127	C 3	1 1
0	158	C 2	1	148	C 1	į į	122	C 3	1
- 1			1	i	J	т	Į.	1	i
2	184 168	C 2	1	127 94	C 1	T	112 94	C 4	1 1
3	201	C 7	4	158	C 1 C 1 C 1	Т	81	C 4	1
4	168	C 7	3	117	C 1	T	76	C 4	1
5 • •	142	C 7	3	108	C 1	т	81	C 4	1
6	137	C 2	1	94	C 1	т	94	C 1	Т
7	132	C 2	1	86	C 1	Ţ	99	C 1	Ţ
9	127 132	C 2	1	94 94	C 1	T 1	99 232	C 1 5	T 3
0	340	18	17	117	C 2	i	257	3	2
1	212	3	2	122	Č 2	î.			L
otal	5575		60	4667		56	3916		37
	discharge	for yea	r (cfs-days).						
otal									
otal	discharge load for omputed by ess than (year (to	ns)	• • • • • • • • • •	• • • • • • • • •		<u> </u>		7908

1-4720. SCHUYLKILL RIVER AT POTTSTOWN, PA.

LOCATION.—At grains station on right bank at Hanover Street Bridge in Pottstown, Montgomery County, 70 feet from west bank of river, and word downstream trom bank and state.—At several state of the several state of the several state.—October 1961, October 1962 to August 1963.

Maker respectatives: October 1944 to September 1951, October 1951.
Sediment records: March 1984 to September 1951.
Sediment records: March 1984 to September 1951.
Sediment records of specific conductance and pH of daily samples available in district office at Philadelphia, Pa.

1969 +0 Sentember

		9 P	2	œ	7	က	63	63	1	0	œ	7
1		Hd	8.9	6.7	6.9	7.1	7.0	6.7	7.7	7.2	7.6	6.9
	Specific	ance (micro- mhos at 25°C)	262	338	276	489	411	195	445	409	435	204
	Total	tty HT-1							_			
	Hardness as CaCO,	Non- carbon-	58	98	55	134	103	36	103	120	114	113
	Haro as C	Cal- cium, magne- sium	95	129	90	179	148	69	159	169	177	188
	Dissolved	solids (residue at 180°C)	172	220	177	288	238	112	284	250	273	1
63	;	rrate (NO ₃)	1.9	6.7	8.8	12	20	9.6	8.5	6.5	8.4	8.6
ber 19	i	ride (F)	1	e.	1		0.	0.	63	e.	-:	1
Chemical analyses, in parts per million, October 1962 to September 1963		Chloride (C1)	7.0	16	7.5	19	15	7.0	13	12	15	28
ober 1962		Sulfate (SO.)	57	81	55	130	100	32	110	122	117	118
on, Oct		bicar - bonate (HCO ₃)	45	25	\$	55	54	40	69	9	22	85
TTTE	9	tas- sium (K)	2.6	8.	2	2	8.	2.5	0.	1.8	3.2	!
parts per		Sodium (Na)	7.1	14	7.4	11	14	4.0	20	14	12	22
es, in	Mag.	ne- stum (Mg)	8.5	13	5.4	18	14	3.9	15	18	18	;
analys	;	Can (Ca)	1					21				
enical	Man-	ga- nese (Mn)	0.02	8	10.	8	8.	8.	8.	8.	5	1
ö		Iron (Fe)	0.03	6.	.02	8.	80.	8.	8	8	10.	!
		(A1)										
		Silica (SiO ₂)	9.7	8.5	01	14	9.6	6.4	8.1	9.4	7.7	1
		mean discharge (cfs)	1750	984	2260	984	1600	5890	930	802	461	287
		Date of collection	Oct. 8, 1962.	Oct. 17	Nov. 19	Dec. 27	Feb. 6, 1963.	Mar. 11	Apr. 25	June 3	July 15	Aug. 28

1-4738. SCHUYLKILL RIVER AT MANAYUNK, PHILADELPHIA, PA.

LOCATION.—At Green Lane Avenue bridge, 5 miles upstream from gaging station at Fairmount Dam, Philadelphia County.

Philadelphia County.

Philadelphia County.

RECORDS AVAILABLE.—Sediment records: November 1947 to September 1963.

EXTREMES, 1982-63.—Sediment records: November 1947 to September 1963.

EXTREMES, 1982-63.—Sediment concentrations: Maximum daily, 786 ppm Mar. 6; min. mum daily, 3 ppm Oct. 30, 31.

Sediment loads: Maximum daily, 42,400 tons Mar. 6; minimum daily, 1 ton Sept. 27, 28.

EXTREMES, 1947-63.—Sediment concentrations: Maximum daily, 4,910 ppm Dec. 30, 1948; minimum daily, 1 ppm on several days.

Sediment loads: Maximum daily, estimated 650,000 tons Aug. 19, 1955; minimum daily, 1 ton Sept. 27, 28, 1963.

REMARKS.—Records of temperature of sediment samples available in subdistrict of cat Harrisburg, Pa. The stream flow records given are for the Schuylkill River at Philadelphia (Fairmount Dam). These records do not include water diverted by the City of Philadelphia for municipal water supply. Prior to the 1958 water year, published sediment records included diverted water.

— T		OCTOBER	spended sedime	no, water	NOVEMBER		1902 10 1		DECEMBER	
-			ded sediment				sediment			ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	ded	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	1600	18	78	2130	8	s	46	2230	C 4	24
2	1190	1 13	42	1600	6	Í	26	2180	C 4	24
3	966	14	36	1850	18	s	116	2090	C 4	23
4	858	12	28	4690	56	s	740	1950	c 4	21
5	1040	12	\$ 33	3600	28]	270	1900	8	41
6	3600	25	S 250	2920	13	ļ	100	2470	35	S 290
7	2920	23	180	2370	9	ł	58	7020	200	3800
8	2180	18	110	2000	8		43	5290	88	1300
9	2180	17	100	1730	8	1	37	4090	27	300
10	2280	13	80	8040	325	S	9650	355∪	14	130
11	2620	13	92	9210	272	5	6850	2970	C 9	72
12	2230	15	90	6360	106	5	188∪	2470	C 9	60
13	1860	12	60	4650	38	1	480	2040	C 9	50
14	1550	14	58	3710	20	1	200	1910	C 11	57
15	1350	12	44	3020	12		98	1850	C 11	55
16	1190	11	35	2620	9		64	1800	C 11	53
17	1070	8	23	2570	10	i	69	1700	C 7	34
18	1000	6	16	2720	7	Į.	51	1650	C 7	31
19	894	7	17	3660	14	1	140	1600	C 7	30
20	786	7	15	3230	13		110	1500	C 4	16
21	786	5	11	3020	8		65	1400	C 4	15
22	683	5	9	6570	62	S	1300	1350	C 4	15
23	716	5	10	4880	55	s	740	1500	C 4	16
24	620	6	10	3600	20	1	190	1400	C 4	15
25	590	5	8	3180	9		77	1300	C 4	14
26	620	5	8	3130	4		34	1250	C 4	14
27.0	533	4	6	3080	4	1	33	1200	C 4	13
28	590	5	8	2820	C 5	İ	38	1150	C 4	12
29	533	4	6	2620	C 5	1	35	1110	C 4	12
30	533	3	4	2420	C 5		33	1070	4	12
31	774	3	6			ļ	=	768	8	17
Total	40342		1473	108000			23573	65758		6564

S Computed by subdividing day. C Composite period.

1-4738. SCHUYLKILL RIVER AT MANAYUNK, PHILADELPHIA, PA.--Continued

		JANUAR	sediment, wate Y		FEBRUAR			MARCH	
		Suape	nded sediment	ļ — — —	Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1 2 3 4	2100 1000 1150 1190 1070	26 12 C 12 C 12 C 12	A 150 A 30 37 39 35	1640 1600 2680 2700 2300	6 6 12 18 C 12	27 26 87 130 75	1000 2290 3580 3880 10100	8 34 89 51 412	22 S 315 S 994 S 563 S 11600
6 7 8 9	1000 894 894 858 858	C 5 C 5 C 7 C 7	14 12 12 16 16	2330 2926 2330 1600 1470	C 12 20 10 C 10 C 10	75 160 63 43 40	16600 16800 11000 8510 6560	786 755 176 110 78	\$ 42400 \$ 37800 \$ 5340 2500 1400
11 12 13 14	930 2400 5640 5170 3440	C 7 22 110 77 C 10	18 209 1700 1100 93	1830 6600 4040 2280 1690	C 10 140 78 32 20	49 2500 S 932 200 91	6820 6950 7340 6000 5700	100 130 80 40 35	1800 2400 1600 650 540
16 17 18 19	2670 2230 2000 1950 4010	C 10 C 10 C 10 7 61	72 60 54 37 5 986	1230 1190 1270 1820 2740	25 17 13 25 45	83 55 45 120 A 340	5460 6880 7540 6760 8380	38 67 75 42 61	560 S 1340 1500 770 S 1440
21 22 23 24	6060 3600 2820 2570 1800	170 40 22 12	2800 390 170 83 49	3810 2000 1350 1270 1190	92 52 30 20 C 8	A 950 280 110 69 26	7810 6180 5230 4600 4200	56 36 C 20 C 20 C 20	1200 600 280 250 230
26 27 28 29 30	1450 2140 1700 1200 1270 1430	C 10 C 10 10 10 8 6	39 58 46 32 27 23	1150 1040 966 	C 8 C 8 C 8	25 22 21 	4090 5530 5760 4650 4090 3760	C 20 30 38 24 18	220 5 477 590 300 200 140
Total	67494		8407	59036		6644	204050		120021
		APRI		<u> </u>	MAY			JUNE	
1 2 3 4	3440 3230 3080 2820 2520	C 13 C 13 C 13 C 13 C 13	120 110 110 99 88	1540 2280 1600 1310 1190	18 26 16 12 C 9	75 160 69 42 29	930 786 858 1000 966	C 18 C 18 C 18 C 18 C 18	45 38 42 49 47
6 7 8 9 10	2280 2140 2090 1950 1910	12 C 11 C 11 C 11 C 19	74 64 62 58 98	1110 1040 966 930 894	C 9 C 9 10 10	27 25 26 25 29	966 1200 1000 1000 855	C 18 30 25 20 17	47 97 68 54 39
11 12 13 14	1770 1640 1550 1470 1390	C 19 C 19 C 12 C 12 C 12	91 84 50 48 45	1150 1350 1110 930 894	18 17 16 C 15 C 15	56 62 48 38 36	1200 1120 818 670 818	35 28 20 23 25	110 85 44 42 55
16 17 18 19	1270 1230 1270 1270 1270	C 12 13 13 13 13	41 43 45 45 45	858 786 1080 2040 2230	C 15 C 15 16 20 18	35 32 47 110 110	1160 892 670 606 542	20 C 17 C 17 C 17 C 17	63 41 31 28 25
21 22 23 24	1110 1040 1040 1000 1040	16 C 12 C 12 C 12 C 12	48 34 34 32 34	1820 1640 1510 1270 1110	14 13 C 11 C 11 C 11	69 58 45 38 33	574 606 510 414 382	C 17 C 17 C 17 C 17 C 17	26 28 23 19 18
26 27 28 29	930 894 822 786 930	C 12 C 12 C 12 C 12 C 12	30 29 27 25 30	1040 1040 1110 1070 1070	C 11 C 11 C 12 C 12 C 12	31 31 36 35 35	325 300 300 391 733	C 17 C 10 C 10 15 20	15 8 8 16 40
31 Total	49142		1741	1110 39078	C 12	36 1528	22592		1251

S Computed by subdividing day.
A Computed from partly estimated-concentration graph.
C Composite period.

QUALITY OF SURFACE WATERS, 1963

DELAWARE RIVER BASIN--Continued

1-4738. SCHUYLKILL RIVER AT MANAYUNK, PHILADELPHIA, PA.--Continued

Suspended sediment, water year October 1962 to September 1963--Continued

		JULY			AUGUST				SEPTEMBER		_
		Suspende	ed sediment		Suspen	ded sec	liment		Suspen	ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	1 :	ons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	670	17	31	450		E	30	111	13		4
2	446	16	19	1500		E	100	101	16		4
3	350	15	14	1410		E	80	418	27	s	86
4	216	k 15	9	800	12	i	26	3240	87		760
5	198	C 15	8	540	12	1	17	1620	91	S	430
6	135	C 15	5	370	10		10	523	48		68
7	149	C 15	6	235	9	i	6	280	20		15
8	255	15	10	230	10	(6	217	16		9
9	382	14	14	230	13		8	198	13		7
0	255	15	10	220	13		8	163	12		5
1	235	12	8	180	12	1	6	135	11		4
2	181	11	5	160	16		7	135	8		3
3	216	12	7	180	16	ļ	8	123	7		2
4	275	14	10	240	14		9	123	8		3
5	300	14	11	450	13		16	148	9		4
6	325	10	9	200	11		6	375		s	27
7	300	5	4	140	11	1	4	327	15		13
8	220	8	5	100	13	1	4	303	18		15
9	200	5	3	100	12	[3	258	13		9
0	210	9	5	250	12		8	198	7		4
1	210	12	7	270	11	1	8	180	7		3
2	300	9	7	270	11		8	148	6		2
3	450	7	8	260	9		6	123	8		3
4	350	10	9	270	7	1	5	112	6		2
5	290	8	6	170	9	ĺ	4	93	6		2
6	240	12	8	110	9		3	85	8		2
7	198	5	3	95	10	1	3	85	6		1
8	164	8	4	70	11	1	2	85	5		1
9	350	10	9	77	12	l	2	935	22		56
0	414	10	11	101	14	1	4	1610	18		78
1	216	11	6	122	11		4				
otal	8700		271	9800			411	12452			1622

E Estimated.
S Computed by subdividing day.
C Composite period.

DELAWARE RIVER BASIN -- Continued

1-4738. SCHUYLKIII RIVER AT MANAVUNK, PHILADELPHIA, PA.--Continued

		Method	analysis	SCBW	
			2,000		
			8		
		Percent finer than size indicated, in millimeters	3, 002 0. 004 0. 008 0. 016 0. 031 0. 062 0. 125 0. 250 0. 500 1. 000 2. 000	69 87 94 97 98 81 93 95 98 99	
		millim	0.250	98	
ater;	iment	ited, in	0.125	94	
er 196	Suspended sediment	e indica	0.062	87	
N, in n	Suspen	han siz	0.031	69	
2 to Station;		finer t	0.016	848	•
oer 1962 to (), decantation; istilled water)		ercent	900.0	36	
October sed; D, c		1	0.004	28	i
r year y disper tube: V			0.002	8 91	
Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis: B, bothom withdrawal thee, C, chemically dispersed; D, decantation; N, in native wate P, plept; S, sieve; V, visual accumulation thie; W, in distilled water)	Sediment	discharge	(tons ber day)		
s of suspende om withdrawal (S. sieve; V. v	Sediment	concen- tration		1010 643	
∽size analyse nalysis: B, botto P, pipet	i	Discharge (cfs)		20800 16100	
article ods of a	Water tem-	per-	(°F)	40	
Metho	Samp-	ling			
	Water Samp- tem-	(24 hour)		1530 1255	
		Date of collection		Mar. 6, 1963	

DELAWARE RIVER BASIN--Continued

1-4745. SCHUYLKILL RIVER AT PHILADELPHIA, PA.

LOCATION.—At Belmont Filter Plant, 1.6 miles upstream from gaging station, 40 feet upstream from Fairmount Dam, 1,000 feet upstream from Spring Garden BEIAGE, Plantaelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, County, and 8.2 miles upstream from mouth.

BENDRIANGE AREA.—1.893 quarte mailes.

CREARES.—1.894 quarte mailes.

CREARES.—1.894 quarte mailes.

EXTRES.—1.894 controlled to September 1863.

EXTRES.—1.895 controlled to September 1863.

EXTRES.—1.894 controlled to September 1863.

EXTRES.—1.894 controlled to September 1863.

EXTRES.—1.894 controlled to September 1864 controlled to

daily samples available in district office at Philadelphia, Pa.

		Col-	7	9	e	'n	4	6	m	4	e	2	9	4
		рН	7.3	7.2	7.0	7.0	7.1	7.0	7.4	7.1	7.3	7.1	7.2	7.3
	Specific conduct -	ance (micro- mhos at 25°C)	451	333	318	419	376	311	291	390	422	429	438	418
	Total	acid- ity a.s H ⁺ 1												
ļ	Hardness as CaCO ₃	Non- carbon-	131	92	98	128	8	73	62	88	116	87	88	78
	Harr as C	Cal- cium nagne stum	176	122	126	183	123	108	103	149	169	159	1,57	145
1963	Dissolved	solids (residue at 180°C)	286	204	191	293	212	171	175	249	268	269	275	276
ember	,	trate (NO ₃)	9.1	9.1	8.	5.1	=	10	8.4	7.0	6.7	8.4	9.3	9.6
to Sept		ride (F)	0.2	e.	۲.	•	~	ν.	-:	ď	ď	۳.	4.	e.
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	47	12	12	1.8	20	17	12	18	17	25	56	24
year Oct		Sulfate (SO ₄)	130	73	74	125	18	62	9	94	116	06	96	87
Water	i	bonate (HCO ₃)	54	27	49	67	22	\$	20	74	65	88	84	82
111on,	ď.	tas- sium (K)	3.6	23	0.	8.	20.00	3.0	2.2	2.5	4.	3.9	4.7	4.5
ts per mi		Sodium (Na)	12	12	10	16	15	12	6.6	17	15	20	23	22
in par	Mag-	stum (Mg)	22	12	13	22	11	11		15				
alyses,	;	Cal- ctum (Ca)	34	58	58	37	31	25	98	35	38	39	38	32
ical at	Man	ga- ne se (Mn)	0.01	8	8	.20	8	8.	.05	<u>د</u>	8	8	8	.0
Che		Iron (Fe)	0.01	8	8	.03	8.	8.	8	8	8	8.	<u>ة</u>	10.
	:	Alum International												
		Silica (SiO ₂)	11	1	77	12	11	7.8	8.1	2	8.6	7.6	5.2	5.6
		Mean discharge (cfs)	1880	3080	3340	1100	2160	8030		_				
		Date of collection	Oct. 1-10, 1962	Nov. 1-10	Dec. 1-10	Jan. 1-10, 1963	Feb. 1-10	Mar. 1-10	Apr. 1-10	May 1-4, 6-10.	June 1-10	July 1-10	Aug. 1-10	Sept. 1-10

DELAWARE RIVER BASIN -- Continued

DELAWAKE KIVEK BASIA--CONTINUGA 1-4745, SCHUYLKILL RIVER AT PHILADELPHIA, PA.--Continued

1-4762. DELAWARE RIVER AT EDDYSTONE, PA.

LOCATION. --Between river end of piers of Sun Shipbuilding and Drydock Co., Eddyrtone, and a point 2,000 feet offshore of north river bank of Monds Island, N. J. DAILNAGE AREA. --10,190 square miles. RECORDS AVAILABLE. --Chemical analyses: August 1949 to September 1963. RECORDS AVAILABLE. --Chemical analyses: August 1949 to September 1963. REMARKS. --Samples collected at center of river approximately 3 feet from surface and 3 feet from bottom. Additional data published in WSD 1262, Chemical characteristic of Delaware River water, Trenton, N. J. to Marcus Hook, Pa. Records of discharge given for Delaware River at Trenton, N. J.

Chemical analyses, in parts per million, water year October 1962 to September 1963

Date of collection	Mean discharge (cfs)	Chloride (C1)	Specific conduct- ance (micro- mhos at 25°C)	рĦ	Biochemical oxygen demand	Dissolved oxygen
Oct. 2, 1962 Top Bottom	4040	61	527 512	6.3 7.0	2.9	2.0
Nov. 8 Top Bottom	8300	28	359 365	6.9	4.0	5.2
Dec. 4	5820 	12	220 218	6.7 6.8	.9	5.0
Jan. 10, 1963 Top Bottom	4750 	185	925 940	6.5 6.4	5.5	7.0
Mar. 4 Top Bottom	5580	==	335 336	7.0 7.0	5.6	6.2
Apr. 1 Top Bottom	43200	5.0	103 106	6,9 6.8	1.3	8.6
May 8 Top Bottom	6650 	14	269 270	6.8	1.6	1.7
June 10 Top Bottom	4980	18	271 272	6.3 6.2	.4	2.6
July 2 Top Bottom	4450 	76	518 503	6.3 6.4	2.1	.8
Aug. 6 Top Bottom	3 620	58	463 451	6.9 6.8	.7	2.7
Sept 4 Top Bottom	2300	336	1440 1440	6.5 6.5	.8 	1.8

1-4770.5. DELAWARE RIVER AT CHESTER, PA.

LOCATION.--At end of Reynolds Aluminum Co. pier, 2,800 feet downstream from Chester Creek, Chester, Delaware County, 11,800 feet downstream from Eddystone, and 19,900 feet upstream from Marcus Hooks station.

DRAINGER AREA.--10,300 square mailes.

RECORDS AVAILABLE.--Dissolved oxygen: December 1963.

EXTREMES, 1962-63.--Dissolved oxygen: Maximum, 9,5 ppm Feb. 21; maintamm, 0 ppm on many days during year.

EXTREMES, 1962-63.--Dissolved oxygen: Maximum, 9,8 ppm Mar. 6,1962; maintamm, 0 ppm on many days each year.

EXTREMES, 1962-63.--Dissolved oxygen: Maximum, 9,8 ppm Mar. 6,1962; maintamm, 0 ppm on many days each year.

	ı	:						1
September	min	0.3 8. 7.	0.2.4.0.0	6,6111	14004	0067.		1
Septe	max	1.8 2.8 2.5 2.5 2.5	2.9 1.2 1.8	2.7	1.9	111122	1:5	1
ust	uţu	11111	15000	00040	66666	00000	ผูน่ลังเม่อ	0.1
August	max	11111	1.5	121111	02464	8.5.0.6.8	07.7.7.1.	1.4
A	utu	11111	11111	12:::	44400	46111	441161	1
July	max	11111	11111	12486	01222	1:10	1:5	1
	min	0.0	41111	44011	11111	00000	111111	1
June	max	0.9 1.7 1.5 1.0	œ.	01111	11111	121.01	111111	T
A .	min	3.0 2.5 1.6	F. 0. 4 4	85.0.4	अं अं कं कं अं	66666	000000	9.0
May	max	3.3 3.1 2.0	46648	4444 68444	8.5.8.5.5	कं धं धं धं बं	446640	1.3
	min	7.9	11111	0.00.4	46888 80'-10	04.4.60	32.446	4.3
VE	max	8.8 8.4 8.7 8.6	£!!!!	4.1.5	8,4464	00000 00000	000000	5.2
March April May	min	5.8	7.6	1 6 9 6 5	11115	7.1	88.1 7.7 7.1	1
March	max	6.7 8.0 7.7	11106	7.8	7.9	40847	0.80 0.80 0.00 0.4	1
	min	7.3 6.9 7.1 6.9 6.8	6.03	6.6	82.2.2	7.5	42.111	1
February	max	8.8 8.8 8.8 8.8	7.8	11100	9 8 8 8 9 4 9 8 5 1	88.7 7.7 7.5	6.7	1
	min	7.7	5.0	22444 44082	44446	44000	888777 68664	5.9
ember January	max	1 80.80	6.52	46.60	8.0.0.0 4.0.0.0 4.0.0.0	88.70.43	6000000 80000000	7.2
per	min	2.2.4.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	<u> </u>	6.0	5.7926	5.9	46.86.	5.5
December	max	5.8 5.2 5.1 5.1	21111	7.0 7.1 7.4 8.0	4.7 7.3 6.9 6.5	8.9 8.9 7.0	5.6	6.5
Per	min	0.8 5 1.5	ည်းကို လုံး သုံ့ကို လုံးလုံး	887.88	4.0.8.4.0	0.44.04 0.0000	0000001	3.1
November	max	22.1.2	86400	46466	8.4.6.0.0.0	4.0000 0.0000	00000 00000	4.4
Per	min		4	1 1 10 4 10	4.0.0.40	00404	. 48844 876470	0.5
October	max	2.0	10362	11779	1.0	8.4.8.6.6.	000000H	1.4
	C C	H016244	9 8 10 10	12221	119 119 20	223 23 24 25 25	330987	Aver-

DELAWARE RIVER BASIN--Continued
1-4770.5. DELAWARE RIVER AT CHESTER, PA.-Continued

5 6
56 55 56 56 54 55 55 55 55
11
36 36 36 36 36 36 36 36
36
42 43
52 53 53 52 52 52 52 51
64 66 67 68 63 64 65 66
11
1 1
83 83 83 83 82 82 82
76 76 78 78 75 75 75 76

1-4772. DELAWARE RIVER AT MARCUS HOOK, PA.

Additional data published LOCATION. --Between river end of piers of Sun Oil Co., Marcus Hook, and opposite point 2,000 feet offshore from New Jersey bank of river.
REMORDS. ANTIABLE. --Charlal analyses: August 1984 of September 1983.
REMORDS. --Data of Carland from analyses of center river samples collected approximately 3 feet from surface and 3 feet from bottom. Additional data pul an WED 1982, Chemical characteristics of Celaware River water, Trenton, N. J., to Marcus Hook, Pa. Records of discharge given for Delaware River in Trenton, N. J.

solved Disoxy-4:1 6.1 3.0 2:1 10.9 8.2 Bio-chem-ical oxy-gen de-9:1 1.9 6. 1 3.8 0.1 3.7 6. 1 1.7 : 1 1:0 12 1 10 12 i ro 14 14 ! ~ 10 10 100 Ġ ö 6.7 6.8 6.8 6.8 6.6 0 1 5.3 ოფ 5.0 4.0 6.3 Hd 9 15 (micro-Specific conductmhos at 25°C) 3720 871 458 606 223 287 1700 1200 2170 433 109 435 ance Hass (1) 11 11 11 13 15 11 11 11 11 1 1 11 Non-car-bon-Hardness as CaCO, 129 25 62 55 174 329 1 1 14 554 18 238 cium. magesium Cal-69 14 199 15 93 36 18 38 18 332 trate phate (residue (NO.) (PO.) at 180°C) Dissolved September 1963 495 100 65 1550 359 138 232 159 300 1020 196 19.9 1.6 1.6 16.6 1 ł 9 9 per million, water year October 1962 to Fluo-ride t 15 1 9. E 1.9 1 24 15 1 10 ! 03 ۱۳. 1 9 10 1 -Chloride (C1) 5.5 i ł 53 710 1460 154 8 2 \$20 314 Sulfate (SO₄) 13 192 131 15 14 102 57 95 1 3 125 100 S # B B Car-bon-HCO. ٩ ! 0 14 121 18 18 18 381 14 11 E E 1. -- 1 Po-tas-stum (K) 1.8 6.0 3.0 10.9 1.8 12. 5.0 15. i Chemical analyses, in parts -- 66 3.7 į į ŀ į Sodium 2 8 32 91 9 185 415 (Sa) 33 272 Mag-ne-stum Mg) 3.6 18. 18 23 Ξ 98 27 54 6 17 22 . 25 28 18 1 44 Cal-ctum (Ca) 1 % 22 30 36 56 Man-ga-nese (Mn) 12 1 2 38 18 18 18 18 18 ! % 55 18 0.02 18 18 18 10 1 2 18 : 8 18 18 16 Fe) Alu-mum (Al) 11 11 15 11. 11 : : 11 11 11 11 11 (\$102) Silica 1.4 14: 12. 7.3 6.7 18. 12 1 % 18. ١ % 1.2 Mean discharge (cfs) 1040 8300 5820 4750 5580 43200 6650 4700 3720 2320 ŀ 4400 Top.....
Bottom....
Jan. 10, 1963
Top.... Mar. 4
Top...
Bottom...
Apr. 1
Top... May 8
Tup...
Bottom...
June 4
Top... Top.... July 2 Top.... Bottom... Top....Bottom Top....Bottom... Тор.... Bottom 2, 1962 Date of collection

DELAWARE RIVER BASIN--Continued

1-4800. RED CLAY CREEK AT WOODDALE, DEL,

LOCATION. --Temperature recorder at gaging station, 12 feet upstream from bridge on State Highway 48, 0.3 mile south of Wooddale, New Castel County, and 2.3 miles north of Marshalton.
DRAINGE AREA. --47.0 square miles.
RXTREMES. 1962-63. --Fater temperatures: 18 Arii 1953 to September 1963.
EXTREMES. 1962-63. --Fater temperatures: Maximum, 877 buly 19; manimum, freezing point on many days during winter months.
EXTREMES. 1953-63. --Fater temperatures: Maximum, 877 buly 19; manimum, freezing point on many days during winter months. ě (10)

					Ţ	mpe	Temperature		(°F)	of		water, water	wat	er	rear	year October	tobe	r 15	1962	to S	Sept	September	er 1	1963								
;															_	Day																4
Month	-	2	ъ	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	71001480
October Maximum	- 1	1	- 1	;	1	1	1	- 1	63	99	65	89	67	62	63	67		63	09	0.9	62	09	57	56	52	20	6,4	51	54	20	52	1
Minimum	ŀ	1	1	1	ŀ	1	ŀ	1	61	63	_	62		- 65		61	63	28		25		26		25		84	9+	4	64		64	1
November	53	50	48	- 94	5	94	45	47	49	24	52	51	24	46	77	4.5	89	8 4	45	-64	94	8,	97	43		7	7	45	45	4	_!	94
Minimum	50	47	46	7.7		4	42	43	4.7	64		47	_	7 7	_	42		45		45	43	94		45	0,4	39	39	4	9	0	1	44
December		1		:		-	1	_ :	;	_;		-						-	_		_	_ ;					- ;	_;	;		ç	
Maximum	4 4	4 4 0 0	4 7	643	4 4	4 2 2	4 5	360	38.5	333	32	32	32	32	35	32	32	32	33.5	35	35	32	33	9 2	32	9 9	32	32	32	35	32	3 5
January	É	32	3		32	34	3.6	4.	3,6	, 4				35			4	3,6	90	80				35		33	32				32	
Minimum	32	32	32	32	32	32	32	33	34	3.4		35	35.	32		32		34	_	38	33	33	33	33	33	35	32	35	35	32	35	33
February	5		23		ر ب	5	36	3,6	3	37		30		34				53		36	35	34		33		35	34	34	ŀ	1	- }	34
Minimum	35	35	35	3.5	32	32	33	33	32	33	37	33	35	33	33	32		32	33	34	_	33	32	32	35	33	32	35	1	1	ł	33
March	36	ŗ			,	7,5	9	,		u 4	4					- 4,	-;	,	4,		,	4	7,4			ų.	4	4	7	_	- 5	٠,
Maximum	3.0	34	3	37	3.0	3.0	36	37	3.0	7 7		2 0	100	24	2 9	t 1		- 12		7 7	2,7	3		39	; ;	6 4	52	9 8	200	25	5	3
April				. :		-												;		,	_			:		- 6		;			_	
Maximum	2.5	2.5	6 2	5.5	200	4 4 8 4	4 0	0 0	5.0	60	7 8	200	2 2	5 5	0 10	n c	7.5	4 5	0 L	9 2	2 0	28	2 2	5.5	2 0	7.0	24	5.6	26	7 7	1 1	, c
May May	5	:	`	;	,	:	;	:	;	:		:		;				:		:			_	:		,	_	_	:			:
Maximum	58	28	62	99	89	69	6.8	20	73	92		29	79	94	_	29		49	_	69	_	99	70	7.9	65	62	65	62	3		2	99
Minimum	25	64	53	57	61	65	61	62	67	69	62	58		61	61	- 61	63	- 62	20	70	62	62		57		9	29	19	7	4	65	9
June	7.	69	99	10	72	76	78	73	73	78		7.1	_	89	2	69	17	4.2	75	73	73	72	4,	16	_	90	82	4	83	9	!	74
Minimum	65	99	65	99	89	10	72	69	68	7	7.1	65	63	65		79		99		89	89	49		99	89	02	72	7,4	92	_	1	89
July		6	0	9	1	1,4	7.5	7.7	7,6	7.5		7,5				0		_		- 6		8		- 0		7 0	48	4	70	_	6	0
Minimum	77	38	75	2.2	67	89	58	70	69	67	6.9	2 2	2.2		2	73	3.5		18	9 6	18	2 %	73	72	1.2	16	18	4	18	2	1,2	74
August	10	9	7.0		ć	0	7,6	4	70	C	77	α.		74		- 74		4	_	7.2		7,4				-	7	-	70		7.5	7.6
Minimum	7.5	2	7.	12	73	7.1	7.2	7.2	72	14	7	202	12.	0,2	67	99	. 89	73	67	12	72	2.2	7.	7.5	9	99	. 49	49	89	6	2	2
September	ř	-			1	-	1	-	-	,	7.2	73		- 4	-5		- ;		10	7		- 3		5.7		- 0		4	- 5		_¦	<u>'</u>
Maximum	67		1	1	- 1	1	1	1	1	89		. 89	99	63		9		62		99	3	000	52	23	25	25	26	58	3 3	57	1	1
								_		_			-		••												_	_			_	_

당당

15

DELAWARE RIVER BASIN -- Continued

1-4821. DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, WILMINGTON, DEL.

		ن ت	1
) Hd	4 .9
	Specific conduct-	ance (micro- mhos at 25°C)	1480 4.9 1
ĺ	Total	acid- fty as H ⁺¹	
	aco,	Non- carbon- ate	186
	Hard as C	Cal- cium, magne- sium	188
1963	Dissolved	solids (residue at 180°C)	785
ember		rrate (NO ₃)	4.2
to Sept	i	ride (F)	0.7
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride Fiuo- Ni- solids Cal- Non- atthe ance (Cl) (F) (NO, at 180 °C) magne atte Hr, mhos at shum 5 stum	320 0.7 4.2 785 188 186
year Octo		Sulfate C (SO ₄)	126
Water	i	tas-bonate sium (HCO ₃)	6
1111on,	Po-		11
ts per m		Sodium (Na)	0.13 0.39 34 25 192 11 3
in par	Mag-	ne- sium (Mg)	25
alyses,	į	cium (Ca)	34
cal an	Man-	ga- nese (Mn)	0.39
Chemi		Silica hum Iron ga- Cal- (SiO ₂) (Al) (Fe) nese (Ca)	0.13
		inum (Al)	
		Silica (SiO ₂)	6.9
		discharge ((cfs)	7200 6.9
		Date of collection	Jan. 25, 1963.

DELAWARE RIVER BASIN--Continued

1-4821. DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, WILMINGTON, Del. -- Continued

1	1	ı																										ı	1
1	ianer.	u u	3.7	4.3	3,9	4.4	4.9	4.0	m 1	ა დ . 4.	3.5	7	5.1	5.7	5.3	4. 4 5 r.		¦	1	1 1	5.1	4.9	4.9	4.7	4.8	6.	11		4.4
i	ordac	max	9.9	7.1	7.0	7.4	7.1	6.9	6.0	6.9	7.3	7.8	7.7	7.5	7.5		1	!	1		7.6	7.4	7.9	7.8	8.1	7.7	11		7.3
1	181	E E	2.3	1.2	1	1	1	1	1	. 63	6, 4	1.2	1.0	1.8	1.9	0 10	2.3	2.6	1.9	1 1	1.6	2.2	3.1	3.1	3.2	4.1			
	August.	max	5.9	5.5	1	1	1	1	1	4:4	0.0	5.1	4.7	6.1	9	. w	9	9	5.7		4.9	5.6	5.7	5.8	6.5	6.5	1.0		1
	١.	u u	0.2	3	1.3	2.3	2.6	3.3		. 6.	2.9	6.2	1	1	1	9 6	3.5	3.5	3,4	9.0	: 1	1	1.5	1.3	1.5	9.1	4 4		2.3
1		X E	4.0	4.6	6.0	6.2	9.9	6.7	9.0	6.4	6.9	6.8	1	I	1	9 9	7.1	7.0	7.2	9.4	! !	1	5.4	5.5	5.4	9.0	9 0		6.2
22		S S	0.0	: 1	1	1.4	7.	۲.	÷.	?0	o.c		٥.	•	e.	.i. 4	'n	6.	۲.		6.	۲.	'n.	9.	e.	2	۱ :		0.4
November 1962 to September 1963	e i	X X	8.8	; 1	1	3.2	2.7	2.7	m 0	1.6	2.6	2.7	1.8	0.0	2.0	20	33	5.7	4.9	10	2.2	5.1	4.9	4.9	4.7	2.0	ç. ¦		3.5
Septem		ā	4. c	5.6	4.0	3.9	3.5	3.3	e .	2.7	2.7	3.0	3,3	2.7	5.9	 L	6.2	2,3	8:1	9.6	1.3	1,1	1.0	1.3	1.5	~	-10		2.6
62 to	N N	max	7.5	8.1	7.3	6.9	7.5	6.9	80.1	9.9	7.1	7.0	7.1	6.8	6.4	9.4	6.3	5.9	5.7	0 K	5.5	5.4	5.2	4.9	6.9	4.4	2 0	1	6.2
ber 19		e e	4.8	7.9	7.8	0.6	8.7	7.9	2.6	6.9	7.1	7.1	6.9	1	1	9 10	5.3	5.2	4.0	0.4	4,3	4.9	4.9	1	1	1	4.1	1	9.9
Novem	April	max	0.00				9.7	4.6	6.0	. 8	6.6	6.6	9.4	I	1	× ×	7.9	8.0	80 1	2.0	8.6	9.1	8.9	1	!	1	9		6,8
per million,	Marcu	E I	1 1	1	1	1	!	1	1	11	1 1	6.4	6,3	6.4	6.2	9 9	6.2	6.1	6.1	0.4	7.3	1	1	7.9	7.9	0.	× ×	1	}
per m	Ma	Ran	11	1	;	1	1	1	1	1 1		7.5	7.2	8.8	6.5	6.4	8.9	7.1	7.1	0 4	8.2	!	1	8.7	1.6	9.5	4.0		1
parts	uary	шш	1.1	1	;	7.0	7.1	;	1	1 1	1 1	6.4	6.5	6.5	1	1 1	1	;	8.2	; ;	;	1	7.7	;	1	1	1 ;		j
en, in	reoruary	E	11	1	1	8.6	10.1	1	ł	1 1	11	9.1	8.8	8.6	1	1 1	ŀ	1	10.5	1 1	1	1	10.7	1	ŀ	ł			1
d oxyg	ary	min	11	1	1	1	1	1	ŀ		1 7	7.9	ī	1	6.0	. 4 	3.5	2.6	ł	ļ .	1	1	1	1	;	;	П	1	ł
Dissolved oxygen, in parts	Jammary	max	11	1	1	1	1	1	1	11	1 9	10.4	1	1	9.1	200	9.9	6.7	1	1 %	1	;	1	1	ł	!	11		1
	BDEL	E E	5.8	5.8	5.6	5.6	5.8	9.5	7.3	1 1	9.6	7.2	7.5	6.7		. t			4.6	0.7	1	1	1	1	2.0	8.9	9	Ī	1
i	December	max	8.8	8.1	7.8	8.2	8.8	4.6	0.6	11	6.6	10.2	10.0	10.8	10.2	201	9.6	9.1	10.8	10.0	1	1	ł	ł	0.0	10.			1
	November	п	1 1	1	1	1	1	;	l	1 1	11	1	1	!	1		;	1	1	; ;	1	{	1	9.9	9.9	6.7	? !		1
	MOVE	max	11	1	1	1	1	1	I	1 1	11	1	ł	1	;	1 1	1	ì	1		1	;	1	8.7	6.8	80	. I		1
	i i	E C																										-	
l	Jagona	max										_																	
	Day		- 8	m	4	S	9	7	20 C	10	112	13	14	12	16	3 5	13	20	21	3 62	24	52	56	27	28	5.0	3 5	1	Aver-

DELAWARE RIVER BASIN--Continued

1-4821. DELAWARE RIVER AT DELAWARE MEMOEIAL BRIDGE, WILMINGTON, DEL. --Continued

	Average	9	99	50 48	11	1.1	11	11	51	63	73	80 79	78	1.1
		31	57	H	11	11	11	4 9 4 8	11	66	11	83	76	11
		30	57	44	37	11	1 1	43	55	67	960	83	46	11
		29	58 57	‡ ‡	35	11	11	4 4 6 4 4 4 6 4 4 6 4 4 6 4 9 4 9 4 9 4	11	99	78	82	75	11
		28	5 5 6 8	4 4 4	34.5	11	11	7 4 .	11	65	7.4	82	76	11
aph)		27	60	4 4 7 4	11	11	11	9 9	11	9 4 9	78	81	76	11
ogr		26	59	2 4 5	11	11	11	11	5.5	99	77	82 80	77	1.1
3 hern		25	63 61	4 4 5	11	11	11	11	53	99	7.4	11	77	11
196 t		24	64 62	4 4.	11	11	11	43	52	9 7	75	11	77	11
ber		23	99	4 5	36	35	11	43	55	65	74	980	78	11
act		22	65	4 4 6 9	34	11		43	526	65	73	80	77	
Sej		2	9 5 9	4 4 8 8	34	11	34	43	55	65	73	8 8	77 75	11
Temporature (°F) of water, water year October 1962 to September 1963 (Recorder with temporature attachment, continuous resigiance bulb-actuated thermograph)		8	8 9	4 4	37	35	11	43	24	65	74	80	77	11
196 tan		19	89	4 8 4	35	35	-	45	53	6.4	75	81	77	11
ber		-8	67	4 4 9	3.6	35	11	4 4 2	523	63	73	80 78	77	11
c to		1	89	4 4	35	35	11	41	52	63	72	78	77	11
ar (Day	2	69	50	35	36		4 4 0	50	63	72	11	77	11
ye onti		15	68	500	35	11	3.5	39	51	63	717	11	77 76	11
ate		7	69	6 6 4	36	11	2.4	39	0.64	63	70	11	79	11
r, w		13	69	51	39	35	35	39	49	62	7.0	71	79	11
ate		12	69	52	38	34	11	11	4 4	63	272	77	1 80	11
of w		Ξ	68	52	4 7	35	11	- 11	4 4	63	73	7.8	81	11
F)		2	68	53	11	334	11	4	44	65	73	77 7	9 4 2 9	11
Temperature (°F)		٥	68	53	11	34	11	11	6 4 4	62	72	77	181	7,5
tur		80	3 68	53	4 6 7 3	33	11	38	6 4 4 9	60 61 59 60	2 72	79 78 78 78	80 80	73 74
th		_	68	53	4 4 4				0, 4, 4, 6, 8, 9, 1		72 0			
Tem		9	8 68	54 54	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	33	34 34	35	48 48 48 48	59 60	69 71	79 79 78 78	$\frac{11}{11}$	75 73
rde		2	68											
Reco		4	68 67 67 67	55 54 52 52	45 45	32	11	11	64 64	55 56	69 89	82 80	82	75 76
		9												
		7	67 68 65 67	56 56	45 45	11	11	11	49 49	56 56	68 68	81 82 79 81	82 82	76 76
	Month	Month	October Maximum Minimum	November Maximum Minimum	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	June Maximum Minimum	July Maximum Minimum	August Maximum Minimum	September Maximum Minimum

NANTICOKE RIVER BASIN

1-4870. NANTICOKE RIVER NEAR BRIDGEVILLE, DEL.

LOCATION. --At gaging station, 800 feet downstream from Gum Branch, and 2.5 miles southeast of Bridgeville, Sussex County. DMAINES ARRA. -5.4 square miles. October 1961 to Saptember 1963. RECORDS ANALIABLE. --Chemical namiyess: October 1961 to Saptember 1963.

Chemical analyses, in parts per million, water year October 1962 to September 1963

		Col-	10						10	9	99	e	cs.	4
		Hd	3.3	6.	9.	6.	4.	5.9	1.1	5.9	6.5	.5	4.	9.
	Specific	ance (micro- mhos at 25°C)						92		7.9	_	_	_	
		ity H+1								_				
	Hardness as CaCO,	Non- carbon- ate	0	63	9	==	12	4	2	4		0	0	-
	Har as C	Cal- cium, magne- sium	21	14	91	13	91	14	15	13	13	16	16	20
Ter Tag	Dissolved	solids (residue at 180°C)	122	72	79	29	69	11	72	72	87	82	18	8
an de		trate (NO ₃)	0.0	5.4	8.6	4.1	2.2	6.5	7.5	9.7	5.3	6.9	8.2	6.3
2		ride (F)	0.0	_	_	_	e.			7	e.	0.	•	۲.
Juenical analyses, in parts per militon, water year October 1904 to September 1903		Chloride (CI)	10	8.9	6.3	3.1	5.2	7.3	7.1	7.4	8.9	2.6	0.8	9.7
ne year		Sulfate (SO ₄)	9.0	5.4	8.9	0.6	11	5.4	4.2	8.4	6.2	9.6	3.6	6.2
on, war		bonate (HCO ₃)	93	15	12	n	2	12	12	=	œ	22	20	23
	P _o	tas- slum (K)	2.2	0.1	8.1	1.5	1.0	1.0	3.	1.0	1.2	1.8	1.0	3.2
barts per		Sodium (Na)	16	0.9	0.9	3.0	4.5	7.2	6.7	7.3	0.9	#	9.5	9.0
nr 'sa	Mag-	Mag- ne- sium (Mg)		'n.	1.7	1.2	1.5	1.0	1.5	7.	1.0	1.5	1.5	2.2
analys	,	Ca)	4.4	8.4	3.6	3.5	4.0	4.0	3.6	4.0	3.6	4.0	4.0	4.4
e mrcar	Man-	ga- nese (Mn)	0.01	.03	.17	.02	.02	.02	10.	10.	9.	8	0.	8
3		Iron (Fe)	0.62	.05	.13	.20	.12	.02	90.	.05	.25	8.	00.	8
		(AI)	0.2											
		Silica (SiO ₂)	21	20	7	7.1	13	17	18	20	12	21	21	23
	3	discharge (cfs)	25.5	58,2	90.1	869	342	87.0		55.2	_			1
		Date of collection	Oct. 15, 1962.	Jan. 4. 1963	Feb. 15	Mar. 12	Mar. 21	Apr. 19	Мау 15	May 21	June 21	July 11	Aug. 19	Sept. 9

SUSQUEHANNA RIVER BASIN

1-5090. TIOUGHNIOGA RIVER AT CORTLAND, N. Y.

LOCATION.—At bridge on U.S. Highway 11 at Cortland, Cortland County, about 0.3 mile downstream from gaging station, and 0.7 mile from confluence of East and West Branches.
The confluence of East and West Branches.
DAINER REA.—296 square miles (including 16 square miles, the flow from which may be diverted into DeRuyter Beservoir in

Ogwego River basin).

**RECORDS AVAILABLE.--Carlo analyses: October 1956 to September 1957.

**RECORDS AVAILABLE.-Carlo analyses: October 1956 to September 1963.

**RECORDS AVAILABLE.-Carlo analyses: October 1956 to September 1963.

**RECORDS AVAILABLE.-Carlo analyses: October 1956 to September 1963.

**RECORDS ANALYSES ANALY

Temperature 'F of water, water year October 1962 to September 1963 /Once-daily measurement at approximately 09007

Mooth															Day	Á.														Aver
Month	-	2	3	4	5	9	7	8	6	101	=	12 1	13 1	14	15 1	16 17	17 18	19 2	20 21	1 22	2 23	3 24	4 25	26	27	28	29	30	3)	age
October November	53 45 41	54 39	54 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	56 54 64 64 64 64 64 64 64 64 64 64 64 64 64	55 45 41 41	55	54 54 39 39	55	54 5 42 4 37 3	54 45 36	55 58 44 41 35 35		56 54 42 40 35 35		53 55 41 39 34 35		55 51 42 42 35 37	 52 51 40 39 37 36		52 49 42 42 33 36		50 48 40 42 36 35	45 41 35	38	44 38 35	338	444	36	34	51 42 37
January February March	35	35	3336	8 4 8	38 8 8 8	3 9 6 2	34 3 3 3 3 3 3 3 3 3 3	333	38 8 8 8 8 8	396	41 39 36 37 39 39		37 35 36 36 40 37		35 35 35 34 39 37		36 36 34 37 37 34	 37 37 38 37		34 34 35 33 37 37		34 35	417	6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6	33	3833	33	611	38	9 8 8 8
April	4 5 5 7	44 45 59	1 6 4 4	51	4 6 0 0	512	44 52 60 60	6,43	56 5	586	40 51 59 57		43 44 52 52 58 56		43 54 54 56 56		48 56 56 59	 48 49 53 55 59 59		49 55 55 56 56		47 43 51 48 58 58	440	440	5,4	522	54 62 62	6321	1 % }	2 6 6
JulyAugust	59	55	50 50	57	55 6 5	56 56	5616	57	58 57	200	57 59 58 57 55 57		59 59 58 56 54 51		57 59 56 57 56		60 61 56 56 55 56	 62 60 55 56 57 56		56 59 55 53		59 60 50 60 60 60	5.50	57	54	2 2 2 4	58 4	23 67	57	2 8 7

SUSQUEHANNA RIVER BASIN--Continued

1-5135. SUSQUEHANNA RIVER AT VESTAL, N. Y.

LOCATION ...-At the New York State Electric and Gas Corp., Goudey Station, Johnson City, Broome County, and 4.8 miles upstream from

gaging station.
DRAINGE AREA.--3,960 square miles, approximately.
RECORDS AVAILABLE.--Mater temperatures: October 1955 to September 1963.
RECORDS AVAILABLE.--Mater temperatures: Waxhaum, 92°F July 29; minimum, freezing point on many days from December to March.
EXTREMES, 1955-63.--Water temperatures: Maximum, 82°F July 29; 1965; minimum, freezing point on many days during winter months.
EXTREMES, 1955-63.--Water to plant underground through tube. Measurements are made at plant by employees.

Temperature 'F of water, water year October 1962 to September 1963

	Aver-	386		0.01	.0.0	*0.0
ĺ	<		33 83	32	568	74 70 63
		3	41.5	40	121	75 69
		8	325	32	51 61 76	79 68 57
		29	352	38	49 61 76	82 69 62
I		28	32.5	32 32	47 61 76	80 67 61
		25 26 27 28	355	32 32 36	57 74	80 67 60
ĺ		26	36	32 32 32 32 36 36	43 43 56 60 69 71	77 78 68 67 56 56
		25	370	32	5.0 5.0 6.0	77 68 56
		24	388	32 32 33 34 34	47 44 57 54 64 66	74 76 72 74 57 56
		22 23	3882	32	57 64	74 72 57
		22	333	32 32 32 32 32	48 57 62	73 70 59
080		19 20 21	32		51 55 68	73 68 63
1y		20	326	32 32 32 32 32 32	50 52 56 59 67 70	77 76 68 68 66 68
approximately 08007		16	32 25	32		
0x1		17 18	388	32 32 32 32 32 32	49 51 58 61 62 65	73 76 69 68 64 65
appr		17	39	32		73 69 64
at	Day	15 16	327	32 32 32 32 32 32	45 61 61	70 69 66 67 62 62
		15	388		4 % & & & & & & & & & & & & & & & & & &	
rem		14	32 34	32 32 32 32 32 32	43 44 51 53 61 64	72 73 72 70 65 62
eası		13	3,58			
Once-daily measurement		12	32	322	41 51 66	67 68 71 70 67 68
dai		=	57 44 32	322	41 70	
-eou		2	32 43	32 32 32 32 32 32	43 43 60 62 71 74	67 67 72 72 69 70
9		6	4.00 4.00 4.00			
		8	324.0	32 32 32 32 32 32	739 7	71 69 74 74 64 66
		7	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		42 56 73	
		9	38	32 32 32 32 32 32	70 40	70 70 70 70 65 63
		5	97		41 56 68	
		4	36	32 32	222	78 70 77 74 69 69
		9	35	32	4 4 4 7 0 7 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	
		2	35.26	332	0 4 5	623
	<u> </u>	-	35	332	. 51	. 78 . 76 . 66
	Month	Month	October November December	January February March	April May. June	July 78 August 76 September 66

1-5165. COREY CREEK NEAR MAINESBURG, PA.

LOCATION.—At township bridge, 30 feet downstream from gaging station, 500 feet upstream from small tributary, 1.1 miles downstream from Mainesburg, Tioga DRAINGE ARE—A late east of Manatical, and 4.2 miles upstream from mouth.

DRAINGE ARE—12.2 gauges miles are considered to the season of the se

		Col-	2	ო	10
		pH Col-	7.8	6.9	7.0
	Specific conduct-	ds Cal- Non- acid- ance of the cium, carbon- as mhos at sium as sium at the carbon at	201	102	190
	Total	fty fty as H+:			
	dness aco,	Non- carbon- ate	22	#	10
	Har as C	Cal- cium, magne- sium	82	41	80
er 1963.	isso	soli resi t 18		67	
eptem	;	trate (NO ₅)	6.0	1.1	1.1
to S	i	Fluo- N1- ride trate (F) (NO ₃) a	0.0	.0 1.1	.1
Chemical analyses, in parts per million, water year October 1962 to September 1963.		Chloride (Cl)	8.8	3.8	9.0
er year 0		Sulfate (SO.)	24	13	15
on, wat	i	bonate (HCO ₃)	74	.5 36	98
LLL THE	ģ	tas- stum (K)	2.5	ī.	2.6
parts per		Sodium (Na)	2.5	3.0	5.6
es, in	Mag-	ne - stum (Mg)		1.9	
analys	;	Cal- cium (Ca)	26	.00 .00	56
emical	Man-	ga- nese (Mn)	0.00	8.	00.
ទី		Atum-Iron inum (Fe)	0.00	8.	.01
		tnum (A1)			
		Silica (SiO ₂)	4.1	8.8	2.5
	3	Mean discharge (cfs)	1.8	7.0	۲۰
		Date of collection	Oct. 10, 1962.	May 13, 1963	July 16

1-5165. COREY CREEK NEAR MAINESBURG, PA. -- Continued

Suspended sediment, water year October 1962 to September 1963

- 1		OCTOBER	₹		NOVEMBER	₹	1	DECEMBER	
		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	0.7	C 2	Ţ	4.6	7	0.1	5.4	1	T
2	•6	C 2	т	3.6	6	•1	5.0	1	T
3		C 2	I I	3.6	6	•1	4.7	1]
5	5•4 11	12	5 0.4	4.6 4.6	5	т•1	4.5	1 1	T
2	11		•2	4.0	,	'	1 4.4	•	,
6		C 1	т	4.9	3	Т	42	150	5 42
7	3.0	C 1	T	5.5	6	• 1	30	30 -	2 • 4
8	2.1	C 1	<u> </u>	11	8	•2	25	8	•5
9	2 • 1 1 • 8	C 1	T	10 91	100	5 44	22 19	7 6	•4
10	1.0	7	ľ	,,	i		l .		
11	1.5	4	т	41	11	1.2	15	5	•2
12	1.3	4	<u> </u>	25	7	•5	13	5	•2
13	1.2	4	T T	18 15	4 3	•2	11	5 5	•1
15	1.0	4	T	îí	2	.i	9.7	5	:1
- 1		l	1 1		!	ł	H		ı
16	• 9	4	Ţ	10	2	•1	10 10	4	•1
17	.8 .7	4 4	T T	9.4 9.8	2	•1	9.6	4	•1
19	• 7	4	i i	7.6	2	τ**	10	6	.2
20	• 7	4	i i	7.0	1	Ť	12	6	• 2
	_] _		١,	т .		4	١,
21	•7	3	T T	7.0 29	1 30	A 2.3	10 11	3	•1
23	. 7	3	i i	14	6	2.3	10	2	:1
24	• 7	2	T	11	2	•1	9.6	2	•1
25	• 7	2	T	9.8	2	•1	8.5	2	T
26	•8	2	т	8.7	2	т	7.6	2] т
27	1.1	2	į į	7.6	2	l ÷	7.0	2	l i
28	1.3	3	1 i 1	7.0	2	Ť	7.4	2	Ţ
29	2 • 8	4	Ţ	6.3	2	Ī	6.5	2	Ī
30	2•1 6•6	2 8	T.1	6.0	1	T	5 • 6 5 • 0	2 2	T T
	60.4			403.6		50.3	360.5		47.7
Total	60.4	JANUARY	1.0	403.6	FEBRUAR'	<u> </u>	36043	MARCH	47.67
1	4.5	2	T	3.2	1	<u></u>	0.3	1	Ţ
2	4 • 6	1	Ţ	3.2	2 5	Ť	• 3	1	ī
3	4•6 4•7	1 1	T	3.4 3.2	2	i i	•3		į į
5	4.9	î	i i	3.4	ī	Ť	-5	1 2	Ť
6	5.0	1	1 1	3.7	4	Т .	2.0	10	0.1
7	5.0	i	i i	4.0	6	0.1	13	20	A •7
8	5.0	1	T	3.3	2	T	12	10	• 3
9	5.0	1	7	2.8	1	Ī	14	10	•4
10	5.4	3	T I	2.5	1	Т	50		E 5.0
11	6 • 4	11	0.2	2.1	1	т	65	30	A 5.3
12	11	19	•6	1.6	1	T	86	34	5 18
13	19	20	1.0	1.3	1	l I	220	82	S 60
14	15 12	17	•7	1.1	1	Ţ	150	50 20	A 20 A 3.9
					1	· '	'2		1
16	10	2	•1	.8	1	T	50	10	A 1.4
17	8 • 6	1	1 7	• 7	1	Ţ	120	320	S 180
18	7.6	1	Ţ	.8 1.0	1 1	T T	64 50	30 10	A 5.2 1.4
20	7•4 7•6	1 8	•2	.9	1	†	78	20	A 4.2
21	6.6	4		•7	1	т	35	9	.9
22	6.0	1	, r**	•6	1		23	5	• 3
23	5 • 2	i	i i	.5	i	į į	20	5	• 3
24	4 • 6 4 • 2	1	T T	•6	1	Ţ	29 63	7 10	.5 A 1.7
		1		•5	l				
26	3 • 8	1	Ţ	•4	1	Ī	105	20	A 5.7
27	3 • 5	1	T T	•4	1	Ī	100 54	10	A 2.7 1.0
29	3 • 3 3 • 2	1	1 + 1	•3		\ <u>-</u> -	42	5	•6
	3.4	1	+				36	4	• 4
30									
31	3 • 3	1	T				29	3	•2

E Estimated. S Computed by subdividing day. T Less than 0.05 ton.

A Computed from partly estimated-concentration

graph. C Composite period.

1-5165. COREY CREEK NEAR MAINESBURG, PA.--Continued

Suspended sediment, water year October 1962 to September 1963--Continued

		APRIL			MAY	-		JUNE	
Ì			ded sediment			ded sediment			ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	23	3	0.2	9.0	5	0.1	6.0	2	Ī
3	21 18	3	•2	7.6 6.6	2 2	T	4.? 4.1	2 2	T T
4	15	3	•1	5.4	2	i	3.9	2	Ť
5	11	3	•1	4.9	2	Т .	3.6	2	T
6	10	3	.1	4.6	2	т	3.0	2	τ
7	9.0	2	T	3.9	2	T	2.6	2	T
8	8.0	2	Ī	3.6	2	Ţ	2.1	2	Ţ
9	7•3 6•6	2 2	T	3.6 8.3	2 54	5 2.1	1.8 2.2	2 2	T T
		Į.	1	ll .	!		8	ļ.	l .
11	6•3 5•4	2 2	T T	12 7.6	35 10	1.1	1.9 1.5	2 2	T
13	4.9	2	i i	7.0	6	•1	1.5	2	T
14	4.1	2	Ţ	6.6	5	•1	1.4	2	T
15	3.9	2	7	5.7	4	•1	1.2	2	
16	3 • 6	2	Т	4.9	4	-1	•9	1	T
17	4.1	2	, T	4.4	,4	т .	,•9	1	Ţ
18	10 7•3	10	A •3	14 8•3	19	s •8 •1	1.1	1	T
20	16	20	A .9	11	6	•2	•9	1	Т
21	10	6	•2	11	3	•1	1.0	1	т
22	9.4	4	• 1	9.8	5	•1	•6	1	T
23	19	15	•8	8.0	3	•1	•5	1	T
24	16 14	5 3	•2	7.0 6.0	3 2	, • 1 T	•4	1	T
								_	
26	12 11	3	•1 •1	26 14	30	A 2.1	•3	1	T
27	9.4	2	•1	12	4	• I	• 3	1	T
29	8.3	2	Ţ	12	4	• I	• 3	1	T
30	8 • 3	2	T	10 8.0	3 2	,•1	•4	_1	т
Total	311.9		4.2	262.8		8.3	50.6		0.2
		JULY			AUGUST			SEPTEMBE	
		1			1	т	0.1	0	0
2	0 • 2 • 2	1	T T	0.2	1	į į	•1	ő	0
3	• 2	1	T	.3	1	т,	• 6	14	s T
5	•1	0	0	.2	1	T 0	•6	16 5	Ţ
			l		1				
6	•1	0	0	•1	0	0	• 2	2	T
7 8	•1	0	0	• I • I	Ü	Ü	•1	1 0	ò
9	•1	0	0	.1	0	0	•1	0	0
10	•1	0	0	•2	2	0	•1	0	0
11	•1	0	0	•2	1	т	•1	0	0
12	• 2	0	0	•1	1	i	• 2	0	0
13	•1 •1	0	0	•1	0	ů o	•3	3	Ţ
15	.2	ő	ŏ	:1	ŏ	ŭ	1	ō	Ü
16	•1	0	0	•1	٥	0	•1	0	0
17	• 1	٥	0	•1	Ú	ن	•1	U	0
18	• 1	0	0	. 3	2	Ī	• 1	Ü	0
20	3.5	2 37	S •8	•2	1 2	Ť	•1	0	O T
21	2.1	18	•1	.3	2	т	• 5	4	т
22	1.5	27	5 •2	• 2	1	Т	• 3	2	T
23	1.1	13 10	Ţ	•1	0	T o	•2	1 0	T O
25	• 4	5	Ť	.2	0	ő	i	ő	ő
26	• 3	2	т	•1	ð	o	•1	0	٥
27	• 3	2	T	•1	0	0	•1	0	0
28	.3	1	Ţ	.1	0	O U	•1	0	0 T
29	•3	1	T T	•1	Ú	, v	•3	3	Ť
31	• 2	ī	Ť	•2	ō	Ü			
Total	13.3		1.2	5.1		Т	6.0		0.1
		for your	(cfg-days)	L					3306.2

SUSQUEHANNA RIVER BASIN---Continued

1-5165. COREY CREEK NEAR MAINESBURG, PA.—Continued
Particle-size analyses of suspended sediment, water year October 1962 to September 1963
(Methods of analysis: B, botton withdrawal tube; C, chemically dispersed; D, decantation; N, in mattre water;

		r' baher'	r, piper, s, prove, r, vibuat accumulation cube, w, in mounted meet,	Diet accessors										
1 to 1	L		Sediment	Sediment				۵,	Suspended sediment	d sedin	ent			<u> </u>
ling per-		Discharge (cfs)	concen- tration	discharge		ď	ercent	finer th	an size	Indicate	d, in m	Percent finer than size indicated, in millimeters		jo .
e C		Ì	(mdd)	(tons per day)	0.002	0.004	900 .	0.016	. 031 0	062 0.	125 0.	0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500	0 1.000 2.	200 000
9	l	192	251		18	-	47	61	92	06	92	98 100	_	36
8		172	521		14	_	42	22	22	87	_		_	ĕ
6		378	145		28	_	- 99	62	84	6	_		_	š
38		241	1110		10	200	33	40	22	81	_		_	ĕ
9		9.4	145		30	_	92	87	96	86				ĕ
3		4.1	133		10	_	90	45	2	88	_		_	SCBW

1-5170. ELK RUN NEAR MAINESBURG, PA.

LOCATION.—At gaging station on left bank 250 feet downstream from highway bridge, 0.5 mile upstream from small tributary, 2.7 miles northeast of Mainesburg, Tigg accounty, 5.5 miles upstream from mouth, and 5.8 miles east of Mansfield.

PRICORDS AREA.—10.2 square miles.

PRICORDS ANTIANEL.—There remperatures: November 1956 to September 1962.

Sediment records: May 1954 to September 1963.

Sediment records: May 1954 to September 1963.

Sediment concentrations: Maximum daily, 250 ppm Mar. 17, minimum daily, no flow on many days in July, August and September.

Sediment concentrations: Maximum daily, 84 to July 27, 1958; minimum daily, No prome many days.

Sediment concentrations: Maximum daily, 856 tons Mar. 31, 1962; minimum daily, 0 ppm on many days.

Sediment concentrations: Maximum daily, 856 tons Mar. 31, 1962; minimum daily, 0 ppm on many days.

Sediment concentrations: Maximum daily, 856 tons Mar. 31, 1962; minimum daily, 0 ppm on many days.

Sediment concentrations: Maximum daily, 865 tons Mar. 31, 1962; minimum daily, 0 ppm on many days.

Sediment concentrations and any 1964 tons Mar. 31, 1962; minimum daily, 0 ppm on many days.

Sediment concentrations and many days.

Sediment searblished May 1964 as an external control for the SCS Pliot Watershold study of Corey Creek which is adjacent to Elk Creek. Records of Resperature, specific conductance and p8 of periodic sediment samples available in subdistrict office at Harrisburg, Pa. Flow affected by 1ce

Nov. 26-30, Dec. 1-4, 10-31, Jan. 1-31, Peb. 1-28, and Mar. 1-17, 21-24.

		Col-	10	_	'n	2
		甁	77.5	8.9	7.3	8.9
	Specific conduct-	ance (micro- mhos at 25°C)	174			- 1
	Total	ity ass H ⁺ 1				
	lardness s CaCO,	Non- carbon- ate	18	12	00	2
	Hard as C	Cal- Non- ity (1 cium, carbon- as H ⁺¹ n sium	18	31	36	69
963	solve	solids residue t 180°C			29	
mber 1	;	Fluo- N1- ride trate (F) (NO ₃) a	9.4	8.8	۲.	æ.
Septe		ride (F)	0.1	٥.	٥.	٠.
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	5.4	4.6	2.4	5.5
ar Octobe		Sulfate (SO ₄)	22	13	13	12
ater ye		Bicar- bonate (HCO ₃)			34	- 1
ion, w	6	tas- sium (K)	1,4	2.0	s.	2.2
per mill		Sodium (Na)	4.2	2.1	3.0	4.6
in parts	Мэд	ne- stum (Mg)	3.2	1.7	1.5	3.4
yses, i		Cal- ctum (Ca)	22	9.6	.00	22
lana l	Z an	ga- nese (Mn)	0.01	8.	8.	8.
Chemica		Iron (Fe)	0.01	.03	00.	8
		Alum- inum (Al)				
		Silica (SiO ₂)	0.3	3.9	3.0	1.7
		Mean discharge (cfs)	2.0	46	5.5	٥
		Date of collection	Oct. 10, 1962.	Mar. 18, 1963.	May 14	July 16

1-5170. ELK RUN NEAR MAINESBURG, PA.--Continued

		Suspe	nded sediment	, water yes	r Octobe	r	1962 to Sep	tember 1963	·	
		OCTOBER			NOVEMBER	!		D	TCEMBER	
		Suspen	ded sediment		Suspen	dec	d sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	0.6	c 1	Т	5.1	2	Γ	T	5 • 1	1	T
2	• 4	k 1	Т	4.2	1		Ţ	4.5	1	Ī
3	•3 4•4		T S 1.0	3.9 4.2	1		Ţ	4•2 4•1	1	Ţ
5	9.4	5	•1	3.9	î		Ť	3.9	i	Ť
6	4.2	C 2	т	4.2	1		т	51		5 42
7	2 • 8	C 2 C 2 C 2	1	4.5	2		Ţ.	34	10	1.0
9	2.0 2.0	C 2	Ţ	9.1 10	5		0.1	27 23	3 2	•2
10	2.0	c 2	ή	74	162	s	58	19	3	.2
11	1.7	1	Т	37	10		1.0	15	3	-1
12	1.6	1	T	24	5		+3	11	2.	•1
13	1.7	1	Ţ	17 13	3	1	T - 1	9.0	ُ 3	•1
15	1.4	1	1	10	i		i	8•3 8•0	3	•1
16	1.2	1	т	8.7	1		т	8 • 3	3	-1
17	1.0	1	т	8.2	1		ī	8+2	2	T
18	1.0	1	Ī	8.7	1		Ţ	7 • 8 8 • 6	2 2	Ţ
19	1.0	1	T T	6 • 2 6 • 2	1		1	10	2	•1
21	• 8	1	т]	6.2	1		т	7 • 8	2	т
22	•8	1	Т	23		5	1.3	8•4	2	T
23	•8	1	Ī	12	2		_•1	8 • 5	2	1
25	• 8 • 8	1	T T	10 9•1	1		1	7•6 6•7	2	Ť
26	1.0	1	т	7.3	1		T ,	6 • 2	2	т
27	1.2	1	Ī	6.5	1		Ţ	5 • 6	2 2	T T
28	1.6 3.6	1 3	1	5 • 8 5 • 5	1 1	ĺ	Ť	6 • 0 5 • 3	1	ļ '
30	3.0	2	Í	5.1	i		÷ [4.5	î	Ť
31	7.8	3	•1			L		3•7	2	1
Total	63.0		1.4	352.6		L	61.4	340•3		44.7
		JANUARY			FEBRUARY	_			MARCH	
1	3 • 6	3	1	2.5	2		ī	0.2	1	Ī
2	3.7 3.7	1	T T	2.6	2 2		T T	•2	1	T T
3	3.8	i	, i	2.6	2	1	i	• 2	i	i
5	3.9	1	т	2.7	2		Т	•5	4	1
6	4.0	1	ī	3.0	2		Ī	2.0	25	0.1
7	4.0 4.0	1	T T	3.3 2.6	2 2	1	T T	7•6 7•0	35 10	•7
8	4.0	1	į į	2.2	2		i i	6.6	8	.1
10	4.4	1	т	2.3	2		7	8.0	12	• 3
11	5.0	2	T	1.7	2		т	10	7	•2
12	9.0	10	0.2	1.3	2	l	Ţ	14	30	1.1
13	15 11	5 3	•2	1.0	2 2		Ţ	90 35	100 90	24 8 • 5
15	9.0	3	.1	.7	2		i i	24	90	5.8
16	7.6	2	т	•6	1		Ţ	17	170	7 • 8
17	6.8	2	1	•5	1	1	Ţ	80 46	250 160	54 20
18	6.0 5.9	1	Ţ	•6	1		T T	46 31	80	6.7
20	5.9	6	.1	.,	î		Ť	62	75	13
21	5 • 4	3	ī	•6	1		Ţ	28	45	3.4
22	4.8 4.1	3 2	1	.5	1	1	7	17 16	0 او 20	1.4
24	3.7	2	Ť	. 5	1		†	26	60	4.2
25	3.3	2	7	•4	1		Ţ	52	120	17
26	3.1	2 2	T T	•3	1		T T	88 8u	240 40	57 8•6
27	2.9	2	, , ,	:2	1 1		i i	50	18	2.4
29	2.6	2	Ť			1		39	14	1.5
30	2.7	2	Į į					36	10	1.0
31	2.6	2	T			┝		29	7	•5
Total	158 • 2		1.2	38.5		L	0.2	902.5		240.4

S Computed by subdividing day. T Less than 0.05 ton. C Composite period.

1-5170. ELK RUN NEAR MAINESBURG, PA.--Continued

Suspended sediment, water year October 1962 to September 1963 -- Continued APRIL MAY JUNE Suspended sediment Suspended sediment Suspended sediment Mean Mean Mean Mean Day Mean Mean dia. Tons dis-charge dis-Tons Tons concenconcen charge concencharge per day per day per day tration tration tration (cfs) (cfs) (cfa) (ppm) (ppm) (ppm) 0.1 1.. 24 0.3 6.9 2 6.2 3 6 • 2 5 • 5 4 • 2 19 17 3 2.. • 2 4.5 3 2 3.9 3 2 2 4.. 15 • 1 3 • 6 12 3.9 2 3 2 9.6 1 3.6 т 2.6 3 т 6.. 7 · · · 8 · · · 9 · · 9.6 3.4 3.0 3.2 7.0 2 · 4 2 · 2 2 · 0 2 · 2 2 3 T T ī 0.2 10.. 6.5 11.. 6.5 1 Т 11 1.8 Т 12.. 13.. 14.. 15.. 5 · 8 4 · 5 3 · 9 3 · 4 6 • 5 5 • 8 1.5 1.3 1.2 • 1 3 2 2 5.5 T 2 3 3.0 2 . 8 16.. 1 3.9 т 3 Т 3.2 7.3 5.5 3.4 3 3 5 17.. •1 •1 16 8•2 12 18.. 14 1.0 5 20 •6 8 20. 13 • 3 Т 21.. 7.3 5 • 1 11 4 • 1 1.2 T T 22.. 6.5 12 3 17 •1 11 8•2 3 • 1 • 6 • 3 T 24.. •2 6.9 • 2 11 6 2 3 9.6 26.. 8.2 3 • 1 28 15 1.1 • 1 3 T 7.3 6.5 5.8 5 27.. 28.. 3 14 •1 •1 _ • 1 3 12 - 1 29. 12 • 1 • 1 30.. 6.2 2 • 2 3 --264.3 25 •4 3.9 0.4 Total 3.3 46.8 SEPTEMBER AUGUST JULY 0.1 T Ú 1.. 3... U U U 2 2 0 •1 •3 •1 •1 •1 5 2 T T 6.. O 0 ٥ • 1 1 т ō ò 7.. 8.. 9.. 0 0 0 0 0 ٥ ő ŏ Ö ŏ 10.. 0 0 0 Ü 0 0 0 0 U 0 U 11.. 12.. 0 0 0 3 0 0 0 000 0 0 0 0 0 0 ō 15.. 0 0 ٥ o 0 0 17.. 0 0 0 18.. n 0 0 10 ō 0 ō o T 19.. 20. • 7 U 0 т 21.. 8 22.. 23.. 24.. •4 6 0 0 0000 000 3 0 ī Т 0 0 26.. o 0 • 1 1 27.. 28 . . 0 0 O 0 O T 2 0 ā 30.. 0 • 1 31.. 0 т Total 3.0 0.1 u -ο 1.0 --Total discharge for year (cfs-days). 2420.6
Total load for year (tons). 357.0

T Less than 0.05 ton.

SUSQUEHANNA RIVER BASIN--Continued

1-5170. ELK RUN NEAR MAINESBURG, PA.--Continued

Particle-size analyses of suspended sediment, water year Cocher 1962 to September 1963

(Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in mattre water;
P, pipel; S, sieve; Y, visual accumulation tube; W, in distilled water)

Mathod	jo .	analysis	SWBC	SWBC	SWBC
		2.000	_		
		1.000			
	eters	0.500	66	66	66
	ercent finer than size indicated, in millimeters	0.250	86	86	86
iment	ted, in	0, 125	92	6	93
uspended sediment	e indica	0.062	98	85	82
Suspen	han siz	0.031	62	23	89
	finer t	0.016	43	52	51
	Percent	0.008	32	38	36
	-	0.004	18	19	24
		0.003	7	œ	13
Sodimont	discharge	(tons per day)			
Sediment	concen- tration	(mdd)	290	267	466
	Discharge (cfs)		196	63	102
Water	per-	(F)	46	40	47
	ling per-	point			
	Time (24 hour)		0160	1300	1815
	Date of collection		Nov. 10, 1962	Dec. 6	Mar. 26, 1963

SUSQUEHANNA RIVER BASIN--Continued

1-5405. SUSQUEHANNA RIVER AT DANVILLE, PA.

INCAVION — it Mill Street bridge on State Highway 54 at Danville, Montour County, 0.8 mile upstream from Mahoning Greek.

DALINGE AREA—III.20 square mile or provide 1945 to June 1955, october 1965 to September 1963.

Witch tengent with the conductation of daily analysis of 1893 milliams of the conductation of the conductation of daily analysis will be mapples while the conductation of peculia conductation of daily analysis will district of the conductation of daily analysis will be mapples whall be in district of the conductation of daily analysis wallable in district of the conductation of the conductation of daily analysis wallable in district of the page 1892 of the conductation of daily analysis wallable in district of the conductation of the conductation of daily analysis wallable in district of the conductation of the conductation of daily analysis wallable in district of the conductation of the conductation of daily analysis of the conductation of daily analysis wallable in district of the conductation of daily analysis was a conductation of daily analysis.

Chemical analyses, in parts per million, water year October 1962 to September 1963

	Col-	'n	s	က	s	e	81	7	8	e .	es -	4
	Hd	8.8	6.9	8.9	6.7	8.9	8.9	7.2	7.6	7.1	9.9	8.9
Specific	ance (micro- mhos at 25°C)			_			421	148	569	422	491	292
Total	acid- ity a.s H ⁺ 1										_	
Hardness as CaCO,	Non- carbon- ate		114	87	137	106	131	31	42	150	191	235
	Cal- cium, c magne- stum	178	139	106	159	127	120	09	110	179	211	526
Dissolved	solids (residue at 180°C)		215	155	237	218	257	114	160	265	340	419
-	trate (NO ₃)	⊢	_		_	4.3		2.2	1.6	2.0	2.2	1.7
	ride (F)	0.2	٦.	~	۳.	8	ο.	7	7	٦:	63	63
	Chloride (C1)	13	10	7.0	9.5	11	15	8.4	6.4	10	=======================================	16
	Sulfate (SO ₄)	155	111	82	138	111	137	31	83	156	190	242
i	Bicar - bonate (HCO ₃)	25	30	24	56	56	24	36	38	36	24	22
Р.	tas- slum (K)	0.5	ď	1.0	3.5	1.0	1.0	00	1.0	1.2	1.5	2.0
	Sodium (Na)	12	8.6	8.9	10	11	15	3.4	7.3	12	14	20
Mag.	ne- stum (Mg)	17	13	10	16	12	14	3.6	9.7	18	22	24
- 3	clum (Ca)						37		88	42	48	63
Man-	ga- nese (Mn)	0.00	00.	80.	.57	8.	8.	00	8	8.	8.	8
	Iron (Fe)	0.00	8.	8	8	8.	8.	19	8	8.	8.	8.
	Alum inum (Al)											
	Silica (SiO ₂)	5.3	3.0	3.9	3.9	6.7	5.7	12	2.5	3.5	4.3	2.1
17	discharge (cfs)					7490			8450			
	Date of collection	t. 2-10, 1962	v. 1-10	2. 1-10	1, 1-10, 1963	b. 1-10	Mar. 1-10	1-10	1e 1-10	ly 1-9	g. 1-10	Sept. 1-10
1		Oct	No	Dec	Jar	Fel	Ma.	AD	Ę	Ju	Aug	Sej

SUSQUEHANNA RIVER BASIN--Continued 1-5405. SUSQUEHANNA RIVER AT DANVILLE, PA.--Continued

						Temp	era	Temperature (°F) of water,	S.	0.0	E wa	ter,		Water	year		tobe	r 19	62	to S	epte	October 1962 to September	r 1963	63							:
,															Day																Aver-
Month	-	7	m	4	2	9	-	8	2	=	112	13	7	15 1	9	17	18	19	20	21	22	23	24	25 2	26 2	27 2	28 2	29 3	30 3	_	age
October November December	47	62 47 42	3 6 5 6 6 7 9 9 9 9 9 9 9	39	64 62 45 44 38 38		63 60 43 43 40 39		60 62 45 47 37 35	63	3 4 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	34	346	61 45 34	6.2 3.5 3.5	6.2 9.5 3.5	59 41 36	60 42 37	61 40 35	3 5	35 1 5	515	54 11 35	316	3.3.5	0 0 2 U	3 4 5 0 2 4 4 14 14	48 40 35 35 32		37	36
January February March	33	35	35.45	3 4 5	3000	355	34 35 34 35 35 35		36 36 35 36 38 36	9 9 9	300	333	3 4 4 4	3.5 2.0 4.0 4.0	34 36 36	2 2 3	35	36 34 35	36	333	33.4	2 6 7	411	33 4 3 4 3 3	2 9 2	48.54 48.54 48.44	4 4 0	35 35		414	3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
April May. June	44 00 40	4 0 0 0 0 4	57.0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 48 60 61 71 74		58 47 63 66 75 71		47 46 66 68 75 77		47 49 62 75 65	51 61 70	407	51 61 72	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		54 59 63 63 71 72	58 73	58 63 73	55 66 69	58 62 70	200	50 65 75	52 5	5.2 6.3 80 · 6	5.2 6.3 8 U 8	801.0	54 55 61 65 77 78		1 8 1	52 62 73
JulyAugust	85 79		76 75 78 76 73 72		74 7 75 8 7 68 7	78 70 70 70	76 75 77 78 72 74		74 80 80 76 73		73		17 77 70 07	71	77 25		80 82 73 75 70 72	80 71 75	80 78 71 75 69	77	80 62	79 81 75 62 62	81 75 62	63 74 61 61	85	82 75 75 66 66	67 67	85 83 74 75 65 62		92	79 76 69

SUSQUEHANNA RIVER BASIN---Continued

1-5435. SINNEMAHONING CREEK AT SINNEMAHONING, PA.

LOCATION.--At gaging station 0.2 mile upstream from Grove Run, and 0.7 mile upstream from Pennsylvania Railroad bridge at Sinnemahoning, Cameron County. MININGE RARE miles.
RECORDA AVAILABLE.--Chemical analyses: October 1960 to September 1962 to September 1963.

		Col-	ı,	'n	ıD	e	ıc	ı,	m	N	7
		Hd	4.4	4.4	4.8	4.2	8.8	6.1	3.9	3.6	3.8
	Specific conduct-	ance (micro- mhos at 25°C)	234	210	114	242	101				
		acid- ity as H ⁺ :	0.3	®	į	9.	ł	ł	6.	9.1	1.0
	Hardness as CaCO,	Non- carbon- ate	19	57	31	63	25	28	65	121	117
	Hare as C	Cal- cium, magne- sium	19	57	35	63	27	44	65	121	117
er 1963	Dissolved	solids (residue at 180°C)	118	112	65	125	29	8	128	285	246
ptemb	,	rrate (NO ₃)	0.1	e.	4.	۲.	۰.	87	∞.	9.	.5
12 to Se		ride (F)	1	;	1	0:0	1	7.	•	6.	1
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (CI)	5.0	7.0	4.5	7.0	2.0	5.5	6.5	16	12
er year 0		Sulfate (SO ₄)	7.1	09	30	1.1	58	33	16	185	158
on, wat	i	bonate (HCO ₃)	0	0	-	0	ဗ	20	0	0	0
m1111	Po-	tas- sium (K)	1.4	1.2	۲.	1.0	œ.	3.0	œ.	2.2	1.8
parts per		Sodium (Na)	4.4	8.4	5.6	5.4	9.2	4.6	4.5	8.0	8.2
es, in	Mag-	ne - sium (Mg)	6.3	5.4	2.9	8.9	2.4	4.6	7.3	13	12
analys	;	cau- cium (Ca)	14	14	0.8	14	8.9	10	14	21	27
emical	Man-	ga- nese (Mn)	0.38	.62	.26	.65	.26	.20	0.1	2.5	2.4
S.		Iron (Fe)	0.03	5	5	.02	10.	.02	2.	.44	.35
		inum (Al)	1.8	1	1	1.4	4.	1	2.5	10	7.0
		Silica (SiO ₂)	6.4	6.7	5.7	7.4	5.1	•		_	_
	,	Mean discharge (cfs)	437	180	1200	180	2520				
		Date of collection	Oct. 30, 1962.	Dec. 13	Jan. 16, 1963.	Feb. 28	Apr. 4	May 16	June 27	Aug. 7	Sept. 18

SUSQUEHANNA RIVER BASIN -- Continued

1-5458. WEST BRANCH SUSQUEHANNA RIVER AT LOCK HAVEN, PA.

LOCATION .--Center of Lockport Bridge, which is at the termination of North Jay Street, Lock Haven, Clinton County, and 30.1 miles downstream from gaging station

THE REPORTED AND THE STATE OF T

		Col-	2	m	s		2	18	က	8	4	2	cq.	8	n	က
		Hď	4.1	4 .0	4.4		4.4	4.1	4.2	4.4	4.2	4.2	4.1	3.7	3.7	3.6
	Specific conduct-	ance (micro- mhos at 25°C)	347	371	279		280	305	324		225					
	Total	tty as H ⁺ 1	9.0	9.	e.		e.	'n	ı.	2	n	е.	e.	9	Φ.	1.2
	Hardness as CaCO,	Non- carbon- ate	110	121	94		91	84	8	55	20	64	64	113	177	509
		Cal- clum, magne- sium	110	121	7 6		91	87	96	55	2	64	64	113	177	509
er 1963	Dissolved	solids (residue at 180°C)	206	217	162		165	163	177	104	129	115	118	210	308	384
eptemb	;	trate (NO ₃)	9.0	es.	r:		-:	9.	2.2	4	C)	0.	4	~	4.	.5
12 to S	í	ride (F)	0.1	-:	•		•	٦.	۲:	-	:	•	۲.	-:	-:	۲,
million, water year October 1962 to September 1963		Chloride (C1)	6.0	2.0	3.6		2.0	5.0	8.0	0.4	0.4	3.5	3.0	0.9	6.0	0.6
er year C		Sulfate (SO ₄)	132	143	104		86	104	110	63	84	7.1	75	138	215	251
on, wat		bonate bonate (HCO ₃)	0	0	0		0	•	•	•	0	0	0	0	•	0
m1111	Po-	tas- sium (K)	2.0	80.	2.3		1.8	1.5	1.7	2	9	1.0	ů.	1.0	1.0	2.0
Chemical analyses, in parts per		Sodium (Na)	3.9	5.6	8.4		8.4	5.8	7.2	2.5		2.7	3.0	5.0	9.1	12
es, in	Mag-	ne- sium (Mg)	12	13	2		8.8	7.8	8.7	4.5	7.3	7.5	6.3	=	18	21
analys	-	clum (Ca)	24	27	21		22	22	24	13	91	13	15	27	41	49
emical	Man-	ga- nese (Mn)	2.1	5.0	1.4		1:1	1.2	1.2	.67	93	.79	88.	1.3	3.0	3.6
S.		Iron (Fe)	0.04	.05	.02		.02	7 0.	•	05	0.0	0.	.02	01.	.17	. 29
	!	inum inum (A1)	2.7		1			2.1		.3	1.7	1.6	1.3	2.5	4.0	6.4
		Silica (SiO ₂)	8.7	7.8	6.4		6.7	7,3	6.9	9	5.2	5.0	5.8	7.1	9.5	10
	Moor	discharge (cfs)	2340	•					4340	11200	3260					
	4	of collection	Oct. 1-10, 1962	Nov. 1-5, 7-10.	Dec. 3-9	Jan. 1-2,	7-9, 1963	Feb. 5-10	Mar. 1-10	Apr. 1-10.	May 1. 3-10.	May 2	June 1-10	July 1-10	Aug. 1-10	Sept. 1-10

SUSQUEHANNA RIVER BASIN--Continued 1-5458. WEST BRANCH SUSQUEHANNA RIVER AT LOCK HAVEN, DA.--Continued

	ئ					
	Aver-	age	245	1 34 1	54 61 72	78
		31	51.5	113	1 6 1	78 73
Ì		30	4 4 4 U 0 2	113	50 62 82	81 79 72 74 57 60
- [29	94	1 1 3	51 61 79	
		28	44 47 57 37 32 32	35 36 37 48 48	52 50 59 60 81 78	83 84 70 70 60 61
		27	44 37 32			
		26	52 45 42 38 32 32	35.5	51 50 60 60 77 79	84 71 59
63		25	5 5 4 2 3 2	33		84 71 58
13		24	56 52 42 42 32 32	34 33 34 37 45 48	58 57	72 72 59 57
mpe		23	56 42 32	4 4 4 5	1 8 9	72
Temperature ('f) of water, water year October 1962 to September 1963		19 20 21 22 23 24 25 26 27 28 29	1 2 6	33 34 35 34 43 43	56 58 69 69	73 73 74 61 59
ŏ O		21				
20		20	59 40 35 35 35 35	33	61	9 9 9 9 4 9 4
13		16		8 8 8 8 8 9	59 73	81 65 67
oper		18	64 61 41 32 32	33 33 33 33 38 38	53 58	78 78 69 67 67 73
CC		17		38		
ear	Day	16	61 64	32 32 34 38 39	52 52 60 60 69 70	76 78 66 68 62 66
r		15	43	32		76 66 62
wate		14	62 64 45 44 32 32	32	5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	76 76 74 70 65 63
ŗ,		13		34		
Wate		12	62 63 44 47 32 32	34 34	48 50 65 60 78 67	72 76 76 76 67 68
ö		Ξ				
2		10	59 61 45 47 32	32 33 33 39 38	51 50 50 48 63 65 67 70 70 72 74 76	72 72 77 75 74 75
e		6			5.0 6.7 7.4	72 77 74
atm		8	63 60 43 45 33 34	32 32 35 33 39 39	51 50 63 65 70 72	74 75 71 74 67 70
per		7				
Len		9	96 20 36 36	34 35	50 51 60 60 67 70	77 73 78 74 65 64
-		3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18				
		4	61 64 44 36 36	37 37	52 43 55 59 67 65	77 77 80 76 68 66
		2	58 59	36	51	85 83 76 78 71 69
		-	80.01	32	50	76
	Moneh	Month	October November December	January 32 32 February 36 36 March 36 36	April May. June	July 85 83 August 76 78 September 71 69

Col-

SUSQUEHANNA RIVER BASIN---Continued

1-5475. NORTH BALD EAGLE CREEK AT BLANCHARD, PA.

HOCATION.--At graging station, 0.7 mile upstream from Marsh Creek, and 0.9 mile south of Blanchard, Centre County.
MENCROD ANALMENT.-39 squares miles and analyses: October 1958 to September 1963.
SECOND ANALMENT.--Chemical Manalyses: October 1958 to September 1963.
Selment records: December 1955 to March 1956.
SERMENT.--Records of specific conductance and pil of periodic sediment samples available in subdistrict office at Harrisburg, Pa. REWARE.--Records of specific orductance and pil of periodic sediment samples available in subdistrict office at Harrisburg, Pa.

	-	Hd.	7.2	7.4	6.7	7.8	7.7	9.7	7.3	7:0	7.0	7.8	0.8	7:1	7.2	7.5	8.1	
	Specific conduct-	ance (micro- mhos at 25°C)	235	342	337	349	258	287	379	179	216	288	279	185	250	304	335	326
	Total	acid- tty H ⁺ 1																_
	Hardness as CaCO,	Non- carbon- ate	ĺ	34	30	30	28	30	40	27	26	26	29	18	16	13	20	28
	Harc as C	Cal- clum, magne- sium	103	166	154	151	106	125	148	72	88	126	123	82	116	144	162	171
nber 1963	Dissolved	solids (residue at 180°C)	148	212	;	227	;	135	217	105	126	153	157	122	154	182	197	201
Septer	;	trate (NO ₃)	1.7	2.0	0.1	7.4	5.2	89	=	5.5	1.5	5.1	Ξ.	4.1		6.5	3	9.1
962 to	í	ride (F)	г							٦.		٦.				_		
water year October 1962 to September 1963		Chloride (C1)	4.5	8.0	0.8	9.0	8.0	7.3	16	5.4	5.0	7.2	6.9	4.0	6.4	8.0	0.6	10
ter year		Sulfate (SO ₄)	31	25	22	33	56	22	30	21	23	18	21	20	19	18	50	18
million, wa	Š	bonate (HCO ₃)	84	161	152	148	92	116	131	22	92	122	114	78	122	159	173	1818
	Po-	tas- sium (K)	1,3	2.2	1	1.8	ļ	1.7	3.2	2,1	1.3	'n	1.3	∞.	® .	1.8	2.5	1.8
Chemical analyses, in parts per		Sodium (Na)	3.7	e. 3	8,8	6.4	6.7	4.4	77	2.6	4.3	8.4	4.4	4.5	4.1	6.9	6.0	6.4
ses, in	Mag-	ne- stum (Mg)	8.0	16	}	13	}	11	11	4.1	7.5	21	11	7.1	91	13	15	16
analy	į	cium (Ca)	28	\$	1	38	ļ	33	41	22	23	34	.	77	30	36	40	42
hemica	Man-	ga- nese (Mn)	60.0	۶.	1	8	1	.02	8.	.0	.02	8.	10.	8.	8.	00.	.03	8.
		Iron (Fe)	10.0	.02	i	8	1	.02	8	0.	6.	8.	02	.02	.02	8.	8.	.01
	1	inum (A1)																
		Silica (SiO ₂)	8.0	8.4	;	6.7	1	4.1	12	5.3	6.5	1.9	2.3	7.1	6.2	61	4.8	4.9
	Mean	discharge (cfs)	610	176	169	517	274	180	248	1350	678	325	301	605	275	159	143	116
	ć	of collection	0ct. 4, 1962	0ct. 31	Nov. 1	Dec. 14	Jan. 17, 1963.	Jan. 23	Mar. 5	Mar. 7	Apr. 2	Apr. 12	May 1	May 20	June 4	July 1	Aug. 5	Sept. 20

a Includes equivalent of 6 parts per million of carbonate (CO₃).

SUSQUEHANNA RIVER BASIN--Continued

1-5590, JUNIATA RIVER AT HUNTINGDON, PA.

LOCATION. --At gaging station, 450 feet downstream from Smithfield Bridge at Huntingdon County, and 0.8 mile upstream from Standing Stone Creek. RECORDS AREA.--S16 square miles.
RECORDS AVAILABLE.--Chemical analyses: October 1947 to September 1951, October 1965.
REMARKS.--Records of specific conductance and pf of daily samples available in district office at Philadelphia, Pa.

9 5 2122 33.55 뜅 (micro-mhos at 25°C) Specific conductance 466 444 239 323 476 272 155 354 487 Total Carded acide Carded Hyper H Cal- Non-clum, carbon-magne- ate Hardness as CaCO, 162 148 87 107 159 (residue at 180°C) Chemical analyses, in parts per million. Water year October 1962 to September 1963 Dissolved solids 266 2248 136 183 276 157 209 289 trate (NO₃) 24.2 Fluo-ride (F) 5111<u>4</u> 0 ----Chloride (Cl) 50° 64 34 13 41 41 Sulfate (SO₄) Bicar -bonate (HCO) 1119 113 132 132 132 148 148 148 148 148 Po-tas-stum (K) Sodium (Na.) 25. 24. 14. 14. 18. 18. 18. 12 5.7 30 8.0 3.9 11 Mag-ne-stum (Mg) Cal-ctum (Ca) 42 83 44 45 28 118 49 49 60.0 10.00 10.00 Man-ga-nese (Mn) 2222 Fe) 8888 Alum-inum (A1) Silica (SiO₂) Mean discharge 185 120 1300 477 300 2050 260 260 197 Oct. 30, 1962. Dec. 13..... Jan. 15, 1963. Jan. 23. Apr. 9..... May 20..... July 9..... Date of collection

SUSQUEHANNA RIVER BASIN--Continued

1-5630. RAYSTOWN BRANCH JUNIATA RIVER NEAR HUNTINGDON, PA.

LOCATION. --At gaging station at Hawn Bridge, 0.2 mile below Pennsylvania Electric Co. power dam, 6 miles south of Huntingdon, Huntingdon County, and 9 miles builds are miles.

DRING REG. - 97 square miles.

REGENDA ANIARE. --Chemical analyses: October 1946 to September 1950, October 1962 to September 1963.

When temperatures: October 1946 to September 1950.

REMARKS. --Tow is regulated by dam 0.2 mile upstream from gaging station. Records of specific conductance of daily samples available in district office at Philadelphia, Per.

		Col- or	2	ç	S	e	83	2	S	က	4
		Hd	9.7	4.7	6.9	7.2	7.1	6.9	7.1	0.7	7.0
	Specific conduct-	ance (micro- mhos at 25°C)					161				
	Total	#y #y H+1									
	ness aCO ₃	Non- carbon- ate	41	32	28	43	30	32	43	25	99
	Haro as C	Cal- clum, magne- sium	126	78	48	26	62	80	97	115	138
ber 1963	Dissolved	solids (residue at 180°C)	179	115	68	134	46	115	136	129	178
Septem		rate (NO ₃)	0.3	0.1	6.1	6.4	2.2	2.4	2.1	5.5	1.8
962 to	ī	ride (F)	0.0	1	!	۲.	۳.	۲.	-	9.	;
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (Cl)	7.0	5.0	2.0	6.5	3.9	4.5	4.0	4.5	4.5
ter year		Sulfate (SO ₄)	41	34	24	38	53	32	44	23	61
ton, wa		bonate (HCO ₃)	104	53	25	99	36	28	99	77	81
r m111	Ъ0-	tas- stum (K)	2.6	1.6	1.8	1.5	1.4	1.6	2.2	2.0	1.8
parts pe		Sodium (Na)	7.1	4.5	3.3	4.4	2.2	3.8	4.0	4.3	3.7
ses, in	Mag-	ne- sium (Mg)	10	5.6	3.5	8.3	5.4	9.9	8.3	11	14
analy.	3	ctum (Ca)	34	22	14	25	16	21	25	28	32
nemica]	Man	ga- nese (Mn)	0.01	8	.0	8	.03	00.	8	8	8.
ช		Iron (Fe)	0.08	10.	.02	.02	.22	10.	.02	.05	00.
		thum (A1)									
		Silica (SiO ₂)	6.7	7.1	6.4	5.8	3.7	5.4	7.9	7.7	3.2
		Mean discharge (cfs)	163	304	1900	300	940	381	268	114	50
		Date of collection	Oct, 31, 1962.	Dec. 10	Jan. 16, 1963.	Feb. 25	Apr. 8	Мау 23	July 9	Aug. 13	Sept. 20

NORTH ATLANTIC SLOPE BASINS

SUSQUEHANNA RIVER BASIN -- Continued

1-5670. JUNIATA RIVER AT NEWPORT, PA.

LOCATION.--At gaging station on State Highway 34 bridge at Newport, Perry County, 1,000 feet upstream from Little Buffalo Creek.
DRAINAGE AREA.--3,354 square miles.
RECORDS AVAILABLE.--Chemical analyses: October 1944 to June 1953, February 1956 to September 1963.
Water temperatures: October 1944 to June 1953, June 1958 to September 1962.
Sediment records: January 1951 to September 1963.
EXTREMES, 1962-63.-Sepecific conductance: Maximum daily, 454 micromhos Sept. 21; minimum daily,
116 micromhos Mar. 20, 21.

116 micromhos Mar. 20, 21.
Sediment concentrations: Maximum daily, 120 ppm Mar. 19; minimum daily, 1 ppm on many days during October, December, and January.
Sediment loads: Maximum daily, 10,000 tons Mar. 6, 7; minimum daily, 1 ton on several days during

1950 and Apr. 1-10, 1958. Specific conductance: Maximum daily, 499 micromhos Dec. 17, 1946; minimum daily, 59 micromhos

Specific conductance: Maximum Gally, was millouning boot 1., ----, 1949; minimum, freezing point on many days during winter months.

Water temperatures (1944-53, 1958-62): Maximum, 87°F July 3, 1949; minimum, freezing point on many days during winter months.

Sediment concentrations (1951-63): Maximum daily, 1,130 ppm Mar. 2, 1954; minimum daily, 0 ppm on many days.

Sediment loads (1951-63): Maximum daily, 128,000 tons Mar. 2, 1954; minimum daily, 0 tors on many days.

Suspended sediment, water year October 1962 to September 1963

charge (cfs) concentration (ppm) concentration (ppm) charge (cfs) concentration (ppm) co]		OCTOBER			NOVEMBER		1	DECEMBER	
Day Charge charge charge (cfs) Charge (cfs)	Ī		Suspend	ed sediment		Suspend	led sediment		Suspend	ed sediment
2 1080 4 12 9779 3 8 1490 6 24 3 1070 4 12 1160 3 9 1440 6 23 4 3830 200 1190 3 10 1270 5 17 5 7920 700 1320 3 10 1350 5 18 6 3240 100 1270 3 10 1910 9 46 7 2270 60 1280 3 10 2690 12 87 8 1620 20 1110 2 6 2450 10 66 9 1280 2 7 1050 2 6 2450 10 66 9 1280 3 12 4690 19 240 2270 5 31 1. 1250 2 7 5440 22 320 1500 2 87 2 1080 2 6 4880 20 260 1000 1 33 3 964 1 3 3 4210 18 200 800 1 2 2 4 882 1 2 3220 14 120 920 1 2 5 842 1 2 2 2500 11 74 1050 2 6 6 815 1 2 2 1300 9 52 1100 2 6 8 715 1 2 1940 8 42 1100 2 6 8 778 1 2 2 2240 10 60 1100 2 6 8 778 1 2 2 2240 10 60 1100 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 50 10 2 6 9 740 1 2 2 2200 10 60 10 20 2 6 9 740 1 2 2 2200 10 60 1200 2 66 9 740 1 2 2 2200 10 60 1200 2 66 9 740 1 2 2 2200 10 60 1200 2 66 9 740 1 2 2 2200 10 60 1200 2 7 9 621 1 2 2 2200 10 62 1300 2 7 9 644 1 2 2 2400 11 71 1300 2 7 9 644 1 2 2 2400 11 71 1300 2 7 9 644 1 2 2 2400 11 71 1300 2 7 9 644 1 2 2 2400 11 71 1300 2 7 9 644 1 2 2 2400 11 71 1300 2 7 9 641 1 2 2 1810 8 39 1200 2 7 9 641 1 2 2 2400 11 660 7 32 900 1 2 2 1 749 1 2 2 800 1 2 2	Day	dis- charge	concen- tration	per	dis- charge	concen- tration	per	dis- charge	concen- tration	per
3 1070	1	1860	8							31
3 1070	2	1080	4	12	979	3	8 .	1490	6	
4 3830		1070	4	12	1160	3			6	
5 7920				200	1190					
7.	5	7920		700	1320	3	11	1350	5	18
8. 1620	6	3240								46
9 1280	7	2270								
0 1460 3 12 4690 19 240 2270 5 31 1 1250 2 7 5440 22 320 1500 2 8 2 1080 2 6 4880 20 260 1000 1 3 3 964 1 3 4210 18 200 800 1 2 4 882 1 2 3220 14 120 920 1 2 5 842 1 2 2500 11 74 1050 2 6 6 815 1 2 2130 9 52 1100 2 6 8 778 1 2 1940 8 42 1100 2 6 9 740 1 2 1920 8 41 1000 2 5 1 <t< td=""><td>8</td><td>1620</td><td></td><td>20</td><td></td><td>2</td><td>6</td><td></td><td></td><td></td></t<>	8	1620		20		2	6			
1 1250	9	1280	2		1050					
2 1080 2 6 4880 20 260 1000 1 3 3. 964 1 3 4210 18 200 800 1 2 4 882 1 2 3220 14 120 920 1 2 5 842 1 2 2500 11 74 1050 2 6 6 815 1 2 2130 9 52 1100 2 6 7 715 1 2 1940 8 42 1100 2 6 8 778 1 2 2240 10 60 1100 2 6 8 778 1 2 2240 10 60 1100 2 6 9 740 1 2 1920 8 41 1000 2 6 9 740 1 2 2000 10 54 1100 2 6 1. 598 1 2 2070 11 61 1200 2 6 2 632 1 2 2590 19 140 1200 2 6 3 522 1 1 3 3300 24 210 1200 2 6 4 522 1 1 3 3300 24 210 1200 2 6 6 644 1 2 3180 24 210 1200 2 6 6 644 1 2 2400 11 71 1300 2 7 7 644 1 2 2400 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2240 11 71 1300 2 7 7 644 1 2 2200 10 62 1300 2 7 7 641 1 2 1810 8 39 1200 2 7 7 621 1 2 1810 8 39 1200 2 7 7 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1660 7 32 900 1 2	0			12	4690	19	240	2270	5	31
1	1	1250	2	7	5440				2	
4 882 1 2 3220 14 120 920 1 2 2 5 842 1 2 2500 11 74 1050 2 6 6 815 1 2 2130 9 52 1100 2 6 6 815 1 2 2130 8 42 1100 2 6 6 8 778 1 2 2240 10 60 1100 2 6 6 9 740 1 2 2240 10 54 1100 2 6 6 9 740 1 2 2240 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 12 12 12 12 12 12 12 12 12 12 12 12 12	2	1080	2	6						
4 882 1 2 3220 14 120 920 1 2 6 6 842 1 2 2500 11 74 1050 2 6 6 815 1 2 2130 9 52 1100 2 6 8 715 1 2 1940 8 42 1100 2 6 8 778 1 2 2240 10 60 1100 2 6 9 740 1 2 1920 8 41 1000 2 5 0 706 1 2 2000 10 54 1100 2 6 1. 598 1 2 2000 10 54 1100 2 6 2 632 1 2 2590 19 140 1200 2 6 3 522 1 1 3430 28 260 1200 2 6 4 522 1 1 3300 24 210 1200 2 6 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 19 140 1200 2 6 6 728 1 2 2690 19 140 1200 2 6 6 728 1 2 2690 19 140 1200 2 6 6 728 1 2 2690 19 140 1200 2 6 6 728 1 2 2690 19 140 1200 2 7 7 644 1 2 2400 11 71 300 2 7 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 2290 10 62 1300 2 7 9 621 1 2 2290 10 62 1300 2 7 9 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1610 8 39 1200 2 6 0 522 1 1 1660 7 32 900 1 2	3		1 1	3	4210	18			1	
5 842 1 2 2500 11 74 1050 2 6 6 815 1 2 2130 9 52 1100 2 6 8 778 1 2 1940 8 42 1100 2 6 8 778 1 2 2240 10 60 1100 2 6 9 740 1 2 1920 8 41 1000 2 5 0 706 1 2 2000 10 34 1100 2 6 1 598 1 2 2070 11 61 1200 2 6 2 632 1 2 2590 19 140 1200 2 6 3 522 1 1 3430 28 260 1200 2 6 4 522 1 1 3300 24 210 1200 2 6 4 522 1 1 3300 24 210 1200 2 6 6 728 1 2 2690 12 87 1200 2 6 6 728 1 2 2690 12 87 1400 2 7 7 644 1 2 2400 11 71 1300 2 7 8 621 1 2 2200 10 62 1300 2 7 9 621 1 2 2200 10 62 1300 2 7 9 621 1 2 1610 8 39 1200 2 6 0 522 1 1 1660 7 32 900 1 2	4	882	1 1	2	3220	14	12∪			2
7 715 1 2 1940 8 42 1100 2 6 8 778 1 2 2240 10 6 1100 2 6 9 740 1 2 1220 8 41 1000 2 5 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2000 10 54 1100 2 6 6 9 740 1 2 2 260 19 140 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 6 6 9 740 1200 2 7 7 8 9 621 1 2 2 2400 11 71 1300 2 7 7 8 9 621 1 2 2 2290 10 62 1300 2 7 7 9 621 1 2 2 1810 8 39 1200 2 7 7 9 621 1 2 1810 8 39 1200 2 6 6 9 749 1 2 9 749 1 9 749 1 2 9 749 1 9 749 1 2 9 749 1 9	5	842	1	2	2500	11	74	1050	2	6
8 778 1 2 2200 10 60 1100 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6	815	1	2	2130					
8 778	7	715	1	2	1940	8	42	1100		
9 740 1 2 1920 8 41 1000 2 5 1 598 1 2 2000 10 54 1100 2 6 1 632 1 2 2690 19 140 1200 2 6 3 522 1 1 3300 24 210 1200 2 6 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 7 7 644 1 2 2340 11 71 1300 2 7 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1660 7 32 900 1 2 1 749 1 2 800 1 2	8		1		2240	10	6∪		2	
0 706		740	1		1920	8	41	1000	2	5
2 632 1 2 2690 19 140 1200 2 6 3 522 1 1 3430 28 260 1200 2 6 4 522 1 1 33300 24 210 1300 2 7 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 8 7 644 1 2 2400 11 71 1300 2 7 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1680 7 32 900 1 2 1 749 1 2 800 1 2	0			2	2000	10	54	1100	2	6
3 522 1 1 3430 28 260 1200 2 6 4 522 1 1 3300 24 210 1300 2 7 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 8 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1660 7 32 900 1 2 1 749 1 2 800 1 2	1	598	1	2	2070		61			
3 522 1 1 3430 28 260 1200 2 6 4 522 1 1 3300 24 210 1300 2 7 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 88 6 621 1 2 2400 11 71 1300 2 7 9 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1680 7 32 900 1 2 1 749 1 2 800 1 2	2	632	1	2	2690					6
4 522 1 1 3300 24 210 1300 2 7 5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 8 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1660 7 32 990 1 2 1 749 1 2 800 1 2	23					28				6
5 644 1 2 3180 24 210 1200 2 6 6 728 1 2 2690 12 87 1400 2 8 7 644 1 2 2400 11 71 1300 2 7 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 7 0 522 1 1 1650 7 32 900 1 2 1 749 1 2 800 1 2	4	522		1	3300					7
7 644 1 2 2400 11 71 1300 2 7 8 621 1 2 2290 10 62 1300 2 7 9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1 1680 7 32 900 1 2 1 749 1 2 800 1 2	5		1	2	3180	24	210	1200	2	6
8. 621 1 2 2290 10 62 1300 2 7 9. 621 1 2 1810 8 39 1200 2 6 0. 522 1 1 1680 7 32 900 1 2 1. 749 1 2 800 1 2	6	728	1							
9 621 1 2 1810 8 39 1200 2 6 0 522 1 1 1 1680 7 32 900 1 2 1 749 1 2 800 1	7	644	1	2						
0 522 1 1 1660 7 32 900 1 2 1 749 1 2 800 1 2	8			2						
	9		1		1810					
	0				1680					2
otal 41205 1212 71089 2713 42610 502	31		1	2		J		800	1	2
	otal	41205		1212	71089		2713	42610		502

SUSQUEHANNA RIVER BASIN--Continued

1-5670. JUNIATA RIVER AT NEWPORT, PA.--Continued

Suspended sediment, water year October 1962 to September 1963.—Continued

1		JANUARY		1	FEBRUAR	ŧΥ			MARCH		
		Suspen	ded sediment		Suspen	ded	sediment		Susper	ded	sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	700	1	2	1200	2	Α	6	1050	2	Α	6
2	1000	1	3	1500	3	Α	12	1000	2	A	5
3	1100	2	6	1400	2	Α	8	1200	2	A	6
4	1200	2	6	1300	2	A	. 8	1500	3	Α	12
5	1100	2	6	1700	4	Α	18	7700			700
6	1300	2	7	1500	3	Α	12	32000		1	10000
7	1100	2	6	1700	3	Α	14	34000			10000
8	1000	1	3	2100	6	В	34	26900			8000
9	1300 1300	2 2	7 7	1400 1900	3	A	12 20	16400 13400			3000 2000
0	1300	-	/	1900	•	^		13400		1	
1	1400	2	8	1300	3	Α	10	13400			2000
2	3000		100	1350	3	Α	10	11100		İ	1000
3	8000		600	1350	3	ļ A	10	11100		1	1000
5	9700 6400		900 500	1300 1200	2 2	A	8 6	17400 19200			4000 4000
٠.١			, ,,,,					B			
6	4500	30	A 360	1100	2	A	6	15000		1	3000
7	4000	24	260	1200	2	A	6	14000		1	2000
8	3500	18	A 170	1300	2	A	8 8	18500	120	1	4000 6400
9	2600 2900	7	A 70 A 55	1500	2	A	8	18100	62		3000
•••	2900	'	, 95	1300		ļ^_	v	18100	02	1	3000
1	2700	5	36	1400	2	Α	8	19900	68		3700
2	1600	3	13	1300	2	A	8	17800	45	1	2200
3	1800	4	19	1150	2	A	6	13400	50		1800
5	1400 1400	3	11	1150 1200	2 2	A	6	10400 8850	32	1	1200 760
3	1400	,	1	1200		1	٠	8890	32	1	760
6	1100	2	6	1100	2	A	6	8230	24		530
7	1200	2	6	1000	2	ļΑ	5	8850	34		810
8	1300	2	7	1000	2	Α	5	9790	40	1	1100
9	1200 1700	2	6 14					9160 7920	38		940 710
1	1400	2	8					6880	31	1	580
otal	73900		3213	38000		-	274	414030		-	78459
-						<u></u>		I	J		
		APRIL	r		MAY	, -			JUNE	,	
1	6300 6000	26 24	440 390	2400 2520	10		65 68	2200 1770	10	1	59 38
3	6000	24	390	2620	12	1	85	1690	8		37
4	5440	25	370	2450	10	İ	66	1810	9	i	44
5	5020	31	420	2110	5		28	1850	9	1	45
6	4210	22	250	2090	5		28	2290	10		62
7	4340	15	180	2040		i	28	2270	10		61
8	3950	1 8	85	1920	5		26	4860	26	1	260
9	3560	7	67	1790	5	1	24	3430	14	1	130
0	3690	9	90	1630	5	1	22	2980	12	1	97
1	3300	7	62	1870	6	1	30	2930	12		95
2	3130	8	68	1790	6	1	29	4210	18	1	200
3	2860	8	62	1900	6	1	31	3560	15		140
4	2570	4	28	1630	5	1	22	3080	15		120
5 • •	2470	4	27	1550	5		21	2960	15	1	120
6	2430	4	26	1540	1 5	1	21	2790	15	1	110
7	2130	4	23	1500	5	1	20	2240	14		85
8	2240	4	24	3220	26		230	1920	14		73
9	2450	4	26	6560		1	400	1730	13	1	61
0	2810	8	61	6000			400	1610	13		57
1	2640	8	57	4750	20	A	260	1710	13	1	60
2	2570	8	56	4080	18	1	200	1610	13	1	57
3	2500	8	54	3430	15	1	140	1450	8	ĺ	31
5	2180 2150	7 7	41	3180 2670	14		120 87	1140 1110	6		18 18
		i	1			1			1 .	1	
6	2040	1 ,7	39 100	262J 2810	12		85 91	1130 1070	6		18 17
8	2760 2070	14	39	2810	10		91 64	935	6 5	1	17
	1960	á	42	2240	10	1	60	868	5		12
9	2.20	10	66	2430	10	1	66	922	5	1	12
9	2430										
0	2430			2020	9	L	49			L	

A Computed from partly estimated-concentration graph. B Computed from estimated-concentration graph.

SUSQUEHANNA RIVER BASIN--Continued

1-5670. JUNIATA RIVER AT NEWPORT, PA. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		JULY	ere no concen	Tations are	AUGUST	d, Ioaus are	1	SEPTEMBE	2
		Suspen	ded sediment			ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	827	4	9	993	13	A 34	436	3	4
2	1330		30	942	11	A 28	370	2	2
3	1450		30	712	7	13	352	3	د ا
4	1380		30	712	7	13	417	3	3
5 • •	1500		30	738	8	16	398	3	3
6	1180	7	22	618	7	12	388	3	3
7	1180	7	22	738	10	20	476	3	4
8	868	7	16	606	8	13	466	3	4
9	854	7	16	572	В	12	455	2	2
10	894	7	17	476	7	9	446	2	2
11	788	7	15	528	7	10	406	3	3
12	750	7	14	518	7	10	594	4	6
13	664	7	13	408	6	7	388	2	6 2 2 2
14	712	7	13	379	6	6	370	2	2
15	750	7	14	426	6	7	320	2	2
16	629	7	12	486	7	9	252	2	1
17	788	. 7	15	497	7	9	304	3	2
18	800	В	17	497	7	9	328	2	2
19	700	7	13	466	6	8	328	3	3
20	725	7	14	417	6	7	446	4	5
21	700	7	13	360	6	6	379	3	3
22	688	7	13	446	5	6	370	3	3
23	583	7	11	455	4	5	320	3	3 1
24	675	7	13	466	4	5	273	2	1
25	788	8	17	446	3	4	273	2	1
26	675	7	13	398	3	3	288	2	2
27	629	7	12	344	2	2	352	2	2
28	618	7	12	344	2	2	36∪	3	3
29	640	8	14	398	2	2	408	3	3
30	528	10	10 A 20	417	3	3	408	3	٤
31	773	10	A 20	436	3				
Total	26066		514	16239		294	11371		82

Total discharge for year (cfs-days)

Total load for year (tons)

A Computed from partly estimated-concentration graph.

SUSQUEHANNA RIVER BASIN--Continued

1-5675. BIXLER RUN NEAR LOYSVILLE, PA.

LOCATION .--At bridge on State Highway 850 at Bixler, 400 feet downstream from gradien, 2.3 miles upstream from mouth and 3.6 miles west of Loysville,

DRAINAGE AREA.—15.0 square miles.

RECORDS AVAILABLE.—Make treportatives: November 1965.

EXTREMES, 1626-63.—Make treportatives: November 1965.

EXTREMES, 1626-63.—Make treportatives: Maximum, 75°7 pm Mar. 6 miniamum daily, 1 ppm on many days during December, January and March.

Sediment records: Maximum daily, 27°7 ppm Mar. 6 miniamum daily, 1 ppm on many days during year.

Sediment concentrations: Maximum daily, 27°7 ppm Mar. 6 miniamum daily, 1 psm than many days during year.

System to many days during year.

System of 1964-63).—Maximum daily, 896 ppm June 10, 1964; miniamum daily, 0 ppm Cot. 29, 30, 1966.

Sediment concentrations: Maximum daily, 896 ppm June 10, 1964; miniamum daily, 0 ppm Oct. 29, 30, 1966.

Sediment locals: Maximum daily, 690 tons Nov. 1, 1956; miniamum daily, 0 ppm Cot. 29, 30, 1966.

Sediment locals: Maximum daily, 600 tons Nov. 1, 1956; miniamum daily, 22-25, 27, 28, 780, 28, 9, 13-28.

		Col- or	'n	ıc	4
		pH Col-	9.7	7.7	7.4
	Specific conduct-	ance (micro- mhos at 25°C)	265		
	Total	acid- ifty as H ⁺¹			
	iness aCO ₃	Cal- Non- ity (relum, carbon, as m	25	20	13
	Haro as C	Cal- clum, magne- sium	130	48	119
er 1963	Dissolve	solids (residue at 180°C	174	26	147
eptemb	,	ride trate (F) (NO ₃)	0.1 1.9	3.0	5.8
2 to S	i	ride (F)	0.1	•	٥.
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	4.0	3.5	3.0
er year 0		Sulfate (SO ₄)	18	12	12
on, wat	į	bonate (HCO ₃)	128	11	130
m1111	Po-	tas- sium (K)	8.0	∞.	1.2
parts per		Sodium (Na)	1.7 0.8	1.0	1.6
nt , 86		ne- sium (Mg)	7.3	4.4	8.3
analys		Call (Ca)	40	24	34
emtca1	Man-	ga- nese (Mn)	0.01		
ទឹ		Iron (Fe)	0.01	10.	.03
	!	inum (A1)			
		Silica (SiO ₂)	4.8	6.5	3.8
		mezn discharge (cfs)	3.8		
		Date of collection	Oct. 16, 1962	Jan. 17, 1963	July 11

SUSQUEHANNA RIVER BASIN--Continued

1-5675. BIXLER RUN NEAR LOYSVILLE, PA.--Continued

	26 27 28 29 30 31 Average	46 47 51 52 47 49 57 42 41 42 47 44 44 52	43 42 43 44 43 47	39 36 36 35 35 34 39 36 35 35 35 34 36	36 35 35 36 36 38 35 34 34 34 35 35 35	36 36 36 37 35 35 36 35	56 54 58 57 54 57 47 46 47 46 46 49 47 39	58 62 64 56 61 58 48 50 50 51 52 48	56 54 57 57 58 58 57 57	71 71 72 72 74 69 65 66 69 69 68 63	74 74 74 75 73 69 70 71 70 70 68	66 68 69 69 70	57 59 61 62 60 63
	25	44	4 O	37	35	35	58	5.6	61	7U 62	74	63	56
	23 24	55 51	44 47	40 37 37 35	38 35 35 35	36 36	39 41	56 51	61 61 53 50	69 77	72 73	70 70 67 67	57 56
	22 2	51 5	5 4 5 7 7	35 3	36 3	35 3	40 9 5	53 4	55 5	59 6	72 7	71 7	60 5
aph)	21	560	6 4 4	38 3	34	35 3	1,3	53.5	53	63	73 7	70 79	9 49
alcohol-actuated thermograph) Day	20	5.8 5.0	46	38	43 04	43	45	58	62 56	6.5	74	68	79
ther	19	57	4 4	38	38	36	43	54	54	70	74	63	65
ted	17 18	64 58 58 52	48 48	39 41	40 41	36 36	52 50 42 43	53 52	59 59	69 71	72 73 67 69	69 70	62 65
-actua Day	16 1	58 5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	37 3	35 3	35 3	39 4	5 6 2	57 5	61 6	70 7	67 6	9 09
D D	15 1	61 6	47 4	35 3	34	35 3	38 3	66 4	57 5	68 6	69 7	67 6	61
alcol	14	60 53	45	35	3.8	35	8 4 7 0 4	59	64 56	62	6.5	6.5	49
	13	62	47	35	36	35	440	57	53	58	70	69	67
s et	1 12	4 64 6 58	51 49	35 35	40 39 39 37	39 36	38 43	53 57	68 63 59 54	70 68	69	70 69	66 67
nonu	1.	2 64 8 56					38 3	51 5	72 6	70 7	11	72 7	9 99
Continuous ethyl	- 6	59 62 56 58	47 50	37 34	42 41 39 36	35 36	43 4	54 64	68 7	69 7	11	71 7	9 99
٤	80	5.5	8 4 4 6	38	39	3.88	37	56	67	6.3	11	70	99
	7	60	4 0 4	3.8	39	97	41	5.8	55	69	11	70	65
	9	61	4 4 9	38	36	36	35	436	55	70	11	72	9
	2	61	4 t 8	4 7	35	35	34	41	96	61	11	72 67	67
	3 4	11	46 46	38 39	35 35	35 35	42 40 35 34	53 48	64 67 49 53	61 63	11	72 72	68 69
	2	11	4 4 6 4 4	37 3	35 3	35	35 3	60 6	9 4 4 4 9	64 6	11	73 7	9 99
		11	4 2 4	38 4	35	3.55	35	52	56	586	73	13 7	67 6
Moork	MORE	October Maximum	November Maximum	December Maximum	January Maximum	February Maximum	Maximum	Maximum	Minimum	Maximum	Maximum	Maximum	Maximim

SUSQUEHANNA RIVER BASIN--Continued

1-5675. BIXLER RUN NEAR LOYSVILLE; PA. -- Continued

Suspended sediment, water year October 1962 to September 1963 (Where no concentrations are reported, loads are estimated)

J		OCTOBE	R		NOVEMBE	R	1	C	ECEMBER		
		Suspen	ded sediment		Suspen	ded a	ediment		Suspen	ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	3.4	4	Т	4.5	3		ī	7.5	2		T
2	3.1	6	0.1	4.0	2		T	7.0	2		Ť
3	3.0	6	I I	6.8	5	1	0.1	6.7	2		Ţ
5	111 48	183 34	S 112 S 4.9	8 • 6 6 • 6	6	l	•1	6.7 6.7	2	1	T
6	17	20	.9	5.7	5	ĺ	.1	32	44	s	6.0
7	10	-6	•2	5.0	5		.1	21	5		• 3
8	7•7	3	•1	4.5	5		•1	17	2		• 1
9	7•5 6•0	5 8	:1	5•3 155	5 73	s	48	15 11	2		•1
11	5.1	10	•1	45	8	S	1.1	10	2		• 1
12	4.5	6	1 1	24	2			9.0	2		τ.
13	4.2	3	1 1	18	2		•1 •1	8 • 2	2	ļ	Ţ
14	4 • 2 4 • 0	3 3	T T	14 11	1		1	8.6 8.0	1		ī
					l						
17	3 • 8 3 • 4	4	T	10 10	1	l	Ţ	8•3 8•0	1		T T
18	3.4	3	Т	15	6	5	•3	8 • 3	1	ĺ	T
19	3 • 3	3	T	13	9		• 3	8.3	1		Ţ
20	3 • 3	3	1	11	6		•2	10	1		
22	3 • 4 3 • 3	3 2	1 7	11 25	5 19	s	•1 1•5	8.0 8.6	1	j	T 7
23	3.3	2	 	16	îí	٦	•5	8.6	î	1	Ť
24	3.3	2 1	Ţ	14 12	4 2		•2	7.5	1		Ţ
25 • •	3.3						į	7•2			
26	3 • 4 3 • 3	1	1	10 9.2	2 2		,•1	7•5 6•8	1		T T
28	3.3	i	T T	8.6	2		Ť	6.7	1	1	Ť
29	3.3	1	ī	8.0	2		T	6.5	1		Ţ
30	4 • 8 8 • 2	3 6	*1	7.7	2		T	6•3 6•1	1 1		Ţ
Total	298.8		119.2	498.5			53.7	297•1		\vdash	7.4
		JANUAR'	Y		FEBRUAR	Y			MARCH		
1	6.5	2	T	6.7	2		ī	5 • 8	1	Π	Ŧ
2 • •	7.0	2	1.	8.0	4		0.1	5 • 8	1		Ţ
3	7.0	2 2	T T	10 7.0	4 2		T -1	6•0 27	1 65	5	7 21
5	6.5 6.0	2	1 1	7.5	i	1	Ť	182	163	S	93
6	6.0	2	т	11	2	1	•1	323	277	s	323
7	5 • 8	2	T	11	1		7	140	104	S	55
8	6.0	2	Ī	8.0	1		Ţ	92	65	S	20
9	6.5 7.5	2 2	Ţ	6 • 4 7 • 2	1		T	55 72	20 40	5	2.9 11
11	14	8	0.3	8.2	1	ł	7	48	6		•8
12	39	26	S 3.0	9.8	1		т	52	20	s	3.5
13	53	22	5 3.4	7.5	1		Ţ	100	124	S	48
15	28 20	3	•3	6 • 7 6 • 5	1 2		Ţ	72 58	25 12		4.9
16	17	2	•1	5.8	2		т	51	14		1.9
17	15	2	:1	5.5	2		7	77	41	5	8.6
18	15	2	•1	8.0	3		•1	68	34	`	6 • 2
19	14 19	2 2	•1	10 8.3	2 2		T • 1	51 67	11 22	s	1.5
					1						
21	15 10	2 2	•1	8 • U 7 • 7	5		•1 •1	50 39	10		1.4
23	10	2	•1	6.3	3		•1	33	10		• 9
24	9.8 9.5	2 2	•1	5.8 5.5	2 2	1	7	29 26	9		• 6
- 1											
27	9 • 2 9 • 0	2 2	1 1	4.5	2 2		T I	2 6 27	12	1	• 6
28	10	2	.1	5.3	1	1	1	22	7		
29 • •	8.9	2	T					20	7		• 4
30	8.0 7.2	2 2	T T					19 18	7	1	• 4
	405.4	<u> </u>	8.9	206.6		+	1.3	1861.6		+-	615 • 6

S Computed by subdividing day. T Less than 0.05 ton.

SUSQUEHANNA RIVER BASIN -- Continued

1-5675. BIXLER RUN NEAR LOYSVILLE, PA, -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		APRIL			MAY		I	JUNE	
		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	18	7	0.3	11	19	5 U•6	5 - 4	ь	0.
2	17	6	• 3	8.7	10	•2	5 • 2	8	
3	16 14	6	•3	8 • 1 7 • 8	10	• 2	6+4 10	10 16	:
5	13	6	.2	7.5	11	• 2	10	18	s .
]	1]		1	1] _	1.
6	13	6	•2	6.9	10	•2	11	33 19	5 1.
7 · · · 8 · ·	13 12	6	•2	6.4 6.1	10 10	• 2	7 • 8 7 • 5	18	:
9	12	6	•2	5.7	10	• 2	6.9	19	:
10	12	6	•2	5.9	12	• 2	8 • 6	20	S .
11	10	6	•2	7.2	18	.3	16	9	
12	10	5	•1	5.9	17	.3	11		:
13	9.9	5	•1	5.7	17	• 3	8 • 4		
14.0	9.0	5	•1	5.7	16	•2	8.0		•
15	8•7	5	•1	5 • 4	16	•2	10		
16	8.4	5	•1	5.2	17	•2	8.0		
17	8.7	5	•1	6.1	22	• 4	6.8		
18	9.9	10	• 3	52	113	5 22	6.0		
19.0	8 • 7	8	• 2	20	22	1.2	5 • 3		
20	9•6	10	•3	15	10	•4	4.8		•
21	8.4	8	• 2	13	6	•2	4.4		
22	7 • 8	8	• 2	11	8	•2	4.1		
23	8.7	8	• 2	9.3	6	•2	3.8		
24	7 • 8 7 • 5	8 8	•2	8 • 4 7 • 8	5 5	•1	3.6		:
29.0	, , ,	1			,	[1		1
26	7 • 2	8	• 2	9.6	6	•2	3.5		
27	6.9	10	•2	8 • 1	5	•1	3 • 3		
28	6.7	10 10	•2	7.5 8.1	5 5	•1 •1	3 • 5	16 20	:
30	12	17	s •7	7.8	6	1	4.3	22	
31				6.1	8	•1			:
Total	312.6		6•4	299.0		29.4	200.9		8.
		JULY			AUGUST			SEPTEMBE	R
1	3 • 5	10	0.1	4.6	28	S 0.4	2 • 4	5	т
2	3.7	22	•2	3.5	13	•1	2 • 2	3	T
3	4.3	36	S •5	3.7	17	S •2	2 • 4	5	T
5	3 • 2 3 • 2	10 10	•1	8 • 5 2 • 9	131 24	5 5.4	2 • 5 2 • 5	6	T T
244	3.2	10	••		24	••	2.0		1
6	3 • 2	10	•1	2.7	14	•1	2 • 5	6	T
7	3.2	11	•1	2 • 7	14	•1	2 • 4	6	Ī
9	3 • 3 3 • 0	10	•1	2•7 2•6	14 14	•1	2.4	5	T
10	3.0	9	•1	2.5	14	•1	2.2	3	T
11	3.0	9	•1	2 • 4	16	•1	2.2	3	Ţ
12	2.9	9	•1	2 • 4 2 • 5	12 12	•1	2 • 2	د 5	T
14	3.9	10	•1	2.5	12	:1	2.2	4	T
15	3.8	9	•1	2.4	12	• 1	2 • 2	8	Ť
,	3 • 2	9		2.4	12	,	2.4	6	т
17	3 • 2	9	•1	2.4	12	•1	2.4	4	T
18	2.9	9	•1	2.2	12	•1	2 • 2	3	T
19	2.9	11	•1	2.4	11	•1	2 • 2	ز ا	T
20	3.3	14	•1	2.5	10	•1	2.2	3	Т
21	3.0	13	•1	2 • 6	10	•1	2 • 2	3	т
22	3.0	13	•1	2 • 4	9	•1	2 • 2	3	T
23	3.0	13	•1	2 • 4	16	• 1	2.2	3	Ţ
24	3.0 2.9	13 13	•1	2.4	14 14	•1	2•2	3	T T
26	2.7	13	•1	2.2	14	•1	2.4	و ا	Ī
27	3.0	13	•1	2 • 2	12	•1	2.4	3	T
	3.3 4.0	12 15	•1	3.5	14	:1	4.6	9	· .
29	4 • 8	24	•3	3.5	12	•1	2 • 6	4	T
30		17	•1	2.9	9	•1			
29 30 31	3 • 2						п —		
30	101.3		3.9	89.0		8•9	71.5		0.
9 30 31	101.3	1	3.9 r (cfs-days).			8.9	• • • • • • • • • • • • • • • • • • • •		4642. 863.

SUSQUEHANNA RIVER BASIN--Continued

1-5675. BIXLER RUN NEAR LOTSVILLE, PA.—Continued Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water;

				P, pipet;	S, steve; V, vi	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	n tube; W	, in di	tilled	water)							
			Water		Sediment	2 di					Suspended sediment	ed sedt	nent				Method
Date of collection	Time (24 hour)	ling	per-	Discharge (cfs)	concen- tration	discharge		14	ercent	finer t	Percent finer than size indicated, in millimeters	indicat	ed, In	nillime	978		Jo .
		Point	E	Ì	(mdd)	(tons per day)	0.002	9.004	900.0	0.016	0.008 0.016 0.031 0.062 0.125	0.062	.125 0	.250 0	500 1.0	00 2.000	analysis
Oct. 4, 1962			29	192	643		12	25		29	76	95	96	8	66	_	SCBW
Nov. 10		_	50	344	168		28	46	65	11	88	94	96	66	66	_	SCBW
Mar. 6, 1963			37	344	338		22	40	_	02	83	16	95	86	66		SCBW
Mar. 13		_	42	169	280		34	21		82	92	96	86	66	001		SCBW
Мау 18		_	28	110	248		22	88	_	92	93	97	86	66	001		SCBW
Aug. 4	0705		67	8.3	384		99	83	_	86	66	66	100	1	;		SCBW

SUSQUERANNA RIVER BASIN---Continued

1-5705. SUSQUERANNA RIVER AT HARRISBURG, PA.

LOCATION. --At Walnut Street Bridge in Harrisburg, Dauphin County, 3,700 feet upstream from gaging station.
DARIANGER ARRA.-24,100 quare miles, approximately.
DARIANGER ARRA.-24,100 quare miles, approximately.
CROSHOS WAILARIES.--Chemical analyses: Composites of daily samples collected from east channel station 1180: October 1944 to September 1949.
CROSH-section samples: One to three times monthly, October 1944 to September 1949.
Mainty cross-section samples: Worember 1950 to January 1953, March to July 1956, October 1956 to September 1963.
Mainty progress october 1944 to September 1940.

	l	Color		ი თ	'n		o u	טו ני		-	'n	က	٢	٠ ،	ດ		4	m	CN.	,	n c	400
		띥		9.3	6.5	4	0 1	. 6		6.4	6.4	6.5	a	1 0	.0		9	9	6.5	,	٠ د د	7.1
	Specific conduct-	_ a	007	316	276	220	200	385		142	185	160	900	808	228		239	252	191		133	199
	Hardness as CaCO,	Non- carbon- ate	3	21	92	8	6 6	30	;	42	20	42	F	1 6	3 5		7	67	44		4 6	36
		Calctum, magne- sium		120	108	-	5 6	162	-	22	68	29	19	9 0	108	_	6	83	29		7	
3	Dissolved	<u>~ «</u>																				
r 196	N.	trate (NO ₃)	,	* 0	2.3	t				1,5	2	1.0	,		6.4		2.7	4.	4.4		4. 4 O F	. 0
eptembe	Fluo-	ride (F)									_			_					_			
Chemical analyses, in parts per million, water year October 1962 to September 1963	opieci40	(0.1)		6.5	6.0	ų	0 0	. 91	;	8	5.5	5.5	,	* a	. 60		9.5	17	5.0		4. 4 5. 6	
r October		(30°)		121	96	8	17	35		46	48	38	99	8 8	20		64	28	41		e e	14
ter yea		bonate (HCO ₃)		13 0	16	•	9 7	151	!	13	22	21	•	א מ	3 2		13	20	19	;	20 00	8 gc
on, wa	Po-	Sium (K)																				
per milli	unipug.	(Na)	-	13 15	7.1	,	*.	12	!	5.3	4.6	3.0	0	9.4	* 8		4.9	10	4.4		9.0	. 4.
parts	Mag-	sium (Mg)																				
8e8, in	Cal-	ctum (Ca)																				
l analy		(Fe)																				
emica.	90,100	(3102)																				
C	Mean	discharge (cfs)	00.0	9580						48200							17700					
		Station	E. Channel	600	1180	W. Channel	900	1320	E. Channel	120	009	1180	W. Channel	900	1320	E. Channel	120	009	1180	W. Channel	009	1320
	Date	of collection	Oct. 23, 1962.						Nov. 14							Mar. 15, 1963.			•	-		_

SUSQUEHANNA RIVER BASIN--Continued

1-5705. SUSQUEHANNA RIVER AT HARRISBURG, PA. -- Continued

1	!	Color	, m	010	N	8	00 (n	4	1	œ		2	9	9	80	_		m .	m 00
		<u>ਨ</u> ਸ਼੍ਰ	9	6.9	œ.	3,4	1.7	٠.	8.9	8.	3.5	9.1	6	7.2	1.5	8.	6.1		4.	6.6
	Specific conduct-	(micro- mhos at 25°C)		236	_		197		255		_		_	227		303				269
	Hardness as CaCO,	Calchm, Non- magne-carbon- stum ate	8	22	4 9	49	53	3	18	46	40	43	30	17	139	68	64		84	119
ned			118	88	c,	62	75	130	104	81	17	23	89	104	162	128	89		99	126
3Contin	Dissolved	<u> </u>																		
er 196	ž.	trate (NO ₃)	4.5	7.4	0.	2.2	4.0	0.	3.5		4.5	9.		3.9	2.9	1.3	1.4		9.7	. i.
ptemp	Fluo-	ride (F)																		
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Chloride	(CI)	5.0	5.5	⊃. *	3.0		0	5.0	6.5		4.0	5.0	7.0	7.5	8.5	3.5	(0,0	9.0
· October	gulfate	(%)	86	80 0	9	20	32	17	80	51	45	47	31	22	145	68	67		8 6	17
ter year		bonate (HCO ₃)	27	9 6	3	16	53	9779	32	20	38	13	47	106	28	48	2	į	N C	a136
n, wa	Po-	Stum Stum (K)																		
per millio	godina.	(Na)	7.6	0.8	•	4.1	00 0 00 0	?	6.9			5.8		8.7	12	7.8	5,3	;	41	11.
parts	Mag-	stum (Mg)																		
ses, in	Cal-	Ctum (C2)																		
analy	5	(Fe)																		
entcal	6:1:0	(SIO ₂)																		
5	Mean	discharge (cfs)	28800						29100						18000					
		oration	E. Channel	000	W. Channel	909	1320	E. Channel	120	909	1180	Cuanuer 600	1100	1320	120	009	1180	W. Channel	96	1320
	Date	collection	Apr. 16, 1963					May 16						Tum. 17			-			

1180	}	8.3	28 88 89 88 88 88 88 88 88 88 88 88 88 88	170 170	9.0 11 7.5	1.7	240 190 116	224 167 95	551 455 289	6.6.5	10 5
. 600 1100 1320	-	12 14 9.2	61 92 b 121	73 44 18	12.5	3.1.2	114	31	282 275 270	6.9 7.3	10 s s
Channel 120 120 600 1180	3720	21 17 14	10 21 34	290 213 144	222	8.1.6	284 220 164	276 203 136	641 520 402	4.0.0	ເດເດເດ
1100 1320		119	60 100 110	108 47 28	14 23 23	8.6.5	146 122 112	97 22	377 330 306	7.0	1022
5. Chaine 120 600 1180	3300	19 6.9	22.98	312 239 175	12 21	0.00 g	315 244 188	309 237 170	703 572 451	6.6.6	៰ដួ៰
7. Channe 600 1100 1320	-	17	60 88 107	122 76 25	17 20 23	6.86.4	142	115 70 21	414 374 292	7.3	H 60 81

b Includes equivalent of 3 parts per million of carbonate (CO₅).

SUSQUEHANNA RIVER BASIN--Continued

1-5765. CONESTOGA CREEK AT LANCASTER, PA.

LOCATION. --At raw water intake, Lancaster, Lancaster County, 500 feet upstream from gaging station at Pennsylvania Railroad Bridge, and 0.8 mile east of

DRAING AREA.—224 aquare miles.

RECORDS AVAILABLE.—Chemical anniyes: October 1947 to September 1960, October 1963.

RECORDS AVAILABLE.—Chemical anniyes: October 1947 to September 1963.

RECORDS 1962—62.—Chemical sanity series that the many series and series that the september 1967 to September 1967.

RECORDS 1962—63.—Specific conductance: Maximum adaily, 461 micromed 0cft. 281 minimum adaily, 462 minimum, 1967 minimum, 1967 minimum, 1968 minimum, 1968 minimum, 1968 pm 1971 minimum, 1968 minimum, 1968 pm 1971 minimum, 1968 minimu

		Col-	۳	۲-	9	m	ю	ю	N	N	e	10	10	10
		Hd			7.6	2,2	2.2	2.2			_	_	7.3	
	Specific	ance (micro- mhos at 25°C)	1		326		_	278		_	_		352	_
	Total	H. a. t.												
	Hardness as CaCO,	Non- carbon- ate	43	46	48	54	47	33	34	33	29	30	46	28
	Harr as C	Cal- cium, magne- sium	164	145	157	189	157	109	159	168	169	171	154	144
er 1963	Dissolved	solids (residue at 180°C)	237	194	214	835	199	163	208	203	224	230	219	207
Septemb	;	trate (NO ₃)	13	12	18	25	18	9	12	13	=	12	13	13
82 · to §	i	Fluo- ride (F)	0,3	٦.	1.		-:	۰.	7	-:	-:	۳.	۳.	۳.
water year October 1962 to September 1963		Chloride (C1)	12	==	11	12	12	9.2	9.0	8.6	8.6	01	12	10
er year (Sulfate (SO ₄)	36	34	33	28	26	22	56	36	25	88	4	59
	i	bonate (HCO ₃)	148	121	133	164	134	93	152	164	120	172	132	142
million,	Ъ0-	sium (K)	4.3	4.1	2.6	1.8	4.5	4.0	1.5	1.8	2.4	4.0	5.6	5.7
Chemical analyses, in parts per		Sodium (Na)	9.4	7.4	8.9	7.9	4.4	5.2	5.5	6.5	7.5	7.8	8.3	7.1
es, in	Mag-	ne- stum (Mg)	15	12	12	16	12	8.3	13	14	13	13	10	9.5
analys		ctum (Ca)	41	38	43	49	43	30					45	
nemical	Man-	ga- nese (Mn)	0.05	8.	8.	8.	8.	20.	8.	8	8.	8	5	8
5		Iron (Fe)	0.01	8.	8.	20.	8.	.05	8.	8	6.	8	8	5
		inum (AI)												
		Silica (SiO ₂)	9.7	9.4	72	53	9.1	6.2	7.6	7.6	91	11	8.5	2.0
	,	discharge (cfs)	119	272	347	140	307	1800	326	188	137	80	130	219
		Date of collection	Oct.1-10, 1962	Nov. 1-10	Dec. 1-10	8-9, 1963	Feb. 1-10	Mar. 1-10	Apr. 1-10	May 1-8, 10	June 1-10	July 1-7	Aug. 1-10	Sept. 1-10

SUSQUEHANNA RIVER BASIN--Continued 1-5765. CONESTOGA CREEK AT LANCASTER, PA.--Continued

	į	age				
	=	a"	34 4 9	4 4 4 6	54 72	7.43
		31	33	46 1 4	1 % 1	211
		30	74 0 E E	33	388	81 52 61
		29	52 40 33	33	5.9 6.1 80	78 69 63
		28	32	36 52 52	8 2 2 8 2 2 8 2 3	64.5
		27	51 40 33	333	57 62 76	81 70 60
		26	50 44 32	34	54 62 73	80 69 59
963		25	5.3 3.3	4 33	53 62 70	77 72 59
Temperature (°F) of water, water year October 1962 to September 1963		24	57 42 33	33	53 62 72	72 76 61
emb		23	53 7-	33	58 63 70	78 75 64
Sept		22	59 44 32	4 4 4	63 70	79 73 67
to		21	5.9 4.2 3.6	35	66 72	78 73 69
962		20	60 35 35	35	59 67	82 72 66
1		19	35	33.7	56 64 72	77 73
tobe		18	62 46 35	34	55 55 64 63 70 71	78 74 63
õ		17	3 4 5 3 6 3 6	35 83 85	55 64 70	75 70 61
year	Day	16	34 6 3 6 2 9	9 8 4	4 4 4 0 7 0 7	72 73 70 73 66 63
er		15 16 17 18	4.5 3.2	33 42 42	53 70	72 70 66
Wa		13 14	62 45 33	32 34 42	5.5 6.4 6.8	73 73 75 73 70 73
er,		13	33	34 33 40	51 65 72	73 75 70
Wa		11 12	34	35 40	46 66 72	73 73 76 76 70 70
ě			80 E	35	68	
F		10	63 47 39	33	50 69 72	75 76 68 71
ure		٥	63 44 36	6 4 4 0	52 67 70	
rati		8	63 8 8 8	34 48	52 52 65 66 75 73	76 67
empe		^	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35 35 36		75. 76 67
e		9	4 t t t t t t t t t t t t t t t t t t t	34 33	449	76 76 75 75 70 66
		2	63	32	4 9 9	
		4	4 6 4 4	33 34 37	58 59 67	81 78 75 71 70
		က	0 4 4 0 9 4	939	52	
		7	60 60 51 47 39 40	33 35 32 33	52 53 69	82 75 70
		_	92.0	333	53 69	80 78 71
	Mand	Month	October November December	January February March	April May	July 80 82 August 78 75 September 71 70

SUSQUEHANNA RIVER BASIN--Continued

1-5765. CONESTOGA CREEK AT LANCASTER, PA. -- Continued

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963 (Methods of analysis: B) blotom withdrawal the; C, chemically dispersed; D) decantalon; N, in mative water; Methods of analysis: B, blotom withdrawal the; C, chemical water of the distribution of the control

				P, pipet;	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water	isual a	ccumulatio.	n tube;	W, In d	istille	water	,							
		ا	Water		Sediment		Codiment					Susp	e papua	Suspended sediment					Method
Date of collection	Time (24 hour)	- Jung	per-	Discharge (cfs)	concen- tration	* ~	discharge			Percer	ıt finer	than s	ize indi	Percent finer than size indicated, in millimeters	illim illi	meters			Jo
	ì	point	F)]	(mdd)	to To	(tons per day)	0.002 0.004 0.008 0.016 0.031	0.004	0.008	0.016	3 0.03	1 0.06	0.125	0.250	0.062 0.125 0.250 0.500	1.000	2,000	analysis
Oct. 5, 1962. Oct. 6. Oct. 9.				312 166 84 89	27 27 21 14	ø2	21 21 3 5 6 6	-											
oct. 16.				822	10		0 00 00												
Oct. 31. Nov. 4. Nov. 10.				213 531 1090	27 56 148	80 80	16 100 740												
Nov. 19				508 508	86 88 89	20202	59 120												
Nov. 23. Nov. 28. Dec. 5. Dec. 6. Jec. 7.				404 174 143 482 1180 149	32 11 21 72 278 10	o o	35 5 8 220 1120 4												
Jan. 10. Jan. 12. Jan. 13. Feb. 6.				136 604 1050 260 294 405	12 53 128 20 20	Ø	130 363 8 16 26												
Feb. 11. Feb. 18. Mar. 20. Mar. 3.				380 214 251 276 807 1090	31 26 28 90 267 406	20 20 20 20	38 15 19 89 684 1270												

SUSQUEHANNA RIVER BASIN -- Continued

1-5765. CONESTOGA CREEK AT LANCASTER, PA. -- Continued

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963.—Continued (Methods of anipsis: B, bottom withdrawal bube; C, chemically dispersed; D, decantation; N, in native water; P, pipet; S, sieve; V, visual accumination tube; W, in distilled water)

	of	a						
		2.00				_		_
		1.00	L					_
	eters	0.500						
	millin	0.250						
iment	ted, in	0, 125						
Suspended sediment	a Indica	0.062			_			
græbend	an size	0.031				_		
	finer th	0.016	l					_
	Percent finer than size indicated, in millimeters	. 002 0. 004 0. 008 0. 016 0. 031 0. 062 0. 125 0. 250 0. 500 1. 000 2. 000						
	ď	0.004						
		0.002						
Codimont	discharge	(tons per day)	36	4	19	4	n	3960
Sediment	coacen- tration	(mdd)	100	21	55	17	25	1070
1	Discharge (cfs)		132	89	125	82	42	1370
Water tem-	per-	(°F)						
Gem	Jul	point						
	Time ling per-							
	Date of collection		Aug. 4, 1963	Aug. 20	Aug. 21	Aug. 22	Sept. 3	Sept. 4

Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis B, bottom withfrawal thus; C, chemically dispensed; D, decantation; N, in native water; P, pipei; S, sieve; Y, vigual accumulation thos; W, in distilled water; P, pipei; S, sieve; Y, vigual accumulation thos; W, in distilled water?

1	jo.	analysis	SCBW	SCBW	SCBW
		2,000			
		1.000			
	eters	0.500	100		
	Percent finer than size indicated, in millimeters	. 002 0. 004 0. 008 0. 016 0. 031 0. 062 0. 125 0. 250 0. 500	97 98 99 100		
liment	ated, in	0.125	86	901	100
Suspended sediment	e indica	0.062	97	66	66
Suspen	han siz	0.031	92	97	97
	finer t	0.016	75	91	96
	Percent	0.008	58	69 84	9.1
		0.004	35	69	79
		0.002	20	28	65
Sediment	discharge	(tons per day)			
Sediment	coacen- tration	(mdd)	1270	198	189
	Discharge (cfs)		4760	126	168
Water	per-	GE)	35	73	16
	Samp- ling	point			
	Time Samp- cem-		1015	0820	1630
	Date of collection		Mar. 5, 1963	June 10	Aug. 4

POTOMAC RIVER BASIN

1-5953. ABRAM CREEK AT OAKMONT, W. VA.

LOCATION. --At gaging station at highway bridge. 0.5 mile east of Oakmont, Mineral County, 1.2 miles downstream from Emory Run, and 1.8 miles southeast of Elk

GARIAGE ARE. --47.3 square miles.
RECORDS AVAILABLE.-Sediment records: December 1961 to March 1962 (discontinued).

Periodic determinations of suspended-sediment discharge, December 1961 to March 1962 (Methods of analysis: B. bottom withdrawal tube; C. chemically dispersed; D. decambitton; N. in mattre water; P. pipet; S. sieve; V. risual accumulation tube; W. in distilled water)

	Method	jo	analysis																
			2,000														_		
			1.000														_		
		eters	0.500	Ī															
		millim	0.250																
	iment	ated, in	0.125																
ı	Suspended sediment	e indic	0.062																
1	Suspen	han siz	0.031																
Water /		finer t	0.016																
Tarrier.		Percent finer than size indicated, in millimeters	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000																
W, 151			0.004						_					_	_		_		_
i moe,			0.00	L							_			_			_		
r, piper, s, sieve, v, visual accumulation mbe, w, in discussed water	Sodimont	discharge	(tons per day)	18	35	16	2.1	e?		11	3.6	41	42	72		9.1	344	48	25
, o, sleve, v, vi	Sediment	concen- tration	(mdd)	27	38	8	60	67		16	-	36	39	46		13	119	56	19
r, piper		Discharge (cfs)	Ì	250	365	301	153	86		262	189	425	397	280		275	1070	685	479
	Water	ling per-	E.	38	38	38	36	34		33	36	42	40	42		38	38	33	42
	00.00	ling	point								_								
		Time (24 hour)		1805				1110								1055			
		Date of collection		Dec 18, 1961	Jan. 7, 1962	Jan. 7	Jan. 8	Jan. 9		Feb. 24	Feb. 25	Feb. 26	Feb. 27	Feb. 28		Mar. 1	Mar. 21	Mar. 22	Mar. 23.

POTOMAC RIVER BASIN .- Continued

1-5955. NORTH BRANCH POTOMAC RIVER AT KITZMILLER, MD.

LOCATION .-Temperature recorder at gaging station on left bank, 0.6 mile downstream from bridge on State Highway 38 in Kitzmiller, derestround and 1.5 miles downstream from Foliate Rmn.
DRAINGE STATE — The temperatures: August 1981 to September 1983.
RECORDS ANAILABLE — The temperatures: Maximum observed, 787 June 26, 29; minimum, freezing point from December to March.
EXTRAES, 1991-63.— Taker temperatures: Maximum, 797 Mag. 6, 1987; minimum, freezing point of the December to March.
EXTRAES, 1991-63.— Taker temperatures: Maximum, 797 Mag. 6, 1987; minimum, freezing point of the December to March.
EXTRAES, 1991-63.— Taker temperatures: Maximum, 797 Mag. 6, 1987; minimum, freezing point of the December to March.

Temperature "F of water, water year October 1962 to September 1963

	900494	Avelage	18 62	22	1 2	13	24 14	13	27 16	33	1 25	1.52	2:	50
		31	4 4 5 5	11	32	32	11	2 8	11	62	11	11	75	11
		30	9 %	32 33		32.32		6 4	50	59	92	``	17 69	
		29 3	8 9	34 3	32 32 32 32	32 3		4 4 4	50 5	59 5	78 7	+	71 7	65 61
		28	1 4 4		32									
		27 3	4 5 4 4 3 8 4	35 34	32 3	32 32	32 32 32 32	45 48	48 52	59 61 56 55	77 76	11	71 71 62 63	63 65 54 56
		26 2												
			44 41 41 39	39 37	32 32 32 32	32 32	32 32	45 45	44 44	53 53	74 78	11	72 71 65 61	58 62 50 51
		4 25												
		3 24	2 8 4 4 8 4 7 4	2 40	2 32	2 32	2 32	3 9	4 4	50 20	9 72	3 64	5 41	5 50
1		23	52	39	32	32	32	3 %	55	57	59	69	73	52
ā		22	50.0	4 4	32	32	32	36	57	55	8 8	73	13	5 63
grap		21	52	‡ 7	32	34	333	39	53	55	62	11	2 %	63
LEO		20	57	42	32	35	333	39	5.0	61 58	63	11	69	69
the		19	57	4 4 4	32	33.4	33	39	53	55	61	11	63	69
ted		18	53	4 4	32	33	33	‡ ‡ ‡	59	59	89	11	129	69
tua		11	57	4 4 3	32	333	33	39	51	59	58	1.1	12	58
-80	Day	91	65	£ 4 7	32	33	33	3.8	4 77	62 56	63	11	69	60
opo		15		£ 4 0	32	333	33	36	50	55	40	11	69	56
alcohol-actuated thermograph)		14	61	43	32	33	33	38	49	55	63	1.1	63	58
		3.	63 58	2 4	32	35	33	41	3 4	56	56	11	72	71
et		12	57	3 4 7 7	32	35	33	34	4 5 7 7	53	58	11	76	72
(Continuous ethyl		=	55	÷ ÷	32	32	33	34	44	57	69	69	76 68	69
tin		10	59	4 4 5	32	32	33	38	4 5	67	72	65	72	71
اق		6	59	4 4	32	32	33	38	8 4 9	63	69	29	75	71
Ì		8	58	44	32	32	33	38	6 4 9	54	6.8	22	76	69
		7	58	39	32	32	33	37	51	54	9 4 9	71	72	61
		9	56	42	35	32	33	36	6 7 7	62	59	70	73	64
		2	58	45	36	32	33	34	43	58	59	68	72	24
		4	5 8	£ 1 2	34	32	33	32	57	58	57	99	102	7.0
		9	5.8	4 4	33	32	33	32	58	\$ 4 \$ 4	59	72	469	469
		2	53	4 4	33	32	32	32	55	50	65	40	76	73
		_	5.0	9 4	37	32	32	32	51	4 5	59	92	27	70
		-	::	::	::	::	::	::	::	::	::		::	-::
	7	Month	55	88	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	June Maximum Minimum	Maximum	8 8	September Maximum Minimum

POTOMAC RIVER BASIN--Continued

1-5985. NORTH BRANCH POTOMAC RIVER AT LUKE, MD.

LOCATION. --Temperature recorder at gaging station on right bank, 0.2 mile downstream from Savage River, and 0.5 mile northwest of Luke, Allogany Country.

DAIMAGE REA. --464 square miles.

RECORDS AVAILABLE. --Mater temperatures: December 1961 to September 1963.

RECORDS GAGE-63. --Mater temperatures: Maximum, 66°F Aug. 6, 1962; minimum, freezing point on several days in January 1962.

REMANNS. --Recorder stopped Dec. 22 to June 30.

Temperature of of water, water year October 1962 to September 1963

								1	Con	(Continuous ethyl alcohol-actuated thermograph)	ons	eth	8 7	COD	-10	actu	atec	Į Į	ermo	S.T.B.	QQ.					i	ı					
March															Ω	Day															4	8
Month	1	2	3	4	5	9	7	8	٥	101	11	12 1	3 1	141	5 1	191	17 1	18 1	9 20	0 21	1 22	_	23 24	4.25	5 26	5 27	7 28	3 29	8	3	D VETAR	26
October Maximum	09	58	58	5.7	59	09		64				<u> </u>				9 02							- 1	1	_ !	- 1					17	
а	52	54	26	57	57	57	27	9	62	9	58 6	- 09	63 5	58 6	909		61 55	-	52 51		55 52	51	-	1	1	1	1		+	!	_	
November			,	,	Ç	,			_			_			_			_		_	_	_	_	-					_			
Maximum	!	i	0 0	7:	3 :	0,	7,	;	# :	0 :	0,1	ç;	7	7 .	7 .	7	4		0,00	-		_	1 0		, ,	0 0	2 3	,	_			
Minimum	-	1	÷	÷	9	Ţ		¥			_	_		_	_				_		_			_				_	2	-	_	
Maximum	32	32	32	34	36	36		32		32						_					2		1	1	+	1	1	1	+	1	80	
Minimum	32	32	32	32		36	32	32	32	32	32 3	32	32 3	32 3	32 3	-	32 32	-	32 32		32	-	<u> </u>	1	1	!	1		+	!	!	
anuary	-	-	- 1		;	-	1		-		-			-	_	<u>'</u>	 		- 1	_	_;	- !	- 1	1	-	ŀ	- 1	-1	_	- 1	-	
Maximum	-	1	1	1	_	1	_	-	_	-	_	_		_	_		_		_	_	_	_	1	_	4	_	_	_	_		_	
ehmary				_	-				_		_			_					-	_												
Maximum	1	1	ŀ	1	1	1	1	-	Ī	-	t	· 	+	<u>.</u>	+	<u>'</u>	-	_	+		1		1	1	+	1	!	1	+	<u> </u>	1	
Minimum	1	1	ŀ	ŀ	;	1	1	1	1	1	i	-	1	-	+	;	1		+	_	+	!	+	<u> </u>	1	1	1	!	+	!	!	
March									_		_			-						_		_		_				_		_	_	
Maximum	1	ī	1	1	١	ī	1	1	Ī	1	÷	1	+	-	-	-	1	_	-	÷	<u> </u>	÷	-	1	_	_	Ļ	-	÷	<u>!</u>	_	
Minimum	-	l	1	;	ł	ŀ	ŀ	1	ŀ	-	+	<u>.</u>	-	1	1	1	1	-	1		1		1	1	1	!	!	!	+	!	!	
April						_	-		_				_		_			_	_	_				_	_	-				_		
Maximum	!	i	ŀ	1	1	!	_	:	_	1	-	_		-	_	_				-	_			-	_	_		_	_	_		
Minimum	1	1	i	ŀ	(1	{	1		!	<u>'</u>	:	1	<u>.</u>	<u>-</u> -	-	1		1	_	<u> </u>	-	<u> </u>	!	<u> </u>	!	<u>!</u>	!	-	<u> </u>		
May	-				1		-			-		_	-	_		_		-	_	_	_	_		_	_	_	_	_	_	_	-	
Maximum	_		1				_			_		_		_	_					_	_		_	_	_	_		_			_	
Minimum	-	-	1	<u> </u>	1	ŀ	1	!	1	-	<u>'</u>	· ¦	<u> </u>	<u>'</u>	1		<u>. </u>	-	<u>!</u>		_		<u>. </u>		_	<u> </u>	<u>. </u>		<u>!</u>			
Maximum	1	i	-!	1	1	1	1	1	1	-	i	1	+	1	1	<u>.</u>	1		-		1		1	<u> </u>	<u> </u>	1	1	1	+	-	1	
Minimum	1	ł	1	1	١	ł	1	1	i	1	+	1	+	<u> </u>	1	!	1	_	1	-	1		1	-	+	!	1	!	÷	-	1	
July	7,6	7.7	7,6	0,4	70		73	73	20		- 4	- 22	7 4 7		71/	_		_	70 7		9 78		76 76	2		_			- 6			
Minimum	7.2		2 0		. 4	: 5	, ,	2 2		2 4	_	-		70	_	70 7	72 7	77 7	77 77	_	74 74	_	_		75	100	2	100		72		
ugust	:	1	}	3	3	;	;	:	_	}			_		_	—			_	_								-		_		
Maximum	8	78	7.8	42	78	75	75	77	9/	78	77	. 52	73 6	69 69	68	69 7	71 77	73 7	70 68	_	69 71	_	70 70	_	67	7.4	12	75	2 25	72	53	
Minimum	77	73	7.5	75	23	7.5	_	72	_	2	_	_	-	_			_		89 68	_	_	_		67				_	_	_	_	
September	7	,	72	7.2	7	99	_	99		20	-12			_				_	72	_	- 1		- 1		<u> </u>	-	- 1	!	- 1	-		
Minimum		99	6.8	1.		65	64	64	65	89		69	989	67	68	68	68	68 6	- 69		1		1	-	-	1	1	1	+	<u> </u>	13	

POTOMAC RIVER BASIN--Continued

1-6065. SOUTH BRANCH POTOMAC RIVER NEAR PETERSBURG, W. VA.

County.

County.

County.

County.

County.

County.

County.

EXTRINES, 1962-63.

EXTRINES, 1962-63.—"Mater temperatures: January 1947 to September 1953, November 1954 to September 1963.

EXTRINES, 1962-63.—"Water temperatures: Maximum, 82°F Aug. 2, 3; minimum, freezing point on several days in December, January, EXTREMES, 1947-63.—"Water temperatures: Maximum, 84°F June 27, July 23, 1952, and Aug. 3, 1955; minimum, freezing point on many days during winter months. LOCATION .-- At the Potomac Edison powerplant, 1,000 feet upstream from gaging station, and 2.5 miles west of Petersburg, Grant

	lver.	age	2 4 4 9 3 4 4 9	4884	54 61 68	75 77 69
	Ľ					
		ြာ	48	33	1 % !	81 78
		ဗ္ဗ	33	5 1 33	55 44 75	80 76 65
		29	46 37	32	54 62 77	75
		28	46 34 34	32 34 49	54 60 77	80 75 66
		27	388	32	55	80 76 65
		26	44 6 70 4	332	54 62 75	78 76 64
_		25	49 41 33	333	54 60 71	75
1963		24	52 42 34	44 45	53	75
er		23	3 2 2 8	4132	609	74 74 65
to September		22	933	833	61	76 76 67
Sep		21	33.46	200	62 60 67	78 76 68
ţ		20	45.50	40 41 41	6.3	80 78 68
year October 1962		19	340	33	59 62 68	8 9 9 9
er 1		18	34	4 4 4 4	55 61 65	80 80
top		17	3378	38	52 64 65	80 79 69
ဝိ	Day	16	947	4 3 3 4	51 63	77 78 69
уеа	-	15	33	438	510	44 92 69
water		4	33	36	56	72 75 27
Wa		13	45	433	50 58 64	12 22
water,		12	67 46 32	40	63	17 27
		=	33	4 2 3 5	69	77 2
F of		2	65 48 33	6 4 0 0 4 8	51	222
		6	464 35	35	52 65 69	222
Femperature		80	9 6 3 5	34 40 40	53 68	222
per		7	63 45 34	33	51 61 67	72 22
Ten		9	3463	33	64	69 75
		2	45	333	62	02 62
		4	61 46 38	33	53	73 80 72
		က	960	333	512	71 82 74
		2	61 46 39	323	59	74 82 76
		-	98	323	500	73 81 78
	, A	Month	October November December	January February	April May	July 73 August 81 September 78

POTOWAC RIVER BASIN--Continued

Periodic determinations of suspended-sediment discharge and particle size, water year October 1961 to September 1962 (Methods of analysis: B. bottom withdrawal tube: C. chemically dispersed; D. decantation; N. in native water; 1-6065. SOUTH BRANCH POTOMAC RIVER NEAR PETERSBURG, W. VA. --Continued

	(wen	7 TO SEC	nauysus: p, nouw P, pipet;	S, sieve; V, vi	meunds of sharysis: D, notion without was time; C, chemically dispersed; D, decadration; N, in marrie wase, P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	y disper n tube; W	, e E	stilled	water)								
	31	Water		Sediment	Sodimont					Suspen	Suspended sediment	ment					1
Time (24 bour)	ling	ber-	Discharge (cfs)	concen- tration	discharge		1	ercent	Percent finer than size indicated, in millimeters	zis uzu	indica	ted, in	millim	eters			o Jo
Ì	point	(F)	Ì	(mdd)	(tons per day)	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500	.004	0.008	0.016	0.031	0.062	0.125	0.250	. 500	1.000 2.000		nalysis
080		40	5300	130	1860	;	;	;	!	1	1	1	!	1		-	
080		40	5300	143	1	30	39	22	89	80	98	88	96	86		-	SBWC
2025		42	4220	38	445	;	ţ	!	ł	i	!	ļ	;	1		_	
0835		39	3170	16	137	1	1	1	1	1	!	ŀ	1	!	_	_	
0945		32	1910	7	36	ł	;	1	;	ŀ	I	ļ	I	1			
1945		42	5070	111	1520	1	,	1		;	ł	-	1	ı			
1340		41	3420	17	157	1	1	1	;	1	ļ	!	!	1		-	
2100		42	7440	506	4200	1	;	1	!	!	i	!	i	!	_		
2100		42	7440	236	;	22	39	52	63	22	82	98	92	66			SBWC
1100		46	7080	105	2010	1	-	1		1	I	ī	!	!			
0820		46	6310	20	854	ŀ	ļ	1	-	;	I	1	;	ł			
0220	_	40	4320	25	292	!	-	1	!	!	!	!	;	!	_	_	

POTOMAC RIVER BASIN -- Continued

1-6080. SOUTH FORK OF SOUTH BRANCH POTOMAC RIVER NEAR MOOREFIELD, W. VA.

LOCATION .-At gaging station, 0.2 mile downstream from Stony Creek, 6 miles upstream from mouth, and 3.5 miles south of Moorefield, Hardy County. DAMINES AREA.-253 square miles.
RECORDS AVAILE..-Sediment records: March to April 1960, January to March 1962 (discontinued).

Periodic determinations of suspended-sediment discharge, January to March 1962 (Methods of analysis: B, bottom withdrawal thus; C, chemically dispersed; D, decontantion; N, in native water; D niner: S sieve V visual accumulation thes W in distilled water)

A A TRACT			S. sieve; V, Visual	200	accumulation	age; w	E ,	uniea		Suspended sediment	led sed	iment				\vdash	
Time	Samp	per-	Discharge	concen-	Sediment discharge		ā	rcent	finer ti	an size	tndics	Percent finer than size indicated, in millimeters	millim	eters		Τ	Method
ì	potul	point ature		(mdd)	(tons per day)	0.002	984	800	910.0	0.031	0.062	0.125	0.250	0.500	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	8	analysis
945		42	2050	88	487		-									-	
935		42	1850	41	202												
955		40	1330	12	43												
825		35	817	9	13												
1830	_	43	980	43	103	_	_	_		_							
445		39	862	10	22												
2230		43	2230	142	855			_									
202	_	46	2290	54	334	_		_							_	_	
800		46	2130	31	178					_							
930		41	1380	14	52	_									_	_	
							-								-	-	

POTOMAC RIVER BASIN--Continued

1-6085. SOUTH BRANCH POTOMAC RIVER NEAR SPRINGFIELD, W. VA.

LOCATION. --At gaging station at highway bridge on Points to Springfield route, 2 miles east of Springfield, Hampshire County, and 13 miles upstream from confluence with North Branch.
DAMINGE MERG. --1, 471 square miles.
RECORDS AVAILABLE. --Sediment records: October 1959 to March 1962, periodic (discontinued).

Periodic determinations of suspended-sediment discharge, January to March 1962 [Methods of analysis: B bottom withrawal their C, Chemically dispersable in the matter water; D winer: S sease. V wissis secumiation the W in distilled water!

				P, pipet;	S, sieve; V, v	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	n tube; W	, in di	stilled	water)								
		Quin's	Water		Sediment	Sedimont					Suspen	Suspended sediment	ment					Mathod
Date of collection	(24 hour)	ling	F.	Discharge (cfs)	concen- tration	discharge		4	ercent	finer t	an siz	Percent finer than size indicated, in millimeters	ted, in	millim	eters			jo.
	Ì	point	(F)	Ì	(mdd)	(tons per day)	0.003	9.00	900.0	0.016	0.031	0.062	0,125	0.250	0.500	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	ş	analysis
Jan. 7, 1962	1345		39	5200	94	1320											-	
Jan. 8	1415	_	40	2960	9	896	_									_	_	
Jan. 8	2020		37	5160	40	557												
Jan. 9			33	3650	19	188												
Feb. 24			42	2080	182	2500											_	
Feb. 25			40	1900	388	8300											_	
Feb. 25			41	7290	198	3920	_									_	_	
Feb. 25			40	5400	125	1820										-		
Feb. 26			42	11000	625	18600												
Feb. 27	1400		46	12300	286	9550												
Feb. 28.	1345		47	12600	175	5970											_	
Mar. 1	1320		46	7840	89	1440												
Mar. 22			44	20400	775	42800												
	1805		45	28000	529	40000	_											
Mar. 23			45	12900	147	5130	_											

POTOWAC RIVER BASIN--Continued 1-6116. CACAPON RIVER AT GREAT CACAPON, W. VA.

Temperatures 'F of water, water year October 1962 to September 1963

Aver-	31 age		1	32	32	1	97	54	64 61	89	76 76	71 73	
	30		1	32	32	ŀ	52	56	75	1	16	17	۲,
	29		2	32	32	1	51	56			16	72	
	28	1	0,7	32	32	32	20	1	63	92		7.2	,,
	27	1	42	32	1		8 4	54	62	74	16	72	
	26	1	77	32	32	32 ,	46	54	1	7.4	16	72	,,,
	25	ł	ì	1	32	32	94	55	62	72 74	76 76	i	,
	24	;	44	32	32	1	1	56	62	7.1	92	72	,,,
	23	1	77	1	35	1	45	59	62	1	16	7.2	,,
	22		1	32	32	1	43	9	62	17	176	72 72	_
	21	1	7,	32	32	1	45	1	62	2	1	72	9 9
	20	1	77	32	1	ł	42	58	62	22	76	72	
	61	1	77	32	32	1	45	55		10	76	72	0
	18	1	1	32	32	ì	42	53	3	99	76	1	0
	17	1	77	32	32	!	!	52	09	6.8	16		0
Day	15 16 17 18	1	77	!	32	32	0,	r.	90	1	76	7.5	0,
	15	1	44	1	33	32	30	3		6.8	76	72	
	13 14	*	77	1	34	32	38	ţ	9	29	-	72	_
	13		44	1	1	32	36	50	62	99	76	74	
	12	1	!	1	32		35	5.2	1		26	75	
	=	;	ļ	1	32	32	34	53	9	9	76	1	
	10	;	77	1	32	!	1			÷	76 76	76 76	
	٥	ł	4	1	32	33	32	54	9	!	76	76	
-	œ	1	77	1	32		32		9	63	16		_
	^	-	44	;	32	32	32	1	9	63	- 1	76	,
	9	1	44	1	- 1		32	54		63	76	16	0
	2	09	45	1	_ !	32	32	54	-1	63	76	76	_
	4	5.8		1	1	32	32		57		1,6		9
	m	5.8	45	1	i	ł	1	54	56	99	76		-
	2	59	45	ì	1	32	32	54		1	7.8	26	,
	-	59		1	1		35		56		78	16	
Mannet	TAKAHATI	October	November	December	January	February	March	April	Mav	June	Tulv 78	August	Comment

POTOMAC RIVER BASIN--Continued

1-6130. POTOMAC RIVER AT HANCOCK, MD.

LOCATION.—Temperature recorder at gaging station on left bank, 0.2 mile downstream from Little Tonoloway Greek, 0.5 mile downstream manners or 0.15. Highway SZ at Hancock, "mainigton County, and 1.1 miles upstream from Tonoloway Greek.

RECORDS MAILMAIR.—Mare reperatures: July 1952 to September 1957 in inimum, freezing point from December to March.

EXTREMES, 1962-63.—"Mare respectatives: Maximum, 937 July 13, 277 inimum, freezing point from December to March.

EXTREMES, 1962-63.—"Mare respectatives: Maximum, 937 July 22, 1992; minimum, freezing point on many days during winter months.

REMARKS.—Records fair, probably because of friction in recorder.

Temperature of of water, water year October 1962 to September 1963

								٦	S	Continuous	Sno	ethyl	V. a	alcohol-actuated thermograph)	101	actı	ate	t tp	erm	Ogra	(h			Ì								
1,000															Д	Day										ĺ						000000
Month	-	2	3	4	5	9	7	8	6	10	-	12 1	13	14 1	15 1	16 1	17 1	18 1	19 2	20 2	21 2	22 2	23 2.	4	25 2	26 2	27 2	28 2	29 3	30 3	31	nvel age
October Maximum	99	67	65	63	67	89	65	49	65	29	29	69	69	89	969	69	9 69	59	62	62	09		57 54		50 47	~	27 77		51.	84	44	19
Minimum	9	9	79	79	79	5		69		4						_		~~				_	_								-	63
Maximum	45	45	45	7 7	43	7 7		43		46						_				7 7 7		_		_	_			_			1	23
Minimum	43	43	7	43	45	0,4	36	43	43	7	94	- 4	46.4	42	*	45	454	45	4 5 5		77 77	-	43 43	_	42 41		40 39	-	38 37	_	1	52
December		38	38	38	38	38		35		35	_	32		_	32	32	_		32			_	_	-	32 3	_					- 2	1
Minimum	37	37	36	3.7	37	37	35	35	35	32	32	35	32	35			32 3	35		32	32 32	_	32 32			32 3	32 32		32 3	32	35	21
January Maximum	32	32	32	32	32	32	32	32	32	32	32	32	36	36	36	34	32 3			34	34	33	32 32		2 32		32 32		32 32		32	12
Minimum	32	32	32	35	32	35		32		32		35	_			_		32 3	32 3						32 3		32 33			_	2	1
February	32	32	32	32	32	3.2	3.2	35	32	32		32			32	3.2	32 3		32 3	_	32 32		32 32		32 3	_	32 32		1		-	22
Minimum	32	32	3.2	32	32	3.5	32	32	_	32	32	35	32 3	35	32 3	32 3	32 3	32 3	32 3	32 3	32 32	_	32 32	_	32 32	_	32 32	_	1	_	-	13
March	32	32	32	32	32	35	-	37		9.6		36			42		43	45	45				42 4		4 9	-	_				45	13
Minimum	32	32	32	32	32	32	35	37	37	37	39	39	38	38		41				45 4	42 42		41 41		43 46		49 50		51 52	_	52	74
April	54	56	59	59	57	55		- 26		53		53				57	57 6		9	67	65 64		63 59		57 57		57 58		58 59		- 1	59
Minimum	53	54	96	57	54	53	53	53	53	51	64	20	52 5	51		53		-		-	63 62		59 56			_	55 55		56 56	-	-	18
May	5.9	55	5.7	62	64	67	69	- 69	2	74	-	-02	- 89		68 7	- 02	9 8 9	99	68		67 66		65 65		- 79		65 64		99	70 7		;
Minimum	53	52	54	57	61	63	65	99		69	10	29		63	63		9 99		9 49	67	64 62	_	63 61		63 63		64 62	-		9 99	67	38
June	7.3	7.1	69	89	67	6.8	69	70	73	16		- 52	717	- 02	72 7	72	73 7	75 7	75 7			76 7	77 80				87 87		87 87		-	28
Minimum	69	69	67	99	29	65	67	69	69	73	13	7.1	68		9 69	69	_	71 7	73 7	73 7	71 71	-	72 73		75 76	_	79 81		81 81	_	-	;
July Maximim	89	88	85	82	80	90		82		18			83		808	83	878		89							_	89				3.7	61
Minimum	8.1	84	82	77	77	16	11	78	47	74	7.5	23		. 51		75 7		82 8	82 8	83 6	80 77		79 79		80 80	_	82 83		80 80	_	80	33
August	88	35	32	9.6	36	3,6	30	34	33	96	34	82	787	- 22	78	80	81	82 7	77 77	- 61	81 85		83 80		79 79		77 61		-8	80	81	1
Minimum	80	80	80	4	11	15		75		11	_	15							72 7	_		_	_			_			_		2	79
September Maximum	7.8	79	80	79	92	72	74	75	78	79	78	79	77 77	72 67	69 7	70	72 7	74 7	76 7	75 7	74 71 68 65		68 66 61 59		66 67 58 59		68 69 59 63		70 69 66 63		11	33
		-						-				-		-		-			-	-		-		-		-		-		-	-	

POTOMAC RIVER BASIN--Continued

1-6140. BACK CREEK NEAR JONES SPRINGS, W. VA.

LOCATION.--At gaging station at highway bridge, 1.3 miles southeast of Tomohawk, 4 miles northwest of Martinsburg, and 3.5 miles northeast of village of Jones Springs, Berkeley County.

BANIAGE AREA, --35 square miles.

RECORDS AVAILABLE. --Sediment records: April 1960, January to March 1962 (discontinued).

Periodic determinations of suspended-sediment discharge and particle size, January to March 1962 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water;

	Mathed	Jo.	analysis			BSWC									
i			2,000												
			1.000						_						
		eters	0. 200			8									
		millim	0.250			66									
	iment	ted, in	0, 125			86									
	Suspended sediment	e indica	0.062			97									
	Suspen	han stzo	0.031			96								_	
water)		finer t	0.016			8									
stilled		Percent finer than size indicated, in millimeters	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000			8									
V, in di			0.004			28									_
tube; V			0.002			67									
P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	Codimont	discharge	(tons per day)	64	242	208	31	969	9	256	172	48	3870	642	169
S, steve; V, vi	Sediment	coacen- tration	(mdd)	53	103	171	12	120	;	*0	35	18	333	æ	32
P, pipet		Discharge (cfs)	Ì	444	867	1100	756	2150	0000	2002	1820	980	4300	3000	1690
	Water	ling per-	(F)	34	33	ඉ	38	42	;	2	43	42	44	45	44
	0.00	ling.	point												
		Time (24 hour)		2250	0410	1225	1600	0935	;	7777	1930	1720	0535	1440	1015
		Date of collection		Jan. 6, 1962	Jan. 7	Jan. 7	Jan. 8	Feb. 27			Feb. 28	Mar. 1	Mar. 22	Mar. 22	Mar. 23

1-6165. OPEQUON CREEK NEAR MARTINSBURG, W. VA. POTOMAC RIVER BASIN -- Continued

LOCATION. --At gaging station at bridge on State Highway 9, 3 miles southeast of Martinsburg, Berkeley County, 300 feet upstream from Evans Run, and 2.3 miles upstream from Tussarora Greek.
DRAIMAGE AREA.--27 square from Free March 1959 to March 1962, periodic (discontinued).

Periodic determinations of suspended-sediment discharge, December 1961 to March 1962 (Methods of analysis b, bothom withorwal the; C, themically dispense; D, decantation; N, in mative water; P, pipei; S, sieve; Y, 'final accumulation tube; W, in distilled water)

				industrial in the second		· · · · · · · · · · · · · · · · · · ·		-									
		1	Water		Sediment	Godina				Sur	pepued	Suspended sediment	2				Mathed
Date of collection	Time (24 hour)	ling	ling per-	Discharge (cfs)	concen- tration	discharge		Per	cent fu	er thar	size ir	Percent finer than size indicated, in millimeters	in mil	limeters			of
		point	F		(mdd)	(tons per day)	0.002 0.	904	908	016	31 0.	0. 13	5 0.25	0.50	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	2.000	analysis
Dec. 19, 1961,			41	499	105	127			L	H	L	L					
Jan. 6, 1962			34	732	203	401	_					_					
Jan. 7		_	37	1090	437	1290			_	_	_	_	_		_		
	1330		39	1000	233	630			_								
_	1650		40	473	36	46				_				_	_		
Feb. 27	1025		41	1390	430	1610											
													_				
Feb. 28	1035		43	1250	194	655		_		_		_					
Feb. 28	1855		45	1050	128	377		_						_			
Mar. 1	1745		42	632	53	91				_			_				

1-6195. ANTIETAM CREEK NEAR SHARPSBURG, MD,

LOCATION, --Temperature recorder at gaging station on left bank, 400 feet downstream from Burnside Bridge, 1 mile southeast of Sharpburg, fambingfor County, and 4 miles upstream from mouth.

DRAINGE AREA.--281 square miles.

DRAINGE AREA.--281 square miles.

EXTREMES, 1962-63.--Fater temperatures: Cortober 1962 to September 1963.

EXTREMES, 1962-63.--Fater temperatures: Maximum, 83°F June 28 and July 1-3; minimum, freezing point on several days in December. REMARKS.--No record of temperature Oct. 1-4, Jan. 11 to Feb. 20. Record sport Apr. 9 to May 27.

Temperature °F of water, water year October 1962 to September 1963

								_	Con	(Continuous	ous	ethyl		lcol	101	alcohol-actuated	ate	th	erme	thermograph)	Q d											
17															Д	Day															_	9
Month	-	2	3	4	5	9	7	8	6	10	11	12	13	14 1	5 1	1 91	17 1	18	19 2	20 2	21 2	22 2	23 2	24 2	25 2	26 27	7 28	8 29	90	3 3		Avelage
October Maximum	- 1	i	1	1		63		62		62		4													_							
я	1	ł	1	1	63	63	61	61	62	62	09	61	63	62	62 6	63	94 60		57 55		56 57	_	56 51		94 64	45	45	4.8	9 20	4	31	-
	0.4	8 7	8	47	4	- v	45		7.7	5.0		0 1	_		45.4		45		45 43		44		45 42		4.2	7		7		!		4
Minimum		4.7	47	9,		4.5		44		47	6.5	9 4	794	42.5		4 4 4						_			41 40		33		33	-	_	: 1
	30	30	9	0	0,0	Ç.	2,0	3.8	38	3,6	_	č		- 2	32		32 34		3.7		37 34		35 35		35 35	35	3.5	35	34			
Minimum	39	36	39	33	36	38	_	80		34.	33	35	32		_				34 36						_				_	34		15
January		34	3.5	34	35	3		38		38	-	Į.	Ť		+	<u>'</u>	<u> </u>		1		-				-		-		- 1			4
Ħ	34	34	34	34	34	34	35	35	38	38	i	-	i	1	1	1	1	_	1		1		1	_	+	!	1	1	+	1		4
February Maximum	1	- {	1	+	1	1	i	-	i	-	i		+		-	<u> </u>	+		<u> </u>		38 38		35 36		37 37		36		_	- !		;
Minimum	1	1	1	1	;	i	1	-	1	1	ì	!	+	1	+	<u>'</u>	1	-	1		37 35	_	5 35	_	36 36	34	_	!	+	1		:
March Maximum	37	38	39	4.1	0 4	39		4.2	43	5 4 5		4.5				45 4	48	4 64	49 47			_	46 49		52 54	- 25	55	5.5		55		37
Minimum	36	37	38	39	38	37	37	38	45	43	45	45	454	94	4 2 4	45 4	45 4	48 4	47 46		45 45	-	45 46		49 52				55	55	_	
April Maximum	55	58	9	0.9	59	55		55	55	26	3,	5.	4,	55	555	56 5	56 57		57 58		58 58		56 55		52 53	5.	57		- 28	- 1		1
Minimum		55	28	59		24	54	25		24	_	24		_				_	7 57	_	_				_			55		1		S
May Maximum		55	58	62		19		89		70	69	67		62	9 +9	99		9 +9					64 63		64 64				4 67	69		33
Minimum	53	53	25	58	62	79	99	67	68	69		63	61	-	_		9 49	_	64 65	_	62 61	_				9 62	2 62	63				7
June Maximum	7.0	6.8	99	99	67	68	2	70	20	7.1	72	72	69		72 7		72 7		74 73				74 75		16 79		-83			_!		1
Minimum	99	99	65	65	99	67	68	69	69	20		69	68	69	_	20	69	70 7	71 72		72 70		69 70	_	2 73	3 75	5 79	8	0 82	1	_	4.1
July Maximum	83	83	83	80	7.8	78		79	192	73	72	74		75	74 7		7.8		08		80 79		77 87			7 2	9			_		59
Minimum	80	82	80	11	75	74	15	16		70		11	72			73 7		78 8	80 80						76 77	18		19	9 79	78		
August Maximum	78	78	78	77	77	76	7.7	74	7.5	75	75	74	73	13	72 7	7.17	72 7	73 7	73 72		72 74		74 74		72 69	69	2.4	207	17.	17.		51
Sentember	0	e	:	:		ţ		•		_		2	_						_	_						-						
Maximum	7.	20	7.1	1,1	7.1	89	-	69		20		20		89				_	68 70				63 61		9 09				49			1
Minimum	7.0	68	69	7.1	89	67	67	89	68	69	89	69	9 89	_	63 6	63 6	62 63				99 99				26 5	- 29	9	9		;		54

1-6365. SHENANDOAH RIVER AT MILLVILLE, W. VA.

LOCATION. --At bridge on State Highway 9, 3 miles upstream from gaging station, 0.4 mile downstream from Cattail Run, 5 miles upstream from Harpers Ferry and naive upstream from Millylls, Jefferson County.

DRAINGARMS. --3640 square miles.

RECORDS ARIANIE.--364dment records: October 1961 to March 1962 (discontinued).

REMARS. --1685 than 1 percent of the drainage area is between bridge on Highway 9 and gage.

Periodic determinations of suspended-sediment discharge and particle size, October 1961 to March 1962 (Methods of analysis B, bottom withortwal tube; C, temically dispersed; D, decantation; N, in mative water; P, pipe; S, sieve; V, visual accumulation tube; W, in distilled water)	Suspended sediment	Percent finer than size indicated, in millimeters
iment discharge ube; C, chemical isual accumulatio	tromipo g	
suspended-sed: om withdrawal to ; S, steve; V, vi	Sediment	-uacuo
rminations of a analysis: B, botto P, pipet;		Time ling per- Discharge
c dete	Water	Der-
Periodi (Met)	ا	ling
.7		Time
		of collection

				f, Paper,	D, BAUTO, T, T	type, b, more, t, the accumulation was, t, at more among												
			Water		Sediment	Codimont					Suspended sediment	led sed	ment					Mathod
	Time (24 bour)	ling		Discharge (cfs)	concen- tration	discharge			Percent	Percent finer than size indicated, in millimeters	han size	indica	ted, in	millim	eters			Jo.
	Ì	point	(E)	Ì	(mdd)	(tons per day)	0.002	0.004	0.004 0.008	0.016 0.031 0.062 0.125 0.250	0.031	0.062	3. 125	0.250	0.500	1.000 2.0	8	nalysis
L	1025		28	615	14	23	1	;	1	ŀ	1	1	1	ł	1			
	1325		80	9310	404	1020	ł	1	1	!	!	!	ŀ	i	ł	_		
	1535		41	5410	20	731	1	;	ł	1	1	1	1	1	!	_	_	
	1735		38	4820	20	261	¦	1	!	!	ł	1	!	!	1			
	1115		39	11600	122	3820	;	ł	;	;	ł	1	!	;	!			
	2135		39	12500	194	6550	35	55	79	85	93	95	9.1	66	100			SBWC
	2135		39	12500	194	65.50	ıo	12	31	26	68	93	92	66	100			SBN
	1040		44	7550	06	1840	1	;	1	1	1	1	1	!	ł			
	0735		44	9910	168	4500	37	26	7	83	91	93	96	86	66			SBWC
	0100		44	11400	142	4380	ł	1	;	ł	ł	1	1	;	1			
	1210		43	11000	122	3620	1	!	;	1	;	1	!	ł	1		_	
	1205		42	8370	80	1810	1	1	1	1	1	1	1	1	1		_	
	0810		4	19400	154	8070	ł	ŧ	1	1	1	ŀ	ŀ	ł	1			
	0855		45	29000	360	28200	;	1	1	1	1	1	1	1	1		_	
23	2305		45	22400	222	13400	1	1	!	1	1	1	1	ŀ	1	_	-	
			-							•		•	•	-		-	-	

POTOMAC RIVER BASIN--Continued

1-6385. POTOMAC RIVER AT POINT OF ROCKS, MD.

LOCATION. --At gaging station on left bank at downstream side of bridge on U.S. Righway 15 at Point of Rocks, Frederick County, 0.3 mile downstream from Catoctin Creek (Virginia), and 6 miles upstream from Monocacy River.

PRAINKOR MENA.—19,531 square miles.

RRCORDS AVAILABLE.—After temperatures: October 1960 to September 1963.

RRCORDS AVAILABLE.—After temperatures: Maximum, 887 July 27.

EXTREMES, 1962—53.—After temperatures: Maximum dally, 1900 ppm Mar. 6; minimum dally, 1 ppm Oct. 13-26.

Sediment concentrations: Maximum dally, 1808 ppm Mar. 6; minimum dally, 3 tons Oct. 19-23, 25, 26.

Sediment concentrations: Maximum dally, 1809 ppm Reb. 20, 1961; minimum dally, 1 ppm on many days during winter months. Sediment concentrations: Maximum dally, 1809 ppm Reb. 20, 1961; minimum dally, 1 ppm on many days in 1961-62.

Sediment loads: Maximum dally, 276,000 tons Feb. 20, 1961; minimum dally, 3 tons on several days in September and October 1962.

REMARKS.—Flow affected by ice Dec. 27, 28, 31, Jan. 1-14, 29-31, and Feb. 1-8, 17, 18.

1	4					
1963)	Aver-	age	59 45	114	59 68 77	82 79 72
		31	 24	56	74	85 73
1963 1800 February to September		30	38	118	61 72 84	65 65
Sept		29	52	55	8 1 8	85 78 70
\$		28	45	33	63	88 85 75 76 74 70
ary		27	41	33	61 85	88 75 74
bru		26	444	32	65 82 82	87 76 68
P		25	41	50%	09 80 80	85 78 65
1963		24	45	35	53 70 80	62 43
and at		23	59 42 	184	67 78	83 83 65
		22	091	132	125	83 76
Ser 962		21	45	32	65 67 74	82 79 67
1 2		20	43	1884	65 75	85 84 75 75 75 72
1967 emb		19	4.2	32	65 72 79	85 75 75
Dec		18	191	36	63 70 78	80 79 70 73
12 5		17	68 47	34	57 67 76	186
water year October 1962 to Ser 0900 October to December 1962	Day	16	6 1 9	1 6 4	59 71 74	79 79 76 79 62 66
octo		15	69 44 	32	57 68	
water 0900 (14	49	183	57 67 75	79 73 75 74 72 68
		13	94 94	113	55 66 76	79 75 72
°F of water, approximately		12	47	113	969	76 78 81 82 75 79
r Xim		11	63 51	38 1 1	52 72 78	76 81 75
ppro		10	50	1 7	52 77 78	76 82 80
Temperature °F of rements at approx1		٥	66 47 35	1 9	56 75 75	79 84 80
ratu ts a		80	65 47 38	32	58 71 72	80 84 72
Temperat measurements		7	65 42 36	36	59	80 82 75
Te		9	66 44 38	1 1 4	59 70	81 81 73
mea		2	65 45 40	38	57 66 71	81 81 70
11y		4	64 44 38	41 39	52 65 71	80 83
-da		3	62 47 40	1 4	63 68	81
Once-daily		2	61 46 39	33 37	60 58 69	84 83 73
٤		_	62 47 38		53	86 86 78
	Mount	MOME	October November December	January February March	April May June	July Aug ust September

1-6385. POTOMAC RIVER AT POINT OF ROCKS, MD. -- Continued

Suspended sediment, water year October 1962 to September 1963

1		0010	BER			NOV	EMBE	ĸ			DECEMBER		
		Susp	ende	d sediment		S	uspen	ded	sediment		Susper	nde	d sedimen
Day	Mean dis- charge (cfs)	Mean concer tratio (ppm	n-	Tons per day	Mean dis- charge (cfs)	cor	ean acen- ation pm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	1370	c		15	1450	С	2		8	4080	C 5	T	55
2	1510			16	1530	c	2		8	4020	c 5		54
3	1570	C .		17	1860	c	2		10	3660	C 4	1	39
4	1510	c .		16	2580	C	2	1	14	3200	C 4	1	35
5	1570	c ·	٠	17	2480	c	2		13	2920	C 4		31
6	1680	c .	.	18	2240	c	2	1	12	3260	C 4		35
7	1960			21	2080	c	2		11	3720	C 4		40
8	2060	c .		22	1920	c	2		10	5050	18		246
9	2120	c .	. 1	23	1870	c	2	Ì	10	4770	15		194
0	2120	C	٠	23	2780	1	9		67	4350	7		82
1	2010	c .	.	22	7640		41	5	1000	3850	7	A	75
2	1810	Č.		20	14300	İ	63	5	2740	3030	7	A	55
3	1620	c		4	14300		71	5	3130	2120	6	A	34
4	1570	c	i I	4	9610		62	5	1610	2290	6	A	36
5	1510	c	ı	4	6780		56	1	1030	2440	5	A	32
6	1490	c	.	4	5400		50		729	2870	5	A	38
7	1450	č		4	4520		28		346	2740	4	A	30
8	1370	1	i	4	3920		21		223	2820	1 4	Â	30
9	1270			3	4320		31		362	2790	3	A	22
0	1230			3	6290	i	18		306	2660	3		22
1	1190			3	9410	1	29		737	2760	5	A	37
2	1210	c		3	9400		28	1	711	2890	5	A	38
3	1270	lc		3	9080		18		441	2760	5	A	36
4	1290	c		4	10300		25		6963	3720	5	A	50
5	1230	c	١	3	10500		24		6814	4020	5	A	54
6	1170	c	ı	3	8720		15		353	3920	5	A	53
7	1130	c :	:	6	6980		12	1	226	3400	5	A	46
8	1150	C	2	6	5680		11		169	3400	5	A	46
9	1130	c		6	4940		9		120	3500	5	A	47
10	1110 1390	C	2	6 8	4350		8		95	3140 2800	5 12	A	42 91
otal	46070		-+-	311	177230				28268	102950		+-	1717
-		JANU	RY		1	FFB	RUAR	<u> </u>			MARCH	-	
	2800	1		113	3800	1	7	В	72	3950	7	Τ	75
2	3000	1		122	4000		7	В	76	4470	10	5	140
3	3200	1:		104	4200		6	В	68	5650	8	3	122
4	3500	i	В	94	4200		6	В	68	9120	22	1	542
5	3500	1		85	4500	İ	5	В	61	18500	82	s	4350
6	3200	.	, в	78	4500		5	A	61	71900	808	s	167000
7	3200	1 .		69	4500	1	á	Â	49	96100	771	5	194000
8	3200			60	4500	1	4	Ä	49	69700	326	s	63700
9	3200	1		60	4420		4	A	48	41600	137	5	15600
0	3200			60	4290		4	A	46	29800	112	1	9100
1	3500		В	65	4050		4	A	44	23800	60		3860
2	6000	5		1300	4080		4	Ā	44	22400	44		2660
3	22000	9		7300	4180		4	1	45	33000	63	5	6350
4	40000	30	5	36000	3850	c	4	1	42	76100	269	5	56400
5	33600	10		9100	3920	c	4		42	73300	303	5	60600
6	22000	4,	5	3190	4120	c	4		44	47000	164	5	21300
7	16800	2		1000	5000	lc	4		54	35100	82		7770
8	13100	2) В	710	4500	c	4		49	36300	62	5	6120
9	10400	1 1	B	420	3950	C	6		64	41400	78		8720
0	9160	1:	В	300	3980	c	6		64	53400	151	5	24600
1	8600	11		230	4390	c	6	1	71	116000	711	5	228000
2	8160	1		220	5330	ç	6		86 102	82000	315	5	73500
3	7640 7010			190 150	6300 5680	c	6		92	44000 30000	142	S	17400 6080
5	4940	;		110	5050	c	6		82	24600	46	1	3060
6	4980		В	95	4520	c	6	-	73	20600	C 13		723
7	4980			95 85	4520	c	6		69	18900	C 13		663
8	3950	.		65	4080	c	6		66	18300	C 13		642
9	4000	1		108	7-00	ľ				17500	c 9	1	425
0	3800	-	В	82		1				15600	C 9	1	379
1	3800	1	В	82						14000	C 9	1_	340

S Computed by subdividing day.
A Computed from partly estimated-concentration graph.
B Computed from estimated-concentration graph.
C Composite period.

1-6365. POTOMAC RIVER AT POINT OF ROCKS, MD. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued

- 1						_					-		
- 1	Mean	Su	spend	led sediment	Mean	S	duspen	ded sedi	ment	Mean	Su	spend	ed sedime
Day	dis- charge (cfs)	Me cond trat (pp	en-	Tons per day	dis- charge (cfs)	tr	lean ncen- ation opm)	To pe da	r	dis- charge (cfs)	cond trat (pp	cen-	Tons per day
1	13000	c	4	140	5750	Т	8		124	3160		12	102
2	12300	c	4	132	6000	C	12		194	3130		15	127
3	11800	C	4	127	6290	c	12		204	3730 5790		18	181 516
5	11100 10100	C	4	120 109	6180 5680	c	12 12		184	7770		50	1070
_			7			1	12			15900		75	3220
7	9360 8800	c c	,	177 166	5360 5100	c	7		174 96	13500		49	1790
8	8320	č	7	157	4890	č	7		93	11400		48	1480
9	8050	c	7 7	152	4640	c	7	l	88	10300		43	1200
0	779 0	c	7	147	4400	c	7		83	8480		38	870
1	7560	c	4	82	4230	c	7		80	7480		36	727
2	7290	c	4	79	3920	c	9		95	7140	1	31	598
3	6840	c	4	74	3660	C	9	1	89	9700		36	943
5	6400 6080	c	2 2	35 33	3600 3600	C	9		87 87	9810 7750		28 26	742 544
6	5750	c	2	31	3450	c	9	1	84	6260		46	777
7	5540	c	2	30	3820	č	12		124	5280		42	599
8	5460	č	2	29	4920	c	12		159	4580		27	334
9	5280	C	10	143	4500	c	12		146	4020		23	250
٠.٠	5250	c	10	142	4640	c	12		150	3510		24	227
1	5320	c	10	144	5280	1	15		214	3480		55	517
2	5430		10	147	5030		14		190	3300		54	481
3	5180			A 140	4440	c	15		180	2970		45.	361
5	5070 5750		13	178 233	4060 4230	c	15 15		164 171	2810 2890		6	46 47
						1							
7	7560 6990		20 15	408 283	3890 3570	c	15 13		158 125	2760 2390	1	6	45 52
8	6360	1	6	103	3300	1	13	A	116	2220	1	8	48
9	5900		3	48	3240		13	A	114	2220		8	48
0	5750		3	47	3220 3240	c	11		96 96	2340		11	69
1		-				-					+		
otal	221380			3836	138130	1		4	165	176070	<u> </u>		18011
		JU	JLY				UGUST				SEPTI		
2	2540 2440		17	117 145	1570 1440	c	4		17 16	1260 1220	c	3	10
3	2490		27	182	1400	c	Ĭ.		15	1140	č	3	9
4	2810		26	197	1380		4		15 15	1420	CCC	3	12
5	2920		22	173	1340	c	4		14	1420	c	3	12
6	2840		21	161	1300	c	3		11	1420	c	3	12
7	3330	1	28	252	1260	c	3		10	1400	c	3	11
8	2810		22 18	167 119	1220 1200	c	3		10	1380 1500	c	3	11
9	2440 2130	c	12	69	1160	c	3		10 9	1650	c	3	12 13
- 1	2020		12	65	1220	c	4		13	1690	c	3	14
2	1910	c	12	62	1260	c	4		14	1610	c	3	13
3	1800	c	12	58	1360	č	- 7		14	1460	č	3	12
4	1760	c	8	38	1300	C	4		14	1300	c	3	11
5	1740	c	8	38	1240	c	4		13	1300	c	3	11
6	1530	c	8	33	1180	c	4		13	1280	c	3	10
7	1610	1	10	43	1120	C	4		12	1120	c	3	9
9	1630 1630	-	13	57 62	1060 1100	c	4	1	11 9	1100 1060	c	3	9
0	1630	c	14	62	1550	c	3		13	1000	č	3	ě
1	1630	c	14	62	1460	c	3		12	1060	c	3	9
2	1630	c	14	62	1420	c	3		12	1000	c	3	ε
3	1550	C	14	59	1300	C	3	1	10	960	C	3	
5	1400 1420	c	7 7	26 27	1340 1280	c	3	1	11 10	980 920	c	:	11
		1	- 1		l								
7	1420 1380	c c	7	27 26	1630 1420	c	6		26 23	940 960	c c	4	10
8	1360	C	7	26	1420	C	4		15	880	C	4	10
9	1320	c	3	11	1340	C	4		14	1240	C	4	13
0	1260 1530	c	3	10 12	1260 1300	c	4		14 14	1240	c	4	13
	59910	+		2448	40790	+			414	36910	+-		320
otal				(cfs-days).	L					L	1		
1+01													

POTOMAC RIVER BASIN -- Continued

1-6385. POTOMAC RIVER AT POINT OF ROCKS, MD.--Continued

Landlyses of guspended addisort, which year october 1862 to September 1963

Machine of analogies R bothom withdrawn in the of addisort has a controlled to the printing No. 10 mention under

	Medical	Jo.	analysis	BSWC	BN
			2,000		
			1.000	100	
		eters	0.500	100	
		millin	0.250	86	66
	iment	uted, in	0.125	92	97
	Suspended sediment	e indics	0.062	93	92
: :	Suspen	han siz	0.031	98	77
water)		finer t	0.016	73	55
stilled		Percent finer than size indicated, in millimeters	002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	54 73 86 93 95 98 100 100	39
W, in d			0.004	38	19
tube;			0.002	22	10
megnous of analysis: D, comm winderswal une; C, chemically dispersed; D, necalization, 11, in incre water, P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	Godimont	discharge	(tons per day)		
3, sieve; V. v	Sediment	concen- tration	(mdd)	766	1050
P, pipet		Discharge (cfs)		124600	124600
5	Water tem-	per-	(F)	42	42
maw)	0	IIII	Donne		
		Time ling per-		1750	1750
		Date of collection		Mar. 21, 1963	Mar. 21

POTOMAC RIVER BASIN--Continued

1-6430, MONOCACY RIVER AT JUG BRIDGE, NEAR FREDERICK, MD.

LOCATION.--At Riech's Ford Bridge, 1 mile downstream from U.S. Highway 40, 1.2 miles downstream from gaging station, and 2 miles southeast of Frederick, Frederick County.
DRAINAGE AREA,--817 square miles.

RECORDS AVAILABLE. --Water temperatures: October 1960 to September 1963. Estedianni treords: October 1960 to September 1963; October 1960 to September 1963; September 1963; September 1963; September 1963; September 1963; September 1963; September 1963; September 1963; September 1963; September 1960; S

Sediment conscriptations: Maximum daily, 1,100 ppm Mar. 4; minimum daily, 1 ppm on several days during year.
Sediment Loads: Maximum daily, 20,000 tonns Mar. 7; minimum daily, 10,60 for on several days during year.
Sediment Loads: Maximum daily, 20,000 tonns Mar. 8; 7 inimum daily, 10,60 for on many days during winter months.
Sediment concentrations: Maximum daily, 10,00 ppm Mar. 4, 1865; minimum daily, 1 ppm on many days in 1866-63.
Sediment Loads: Maximum daily, 20,000 ton Mar. 7, 1865; minimum daily, 1, less than 0.50 for on many days in 1960-63.
REMARKS: -Plow affected by ice Dec. 10-18, 2-13, Jan. 1-6, 15-19, 23, and Peb. 14, 15. No appreciable inflow between sampling point and gaging station except during periods of heavy local runoff:

Temperature 'F of water, water year October 1962 to September 1963

	Aver-	age	2 4 3 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4	33 44	57 66 74	79 77 68
		31	711	32	1 67	141
ļ		30	32 32	26 1 33	266	83 78 61
		29	3398	2 3	58 67 84 7	75 B
ı		28	51	32 34 25	4 4 4	82 76 66
		27	33	32 32 32 32	65	85 79 66
		26	3384	32 32 53	58 65 82	85 75 63
		25	32 75	35	59 78 78	83 66
		24	50 43 32	34.1	51 64 74	80 76 61
		23	54 34 34	32	59	80 81 61
9		22	56 41 33	32	61 67 72	79 81 67
2100		21	43	32 43	66 65 71	25 44 44
ely		20	61 39 32	3.6 4.0 4.0	169	82 74 71
Once-daily measurements at approximately		19	58 40 33	34 33 44	69	80 75 71
rox		81 21 91	5 4 8 8 8 8 8 3	34 49	 66 75	84 80 70
api		17	66 46 32	33 32 48	59 73	83 79 67
sat	Day	16	69 45 32	32 8 8 9 8 9 8	698	76 76 75 77 62 62
ent		15	66 43 32	32 42 42	55 74	76 75 62
uren		14	66 43 32	33	56 64 71	69 70 65
eas		13	64 45 32	32 40	54 62 72	76 75 68
ly n		12	68 45 32	34 32 38	54 67 67	73 74 78 78 72
-dai		11	65 48 32	333	52 72 70	73 78 72
nce		10	49	28.04	49 72 72	74 76 78 81 74 73
ၶ		٥	64 48 35	34 32 37	52 75	
		8	64 44 35	35	56 72 68	78 77 71
		7	64 42 35	36	55 74 74	82 77 76
		9	3 4 5 2 3 8	3 4 4	53	78 69
		5	43 443	32 4	52	27 27 1.5
		4	62 45	3 3 3 4	665	3 74 84 72
		က	43	33	63	78 77 76
		2	9 46	333	123	80 84 69 74
		_	. 62 47 . 42	332	53	
	Month	MORE	October November December	January February March	April May June	July August September

1-6430. MONOCACY RIVER AT JUG BRIDGE, NEAR FREDERICK, MD.--Continued

Suspended sediment, water year October 1962 to September 1963

			OBER	e no concentr	ations are	NOVEMBE		estimated)	DECEMBER	_	
				ded sediment			ded sediment			ded	sediment
Day	Mean dis- charge (cfs)	Me conc trat (pp	an en- ion	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	137 108	c c	4	1 1	290 270	7 4	5	263 247	C 2 C 2		1
3	100	c	4	1	222	5	3	233	3		2
5	128 986		14 34	5 S 1070	364 699	13 55	13 104	222 216	8 6		5 3
6	694	١,	50	S 327	495	25	33	584	31	s	84
7	278	1	48	36	378	54	55	2470	179	s	1270
9	183 142		26 20	13	263 222	22 8	16	1060 770	56 23		160 48
10	126		20	7	1720	321	S 2930	550	12		18
11	118		15	5	2540	407	5 3820	350	9	١.	9
12	137 118		25 10	9	761 475	80 32	164 41	300 250	6	A	5 4
14	105		7	2	374	16	16	250	5	A	3
15	100	c	2	1	307	C 4	3	220	5	A	3
16	100 105	c c	2	1 1	263 247	C 4	3	220 240	4	A	2 3
18	105	c	2	i	407	21	5 31	250	c 3	["	2
19	100 100	c	2	1	2010 1030	184 58	S 1200 S 170	288 302	C 3		2 3
21	100	c	2	1	693	18	34	230	c 4		2
22	102	c	2	1	1530	57	5 273	200	C 4		2
23	100 100	c	2	1	1590 748	59 20	S 277	280 250	C 4		3 3
25	98	c	2	i	549	c 7	10	230	c 3		2
26	100	c	1	Ţ	440	C 7	8	220	C 3		2
27	102 100	c	1	Ť	387 338	C 7	7 4	200 180	C 3		2 1
29	102	l C	3	i	307	C 4	3	150	C 3	1	1
30	112 186	c	3	1	282	C 4	3	140 130	C 3	A	1 1
Total	5172			1502	20201		9277	11495			1648
		JAN	UARY	1		FEBRUAR	Y		MARCH	-	
1	150	c	1	т	250	C 6	4	400			8
3	170 200	c	1	Ţ	250 350	C 6	6	1000 1500	24 500	S	65 2025
4	210	c	1	î	450	C 6	7	3500	1100	S	10400
5	220	c	1	1	350	C 6	6	7000	750	s	13000
6	220		25	15	350	13	A 13	8000	650	s	16000
7	220 220		25 25	15 15	700 600	42 36	79 60	6000 4500	700 260	s	20000 3300
9	220	c	25	15	400	38	40	3500	140		1400
10	226	ì	25	16	300	16	A 13	3000	130	S	900
11	266		26	19 S 316	400	120	S 280 S 340	2500 3500	130	S	950 280
12	829 3450		41 04	S 316 S 2960	1120 770	80	S 340 166	3500	260	S	3100
14	2690	1	74	S 567	475	40	51	3000	73	s	591
15	1400		32	S 125	350	16	15	2450	41		271
16	930 675		12	30	300 250		8 7	1980	106		123 1200
17	575	c	12 12	22 19	400	15	16	3410 3180	123	S	1130
19	560	c	12	18	500	100	135	2080	42	S	160
20	803		1	S 59	800	34	73	5210	462	5	6950
21	1930 980		96 32	S 507 S 89	1500 800	100	405 220	3320 2050	184	S	1850 172
23	630		13	22	500		14	1590	22		94
24	400 350			10 8	400 300	C 8	9	1350 1200	C 4		15 13
26	300	c	В	6	250	c 8	5	1090	c 4		12
	250	c	8	5	200	C 8	4	1460	C 4		16
27			8	5	200	C B	4	1400	C 4	1	15
27	250 250	C	R I					1010	C 4	1	11
27 28 29 30	250 250	c	8	5 5	==	==		1010 880	C 4		11 10
27 28 29	250	c c		5	t .		1990	880 832 85392			11 10 9 84070

S Computed by subdividing day.
T Less than 0.50 ton.
A Computed from partly estimated-concentration graph.
C Composite period.

1-6430. MONOCACY RIVER AT JUG BRIDGE, NEAR FREDERICK, MD. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

L			APRIL					1AY					,	JNE		
		5	uspen	ded sed	iment		S	uspen	ded	sediment	٠		5	uspen	ded	sedimen
Day	Mean dis- charge (cfs)	tr	lean ncen- ation opm)	р	ons er ay	Mean dis- charge (cfs)	tra	lean ncen- ation opm)		Tons per day	Me di cha (cf	s- rge	tr	lean ncen- ation opm)		Tons per day
1	804	c	4		9	500		15	A	20		200		32		18
3	874 802	C	4	İ	9	400 350		16 11	A	17 10		180 300		750	s	40 1500
	710	č	- 7		8	320		14		12		500	ł	180	s	700
500	620	c	4	l	6	300	ł	16	Â	13	1	090		84	1	247
5	575	c	3		5	280	1	15	A	11		814		48		105
7	575 560	c	3		5	260	ĺ	11	A	. 8		640		34		59
3	545 555	c	3	ł	4	240 220	c	17 17	1	11 10	24	420 560	1	308 284	5	3290 1400
	580	C	3		5	200	C	17		9		926		84	3	210
	520	c	3		4	200	c	17	l	9	1 .	809	c	54		118
	465	c	3	ĺ	4	220	c	17		10		726	c	54		106
3	440	c	3		3	200	C	10		5		555	c	54		81
5	415 395	c	3		3	180 180	c	10 10		5		465 435	c	54 54		62 58
		1								-			1		1	
500	378	c	3		. 3	180	c	10		5		405	c	16		16
7	365 380		12 20	A	11 20	180 900	1	32	s	40		324 274	C	16 16		13 11
	385	ļ	30	Ä	30	600	1	50	S	140		246	c	16		10
••	356	1	24	A	22	400		16	A	17		223	c	10		6
	320		19		16	350		12	A	11		220	c	10		6
2	302	c	9		7	350	c	9		9		209	c	10		6
3	333 342	Š	9	1	8	300 250	ç	9		7 6		195 177	ç	10 10		5 5
	315	c	3	i	3	220	c	ģ	1	5		160	ccc	3		í
5	284	c	3		2	200	c	9		5		155	c	3		1
7	266		3		2	200	c	8		4		150	lc	3]	1
3	254	c	3	į	2	200	C	8	l	4		145	c	3	1_	1
9	242 310	c	3		2	200 350	c	8 220		200		334 540	1	12 37	S	13 54
						250		110	l	75	1 '					
tal	13691	+			215	9180	T		<u> </u>	693	16	477	+-		t-	8143
-			JULY					JGUST	L				CED	TEMBE	<u> </u>	-
-									_				7		7	
2	455 324		58 43	s	71 38	80 72	c	5 5		1	1	74 63	C	5		1
3	234	c	7		4	74	c	5		1		62	c	5		1
5	238 174	c	7		4 3	84 70	c	5 9		1 2		72 74	c	5	l	1 T
		1											1		1	
6	152	c	7		3	63		9		2	l	72	C	2		Ţ
7	138 135	c	7	1	3 T	62 72	c	4 5		1	ĺ	62 60	c	2	1	Ţ
	132	c	1		T	63	C	5		1	1	60	0000	2	-	T
0	128	c	1	ļ	T	62	c	5		1		56	c	2		Ţ
	130	c	1	1	Ţ	58		4	1	1		53	c	7	ĺ	1
3::	128 130	c	10		Ţ	55 74	C	6		1 1	l	46 37	c	7		1
	190	č	10		4 51	86	C	6		1		35	000	7		í
	262	c	10		7	70	c	6		ī		34	c	6		1
5	254	c	5		4	76	c	6		1		34	c	6		1
7	223	c	5	1	3	63	c	3		î	l l	38	c	6		
3	171	č	5		2	60	c	3		1	1	41	c	6		1
2	155 155	c	5 2		2 1	69 170	1	12 81	5	10 43		41	000	6 6		1
- 1		1							1		ł				1	_
2	145 140	c	2		1	118 112		60 40	A	19 13		40 38	c	5		1
3	135	c	2		1	115		15	Ä	5		38	č	5	1	1
	135 135	CCC	9	1	3	118		8	A	3	Į.	40	CCC	5	1	1
•••	128	c	9		3	95		5	A	1		40	C	5		1
5	118	c	9		3	74	1.	5	A	1		42	c	6		1
7	110 197	c	9	s	3 58	65 70	c	8 8		1 2	ľ	40 40	c	6	1	1
	264		114	5	87	80	c	8		2	ll .	189		67	s	44
D	128		40	s	14	82	00000	8		2		236		54	s	39
1	95	1	14	1	4	72	C	8	<u> </u>	s			1		ـــ	
tal	5503	\perp			378	2484	L			124	1	798	L			105
	dischange	fo	r yea:	r (cfs-	days).										•••	204982
tal	arscuar 8c															
tal tal	discharge load for omputed by	yea	r (to:	ding de	V.	• • • • • • • • • • • • • • • • • • • •	•••	• • • • •	• • • •		• • • • • •	• • • • •	• • •	• • • • •	• • •	113020

POTOWAC RIVER BASIN--Continued

1-6430, MONOCACY RIVER AT JUG BRIDGE, NEAR FREDERICK, MD. -- Continued

	Marked	Jo.	analysis	BSW	BSW	BSW	BSW	BSW
			2.000					
			1.000	100	100	100	100	1
		eters	0.500	100	100	201	100	94
		millim	0.220	66	66	66	9	95
33 ster;	Iment	ted, in	0.125	86	66	86	66	91
ative w	Suspended sediment	Indica	0.062	86	86	86	86	89
Septemb N, in ma	Suspend	an size	0.031	96	96	96	8	83
32 to Station; I		Percent finer than size indicated, in millimeters	0.016	88	89	68	28	2
er 1962 to decantation; stilled water)		ercent	900.	76	72	82	22	57
sed; D,		Ь	0.004	49	20	28	34	40
disperdube; W			0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	34	- 5e	36	12	22
Particle-size analyses of suspended sediment, water year October 1962 to September 1963; [Methods of analysis B, bottom withdrawal tube, C, themically dispensely, D, decautation; M, in matter water; P, pipel; S, sieve; V, y istual accumulation tube; W, in distilled water;	Sodimont	discharge	(tons per day)					
es of suspende om withdrawal to ; S, sieve; V, vi	Sediment	concen- tration	(mdd)	169	394	131	78	689
e-size analys nalysis: B, botto P, pipet		Discharge (cfs)	Ì	832	2580	1880	2370	6710
Particlods of a	Water	ling per-	E	29	49	40	41	40
(Meth	1	ling	point					
		Time (24 hour)		0825	0820	2130	2105	1855
		Date of collection		Oct. 6, 1962	Nov. 11	Nov. 19	Nov. 22	Mar. 20, 1963

POTOMAC RIVER BASIN -- Continued

1-6452. WATTS BRANCH AT ROCKVILLE, MD.

LOCATION.—Temperature recorder at gaging station on left bank, 0.2 mile south of State Highway 28, and 1.3 miles west post office DRAINGS PRESENT SOUTH.

BRAINGS ANIALISE.—Increasery County.

RECORDS ANIALISE.—Increasery County.

RECORDS ANIALISE.—Increasery Emperatures: September 1957 to September 1963.

EXTREMES, 1962-63.—"Mater temperatures: Maximum, 82 F Uly 27 and Aug. 4; minimum, freezing point Dec. 29, 30.

EXTREMES, 1967-63.—"Mater temperatures: Maximum, 88 F Unne 29, 30, 1959; minimum, freezing point on many days during winter months.

Temperature 'F of water, water year October 1962 to September 1963

								3							Day	Day		The second second					1							H	
Month	-	2	6	4	5	9	7	6 8	10		12	13	4	15	2	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3	Average
October Maximum	49	65	59	63			65		63	67		19			69	99	62	58	09	59	09	59	54		7-	64		26	80	89	78
Minimum	51	53		28	59	56 5	_	57 5	8 56	_	4 55	_	54	_	_	57		6,4	64	53	20		94	43	7		04	_		47	16
November	52	6,4	94	8	7 9 7		48				- 4	47	- 48	4	64	50	80	45	94	47	50	45	94	4		7 7		9		-;	51
Minimum	4	45		4.2		40	_	43 4	46 50	47	_	-	_	_	-			4.1		4	43		42	0,	38	38	0,4		39	1	22
December	4.6	44	4	4.5	7 97	7	40 41			35		34		34		36		36	38	35		36	35	34	38	37		33	34	34	13
Minimum	38	39		0 4					35 34	_	3,4		34	34	34	34	34	34		34	34	33	33	33	34		33		_	33	: }
January	34	33	33	34	34	35	36 35		37 38	37	7 37	37	_	36	36	37	39	38	1,	3	35	37	34	34	34	34	34	34	33	35	22
Minimum	33	33	33	33	33	33	33 34		33 33	36	34	34	33	33	33	33	36	37	37	33	33	33	33	33	33	33	33	33	33	33	13
February	34	34	35	34	37	37	37 3			39	9 37	37		35	34	34	37	34	37	37	34	35	34	36	35	35	36	ì	<u> </u>	1	1
Minimum	33	34	33	33	33		34 33	-	33 33	_	-	33	33	33		33		33	33	33	33	33	33	33	33	33	33	i	1	1	54
March Maximum	36	39	5.	4.5	0,4		45 47		44 48	9		46	46			55	52	4	51	46	20		56	59	57	58	9			57	22
Minimum	35	35		36	36	34 3	36 3	_	37 39	34	4 34		_	36	37	0,4		9		40	39	38	39	43	9	7 9 7	4	46	84	20	ł
April Maximum	51	49	65	7,9	26				53 54		7 59	57		61		56	67	2	68	99	61	62	55		59		49		_	-	09
Minimum	64	64		8 4		_	4	45 4	48 43	43			9 4 9	4.5	4 5	2		55		25			9	47	<u>-</u>	94	-	7	25	1	54
May Maximum	52	29		67						_	4 62			65		29	49	62	65	49	49		62	63	62		58		_	65	22
Minimum	4	7	4 5	64	52	55	52 53	_	55 58	54		48	3 51	25	53	53	_	53	55	25	54	25	20	20	24	54	55	55	99	55	ļ
June Maximum	65	09		69	2	69			11 78	7.1	-1		3 70		4	2		7.2	7.1	69	69		4.	16	17		11			1	41
Minimum	55	22	28	58	20		9 7	90 2		2		28		8		99	28	3		61	57	22	29	19	63	<u>~</u> 79	- 29	89	89	1	22
July Maximum	υģ	10	11	74	74	75	76 7	75 7	72 70	72	2 72	73	9	13		19	81	8	80	77	75		77	7.7	80		62	62	-	7.7	;
Minimum	68	89	67	62	61	61 6	63	9 99	61 60	62	2 62	63	63	61	4	99		2	_	99	29	67	99	67	- 29	69	72		7	89	94
August	7.8	20	7.3	82	78	- 12	75 78		78 81	7.7	7 78	74	72	73	73	7.5	7.7	69	7.2	7.1	75	25	17	72	69	1 1	7.1	89	75	147	31
Minimum	69	68		69		_		_					_	61	_	49		3		99	99		99	_	0,9		62			65	1
September Maximum	72	72		7.1										- 28		63		69		67	49		56		62					1	55
Minimum	62	9	65	- 67	62 6	909	60 61	_	62 63	9 62	5 64	-	21	26	21	27	9	3	9	9	26	23	20	64	2	54	26	9	22	1	2.2

WEST FORK OF NORTHWEST BRANCH ANACOSTIA RIVER AT LAYHILL, MD.

LOCATION. --At staff gage on bridge on county road, 0.4 mile west of Layhill, Montgomery County, and 1 mile upstream from Northwest Branch Anacostia River Tributa. Park RECRDS ANAILARIA. -1.70 square miles.

RECRDS AVAILABLE. --Sediment records: October 1962 to September 1963 (Periodic).

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963 (Methods of analysis: B, bottom witherward tube; C, chemically dispersed; D, decanducing, N, in native water;

Water		12 (2)			F, piper, S, sieve; V, visual accumulation une; W, in distilled water.	i mre,		Jenned	Water	1	a pape	Susmended andiment					
- 03		E II		Sediment	Sediment					adenc	naea Be	diment					Method
	ling	per-	Discharge (cfs)	concen- tration	discharge			Percen	t finer	than st	ze indic	Percent finer than size indicated, in millimeters	n milli	meters			ъ.
		E		(mdd)	(tons per day)	0.003	0.004	0.008 0.016 0.031	0.016	0.031	0.062	0.125	0.250	0.062 0.125 0.250 0.500	1.000	2.000	analysis
			18 23 14 10 18	120 114 57 19 44 293	9.00 9.23 7.14 1.22												
			13 12 9.5 49 30 26	161 159 85 896 235 165	5.7 2.2 119 19 12												
			19 17 5.2 34 35	107 93 322 392 405 262	23.4.4.3 37.8.6.3 27.5.6.2												
			32 20 5.5 6.8 16	219 90 70 52 82 47	84.4.4.6.4. 84.4.6.4.												
				441 627 80 322 334	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1												

POTOMAC RIVER BASIN--Continued

WEST FORK OF NORTHWEST BRANCH ANACOSTIA RIVER AT LAYHILL, MD. -- Continued

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963--Continued (Methods of analysis: B, bottom withdrawal tabe; C, chemically dispersed; D, decantation; N, in native water;

				P, pipet;	S, sieve; V, v	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	n tube; w, in	distilled	water)								
		Samu	Water tem-		Sediment	Sodimont				Suspen	Suspended sediment	Iment					Mathod
Date of collection	Time (24 bour)		ber-	Discharge (cfs)	concen- tration	discharge		Percen	Percent finer than size indicated, in millimeters	han siz	e indica	ted, in	millim	ters			Jo .
_	Ì		(F)	į	(mdd)	(tons per day)	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	0.008	0.016	0.031	0.062	0.125	. 250	. 500	000 .1	2.000	analysis
June 3, 1963				45	573	70											
June 3				47	499	63											
June 3				44	369	44				_					_		
June 3		_		42	529	56						_	_				
June 3				46	171	22											
June 3				C#	207	27										_	
Aug. 13				1.9	363	1.9											
Aug. 13				14	257	9.1	_					_					
Aug. 13				1.0	103	۴.											
Aug. 19				4.9	190	5.6											
Aug. 19				۲.	129	۳.										-	
Aug. 20				39	481	51				_							
Aug. 20				89	315	92											
Aug. 20.			_	38	133	- - -	_	_	_			_					
Aug. 21				8.5	31	۲.			_								
Sept. 29				2.2	201	5.9			_								
Sept. 29				#	197	6.0			_	_						_	
Sept. 29				16	83	3.6				_							
Sept. 29				14	53	2.0	_			_							
Sept. 29				4.0	39	₹.				_		-				_	
									-	-							

NORTHWEST BRANCH ANACOSTIA RIVER TRIBUTARY AT LUTES, MD.

LOCATION. --At staff gage at county road crossing at Lutes, Montgomery County, 0.2 mile upstream from mouth, and 1 mile downstream from West Fork of Northwest Branch Anacosia River at Layinil.
DAANANGE ARRA, --O, 47 square miles october 1962 to September 1963 (Periodic).
RECORDS AVAILABLE, --Sediment records: October 1963 to September 1963 (Periodic).

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water;

1-6495-2		(Meth	ods of a	nalysis: B, botto P, pipet;	m withdrawal t S, sieve; V, vi	(Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water; P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	ly dispera n tube; W	, g 9, 3	decan	vater)	z, E	ative w	ater;					
			Water		Sediment	i i i					Suspen	Suspended sedimen	iment					Method
Date of collection	Time (24 hour)	ling	ber-	Discharge (cfs)	concen- tration	discharge		1	ercent	finer t	an siz	a Indica	ted, in	Percent finer than size indicated, in millimeters	eters			jo.
	Ì		3.6	Ì	(mdd)	(tons per day)	0.002	0.004	0.008	0, 008 0, 016 0, 031	0.031	0.062	0, 125	0.250	0.500	0.062 0.125 0.250 0.500 1.000	2,000	analysis
Mar. 19, 1963. Mar. 19.				4.0.0 4.0.0	3030 5260 4290	34 48 42												
Mar. 20				4.83.4.	2180 4170 5580	25.00 24.00 24.00												
June 2. June 3. June 3. June 3.		-		6.2.3.6 10.1.0 7.0	2180 1190 5770 9490 7250	21 9 104 256 254												
June 3. June 3. June 3. June 3.				112 21 37 21	6260 10600 9270 18900 15200	203 487 526 1890 862						-		-				
June 3				10 7.9 8.5	14900 4050 10100	402 86 232												
June 3				12 14 10	10500 8110 5110 4360	340 372 193 118												
June 3. Aug. 13. Aug. 13. Aug. 13. Aug. 13. Aug. 13.				11 12 10 23 19	5380 10300 7190 25500 13300 19900	160 447 234 694 829 25												
Aug. 13				39.0 8.9	1030 24000 9250	2532 224												

1-6505. NORTHWEST BRANCB ANACOSTIA RIVER NRAR COLESVILLE, ND.

LOCATION. --At gaging station, 400 feet upstream from bridge on State Highway 183, 1.5 miles southwest of Colesville, Montgomery County, 3 miles upstream from Burnt Mills, and 10 miles upstream from Sligo Branch.

DRAINAGE AREA. --21.3 square miles.

RECORDS AVAILABLE. --Sediment records: October 1962 to September 1963.

EXTREMES, 1962-63. --Sediment concentrations: Maximum daily, 3,950 ppm Aug. 20; minimum daily, not determined.

determined. Sediment loads: Maximum daily, 3,810 tons Aug. 20; minimum daily, less than 0.50 ton on many days during year. REMARKS.--Flow affected by ice Dec. 11-16, 25, 29-31, Jan. 1, 15-17, 22-31, Feb. 8, 9, 13, 14, 16, 17, 21-27, and Mar. 3.

Suspended sediment, water year October 1962 to September 1963

		OCTOBE	R		NOVEMBE	R		(DECEMBER		
		Suspen	ded sediment		Suspen	ded	sediment		Suspen	ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	3.4		т	4.9	3		Ť	7.9		E	0.1
2	3.2		T	4.6	3		T	7.8		E	•1
3	3.4		Ì	12	25	s	1.2	7.9		Ε	• 1
4	21	276	S 34	10	34	s	1.1	7.8		lε	•1
5	11	89	S 3.7	7.5	11		• 2	7.7		Ε	•1
6	5.2		E •1	7.2		Ε	•2	45		Ε	8.7
7	4 • 2		E •1	5.6		Ε	• 1	22		Ε	1.1
8	4.1		E •1	5.4		Ε	•1	14		E	• 5
9	4 • 2		1 7	8 • 5	212	s	19	12		Ε	• 3
10	4.0		т	111	729	s	362	9.5		Ε	• 2
11	3.9		T	15	16		•6	8.0		Ε	•3
12	3.9		т	9.5		E	• 4	7.0		Ε	•2
13	4.1		T	9.0		E	•2	7.0		E	• 2
14	3.7		T	9.0		Ε	•2	7.0		E	• 1
15	3 • 6		T	7.5		E	•2	7.0		Ε	•1
16	3.8		т	6.7		E	•1	8.0		E	-1
17	4.0		T	6.4		E	•1	8 • 4		E	• 1
18	3.9		T	24	155	S	20	8 • 2		E	• 1
19	3.9		T	19	48	S	3.3	8-1		E	• 1
20	4.0		T	11		Ε	• 3	8.2		Ε	•1
21	4.3		T	28	335	s	67	7.0	13		•2
22	4.3		T	112	398	S	177	10		E	• 3
23	4 • 1		T	19		E	•8	8.5		E	• 2
24	3.9		T	13		Ε	• 4	8.0		E	• 2
25 • •	3.9		т	11		E	•3	7.0		Ε	•1
26	4.1		T	9.6		Ε	• 2	8 • 6		Ε	-1
27	4 • 3		T	9.1		Ε	•1	8 • 3	2		T
28	4.4		Т	8.8		E	-1	7.6	3	l_	• 1
29	4 • 4		T	9.2		E	• 2	7.0		E	• 1
30	4.5		T	8.2		E	•2	7.0		Ε	•1
31	5 • 1		•1					7.0		E	•1
Total	149.8		38 • 1	521.7		1	655.6	304.5			14.2

E Estimated.

S Computed by subdividing day. T Less than 0.05 ton.

1-6505. NORTHWEST BRANCH ANACOSTIA RIVER NEAR COLESVILLE, MD.--Continued

	Sus	spended JANUAR	sediment, wat	ter year Oct	ober 196 FEBRUAR		September	1963Cont	inued MARCH		
		,	nded sediment	 		-	ediment			ded	sed ment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per d v
1 · · · 2 · · · 3 · · · 4 · · · 5 · · ·	7.0 8.6 8.8 8.8 8.4	 9	E 0.1 E .2 E .2 E .2	9.3 10 18 11 24	7 75 	E S E	0.2 .3 3.6 .3	9.8 15 14 14 72	 602	E E E S	0.2 .8 .3 1.1
6 7 8 9	8.6 8.7 9.0 8.9	 	E •1 E •1 E •1	27 15 10 10	11	E E	.1 .4 .3	253 38 23 19	2012 145	S S E	1880 19 1.7
11 12 13 14	10 19 107 83 30	58 686 178 35	3.0 S 226 S 43 2.8	11 15 100 25 20	140 1030 35	E S S	7.5 254 2.4 1.1	19 19 184 58 32	1150 75 30	E S S	1.0 650 14 2.6
15 16 17 18 19 20	15 11 11 13 14 46	 12 17 256	E 1.0 E .7 E .4 S .6 S 30	15 10 10 11 13 93	 1540	E E E E S	•3 •4 •3 •2 •7	23 27 79 31 47 73	20 329 20 244 134	s s	1.0 1.5 93 1.7 52 34
21 22 23 24 25	29 15 12 10	65 	5 • 1 • 2 • 3 • 5 • 2	30 12 9 9	148 65 	S S E E	17 3.6 1.0 .5	30 22 19 19	12	EEEE	1.6 .7 .5 .4
26 27 28 29 30	9 9 9 9		E •2 E •2 E •2 E •2 E •2 E •2	9 9 9.6 	=======================================	E E	•3 •2 •2 	20 30 19 17 16	46 85 7 	S S E E	3.0 8.0 .4 .3 .3
Total	565.8		317.8	553.9			1038.9	1276•8		<u> </u>	2967•2
		APRIL			MAY				JUNE		
1 2 3 4 5	16 18 16 14 12	=======================================	E 0.3 E .3 E .2 E .2	14 11 10 9.3 9.0	11	E E E	0.5 .3 .3 .3	6.6 19 180 45 192	120 2270 140 1800	E S A	0.4 6.2 1450 17 3700
6 7 8 9 10	13 13 12 13 12	 	E •2 E •2 E •2 E •2 E •2	9.6 8.8 8.2 8.1 8.0	 13	E E E	•3 •3 •2 •2 •3	95 26 18 15 12	1500 270 	A S E E	1100 19 3.6 1.8 1.2
11 12 13 14	12 11 11 11	5 	E •2 E •1 E •1 E •1	7.5 7.4 7.4 8.3 7.7	==	E E E E E	• 2 • 2 • 2 • 3 • 2	11 9.5 9.0 9.0	 18	E E E	1 • 0 • 7 • 5 • 4 • 5
16 17 18 19 20	11 11 12 11 10	 7 	E •1 E •2 E •3 •2 E •1	7.2 8.1 12 7.8 8.0	22 	E E E	.2 .6 1.4 .3	8.0 7.6 7.1 6.3	 34	E E E S	.3 .3 .2 1.9
21 22 23 24 25	9.8 9.9 16 11 10	 15 	E .1 E .2 .6 E .2 E .2	9.2 8.0 7.1 6.8 6.6	 9 	E E E	•6 •3 •2 •2 •1	7 • 1 6 • 3 6 • 0 5 • 2	58 	S E E E	2 • 2 • 5 • 4 • 4 • 3
26 27 28 29 30	10 9.7 9.3 9.6 1.6	 	E .2 E .1 E .2 E .5	6.5 6.6 6.8 8.8 16	26 222 35	E E S S	•1 •1 •1 •9 14	5.2 5.0 4.6 6.0 17	14 65 420	E A A	.3 .2 .2 1.8 20
Total	361.3		6.5	267.2			24.3	771.5		T	6331.6
E E	stimated.									•	

E Estimated.
S Computed by subdividing day.
A Computed from partly estimated-concentration graph.

1-6505. NORTHWEST BRANCH ANACOSTIA RIVER NEAR COLESVILLE, MD. -- Continued

1		JULY		1	AUGUST			SEPTEMBE	R	
		Suspen	ded sediment		Suspen	ded sediment	l	Suspen	ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	12		E 5.5	2.2	23	0.1	3.3		Ε	0.2
2	5.6		E •1	2.2	23	•1	3.0		E	• 2
3	5.2		E •6	1.9	23	•1	3.3		E	•2
4	4.4		E .4	2.0	23	.1	3.3		E	•1
5	4.1	30	•3	1.6	20	•1	3 • 8		E	•1
6	4.1	27	•3	1.3	18	•1	4.1	8		•1
7	3.8	25	•3	1.4	14	• 1	3.5		E	• 1
8	3.5	22	•2	1.7	14	•1	3 • 3		Ε	• 1
9	3.3	20	•2	1.4	14	•1	3.0		E	.1
10	3.0	17	•1	1.0	14	т	2.8		E	•1
11	3.3	15	•1	1.1	14	т	2.6		E	•1
12	3.0	12	•1	.7		T	2 • 6		Ε	•1
13	3.0	12	•1	19	2520	5 430	2 • 8	10		.1
14	12	218	S 12	11	871	S 48	2 • 4	10	١.	-1
15	7.1	58	S 1.3	2.8	200	1.5	3.3	18	S	• 2
16	4.4	40	.5	2.4	72	•5	11	87	s	2 • 2
17	3.8	37	•4	2.2	44	• 3	6.0	32	l	• 5
18	3.5	34	•3	2.0	26	•1	4.1	24	1	• 3
19	3.3	31	•3	6.0	695	S 100	3.5	20		• 2
20	3.0	25	•2	150	3950	S 3810	3.3	16		• 1
21	2 • 8	20	•2	54	468	S 178	3.3	12		•1
22	2.6	20	•1	9.5	67	S 1.4	3.8	12		• 1
23	2.8	18	•1	6.0	34	_ •6	3.0	10	1	•1
24	2 • 6	16	•1	4.6		E •4	2.8	8		• 1
25	2 • 4	16	•1	4.1		E •3	3.0	7	l	•1
26	2.2	14	•1	3.8		E •2	3.3	5		Ţ
27	2.3	14	•1	3.8		E •2	3.5	5		Ī
28	2.2	14	•1	3.3		E •1	3.0	5	_	T
29	2.3	21	•1	6.0	164	S 3.2	66	2550	S	811
30	2 • 2	21	•1	4.6	90	1.1	9.5	100	A	2.1
31	1.9	21	•1	3.8		E •3	-		1	
							176.2			

Total discharge for year (cfs-days). 5387.8
Total load for year (tons). 16811.4

E Estimated.

S Computed by subdividing day.

T Less than 0.05 ton.

A Computed from partly estimated-concentration graph.

POTOMAC RIVER BASIN--Continued

1-6505. NORTHWEST BRANCH ANACOSTIA RIVER NEAR COLESVILLE, MD.--Continued

	Vethor	Jo	analysis	BN	BSW
			2,000		
			1.000		
İ		eters	0.500		100
		millim	0.250	13	100
tter;	ment	ted, in	0. 125	66	8 8
tive wa	Suspended sediment	indica	0.062		93
V, in na	Suspend	an size	0.031	62	88
stion; lation; later)	•	finer th	0.016		72
or 1962 to decantation stilled water		Percent finer than size indicated, in millimeters	. 002 0. 004 0. 008 0. 016 9. 031 0. 062 0. 125 0. 250 0. 500 1. 000	34	54.3
sed; D,		Д.	0.004	22	40 31
disper tube; W			0.002	10	30
Particle-size analyses of suspended sediment, water year October 1962 to September 1963 Methods of analysis B, bothom withdrawal tube, C, themically dispersed, D, decamathon, M, in native water P, pipe; S, sieve; V, visual accommulation tube; W, in distilled water)	Sodiment	discharge	(tons per day)		
es of suspende om withdrawal to S, sieve; V, vi	Sediment	concen- tration	(mdd)	4700	4700 15100
e-size analysialysis: B, botto P, pipet;		Discharge (cfs)	<u> </u>	141	141 73
Particle-si (Methods of analys	Water tem-	per-	(FF)	19	72
	u u	ling per-	point		
		Time (24 hour)			1940
		Date of collection		June 3, 1963	Aug. 13

RAPPAHANNOCK RIVER BASIN

1-6640. RAPPAHANNOCK RIVER AT REMINGTON, VA.

LOCATION. --At gaging station at bridge on U.S. Highway 29 at Remington, Fauquier County, 0.3 mile upstream from Tinpot Run, 0.4 mile downstream from Ruffans Run, and 2.5 miles downstream from Hazel River.

DRAINAGE AREA. --616 square miles.

RECORDS AVAILABLE. --Chemical analyses: October 1951 to September 1956.

Water temperatures: May 1951 to September 1965, October 1958 to September 1959.

Sediment records: April 1951 to September 1963.

EXTREMES, 1962-63. --Sediment concentrations: Maximum daily, 1,730 ppm Mar. 12; minimum daily, 2 ppm

July 8 and Aug. 24, 25.

Sediment loads: Maximum daily, 32,300 tons Mar. 12; minimum daily, less thar 0.50 ton on many days in July, August, and September.

EXTREMES, 1951-63. --Sediment concentrations: Maximum daily, 1,730 ppm Mar. 12, 1963; minimum daily, 1 ppm on many days.

Sediment loads: Maximum daily, 32,300 tons Mar. 12, 1963; minimum daily, less than 0.50 ton on many days.

many days. REMARKS.--Flow affected by ice Jan. 26, 27, 29-31, Feb. 1-8, 10, 14, 15, 23-26, 28.

- 1		OCTOBE	R	l	NOVEMBE	₹	1	DECEMBER		
		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded	sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	87	15	4	164	9	4	325	10	İ	9
2	79	15	3	147	7	3	310	9		8
3	77	15	8 3	128	10	3	295	11		9
4	89	16	B 4	158	12	5	285	14		11
5	282	41	31	199	11	6	280	10		8
6	251	24	16	242	16	10	712	71	s	190
7	147	12	5	199	12	6	1120	66	s	210
8	119	10	3	154	8	3	709	19		36
9	110	6	2	144	15	6	572	12		19
10	116	6	2	3590	716	S 8770	440	9		11
11	105	5	1	1660	193	S 1010	350	10		9
12	100	5	1	787	55	117	320	14	Í	12
13	94	5	1	560	25	38	300	8		6
14	89	5	1	444	15	18	290	8		6
15	87	7	2	366	10	10	330	7		6
16	89	9	2	330	9	8	340	14		13
17	97	8	2	305	11	9	350	11		10
18	94	10	3	315	17	14	320	7		6
19	87	8	2	794	50	107	305	11		9
20	87	11	3	644	30	52	325	9	ļ	8
21	89	7	2	534	19	27	285	11		8
22	89	8	2	1160	102	S 353	285	10		8
23	92	10	B 2	1030	52	S 151	408	10	1	11
24	87	12	8 3	722	21	41	378	13		13
25	84	14	3	592	13	21	315	11		9
26	79	8	2	510	15	21	320	9		8
27 • •	79	5	В 1	444	15	18	414	9	1	10
28	84	6	1	402	10	11	320	10	1	9
29 • •	87	10	2	372	9	9	310	7	1	6
30	89	9	2	340	10	9	670	19	1	34
31	102	7	2				702	14	_	27
otal	3247		113	17436		10860	12685			739

S Computed by subdividing day.
B Computed from estimated-concentration graph.

NORTH ATLANTIC SLOPE BASINS

RAPPAHANNOCK RIVER BASIN--Continued

1-6640. RAPPAHANNOCK RIVER AT REMINGTON, VA.--Continued

S Computed by subdividing day.
A Computed from partly estimated-concentration graph.
B Computed from estimated-concentration graph.

RAPPAHANNOCK RIVER BASIN -- Continued

1-6640. RAPPAHANNOCK RIVER AT REMINGTON, VA. -- Continued

Suspended sediment, water year October 1962 to September 1963 -- Continued SEPTEMBER JULY AUGUST Suspended sediment Suspended sediment Suspended sediment Mean dis-charge Mean Mean Day dis-charge Mean dis-charge Mean Mean Tons Tons Tons concenconcenconcenper day per day per day tration tration tration (cfs) (cfs) (cfs) (ppm) (ppm) (ppm) 1.. 147 24 Ŧ 27 Ŧ 2... 3... 4... 5... 140 139 131 94 3 2 2 2 23 22 20 18 22 15 4 4 3 4 5 7 7 7 TTTT 57 13 15 6.. 7.. 8.. 9.. 10.. 79 72 68 30 79 5 1 T 1 16 15 15 16 4 5 3 3 3 TTTT 75558 В 1 1 1 1 53 36 28 44 61 55 11.. 53 1 15 13 13 13 3 22 17 1 T T T 43543 97475 16 34 39 30 12.. 53 55 1 14.. 61 77 13 13 9.2 87 1 47 14 5 T 3 1 16.. 17.. 18.. 19.. 72 55 8.8 8.4 8.0 59 42 27 12 12 12 11 4333 1 T T 1 1 1 5 5 6 T T T В 46 20.. 26 8 40 36 T 7 21.. 3 3 3 3 3 32 5 4 4 5 4 22.. 23.. 24.. 25.. 55 42 38 28 11 9•6 8•8 8•4 6 3 2 2

Total	2084		25	617.4	 11	738•4	 7
Total	discharge	for year	(cfs-days)		 		 171257.8
Total	load for v	ear (ton	s)		 		 113185

35555

22 17

15 15 19

8.0 8.0 7.6 44 164

46645

TTTT

T T T T

64 89 70

28 26

26..

27.. 28.. 29..

30..

33333

1

T T

Ţ

T Less than 0.50 ton.
B Computed from estimated-concentration graph.

10000

14858

9.7

0.6.4.0

28821

0.4

MISCRILLANBOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS

Tur-bidity ABS Color Ηď Specific conduct-ance (micro-mhos at 25°C) Dissolved Ral Non- at the Solids Cal Act (residue cure, carbon (magne, carbon at 180°¢) magne at the magne at Hardness as CaCO, Chemical analyses, in parts per million, water year October 1962 to September 1963 trate (NO,) Fluo-ride (F) Chloride (Cl) Sulfate (SO₄) Bicar-bonate (HCO₃) Pot-tas-stum (K) Sodium (Na) Mag-ne-stum (Mg) Cal-ctum (Ca) Man-ga-nese (Mn) Iron (Fe) Silica (SiO₂) Discharge (cfs) Date of collection

PAWCATUCK RIVER BASIN

Dec. 3, 1962. C59 6.18 6.2 1.0 4.2 1.1 4.7 1.0 9 5.7 6.5 6.5 1.1 6.5 6.5 1.2 1.1 6.5 1								L					
C59		8.9	6.2	9.	6.4	6.3		8.9	6.3	5.8	6.4	6.7	
11/23 11/24 11/2													
118		8	9	80	4	0		10	8	6	-	•	
C59		15	12	12	17	20		18	14	15	20	22	
113 13 14 15 15 15 15 15 15 15		26	44	45	67	26							
113 13 14 15 15 15 15 15 15 15	YONN.	1	6.0	4.0	6.5	5.2	NN.	1	1.8	1.7	5.6	4.2	
1059	TON,	1	0.0	٦.	٦.	.1	RY, CC	1	0.5	۲.	۲.	٦.	
1059	ST WILLING	6.5	6.6	7.5	0.6	11	UTH COVENT	6.9	6.9	6.5	8.3	11	
1059	VER AT WE	5.7	9.5	7.9	8.8	12	SR NEAR SO	3.7	8.9	8.5	9.6	=======================================	
1059	ATIC RI	6	œ	ıD	16	56	IC RIVI	10	80	œ	12	23	
1059	WILLIM	1.0			1.0	1.0	LLIMAT	1.3	∞.	6.	1.1	1.8	
1059	1193.5.	4.7	4.5	6.1	9.7	15	1195. WI	6.2	4.8	5.2	7.5	13	
162	4	1.1	1.0	. 7	1.2	1.5	4	1.1	1.0	1.1	1.4	1.4	
C59 0.18 162 4.3 .18 2.21 2.22 4.3 3.2 2.28 3.2 2.32 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 2.33 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4		4.2	3.5	3.6	4.8	5.4		5.4	4.0	4.2	5.4	6.5	
C59 1188 6.5 37 7.7 37 7.7 258 6.5 258 3.2 5.2 16. 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6		1	0.03	00.	10	.10		1	0.03	8	. 05	10	
C59 1162 162 37 37 258 86 182 258 54 195 196 196 196		0.18	.21	.18	. 50	.42		0.21	. 32	. 27	. 33	.34	
bc. 3, 1962. C59 1042 13, 1183 1184 23, 11963. 1168 1049 25, 11962. 86 1049 23, 1962. 86 1049 23, 1962. 86 1049 25, 1197 1049 25, 1197 1059 1197 1		1	6.5	4.3	7.7	5.2		1	6.5	3.5	7.4	5.2	
ec. 3, 1962. 143 23, 1963. 144 23, 1963. 159pt. 11, 1963. 15pt. 17, 1963. 15pt. 17, 1963. 15pt. 17, 1963. 15pt. 11, 25. 15pt. 11													ole. Le. discharge.
HAMANI (HAMANI)		Dec. 3, 1962	Apr. 17, 1963.	May 23	July 25	Sept. 11		Dec. 3, 1962.	Apr. 17, 1963.	May 23	July 25	Sept. 11	A Surface samp B Bottom samp C Daily mean

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

						énvr,		O.F	308	FACE	. "	1155	ω,	190	•						
		Tur- bidity			15				1 %	oʻ 4.	ا.		16		90		1 %	4.4.0		2.0	10.0
		ABS				0.1				0.1	7			0	, ,			0.0			0,0
		Color			12	œ σ	,		19	82	5		1 4	22.5	9		1 7	2 7 7	}	26	2-2
		阻.			6.0	6.6	0.0		6.0	6.3	6.5		6.2		7.0		6.3	6.9			6.6
	Specific conduct-	ance (micro- mhos at 25°C)			95	4.8	907		82	88	114		57	9 6	73		88 %	59 79		57	80
per	2 °	Non- carbon- ate			00 00	- 22	77		∺ ∞	r 6	9		4 4	. ro a	4		6 4	0 M		20 1-	62
-Contin	Hard as C	clum, magne- sium			27	22	92		20	22	26		16	148	20		20	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		15	30.8
er 1963-	Dissolved	solids (residue at 180°C)			82	50.0	e		66 49	58 58 1	2		42	37	44		53	422		41 48	61
Septemb	-iX	trate (NO,)			17	i . 6,	2	·	1.4	8.0	4.3		15	9.00	. 7		15			4.0	2.1
62 to	Fluo-	(F)		NN.	15	;==:	?	c, con	0.1	٦.	-	ż	15	;::-	.1	CONIN.	15	0	CONN.	0.1	ન ન
water year October 1962 to September 1963Continued	:	Chloride (C1)	ontinued	NEAR COLUMBIA, CONN	8.9	9.69	OT	1-1200.5. WILLIMATIC RIVER AT WILLIMATIC, CONN	6.5	6.9 6.9	=	1-1208. NATCHAUG RIVER AT CHAPLIN, CONN	4.7		8.1	AT ATWOODVILLE,	5.5	7.9	i	5.1	7.0
ter year		Sulfate (SO ₄)	THANES RIVER BASIN Continued	R NEAR CO	1.8		OT .	RIVER AT	10 9.1	8 6 9 9 9	r I	VER AT CH		900	5.4		6.5	6.00	A.	7.8	9.2
		bonate (HCO ₃)	S RIVER	1-1200. HOP RIVER	124	279	,	LIMATIC	24 8	13	25	AUG RI	21°	°11;	20	MOUNT HOPE RIVER	4 5	22 22	MN RIVER	51	28
r mill	Pot-	tas- sium (K)	THANE	200. H	1.2	1040	2.7	5. WIL	1.3	0 2 7	1.8	. NATC	9.8		1.4	OUNT H	1.3	6.4.8	5. PRINTON	8.0	1.9
analyses, in parts per million,		Sodium (Na)		1	5.5	4. 70. 0 70 60	2.0	1-1200.	5.8	6.6	97	1-1208	3.0	. 6. 4	4.6	1-1211. N	4.6	€.4.6 1-6.8	1-1213.5.	3.2	4.1
ses. in	Mag-	ne - stum (Mg) ·			1.8				1.5	9.1	1.8		1.1		1.4		5.5	980		1.5	2.3
		clum (Ca)			7.8	0000	0.0		3.9	4 2 .	7.4		9.6	4.0	5.6		9.6	6.3			8.0
Chemical	Man-	ga- nese (Mn)			18	2.4.6	3			88				385				28.6			22
O	•	Iron (Fe)			0.10	11,81	2		0.21	. 13	e.		0.09	20.5	. 05		0.12	. 22		0.07	. 09
		Silica (SiO ₂)			1 %	0001	9.		6.0	1.6	5.7		15	4.6	4.7		. «	9.6		1	8 H
		Discharge (cfs)			52	14.93	2.0			450 78	-		£74 84	88 -	2.0		C27	5.8 1.0			4.
	Date	u.			Dec. 3, 1962	May 23.	oept. To		Dec. 3, 1962	May 23.	sept. 10		Dec. 3, 1962	Kay 23.	Sept. 10		Dec. 3, 1962.	May 23. July 25. Sept. 12.		Apr. 17, 1963.	July 25 Sept. 12

CONIN.
WILLIMANTIC,
RIVER AT
NATCHAUG
-1220.

Dec. 3, 1962	218	5.3	0.14	0.00	6.2	1.3	3.1	1.0	0 0	7.1	8.4	1.0	0.3	38	14	4 0	71	6.6	12		10.0
May 23	239	80.0	. 19			1.2	m·					0.		39	17	67 1	29		-	,	ĸ.
July 25	136	4.3	.34				di ru					-0		8 4	27	- 69	7.2		2 1	.	4.0
							1-1225	1-1225. SHETUCKET RIVER	UCKET	RIVER NEAR	NEAR WILLIMANTIC,	1 -] _					1	1		
Dec. 3, 1962	372	-	0.17	0	6.6	1.3		-		-	L	L	l	63	22	7	77	6	T	r	!
Apr. 17, 1963.	220	0.0	122		9. 7.	1.1								64 05	12	o. 0	72	6 6	9 6		0.5
July 25.	155	6.4	30	.07	7.2	1.2	8.0	2.0	202	7.0	101		44	6 6	222	41	106	6.3	9 6	न 0	o.1
							1-1	1-1227.8.	SHETUCKET	RIVER	AT BALTIC,	CONIN.									
Oct. 30, 1962.	1	1	0.21	10	13	1		L		F	8.0	1		72	36	175	130	7.1	1	H	
Dec. 3	C400	1	. 17		6.2							1		49	22	Ħ	74	6.7	1		;
Apr. 17, 1963.	006	2.2	51.		4.4			_				0.1		45	22	φ I	62	6.4	14	_	6,0
July 25.	38	9.0	22.29	38	7.3	1.9	4.0	1.6	7 18	* ♀	9 6		4 . 4 4	4. rc	3 %	- 6	91	9 9	12 72	0.1	7.0
Sept. 12	170	5.0	.17		7.2			_		_	13	. 2		70	25	2	121	6.5	1		٥.
	,			!			Ξ	1-1230.6.	LITTLE	RIVER	AT VERSAILLES	, conn.							i		
Dec. 3, 1962	C47	15	0.25	0.00	6.2	1.1	6.5	1.2	2 12	11	5.2	<u> </u>		49	20	10	83	8.4	15		10
May 23	7.	8.0			o o o	1.0								3.4	56	* 1 1	102	5.5	181		9 6
July 25	6.5	9.5			œ ;	1.5					8.7	7.		92	88	0	116	6.3	22	0.1	0.9
Sept. 12	30	14				1.7		_	`	_	18	_		D212	7.5	0	346	9.9	65	_	5.0
predoct need of tell C	41 coheren																				

C Daily mean discharge.
D Calculated from determined constituents.

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

4					•	40v							,					
		Tur- bidity			11	0.0	, 0, 4.	٥.										
		ABS					0.1											
		Color			1 1	13	133	7										
		Hd.			6.4	6.5	9.0	6.5		6.5		6.9 8.9		6.8		6.9		5.5
	Specific	ance (micro- mhos at 25°C)			110	63	93	146		14000 33000		7390		14700 35300		17700 38500		107
per	Hardness as CaCO,	Non- carbon- ate			r 0		0 6	0		1440		712 4790		1540 4260		2050 4690		43
Contin	Har as C	Cal- clum, magne- sium			848	15	27	31		1490		753 4900		1590		2110		20 99
er 1963	Dissolved	solids Cal- (residue cium, at 180°C) magne- sium			78	1.5	58	98	. 2)	8850	12)	4370		9490	,	11600		168
ptemb	;	Inste (NO ₃)			1 1	0.5	3.6	2.8	JTE NO		TB NO.		NNEL)		HANNEL			9.7
32 to Se	1	ride (F)		s, conn.	1 1	0.1	- 6	63	NN. ROI		IN. ROUT		SPT CHA		RIGHT C		CONN.	
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (C1)	Continued	AT TAFTVILLE,			0.6	13	1-1271.6. SHETUCKET RIVER AT NORWICH, CONN. (CONN. ROUTE NO	4590 12300	1-1271.7. SHETUCKET RIVER AT NORWICH, CONN. (CONN. ROUTE NO.	2280 15600	YANTIC RIVER AT NORWICH CONN. (LEFT CHANNEL)	4900 13200	YANTIC RIVER AT NORWICH, CONN. (RIGHT CHANNEL.	6070 14700	1-1277.5. OXOBOXO BROOK AT MONTVILLE,	8.6 8.8
ter year (Sulfate (SO4)	THAMES RIVER BASINContinued	RI VER	14	8.6	9.5	14	I NORWICH	627 1710	NORWICH,	340 2160	AT NORWICE	668 1810	AT NORWICE	785 2020	BROOK AT 1	18 54
on, wa	i	Bicar- bonate (HCO ₃)	S RIVE	1-1230.7. SHETUCKET	50	12	19	38	IVER A	106	VER AT	133	RIVER	153	RIVER	130	ONORO	77 78 78
m1111	Pot-	tas- sium (K)	THAME	.7. SE	2.1		1.2	4.2	CKET	115	KET RI	50	ANTIC	121 267	ANTIC	135	7.5. 03	1.9
parts per		Sodium (Na)		1-1230	7.1		6.6	•	1.6. SHET	2540 6900	7. SHETUC	1310 8730	1-1275.5.	2740 7560	1-1275.55.	3280 8350	1-1277	10
es, in	Mag	ne- stum (Mg)			0.7	1.0	9 17	1.6	1-127	300	1-1271.	142 990	Ä	320 896	1	430 977		1.0
analys	;	clum (Ca)			-		40			104		330		108		135		6.4
emical	Man-	ga- nese (Mn)					00.0			0.07		0.05		0.10		0.07		0.14
ຮ		Iron (Fe)			0.28	42	20	. 42		0.34		0.39		0.30		0.40		0.79
		Silica (SiO ₂)			11	5.9	6. G	4.2										
		Discharge (cfs)			- 2470	E1000	E445	E210		E160 E160		E160 E160						E4.0
		Date of collection			Oct. 30, 1962.	17, 1963.	35	12		26,1963F 26G		26,1963F 26G		Sept. 26,1963F Sept. 26H		Sept. 26,1963F Sept. 261		July 9, 1963
		Ö			Oct.	Apr.	May 2.	Sept. 12.		Sept.		Sept.		Sept.		Sept.		July Sept.

NIANTIC RIVER BASIN

1-1277.9. LATIMER BROOK AT EAST LYME, CONN.

Ľ.	4. 1			0.4 5.		0.5		- A ANTI	0.5		. a. E	ASINS			
0.0	°.			0.0		0.2			0.0						
6	۱۹			စစ		6.0			200						
6.3	. 8 . 8			6.7		6.6 6.8			7.3			7.9		7.8	
55	88			83.8		301			197			340		347	
									-						
11	13			121		108			24					L	
18	19			38 gs		100			74			161		147	
43	99			57		185			124						
4.0	9.			2.0		1.8			4.4		.88.		ě.		
0.1	.1		ONN.	0.1	CONN	0.4 3		CONN.	0.2		ON, MA		S, MAS		
5.7	5.4	ASIN	1-1895. SALMON BROOK NEAR GRANBY, CONN	5.8	EAST BERLIN, CONN	16	SIN	1-1965.8. MUDDY RIVER NEAR NORTH HAVEN, CONN	8.5	SIN	1-1978. WILLIAMS RIVER NEAR GREAT BARRINGTON, MASS.	17 20	HOUSATONIC RIVER AT ASHLEY FALLS, MASS	13	
6.6	1.3	CONNECTICUT RIVER BASIN	ROOK NEAR	11	RIVER AT EA	34	QUINNIPIAC RIVER BASIN	R NEAR NO	31 22	HOUSATONIC RIVER BASIN	NEAR GREA'	8.2	IVER AT AS	31	
6	10 8	NECTIC	IMON B	19		76 110	NNIPIA	Y RIVE	54	SATONI	RIVER	170	ONIC R	151 158	
8.0	1.2	Š	95. SA	9.0	ATTABE	2.8	B.	. MUDE	1.6	DOH	TIAMS		HOUSAT		
4.1	4.7		1-18	3.8	1-1927. MATTABESSET	18		1-1965.8	5.6		1978. WI		1-1981.3.		
2.2	1.3			1.1	"	7.8			3.9		7		i		
3.6	5.6			9.2		24			22 20			42		37	
0.03	. o.			0.01		0.03			0.01			9.0		0.10	
	80.			0.08		0.42			0.07			0.08		0.22	
7.9	6.5			8.8		13			8.4						
25	4.0			106		64 56			10,			5.30		130	E Estimated. F Sampling depth 1.5 feet. G Sampling depth 5 feet.
1962.	1963.			1962. 1963.		1962. 1963.			1962. 1963.			1963.		1963.	mated. ling depti
Vov. 28,	Apr. 17, 1963. Sept. 25			Nov. 27, 1962. Apr. 16, 1963.		Nov. 27, 1962. Apr. 16, 1963.			Nov. 28, 1962. Apr. 17, 1963.			Aug. 26, 1963. Sept. 10		Aug. 27, 1963. Sept. 10	E Estimated. F Sampling of Sampling of

MISCELLANBOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

	Tur- bidity	+		9.0			9.0			0.0	ء ض د	. *	L. 63 4		6.0
	NBS P			0.0			00			F				1	-
	Color ABS			80 83			2 4 T			m	- m a	, m	0000		88
	핊			7.0			7.3			7.8	9 00 0	6.9	7.1		6.7
	Specific conduct- ance (micro- mhos at 25°C)			101			163			178	511		134	1	409
pen	te pour			22			23			80 5	354	, H	8 9 7		10
Contil	Hary as C Cal- clum, magne- sium			333			28			12.5	94.6	4	54 73		24
er 1963	Hard Dissolved as Ca solids Cal- (residue clum, at 180°C) magne- sium			28			100			101	60	99	92		32
eptemb	Ni. I trate (NO ₃)			1.4			1.2			0.0	. 5. 0	. 0			0.0
62 to S	Fluo- ride (F)		CONIN.	0.1		CONN.	0.2		Υ.	0.0	977	: =	7.7.9	N. Y.	0.1
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Chloride (C1)	ASIN	SAUGATUCK RIVER NEAR WESTPORT, CONN	6.0	SIN	NORWALK RIVER AT SOUTH WILTON, CONN	112	SIN	AK HILL, N.	6.5	. 4	1.8	6.00 0.00	٦.	2, 2, 8 0
ter year	Sulfate (SO ₄)	SAUGATUCK RIVER BASIN	RIVER NEAR	17	NORWALK RIVER BASIN	ER AT SOUT	22	HUDSON RIVER BASIN	CATSKILL CREEK AT OAK HILL,	15	4 4 a	13	222	1-3621.98. ESOPUS CREEK AT SHANDAKEN	8.8
ton. wa	Bicar- bonate (HCO ₃)	AUGATUC	ATUCK B	16 24	NORWALK	LK RIVE	80 38	HUDSON	SKILL C	92	4 9 5	37	57 76 577	SUPUS	17
r mill	Pot- tas- sium (K)	va va		1.2			200			1.2		9	9.1.	.98. B	1.0
parts pe	Sodium (Na)		1-2095.	2.4		1-2097.	6.3		1-3615.	5.2	200	2.0	9.4.9	1-3621	1.6
ses. in	Mag- ne- sium (Mg)			2.2			4.4			6,4	107	3.3	4. 6. 8. 6. 6.		1.4
analva	Cal- ctum (Ca)			9.0			16 21			23	122	13	3 2 2 8		6.8
bemica]	Man- ga- nese (Mn)			0.00			0.05				388		888		9.0
Ö	fron (Fe)			0.10			0.96 . 79			0.01	18.8	88	828		0.01
	Silica (SiO ₂)			5.8			8.4			3.7	* 60 4	3.1	6.4.0 0.1.4.		2.1
	Discharge S (cfs)			53 66			35			4.3	989	99	3.8		E32
	Date of collection			Nov. 27, 1962. Apr. 16, 1963.	İ		Nov. 27, 1962. Apr. 15, 1963.			.8, 1962.	Jan. 30, 1963.	May 17.	June 26 Aug. 20 Sept. 18		Aug. 20, 1963. Sept. 19
	[O			Nov. 2			Nov. 2			0ct. 1	Jan. 3	May 17	June Aug. 2 Sept.		Aug. 2

	2 7 2 8 4 7 . 0 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 6.6 4 1.0 5 6.8 7 1.0 5 6.8 4 1.0		7 7.3 1 0.0 7 7.2 4 8 6.7 6 6 6 8 9	6.9 4 6.9 4 7.5 9 8.6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		7.00 0.01 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00 7.00 0.00
	29 302 25 113 25 134 12 86	20 137 20 143 17 165 24 195		15 13 12 98 17 98 9 62	8 89 13 114 15 139 16 174		40 297 243 243 243 244 306 13 439
	106 43 48 27	789333		33 33 27 27	31 44 58 70		132 125 141 198
		83 83 99 107		76 58 61 37	50 64 78 97		168 175 K190 176 1239
	8404	1.6		0.444	6.1 6.4. 6.		4.6.4.6.4
И. Ү.		4644	N. Y.	.0.1.1	4440	N. Y.	0
_	26 10 50 50 50 50	9.0 113.0	AT ROSENDALE, 1	0.4:4:0; 0.00 10 10	8.0 8.8 7.8	NEAR UNIONVILLE	24.8 11 17. 17.
1-3645. ESOPUS CREEK AT SAUGERTIES,	1888	118 116 20	REEK AT R	81 21 24 g.	9.8 14 16 17	VER NEAR	22 22 20 20 20 20 20 20 20 20 20 20 20 2
PUS CR	4288	0448	OUT	24 28 24 24 24 24 24	28 38 66	ILL RI	1113 110 1143 226
5. ESOI	2. 6. 7.	1.0	1-3675. RONDOUT CREEK	0.00.00	r. æ. æ. e.	WALLK	0.01 .4.01 80 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
1-364	15 3.2 3.2	0.1.8.8	1-367	4.6.64	9,6,6,6	1-3680. WALLKILL RIVER	5.8 12 8.0 6.0 12 (∞ ₃).
	4.4.0.0	6.62.64 0.4.8.1		999	3.6		0.27 33 12 15 12 15 10 10 10 10 10 10 10 10 10 10 10 10 10
	35 113 15 9.8	16 17 23		22 7.0	9.9 17 21		0.19 35 9 0.19 35 1 0.00 46 million of carbo phosphate (Po4),
	0.03 0.03 0.03 0.03	90.01		0.0 0.0 0.0 0.0 0.0 0.0	.01 .04 .03		0.19 0.19 1111on hospha
	0.03 .09 11.	190.00		0.04 .05 .13	. 15 . 03 . 05		7.4 0.27 7.3 .07 4.7 .39 6.2 .03 6.2 1.0 6.2 parts per m of 2 parts per m per million of p
	3.30 3.10 3.00 3.00 3.00 3.00	6.00 8		2.00 2.00 4.00 4.00	1.8 2.6 .8 1.8		7.4 7.3 4.7 6.2 6.2 5.7 milli
				134 285 E250 1170	238 86 92 31		C70 C92 62 32 C9.9 discharge. ulvalent of 30 parts per 40 parts per
	Oct. 18, 1962. Nov. 20. Jan. 30, 1963. Apr. 4	May 17. June 26. Aug. 20. Sept. 18.		Oct. 17, 1962. Nov. 20. Jan. 30, 1963. Apr. 4	May 17. June 26. Aug. 20. Sept. 19.		Jan. 11, 1963. C70 June 6. C92 June 26. C92 Sept. 3. C9.9 C Dally men discharge. F Estanted J Includes equivalent of L Includes 0.00 par's pec

MISCRITANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

	Tur- bidity			0.0			1.0	<u>*</u> .0.		0.0	œ' ó	64	rú ró
-	Color ABS			919	3 9 2	3 3	17	D 4		10 10	4 01	80 %	9 8
	Hd.			7.8		7.1	7.3	2.6		7.3	6.7	7.3	4.7
Specific	ance (micro- mhos at 25°C)			\vdash	241		243			145			143
ntinued Hardness as CaCO,	Non- carbon- ate			23	388	3 5	19	22		45 29	12	919	18
Hare As C	Cal- cium, magne- sium			110	115	115	115	187		77	31	50	72
Dissolved	solids (residue at 180°C)			142	136	142	139	217		118 87	81 55	25	983
Septem	N1- trate (NO ₃)			1.7	9.6	2.7	60	1.6		0.2	1.0	9.00	
962 to	Fluo- ride (F)		, N. Y.	0.1	101-	: :	٦.	.1	N. Y.	0.0	-:-	н.	.i.
Chemical analyses, in parts per million, water year October 1962 to September 1963.—Continued Hardnes Man. Dot Dot	Chloride (CI)	Continued	POCHUCK CREEK NEAR PINE ISLAND, N. Y.	8.5	20.4	4	40 a	12	INE BUSH,	7.7	4.0 8.0	8.4	7.8
ter year	Sulfate (SO ₄)	HUDSON RIVER BASINContinued	K NEAR PI	30	122	19	16	21	SHAWANGUNK KILL AT PINE	44 29	14 23	18	11 13
ion, w	Bicar- bonate (HCO ₃)	N RIVE	CK CREE	901	106	122	121	204	ANGUNK	43 32	233	42 88	88
or mill	tas- slum (K)	HUDSO		1.3			801	1.6		1.8	2.8	9.0	7.2
parts p	Sodium (Na)		1-3690.	6.2	4.4	. 6	3.9	9.5	1-3710	3.9	9.8	0.4	5.1
Mag. in	ne - stum (Mg)	:		9.7	12:0	: :	11	9 29		3.0	8. 9.	9.8	8.5 6.6
l analy	Cal- clum (Ca)			28	388	88	88	\$		24	911	14	21
Chemics	ga- nese (Mn)			l	388		.20	8		40.0		0.0	88
	Iron (Fe)			0.14	888	. 21	. 24	.21		0.07	88	.15	0.04
	Silica (SiO ₂)			7.0	9.7	2.1	6.6	4.7		5. 50 5. 50 5. 50	3.5	3.1	1.6
	Discharge (cfs)			31	C90 542	49	33	7.3		26 70	C84 183	50	10.80
	Date of collection			17,	Jan. 30, 1963.	May 17.	June 26	Sept. 19		Oct. 17, 1962.	Jan. 30, 1963.	May 17	Aug. 20 Sept. 19

C Daily mean discharge.

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS

		Color	
		띺	
	Specific conduct-	(micro- mhos at 25°C)	
	Hardness Specific as CaCO ₃ conduct.	alchum, Non- nagne-carbon- sium ate	
	H ₃	Calchu magn sturr	
er 1963	Dissolved	(C1) (RO ₃) at 180°C) magne-carbon mhos sum at at 25°C)	
ptembe	Ä	trate (NO ₃)	
2 to Se	Fluo-	ride (F)	
Chemical analyses, in parts per million, water year October 1962 to September 1963	100	(C1)	pen
er year 0		(*0s)	UDSON RIVER BASINContinued
on, wate	Bicar-	bonate (HCO ₃)	ER BASI
millic	S S	sium (K)	N RIV
arts per	Rodium	(Na) Stum (F)	HUDSO
es, in p		sium (Mg)	
analye	Cal-	clum (Ca)	
emical	1	(Fe)	
ฮ	Silica	(810,	
	Mean	discharge (SiO ₂) (Fe) clum (cfs) (Ca)	
		Date of collection	

Y OWENS, N. J.	0.1 4.3 168 132 40 287 7.2 5 2 3.4 175 125 35 343 7.0 5 1 1.2 299 145 22 313 6.9 10 1 1.2 299 198 13 439 7.8	J.	0.0 1.7 156 92 35 251 6.6 10 .2 3.3 195 105 42 341 7.0 15 .0 2.7 190 113 39 302 7.0 10	М, J,	0.7 71 16 176 7.9 5	J.	1.0 124 52 29 151 6.5 1.9 72 27 17 99 6.4	.2 1.9 107 60 10 121 188 6.9 50 3 1.0 120 63 6 172 6.7 10 18	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.2 11 289 92 12 488 6.7 15 0.2 11 289 92 12 488 6.9 23 23 6.4 15 2 23 11 5 28 115 24 93 6.6 15 15 15 15 15 15 15 15 15 15 15 15 15
N. Y O	9.8 11 17	LFORD, N.	13 32 21	PASSAIC HIVER BASIN 1-3787, PASSAIC RIVER AT CUTLET OF OSBORN POND, N.	8.0	1-3790. PASSAIC RIVER NEAR MILLINGTON, N.	17.8	, a a a .	IATHAM, N.	46 75 63 196
	31 22 29 29	HACKENSACK RIVER BASIN ENSACK RIVER AT NEW MI	322	BASIN T OF OSE	20	AR MILLI	27 16	1877	1-3795. PASSAIC RIVER NEAR CHATHAM,	36 330
AR UNIO	113 110 150 226	ACK RIVI	69 77 91	PASSAIC RIVER BASIN LIVER AT OUTLET OF C	89	IVER NE	13.88	69 69	C RIVER	68 98 92 111
VER NE	2.5	ACKENS,	2.2	PASSAIC		SAIC R	2.8	80.8	PASSAI	3.8
1-3680. WALLKILL RIVER NEAR UNIONVILLE,	5.8 12 8.0	HACKENSACK RIVER BASIN 1-3785, HACKENSACK RIVER AT NEW MILFORD,	9.6 20 14	A SSAIC	8.0	790. PAS	6.4.	11 8. 11 8. 2.	1-3795.	34 64 52 140
80. WAL	21112	1-378	8.00	3787.		1-3		999	2	8.4 7.8
1-36	8888 888 888 888 888		31	4			111	112	3	1883331
	0.27 .07 .39		0.47				0.50	8.8.4.	?	0.10
	4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7		11 9.7 6.9				14 6.4	13 16 15		17
	70 92 62 9.9		300		0.13		452 452	9,000	0.4	36 113 6.5
	Jan. 11, 1963 Mar. 4 June 6		Dec. 6, 1962 Mar. 6, 1963 June 24		Sept. 23, 1963		Nov. 8, 1962	June 25.		Apr. 25, 1963 June 25 July 30 Aug. 27

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS--Continued

		Color
		핖
	Specific conduct-	(micro- mhos at 25°C)
	Hardness Specific	(C1) (F) (NO ₂) at 180°C) magne-carbon mhos sium at at 25°C)
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	Dissolved	(residue Cal at 180°C) ms
1963-	Ä.	trate (NO ₃)
te mbe r	Fluo-	ride (F)
962 to Sep	211-14-	(C1)
October 19		(90°)
year	Bicar-	bonate (HCO ₃)
water	Po-	stum (K)
r million,		Na) South tas-bonate Sium (HCO ₃) (K)
arts pe	Mag-	clum sium (Ca) (Mg)
d ut ,	Cal-	Ca)
nalyses		(Fe)
nical a	į	(SiO ₃)
Cher	Mean	discharge (SiO ₂) (Fe) c (cfs)
		Date of collection

	۲,
-	z
BASINContinue	HANOVER,
į	AT
CK BAS	RIVER
PASSAIC RIVER	PASSAIC RIVER
PASS	7
_	-3795.7

# #	June 25, 1963. 16.0 Aug. 27. 9.8 Sept. 24, 1963. 3.97 Sept. 25, 1963. 4.32 June 25, 1963. 4.32 Apr. 24, 1963. 4.32 Apr. 24, 1963. 4.32 Apr. 25, 1963. 4.32 Apr. 25, 1963. 4.32 Apr. 25, 1963. 4.32 Apr. 25, 1963. 4.32 Apr. 25, 1963. 4.32 Apr. 25, 1963. 4.32	1-3793.7. PASSAIC KIVEK AT HANOVEK, N. J.		1-3797. ROCKAWAY RIVER AT BERKSHIRE VALLEY, N. J.	4.8 68 11 5.5 0.6 65 10 145 7.6 10	1-3797.5. ROCKAWAY RIVER AT DOVER, N. J.	3.7 82 14 7.0 0.7 84 17 192 8.0 10	1-3798. GREEN POND BROOK AT DOVER, N. J.	7.1 60 32 2.2 2.3 100 51 242 6.8 15	1-3800. BEAVER BROOK AT GUTLET OF SPLIT ROCK, N. J.	6.2 14 9.6 7.5 2.0 20 9 57 6.4 5	1-3805. ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, N. J.	1000
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	116.0 8.2 0.15 19.8 16.0 8.2 0.15 19.8 16.0 8.2 0.15 11.2 16.0 8.2 0.15 11.8 10 0.28 410 0.28 420 0.28 420 0.28 430 0.28 440 0.28 450 0.28 460 0.28 470 0.28 480 0.28 480 0.28 480 0.28	1-3795.7.	18.15	1-3797.	4	1-3797.5		1-3798.	7	1-3800. BEAVE	9	1-3805. ROCKAWA	4.6. 0.0.0
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.15 .83 .89	77:									0 826.60 80.64.00

1-3810, ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, N. J.

	68		18031		2225338		35 100 100 100	İ	22 06
	7.1		7.0 7.0 6.4 6.7		6.66		7.0		6.5
	165 202		523 669 724 808		206 148 177 239 270 331		442 207 669 700		432 564 543
	21	·	1040		34 11 11 11 18		0000		39 0
	65 84		148 146 141		71 43 62 69 77 93		94 52 129 125		108 130 125
	99 126		397 423 456		128 105 144 148 172 207		236 136 440 477		367
	3.1		2.8 53 13		0440040 640000	-	3.1		6.1.4.1
	0.1		1.6		6 1 4 5 4 5		4.52.82.4		1.2
1-3010. MUCABMAI KIVEK BELOM KESEKVUIK, AI BUONIUN, N.	8.9 9.0	, и, Ј.	38 44 48	и. л.	11 9.9 12 14 15	N. J.	24 14 58 46	Ж, И. J.	32 46 34
IK, AT BA	20.0	E BROOK,	61 110 98 122	RISTOWN,	20 20 20 33 54 54	WHIPPANY	13 28 73 58	NEAR PINE BROOK, N.	76 84 57
ESERVO	54	AT PIN	158 189 130 195	AT MORI	26 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NEAR	152 60 202 300	NEAR	84 143 96
SELON K	1.0	RIVER	7.5 8.2 10	RIVER	11.1	Y RIVER	8.5.5.6	Y RIVER	144
IX KIVEK	3.7	1-3812, ROCKAWAY RIVER AT PINE BROOK,	72 70 92	1-3815. WHIPPANY RIVER AT MORRISTOWN, N.	9.0 7.6 9.4 20 112 118	1-3816. WHIPPANY RIVER NEAR WHIPPANY,	42 17 85 110	1-3818. WHIPPANY RIVER	450 60 60 60 60
ROCKAW	67	1-3812.	17 16 19	1-3815.	64 - 67 - 7 - 69 - 69 - 69 - 69 - 69 - 69	1-3816	8.9 4.1 10 9.7	1-3818	111
.0105-	15		333		2229		23 34 34		1 8 8
•	00.0		0.15 .72 .70 .27		0.64 1.2 1.2 .07 .31 .25		0.23 1.1 1.5		1.2
	5.8	İ	1 222		15 15 15 17 15		10 28 33		នេះ
	0.9		13.4 8.8 9.6		119 131 30 119 112 10 8.8		23.6 101 17.4 16.2		29.1 24.3 22.1
	June 26, 1963 Sept. 24		June 25, 1963 July 30 Aug. 27 Sept. 24		Mov. 8, 1962. Mar. 12, 1963. Mapr. 25. June 25. Mary 29. Marg. 27.		June 25, 1963 July 30 Aug. 27 Sept. 24		June 25, 1963 Aug. 27 Sept. 24

Color Hd

MISCELLANBOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

ance (micro-mhos at 25°C) - Ni- Dissolved as cac.,
- trate (residue Calcum, Non- (mic. //) | (NO₂) at 180°C) magne-carbon- m' sium ate at Chemical analyses, in parts per million, water year October 1962 to September 1963 -- Continued Fluo-ride (F) Chloride (Cl) Sulfate (30₄) Bicar-bonate (HCO₃) Po-tas-sium (K) Sodium (Na) Mag-ne-sium (Mg) Cal-ctum (Ca) Fe) Silica (SiO₂) Mean discharge (cfs) Date of collection

					1-381	PASSAIC 9. PASSA	RIVER IC RIVE	BASIN-	PASSAIC RIVER BASINContinued 1-3819. PASSAIC RIVER AT PINE BROOK, N. J.	d , N, J.								
												T						
June 25, 1963	69.2	21 41	0.23	27	11 6.3	302	4. c.	120	4 4 6 5	41	4.0	2.7		113	14 3	455	6.9	22 40
Aug. 27Sept. 24	53.9	212	1.2	32.4	##	089	5.2	113	73	52	r. 9.	8.02	389	130	38	632	4.9	32
					-3820.5	. PEQUAN	NOCK RJ	IVER NE	1-3820.5. PEQUANNOCK RIVER NEAR STOCKHOLM, N.	OLM, N. J.								
June 26, 1963 Sept. 25	0.39					6.0 0.0		81 110	13	8.0		6.3		103	13	166 225	7.2	55.50
					1-3823.	1-3823.6. KANOUSE	SE BROC	N AT N	BROOK AT NEWFOUNDLAND, N.	ND, N. J.	Ī							
June 26, 1963	0.86					2.8		29	7.0	3.0		6.0		30	9	70	7.4	30
				1-3	125. PEQ	UANNOCK	RIVER A	AT MACO	1-3825. PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, N.		.;	1						-
Nov. 28, 1962.	5.0	9.0	0.09	8.0	2.9	3.8	0.2	18	87.	6.4	0.0	0.2	60	33	17	95	6.7	ω 4
June 18	1.1			201		2.3	. «:	E	12	8.5	. •		. 2	38	1 2	114	6.9	r Co
					1-383	5. WANAQI	UE RIVE	ER AT A	1-3835. WANAQUE RIVER AT AWOSTING, 1	N. J.								
June 26, 1963	12					3.7		12	14	3.0		4.0		28	11	82	7.1	10
					1-38	40. WANA	QUE RIV	ER AT	1-3840. WANAQUE RIVER AT MONKS, N.	J.								
June 26, 1963	17					2.5		26	12	3.0		4.0		33	12	85	6.8	75
					1-3845.	RINGWOO	D CREEK	K NEAR	1-3845. RINGWOOD CREEK NEAR WANAQUE, N.	м. л.								
June 26, 1963	30					2.3		14	14	0.5		9.0		22	11	09	8.9	25
					1-386	O. WEST	вкоок у	YEAR WAI	1-3860. WEST BROOK NEAR WANAQUE, N. J.	٦.								
June 26, 1963	2.8					3.7		28	12	2.0		9.0		31	80	83	7.7	2

					1-3	870. WANA	QUE RI	VER AT	1-3870. WANAQUE RIVER AT WANAQUE, N.	N. J.								
Nov. 30, 1962	16	6.2	0.09	9.6	5.4	4.2	0.5	30	19	7.0	0.1	8.2	73	46	22	123	9.9	10
Mar. 11, 1963	17	8.8	.31	15	4.1	0.9	1.5	38	21	9.5	۲.	5.1	103	55	24	161	9.9	e
June 20	17	5.6	}	9.6	3.9	4.3	9.	56	17	9.9	•	1.7	7.1	40	61	107	8.9	'n
June 26	17	;	;	i	ŀ	5,1	ł	92	18	5.5	;	1.5	;	38	17	106	7.0	12
Sept. 23	16	:	1	1	;	5.3	;	56	15	6.5	;	8.	}	35	41	100	8.8	20
					1-3870.	35. POST	BROOK	AT POMP	1-3870.35. POST BROOK AT POMPTON LAKES, N. J.	I, N. J.								
June 26, 1963						11		45	20	10		2.3		20	13	159	7.0	78 78
					1-3870	.4. WANAG	UE RIV.	ER AT R	1-3870.4. WANAQUE RIVER AT RIVERDALE,	N. J.								
Sept. 23, 1963						6.7		38	16	8.5		1.1		46	15	125	7.2	10
					1-387	0.95. PEG	UANNOC	K RIVER	1-3870.95. PEQUANNOCK RIVER AT RIVERDALE,	DALE, N. J.	<u>.</u>							1
June 25, 1963	a 12.0 a 7.9					74		37	124	47		9.0		8.60 24.80	36	543 251	8.4.	15
					1	1-3875. RAMAPO RIVER NEAR MAHWAH,	(APO RI	VER NEA	R MAHWAH,	N. J.								
June 26, 1963	32					20		06	27	24		8.2		98	22	287	6.9	7.5
					1-3876	. DARLING	TON BR	OOK AT	1-3876. DARLINGTON BROOK AT DARLINGTON, N.	N, N. J.								
Sept. 25, 1963	4.0					7.1		103	16	4.5		1,0		93	6	509	7.7	10
					1-3876	.7. RAMAE	O RIVE	R NEAR	1-3876.7. RAMAPO RIVER NEAR DARLINGTON,	N, N. J.								
Sept. 25, 1963	13.6					18		87	25	82		3.4		100	29	287	8.7	ω
					1											İ		

a Measurements of base flow.

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

Chemical analyses, in parts per million, water year October 1962 to September 1963Continued
Silica Iron Cal- Mag-
discharge (SiO ₂) (Fe) Clum sium (Na) sium b (cfs) (Ag) (Mg) (K)
PASSAIC RIVER BASIN-CONTINUED 1-3877. BEAR SWAMD BROOK WEAR OAKLAND, N. J.
3.8
1-3878.8. POND BROOK AT OAKLAND, N. J.
8.4

		-						-										
Sept. 25, 1963	0.02					3.9		11	12	3.0		0.3		17	8	22	6.8	2
					Ť.	-3878.8.	POND B	ROOK AT	1-3878.8. POND BROOK AT OAKLAND, N.	И. J.								
Sept. 25, 1963	5.8					4.8		62	16	4.0		8.0		63	12	148	7.9	10
				4	3879.3.	RAMAPO B	IVER T	RIBUTAR	Y NO. 5,	1-3879.3. RAMAPO RIVER TRIBUTARY NO. 5, AT OAKLAND, N.), N. J.							
Sept. 25, 1963	1.1					5.8		7.5	20	0.8		6.9		98	25	199	7.3	5
				1-387	9.5. RA	1-3879.5. RAMAPO RIVER TRIBUTARY NO.	R TRIB	UTARY N		6, AT POMPTON LAKES,		N. J.						
Sept. 25, 1963	9.4					22		46	18	15		17		2	2	207	6.9	10
					Ť	-3880. RA	MAPO R	IVER AT	1-3880. RAMAPO RIVER AT POMPTON LAKES,	LAKES, N.	٠.							
June 26, 1963	39					12		76	22	16		2.8		84	22	224	7.1	25
Sept. 24	18					14		8	24	12		2.0		8	21	248	7.5	4
					1-3	885. POM	TON RI	VER AT	POMPTON P	1-3885. POMPTON RIVER AT POMPTON PLAINS, N.	J.							
May 23, 1963	158	1.8	1.0	20	5.6	9.4	1.0	4 09	26	8.6 16	0.1	3,8	129	54	24	163 218	6.9	4.0
July 29	98 69 64	6. 4. 4. 8. 4. 4.	8.5.8	8188	0.0.0 0.0.0	12 9.6 12	1.2	6.58.50	222	15 15 17		400	120 119 133	68 68 73	828	198 198 214	7.0 6.9 6.8	2 0 2
						1-3891.	SINGAC	ВВООК	1-3891, SINGAC BROOK AT SINGAC,	, N. J.								
June 26, 1963	5.8					18		104	36	21		13		124	39	345	3.2	75
					1	-3905. SA	DDLE R	IVER AT	1-3905. SADDLE RIVER AT RIDGEWOOD, N.	D, N. J.								
June 26, 1963	5.8					4.6		106	23	11		2.6		108	21	253	8.2	20
					1.	-3910, HC	HOKUS	вкоок А	1-3910, нонокиз вкоок ат нонокиз,	, м. Ј.								
June 26, 1963	6.9					23		144	36	16		3.4		130	12	369	7.1	25

,				ı		ı	; ,	,	
	10 30 22		ទនួន		ខេត្ត		10 7 2 8		23 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
	7.2 6.4 6.9 7.0 7.2		7.6		6.9 7.6 6.9		7.0 6.6 7.8 6.8		7.0 7.2 7.2 7.0 6.8
	370 174 411 473 490		698 658 666		184 165 184 178		131 132 130		169 96 178 206 221
	49 18 43 46		102 79 79		23 14 14 14		11 17 8 8		29 13 13 19
	134 44 145 162 163		251 236 250		74 61 71		35 S S S S S S S S S S S S S S S S S S S		65 70 79 86
	214 102 251 		438		122 117 119 117		101 77 90 82		113 68 130 142
İ	2.1 1.0 13 12 6.6		9.5 10 2.8		8008		2.3		8. 6. 6. 6. 4.
	0.0		1:0		20.12	, N. J.	1.0.1.	N. J.	0. i. 2. i.
. 3.	21 29 38 44	BETH, N. J.	46 47 46	, N. J.	0.08.00	NORTH BRANCH RARITAN RIVER NEAR FAR HILLS	6.2 6.8 5.8 8.6	RARITAN,	6.9 5.0 8.0 9.3
1-3915. SADDLE RIVER AT LODI, N.	45 20 40 47	ELIZABETH RIVER BASIN ELIZABETH RIVER AT ELIZABETH, N.	102 88 94	BASIN	24 23 23 21	IVER NEAR	17 16 14	L-4000. NORTH BRANCH RARITAN RIVER NEAR RARITAN	29 25 22 28
RIVER	104 31 124 142 140	TH RIV	182 192 209	RARITAN RIVER SPRUCE RUN AT	63 46 54 70	RITAN R	22 20 51 51	ARITAN	44 13 58 80 87
SADDLE	2.6	EL I ZABI I ZABETI	2.5	RARITA	 	NCH RAI	1.8 2.2 1.3	ANCH R	1.8 2.5 8.6
1-3915.	15 23 31 29	1-3935. EL	39 40 40	1-3968.	8.9 0.0 4.	NORTH BRA	6.4 4.4 6.6 6.6	NORTH BR	7.4 3.3 7.8 11 10
	10 2.7 12 		15		7.1 5.6 6.3	1-3985.	4644 0604	1-4000.	7.3 2.9 7.5 8.0
	37 13 38		76		118 118 118	1	12 8.8 13		14 6.8 19 21
	0.47 .45 .53		0.44		0.31		0.45 .55 .52		0.37 .96 .22 .50 .50
	12 3.9 12 		1.5		12 19 12		14 11 7.2 13		13 6.7 16 8.4
	86 472 41 27 17		11 6.3		20 28 12 12		19 273 8.3 9.4		236 3130 170 34 34
	Nov. 27, 1962 Mar. 6, 1963 June 18 June 26 Sept. 25		Apr. 5, 1963 Apr. 11		Oct. 1, 1962 Nov. 5, 1963 Feb. 28, 1963		Nov. 7, 1962 Mar. 6, 1963 July 10. Sept. 13.		Nov. 14, 1962 Mar. 7, 1963 Apr. 11. July 10. Sept. 22.
	8 4 5 5 8		4 P		28.88		8 4 2 8		N # 4 4 8

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS--Continued

		Color
		핗
	Specific conduct-	(micro- mhos at 25°C)
	Hardness as CaCO ₃	alchun, Non- (micro- nagne-carbon- mhos sium ate at 25°C)
ed	Ha	Calctur magn sturn
Continu	Dissolved	(residue at 180°C)
1963	Ni-	trate (NO ₃)
ptember	Fluo-	ride (F)
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	0410	(C1) (F) (NO ₂) at 180°C) magne-carbon mhos sium ate at 25°C)
October 1	2401	(30,
er year	Bicar-	bonate (HCO ₃)
n, wate	Po-	stum (K)
er millio	m-19-0	(Na) Stum (HCO ₃)
parts p	-ba	. ∰ (g)
18, 1n j	Cal-	ctum (Ca)
analyse		(Fe)
emical	0414.0	(SiO ₂)
đ	Mean	discharge Sinca aron clum n (cfs) (SiO ₂) (Fe) (Ca) si (h
		Date of collection

	۲,
ğ	×
fContinue	MANVILLE,
BASIN	ΥT
RIVER BA	RIVER
RARITAN RI	RARI TAN
æ	-4005.

					1-40	OS. RARI	LAN RIV	ER AT 1	1-4005. RARITAN RIVER AT MANVILLE,	×.								
Nov. 13, 1962	716 2400	13 7.6	0.39	21 10	8.0 3.4	80.44 52.73	6. 8. 8. 8.		49	8.2	0.3	9.9	145	386	202	220 130	9.6	22
Apr. 11. July 17. Sept. 23.	372 99 70	7.8	22.5	31	1 6 6	228	8.2	8 8 8	58 46 57	8.8. 12.8.9	انن	31.5	187	98 111 116	37.	768 768 768 768	7.4.6.	o / o
					1-4007.3.	. MILLSTC	WE RIV	ER AT P	MILLSTONE RIVER AT PLAINSBORO,	D, N. J.								
June 27, 1963	4.6	5.4	0.02	0.8	5.4	7.8	1.5	29	01	12	0.2	4.6	8	37	13	123	6.6	ın.
				1-4	020. MI	LLSTONE !	I VER A	T BLACK	1-4020. MILLSTONE RIVER AT BLACKWELLS MILLS,	LLS, N. J.								
Nov. 13, 1962	1	11,		12.	3.9	4.8	3.8	3.2	38	13	0.3	6.9	129	30	46 29	184 120	5.3	10
Apr. 9	178 48 63	7.9	78: 75: 09:	19		12 23 16	6.4	28 58 15	36 43 443	71 78 70 78	134	6.1 13.1	193	82 82 82 82	3.4.3	195 308 274	0 0 0 0 4 0	15 7
					1-4030.	1-4030. RARITAN RIVER AT BOUND BROOK	RIVER	AT BOUN	۱ .	И. J.								
Mar. 11, 1963 July 17 Sept. 23	2330 137 116	10 9.5 7.4	0.20	12 36 28	0.00 0.00 0.00	5.5 14 12	4.04	28 88 62	23 67 58	7.7 115 17	6.6.	1.6	96 222 186	46 126 104	23.45.33	145 333 294	6.6 8.0 6.8	15 15 6
					1-4055	SOUTH RIVER AT OLD BRIDGE,	IIVER A	T OLD B	RIDGE, N.									
Nov. 29, 1962 Mar. 18, 1963	114 259 97	9.6 6.0	0.35 .45	5.9 5.8.4	600	8 8 8 8 8 8	20.2	999	888	7.2	0.44		75 77	4 6 8	27.88.33	121 123 101	1.8.0	മരവ
					1-4077.	SHA	K RIVE	SHARK RIVER BASIN RK RIVER AT GLEND	OLA, N.	J.								
Aug. 29, 1963	6.0					7.4		17	16	11		7.0	8	17		141	7.4	30

WRECK POND BROOK BASIN 1-4078. WRECK POND BROOK NEAR SPRING LAKE, N. J.

						OWE CANOT	משקעו ש	NEW TO 1	- co.c. "mach fond brown near Dental Long, N. C.	;								
Aug. 29, 1963	3.8					8.3		10	12	14		2.4		24	16	100	6.7	25
				1-407	A MANAS	NANA SQUAN RIVER BASIN 1-4079. MANA SQUAN RIVER AT WEST FARMS, N.	RIVER ER AT W	BASIN FEST FAR	3MS, N. J.									
Aug. 29, 1963	17.0					17		72	76	15		6.3		92	17	236	7.7	9
				1-40	80. MANA	1-4080. MANASQUAN RIVER AT SQUANKUM, N.	VER AT	SQUANKL	λи, м. J.									
Nov. 28, 1962	75	16	3.1	12	3.9	8.1	3.0	15	38	111	0.3	2.1	117	54 46	34	179 161	4.9	22
June 3		16		18	2.2	6.4	2.5	28	29	9.6	.1	4.6	121	54	31	160	7.7	16
			1-408	11. NOR	ME TH BRANC	METEDECONK RIVER BASIN	RIVER CONK RI	BASIN VER AT	METEDECONK RIVER BASIN 1-4081. NORTH BRANCH METEDECONK RIVER AT LAKEWOOD, N. J.	, м. J.								
Aug. 30, 1963	11.5					6.4		26	11	8.5		1.4		32	11	105	9.9	20
			+	4083.	MAIN BRA	TOMS RIVER BASIN	VER BAS RIVER	SIN AT WHIT	TOMS RIVER BASIN 1-4083. MAIN BRANCH TOMS RIVER AT WHITESVILLE, N.	N. J.								
Aug. 30, 1963	26.2					5.3		7	11	6.0		2.4		16	11	61	6.1	30
				1-408	4. RIDGE	1-4084. RIDGEWAY BRANCH NEAR LAKEHURST, N.	CH NEAR	LAKEH	TRST, N.	٦.								
Aug. 30, 1963	9.2							0	31	7.0		0.3		13	13	157	3.8	20
				1-40	84.4. UN	1-4084.4. UNION BRANCH AT LAKEHURST, N.	CH AT L	AKEHUR	ST, N. J.									
Aug. 30, 1963	14.7					4.6		3	3.2	0.9		9.0		2	3	36	5.2	\$
				1-4084	.6. MANA	1-4084.6. MANAPAQUA BROOK AT LAKEHURST, N.	OOK AT	LAKEHUI	RST, N. J.									
Aug. 30, 1963	1.8					8.0		2	7.2	7.5		5.1		10	2	89	6.1	20
	4																	

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS--Continued

		Color
		뜊.
	Specific conduct-	(micro- mhos at 25°C)
	Hardness as CaCO,	- Sound day bonate Surate Chico me ride trate Calchum Non- (micro- pH (gr.) (RC), (RC), (RC) (Tr) (RC) at 180°C) magne-carbon mios (R) (RC), (RC) (RC) (RC) (RC) (RC) (RC) (RC) (RC)
pel	ш а	Calci mag
Continu	Dissolved	(residue
1963	ž	trate (NO ₃)
ptember	Fluo-	ride (F)
962 to Se	Spire (Spire)	(CI)
October 1	24-36-45	(80°)
r year	Bicar-	bonate (HCO ₃)
, water	Po-	Stum (K)
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	0.04	(Na)
arts pe	Mag-	sium (Mg)
s, in p	Cal-	cium (Ca)
analyse	į	(Fe)
mical	9	(310,
Che	Mean	discharge (SiO ₂) (Fe) clum ne- (cfs) (SiO ₂) (Fe) (Ca) sium
		Date of collection

	(cfs)			(Ca	(Mg)	Ì	æ	(HCO ₃)		j	(F) (NO ₃)		at 180°C) magne-carbon- sium ate	magne sium	carbon- ate	mhos at 25°C)		
					. 4	TOMS 4085. TC	RIVER MS RIV	BASIN- ER NEAR	TOMS RIVER BASINContinued 1-4085. TOMS RIVER NRAR TOMS RIVER, N.	а Ев, м. J.								
Nov. 20, 1962 Mar. 15, 1963	263 365 204	4.0.4	0.62	24 17 16	7.8.2 7.8.4.	26 28 14	614.0 6.00	040	55 57 34	57 50 40	0.3 1.5	2.1.8	192 195 140	71 63 50	17. 88.03.	364 325 228	4.04 0.00	884
				1-4090	.5. NOE	TH BRANC	FORKED H FORK	FORKED RIVER BASIN H FORKED RIVER NEA	BASIN R NEAR FO	FORKED RIVER BASIN 1-4090.5. NORTH BRANCH FORKED RIVER WEAR FORKED RIVER,	, X.							
Aug. 29, 1963	6.6					3.9		*	1.6	5.5		0.5		c	24	33	5.8	40
					1-4	91. OYS1	OYSTER ER CRE	OYSTER CREEK BASIN ER CREEK NEAR WARE	OYSTER CREEK BASIN 1-4091. OYSTER CREEK NEAR WARETOWN, N. J.	, к. д.								
Aug. 29, 1963	22.3					4.1		9	3.2	6.0	0	0.2		œ	6	88	0.9	10
					1-408	1.5. MII	MILL C	MILL CREEK BASIN L CREEK NEAR MAN	MILL CREEK BASIN 1-4091.5. MILL CREEK NEAR MANAHAWKIN, N. J.	к, ж. л.								
Aug. 29, 1963	12.2					5.8		1	2.4	6.0	-	0.2		4	•	30	6.0	10
				1-406	32. FOUR	MILE BRA	NCH MI	LL CREE	K NEAR MA	1-4092. FOURMILE BRANCH MILL CREEK NEAR MANAHAWKIN, N. J.	ž.							
Aug. 29, 1963	2.9					5.8		1	1.8	8.0	<u>-</u>	0.2		7	87	40	6.0	20
					1-406	2.5. CEI	CEDAR AR RUN	CEDAR RUN BASIN AR RUN NEAR MAN	CEDAR RUN BASIN 1-4092.5. CEDAR RUN NEAR MANAHAWKIN, N. J.	, м. J.								
Aug. 29, 1963	1.1					4.6		63	1.0	7.5	°	6.0		ဧ	2	34	5.2	20
				1-406	33. MILI	TUCK	ERTON TUCK ER	TUCKERTON CREEK BASIN NCH TUCKERTON CREEK N	ASIN EK NEAR T	TUCKERTON CREEK BASIN 1-4093. MILL BRANCH TUCKERTON CREEK NEAR TUCKERTON, N. J.	, .							
Aug. 29, 1963	1.6			-		5,1		*	2.0	6.0	•	0.2		6	0	28	5.4	25
		1									-							

1-4094. MULLICA RIVER NEAR BATSTO, N. J.

						1-4	094. MOLL	ICA RI	VER NEA	L-4094. MULLICA RIVER NEAR BATSTO, N. J.	N. J.								
Dec. 6, 1962	: :	157 63	3.2	1.1	1.2	1.1 1.2 0.2	3.0	0.2	04	5.9	3.5	0,0	£.0	27	4 11	4 00	38	4.6	*
June 25		36	4.4			2.	1.6	٥.	a	3.4	3,3	Е,	1.4	41	4	3		5.0	120
						1-	4095. BA	TSTO RI	VER AT	1-4095. BATSTO RIVER AT BATSTO, N. J.	. Ј.								
Nov. 16, 1962		166 59	5.1	0.35	0.35 2.8 1.5 1.2	0.7	1.7 1.2 1.9 .0	1.2	0 8	10 3.2	4.1	4.1 0.3 0.3 4.3 .0 .8	6.0	43	10 5	10	55 26	5.2	40
						1-410	O. OSWEGO	RIVER	AT HAR	1-4100. OSWEGO RIVER AT HARRISVILLE, N. J.	М. J.								
Nov. 16, 1962 June 25, 1963		38	7.4	7.4 0.41 1.2 14 1.1 .8	1.2	0.2	2.5	4.0	00	5.0	3.5	0.0	2.4	34	44	44	52 39	44	15
					1	4108. F	GREAT 1	GG HAR	BOR RIV	GREAT EGG HARBOR RIVER BASIN 1-4108. FOURHILE BRANCH NEAR WILLIAMSTOWN, N. J.	и, и. с.								
Sept. 11, 1963		1.7					3.4		4	4 2.0	4.0		5.3		8	5	34	5.6	ន

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS -- Continued

Chemical analyses, in parts per million, water year October 1962 to September 1963

					N an		Мод							;	Dissolved		Hardness as CaCO,	Total	Total Specific		
Date of collection	Mean discharge (cfs)	Silica (SiO ₂)	Alum- inum (Al)	Iron (Fe)	ga- nese (Mn)	ctum (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃)	Sulfate (SO ₄)	Chloride (C1)	Fluo- ride (F)	Ni- trate (NO ₃)	solids (residue at 180°C)	Cal- cium, magne- siuth	Non- carbon- ate	acid- ity a.s H ⁺ 1	ance (micro- mhos at 25°C)	Hd	Col-
	,						1-4	DELJ 1-4282. MAST	AWARE 1	DELAWARE RIVER BASIN ASTHOPE CREEK AT MAS	DELAWARE RIVER BASIN MASTHOPE CREEK AT MASTHOPE,	s, PA.								,	
May 14, 1963 Sept. 18	39.3							3.2		10 22	10 6.4	1.3		0.7		14 20	901		54.	6.5	၈၈
							1-1	1-4315. LACKAWAXEN RIVER AT HAWLEY,	AWAXEN	RIVER	AT HAWLEY	r, PA.									
Oct. 4, 1962	63	13		0.01	0.01	12	1.9	4.5	1.6	40	13	3.0		8.0	76	38	22		112	7.1	67
						1-4316	.5. WES	T BRANCH	WALLEN	PAUPACK	CREEK NE	1-4316.5. WEST BRANCH WALLENPAUPACK CREEK NEAR HAMLIN,	PA.								
May 16, 1963 Sept. 17	39.1							8. 4. 88.		21	13 6.8	3.0		1:0		97 94 94	50 KI		78 110	6.8	17
							1-4321.	1-4321. BLOOMING GROVE CREEK NEAR ROWLAND, PA	GROVE	CREEK	NEAR ROWL	AND, PA.									
May 14, 1963 Sept. 18	38.5							3.7		91	11 8.8	2.0		0.5		12 16	2 2		64 53	4.9	13
				1		1-4	397. LI	1-4397. LITTLE BUSHKILL	KILL A	AT BUSHKILL, PA.	ILL, PA.										
May 14, 1963 Sept. 17	8.6E							2.5		802	9.8	2.0		9.		12 22	99		45	6.4	101
						+	4400. F	1-4400. FLAT BROOK NEAR FLATBROOKVILLE,	NEAR	FLA TBRO		N.J.									
Nov. 6, 1962 Mar. 6, 1963 July 9	76 122 19	5.0 5.3 7.5		0.15		15 17 28	8.9.4 8.98	2 8 2 1.4.2	0.4.4.	38 48 97	20 20 20	8.80 8.00	1.1.0.	000	88 84 133	22 28 38	21 19 18		121 147 206	7.3	ដួកដ
							1-4426.	. MARSHALL CREEK	L CREE	ΑŢ	MINISINK, HILLS,	TTS, PA.									
May 14, 1963 Sept. 17	40 5.0							3.2		24 61	16 18	3.0		1.3		34 60	15 10		98 149	6.8	10
								,						1							

٠
2
Dearroad
Ę
0.117.00
TO STORY
4455

	30 25 15		4.22		∞ ~ ∞]	21 2
	7.7		6.8		7.2		6.1 7.0 6.1
	543 495 456	i i			242 274 261		235 338
	58 5.9 3.4		F-4		28 25 15	!	46 51 74
	242 226 212		ន្ទ		104 110 125		57 93
	321 275 264				145 140 167		128
	8.4.8		4.8		8.4.4 8.6.6.		9.1 1.8 1.9
	1.0.1.		<u> </u>		0.4.0.		2, 18.
	25 14 19		3.5	٠.	15 9.8 6.6		24 24 24
т, и. J.	51 46 38	AVEN, PA.	8. 4. 8. 8.	ISBURY, N.	20 18 16	N, N. J.	888
PEQUES	224 204 218	WHITE B	4.00	R BLOON	92 103 134	TRENTO	17 30 53
VER AT	1.5	C NEAR		VER NEA	t	REEK AT	2.5
1-4455. Prquest river at Prquest, N. J.	18 9.6 12	1-4477.5. BEAR CREEK NEAR WHITE HAVEN,	3.2	1-4570. MUSCONETCONG RIVER NEAR BLOOMSBURY, N. J.	5.6	1-4640. ASSUNPINK CREEK AT TRENTON, N.	9.7 14 18
4455.	822 822 822 832	177.5.		MUSCON	122	340. AS	8.0
-	464	1-4		1-4570.	24 27	1-4(41 12
	0.10				0.18		1.1
	5.8				5.3 6.7		0.6
	31 56 37		84.3 2.6		126 101 71		200 28 38
•	Oct. 30, 1962. Feb. 27, 1963. July 3		May 13, 1963 Sept. 16		Oct. 31, 1962. Feb. 28, 1963. July 2		Mar. 14, 1963 Apr. 15

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS--Continued

							•		
	Zinc (Zn)		0.0		1.1		0.00		1111881
	Cop- per (Cu)		0.03		90.0	}	0.02		11116.0
	Col- or		20		7 m 0 8 0 8 0		8 c 8 c c c c c c		10.702
	Нď		6.3		88888 138181		44000004		4801044
	To- Specific tal conductacted ance ity (microas mhos at H+1 25°C)		81		75 77 79 79	1	204 136 128 128 138 138		120 143 136 109 143 128
			80		040F0		0040400		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1963	Hardness as CaCO ₃ Cal- Non- cium, car- mag- bon- nestum ate		11		25 27 30 26 26		88 0 8 4 8 8 8 3 8 1 8 8		332 333 34 34 34 34 34 34 34 34 34 34 34 34
ptember	Phos-Dissolved pho-Dissolved rus solids rus Residue PO, at 180°C)		68 60		45 52 45 52 54 54 54 54 54 54 54 54 54 54 54 54 54	 	137 82 84 85 85 85 868 85		64 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
to Se	Phos- pho- rus as PO ₄		0.10		0.02				8
1962	Ni- rate NO ₂)		4.7		00000		21.02.11.02.11.0.11.00.11.00.11.00.10.00.10.00.10.00.10.00.10.00.10.1		0012400
tober	Fluo- ride t (F)	ė	0.0		0 40400	ē.	*		9.66.44.64
Chemical analyses, in parts per million, water year October 1982 to September 1983	Chloride (C1)	WICOMICO RIVER BASIN 1-4865, BEAVERDAM CREEK NEAR SALISBURY, MD	6.5	EEL, MD.	4444	ET MEADE,	2.1.2.08.00	3TY, MD.	21.2 8.8 6.6 12 10
on, water	Sulfate (SO ₄)	WICOMICO RIVER BASIN ERDAM CREEK NEAR SALI	8,8 3,6	PATUXENT RIVER BASIN PATUXENT RIVER NEAR LAUREL,	0.00.44	R AT FORT	26 111 15 15 7.8 9.6	T HARDESTY,	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1111	9 2 3 6 2 4 5 6	RIVE		RIVEB		RIVE		/ER	
per m	Bi- car- bon- ate (HCO ₂)	OMICO AM CRI	= 4	XENT I	28288	UXENT	2883882	NT RI	8441687
arts	Bo- ron (B)	WERD	0.00	PATU	0.0	PAT	8	TUXE	8 11 1881
tn pa	Po- tas- sium (K)	5. BEA	1.6		4.2	LITTLE	e.	5. PA	8 8 8 8
nalyses,	Sodium (Na)	1-486	8.9	1-5925.	3.5 9.4 8.5 8.6	1-5944.1. LITTLE PATUXENT RIVER	41111 21111 2120	1-5944.5. PATUXENT RIVER AT	7.4 11 7.4 8.0 10 9.7
ical a	Mag- ne- stum (Mg)		0.9		48783	1	40000000		1.0011000 01.01000
Chem	Cal- cium (Ca)		5.5		9.50		2.0.03212 8.0.		222222
	Man- ga- nese (Mn)		0.0 8.00		8.00 0.00 0.00 0.00		90000000		0 d d d d d d d d d d d d d d d d d d d
	Iron (Fe)		0.28 a.29		a1.3 .07 .26 a.15 a.28		0.57 0.00 0.00 0.00 0.00		2.0 2.00 1.1 1.5 1.00
	Alu- mi- num (Al)		0.2		0.1		0.1		0
	Silica (SiO ₂)		119		E 20 C 4		21 01 01 10 11 8.4 01		13 9.1 7.5 7.5 12.6 11.6
	Mean discharge (cfs)		10 18		4122211 1122211		20 620 620 20 20		85 56 77 77 61
	Date of collection		Nov. 28,1962 June 19,1963		July 1,1963 July 23. Aug. 16 Sept. 9		June 27, 1963 July 23 Aug. 2 Aug. 16 Aug. 26 Sept. 19		June 27,1963 July 23 Aug. 16 Aug. 26 Sept. 9 Sept. 19

1-5945.6. PATUXENT RIVER AT NOTTINGHAM, MD.

ER AT BENEDICT, MD.	1-5947. PATUXENT RIVER AT BENEDICT,	1-5947			
1060 .2 1.1 2140 385 358 3610			a.00 38		Sept. 19.
820 .2 1.3 1600 306 283 2860		_	a.02		Aug. 26
185 1280 0.3 .5 2420 464 438 4230 6.5	32 185	97 27 98	a.01 a.01 44	1:2	Aug. 16

a In solution when analyzed.
b Calculated from determined constituents.
e Estimated.

MISCELLANEOUS ANALYSES OF STREAMS IN NORTH ATLANTIC SLOPE BASINS--Continued

Periodic determinations of suspended-sediment discharge, water year October 1962 to September 1963 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water;

				P, pipet;	S, sleve; V, v	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	n tube; V	V, in d	istilled	water)								
			Water		Sediment	Sodiment						Suspended sediment	liment					
Date of collection	Time (24 bour)	Jing Jing	per-	Discharge (cfs)	concen- tration	discharge			Percen	t finer	han siz	e indic	Percent finer than size indicated, in millimeters	millite	neters			of
		point	G.F.	(21)	(mdd)	(tons per day)	0.003	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	2,000	analysis
						PASSAIC RIVER BASIN	ASIN											
					1-3795, PA	1-3795, PASSAIC RIVER NEAR CHATHAM, N.J.	R CHATS	TAM, N	J.									
July 24, 1963.	_			24	18	1.2							_					
				14	20	8.1.												
Aug. 8				11.6	27	. æ.			_					_				
Aug. 19				8.5	23	ĸ.												
Aug. 22				12	10	r. 							_					
Aug. 26				6.1	19	e.												
Aug. 29				5.7	53	* .°									_			
Sept. 2				× 0	9 2	9.09												
Sept. 9				90	22	. 63				_			_		_			
Sept. 11				7.3	10	2.												
				0	=					_	_		_		_			
Sept. 12				25.2	150	21.							_					
Sept. 16				17	37	1.7												
Sept. 17				48	160	8,5												
Sept. 18				29	23	4:1												
				5	20	82.												
Sept. 21				12	45	1.8					_	_						
Sept. 22				11	8 6	1.7												
Sept. 23				9 00	36	9.				_								
Sept. 25				8.1	22	<u>10</u> .	_											
Sept. 26				8.1	18	4 .												
Sept. 27					17	4.0			_	_		_			_			
Sept. 28			_	101	váč	96.			_									
Sept. 30.			_	06	150	36	4							1	1			

320

ļ

102

59

62

122

12

10

8.9 1.4

2.8

8.0 0.62 6.1

average....

Col-

뜅

80 3350 1180 3360

0.00.00.4

1170 1220 360 400

0.00.00.00 0.04.400

1900 8

44.6

PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS

PASQUOTANK RIVER BASIN

2-438.52. PASQUOTANK RIVER NEAR ELIZABETH CITY, N.

LICOATION.—At end of county road 4.6 miles northwest of Elizabeth City, Pasquotank County, and 4 miles downstream from Lake Drummond Canal.

DRAINGE AREA.—275 square miles yes: October 1957 to September 1963.

RECORDS ANALLABLE.—Chemical analyses: October 1957 to September 1963.

EXTRACTS, 1962—63.—Chioride: Maximum, 677 ppm dan, 18; minimum, 9.0 ppm June 3-30.

Specific conductance: Maximum and 11, 35 minimum, 18, ppm dan, 18, minimum, 18, ppm dan, 18, minimum, 18, ppm dan, 18, pp

Date Mean Silica Iron Cal- masters Po- Bicar- Sulfate Cal-			<u></u>	_	_	_			_										_		
Mean Silica Fron Cal- Nag- Sodium Las- Sodium Sum		Specific conduct-	ance (micro- mhos at 25°C)	110	120	120	115	105	155	130	105	90	86	92	120	130	84	97	81	105	,
Mean Silica Fron Cal- Nag- Sodium Las- Sodium Sum Sium		ness aCO,)	Non- carbon- ate	16	22	22	22	7.7	28	78	22	87	8	18	21	18	12	16	97	16	,
Mean Silica Fron Cal- Mag- Sodium Fron Cal- Mag- Sodium Fron Cium Sium Cal- Mag- Sodium Cal- Mag- Sodium Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Cal- Mag- Cal-		Hard as C	Calcium, magne- sium	28	34	82	29	8	33	33	22	55	24	56	28	28	20	22	18	26	8
Mean Silica Fron Cal- Mag- Sodium Fron Cal- Mag- Sodium Fron Cium Sium Cal- Mag- Sodium Cal- Mag- Sodium Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Mag- Cal- Cal- Mag- Cal-		solids	Cal- cu- lated	64	75	82	74	65	ŀ	87	61	55	21	22	70	1	21	61	23	64	ę
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO ₂	mber 1963	Dissolved	Residue at 180°C	123	120	145	132	119	1	ı	104	103	100	115	143	ŀ	123	132	86	120	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO ₂	Septe	i	phate (PO ₂)																		
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO ₂	962 to	į	trate (NO ₃)						'n	1.4	6.	1.6	1.2	80.	1.7	1.8	1,9	1.8	1.7	2.3	,
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	ober 1	Ē	ride (F)	0,2	۳.	4.	۳.	<u>د</u> .	e.		e,	7		₹.	e.	ł	۳.	۳.	۳.	.3	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	r year Oct		Chlor ide (C1)	13	18	18	17	14	32	23	13	10	10	12	17	18	9.0	13	11	15	,
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	ion, wate			13	12	20	17	18	1	23	17	17	16	14	12	12	14	12	=	14	,
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	er mill	1	bonate (HCO ₃)	15	14	11	80	9	60	7	7	9	'n	6	6	12	9	11	10	12	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	arts p	Po-	tas- sium (K)	1.6	1.7	1.4	1,5	۳.	1.4	1.2	1.2	1.0	1.5	6.	1.2	1	1.4	1.4	2,2	1.8	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	ses, in p		Sodium (Na)	9.2	==	12	==	8.4	50	14	7.7	6.4	9.9	8.0	=	1	6.3	9.3	7.5	9.3	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	anal)	Mag-	ne - sium (Mg)	2.9	4.8	3.5	2.2	2.9	3.6	3.9	2.7	1,8	2.8	5.6	2.5	3,1	1:8	2,3	1,6	2.4	
Mean discharge (SiO ₂) (Fe) (Cfs) (SiO ₂) (Fe) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (Fe) (SiO ₂) (SiO	Chemica]	į	cium (Ca)							6.8	6.5	6.0	5.1	5.9	7.1	6.3	2.0	6,3	4.6	6.6	,
Mean Si (cfs) (cfs) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Iron (Fe)	0.63	69.	.40	. 49	.38	54	44	.32	.32	.40	.80	.89	1	. 92	1:1	.41	.47	
			Silica (SiO ₃)	8.9	9	13	11	9.2	9.6	9.6	8.8	7.4	2.0	5.9	8.9	7.4	7.2	8.4	7,3	6,0	·
Date of collection Cet31,1962 Nov. 2-30 Dec. 2-31 Dec. 2-31 Jan. 14-15 Jan. 14-15 Jan. 14-15 Jan. 14-15 Jan. 14-13 Jan. 14-14 Ja			Mean discharge (cfs)																		
		į	of collection	Oct. 1-31,1962	Nov. 1-30	Dec. 2-21	Dec. 23-31	Jan. 1-9, 1963		Jan. 14-15	Jan. 19-31	Feb. 1-28	Mar. 1-31	Apr. 1-30,	May 1-31	June 1-2	June 3-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted

PASQUOTANK RIVER BASIN--Continued

2-438.52. PASQUOTANK RIVER NEAR ELIZABETH CITY, N. C .-- Continued

	Chlor	ride, ir	parts	per mil	lion, v	vater ye	ar Octo	ber 196	2 to Se	ptember	1963	
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Are.	Sept.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20) 13	} 18	35	32 32 35 78 87) 10	10	12	17	9,0) 13) 11) } 15
21 22 23 24 25 26 27 28 29 30 31			30) 13								
30 31		۲ ا				J	ν		μ			

PASQUOTANK RIVER BASIN--Continued

2-438.52. PASQUOTANK RIVER NEAR ELIZABETH CITY, N. C.--Continued

Aver-	age	68 54 55	5 5 5 3	66 71 78	83
_	_	38	613	121	881
	0 3				
	30	1 65 2 54 5 39	8 1 4	8145	88
	3 29	61 52 46	E 1 2	63	98
	28	52.2	813	8 4 2 5	283
	27	50 43	9.0 9.0 9.0 8.0	6.8 8.5 8.5	77
	26	4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	4 1 2 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	68 89	323
	25	56 50 45	41 42 58	69 80	88
	24	67 51 43	45 41 54	67 72 80	82
	23	67 52 45	4 4 6 5 2 4 5	73 76 76	83
	22	77 96 99	4 to 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	69 78 75	81
	21	70 54 43	4 4 8 5 2 4 4	69 72 71	88
	20	67 52 43	50 50 50 50	72 73 80	81
	61	524	8 7 4	E 4 8	7 7 8
	18	55	6417	69	87
	17	484	3 6 6 6	404	818
Day	16		491	496	82
Ω	15 1	73 73 53 52 39 41	4 7 4 5 2 8 4 4 1	73 6	79 8
	4				
	13	71 71 52 52 39 41	47 45 45 56 58	61 64 68 72 78 79	78 77
	_				
	12	35 4	2 4 4 V	0 63	79 80
	-	¥23	4 4 c 6 6 c	967	
	10	43	2 7 4 5	83 83	77
	6	71 56 49	535	62 81 84	76 85
	8	75 55 50	527	63 72 78	85
	7	71 55 48	341	69	8 8 4
	9	70 52 51	542	62 68 74	80
	3	5 2 2	37 41 52	44 47 23	8 4
	4	55.5	4 6 4 6 8 4 8	67 64 72	4 9 6
	ო	69 57 56	41	77 27	84
	2	6.9 5.8 5.4	4 4 0 4 5	71 65 70	88
	١	70 57 54	38 42	400	83
7	MOINT	October November	fanuary February March	April	July

PASQUOTANK RIVER BASIN--Continued

2-438.62. PASQUOTANK RIVER AT ELIZABETH CITY, N. C.

LOCATION: --At bridge, draw section on U.S. Highway 158 at Elizabeth City, Pasquotank County. DRAIMAGE AREA.--303 square miles.

RECORDS AVAIGHE.—Creation inmigrees: October 1957 to September 1963.

Mater temperatures (October 1957 to September 1963.

Mater temperatures (October 1957 to September 1963.

Strengers 1952-63.—Chloride: Maximum 2.710 ppm Jan. 11, 12, (B); minimum daily, 96 micromhos Mar. 22 (B), 23 (T).

Strengers 1957-63.—Chloride: Maximum 46.70 ppm Jan. 10, 12, (B); minimum daily, 96 micromhos Mar. 20, (B), 23 (T).

Maximum 86.7 July 27 (T); initimum, 37.5 an. 17, 1965; minimum, 4.5 ppm Mar. 6 (T), 1961.

Maximum 86.7 July 27 (T); order conductance; Maximum adaily, 20, 800 micromhos Oct. 29 (B), 1896; minimum daily, 30 micromhos June 3 (T), 1961.

Specific conductance; Maximum 84.7 July 28, 70 minimum daily, 30 micromhos June 3 (T), 1961.

Maximum 86.7 July 28, 70 (M), 1895, 50pp. 17, 177; 1969; minimum, freezing point on several days during January and December 1958.

Maximum 87.7 July 27, 70 (T) and Dottom (B) samples were collected once daily. No discipance records available.

Color 180 260 6.3 띥 Specific conduct-848 (microance magne-carbon-18 18 21 Nonate Hardness as CaCO₃ Calcum, 328 Sium Dissolved at 180°C) A104 115 (residue solids Ni-trate 2.5 ò Fluo-ride (F) .2.1 Chemical analyses, in parts per million, March to June 1963 Chloride 20 53 <u>c</u> Sulfate 8 14 Bicar -8 1 2 bonate (HCO) Po-tas-sium (K) 22 8.3 1 Sodium (Na) 32.5 Mag-ne-sium (Mg) 0.09 Cal-cium (Ca) .42 Fron (Fe) Silica (SiO₂) 6.5 Mean discharge (cts) June 5-9..... June 15..... Mar. 13-23, 24(T), Date of collection 1963

A Organic matter present; sum of mineral constituents 58 parts per million.

PASQUOTANK RIVER BASIN -- Continued

2-438.62. PASQUOTANK RIVER AT ELIZABETH CITY, N. C.--Continued

1	. 1	l					ŀ
September	Bottom	275 260 240 275 216	152 196 191 193 240	212 260 234 158 166	128 275 275 260 158	260 208 161 161 188	243 275 325 375 260
Septe	Top	128 182 232 226 208	216 182 161 161 218	242 245 230 155	128 171 193 147 135	325 114 161 159 182	226 196 325 350 260
August	Bottom	98 70 203 92	174 102 98 139 139	143 171 212 185	223 208 228 184 224	231 235 220 218 186	188 208 233 241 241 310
ην	Top	90 75 131 98 57	88 104 100 144	126 170 184 148	128 134 205 160 204	202 132 161 161 161	151 150 161 202 202 168
July	Bottom	94 62 79 76 163	132 120 127 88 88	208 200 223 204	295 222 233 275 230	191 242 207 160	191 171 192 184 160
J.	Top	49 83 67 86	127 104 98 91 96	158 109 148 231 220	129 230 226 174 214	161 193 141 121 126	161 174 161 184 162
1963 June	Bottom	465 202 325 70	20	214 128 51 78 29	78 46 31 83	177 58 48 61 67	211 211 40 64
Der 19	Top	219 215 325 95	20	18 96 50 72 29	24 24 24 91	174 64 35 30 56	35 30 31 108 121
Septem	Bottom	259 245 475 350 310	262 264 410 370 465	214 252 300 445 490	325 425 460 490 520	490 460 385 335 310	310 370 460 490 490 490
362 to	Top	254 240 245 201 250	181 229 390 340 202	203 250 264 410 310	325 350 450 440 400	500 430 385 335 310	335 325 430 490 370 275
11 15 15 15 15 15 15 15 15 15 15 15 15 1	Bottom	32 275 252 240 55	108 19 41 155 89	60 70 67 116 131	121 199 202 86 86	335 252 300 139 171	275 252 252 252 275
April	Top	251 40 152 51	78 119 38 27	4 8 4 8 4 8 0 5 8	99 182 196 275	96 118 232 123 158	171 237 185 182 275
ch ve	Bottom	900 220 625 650 585	275 56 215 475	113	113	245	775 455 400 400 425 375
on. wate	Top	14 21 14 16 27	116 47 19 19 375	46	7 13		272 273 373 313
lary I	Bottom	1975 1875 900 1350 1700	225 1700 1225 350 1400	1450 350 750 900 108	525 1000 1075 11135 460	285 725 725 500	76 1 1 1
rts per mi February	Top	118 675 850 400 585	260 975 260 375 350	585 400 275 150 135	54 48 1085 113	24 30 30 84 84	8914111
Chloride, in parts per million, water year October 1962 to September 1963 January February March April May June	Bottom	525 1300 1425 375 1625	2125 2180 2250 2275 2530	2710 2710 2375 2360 2375	2325 2275 2325 2325 2180 2180	1650 300 2020 825 1680	1850 1625 850 1325 1450
oride, in January	Top	500 1000 1200 425 1475	975 190 555 1325 1475	2020 2050 350 1000 555	475 750 1020 400 1020	425 375 400 800 1650	300 675 880 108 83 1700
nber	Bottom	675 370 400 525 1075	1520 1550 1290 1575 1030	1350 1250 1200 575 1585	1650 1630 1680 1680 350	1450 1520 1550 1950 2450	1825 2275 2225 2225 1000 750
December	Top	450 370 400 500 925	1520 1520 1300 1550 675	1350 555 525 585 900	715 350 1175 900 370	1450 1520 675 1125 825	1825 475 475 1150 1000 750
November	Bottom	375 275 210 450 350	300 625 675 880 675	525 1020 1000 650 1200	1200 1450 1825 675 675	1800 1700 1225 1275 1450	500 525 500 650
Nove	Top	170 175 205 245 350	275 400 225 350 675	525 525 275 300 675	675 275 1575 715 675	1520 1550 750 1275 1200	500 425 500 500
October	Bottom	245 275 150 245 190	113 275 375 300 300	300 245 245 190 230	240 235 99 61 80	245 300 325 325 325	165 210 275 425 275 275 400
Octo	Тор	120 140 135 118 120	88 94 195 105	200 245 170 125 150	140 118 96 61 75	195 245 325 220 300	170 187 375 240 120
	Uay	1128410	6 8 10	122245	16 17 19 20	22 23 24 25	26 28 29 30 31

PASQUOTANK RIVER BASIN--Continued

2-438.62. PASQUOTANK RIVER AT ELIZABETH CITY, N. C. -- Continued

2-435.22. ARMOUNDER HIER AT ELIZABETH UTT, F. C.—CONTINUED TEMPORATURE (**) of water, water year October 1962 to Suptember 1963 /76p and Octons once-daily measurements at approximately 13307

	er-	age	9 1	4 10	m m	0.6	٠, ٥	6 6	40		2	- 0	21.7	
	Aver	ď	8.6	4 6	£ £	9.6	7,9	20.00	4.6	8 8	77	100	81	73
		31	5,5	11	36	96 9	11	58	11	74	!!	82	78	11
		30	2,80	52	38	9 8 8 8	11	62 59	4 4	7.7	80 79	80 80 7. 4	80	64
		29	81	53	39	39	11	38	3 4	22	17	8 4	96	6.8
		28	57	50	4 4 0	6 4 0 0	39	3 %	5.6	71	77 78	80	79	0.0
		27	57	4 4	43	42	36	55	65	68	7.7	8 4	79	72
		26	N N	4 4 8	0 4 7 7 7 7	41	9 9	55	6.4	68	78 76	83	79	99
		25	\$ 7	88	39	14 9	41	54	99	6.8	98	79	88	3 3
70cot		24	6.5	51	404	47	9 9	2.2	2 4	1 %	78	81	83	6.5
		23	67	22	96	4 4	4 0 4	51	5 %	70	76	0.0	82	63
арргохишателу		22	6 0	57	97	4 4	39	52	22	73	75	80	84	75
		21	29	58	39	45		2,2	89	120	78	81	80	69
D.		20	64	53	4 4 0 4	4 4	4 5	5.8	67	702	78	80 0	83	78 76
		61	51	53	£ 4 4	33	4.3	55	7.49	69	76	80	1 8 2	75
200		82	120	53.5	39	44	39	59	6.4	68	72	83 81	81	6.69
len		17	747	6 4 9	39	39	41	5.8	2,3	67	75	80	84	22
nie	Day	91	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	53	38	98	4 5	55	960	702	13	81	3 6	22
neasurements		12	73	53.54	38	38	47	57	190	69	88	80.9	11	12
		14	72	51	38 39	38	43 45	59	603	9 9	77	78	8 8	22
once-agily		53	73	3, 50	38	2.4	41	57	%!	65	7.9	19	81	7,7
DICE		2	72	5.5	4 4	4.1	4 4 6 4	5.3	61	63	81 78	79	8 8 8 3	77
		=	73	5.4	4 4 5	4 0	4 6	5.5	60	170	82	79	83	76
DOLLOH		2	73	53	£ 4	4 4	404	53	60	71	79	76	84 83	76
# III I		6	47.	53	\$ °C	38	38	53	63	68	78	80	8 4	77
		00	73	53	4 4 6 4	36	38	50	5.0	69	78	81	84 83	72
do:7	ļ	7	72	54	4 4 7 0	37	41	53	609	65	79	83	83	75
		9	0.9	53	4 4	37	39	50	62	99	72 79	7.9	833	75
		2	1,2	55	53	35	38	51	63	68	75	80	82	200
		4	170	55	5 4	36	36	45	63	63	75	80	83	80 79
		3	71	55	5.5	35	38	4 5 2	65	63	72	83	83	90
		7	117	58	55	36	39	38	63	61	72 71	81 78	83	81
-		-	70	58	53	. e e	37	43	59	63	74	78	83	78
	Month	MOIIGH	October Top Bottom	Top Bottom	Top Bottom	January Top Bottom	Top Bottom	Top	April Top Bottom	Top Bottom	TopBottom	July Top Bottom	Top Bottom	Top

CHOWAN RIVER BASIN

2-532.44. CHOWAN RIVER AT WINTON, N. C.

CACTION: ALL DIAGRE, draw section on U.S. Highway 158 and State Highway 97, at Winton, Heriford County, and 2.7 miles downstream from Meherrin River.

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 aquive miles:

RECORDS ARLAL 4.19 and 1.1

		Color	011	120	1	110	75	55	65	70	45	140	90	20	45		7.5
		E.	7.2	6.3	7.1	6.9	9.9	6.7	6.7	7.2	7.0	7.0	7.0	7.1	9.9	-	:
	Specific conduct-	(micro- mhos at 25°C)	140	120	88	190	73	16	65	84	81	135	115	110	97		100
	Hardness as CaCO,	Non- carbon- ate	0	-0	0	0	9	0	9	0	0	0	0	0	8		-
	Hard as C		26	2 2	10	24	18	17	18	24	21	22	26	56	27		22
1963	Dissolved	residue (residue at 180°C)	66	80 A122	!	A121	67	70	57	29	54	89	85	65	84		72
September 1963	Ni-	trate (NO ₃)		1:4		1.3	œ.	2.5	œ.	1.7	1:1	1:1	1.7	1.5	9.		1.3
to Sep	Fluo-	e (F)	0.2		1	4.	.2	۲.	-:		۲.	3	.2	2			0.2
water year October 1962 to	of to	(C1)	18	33	0.6	32	8.5	9.3	6.5	8.0	5.7	16	9.4	11	8.5		10
year Octo	Gulfata	(305)	9.4	12	l	14	9.4	8.9	8.9	0.9	5.4	6.2	6.4	6.4	10		7.5
	Bicar-	bonate (HCO ₃)	38	38	17	38	16	25	15	31	31	32	36	35	31		28
million,	Po-	Sium (K)	2.1	2.5	!	2.2	1.2	1.4	2.4	1.4	1.5	1.7	1.9	3.1	2.5		2.0
in parts per m	See See See See See See See See See See	(Na)	19	28	1	30	6.9	12	5.4	7.0	6.2	14	12	10	8.1		01
, in par	Mag-	sium (Mg)	2.6	1.8	1	2.5	1.7	1.7	1.7	2.6	1.6	1.6	1.8	2.2	2.4		2.0
analyses,	Cal-	cium (Ca)	6.5	6.7	!	5.5	4.6	4.1	4.6	5.2	5.8	6,3	7.5	9.9	6.9		5.7
Chemical a	101	(Fe)	0.20	29	1	.30	. 22	80.	. 14	.26	.15	.30	. 22	8	.13		0.20
Che	Q: I ion	(SiO ₂)	12	12	!	14	9	8.0	7.0	8	7.9	8.0	9.4	5.5	9.3		8.6
	Mean	discharge (cfs)															
		Date of collection		Jan. 1-3, 1963			Jan. 7-31	Feb. 1-28	Mar. 1-31	Apr. 1-30	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-16	Time-weighted	average

A Calculated from determined constituents.

CHOWAN RIVER BASIN -- Continued

2-532.44. CHOWAN RIVER AT WINTON, N. C.--Continued

	Chlo	ride, i	n parts	per mi	llion, v	water y	ear Octo	ber 196	32 to Se	eptember	1963	
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Ĺ
1	46	h			h	h	h	h .	h	1	h	h

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5	46 47 47 46 43		38 38 38 38	33 9.0 32								
6 7 6 9 10	46 46 43 43 43		38 38 38 35 38									8.5
11 12 13 14 15	46 46 43 43		38 38 38 38 38		9.3		8.0) 16			
16 17 18 19 20	18	14	38 38 38 38 38	8.5		6.5		5.7		9.4) 11	54 46 30 108
21 22 23 24 25	91		38 38 38 38 				-					113 110 108 110 108
26 27 28 29 30 31	91 91 91] ==							110 110 110 110 110

CHOWAN RIVER BASIN -- Continued

2-532.44. CHOWAN RIVER AT WINTON, N. C.--Continued

	ver-	age				
	^	· · ·	61 50	04.80	59 61 67	73
		<u></u>	111	58	131	551
		29 30	151	58 1 38	60 59 61 61 72 75	75 76 74 74 65 65
		53	1 69 1	118		75 76 74 74 65 65
		28	57 58	39 40 38 59 60	58 58 60 62 71 71	76 75 75 76 75 75 74 74 66 65 65 65
		27	57	39 59 59		75
		26	57	1 66	60 57 62 62 70 70	75 76 74 74 65 66
83		13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	57 49	39 59	952	
54 14		74	80 460	598	58 61 69	75 76 74 73 66 65
Femperature (°F) of water, water year October 1962 to September 1963 (Once-daily measurement at approximately 09007		23	58 4.9 3.9	98	58 62 68	
epte 07		22	368	39	620	74 75 74 75 65 65
, (°F) of water, water year October 1962 to Seg. (Once-daily measurement at approximately $0900\sqrt{2}$!	21	59 47 39	58	6,00	
62 .		20	344	40 41 57 58	60 59 60 61 67 68	74 73 74 73 66 66
r 19		19	0 4 4		995	
rox		18	404	40 39 40 56 56	59 58 60 61 67 67	74 74 75 73 67 67
app oct		17	61 840 40			
ear at	Day	9	2 4 4 4 0 4 0	40 39 39 38 54 55	600	73 73 75 74 68 68
er y		15	62 49 40		0.00	73
wat		14	62 62 50 51 41 41	40 40 39 38 52 53	60 61 61 61 65 66	72 73 75 74 69 69
er,						72 75 69
wat ly n		11 12	62 50 43	41 40 40 54 53	60 60 61 62 65 66	72 72 73 74 71 70
g d		Ξ	62 50 43			27.2
°F)		2	61 62 49 49 43 43	40 39 40 54 54	59 59 62 62 65 65	72 71 74 74 71 72
, S		9				247
ratu		7 8	62 61 50 49 44 44	40 38 39 53 54	6 6 2 9	72 72 76 76 72 71
ape.					59 62 63	222
Į.		5 6	4 2 4 5	39 39 39 38 52 52	803	70 71 75 75 72 73
			62 51 45		\$ 0.00 4.00	25.5
		4	63 63 54 54 46 45	0 4 4 0 0 1 2	600	71 69 74 75 72 71
		ო		0 % 0 %	63	17.7
		2	63 48 48	0 6 9	58 59 60 61 62 62	122
		_	. 55	447	6.00	27.7
	Menth	MOIII	October 64 63 November 55 56 December 49 48	January 41 40 February 40 39 March 50 48	April May	July 70 71 August 72 73 September 73 72

CHOWAN RIVER BASIN--Continued

2-536.52. CHOWAN RIVER NEAR EDENHOUSE, N. C.

LOCATION:—At bridge, draw section on U.S. Highway 17, 0.8 mile northeast of Edenhouse, Bertie County.

READINGS ANALLIE.—Chemical manipaes: October 1957 to September 1963.

READINGS ANALLIE.—Chemical manipaes: October 1957 to September 1963.

READINGS ANALLIE.—Chemical manipaes: October 1957 to September 1963.

EXTREMEN: 1962-63:—Chemical manipaes: October 1957 to September 1963.

Specific conductance: Maximum and proper Dec. 22, 23, (B); minimum and proper september 1963.

EXTREMEN: 1957-63:—Chemical manipaes: October 1964 to September 1964.

EXTREMEN: 1957-63:—Chemical manipaes: October 1965.

EXTREMEN: 1957-63:—Chemical maximum, 8140 ppm Nov. 11 (B), 1958; minimum, 3177 feb. 17, 186.

FREFE CONDUCTATION: Maximum and Manipaes Nov. 11 (B), 1958; minimum daily, 43 micromator Sept. 22 (B), 1960.

FREFE CONDUCTATION: Top (T) and bottom (B) samples were collected once daily. No discharge records available.

mes October 1069 to Sentember 1063

		Color	9	9	80	9	65	80	06	2	2	2	2	40
		<u>u</u>	6.9	8.8	6.9	6.5	8.4	6.7			_	_	_	
	Specific conduct-	(micro- mhos at 25°C)	110	130	138	120	98	2	69	81	98	66	121	140
			~	4	•	2	œ	œ	80	01	•	8	N	4
		Calcium, Non- magne-carbon- stum ate	22	24	23	23	19	18	19	16	17	18	22	24
1963	Dissolved	(residue at 180°C)	67	84	06	06	29	63	26	57	26	74	88	93
tember	N.	(NO ₃)	9.0	2.4	1.5	2.0	2.2	1.4	1.7	1.3	1.1	1.9	6.	۲.
to Set	Fluo-	ride (F)	0.2	٦.	<u>ښ</u>	٦:	٦.	e.	4.	۲.	٦:	٦:	٦.	.2
Chemical analyses, in parts per million, water year October 1962 to September 1963	Phortog	(C1)	16	8	77	22	11	7.5	7.7	8.5	8.0	#	18	52
year Oct	Gulfate	(30)	7.4	8.0	7.2	12	7	10	8.6	8.0	6.4	9.3	8.4	11
, water	Bicar-	bonate (HCO ₃)	24	22	30	12	13	12	14	18	22	21	23	22
111100	ξ.	stum (K)	1.9	1.9	2.5	1.9	1.6	2.8	1.5	1.5	1.5	1.9	2,3	3.2
rts per m	anipos	(Na)	12	15	17	14	7.7	6.4	6.0	7.4	7.5	=	15	16
, in pa	Mag-	stum (Mg)	2.5	2.7	2.4	2.4	5.0	1.8	1.8	1.8	1.4	2.0	2.5	3.3
nalyses	Cal-	cium (Ca)	4.6	5.3	5.3	5.1	4.3	4.3	4.6	3.8	4.4	3.9	4.3	4.3
mical a		(Fe)	90.0	. 14	.17	.13	. 14	.07	.14	. 16	.13	.19	20	. 12
Che	61170	(8102)	7.6	7.2	9.4	ខ្ព	8.9	7.0	6.2	4.4	4.0	7.3	9.0	9.5
	Mean	discharge (cfs)												
		Date of collection	Oct. 1-20, 1962	Nov. 21-30	Dec. 1-5	Feb. 1-5, 1963	Feb. 6-28	Mar. 1-31	Apr. 1-30	May 1-30, 31(T)	June 1-30	July 1-31	Aug. 1-31	Sept. 1-18

CHOWAN RIVER BASIN--Continued

2-536.52, CHOWAN RIVER NEAR EDENHOUSE, N. C.--Continued

September	Bottom		22		39	21	41 48 48 15	65 4 9 9 1 1 4 1
Septe	Top		25	-		21	41 47 48 16	49 40 10 10 10 10
ıst	Bottom				18			
August	Top				18			
	Bottom				#			
July	Top B				=			
	Bottom	<u> </u>		(<u>^</u>			Ī
June	Top B							
_	Bottom	<i></i>			o.			
May	Top Bo	<u> </u>			8.5).
	Bottom T				7.7			
April	Top Bot							
H					7.5			
March	p Bottom				7.5			
L	dol no	<i></i>						
February	Bottom				=======================================			
ř	om Top	22			=======================================			111
January	Bottom	177 170 170 170	122 122 99 145 135	132 1120 1122 1222	86 75 75 56		152 106 152 157 207	82 88 8 4 4 6
,	dol m	179 177 172 170	122 122 96 135	132 99 118 122 120	86 75 75 56		157 110 152 152 157	8 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
December	Bottom	21	88 91 91 80 80	80 48 48 113	113 113 89 89	91	775 880 880 185 180	200 200 200 197
Ď	Top	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	111 113 80 78	35 30 30 102	113 91 88	16	110 130 125 205 180	182 200 200 200 182
November	Bottom	84 56 40 35	21 21 21 21 21	10 4 4 4 4	0444	46		}
Nov	Top	86 4 56 33 32 32	54 51 51 51	10444	04 4 4 0 6 9 8	46		
October	Bottom			16			08 4 4 4 5 8 4 8 8 5 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	24 4 4 4 4 4 4 4 4
Oct	Top			16		_	88888	35 67 51 51
Dav	3	H 62 62 42 62	6 8 9 10	11 12 13 14	16 17 18 19	50	22 23 24 25	338848

CHOWAN RIVER BASIN--Continued

2-536.52. CHOWAN RIVER REDEMENCES, N. C.--Continued Temperature $(^{\circ}F)$ of water, water year October 1962 to September 1963 Top and bottom once-daily measurements between 1100 and $150\underline{9}$

ı	,													
	Aver-	age	69	56 55	4 t	1,0	39	54 53	65	69	78 76	82 81	83	74
		31	58	11	4 4	38	11	66	11	73	11	86	83	11
1		30	60 58	56 55	9 9	38	11	69	65	73	81	9 4 8	83	68
		29	58	56 55	0 0 0	38		59	65	67 67	80	8. 4.8	8 5	68
ı		28	58	55	9 9	38	11	69	66	67	71	86	83	68
		27	61	5.5	0 0	38	39	69	66	69	81	8 8 4	83	6.6
		26	61	5 5	3 g	3.9	40	57	64	67	82	9 6	83	69
ı		25	61	55	41	1,1	39	57	6.5	67	81	11	85	68
3	ĺ	24	67	55	43	1,1	39	52	99	69	72	81	83	73
ODCT		23	67	56 55	44	4 4	39	52	68	72	74	81	83	73
Bug		22	67	55	4 4 6	42	39	52	68	202	76	188	83	73
3		21	69	55	‡ ‡	42	39	53	68	52	78	82	82	73
<u></u>		20	69	4 4	11	42	39	57	69	73	78	82	82	73
ě		19	69	7.7	40	104	39	57	69	73	79	82	82	74
2		18	17	44	40	41	38	57	6.5	72	78	82	80	71
ent		17	71	54	39	104	37	51	60	67	7.2	82	80	50
116	Day	91	17	4 4	39	42	39	51	19	66	80	81	8 8	202
98		15	717	2.2	39	42	39	53	60	66	80	81	82	22
Top and bottom once-daily measurements between		14	17	2.2	410	45	39	53	61	67	90	80	82	78
8		13	717	54	40	44	39	53	61	65	80	79	81	78
9		12	75	5.5	4 4	9 4 4	100	53	61	99	80	79	83	79
ō		u	75	58 56	4 5	4 4 6	41	53	61	73	83	79	83	79
12		10	75	5 8	45	4.5	104	53	62	73	80	79	83	77
ĕ		6	73	58	4 5	4.5	39	53	63	75	80	79	83	78
8		8	75	55	200	4 4 3 5	38	53	63	74	77	82	83	78
8		7	75	5.5	50	39	38	53	67	69	78	83	8.4	76 76
ı		6	74	5.5	50	3.9	42	53	67	66	78	82	84	76
ŀ		5	74 73	56 56	52 51	39	1.1	49	67	99	78	82	83	35 35
		4	74 73	56	52	39	42	49	67	66	11	83	86	78
ĺ		3	70	56 56	11	38	39	49	67	65	22	83	86 84	80
1		2	70	59	57 56	0 4 4	45	44	67	63	12	408	98	11
L		1	69	58	56	44	42	4 4 6	53	63	73	11	8 4 8	80
	Month	Month	October Top Bottom	Top	TopBottom	January Top Bottom	TopBottom	TopBottom	April Top Bottom	Top	Top	July Top Bottom	Top Bottom	Top.

ROANOKE RIVER BASIN

2-660. ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA.

LOCATION. --At gaging station at bridge on State Highway 746, 2.8 miles northwest of Randolph,
Charlotte County, and 3.6 miles upstream from Roanoke Creek.
DRAINMAGE AREA. --3,000 square miles, approximately.
RECORDS AVAILABLE. --Chemical analyses: April 1929 to March 1930, October 1950 to September 1956.
Water temperatures: October 1950 to September 1955.
Sediment records: January 1954 to September 1953.
EXTREMES, 1954-57. --Sediment concentrations: Maximum daily, 2,060 ppm May 20, 1957; minimum daily,
6 ppm Dec. 28-31, 1955.
Sediment loads: Maximum daily, 71,500 tons Mar. 2, 1954; minimum daily, 13 tons Sept. 21, 22, 1956.
REMARKS, --Sediment samples collected daily from January 1954 to June 1957 and at approximatily
ten-day intervals and during flood stages from July 1957 to September 1963.

Suspended sediment, water year October 1962 to September 1963

i		OCTOBER		l	NOVEMBE	R			DECEMBER	
Ī		Suspend	led sediment		Suspen	ded	sediment		Suspend	led sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	840		160	1320			70	2230		240
2	645		100	1350		Į	150	2070		220
3	620		80	1380		l .	150	1990		210
4	620		70	1520	1	1	160	1950		210
5	695		80	1660			180	1840		200
6	870		190	1950			210	1910		310
7	1050	45	128	1910			210	3200		3200
8	780		80	1740		1	190	3200	1	2900
9	670		50	1740		1	280	2740		2100
10	620		30	10700	719	S	26500	2920		1700
11	595		30	22300	616	s	36400	1990		590
12	595		30	17900		1	12100	1800		390
13	595	10	16	6780		1	1800	1700		370
14	595		20	4500			730	1630		310
15	720		60	3300			450	1600		300
16	990		210	2650			290	1880		300
17	1350		360	2230			300	1770		290
18	1320		320	3200		l	2400	1630		180
19	1240		270	4400		ł	1500	1800		190
20	1210		260	3700		Ì	800	2070	30	168
21	1180		220	3200 *		Ì	520	1800	i	150
22	1240		200	3800			3000	1950		160
23	1240		200	4200		(2500	2390		190
24	1240		130	3200			1100	2740		220
25	1210		130	2830			460	2830		230
26	1180		60	2650			290	2740		220
27	1180	18	57	2390	35		226	2740		300
28	1140		60	2650			210	3300		1500
29	1180		60	2150			230	3800		3200
30	1210		70	2150			230	5940		6400
31	1240		70	-				6260		2900
[otal	29860		3801	125450		l	93636	78410		29848

S Computed by subdividing day.

ROANOKE RIVER BASIN -- Continued

2-660. ROANOKE (STAUNTON) RIVER AT RANDOLPH, VA. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		(Whe	ere no concen	trations ar	e report	ed, loads are	estimated)		
- 1		JANUARY	,		FEBRUAR'	1		MARCH	
		Suspend	ded sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	4900		1600	2390		260	1990		640
2	3800		1200	2310		250	6020		11400
3	3100		920	2470		270	6100		4900
4	2830		760	2830		310	3700		1400
5 • •	2740		670	2650		290	2920	100	790
6	2560		550	2470		270	7270	689	S 15400
7	2560		550	2390	40	258	17600	524	5 24700
8	2390		390	2390		320	14300		8900
9	2920	45	350	2230		300	8760		3100
10	2740		300	2150		290	3700		1000
11	3300		450	2070		340	2150		520
12	4900		5300	3100		2700	6740	410	5 8820
13	7280		6100	5400		3400	20200	596	5 32000
14	7060 5500		2500 1600	5000 3900		1400 630	21000 10800		10000 3500
15	5500		1600	3900		650	10800		
16	4500		1200 1900	2920		470 290	10400 8080		14000
17	3500			2120		200	9440		7600
18	3500 3100		760 590	1460 1600	==	220	8480		6400
20	4200		2000	1910		210	6100		3000
.,	5100		2900	1910		210	5300		2300
21	4900		2100	1770		190	3560		2300
22	3900		1200	1520		160	4100		2300
24	3400		730	1520		160	3700		1200
25	2470		530	1700		140	4200		1100
26	2650		500	1840	25	124	3900		840
27	2390		390	1740		90	3800		820
28	2390		390	1770		100	3500	80	760
29	2070		280				3100		590
30	2070		220 220				3010 3010		570 490
31 Fotal	2070 110790		39150	67530		13852	216930		181340
	110//-	APRIL	37130	01330	MAY	13032		JUNE	
		APRIL			MAT				1
1	2920		470	2070		340 400	2470 2390		330 320
3	2920 2560		470 410	2470 1880	60	300	2470		330
4	1460		160	1910		310	2070		220
5	1560		170	1280		210	1050	30	85
6	1600		260	960		160	840		90
7	2740		2800	1790		290	1020		110
8	1910		830	1910	l	310	960		100
9	1600		350	1660		270	930		100
10	1600		220	1520		210	720		80
11	1630	40	176	2030		270	1360		150
12	1630		180	1880		250	1520		160
13	1880		200	1740		230	1520		160
14	1910		210	1910		260	1140		120
15••	1910		210	1420		150	1380		150
16	1990		210	1110	35	105	900		70
17	2230 2230		240 180	1280 2490		140 1800	620 893		50 70
19	2230		180	1770		910	1140		90
20	2740		590	1180		350	1080	30	87
21	2740		810	2110		1900	1110		90
22	2830	!	760	1320		500	1350		110
23	2830	80	611	2180	246	5 1920	1020		80
24	2320		440	1600		560 1400	645 696		50
25	1110		180	1940			i		
26	1020		170	1240		370	1050		90
27 • •	1050		170	810		90	1020		80 80
28	1530 1520		290 290	1020 1520		110 160	990 960		80
29 • •	1990		380	2150		290	870		70
31			7	2740		300			
Total	60190		12617	52890		14865	36184		3662
		J		L	L		L	1	

S Computed by subdividing day.

ROANOKE RIVER BASIN -- Continued

2-660. ROANOKE (STAUNTON) RIVER AT RANDOLPR, VA. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		JULY			AUGUST		1	SEPTEMBER	
		Suspend	ed sediment		Suspende	ed sediment		Suspende	d sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	595		60	990		80	510		10
2	1370		480	930		80	362		10
3	2150		990	900		70	306		8
4	1380		340	780		60	290		8
5	960	60	156	438		20	406		20
6	653		90	600	10	16	530		30
7	870		140	750		80	930	 1	430
8	530		70	900		100	1350		1000
9	550		70	1050		140	595		180
10	930		130	930		100	902		440
1	900		100	778		80	1620		1000
2	900		70	430		30	670	l i	90
3	930		80	390		30	570	20	31
4	870	30	70	470		40	645		50
5	620		50	490		40	1590		1200
6	550		60	490	25	33	1420		650
7	870		90	478		40	955		10C
18	1020		110	464		30	645		30
9	1050		110	400		20	570		30
0	1020		110	350		20	530		30
1	840		90	410		30	510	10	14
22	478		50	478		40	490		10
23	515		60	482	[30	342		9
24	1080	40	120	490		30	294		8
25	1050		110	474		30	358		10
6	960		100	362		30	394		10
7	960		100	346		20	394		10
8	810	1	90	530		30	414		20
9	482		40	550	20	30	490		10
30	790		60	530		30	780		40
31	1180		100	530		10			
otal	27863		4296	18190		1419	19862		5488

ROANOKE RIVER BASIN--Continued

2-715. DAN RIVER AT LEAKSVILLE, N. C.

		Color	18	20	'n	25	35	15	80	3 8	12	22	20	12	1.5	80	17
		甁	8.9	7.3	7.4		7.2	9.9	uc.	7	7.5	9.9	6.9	7.1	7.0	7.2	1
	Specific conduct-	mhos at 25°C)	63	55	56	20	52	59	44		25	09	62	62	89	09	88
	Hardness as CaCO,	Calchum, Non- magne-carbon- sium ate	0	0	0	0	•	0	c		0	0	0	0	c	0	0
			20	17	16	91	16	16	1.9	1 5	91	81	18	18	20	81	17
1963	Dissolved	(residue at 180°C)	A53	46	20	48	47	A45	40	47	A 44	57	55	51	89	A52	50
ember		trate (NO ₃)	0.7	s.	6.	6.	.7	2.2	,			1.0	20.	.7	1.0	1.0	8.0
o Sept	Fluo-	ride (F)	0.0	•	۲.	۰.	•	٦.	6			°.	•	7	٠.	7	0.0
water year October 1962 to September 1963	Chloride	(C1)	2.5	3.9	2.9	2.5	3.2	2.5	6		2.6	3.0	2.4	2.2	2.5	2,3	2.7
year Octo	Sulfate	(30°)	2.0	3.5	3,4	3.8	4.0	4.6	4		2.8	3.8	3.0	8.8	3.0	8.4	3.4
	Bicar-	bonate (HCO _s)	32	24	24	21	22	22	,	200	92	36	27	28	32	8	26
111on,	Po-	stum (K)	1.7	1.8	1,4	1,3	1.2	1.1	9		1:1	7.	1.1	1.6	1.6	7.5	4.1
Chemical analyses, in parts per million,	Sodium	(Na)	5.1	3,6	4.5	3.7	4.8	5.3	6	4	4.5	4,2	4.4	4.2	6.4	5.3	4.4
in par	Mag-	Stum (Mg)	1.7	5,5	1.4	1.6	1.5	1.7	-		1.4	1.4	1.6	1.6	1.8	2.0	1.6
llyses,	Cal-	cium (Ca)	5.1	4.5	4.2	4.0	3.9	3.5	ç.,	or.	4.2	5.0	4.8	4.8	5.1	9.0	4.4
ical ans	T C	(Fe)	0.14	\$	10.	.03	50.	.03	8	2	80	.03	.02	60.	.03	8	0.05
Chem	Siltes	(SiO ₂)	18	15	12	14	14	13	10	17	14	11	18	17	17	17	16
	Mean	discharge (cfs)															
		Date of collection	0ct. 1-31, 1962	Nov. 1-30.	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-5	Mar. 6-19.	Mar. 20-31	Apr. 1-30.	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted average

A Calculated from determined constituents.

ROANOKE RIVER BASIN---Continued

2-715. DAN RIVER AT LEAKSVILLE, N. C. --Continued

	Aver-	age	61 49 39	36 49	60 65 73	76 76 69
	_	_	35	32	181	73
		30 31	53 5			74 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		29	5.2 4.8 3.8 3.8 3.8	32 32	59 61 66 69 74 75	7 97 7 9 7 9
		28	35.0	50.00	3 3 2	90 179
		27	34.00	538 2	7 4 5	8 6 4 9
		26	044	32	312	78 71 64
963		25	52 47 35	34 39 54 52	65	76 76 61
to September 1963 22007		24	3 8 8	32	62 66 70	75
ешр		23	58 38	36	64 69 72	74 78 67
Sept		22	3478	32	427	78 76 69
to S 2200		21	39	2 6 6	68 73	8 5 5 8 5 0
1962 and		20	6 4 4	3 4 6	80°7 40°4	80 78 72
or 1		19	62 50 41	38	62 70 70	81 76 74
tob		18	53 38	32	66	80 73 68
lemperature (°F) of water, water year October 1962 $\angle O$ nce-daily measurement between 0700 and		17	69 51 36	32	100	75 72 69
yea	Day	16	940	434	56 68 72	71 76 74 73 70 68
ter		15	47 47 37	8 60	56 68 72	
wa		14	33.00	4 3 4 8	57 66 76	70 72 77 76 74 72
ter,		13	66 49 32	8 6 4 6 6 4	57	
wa.		12	51	49 32 46	58 76	73 76
dat.		=	36	432	59 79	72 81 73
ece-		2	38	32 50 50	59 80 80	72 78 70
ere Ø		٥	6 4 4 6 8 0	32	5.5 7.5 7.5	27 87 87
rat		8	8 8 1	32	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	76 78 68
эшре		7	0 4 4 8 4 4	6 4 4 2	59	282
Ţ		9	044 000	2 6 2 5	58 64 74	47 80 70
		5	63	37	64	26 80 73
		4	61 50 48	35	62 64 67	77 76 77 80 72 72
		ო	61	333	62 61 68	77
		2	62 50 47	320	58 60	77 77 78 78 72 72
		-	61 52 49	32	500	
	Month	Month	October November December	January February March	April May. June	JulyAugust

ROANOKE RIVER BASIN -- Continued

2-755. DAN RIVER AT PACES, VA.

LOCATION.—At gaging station at bridge on State Highway 658, 0.5 mile southeast of Paces, Halifax County, 0.5 mile upstream from Big Toby Creek, and 2.7 miles upstream from Birch Crek. DRAINAGE AREA.—2,550 square miles, approximately, RECORDS AVAILABLE.—Chemical analyses: October 1955 to August 1956.
Water temperatures: January 1954 to September 1956.
Sediment records: January 1954 to September 1963.
EXTREMES, 1954-57.—Sediment concentrations: Maximum daily, 2,260 ppm July 13, 1955 and Sept. 18, 1957; minimum daily, 10 ppm Jan. 17, 1956.
Sediment loads: Maximum daily, 4,200 tons Sept. 18, 1957; minimum daily, 11 tons Sept. 23, 1956.
REMARKS.—Sediment samples collected daily from January 1954 to June 1957 and at approximately ten-day intervals and during flood stages from July 1957 to September 1963.

Suspended sediment, water year October 1962 to September 1963

Day Mean clarge (cfs) Mean concentration (ppm) Mean charge (cfs) Mean concentration (ppm) Mean charge (cfs) Mean concentration (ppm) Mean co			OCTOBER			NOVEMBE	R			DECEMBER	
Day discharge Carbon C			Suspend	led sediment		Suspen	ded s	ediment		Suspen	ded sediment
2	У	dis- charge	concen- tration	per	dis- charge	concen- tration		per	dis- charge	concen- tration	Tons per day
1150					1200					1	360
4 1180 250 1400 110 1790 5 1250 270 1610 90 5260 6 1610 90 5260 80 6650 7 1610 93 404 1450 80 6650 9 875 190 2070 340 3400 100 1220 230 13900 1410 \$ 57400 2920 11 1350 260 21800 856 \$ 48700 2840 12 1450 230 13900 9700 2530 13 1350 50 180 4305 1600 2320 14 1350 160 2680 <t< td=""><td>•• </td><td>1020</td><td></td><td></td><td>1220</td><td></td><td></td><td></td><td></td><td> </td><td>350</td></t<>	••	1020			1220						350
4 1180		1150		220	1350		i	70	1790		290
5 1250		1180	[250	1400			110			240
7.				270	1610		l	90	5260		11000
8. 1250 300 1400 80 4360 100. 1220 1990 2320 11. 1350 230 13900 1410 \$ 57400 2920 11. 1450 230 13900 1410 \$ 57400 2920 11. 1450 230 13900 9700 2530 133. 1350 50 180 4360 1600 2320 177. 1250 160 2250 490 2040 177. 1250 160 2550 490 2040 177. 1250 100 3600 3700 2180 199. 1180 100 8500 17000 2600 199. 1180 100 6180 55500 2600 50 21. 1120 90 4360 2700 2600 55500 2600 50 21. 1120 90 5960 9300 2600 22. 1120 90 5960 9300 2600 23. 1200 100 6200 10000 2840 23. 1200 60 3320 19900 2390 23. 1200 60 3320 19900 2390 25. 1120 60 3320 1900 2390 25. 1120 60 3320 1900 2390 26. 1080 60 2530 440 4600 27. 1050 18 51 2390 65 419 3640 27. 1050 18 51 2390 65 419		1610		390	1610			90			20000
9. 875 190 2070 340 3400 100. 1220 230 13900 1410 \$ 57400 2920 111. 1350 260 21800 856 \$ 48700 2530 113. 1390 50 180 4350 1600 2530 1600 2320 150. 150. 150. 150. 150. 150. 150. 150.						1				1	6100
10.	••	1250			1400			80			3300
11 1350	• •						1			_	2300
120	••	1220		230	13900	1410	S	57400	2920		1700
13-0 13-0 50 180 3350 1600 2320 14- 1350 180 3080 1000 2180 15- 1200 160 2680 800 2320 16- 1150 120 2460 660 2320 17- 1250 140 2250 490 2040 18- 1200 100 3600 3700 2180 19- 1180 100 8500 17000 2600 19- 1180 100 6180 5500 2600 50 11- 1120 90 4360 2700 2600 21- 1120 90 5960 9300 2600 22- 1120 90 5960 10000 2840 24- 1180 60 4680 4800 2390 25- 1120 60 3320 1900 2390 26- 1080 60 3080 1000 3000 27- 1050 18 51 2390 65 419 3640 28- 1100 60 2530 440 4600 29- 1000 50 2460 400 4760 300 975 50 2320 380 7840 310 1120 60 8170						856	s				1500
1350					13300						1200
150		1350	50	180	4350		İ	1600			1000
16 1150 120 2460 660 2320 17 1250 140 2250 490 2040 18 1200 100 3600 3700 2180 19 1180 100 6180 5500 2600 500 2600 17 120 90 4360 5500 2600 22 1120 90 5960 9300 2600 22 1120 90 5960 9300 2600 22 1120 90 5960 9300 2600 22 1120 60 3200 10000 2840 22 1120 60 3300 10000 2390 25 1120 60 3300 1000 2390 25 1120 60 3300 1000 2390 26 1080 60 3300 1000 3000 27 1050 18 51 2390 65 419 3640 27 1050 18 51 2390 65 419 3640 29 1000 60 2530 440 4600 29 1000 50 2460 440 4600 29 1000 50 2460 400 4760 29 1000 50 2320 380 7840 30 975 50 2320 380 7840 31 1120 60 8170		1350		180	3080		1		2180		820
17.	••	1200		160	2680			800	2320		810
1200						1	Ì				750
1180		1250					1				610
20.	• •	1200		100	3600		1	3700			530
21 1120 90 4360 2700 2600 22 1120 90 5960 9300 2600 23 1200 100 6200 10000 2840 24 1180 60 4680 4800 2390 25 1120 60 3320 1900 2390 26 1080 60 3080 1000 3000 27 1050 18 51 2390 65 419 3640 28 1100 60 2530 440 4600 29 1000 50 2460 400 4760 29 1000 50 2320 380 7840 31 1120 60 8170	••	1180					1				490
22 1120 90 5960 9300 2600 23 1200 100 6200 10000 2840 24 1180 60 4680 4800 2390 25 1120 60 3320 1900 2390 26 1080 60 3080 1000 3000 27 1050 18 51 2390 65 419 3640 28 1100 60 2590 440 4600 29 1000 50 2460 400 4760 29 1000 50 2320 380 7840 31 1120 60 8170	••	1180		100	6180			5500	2600	50	351
23.			180 120 120 200 180 120 180 120 180 1- 120 1- 121 1- 12		4360		-				280
24 1180 60 4680 4800 2390 255. 1120 60 3300 1900 2390 266. 1080 60 3080 1900 3000 277. 1050 18 51 2390 65 419 3640 288. 1100 60 2530 440 4600 299. 1000 50 2460 400 4760 300. 975 50 2320 380 7840 31. 1120 60 8170	••	1120		90	5960		1				280
25 1120 60 3320 1900 2390 26 1080 60 3080 1000 3000 27 1050 18 51 2390 65 419 3640 28 1100 60 2530 440 4600 29 1000 50 2460 400 4760 30 975 50 2320 380 7840 31 1120 60 8170	••	1200		100	6200		1				310
26 1080 60 3080 1000 3000 27 1050 18 51 2390 65 419 3640 28 1100 60 2530 440 4600 29 1000 50 2460 400 4760 30 975 50 2320 380 7840 31 1120 60 8170	••	1180 1180 1080 1050 18 1100 1000 975			4680		1				260
27 1050 18 51 2390 65 419 3640 28 1100 60 2530 440 4600 29 1000 50 2460 400 4760 30 975 50 2320 380 7840 1120 60 8170	••	1120		60	3320			1900	2390		320
28. 1100 60 2530 440 4600 19. 1000 50 2460 400 4760 10. 975 50 2320 380 7840 1120 60 8170							1				650
29 1000 50 2460 400 4760 30 975 50 2320 380 7840 31 1120 60 8170			18							1	980
29 1000 50 2460 400 4760 30 975 50 2320 380 7840 31 1120 60 8170							1			1	1100
31 1120 60 8170	••						1			1	1500
					2320		J	380			18000
	••	1120		60					8170		11000
otal 37010 4955 132710 178879 110460	al	37010		4955	132710		:	178879	110460		88381

S Computed by subdividing day.

ROANOKE RIVER BASIN--Continued

2-755. DAN RIVER AT PACES, VA. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		JANUARY	r	litiations a	FEBRUARY		CSCIMACOG	MARCH	
Ī			ded sediment		Suspen	ded sediment		Suspen	ided sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	4440		3000	2600		420	2600		740
2	3400		1900	2530		410	6070		16000
3	2760		1300	2760		450	8980		1400
4	3000		1300	2920		430	5000		4500
5	2760		1000	2840		420	3880	215	2300
6	2680		900	2600		390	13100	910	5 39100
7	2180		650	2530	60	410	23600	1010	5 63400
8	2180		500	2460	1 1	370	17500	i	23000
9	2600	60	421	2320		380	5200		2700
10	2530		410	2180		350	4050		130C
11	2530		380	1970		320	3450		790
12	2680		400	3640		2800	9950	878	5 32600
13	3880		2900	6040		9300	25800	894	5 60000
14	3960		3600	5640		4200	30900		34000
15	3160		1900	3640		2000	23500		15000
16	2840		1100	2840		1300	5970		2300
17	2680		800	2530		960	4800		2300
18	2600		700	2180		710	6920		5400
19	3080		700	2520		990	5840		2700
20	5080		6400	4280		3100	4730		1900
21	8170		7100	3960		1200	4570		1700
22	6470	i	2700	3240		700	4090		1400
23	4440		1300	2680		510	3770		1200
24	3560		860	2460		400	3530		1000
25	2840		610	2320		340	2810		830
26	2460		430	2460	50	332	2730		770
27	2530		410	2390		350	3210		870
28	2390		390	2460		330	3370	100	910
29	1970		290 280				3130 2890		850 780
30	2110 2530		380				2810		720
Total	100490		45011	82990		33872	248750		322460
		APRIL			MAY			JUNE	
+									
1	2260		520	2570	<u></u>	350 330	3690 2390		2500 1200
2	2330 2570		500 560	2410 1980	55	294	1730		580
3	2650		570	1850	99	270	1610	1	430
5	2570		520	1910		310	1730	90	420
.	2490		500	1400		210	1790		390
7	2570	! [520	1670		250	1610		350
8	2570		560	1670		250	1670		36C
9	2410		520	1730		280	1610		300
10	2260		460	1670		270	1450		250
11	2260	65	400	1610		240	1400		230
12	2120		370	1550		210	1300		250
13	2050		330	1400		170	1300		260
14	2050		330	1450		200	1250		220
15	1850		270	1450		160	1200		210
16	1850		250	1500	40	160	1170		220
17	1910		260	1610		260	1100		210
18	1910		260	1980		530	1150		220
19	1910		230	2120		830	1250		240
20	1910		230	1520		640	1350	65	240
21	1790		220	1550		540	1350		240
22	1730		230	1730		510	1790		310
23	1730	50	230	1790	90	435	1670		270
25	1850 1850		250 270	1730 1550	==	440 420	1350 1220	==	220 200
								1	222
1	1790		240 230	1450 1450		390 390	1300 1350	==	230 240
26	1240		230			340	1350		240
27	1730		230						
27	1730		230	1500 1850					250
27	1730 1550	===	230	1850		600	1450		250 230
27	1730								250 230

S Computed by subdividing day.

ROANOKE RIVER BASIN--Continued

2-755. DAN RIVER AT PACES, VA.--Continued

Suspended sediment, water year October 1962 to September 1963--Continued (Where no concentrations are reported, loads are estimated)

		JULY			AUGUST			SEPTEMBER	
		Suspend	led sediment		Suspend	ed sediment		Suspende	ed sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	1120		180	1270		820	1350		470
2	1120		180	1040		730	825		280
3	2070		2800	1230		960	555		190
4	2330		5500	800		380	514		170
5	1730		3200	875		280	900		490
6	1100		1300	538	100	145	1250		540
7	1000		840	875	1 [200	1350		400
8	950		600	950		210	1400		380
9	950		440	875		190	950		240
10	950		330	900		190	700		150
11	1100		310	875		190	900		190
12	1050		260	585		130	975	·	210
13	1150		250	426		90	1020	80	220
14	1100	75	220	514		110	1000		220
15	950		180	645		140	1670		360
16	650		120	750	76	142	1400		300
17	850		160	825		160	925		190
18	1050		180	775	1	150	1050		200
19	1100		210	542		100	1050		180
20	1080		190	374		70	1020		140
21	1050		180	466		90	95∪	55	141
22	850		150	750		160	925		120
23	625		110	890		240	650		90
24	1120	205	620	900		240	675		80
25	1400		910	840		180	490		50
26	1300		420	680		130	800		90
27	1180		290	620		100	850		90
28	1400		340	1140		620	875		90
29	1000		240	1280		1000	1450		530
30	1000		320	1120	150	454	3460		5400
31	1550		1200	1300		510			
Total	35875		22230	25650		9111	31929		12201
			(cfs-days), s)						. 970584 . 754679

28

A Calculated from determined constituents.

Color

ROANOKE RIVER BASIN--Continued

2-810.94. ROANOKE RIVER AT JAMESVILLE, N. C.

Chemical analyses, in parts per million, water year October 1962 to September 1963

	_	٥			_						_	_	_		
		뛵.	7.3	7.1	6.8	6.9	6.9	6.9	6.9	6.9	7.4	7.1	7.4	7.6	1
Specific	- conduct	(micro- mhos at 25°C)	110	115	105	93	91	96	68	95	66	105	105	105	101
	as caco,		0	0	0	0	0	-	0	0	0	0	0	0	0
L		Calcum, Non- magne-carbon- sium ate	31	32	29	26	26	27					30		29
7	Dissolved	(residue at 180°C)	76	A72	89	89	64	69	75	64	73	72	42	A66	7.1
	Ni.	trate (NO ₃)						1.0		1.6	1.8	2.5	1.6	.8	1.5
	Fluo-	ride (F)	0.1	٠.	۳.	٥.	0.	o.	0.	•	•	٦:	-	.2	0.1 1.5
		(CI)	6.0	7.3	6.4	6.4	5.5	7.1	5.3	4.8	4.9	4.8	4.4	5.7	5.7
	Sulfata	(30,	7.0	8.4	7.2	6.4	8.0	7.0	8.0	8.0	7.2	8.8	8.0	7.8	7.6
	Bicar-	bonate (HCO ₃)	45	45	42	37	33	32	35	34	36	39	41	44	39
ė	- 64	Sium (K)	2.2	2.4	5.6	2.6	2.5	5.0	1,7	2.1	1.7	2.4	2.2	1.4	2.1
	Godium	(Na)	9.3	91	8.0	7.7	7.3	7.3	6.5	7.4	7.1	7.8	8.2	7.4	7.8
;	Mag-	sium (Mg)	2.4	2.6	4.5	2.3	2.5	2.5	2.5	5.3	4.5	2.4	2.5	2.8	2.5
	Cal-	Cium (Ca)	8.4	8.2	7.5	8.9	6.3	9.9	7.1	9.9	6.9	7.9	8.3	7.9	7.4
	10.1	(Fe)	ļ					.14	.07	.07	80.	8	8.	. 03	0.07
	041140	(SiO ₂)	9.2	9.4	10	9	11	=	8.3	9.0	8.7	9.7	6.6	9.6	9.6
	Mean	discharge (cfs)													
		Date of collection	Oct. 1-31, 1962	Nov. 1-30	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31	Apr. 1-30	Eay 1−31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted average

ROANOKE RIVER BASIN--Continued

Aver-	age	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36 36 36 37	61 67 74	80 82 74
	-	3 1 6	38		
	30 3				
	-	39 20	36 37	4 6 6 8	69
	3 29	84.6	35 1 55	400	82 79 68
	, 28	8 6 9 4	33	4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	891
	27	0 4 4	39	65	81 79 69
	26	61 39	39	1 8 8 2 7 5 5	102
	25	39	94 4 9 8	25	80 70
	24	65 39	39	68	81 81 72
	23	52	649	67 68 74	81 81 73
	22	8 6 6 6 0 6 0	4 4 4 4 0 6 4 0 6	65 68 73	81 82 73
	21	69 52 39	42 41 52	64 68 74	80 81 72
	20	53	40 52	62 68 75	81 81 72
	19	70 54 38	141	62 68 76	80 81 73
	18	72 53 38	40 38 53	60 67 75	80 81 73
	17	73	37	58	80 81 74
Day	9.	73 52 39	37	58 75	79 82 74
_	15	220	£ 6 6 4 6 6	269	73
	14	71 53 40	200	59	79 83 75
	13	1237	4 6 4	58	78 76
	12	53	0 7 9	58 68 76	80 84 76
		F13	304	57	79 77
	10	149	0 7 6 4	58 75 75	7.5
	0	717	38 1 5	26 4	1 90
	8	55	6 9 9	58 73	79 77
	7	200	000	73 7	79 7 84 8 77 7
	9	220	37		85 77
	5	50 5	36 3	58 57 63 64 71 72	80 8 84 8 77 7
	4	929	989	63	80
	8	969	8 8 H	70 7	80 8 85 8 78 7
	2				
	<u> </u>	68 68 58 58 50 50	38 37 38 37	58 63 68 68	79 80 83 84 79
	L				
Month	MODEL	October November December	January February March	April May. June	JulyAugust

ROANOKE RIVER BASIN -- Continued

2-811.19. CASHIE RIVER AT WINDSOR, N. C.

LOCATION. --Three-fourths of a mile south of Windsor, Bertie County, 4.8 miles above Wading Place Creek. DMAINAGE AREA. --The Square miles. RECORDS AVAILABLE. --Chemical analyses: October 1961 to September 1963. REAMANS. --No discharge records available.

ŭ	Sodium Po- Bicar- Sium (HCO ₂) (K)
6.4	2.19 22 3.2 8.42 1.18 8.42 1.10 8.42 1.10 9.42 1.10 9.42 1.10 9.42 1.10 9.42 1.10 9.42 1.10 9.42 1.10 9.43 1.10 9.43 1.10 9.43 1.10 9.42 1.10 9.43

Color

9298881

ALBEMARLE SOUND

2-811.53. ALBEMARLE SOUND NEAR EDENTON, N. C.

OCATION ... - At bridge, draw section on State Bighway 32, 7.6 miles southeast of Edenton, Chowan County.

MANIMOR MEN. 114.60 square miles

RECOMES AVAILABLE.—Chonstal analess of coloner 1957 to September 1963.

RECOMES AVAILABLE.—Chonstal analess of coloner 1957 to September 1963.

RECOMES 1952-53 —Chon 146 * Maximum, 2,085 ppm Dec. 19 (B); minimum, 7.8 ppm Apr. 1-29.

Specific conductance: Maximum as ally, 8,000 micromics bec. 19 (B); minimum, 7.8 ppm Apr. 1-29.

RETREES 1952-54 ppm Apr. 1-29.

RETREES 1952-55 ppm Apr. 1-20, 100 ppm Nov. 2, (C); minimum, 307 and 2, 70. 1958.

SPECIFIC conductance: Maximum as 11, 20,000 ppm Nov. 4, (B), 1953 ppm Apr. 1-30, 1958.

Recommended to the statement of th

EMARKS. -- Salinity station. Top (T) and bottom (B) samples were collected once daily. No discharge records available.

퓑 Specific conductance (micromhos at 25°C) 145 100 100 110 120 120 120 120 magne-carbon-Non-Hardness as CaCO, ate Calcium, 8222232 stum Dissolved solids (residue at 180°C) A87
73
71
82
81 trate ô ż 252777 Fluo-ride (F) 0 4 4 6 4 1 Chemical analyses, in parts per million, March to May 1963 Chloride ਹ 2.88.8.9.9. Sulfate (SO₄) Bicar-bonate (HCO₃) 2228222 Po-tas-stum (K) 0.8.4.2.2 Sodium (Na) 10 8.0 7.4.0 Mag-ne-sium (Mg) Cal-cium (Ca) 8.020.444 1.00.41 Fe) Silica (SiO₂) 10 9.5 8.6 7.2 7.2 Mean discharge (cfs) Mar. 1-2, 1963.
Mar. 3-9, 10(T).
Mar. 11-29.
May 4-8, 9(T).
May 4-8, 9(T).
May 31. Date of collection

A Calculated from determined constituents.

ALBEMARLE SOUND -- Continued

2-811.53. ALBEMARLE SOUND NEAR EDENTON, N. C .-- Continued

١ ١	1					
September	Bottom	207 182 220 220 223	188 188 199 325 375	110 1113 1168 1168 260 325 325 325 375	275 375 188 126 188	223 80 81 81 650
Septe	Top	179 166 164 166 223	193 191 179 75	375 425 275 275 164 163 400 325 113 113	221 221 163 127 121	105 87 164 83 350
181	Bottom	113 108 104 310 325	290 211 208 265	179 1117 340 310 270 230 204 188 455	425 325 518 580 168	207 300 510 520
August	Top	142 147 105 200 215	204 244 229 208 224	245 1211 285 295 295 275 230 243 263 223 223 233	265 87 102 131 193	167 130 144 142
	Bottom	229 242 155 155	112 118 152 88 88 50	82 82 82 76 161 161 257 290 265 203	200 215 177 167 154	150 152 155 161 231
July	Top	69 56 108	110 90 70 91	78 77 77 79 59 59 122 122 126 166	188 192 184 	106 108 84 84 158
	Bottom	21 55 55 61	60 59 108 96 96	1233 1255 671 671 671 671 671 671 671 671 671 671	352 352 353 38	40 32 128 215 229
June	Top	18 48 50 39	66 4 4 4 6	58 67 70 70 51 51 48	50 38 63 21	2211224
A	Bottom	56 56 56	56 118	139 144 104 104 106 106 106 108 108 108 108 108 108 108 108 108 108	4 1 4 4 6 5 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	41 46
May	Top B	24 19 19	4 8	220 220 220 220 230 230 240 250 250 250 250 250 250 250 250 250 25	40 44 11 84	4 ;
	Bottom			4.7		35
April	Top B			7.8		88 1
ą	Bottom	24	114		ı.	
March	Top	72	41			
Ę.	Bottom	170 169 14 12 13	300 325 92 119 118	116 99 91 81 83 75 75 75	424 4 24 4	24411
February	Top B	167 19 14 14	160 60 103 91	99 99 99 99 90 60 60 55	452 400 64 64 64	44411
E.	Bottom	375 425 555 425 425	1250 1250 775 575 575	1925 1020 800 2125 525 525 600 850 2530 1200	2350 2350 2300 412 1100	1000 975 425 525 600
January	Top B	375 425 375 425	300 400 400 525 525 525	3350 3350 60325 60355 600 64450 6475 6555 6555	425 425 450 020	1050 880 425 300 300
ia B	Bottom	715 675 675 950 525	525 825 1000 975	880 880 880 1525 11520 11950 87725 8825	1520 1700 925 925 1000	555 500 500 500 500 500 500 500
December	Top B	700 670 650 500 525	525 800 1000 975	880 4450 700 700 500 500 1050	1020 1020 925 915 750	555 525 525 525 525 525 525
per	Bottom	525 525 525 715 675	650 625 800 1000 675	650 600 625 600 600 600 1125 1125 650	1150 880 625 625 555	650 625 400 675 715
November	Top Bo	525 525 525 675	62555 6255 6255 6255 6255 6255 6255 625	0.00.00.00.00.00.00.00.00.00.00.00.00.0	525 525 525 555 555	625 625 108 675 675
er	Bottom	230 94 91 200	200 300 180 150	150 300 1250 400 300 215 220	900 935 445 655 655 655 655 655 655 655 655 65	625 750 900 625 650
October	Top B	230 96 94 75	78 108 110 165 165	275 275 300 275 300 300 225 220	450 425 425	0009
ŏ	٠.,					

ALBEMARLE SOUND--Continued

2-811,53, ALBEMARLE SOUND NEAR EDENTON, N. C. --Continued

Temperature (°F) of water, water year October 1962 to September 1963 f by and bottom once-daily measurements at approximately 120Q

	ver-	ا ۾	e (~	N.ec	m er	on on	0. 0.	2.4	40	9.9	915	٥٨	0.0	2.1
L	Aver	ē	6.8	52	43	38	3.9	52	60	99	76	80	808	72
		<u>ج</u>		11	39	38	11	58	11	69	11	808	77	11
	-	8		52	1 4	37	11	58	63	20	81 78	81	78	99
	Ŀ	29	55	53	3 4	36 8	11	57	61	6.8	78	8 2 8 2	78	69
1	- ⊢	8	55	50	39	37	37	62 58	62	68	82 79	808	77	65
1	L	27	5.6	4 4	40	38	37	55	63	9 9	79	81	77	6.5
	\perp	56	62	50	1 0	38	0 4 0	5.5	61	65	82	8 8	78	67
	-	22	62	50	37	3 8	0 0 0	57	61	65	75	80	79	67
1000	-	24	62	52	38	4 4	4 4	52	63	69	2,2	18	81	669
	-	23	11	51	39	4 4	39	51	44	68	7,4	808	83	70
approximately	H	22	99	4 5	39	4 4	37	50	449	69	73	8 8	81	73
	-	2	6,8	5.5	38	2 4 4	44	53	63	68	73	81	26	120
	-	20	8.8	51	9.04	4 5 2	45	55	63	6.8	2.2	81	808	72
1		62	6.89	4 4	39	4 5 4 3	39	4 50	- 62	69	22	80	88	7.17
2	Ŀ	<u></u>	69	5,5	45	39	6 9	52	61	69	22	80	79	6.8
		=	120	52	4 4	4.4	0 0	55	50	6.5	7,2	800	80 79	6.8
1	- }-	9	120	51	38	1 1 1	37	53	50	3 4 9	7,	78	79	6,6
meran cananca	-	22	72	51	38	38	39	52	59	99	77	81	79	12.1
	\perp	7	72	22	1 38	9 8 0	44	7,4	578	4 4	77	79.11	88	73
1	-	22	72 72	53	38	4 6	39	5.5	58	4 4	76	76	8 8	73
Once-usity	-	12	72	533	38	3 6	4.4	52	50.0	44	78	5 2 2 2 2 2 2	80	75
	H	=	22	53	4 2	39	4 4	51	57	70	78	76	81	2.2
100,100	E	의	73	5.5	4 4 9 0	37	44	4 4	50.00	68	76	7.5	82	78
	-	6	73	53	4 4	37	39	4 4	99	689	90	77	82	78
don	Ľ	∞	2.69	533	6 6 4	37	3 6	4 4	20.00	64	1 *	8 81	1 83	2.2
ð	\vdash	_	70	52	4 4 8	38	39	4 4	5.89	63	76	81	3,4	7.4
	-	9	77	53	50 50	3,9	3 6 6	4 4 8	909	6.63	3 75	- 66	92	2 2 2
	H	2	20	5,5	52	36	35	7 4 4	60	62	73	97	81	76
ł	Н	4	6,69	5.55	533	3 9	35	33	2 62	2 64	0 72	9 79	80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-	\perp	8	8 8	55.55	7 T	38	36	41	62	62	170	81	80	76
	-	2	899	5.5	52 51	33.55	38	42	26.6	62	69	3 81	83	5 76 5 76
-		-	88	52.52	53	39	38	77	50.0	6.52	66	79	833	76
	Month		October Top Bottom	TopBottom	Top.	January Top Bottom	TopBottom	Top	April Top Bottom	Top Bottom	Top	July Top Bottom	Top	Top

8 1 2 3 9 9

126,50,50

Color

280 200

130 120 320 320 320

SCUPPERNONG RIVER BASIN

2-811.66. SCUPPERNONG RIVER NEAR CRESWELL, N. C.

Chemical analyses, in parts per million, water year October 1962 to September 1963

H	6.5 7.0 7.0 7.0	6.4 6.5 6.8 7.1	7.2 7.2 7.2 6.1 6.6	7.5
Specific conduct- ance (micro- mhos at 25°C)	210 210 120 120 120	94 99 95 98 115	140 130 140 88 105	81 011 110
Hardness as CaCO ₃ Calchum, Non- magne-carbon- slum ate	10 10 12 19 18 18	16 14 14 14 15 16	2444942	21 21 21
	484444 044801	333332	4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38
Dissolved solids (residue at 180°C)	100 126 145 106 115	A100 100 88 88 88 92 92	107 112 112 C108 B66 122	102 D122
Ni- trate (NO ₃)	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7.2.2.4.4. 0.4.6.4.4.	2.1.6 2.1.6 1.4.1	1.3
Fluo- ride (F)	1 1 2 2 2 2 2	444444	041888	E. C. 0
Chloride (Cl)	46. 46. 44. 44. 44. 44. 44. 44. 44. 44.	11 11 10 12 9.0	12 21 21 10 10	9.0
Sulfate (SO ₄)	9.0 10 14 14 14	13 13 11 11 11 9.6	10 12 12 9.6	9.8
Bicar- bonate (HCO ₃)	85 33 8 0 3 3 8 0 3 3 8 0 3 3 8 0 0 3 3 8 0 0 3 3 8 0 0 3 3 8 0 0 0 0	11 18 16 19 28 26	40 30 31 15 30 30	32 32
Po- tas- sium (K)	C 1454.	1.3	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1:5
Sodium (Na)	9.8 11 11 8.5 9.0		8.7. 18.8	4.00
Mag- ne- sium (Mg)		44.46.00 084.440	20 00 00 00 00 00 00 00 00 00 00	3.2
Cal- ctum (Ca)	122231	48.6.6.00	113 110 10 7.5 9.6	6.8 10 9.4
Iron (Fe)	24.0 1.8. 1.8. 1.8. 1.8. 1.8.	.31 .32 .35 .35	.67 .67 .81 .80	.60
Silica (SiO ₂)	12 12 12 12 12 12 13	9.6.5.7.	9.1 9.7 111 13	13
Mean discharge (cfs)				
Date of collection	Oct. 1-30, 1962 Oct. 31 Nov. 1-17 Nov. 21-30 Dec. 1-31	Jan. 20-31. Feb. 1-15. Feb. 17-28. Mar. 1-31. May 1-2.	May 4-15. May 17-31 June 1. June 28-30 July 1-31.	Aug. 1-31 Sept. 1-27 Time-weighted average

Organic matter present; sum of mineral constituents 54 parts per million.

million. per 1 Calculated from determined constituents.
Organic matter present; sum of mineral constituents 58 parts
Organic matter present; sum of mineral constituents 73 parts
Organic matter present; sum of mineral constituents 73 parts

SCUPPERNONG RIVER BASIN--Continued

2-811.66. SCUPPERNONG RIVER NEAR CRESWELL, N. C.--Continued

	Chlor	ide, in	parts	per mil	lion, w	ater ye	ar Octo	ber 196	2 to Se	ptember	1963	
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5								9.0 96	21			
6 7 8 9 10		14		14	11			12				
11 12 13 14 15	14) 15) 10	2 12		9,0	12	8.0	9.2
16 17 18 19 20		170 48 175			43			123				
21 22 23 24 25		19		9.5	11			10				
26 27 28 29 30 31	9.3] = =				10			46 38 38

SCUPPERNONG RIVER BASIN--Continued

2-811.66. SCUPPERNONG RIVER NEAR CRESHELL, N. C.--Continued Temperature (*P. Of water, water year October 1963 to September 1963

		l						١				I	l		ļ		l		ļ	l	l			ł	
	1							ĺ		Day	ı			-			ļ	ļ				ı	ı		Aver-
9		7 8	٥	Q.	=	12	13	14	15 16 17	9	7	18	19 2	20 21	1 22	2 23	24	25	26	27	28	29	30	31	age
70 7		02 02	70	7.0		23	70 7	70	70 7	20 22	70 7	70 7	70 70 56 56		70 70 56 55	5.5	565	65	50 50	62 50	60	52	60	91	68 56
_	Ň		4.5	4 5	45			_						_		_		4		4 8	94			4.5	41
	0	4	4	42	7 7 7				- 4								- 4	4		45	9	4.1	4.1	7	45
45 52		48	8	8		20	20	84	49	7 54	484	4 8 4	46 50	-	50 46	_	94 94	45	45	45	45	1	1	1	۲,
26		9	3	9	9			_		_		_	_		0 62	<u> </u>	69	65	9	9	69	89	2	20	9
89	00	8	67	65	65		9 79			_	- 62				-5-		2	2		72	2	2	2	1	69
70 69	ō	2	2	75	7.2	15	747	72	75 7	72	747	75 7	75 7	_	74 75	_	68		49	49	65	99	89	89	2
7.5	'n	42	25	2	16		77 7				747	_	44 4		4 72	7.5	72	_		7.2	±	_		1	4.
7.8	80	78		92	17		78/7		79 7				-6				8			80	80			- 82	42
78 79	9	4	_	19 79	8	81	81	- 82	72 7	122	75 7	75 7	75 76	_	76 77	77	77	77	92	26	19	42	11	11	11
_	'n	75	_	25	15		89	_	68	-			7	_				_		69	89		-	1	7.1

PAMLICO RIVER BASIN

2-830. FISHING CREEK NEAR ENFIELD, N. C.

LOCATION. --Temperature recorder at gaging station 15 feet downstream from bridge on U.S. Highway 301, 2,000 feet downstream from Atlantic Coastline Ealized bridge, 2 miles southwest of Enfeld, Hailfax County, 4.8 miles downstream from Bocky Creek, and 40 miles upstream from mouth. DRAINAGE AREA. --521 quarte miles southwest 104 September 1949.

Water temperatures: October 1948 to September 1953 to September 1963.

Water temperatures: October 1948 to September 1953 to September 1963.

Water temperatures: October 1948 to September 1953 to September 1963 to September 1963.

EXTREMES, 1968-69. 1953-63. --Water temperatures: Maximum, 86°F on several days in 1948, 1958, and 1963.

EXTREMES, 1968-69. 1953-63. --Water temperatures waterman for sone several days in 1948, 1958, and 1963.

		Che	mical a	nalyses	, in pai	rts per m	1111on	, water	year Octo	Chemical analyses, in parts per million, water year October 1962 to September 1963	to Sep	tember	1963				
	Mean	1	į	Cal-	Mag-	1	P.	Bicar-		47.07.0	Fluo-	ĸ.	Dissolved	Fluo- Ni- Dissolved as CaCO, conduct-	Specific conduct-		
Date of collection	discharge ((g g	(Fe)	Ctum (Ca)	(Fe) Clum sium (Mg)	(Na) stum (HCO ₃)	Stun E E	bonate (HCO ₃)	8	(C1)	ride (F)	trate (NO ₃)	(residue at 180°C)	Calcum, Non- (micro- magne-carbon- mhos sium ate at 25°C)	(micro- mhos at 25°C)	뜊.	Color
Mar. 1, 1963	825	13	0.09	3.7	1.6	13 0.09 3.7 1.6 4.3 1.1 22	1.1	22	3.4		0,1	0.7	A43	16	26	8.8	18
Sept. 4	53	16	.02	5.8	1.7	4.7	2.0	30	7.2		2.0 .0	e.	A55	A55 22	9 64	64 7.4 10	91

A Calculated from determined constituents.

PAMLICO RIVER BASIN--Continued 2-830. FISHING CREEK NEAR ENFIELD, N. C.--Continued

Temperature (°F) of water, water year October 1962 to September 1963 /Continuous ethyl alcohol-actuated thermograph?

	-J:	age			0.5									•
	Aver-	ਫ਼ੌ	62	4 4 8	39	39	9.9	52	6.0	9 4 9	74 72	11	78	70
		31	51	11	36	9 m	11	8 8	_ 1 1	69	11	80	75	1
		30	51 51	4 4 0 0	38	3.4	11	58	5.0	65	78	80 78	74	65
		58	51	44	38	35	11	57 56	61	65	76	79	74	65
		28	51 50	4 4	38	3.55	37	56	62	63	76	79	74	65
		27	54 51	44	37	36 35	38	53	62	63	75	80	74	65
		26	57	9 4 9	36	36	338	54	64	63	73	80	77	65
		25	58	8 4 9	36	38	38	53	99	66	72	7.7	78	49
		24	58	50	36	3.60	39	52	6.5	67	71	11	78	99
		23	61	50	36	4.5 4.0	41	53 51	68	70	71	11	7.8	69
Ż		22	62	44	37	46	41	53	6.8	7.1	71	11	77	69
rap		77	62	4 4	36	9 4	38	56	68	69	72	11	77	69
thermograph)		20	63	8 4 8	35	10	36	55	66	68	72 71	11	7.8	- 69
ther		61	63	4 4 60 80	33	98	36	5.5	59	6.5	72	11	7.8	67
		<u>∞</u>	65	8 4 8	33	9.80	37	53	59	66	72	11	78	- 89
tuat		17	99	8 1 4	33	39.1	338	53	52	65	73	75	76	99
-ac	Day	91	99	44	33	43	38	55	57	66	76	76	76	67
- P	_	15	999	6 4 9	334	2 4	39	5.5	57	99	77	75	78	10
alcohol-actuated		4	67	20	35	2 2	41	52	57	65	77	7.2	79	4.
ethyl		23	67	50	3.6	4 4 20	4 5 7	52	57	89	13	72	980	14
		12	67	51	39	7 0 4	41	51	57	71	79	73	79	4/
/Continuous		=	99	20	39	0.80	33	2.2	58	12	78	74	75	4
tin		2	67	0.8	4.1	38	45	51	5.8	70	78	7.2	80	73
0,		6	667	8 9	6 6	36	45	52	5.0	89	76	7.5	98	73
1		æ	66	49	2 6	36	41	53	5.9	69	74	77	81	73
		7	6.5	1,4	4 t 8	3.3	38	52	59	63	47.	47	980	12
		9	63	6 4 8	0.8	9.7	38	52	65	62	73	76	80	73
		2	4,9	500	6 6 4	3,4	3.7	8 4	66	58	11	7 4	81	75
		4	62	22	6 4 9	34	37	44	69	60	70	80	80	75
		6	62 6	52	8 4	44	35	407	63	56	70	78	78	47
		2	11	200	t t 8	35	35	37	61	58	99	80	80	75
		_	11	500	4 9 4	35	34	37 - 76	80 80	58	70 1	780	80 87	15
1			1:		11		11	1:	11	11	11	11	11	:
	Month	Molitii	October Maximum . Minimum . November		December Maximum . Minimum .	Eε	Maximum . Minimum .	mum	April Maximum . Minimum .	rimum	Maximum .	unu unu		September Maximum

PAMILICO RIVER BASIN--Continued

2-835. TAR RIVER AT TARBORO, N. C.

LOCATION.—At gaging station at bridge on U.S. Highway 64, in Tarboro, Edgecombe County, 6.5 miles downstream from Fishing Creek.

RECORDS ARIANGE ZA-140 square miles, approximately.

RECORDS ARIAL-2,140 square miles, approximately.

RECORDS ARIAL-2,140 square miles, approximately.

RECORDS ARIAL-2,140 square miles, approximately.

Records Arial Edge of Crober 1944 to September 1954, October 1954, October 1961.

Sediment records: Annary 1958 to September 1963,

RYREMEN 1962-101ssolved solids: Maximum, 85 ppm ARIZ-1-31.

RYREMEN 1962-101ssolved solids: Maximum, 82 ppm ARIZ-1-31.

Specific conductance: Maximum gally, 175 milliamum, 150 ppm ARIZ-1-31.

Specific conductance: Maximum ally, 175 milliamum, 137 ppm Oct. 75 anniamum ally, 5 milliamum, 137 ppm Oct. 75 anniamum ally, 4 tons Sept. 9, 25, 28.

Sediment loads: Maximum, 22 ppm Nov. 13. miniamum ally, 4 tons Sept. 9, 25, 28.

RYREMENS, 1963-64, 1964-65, 1963-63.—Dissolved solids (1944-65, 1953-64, 1964-63). Maximum, 26 ppm Any 12, 13, 1994.

Reconstructions and Annary 1964.

Specific conductance (1964-64, 1963-64). Maximum ally, 175 micrombos Sept. 8, 1963, miniamum ally, 4 windrombos Jan. 12, 13, 1992.

Specific conductance (1964-64). Maximum ally, 175 micrombos Sept. 8, 1963, miniamum ally, 178 micrombos Sept. 8, 1963, miniamum ally, 178 micrombos Sept. 8, 1963, miniamum ally, 178 micrombos Sept. 8, 1963, miniamum ally, 176 micrombos Sept. 8, 1963, miniamum ally, 176 micrombos Sept. 8, 1963, miniamum ally, 176 micrombos Sept. 8, 1963, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 176 miniamum ally, 1768, miniamum ally, 177, 1961, miniamum ally, 176, 1966, 270, 1966, 270, 1967, 1967, 1967, 1967, 19

		Color	35	25	3 23	38	22	32	5.0	32	20	20	17	32	
		H <u>.</u>	7.1	7.0	. 8	9.9	9.9	6.3	2.5	7.2	8.9	7.0	6.8	1	
	Specific conduct-	(micro- mhos at 25°C)	110	105	76	63	65	19	91	85	105	66	115	87	
	Hardness as CaCO ₃	Calcium, Non- magne-carbon- sium ate	00	01	, 0	4	4	~	00	0	0	0	00	1	
	Hari as C	Calctum, magne - sium	8 %	24	នួន	16	17	16	2 62	22	24	24	22 24	21	
1963	Dissolved	(residue at 180°C)	70	A73	8 8	09	54	48	98	99	89	73	85	29	
tember	,ix	trate (NO ₃)	1.5	2.5	1.2	1.0	1.5	ı.	. 8	2.3	2.1	.5	2.1	1.3	
to Sep	Fluo-	ride (F)	0.0	-:		-:	۰.	-:		~		7.	i.i.	0.1	
Chemical analyses, in parts per million, water year October 1962 to September 1963	Chlorida	(15)	13.0	12	7.7	8.8	6.2	0.0	6.8	7.0	9.5	8.4	34	8.3	
year Oct	01.16.040		4.4	2.5	5.6	9.9	7.0	6.4	9.4	4.0	5.0	5.0	5.6	5.5	
, water	Bicar-	bonate (HCO ₃)	3,78	33	3 2	16	16	12	328	88	34	32	29 34	92	
11110n	Po-	stum (K)	0.2	4.1	1.7	1.7	1.9	5.5	1.5	1.7	1.3	1.9	1.8	1.9	
rts per m	Codium	(Na)	8.0	10	7.1	5.7	5.8	5.4	4. 62	8.0	6.6	6.3	ដដ	8.2	
, in pa	Mag-	sium (Mg)	1.6	2.4	1.2	1.5	1.6	1.5	2.7	1.7	2.1	9.0	2.1	1.8	
nalyses	Cal-	cium (Ca)	5.6	5.9	5.5	4.2	4.2	4.0	2.0	6,2	6.0	5.0	5.7	5.3	
nical a	1	(Fe)	0.25	.18	. 4	60.	80.	6	28	.41	90.	96.	= =	0.16	ents.
Cher	61150	(sio,	17 16	16	19	12	11	9.6	2 7	17	51	15	12	14	onstitu
	Mean	discharge (cfs)	626 336	784	1632	3801	3706	5595	1564	724	459	330	244 205	1775	stermined c
		Date of collection	Oct. 1-15, 1962	Nov. 1-11	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31	Apr. 1-30	June 1-20	June 21-30	July 1-31	Aug. 1-31	Time-weighted average	A Calculated from determined constituents.

PAMLICO RIVER BASIN--Continued

2-835. TAR RIVER AT TARBORO, N. C. --Continued Temmerature (°F) of water, water year October 1962 to September 1963

	Aver-	age	652 50 41	39 39 52	61 66 75	78 79 70
	_					
		3	56 37	37	161	82 78
		9	54 49 39	35	69	91
		29	51 48 39	33	59 67 78	78 75 68
		28	4 4 4 7 4 0 4 0 4 0 4 0	34	62 64 77	81 72 66
		27	47 45 39	36.00	62 62 77	78
		56	50 43 37	36 39 57	13 62	8 4 4 9
		25	54 47 37	37 38 53	61 63 72	77 60
		24	57 48 39	39 38 51	62 65 71	78 81 61
		23	60 50 38	3 8 6 4 6 9 6 9	67 68 70	78 78 80 81 64 61
7		20 21 22 23 24 25	54.	4 6 0 0	69 71 70	80 77 69
09157		21	62 49 39	8 4 4	717	81 77
pg		20	62 49 41	47	71	82 80 70
9		19	61 50 37	38	64 70 73	81 79 69
090		18	64 55 37	42 37 55	68	80 78 69
een		16 17 18	68 53	36	59 67 71	78 75 67
bet	Day	16	51 35	40 38 53	56 75	79 76 63
nt.	_	15	52 34	53	57 68 77	75
Once-daily measurement between 0600 and		4	69 52 34	44 42 56	57 65 75	73 78 68
/Once-daily measurement between 0600 and 09157		13	69 53 34	4 4 8 5 4 2	57	75 80 75
и		12	67 52 35	4 4 U U U U	57 66 79	73 80 75
a11		11 12	67 55 38	45 42 51	56 57 72 66 80 79	78 73 78 80 75 75
e-d		10	68 52 41	4 0 4 1 5 3	58 72 79	74 82 73
ø		٥	70 51	50.0	59	76 74 82 82 72 73
		8	64 84 85	36	58 66 77	79 82 73
		7	8 4 4 5 5	36	58 62 76	78 79 82 82 71 73
		9	64 64 64	36	61 62 74	
		5	67 67 50 49 50 49	35	60	77 77 81 82 74 72
		4	68 51 51	4 6 4	67 62 71	78 81 76
		3	65 52 51	2 9 3	200	81
		2	65 52 50	35 36 41	56	80 81 75
		-	63 51 49	333	59 63 58 56 79 79	81 79 75
	Monek	Month	October November	January February	April May	July

PAMLICO RIVER BASIN--Continued

2-835. TAR RIVER AT TARBORO, N. C .-- Continued

Suspended sediment, water year October 1962 to September 1963

		OCTOBER		ì	NOVEMBER			DECEMBER	
		Suspend	ed sediment		Suspend	led sediment		Suspende	d sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	910	52	128	331	7	6	2180	31	182
2	730	38	75	356	9	.9	1910	30	155
3	618	32	53	406	12	13	1730	29	135
4	530	28	40	565	15	23	1640	25	111
5 • •]	530	29	41	530	18	26	1550	22	92
6	582	35	55	673	21	38	1510	22	90
7	770	78	162	790	21	45	1510	19	77
8	1070	71	205	711	12	23	1510	19	77
9	790	37	79	654	17	30	1510	20	82
0	618	30	50	1380	82	306	1460	14	55
11	512	28	39	2230	130	783	1330	15	54
2	495	40	53	3540	170	1620	1290	12	42
3	440	50	59	4620	237	2960	1250	12	40
400	403	35	38	5260	142	2020	1160	12	38
5	391	30	32	4640	80	1000	1030	13	36
6	374	21	21	2160	51	297	1010	13	35
17	368	28	28	1730	39	182	1010	12	33
18	334	21	19	1550	37	155	1070	14	40
9	345 328	19	18 18	1420 1290	36 30	138 104	1070 1070	15 16	43 46
- 1		1 1			1 1			18	52
21	339 345	19	17 17	1290 1550	2 4 3 5	84 146	1070 1070	17	49
22	345 317	18	8	2240	44	266	1160	15	47
4	314	9	8	4200	105	1190	1290	22	77
5	339	9	8	5000	133	1800	1510	18	73
26	336	7	6	5520	87	1300	1820	22	108
7	336	9	8	4560	58	714	2090	30	169
8	342	9	8	3480	44	413	2030	47	258
9	325	9	8	2980	38	306	3600	5.2	505
0.0	300	10	8	2540	35 .	240	3600	48	467
31	331	9	8				3540	43	411
otal	14762		1317	68196		16237	50580		3679
		JANUARY			FEBRUARY			MARCH	
1	4140	65	727	2760	23	171	3600	27	262
2	4560	93	1150	2700	25	182	3960	31	331
3	3720	50	502	2760	28	209	4500	3.2	389
4	2810	37	281	3360	34	308	4800	38	492
5	2380	30	193	3900	29	305	4680.	46	581
6	2180	29	171	4440	33	396	4140	41	458
7	2000	22	119	4140	41	458	4140	49	548
8	1860	18	90	3660	32	316	5060	94	1280
9	1730 1680	15	70 77	3300 2880	31 24	276 187	6110 6990	201	3320 2680
- 1		1 1		į.	1 1			1 1	
1	1590	17	73	2540	21	144	7760	109	2280
2	1510	15	61	2340 2820	24 35	152 266	7830 6450	80 52	906
3	1510 1590	18	73 77	2820 3960	46	492	6050	57	905
15	1680	19	86	4860	72	945	6520	68	1200
16	1910	18	93	4800	67	868	7130	70	1350
17	2000	19	103	4020	40	434	7760	48	1010
18	1770	19	91	3240	30	262	7190	48	932
9	2090	32	181	2820	27	206	7470	48	968
20	3660	60	593	3540	48	459	7910	70	1490
21	5890	96	1530	4320	42	490	853C	78	1800
22	7770	109	2290	5190	84	1180	877C	50	1180
23	8690	82	1920	5450	108	1590	791C	48	1030
24	9660 9660	70 51	1830 1330	4860 4080	50 38	656 419	613C 458C	41	679 594
- 1		1 1		ł	1			1	
26	7870	40	850 551	3720 3720	29 23	291 231	372C 312C	44	442 388
27	6180 5050	33	551 436	3600	23	224	2880	49	381
9	4260	25	288	3600	23		2760	46	343
	3480	20	188				2640	50	356
30							2340	47	297
30	2940	20	159	i			2340	41	291

PAMLICO RIVER BASIN--Continued

2-835. TAR RIVER AT TARBORO, N. C .-- Continued

Suspended sediment, water year October 1962 to September 1963--Continued

- [APRIL			MAY			JUNE	
Ī		Suspende	ed sediment		Suspende	ed sediment		Suspende	d sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	2190	40	237	910	31	76	1270	59	202
2	2090	41	231	1110	32	96	1030	52	145
3	1940	48	251	1230	37	125	870	59	139
4	1890	47	240	1150	32	99	830	47	105
5	1740	33	155	930	28	70	950	45	115
6	1640	30	133	890	3.8	91	1070	73	211
7	1640	28	124	795	22	47	1010	40	109
8	1990	32	172	778	19	40	1070	38	110
9	2440	38	250	740	15	30	970	44	115
0	2820	45	343	700	18	34	760	29	60
1	2640	43	307	660	21	37	640	25	43
2	2290	50	309	622	31	52	570	19	29
3	2040	50	275	570	28	43	570	20	31
4	1890	42	214	570	29	45	474	17	22
5 • •	1640	33	146	522	27	38	426	18	21
6	1490	27	109	570	26	40	410	16	18
7	1440	29	113	554	24	36	382	15	15
8	1350	30	109	588	26	41	396	14	15
9	1270	28	96	680	25	46	354	15	14
o	1270	36	123	812	28	61	426	18	21
,	1190	38	122	795	36	77	442	15	18
2	1070	39	113	1010	115	314	506	30	41
3	1010	48	131	1350	120	437	522	25	35
4	950	46	118	2040	95	523	458	20	25
5	910	39	96	2040	119	655	522	22	31
6	890	37	89	1440	86	334	522	21	30
7	812	33	72	1150	64	199	442	19	23
8	795	28	60	990	78	208	368	17	17
9	778	25	53	950	60	154	474	25	32
0	812	30	66	1010	54	147	337	16	15
1				1310	58	205			
otal	46917		4857	29466		4398	19071		1807
		JULY			AUGUST			SEPTEMBER	
$\overline{}$	301	14	11	309	29	24	194	18	9
2	290	15	12	245	20	13	188	18	á
3	292	15	12	301	20	16	166	20	ģ.
4	318	16	14	260	17	12	154	16	7
5	474	22	28	284	18	14	158	13	6
6	778	46	97	346	19	18	222	18	11
7	522	27	38	245	15	10	190	13	7
8	382	22	23	222	16	10	156	12	5
9	318	22	19	265	16	11	130	10	4
0	276	37	28	250	14	9	140	13	5
1	238	22	14	240	15	10	160	15	6
2	524	68	96	250	12	8	186	15	8
3	506	49	67	176~	12	6	152	14	6
4	368	42	42	235	19	12	150	12	5
5	329	39	35	235	16	10	170	12	6
6	270	28	20	204	12	7	309	25	21
7	258	27	19	200	11	6	346	37	35
8	255	25	17	196	11	6	396	32	34
9	346	31	29	172	12	6	368	32	3.2
0	329	32	28	172	11	5	309	21	18
1	304	38	31	196	10	5	265	19	14
2	216	27	16	152	11	5	228	18	11
3	218	30	18	162	12	5	190	13	7
4 • •	220	30	18	200	12	6	172 168	10	5 4
5••	212	24	14	309	20	17	100	9	4
6	204	20	11	458	28	35	152	11	5
7	202	17	9	382	22	23	168	11	5
8	218	18	11	265	23	16	146	11	4
9	396	38	41	235	17	11	170	17	. 8
0	340 318	50 38	46 33	200 204	12	6 9	245	24	16
	10222		897	7570		351	6148		322
otal									

Total discharge for year (cfs-days) 647962
Total load for year (tons) 52753

PAKLICO RIVER BASIN --- Continued

2-843.92. TRANTERS CREEK NEAR WASHINGTON, N. C.

LOCATION .--At bridge on county road, 0.9 mile upstream from mouth, 0.4 mile west of Atlantic Coast Line Railroad, and 2.5 miles northwest of Washington,

Beaufort County, ARIA. 244 square miles.

RECORDS AVILARE. — 244 square miles.

RECORDS AVILARE. — 244 square miles.

RECORDS AVILARE. — 245 square miles.

RECORDS AVILARE. — 245 square miles.

RECORDS AVILARE. — 245 square miles.

RECORDS 1962-63. — 245 square miles.

Specific conductance: Maximum garge micromabos Cott. 18; minimum daily, 47 micromabos Jan. 22.

RECORDS 1962-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS 1966-63. — 245 square miles.

RECORDS

		Color	100	100	75	20	140	20	!	80	09	75	70	06	110	90	90	75	!	20
		Hd	6.5	6.4	. 3	6,3	8.8	6.7	7.5	9.9	6.4	7.1	7.2	6.4	7.1	7.1	7.2	9.9	7.4	7.4
	Specific conduct-	<u>ت</u> ت	9/	87	96	89	09	78	130	83	80	83	102	71	88	103	128	118	140	160
	Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	ıs.	-	14	14	10	14	10	10	11	9	3	10	9	8	4	12	12	12
	Haro as C	Calcium, magne sium	20	20	24	22	16	20	36	20	20	22	24	20	22	26	30	28	31	32
1963	Dissolved	(residue at 180°C)	64	72	70	72	A70	61	!	9	63	64	11	49	11	78	06	89	1	102
September 1963	Ni-	trate (NO ₃)	1.4						1	1.4	1.2	1.7	2,1	2.2	6.	9	1.9	1.7	;	1.7
to Sep	Fluo-	ride (F)	0.2	2		٦:	~	٦.	1	٦:	٦:	7.	۲.	۲.	~	٦.	~	7.	;	
analyses, in parts per million, water year October 1962 to	Chloride	(CI)	7.5	10	13	12	7.3	0.6	19	9.5	9.5	9.5	91	7.0	0.6	11	14	14	20	22
year Octo		(*os)	9.4	10	13	12	10	13	1	12	11	8.8	7.0	8.4	8.2	8.0	8.0	11	ŀ	17
, water	Bicar-	bonate (HCO ₃)	18	13	12	11	80	œ	33	=	11	19	56	12	18	28	33	18	24	24
11110n	Po-	sium (K)	2.2	3.0	2.4	1.5	1.7	1.3	1	1.2	2.3	1.5	1.8	1.7	1.7	2.1	2.1	2.2	;	3.5
rts per m	godium	(Na)	6.3	7.1	8.2	7.2	4.1	8.8	1	6.3	6.4	7.2	8.9	5.0	7.4	0.6	12	10	ł	16
t in pa	Mag-	sium (Mg)	1.8	2.0	2.1	1.8	1.3	1:8	1	1.3	2.0	1.6	2.0	2.0	1.6	2.2	2.6	2.1	1	3.0
nalyses	Cal-	cium (Ca)	5.3	4.6	5.9	6.2	4.2	5.1	1	8.8	4.9	5.9	9.9	4.6	6.0	6.9	8.1	7.6	1	7.7
Chemical a	1.00	(Fe)	0.17	.38	.17	. 12	.21	8	ł	8.	.13	.26	.23	.14	.34	. 33	.14	٥.	.31	.12
Che	24142	(SiO ₂)	8.5	8	9.4	9	4.4	5.3	ł	3.5	2.0	4.7	8.0	5.4	9.1	9.1	9.0	6.8	1	8,3
	Mean	discharge (cfs)																		
		Date of collection	Oct. 1-9, 1962	Nov. 13-30	Dec. 1-31	Jan. 1-18, 1963	Jan. 19-31	Feb. 1-13	Feb. 14	Feb. 15-28	Mar. 1-31	Apr. 1-30	May 1-21	May 22-31	June 1-15	June 16-30	July 1~21	Aug. 15-31	Sept. 1	Sept. 4-16

A Organic matter present; sum of mineral constituents 39 parts per million.

PAMLICO RIVER BASIN -- Continued

2-843.92. TRANTERS CREEK NEAR WASHINGTON, N. C .-- Continued

	Chlor	ide, in	parts	per mil	lion, w	ater ye	ar Octo	ber 196	2 to Se	ptember	1963	
Day	Oct.	Nov.	Dec.	Jan.	Feb.	. Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5	7.5	400 525 375 475 245									47 54 46 48 47	20 44 51
6 7 8 9 10	27	200 275 245 121 64		2 12	9.0				9.0		118 88 80 59 52	, 25
11 12 13 14 15	10 19 88 500 400	75 30			19			10		14	38 45 47 38	
16 17 18 19 20	555 450 880 425 650) 13			9.5	9.5					65 72 80 80
21 22 23 24 25	625 750 325 650 625) 10		7.3	9.5) 11	168 203 199 120	14	121 73 188 775 825
26 27 28 29 30	300 555 575 400 425 375				==]	7.0		147 122 126 83 82 56		136 450 300 161 179

PAMLICO RIVER BASIN--Continued

2-843.92. TRANTERS CREEK NEAR WASHINGTON, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963

	Aver-	age	53	£.	40	45	55	49	89	91	82	82	7.5
		3.	919	5	32	ł	63	1	99	1	48	29	1
		30	925	;	35	ļ	49	59	29	8	*	79	2
		29	59	7	1	ł	23	65	65	8	84	78	69
		28	59	;	37	33	58	99	*9	8	**	77	69
		27	84	7	38	9	57	89	9	80	4 8	7.7	69
		26	6 1 6 9	7	0 4	ç	55	99	65	28	83	77	69
		25		9,6	4.1	9	53	67		76	83		
		24	52	2	4	£3	53	89		16	4	29	10
		23	52	38	47	3	\$	2	89	75	85	29	7.2
_		22	52	38	8 4	4	57	69	2	9,2	85	7.8	*
Once-daily measurement between 1700 and 1830/		21	51		48	43	9	67		11	83		
pu		20	51	3.5	43	42	61	65	7.2	4	83	29	75
8		16	52	38		0		49		11	82	29	
17		17 18	53.0	?	43	33	29	62	20	78	82	80	2
мееп			53	3.	5	7	59	09	20	80	81	8	73
pet	Day	16	74 53	i	4	43	59	9		80	80	29	72
ent		15	53	3	43	4	58	9	72	8	80	80	73
rem		14	73	96	43	47	57	6.1	7.2	80	79	82	75
eası		13	72	3.9	44	94	57	9	7	81	79	84	76
y H		12	55 69	7 4	42	45	56	9	72	80	79	8	79
da1.		Ξ	99 69	4.3	41	4	55	62	74	7.8	80	85	7.8
100-		10		£	39	4	20	63	72	78	82		11
9		٥	53.5	4	37	‡	57	6.2	72	77	82	85	1,
		80	9.65		36		23	9	2	16	83	87	
		_	53	7	35	4.1	26	62	69	7.	83	86	77
		9	5,6		35	9	52	\$		4,	83		11
		2	51	4,	34	9	2	65	99	7,	83	85	77
		4	57		34	38	47	67			83		13
		က	588	53	36	38	4.5	9	65	99	83	85	80
		7	69	25	37		4	65			82	85	80
		-		2	38	36	38	*		65	82		
	Mosek	MOINT	October	December	January	February	March	April	May	June	Iuly	August	September

PAMLICO RIVER BASIN--Continued

2-844.72. PAMLICO RIVER AT WASHINGTON, N. C.

MAINAGE REAL—3.08 organe miles, approximately. The Mainage on U.S. Highway 17 at Washington, Beaufort County, 0.7 mile below Kennedy Creek.

RECORDS AVAILABLE.—Chemical manalyses: October 1961 to September 1963.

Where temperatures: October 1961 to September 1963.

EXTRACES, 1962—G.—Chloride: Maximum, 2,225 per 1963.

Seperatic conductance: Maximum and Mily, 7,100 microphos Oct, 18 (B); minimum qaily, 7,60 microphos Peb. 1 (T).

Water temperatures: Maximum, 86°F Mag. 10 (T); minimum, 7.0 ppm Dec. 5.

Specific conductance: Maximum, 86°F Mag. 10 (T); minimum, 4.2 ppm July 1 (T), 1962.

Specific conductance: Maximum, 86°F Mag. 10 (T); minimum daily, 7,100 microphos Jec. 16 (T). 450 minimum daily, 7,100 microphos Jec. 23 (B), 1961; minimum daily, 4.2 ppm July 1 (T), 1962.

Specific conductance: Maximum and Mily, 7,700 microphos Jec. 23 (B), 1961; minimum daily, 46 microphos Jen. 14, 1962.

REAL MARKER, 1962—100 minimum, 700 (T) and bottom (B) samples were collected once daily. No discoharge records available.

Chemical analyses, in parts per million, October 1962 to August 1963

		Color	130				120								3.4		20	- 1
		ፙ	6.9				6.4	7.0	6.7	6.4					7.2	7.2	6.6	7.4
	Specific conduct-	(micro- mhos at 25°C)	89	110	120	11	75	110	110	8 8	80	77	95	110	130	126	137	143
	Hardness as CaCO,	Jalcium, Non- magne-carbon- sium ate	4 00				4 10								20		7	
			2,42	_			118						_	_	282		30	
	Dissolved	(residue at 180°C)	68 A75	78	A56 A76	A46	A53	85	A69	99	56	65	64	76	77	88	A82	90
93	Ni-	trate (NO ₃)	2.0				9.0	1.8	1.2	1.0	2.1	1.4	2.6	1.0	2.1	2.1	1.4	1.9
67 180	Fluo-	ride (F)	0.1	2.		.2	н. С	3	r.	- 2	٦.		2.	0.	: -:	87	.2	.2
Tags to August 1963	Chlorido	(C1)	9.5	16	16.5	7.5	8.0	15	77	8.0	8.6	0.6	10	5	12	12	17	21
october T	2)-3(-5	(SO.)	8.0	8.6	12.8	5.4	0.0	11	#	7 11	12	0.6	7.6	9 10	7.2	7.8	7.8	12
trorr.	Bicar-	bonate (HCO ₃)	23	18	18 24	15	17	20	8;	9	12	14	24	5 29	36		34	
her. III	Po-	Stum Stum (K)	6. 4.	20.0	2 6	2.4	2.7	2.6	4.0	8.1	1.6	2.5	1.7	æ .	. 8	2.2	3.6	3.9
chemical analyses, in parts per million, october	1	(Na)	8.3	2,	11.	5.4	9.5	10	9.2	20.44 20.00	5.9	6.4	7.9	æ (10,01	12	41	14
t cac tr	Mag-	sium (Mg)	2.2							1 2					2 6		2.9	
Car ans	Cal-	cium (Ca)	5.0			_	4. r.	7.1	6.1	4.4 8.0					7.5	8.2	7.1	7.2
Tiello Cirelli	٠	(Fe)	0.12	.28	23.	. 20	.18								177	8.	.03	.10
	1	(SiO ₂)	12	200	8. 6.21	11	12	13	ដ	8.4. 2.6.	6.8	4.7	8.0	7	32	12	H	10
	Mean	discharge (cfs)																
		Date of collection	Oct. 1-7, 8(T), 1962 Nov. 13, 14(T)	v. 14(B), 15-18	v. 23-24, 25(T)	٧. 30	c. 1-2		c. 26		b, 1-28	r. 1-31	r. 1-30	May 1-31	Tune 20-30	1y 1-5		g. 15-26
)		88	Š,	2 2	No	ě	ă	ğ,	Jan.	P.	Ma	ΥĎ	Ma.	3 3	J.	2	Aug.

A Calculated from determined constituents.

PAMILIOO RIVER BASIN--Continued 2-844.72. PAMILIOO RIVER AT WASHINGTON, N. C.--Continued

١	1	ı						1
Sentember	100	Bottom	144 113 113 113 54	94444 94444	94 113 136 139	137 139 715 715 715	715 375 375 375 375	1175 1175 1175 1175 1175
Sort	1	Top	144 113 113 113 56	44444	92 94 110 136 136	139 137 715 715 715	715 450 375 375 375	1175 1175 1175 1175 1175
Anoniat	101	Bottom	151 123 59 60 60 59	213 450 450 450 452	14444		1	385 385 395 400 121
	2	Top	147 61 61 59 59	60 440 450 450 450	45 04 04 04		1	385 390 390 395 137
Tule.		Bottom	12	66 67 67 68 161	161 161 161 222 232	219 220 17	585 585 585	365 365 365 375 150 149
	•	Top	- F	64 66 66 154	160 161 161 220 222	220	575 585 585 585	365 365 365 365 153 149
1963	2	Bottom		8.3		91 94 92	12	
lber 19	•	Top		8.3		94 94	713	1
Septer	MAN	Bottom				9.3		
962 to	3	Top				9.3		
ober 19	,	Bottom				10		1
ar Oct	April	Top				01		
ter ye	g ₂	Bottom				0.6		
on, wa	3 F	Top				0.6		
m1111	lary	Bottom	<u> </u>		8.6			11
ts per	Ьſ	Top			8.6			11
Chloride, in parts per million, water year October 1962 to September 1963	Jamary	Bottom	121 123 121 16	14 14 118	120 120 118 118	118 127 156 156 156	156 156 156 156 156	8.0
oride,	Tal.	Top	120 123 123 123	143 111 120	119 120 118 118	118 150 153 156 156	156 157 156 156 159	8.0
8	BDer	Bottom	86 88 7.0		15		140 142 142 142	14 125 125 125 125 125
0	Pace	Top	83 88 88 7.0		15		140 142 142	14 118 125 125 125
No.	aper	Bottom	775 750 625 625 880	880 880 210 200 205	300)16 170 170	160 160 9.5 9.5	7.5
Į.	PACAG	Top	775 750 625 625 625	880 880 555 200 200	205) 16 150 160	170 160 9.5	7:5
1	I B	Bottom	9.5	21 19 170	160 160 185 375 375	375 375 2225 2150 800	825 1020 1020 1020	750 750 1020 1020 775 750
, and a second	3	Top	9.6	12001	175 155 165 375 375	375 375 375 1850 2125 825	880 1020 1025 1020 1020	750 750 1020 1020 775 750
	Day		H0840	0 t 8 c 0	121112	2098	122222	22 22 23 23 33 33 34 34 34 34 34 34 34 34 34 34 34

PAMLICO RIVER BASIN--Continued

2-644.72. PAMLICO RIVER AT WASHINGTON, N. C.—Continued Temporature (°P) of settor, where year October 1963 of September 1963 of American Continued of Settor 1983 of September 1964 of Settor 1984 of Set

	Aver-	age	67	53	4 4	34	t 1 t 1	52	6 4 63	69	77	8 80	82 81	75
-	¥													
		3	99	11	398	39	11	57	!!	8.8		94	81	11
		30	96	6 4 6	39	388	11	57	6 69	6 67	90	93.4	78	69
١		59	266	50	9 9	38	11	57	89	999	960	82	78	20
		82	57	50	0 4	34	40	5 6	6.69	65	8 8	82	78	6,69
l		27	58	50	3 3	38	39	56	67	68	79	81	78	6.9
		26	6.2	51	38	39	7 0 4	57 56	6.8	12	77	82	79	72
		25	6 4	51	38	99	43	57	8 8	202	77	80	81	72
riug/		24	6.5	51	0 4 0	0 0	41	57 56	6.9	202	77 78	81	9 9 2	73
180		23	67	51	0 0	3.8	0 7	56	69	71	79	82	980	74
		22	67	52	39	38	42	55	69	73	78	82	79	75
2		21	67	52	39	39	42	2 9	6.5	73	79	8 2 80	9 0	76 76
		20	67	51	37	38	43	52	6.0	73	79	81	90	75
and corrow once-daily measurements at approximately mign		61	992	52	36	38	4 6	56	6.0	71	78	80	82	74
2		82	6.9	53	36	38	4 4 4 3	56	58	71	78	81	980	73
٥		=	77	52	36	9 9	64	55	9.00	020	78	80	80	75
	Day	92	22	52	36	33	43	55	58	20	78	800	80	75
3	_	15	22	53	35	38	44	55	59	22	909	80	900	75
		4	7.1	53	35	3.08	643	56	09	72	79	79	8 8 3	76
		13	7.07	523	00	39	44	55	90	73	81	00	8 4 8	77
		71	- 22	52	4 4	60	45	55	61	7,4	19	90	48	74
5		=	73 7	52 5	4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38	404	53	62 6	17.	79 87	9 8	85 89	75 7
2		2	27.	53	50	36	39	51	4.6	69	97	980	986	16
3		6	74 77	53 5	54 5	378	38 3	47 5	64.6	67 6	79 7	81 8	85	76 77
2			472	53	5.5	37	398	426	49	66	77	82	883	78
as Ou		-	70 7	53 5	53 5	36	39	111	65 65	65	767	82	85	79 7
7		9	070	52	55	36.6	39.8	417	65	99	75	7.1	83.5	7.9
1		2	7 69	57 5	57 5	37.3	39 3	45 4	64 6	65 6	71 7	81 8	8 4 8	79 7
		4												
		3 4	70 6 9	56 56	59 59	37 36	37 38 38 38	40 41	62 63	66 65	69 89	83 81 82 80	84 84 83 84	80 81 80 80
1		\vdash										_		
		2	- 69	0 59	6 4 6	7 37	9 39	0 4 0	9 61	65 65	11	80 81 80 80	82 83 82 82	2 80
1		Ľ	689	99	6 4 6	35	38	40	965		. 67			. 81
	1	Month	October Top Bottom	Top	Top	January Top Bottom	Top	Top	April Top Bottom	TopBottom	TopBottom	July Top Bottom	August Top Bottom	September Top

NEUSE RIVER BASIN

2-852.2. LITTLE RIVER NEAR ORANGE FACTORY, N. C.

LOCATION. --At gaging station at hridge on U.S. Highway 501, 1 mile upstream from Mountain Creek, and 1.5 miles northwest of Orange Factory, Durham County. DALMAGE ARBA. --816 Square miles.

RACORDS AVAILABLE. --Chemical analyses: October 1961 to September 1963 (discontinued).

Water temperatures: October 1961 to September 1963.

Water temperatures: October 1961 to September 1963.

WATERIES, 1962-63.--Water temperatures: Maximum, 83.ºº July 18-20, 28; minimum, 35.ºº no several days in December and January.

EXTREMES, 1962-63.--Water temperatures: Maximum, 83.ºº July 18-20, 29, 1963; minimum, freezing point Dec. 31, 1961, Jan. 14, 15, 1962.

			Chen	nical an	nalyses,	Chemical analyses, in parts per million,	s per n	nillion,		October 1962 to August 1963	ugust	1963						
	Mean	01100	اً ا	Cal-	Mag-			Bicar-	out to	Chloride	Fluo-	Ni-	Dissolved	- "		Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	(Na)	Stum Stum (K)	bonate (HCO ₃)	(30,	(CI)	ride (F)	trate (NO ₃)	(residue at 180°C)	Salctum, magne- stum		mhos at 25°C)	Hď	Color
Oct. 11, 1962	8.9	16	90.0	6.7	2.6	5.9	1.7	41	2.0	5.7	0.0	ı	64	28	0	85	6.6	20
Nov. 8	11	17	.03	0.9	2.6	5.2	2.0	38	3.4	5.5	.2		65	36	0	18	6.9	20
Dec. 5	41	16	.03	5.0	2.1	5.1	∞.	30	3.6	5.0	0.		57	22	0	65	2.0	20
Jan. 9, 1963	41	12	40.	5.1	1.8	5.2		26	4.8	4.0	•		A50	20	0	62	7.4	91
Mar. 6	2640	4.1	80.	3.0	1.1	2.0	1.5	10	6.2	1.2	0.		A25	173	4	37	6.0	45
Mar. 14	216	9.1	90.	3,3	1.2	2.8	æ.	16	5.2	3.7	۰.		44	13	0	48	6.3	45
Apr. 10	53	13	.04	8.4	1.9	4.6	4.	30	2.4	4.9	0.		48	20	0	63	7.0	25
Мау 28	20	15	.01	5.9	2.2	4.9	1.1	36	2.2	3.5	0.	۲.	A53	24	0	71	6,9	12
July 9	5.7	12	.05	6.5	2.2	5.5	1.0	37	2.2	4.0	۰.	2	9	22	•	92	8.9	30
July 23	115	13	8.	7.1	2.5	5.4	1.7	44	3.6	3.6	1.	2	61	28	0	77	7.4	ß
Aug. 5	01	14	.07	6.4	1.2	4.6	1.3	31	5.6	3.4	٦.	•	A52	21	•	28	7.5	40

A Calculated from determined constituents.

NEUSE RIVER BASIN--Continued
2-852.2. LITTLE RIVER NEAR ORANGE FACTORY, N. C.--Continued

NEUSE RIVER BASIN--Continued

2-871.82, NEUSE RIVER AT FALLS, N. C.

LOCATION (revised) .-- At bridge on Secondary Road 200 at Palls, Wake County, 1.8 miles downstream from Horse Creek, and 1.5 miles upstream from Richland

DRAINAGE AREA. --770 square miles.

REXORDS AVAILAGE.--Chemical analyses: October 1953 to September 1964, November 1960 to September 1963.

REXORDS AVAILAGE.--Chemical analyses: October 1953 to September 1954, November 1960 to September 1963.

Rate September 1953 to September 1954, November 1960 to September 1963.

EXTREASS, 1962-65.--Dissolved solids: Maximum and

		Color	45	18	35	20	12	20	25	17	17	45	17	30	30	33	!	ł	ဓ	30
		뛵.	7.3	7.7	7.1	7.3	7.2	6.4	7.3	7.4	6.5	6.3	6.7	7.1	7.4	7.2	6.	7.0	7.6	6.7
	Specific conduct-	mhos at 25°C)	100	145	140	74	92	89	73	72	73	62	80	92	120	140	150			-
	Hardness as CaCO ₃	Calcium, Non- magne-carbon- sium ate	0	0	0	4	0	4	4	N	N	4	0	0	0	0	0	8	m	ō
	Hard as C	Calcium, magne- sium	28	34	32	22	24	17			19				28	30	34	11	27	78
1963	Dissolved	n Ti	73	104	100	57	70	A43	64	A56	58	54	62	65	78	94	1	1	}	7.7
tember	, i	trate (NO ₃)	2.9								1.9				5.5	4.7	1	1	7.8	5.4
to Ser	Fluo-	ride (F)	L		.2	_				_	٤.						1		.2	_
analyses, in parts per million, water year October 1962 to September 1963	objofd)	(CI)			14						5,3					6.3	9.4			
year Oct	Gulfato	(30,	5.8	9.9	7.8	7.6	8.0	8.2	8.0	9.0	9.9	9.9	6.0	8.4	5.4	5.8	1	1	0.6	7.0
water	Bicar -	bonate (HCO ₃)	37	51	43	22	29	16	22	22	20	16	22	32	37	43	49	11	29	36
1111on	Po-	Sium (K)			4.1						1.2				2,1	1.9	1	1	1	•
rts per i	anipo di	(Na)	8.9	16	16	5.9	8.3	5.3			5.1				11	11	1	•	12	9.5
d up	Mag-	sium (Mg)	2.1	2.6	3.0	2.0	2.2	1.9	2.0	1.9	2.0	1.6	2.1	5.6	2.6	2.7	1	1	2,3	2.7
nalyses	Cal-	cium (Ca)	7.4	9.0	7.9	5.4	6.3	3.5	5.1	5.0	4.3	4.1	5.1	6.3	7.0	7.9	1	ł	7.0	9.0
Chemical a	1	(Fe)	0.16	.07	.10	.03	80.	2.	90.	10.	10.	.02	.03	.17	.13	70.	1	1	40.	96.
CP	Gilion	(8102)	14	11	14	11	14	10	12	13	10	9.4	13	13	14	16	1	1	13	15
	Mean	discharge (cfs)																		
		Date of collection	Oct. 1-15, 1962	Oct. 16-31	Nov. 1-6	Nov. 7-30	Dec. 1-26	Dec. 27-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-6	Mar. 7-23	Mar. 24-31		May 1-31	June 1-30	July 1	July 2	July 3-5	July 6-14

6.8 10 7.5 30 7.0 40 7.3 50		6.2 20 7.0 28	29
143 6 91 7 62 7 118 7			105
0000	00	90	T
33 73 73 73 73 73 73 73 73 73 73 73 73 7			26
95 67 84 84	A108 A119	A56 85	76
2.4.0 6.2 6.3			3,8
		4.6	0.2
0,0,4,0 0,0,6,0	15 15	9.5	8.1
0.6.9	00.00 01.00	9.4	7.1
20 58 38 20 88	54 60	16 40	33
2000	5.3	4.4	2,3
15 8.0 5.1	21	6.4	6.6
22.7			2.3
8.6 4.3 6.7		ļ	6,5
9890	88	.03	0.07
16 11 9.0	17	7.4	14 constit
			determined
July 15-24, 1963 July 25-31 Aug. 1-4 Aug. 5-17	Aug. 18-31 Sept. 1-14	Sept. 15-16sept. 17-30	Time-weighted average A Calculated from d

NEUSE RIVER BASIN--Continued

	1963
penu	Temperature (°F) of water, water year October 1962 to September 1963
nti	5
°Co	1962
0	Jer.
N, Si	Octob
FALL	ar (
ΑŢ	*
2-871.82. NEUSE RIVER AT FALLS, N. CContinued	water
E	er,
NEUS	wat
63	of
1.8	·F)
-8	9
~	tur
	ета
	Temp

	_															Day																Ave
Month	_	2	6	4	2	9	7	8	6	10	=	12	13	7	15 1	16	17	18	19	20	21	22	23	24	1 25	26	27	28	3 29	9 30	0 3) age
October November	59 51 49	61 51 49	50	263	504	4 6 6 5	4 6	45	67 64 1	53	38	67 55 36	333	33	65 48 34	67 49 35	36	37.6	61 51 38	39 051	61 52 40	3230	933	38 27	55 36	37	39	0.46	52 47 39	2 51 7 48 9 39		50 61 50 38 40
february	36	35	38	4 3 3 4 4 5 6	400	37	500	147	2 4 0	50 50	4 4 4	7 4 5 4 6 4 4 6 4	52	244	53	39 37 51	40 37 51	517	38 8 9 8 9	531	46 43 51	5 4 7	4 t 0 6 t 4	6 1 4	35	32		5 8 5	55 1 34	5 56		36 40
April May	58 59 67	61 67	563	59	62 60 70	64 70	58 63 71	57	58 74 74	77	58	57 68 76	56 73	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 64 72	53	57 66 70	20 20 20 20 20 20 20 20 20 20 20 20 20 2	62 68 70	65	27 17	702	10	69	61 65 71	70 65	64	73 62	392	1 66 1		68 65
July	78 76 73	47 42 62	76	75	74 4	74 76 72	75	75	73 72	73 78 72	72 78 72	79 27	71 77 72	72 76 69	73	74 72 64	77 29 29 29	27 9 6 7 3 6 6	77 77 66	78	79 76 66	6 7 9 8 4 9	79 76 65	27.3	75	779	77	9 4 2 6 5 5 5	72 4 65 65	5 73		78 75 73 75 69

NEUSE RIVER BASIN---Continued

2-875.66. NEUSE RIVER AT SMITHFIELD, N. C.

LOCATION. --At bridge on U.S. Highway 70 at Smithfield, Johnston County, and 1.7 miles upstream from Swift Creek.
DRAIMAGE AREA.-1.701 quara miles, approximately.
RECORDS AVAILMENT ANALMENT analyses: October 1954 to September 1955, October 1958 to September 1963.
REMANEN. --Records of Idshenge are given for Neuse River near Clayton. No appreciable inflow between sampling point and gaging station except during parfolds of heavy local runoff.

		Color	12	8	40	22	12	23	50	12	12	17	8	12	
		Hd	9.9	6.5	7.1	6.2	9.9	6.3	6.2	7.1	6.7	6.4	6.2	6.4	
	Specific conduct-	_ 4	132	157	85	78	82	99	81	92	108	175	93	212	
	Hardness as CaCO,	Non- carbon- ate	0	0	-		4	0	•	0	0	0	0	0	
	Haro as C	Calcium, magne - sium	28	8	55	18	19	17	50	54	56	88	20	32	
1963	Dissolved	(residue Calcium, Non- at 180°C) magne-carbon- sium ate	96	108	63	29	26	26	29	70	82	113	70	A142	
tember	Ni-	trate (NO _s)	8.0					1.5	80.	ī.	5.6	e,	5.0	ī.	
to Sep	Fluo-	ride (F)	0.1	e.	•	•	-:	7.	۲.	~	ç	<u>ښ</u>	۲.	e.	
Chemical analyses, in parts per million, water year October 1962 to September 1963	, (A)	(C1)	14	18	7.9	8.4	0.6	6.7	7.0	8.3	10	56	7.3	36	
year Octo	91.0	(30,	8.4	6.2	7.2	7.8	8.8	7.2	4.0	5.2	5.8	6.4	6.8	4.6	
, water		bonate (HCO ₃)	32	49	56	20	19	21	28	36	34	47	53	54	
llion	Po-	Sium (K)	3.2	3,4	2.1	7.7	1.3	1:1	1.5	8.3	3.5	4.0	4.7	5.6	
rts per m		(Na)	15	20	8.0	7.6	7.5	9.9	7.2	07	11	54	9.3	36	
in pa	Mag-	sium (Mg)	2.0	2.7	2.0	1.4	1.6	1.7	1.9	2.3	1.9	2.2	1.8	2.7	
alyses,	Cal-	cium (Ca)	7.5	6.7	5.4	4.9	5.0	4.1	4.7	6.1	7.1	7.9	5.3	8.2	
ical ar	į	(Fe)	0.05	.02	60.	8	.07	.01	.02	00.	8.	.01	.02	8	ents.
Chen		(SiO ₂)	16	17	15	12	01	11	13	14	16	14	14	12	onstitu
	Mean	discharge (cfs)	261	231	733	1380	2570	1820	812	824	410	613	169	120	stermined c
		Date of collection	Oct. 3, 1962	Nov. 2	Dec. 4	Jan. 3, 1963	Feb. 5	Mar. 5	Apr. 2	May 1	June 4	July 2	Aug. 1	Sept. 4	A Calculated from determined constituents.

NEUSE RIVER BASIN--Continued

2-S88.21. NEUSE RIVER AT GOLDSBORO, N. C.

DEMINAGE AREA.—At bridge on U.S. Highway 117, 2 miles southwest of Goldsboro, Wayne County, and 1.7 miles upstream from gage.

DEMINAGE AREA.—2.370 square miles.

WARLIARIE.—Chemical analyses: October 1948 to September 1949, October 1958 to September 1953.

WARLIARIE.—Chemical analyses: October 1948 to Cotober 1950 to September 1953.

WARLIARIE.—Chemical analyses: October 1948 to September 1949, October 1950 to September 1953.

WARLIARIE.—ISSOCIED SOLIDS: Maximum, 1050 pm Nov. 12-30, Dec. 30-31.

RATCHEMES. 1962-63.—Dissolved solids: Maximum, 140 pm Nov. 12-30, Dec. 30-31, and Jan. 1-31.

September 1952-63.—Dissolved solids: Maximum, 104 pm Nov. 12-30, Dec. 30-31, and Jan. 1-31.

EXTREMES. 1958-64, 1960-63.—Dissolved solids: Maximum, 104 pm Nov. 12-31, 1951, July 7-31, 1963, minimum, 31 ppm July 5-12, 1962.

EXTREMES. 1958-64, 1960-63.—Dissolved solids: Maximum, 104 pm Nov. 11 pm Jan. 1-10, 1949.

Specific conductance (1960-63): Maximum mily, 181 micrombos July 29, 1963; minimum, 1-10, 1949.

Wheter temperatures: Maximum, 88 F Aug. 7-9, 1962; minimum, 128, 1961, Jan. 7, 1963.

	mber 1963
	r 1962 to September
•	962
, 044.	tober 1
1001	r.
607	Yea.
	water
1	lion.
91172011	Der million.
,	hemical analyses, in parts per million, water year October 1962 to Se
1,2001	Chemical analyses. in
2	1 az
9 7	Chemic
8	
meaning, or roug, 1-0, 1002, minimum, arecaing point out to, 1001,	
agree composterios.	
10.10	

		Color	4	က	4	×	9	33	8	40	ဗိ	35	သို	30	75	35	38	40	i	22
		Ħ	7.0	9.9	7.3	6.5	6.2	7.3	6.4	9.9	7.0	6.0	7.0	0.7	8.9	6.3	7.2	7.1	7.5	7.2
	Specific conduct-	mhos at 25°C)	91				_		65	62	99	64	06	119	79	88	125	110	90	130
	Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	٥	0	0	-	8	0	6	က	63	63	0	0	67	14	0	0	0	0
			18	22	20	16	14	16	14	14	15	15	18	22	17	20	22	22	18	26
1963	Dissolved	(residue at 180°C)	75	78	92	A53	57	65	A41	52	51	47	61	73	89	!	84	84	!	88
tember	Ni-	trate (NO ₃)	3.0	3.5	1.5	1:1	9.	2.6	80.	۰.	1.8		5.9	3.7	1.7	13	2.9	2.5	!	3.1
to Sep	Fluo-	ride (F)	0.1	=	۲.	. 2	7.	۳.	۳:	-:	•	۰.	٦.	٠.	٦.	-:	۰.		1	٠:
water year October 1962 to September 1963	Chlorido	(C1)	10	14	14	9.1	7.3	9.2	4.8	8.1	6.9	6.1	8.7	12	7.9	8,3	12	9.7	0.6	15
year Oct	Gulfoto	(30°)	9.9	7.6	7.0	7.4	9.9	6.4	6.4	5.6	9.9	6.4	4.4	6.2	6.0	7.0	7.4	7.2	1	8.0
	Bicar-	bonate (HCO ₃)	22	28	24	18	16	119	14	14	15	16	25	58	19	9	59	31	22	32
illion	Po-	Sium (K)	2.3	2.6	2.9	3.0	2.6	2.0	1.4	1.6	1.6	1.6	1.6	2.2	1.6	1	1.7	2.3	1	2.2
Chemical analyses, in parts per million,	Sodium	(Na)	10	13	12	8.0	5.5	8.7	5.8	6.5	6.9	6.3	9.1	13	7.5	8.8	12	#	1	13
in pa	Mag-	sium (Mg)	1.2	1.9	1.8	1.8	1.3	1.2	1.8	1.3	1.5	1.6	1.3	2.0	1.7	1.7	1.8	1.9	ł	2.2
alyses	Cal-	cium (Ca)	5.3	8.	4.8	3.7	8.8	4.5	2.7	3.7	3.7	3.4	5.1	5.5	3.9	2.0	6.9	5.8	1	6.9
ical ar	1.00	(Fe)	0.24	.18	.13	. 23	.05	.18	9.	40.	80.	Ξ.	.27	•	.14	.04	.16	.13	1	
Chen	041190	(SiO ₂)	12	13	13	8.5	9.2	12	9.5	8.6	9.5	7.8	6.6	13	9.7	12	12	23	1	10
	Mean	discharge (cfs)	266	512	1300	4600	6415	2092	5020	5275	4548	6269	1980	948	2304				491	476
		Date of collection			Nov. 1-9		Nov. 12-30		Dec. 30-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31	Apr. 1-30	Nay 1-21	May 22-31	June 1-8	June 9-30	July 1-15	July 16	July 17-26

	77	.03	7.1	, N	19	2.5	37	9.6	19	2	2,7	104	56	0	158	2	33
-13	7	.03	5.2	1.6	8.8	1.9	22	9.2	8,3		3.0	99	20	C)	90	6.5	23
_	12	01.	7.1	1.7	18	2.6	35	10	20	ε.	1.9	66	24	0	151	6.8	40
12-31	9.1	.14	6.3	1.2	14	2.5	27	0.6	12	c.	2.2	78	20	0	115	7.0	2
1-4	10	.13	6.1	2.3	14	2.1	34	8.2	16	2	1.5	A78	24	0	130	9.9	1
5-12	9.3	-13	4.7	1.2	9.4	1.8	16	10	9.1	2	5.9	A57	17	4	85	6.4	45
pt. 13-30 462	12	. 19	5.7	2.0	14	2.2	58	10	16	۳.	3.7	81	22	0	130	7.0	27
Time-weighted average 2507	11	0.13	6.4	1.6	8.6	2.0	22	7.0	10	0.1	2.2	19	18	1	6	1	39

NEUSE RIVER BASIN--Continued

2-888.21. NEUSE RIVER AT GOLDSBORO, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (fonce-daily measurement between 0530 and 09007)

									ğ	Ge-d	8115	e e	rsn1	ene.	Conce-daily measurement between 0530 and 0900/	etw	nen n	ŝ	au	ő	3										
7,574																Day														Ý	Aver-
Month	_	2	е	4		9	7	80	٥	0_	=	12	13	4	15.	16	7	18	19	20 2	21 2	22 2	23 2.	24 2	25 26	27 2	28 2	29 3	30 3		86
October November December	2000	65 55	586	5 5 5 4 5 5 8	244	80.4	80.8	6.8 4.8 4.8	07.3 1.2.4	544	70 7 54 5 42 4	54 2 4 2	70 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	70 29	70 7 50 5	70 70 36 3	71 52 52 53 36	65 52 36 4	68 50 50 50 50 50	508 44 44	68 66 52 55 42 42		66 65 52 50 40 40		64 60 50 49 40 40	 56 55 48 48 40 42		50 50 50 50 40 40		68 66 52 38 43	
January February March	338	3. 4.0 4.0	2 0 2 4	2 4 4 5 0 5	2004	36 41 22 2	32 4 4 2 4 4 5 4 4 5 4 4	0 4 4	3 4 7 2	2 4 5 2 2 2 2	444		46 46 44 42 58 56		500	56.3	3 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	446	2 4 7 8 2 4 4 7 4 7 4 7 1	46 45 42 40 56 58		4 5 4 6 0 2 4 0 0 4 0 0 4 0 0 4 0 0 0 0 0 0 0 0		38 36 42 42 54 55	35 35 40 38 56 56		35 36		38 39 60 53	
April May June	62 68 70	65 64 70	59	68	952	66 65 78	63 6	9208	9 47 8 8 9 8	04.08	85 8	45	60 6 7 4 7 8 5 8	0 4 4	60 5 75 7 84 8	84 4 8	58 6 74 7 82 8	60 6	62 5 74 7 78 8	58 74 74 74 7	68 68 72 72 80 72		62 62 70 68 75 72		58 68 65 65 75 75	 64 68 65 65 78 80		68 68 60 70 82 82		70 70 70 70	
July	85	987	9 4 4	86.0	85 80	86	86 8	85	80 8	94	78 7	85 85 67	82 8	84	82 8 82 8 72 7	82 8	80 8	80 80 8	85 8 84 8	844 8	84 82 85 84 72 70		82 82 84 84 68 84		82 83 82 80	 85 85 80 78 72 72		85 85 76 78		85 82 78 83	

NEUSE RIVER BASIN--Continued

NEUSE RIVER BASIN--Continued 2-891,92. NEUSE RIVER AT WHITEHALL, N.

ပ

LOCATION (revised). --At bridge on Secondary Road 1731 at Whitehall, Wayne County, and 3.5 miles downstream from Walnut Creek. DRAINGE AREA. --2, 492 square miles. WRONDS ANTIABLE. --Chemical analyses: October 1958 to September 1963. REMARKS. --Ro discharge records available.

Color 223222 6.00.00 6.400.04 66.66.3 핌 Specific conduct-(micro-mhos at 25°C) 78 105 78 61 67 110 110 110 110 110 Non-800184 000000 magne-carbon-Hardness as CaCO, Calchum, 12 12 13 14 15 15 118 118 118 118 118 (residue of at 180°C) Dissolved 67 63 58 47 49 65 53 72 78 solids year October 1962 to September 1963 (SOS) 2.2.2.2.5 10 6 8 4 4 Ni-trate Fluo-ride (F) -----044048 122 142 9.5 7.5 7.0 8 2 8 8 8 4 0 6 6 6 6 Chloride (C1) 4.7.4 8.6 8.8 8.6 7.2 9.080.0 Sulfate (SO₄) parts per million, water Bicar-bonate (HCO₃) 14 10 14 14 17 Po-tas-sium (K) 4896.6 8.7. 9.2. 6.3. 6.3. 8.91. 4.6.6.8 Sodium (Na) 450654 44669 Mag-ne-sium (Mg) analyses, in 0.00.4.00 818618 Cal-ctum (Ca) 0.15 0.05 0.05 0.05 0.05 22.4.2.0.6 Fe) Chemical Silica (SiO₂) 9.5 111 8.7 8.9 4. 6. 8. 9. 4. Mean discharge (cfs) Apr. 2

May 1
June 4
July 2

Aug. 1

Sept. 4. Oct. 3, 1962. Nov. 2. Jan. 3, 1963. Feb. 5. Date of collection

A Calculated from determined constituents,

olor

NEUSE RIVER BASIN--Continued

2-895. NEUSE RIVER AT KINSTON, N. C.

LOCATION. --At bridge on U.S. Highway 258, 0.2 mile south of Kinston, Lenoir County, and 0.9 mile downstream from gage.
DMAINAGE ARRI.--2, 500 square miles, approximately.
REMARKS. --Chemical analyses: October 1949 to September 1950, January 1955 to September 1950, October 1958 to September 1963.
REMARKS. --No appreciable inflow between sampling point and gaging Station except during periods of heavy local runoif.

		S	۳	.4	4					c4	"	_		"	4	۳,	i
		뙶	6.4	6.3	6.1	6.1	7.0	6.5	6.3	6.0	6.7	6.2	6.2	6.1	6.2	6.1	
	Specific conduct-	(micro- mhos at 25°C)	73	105	75	28	61	28	63	72	110	73	93	105	79	109	
	Hardness as CaCO,	Calctum, Non- magne-carbon- sium ate	4	0	77	4	c	4	4	0	0	0	0	0	9	0	
			14						14	15	20	17	20	21	19	22	
. 1963	Dissolved	(residue at 180°C)	61					_	20	52	20	51	64	75	A50	77	
tember	Ni-	trate (NO ₃)						1.1	2.4	۲.	2.3	7.	2	4.	3.5	ç.	
to Sep	Fluo-	ride (F)	0.1	7.	•	٦.	7.	•	7.	۲.	۲.	~	۲.	۲.	٦.	٦.	
water year October 1962 to September 1963	(A)	(CI)	9.7	12	80	6.1	7.2	6.5	7.3	7.8	12	7.6	10	11	8.3	13	
year Oct	016.40	(30,	8.4	7.8	8.9	7.2	1	7.0	7.2	5.2	6.4	5.6	9.9	0.6	6.8	8.8	
, water	Bicar-	bonate (HCO ₃)	13	56	16	13	12	5	13	19	56	22	53	27	16	22	
1111on	Po-	Sium (K)	1.7	2.2	æ :	1:2	2.2	1.2	1.1	1.5	1.9	2.7	2.1	3.9	2.0	3.9	
analyses, in parts per million,		(Na)	7.4	#	6.9	5.1	7.3	5.6	6.3	6.8	::	7.3	9	#	6,3	12	
, in pa	Mag-	sium (Mg)	1.3	1.7	1.5	1.2	1.5	1.1	1.1	1.3	1.7	1.3	1.5	1.9	1.5	1.9	
nalyses	Cal-	clum (Ca)	3.8	2.8	80	8.6	3.7	e. 8	3.8	3.8	5.3	4.6	5.8	5.3	5.2	5.6	
Chemical a	<u>.</u>	(Fe)	0.19	.03	.02	.03	8	.05	6.	.02	8	8	8	ē.	.13	.02	lents.
Che	011100	(SiO ₂)	9.5	#	=	8	8.8	7.3	7.4	7.8	11	9.0	9.7	8.0	8.2	5.4	onstit
	Mean	discharge (cfs)	2060	621	3140	2640	2380	6240						1580	1060	505	etermined c
		Date of collection	Oct. 3, 1962	Nov. 2	Dec. 4		Feb. 5	Feb. 27	Mar. 5	Apr. 2	May 2	June 4	July 2	Aug. 1	Aug. 14	Sept. 4	A Calculated from determined constituents.

47

A Calculated from determined constituents.

45 32

02110346 03440001

250 235

olor

NEUSE RIVER BASIN--Continued

2-918.31. NEUSE RIVER AT COWEN LANDING, NEAR VANCEBORO, N.C.

CCATION. -- At Cowen Landing 6 miles southeast of Vanceboro, Craven County.

DAINAGE AREA. --4,027 square miles. RECORDS AVAILABLE. --Chemical manipses: September 1963. #ater temperatures: October 1954 to September 1963.

EXTREMES: Maximum, 28 ppm Oct. 23-31; initialmum, 47 ppm Feb. 28.

Raddess: Maximum, 88 ppm Oct. 23-31; initialmum, 16 ppm Feb. 28.

Raddess: Maximum, 18 ppm Oct. 23-31; initialmum, 16 ppm Feb. 28.

Raddess: Maximum, 18 ppm Oct. 23-11; initialmum, 16 ppm Feb. 28.

Raddess: Maximum, 18 ppm Oct. 29 (p.m.); minimum daily, 56 micromhos July, and August; initialmum, freezing point Dec. 23 (a.m.).

RATEMES: 1954-633--1958olved solids: Maximum, 62 270 ppm Oct. 15 (p.m.), 1954; minimum, 38 ppm Apr. 16, 17, 18 (a.m.), 1962.

Raddess: Maximum, 1,550 ppm Aug. 12 (p.m.), 1955; minimum, 12 ppm July 16 (p.m.), 17-20, 1955; minimum daily, 40 micrombos Feb. 25 (a.m.), 1962.

Rater temperatures: Maximum, 92 P July 28 (p.m.), 1955; minimum, 18 point Dec. 16 (a.m.), 1958, poct. 23 (a.m.), 1968.

Raddess: Maximum, 92 P July 28 (p.m.), 1955; minimum, 18 point Dec. 16 (a.m.), 1958, poct. 23 (a.m.), 1968.

No discharge records awailable.

		<u>ಲಿ</u>		_				_					•									1
		띥	6.6	7.3	6.4	9.8	8.9	4.5	6.0		2.5	4	2.9	8.9	8.9	6.9	9.9		6.5	8.9	7.0	}
	Specific conduct-	ance (micro- mhos at 25°C)	120	105	2	12	17	125	21	2 2	112	4	2 00	115	108	16	011		20	96	120	06
	Hardness as CaCO,	Non- carbon- ate	4 0	8	oc (9 9	00	13	9	000	10	a	4	0	CV.	N	0		~	7	2	. 4
		Calcium, magne - sium	22 28 28	56	20	18	18	18	16	19	22	5	2 2	24	23	50	24		17	24	26	21
1963	Dissolved	solids (residue Calcium, Non- at 180°C) magne-carbon- sium ate	63 83	69	55	9 0	52	!	A47	9 6	8 8	69	7.5	73	73	63	69		26	71	80	49
tember	ž	trate (NO ₃)	3.4	1.6	5.6	2, C, 20, 4,	3.5	i	2.5	N 0	3.6	,		2.8	3.1	3,3	3.5		2.8	3.3	3.7	2.9
to Sep	Fluo-	ride (F)	0.2	7	2		۲.	;	۲.	-:-	: -:	c	? -	N	e,	N.	~		7.	.2	.2	0.1
Chemical analyses, in parts per million, water year October 1962 to September 1963	:	Chloride (C1)	11	13	8.5	8.5	8.3			o c		4	- or	10	01	10	13		7.0	10	15	9.8
year Oct	:	Sulfate (SO ₄)	7.8	8.0	7.4	8.8 8.8	8.6	}	10	10 a	. 60	0	, «	8.0	8.4	7.6	9.2		10	10	10	8.0
, water	Bicar -	bonate (HCO ₃)	31	28	14	12	13	4	13	44.0	27	ŕ	3 8	58	56	72	78		13	20	29	20
illion	Po Po	sturn (K)	2.6	2.7	3,1	1.7	1.7	1	1.6	2,4	20.0	,	ο α	2,2	2.2	3.7	3.5		1.6	3,3		2.4
rts per m	;	Sodium (Na)	9.3	10	6.2	8.0 0.4	5.7	1	6.4	4.0	6.7	ď	5.5	9.7	01	8.6	10		5.7	7.5	12	8.0
, in pa	Mag-	ne- sium (Mg)	1.8	2.1	2.6	1.2	1.4	1	1.6	0 0	1.6	,		1.8	1.7	1.6	2.1		1.2	1.9	1.8	1.8
nalyses	Ca),	cium (Ca)	5.5				4.7	1	80.0	4.1	6.5	Ľ	. 4	6.7	6.4	5.3	8.6		4.8	6.3	7.5	5.4
mical a	-	fron (Fe)	0.08	0.0	.21	.17	.07			.13		,	10	60	.10	. 18	.03		.13	.18		0.12
Che		Silica (SiO ₂)	10	9.4	7.8	7.6	6.9	!	6,3	0.0	101	a		6.6	9.5	8.4	7.3		6.1	9.5	10	8.4
	Mean	discharge (cfs)																				
		Date of collection	Oct. 1-22, 1962	Nov. 1-11	Nov. 12-30	Jan. 1-31, 1963	Feb. 1-26, 27(a.m.).	Feb. 27(p.m.)	Feb. 28	Mar. 1-31	May 1-24	77	Inne 1-19	June 13-30	July 1-31	Aug. 1-31	Sept. 1-5, 6(a.m.)	Sept. 6(p.m.), 7-10,	11(a.m.)	12-22	Sept. 23-30	Time-weighted average

NEUSE RIVER BASIN--Continued

2-918.31. NEUSE RIVER, AT COWEN LANDING, NEAR VANCEBORO, N.C.--Continued

Aver-	age	69	2 4	43	40	0 4	53	69	48	92	089	79	73
4													
	31	09	11	0 4 4	9.6	11	9	11	202	11	85	808	70
	30	58 61	40	39	4.2	11	52	6.6	202	8 6 5	8 6	808	2
	29	5.5	52 54	38	4,2	11	5.5	65.5	65	80	85	80	2
	28	65	52	38	86.0	4 1 4 5	55	70	65	808	80	808	2
	27	58	50	4 5	0 4	4 50	55	65	65	80	85	80	7.0
	56	98 99	50	4 4 0 4	98 2	39	55	65	65	75 80	85	75 80	20
	25	63	50	35	0 4	4 5	50	65	65	75	8 8	8 6	2
	24	62 66	51	34	0 4 4	39	55	45	6.5	75	80	0 8	7.0
i	23	67 70	55 50	32	4 4 0 8	41	55	70	70	75	80	85	70
8	22	66	55	39	39	38	20	70	70	75	80	80	75
Day	21	66 70	52 54	35	5.0	4.5	55	70	70	75	85	80	2
	20	67	53	3.9	50	0 4 5	55	70	70	75	0.00	000	20
	61	69	53	50	4 5	0 4 6 5	09	102	70	75	85	30	20
	81	71	5.5	0 4 0 70	4 5	39	69	99	70	75	85	75	7.0
	12	7,7	53	1 8 4	230	0 4	55	0,0	202	80	0 80	75	2.0
Day	91	70	5.5	39	9.8	38	55	555	202	80	80	75	02
	12	70	5,5	37	4 4	39	909	99	70	900	80	8 2	7.0
	41	70	51	39	7 4 0 0	3.9	09	09	202	85	75	8 5	7.5
	53	71	56	38	50.00	42	09	09	70	85	80	9 8	7.5
	21	70	5.6	9 4 9	52	4.5	55	099	75	85	75	80	75
	=	70	55	4 8	41	44	55	099	75	85	75	80	75
	2	72	533	50	0 4 4	4 5	55	65	75	85	0.08	85	20
	6	71	57	50	98	37	55	65	70	80	80	85	7.0
	ω .	71	55	9 0	3.9	45	50	65	65	75	85	85	02
)	-	70	54	50	39	4.5	55	65	59	75	85	85	70
	9	70	5.8	9 4 9	4 1	0 4	55	65	65	70	85	85	7.5
	2	69 71	55	53	38	43	50	65	59	70	85	85	0
	4	69	55	55	39	36	9 + 9	70	65	70	8 5 5	85	08
	က	69	55	55	39	37	42	202	65	02	8 8 71 77	85	80
	2	68 70	55	53	43	39	. 4 0	202	65	22	85	980	90
	-	67	6.0	5.5	8 4	36	38	9 0	65	202	8 8	85	80
	Month	October a.m p.m.	a.m.	::	January a.m p.m	р. н. с	р. п.	April a.m p.m	a C	a.m.	July a.m. p.m.	D B C	September

NEUSE RIVER BASIN -- Continued

2-918.36. NEUSE RIVER AT STREETS FERRY, NEAR VANCEBORO, N.

je.		
vailable		
V S.		
ge records availa		
Ö		
re		
,-		
cha		
dischar		
0		
collected. N		
collected.		
9		
8		
-		

		Color	0,	50 45	80	20	42	9	9	120	55	9	20	35	55	32	30	20	40	20	55	2
		는 된	7.0	6.2	8.9	9.9	6.9	6.8	6.5	6.2	6.5	7.5	6.9	7.1	7.2	7.3	6.9	6.9	7.2	6.9	1	1
	Specific conduct-		89	011	73	80	91	84	73	62	20	69	81	101	86	125	112	93	97	130	06	
	Hardness as CaCO ₃	Calcum, Non- magne-carbon-	9	4 /-	9	9	9	9	9	6	00	00	4	9	9	cs.	6	9	_	80	45	,
		Calchum, magne-	22	27	18	2	22	19	19	18	18	21	20	24	21	27	56	22	24	3	22	1
1963	Dissolved	(residue at 180°C)	62	72	61	64	63	63	61	64	20	22	53	69	72	77	75	99	73	79	6.5	,
tember	Ä	trate (NO ₃)	3.2	, w 6, w	1.4	1.9	, 3	2.1	1.6	1:1	5.6	1.8	3.3	2.0	5.8	3.0	3.7	5,1	3,7	3,8	6	
to Sep	Fluo-	ride (F)	0.2	m	7	~	-:	۲.	4	~	٦.	-:	۲.	٦.	~	٦:	~	4.	٦.	8	2.0	
Chemical analyses, in parts per million, water year October 1962 to September 1963	Chloride	(1)	10	12	8.0	10	=	10	8.5	7.0	80	7.5	0.6	01	8.7	==	10	9.2	1	16	9.6	
year Octo	Sulfato	(30)	0.9	80 80	8.4	4.	4.	9.8	9.6	8.6	4.8	9.6	4.8	6.8	1.6	7.8	8.0	8.8	9.4	9.2	0.8	
, water	Bicar -	bonate (HCO ₃)	20	22	12	17	20	16	16	11	13	12	61	23	81	31	27	20	21	28	20	
1111on	Po-	stum (K)	2.2	2.7	2.7	2.1	1.9	2.0	1.4	1.8	1.3	2.5	1.6	2.1	2.3	2.4	2.5	3.7	3.1	3.3	6	
rts per m	ani bo	(Na)	7.9	12	5.8	7.2	œ.	7.2	6.1	4.2	0.9	6.2	9.9	8.1	7.7	6.6	10	7.9	7.7	12	7.7	
fn pa	Mag-	sium (Mg)	1.8	2.5	1.4	1.8	2.0	1.8	1.7	1.8	8:	5.6	1.9	2.3	1.5	2.0	1.5	1.8	2.2	2.7	2.0	
nalyses	Cal-	cium (Ca)		7.1				4.8	4.7	4.2	4.6	4.2	4.6	5.9	6.0	7.4	7.9	6.1	5.9	7.9	5.7	
mical a	į	(Fe)	0.21	288	.24	.31	. 24	.17	. 15	. 18	.13	Ξ.	.27	.17	.21	. 20	.07	. 22	.20	.10	0.19	-
Cbe	21152	(8102)	10	11.	8.0	=	#	9.6	8.3	5.9	2.0	5.4	5.8	8.3	9.0	7	6.6	9.0	6.6	9.4	9.8	
	Mean	discharge (cfs)																				
		Date of collection	- 1	Nov. 1-11.	Nov. 12-30	Dec. 1-16	Dec. 17-31		Jan. 5-21		Feb. 1-28		Apr. 1-30	Кау 1-31	June 1-18	June 19-30	July 1-31	Aug. 1-31	Sept. 1-27	Sept. 28-30	Time-weighted	

NEUSE RIVER BASIN---Continued

2-918.36. NEUSE RIVER AT STREETS FERRY, NEAR VANCEBORO, N. C.--Continued

	Aver-	age	11	55	4 4 0 9	4 4 8 8	4 4 6 5	59	999	69	81	80 80 80 90	8 8 4 4	80
		31	11	11	36	1.4	11	0,9	11	69	11	6 8 9	82	11
- 1		30	11	44	37	14.14	11	65	999	22	83	87	82	70
		59	11	4 4	0 0	41	11	65	99	69	900	888	82	70
		28		55	4 4 8 4	0 4	4 4	67	69	6.8	89	81 81	82	72 72
- 1		27	=	50	4 4 5	94	4 7 7	909	17	69	82	87	80	72
		56	- 11	8 0	4 4	2 4 4	4 0	5.8	69	69	818	81	82	22
963		25	9 4 9	52	4.5	45	45	99	67	67	81	89	81	75
100		24	72 70	53	4 4	2 4	4 4 5 5	59	2.2	6.8 6.8	8 0	8,9	82	81 81
d 21		23	70	56	4.5	52	9 4 9	99	2.2	22	25	85	81	80
e pt		22	68 65	56	4 4	50	0 6 0 6	62	999	22	8.8	8 8	888	80.0
to September 1963 0700 and 21007		21	89	2,2	6.4	52	94	65	67	68	83	833	85	81
		20	70 68	57	4.5	55	47	99	6.5	202	8 1 8	4 4	8 8 5	79
water, water year October 1962 once-daily measurements between		19	65	58	4 5	5.5	4 4 5	67	22	69	80	2.5	8 4	81
eg eg		18	8.8 6.5	53	4 4 5	50	4 4	65	889	20	82	8 1 1	80.0	81
ent o		11	- 11	57	4 4	5.58	2 4 5	65	62	69	8 4 4	8 8 9	83	75
year	Day	16		4 4	4 4	88	4 9 4 9	65	99	69	87	8 8	89	70
er near		12	11	40	33	8 4 4	45	99	99	69	85	8 5	89	83
Wat 11y		4	11	2,2	4 4	4 4	4 4	62	6.6	75	78	86	86	88
water,		13	- 11	56	3 3	4 4	4 4	99	62	69	79	80 80	83	98
wa1		12	11	57	33	200	4 4	99	67	8 9	8 8	8 8	8 8	83
1 E		=	49	58	4 4	50	4 5	57	99	72	87	85	8 8	89
(°F) of		2	72	57	9 9	200	44	5 8	99	720	8 5	88	888	8 8
	i	6	74	56	88	4 4	4 4	59	62	89	88	78	88	82
perati Top s		8	99	5.0	50	45	4 4	57	8,8	22	88	8 8	883	82
Temperature Top and		4	99	52	11	3 4	4 4	200	889	69	8 5	893	89	83
Ĕ		9	8 9 9	5 5 5	200	77	4 4	200	99	202	87	82	8 8	5 81
		2	63	5,1	55	3 3	45	55	33	22	7 67	67	988	85
		3 4	68 63	59	5 5 5	39 40	4 5 5	50	65 67	7 69	9 70	8 9 1	1 83	1 80
		_			55		4.4	300		67	69	7.8	88	81
		1 2	9 4	1 28	54 55	35 40	45 41	54 52	99	60 63	68 67	83 80	80 80 80 84	88
		_	::											
	7	MORE	October Top Bottom	: :	Top	January Top Bottom	Top	Top	April Top Bottom	Top	Top	July Top Bottom	Top	Top Bottom

NEUSE RIVER BASIN -- Continued

2-920. SWIFT CREEK NEAR VANCEBORO, N. C.

LOCATION (revised).—Temperature recorder at gaging station at bridge on Secondary Road 1478, 2.5 miles upstream from bridge on State Highway 118, 2.5 miles contracted from Courty.

2.5 miles Garteram from Clayroot Swamp, and 3.5 miles northwest of Vanceboro, Craven Courty.

BEXORNA SANIANE.—Chemical analyses: Cotober 1950 to September 1950; January 1955 to September 1959.

Water temperatures: Cotober 1951 to September 1952, July 1954 to September 1959.

EXTREMES, 1962-63.—Water temperatures: Maximum, 76°F on several days in July; minimum, 37°F Jan. 4-7.

EXTREMES, 1961-52. 1964-63.—Water temperatures: Maximum, 87°F July 29, 1952; minimum, freezing point on several days in December 1958.

EXEMBES.—Recorder stopped Oct. 1 and Sept. 3-12.

		pH Color	20	22	
		뙾	6.2	7.2	
	Specific conduct-	(micro- mhos at 25°C)	77	130	
	Hardness Spe ed as CaCO, con	Non- carbon- ate	12	6	
	Hare as C	Calchum, magne - sium	20	20	
1963	Dissolved	(residue at 180°C)	8.0 0.1 1.5 A45 20 12 77 6.2	A77	
tember	N.	trate (NO ₃)	1.5	2.3	
to Ser	Fluo-	ride (F)	0.1	.2	
Chemical analyses, in parts per million, water year October 1962 to September 1963	7	(K) (HCC ₃) (SO ₄) (C1) (F) (NO ₃) at 180°C) magne-carbon mhos sium (HCC ₃) (SO ₄) (T) (F) (NO ₃) at 180°C) magne-carbon mhos sium at at 25°C)	8.0	25	
year Oct	o. Per	(30,	12	11	
, water	Bicar-	bonate (HCO ₃)	6	14	
illion	Po-	Sium (K)	1.0	2.4	
rts per m	1	(Na.)	606 5.9 0.00 5.8 1.4 5.3 1.0	16	
, in pa	Mag-	sium (Mg)	1.4	1.1	
nalyses	Cal-	cium ne- (Ca) sium (Mg)	5.8	6.3	
mical a	į	(Fe)	0.00	3	ents
Che	001100	(SiO ₂)	5.9	5.2	trans.
	Mean	discharge (SiO ₂) (Fe)	909	144	ptormined ,
		Date of collection	Feb. 28, 1963	Aug. 15	A Calculated from determined constituents

NEUSE RIVER BASIN--Continued

2-920. SWIFT CREEK NEAR VANCEBORO, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (Continuous ethyl-alcobol actuated thermograph)

	Ł													
	Aver	age	£9	54	44	45	4 1	53	62	63	70	74 73	73	11
Γ		31	55	11	38	98	11	61	11	6.5	11	73	73	11
		30	54 54	53	4 1 7	38	1.1	60	59	63	72	73	73	68
		29	54 54	53	41	38	11	57	269	63	71	72	73	66
		28	56	52	41	38	39	58	09	61	70	72	72	99
		27	59	50	41	38	39	58 57	61	60	70	72	74	99
		26	62 59	52	0 0 4	38	39	57	63	61	8.9	73	7.2	66
		25	62	53	04	42	39	53	69	62	68	72	74	68
		24	6.5	53	0 0	44	39	53	66	62	69	27	74	69
1		23	66	55	41	4 4 4 4	4 0 4	55	66	6.5	10	76	72	99
2		22	99	56	42	47	44	55	99	65	202	76	71	70
rap		21	67	54	42	47	4 6	58	65	65	22	76	71	70
8		20	68	56	39	4 4 3	41	58	65	65	22	76	71	69
thermography		19	69	5.7 5.6	38	43	38	58	61	65	22	72	17	68
9		18	69	57	38	41	38	5.5	61	6.5	71	73	71	69
actuated		17	70	52	38	41	39	55	57	4 4 9	73	73	202	02
	Day	16	70	52	38	4,1	39	58	56	79	73	72	72	72
opo		15	69	54	38	44	43	58	57	49	73	17	73	73
ethyl-alcohol		14	69	56	39	47	43	59	57	6.5	74	17	73	73
Dy1.		13	69	56 56	41	49	45	58	57	65	74	72	73	73
		12	69	56	43	44	45	58	57	67	74	72	73	11
Continuous		π	70	56 55	44	4 4 0 4	43	54	59	67	74	73	73	11
121		10	70	55	44	39	42	54	58	99	73	74	73	11
3		6	0.0 6.9	52	4 t	38	4 4	53	58	64	17	44	73	11
		8	6.9	53	4 5	38	4 4	55	59	62	11	7.4	73	1.1
		7	68	54 53	50	38	4 0	56 55	59	61	69	2.2	73	11
1		9	68	55	52	37	39	58	63	59	68	2.2	73	11
		2	6.8 6.8	55	52	37	39	53	66	59	67	76	73	11
1		4	68 66	55	53	38	39	48	99	58	66	76	73	
		3	99	55	54 53	38	38	45	9 4 9	58	65	74	73	1.1
İ		2	65	55	55	38	38	4.0 4.0	64	59	65	7.4	73	73
L		1		55	55	3.8	38	39	62	59	65	74 72	73	73
	Month	MODIFIE	October Maximum Minimum	Maximum	Maximum	January Maximum	Maximum	Maximum	April Maximum Minimum	Maximum	Maximum	July Maximum Minimum	Minimum	September Maximum Minimum

A Calculated from determined constituents.

NEUSE RIVER BASIN--Continued

ပ 2-921.62. NEUSE RIVER AT NEW BERN, N.

DOARTON. --At bridge on U.S. Highway 17 in New Bern, Craven County.

MAIANAGE ANALAMA Square miles.

RECORDS ANALAMAGE. --Chemical analyses: October 1956 to September 1963.

RECORDS ANALAMAGE. --Chemical analyses: October 1956 to September 1963.

RECORDS ANALAMAGE. --Chemical analyses: October 1956 to September 1964.

RECORDS 1956-63. --Chirt of Maximum, 5,500 mpd Jan. 17, 19, (B); minhumm daily, 61 mrownose Per. 1 (B).

RECORDS 1956-63. --Chirt of Maximum, 80°F 0113 y 67 y 1013 y 1013 y 67 y 1013

1069 +0 410 Chandan

			Chemic	al anal	yses, 1	n parts p	er mil	lion, Nc	vember 16	Chemical analyses, in parts per million, November 1962 to August 1963	ust 19	93						
	Mean			Cal-	Мад-	1	Po 2	Bicar-	oule to	0.10	Fluo-	Ni-	Dissolved		Hardness as CaCOs	Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	(Na)	Sium (K)	bonate (HCO ₃)	(30,	(CI)	ride (F)	trate (NO ₃)	a 6	Calchum, Non- magne-carbon- sium ate		(micro- mhos at 25°C)	Hg.	Color
Nov. 24, 1962		7.9			1.3	6.4	2.5	16	10	9.0	_		A51	18	4	_	6.3	
Nov. 28, 29(T)		9.2		_	1.9	8.6	2.6	17	9.6	16	_		Ve3	20	9		6.5	2
Dec. 3-11		2	.24	6,3	2.5	9.0	2.3	22	9.2	13	~	1.6	80	56	80	100	7.1	80
Dec. 13		11			8.8	13	2.5	22	=	21	_		A82	53	00	_	6.7	40
Dec. 14, 15(T)		77			1.9	æ.6	2.0	21	9.8	14			A65	24	7		6.9	40
Jan. 24(B), 25-31,																		
1963		6.0		5.2	1.5	5,5		12	20		-:	1,9	19	19	6	67	9.9	20
Feb. 1-28		6.8		6.3		6.8		16	10		7.	2.7	63	24	12	98	6.7	9
Mar. 1-31		5.3		4.5		7.4		17	0.6		-:	1.4	63	22	80	83	6.9	9
Apr. 1-23		5.9		6.2		8.2		23	8.6		۲.	5.6	64	56	80	100	2.0	20
Apr. 24		4.5	.19	=		11	1.5	88	8.6	15	•	2.1	A77	36	9	130	7.4	!
May 8-11		8.4		7.5		12		33	7.0	16		2,3	79	30	6	131	7.3	25
May 24-31		7.4		7.5		8.4		24	0.6	11	۲.	1.4	76	26	9	113	6.9	20
June 1-9		8.7	11.	7.5	1.5	7.6	1.8	22	8.0	9.3	٠.	1.0	72	24	9	86	7.2	22
Aug. 13				1		ı		22	1	39	1	1	1	30	12	167	9.9	!
Aug. 21		!	_	1	1	1		8	1	19	I	1	l	88	12	133	6.3	ŧ
		1																

NEUSE RIVER BASIN--Continued 2-921,62, NEUSE RIVER AT NEW BERN, N. C.--Continued

1 1		1					
September	Bottom	3800 4000 3150 3620	3620 3050 3150 2975	2800 2710 2325 925 1075	1085 1450 575 4200 4200	1000 2425 3200 2475 2625	2125 2275 2275 2575 2100 1625
Septe	Top	750 1400 1875 1650 1250	750 625 375 600	252 350 150 600 950	1085 500 3250 555 950	4380 1625 1750 1950 2125	1975 950 1075 11450 1325
jg Par	Bottom	1140 1235 3150 242 3075	2925 3300 2910 3225 3375	3375 3375 39 89 680	1170 1365 1985 1040 1010	19 1075 1550 2420 2435	4115 4770 4456 3960 3040 4190
August	Top	450 234 202 83 40	228 108 208 365 248	395 240 39 40 218	126 73 61 48 40	19 69 47 93 310	465 370 850 1040 1275 495
Ą	Bottom	450 400 1265 2250 1515	2510 1850 2525 2935 1885	2085 2440 2760 1375	1495 1075 1440 1360 950	2025 3265 2225 3625 2510	3265 3265 3265 1265 2760 2685
July	Top	131 141 179 1050 450	710 635 750 1225 1450	910 940 1200 1355	1385 860 590 400 365	475 975 1325 1425 1685	1215 1310 1425 1950 1000 1040
	Bottom	6	1525	1490 2825 3625 1750 2120	2510 2615 2650 2615 2435	1585 2125 1735 1715 1450	1450 1550 825 95 490
June	doL	^	72	220 575 1490 2450 1475	1915 990 1015 1325 1510	1235 1735 1390 815 600	700 475 325 91 144
Ą	Bottom	91 75 47 29	563	112 91 22 150	134 79 94 152 38	2 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ä
May	Top	91 141 64 35	61 22 22	109 43 27 141	134 67 64 78 38	26 21 48	::
Ţ.	Bottom			12		15	14 99 30 226 16
April	Top			7 12		15	16 46 30 134 20
ę,	Bottom				0.6		
March	Top				0.6		
ary	Bottom			10			111
February	Top B			10		<u></u>	111
ary	Bottom	825 1375 1925 2325 2360	1575 2125 2500 1775 2360	2325 1575 2250 2625 3620	5150 5550 5150 5550 4750	2880 3620 3250	
January	Top	500 150 86 94 1875	35 39 99 255 176	35 28 27 325 375	625 555 255 400 650	375 96 40 16	66
ıber	Bottom	73	13	59 21 14 47	75 1250 1550 1275 1680	2100 1900 2600 3100 3620	3620 3450 2360 3200 1650 750
December	Top	68	13	21 14	105 38 54 35	425 220 245 370 950	975 525 555 400 1650
November	Bottom	1950 1450 1850 1750	1700 1725 2400 2575 650	555 1350 675	650 2475 2450 1200 2150	2425 91 195 9.0	715 500 16 125 51
Nove	Top	775 715 800 800 1300	250 500 450 275 555	113 126 400 200 145	56 32 67 44 8	59 21 19 9.0	675 245 16 30
ber	Bottom	2150 1225 1825 1625 1625	2125 2325 2000 2250 2530	1450 4000 4000 3620 3250	3620 3620 3620 2925 2500	2225 2530 2475 2575 2250	1850 1915 2250 1975 2180 2400
October	Top	300 300 155 116 88	155 375 375 525 575 1000	1125 900 525 835 650	650 580 825 2600 2500	1400 1125 1450 2475 1300	1750 1325 1000 1150 620
Day	243	H 21 E2 4 E	6 8 9 10	11221112	16 17 18 20	21 23 24 25	26 27 30 30 31

NEUSE RIVER BASIN--Continued

2-921.62. NEUSE RIVER AT NEW BERN, N. C.--Continued Temperature (°F) of water, water year October 1962 to Spitember 1963

	Aver-	age	99	5.3	£ 4 7	40	45 42	55.55	9 9 4 4	8 8 9	35 35	79	800	72
		3	0.00	11	33	9 9	11	6.3	11	8 8	11	0.08	80	11
- {		8	8 8	51	22	0 0	11	5 6	99	69	980	80	77	20
		29	546	52 5	4 4	36	11	8 8 8	6.5	68	80 8	82.8	76 7	70 6
		28 2	574	52		9.89	33.88	28	99	65	27	- 62		88
-		27 2	585	2 0 0	41 45	99	39 3	58 5	999	65 6	79 7	80 7	787	67 6
		26 2												75 6
		25 2	60 57	50 49	40 41	40 40	43 40	56 56	99 89	67 67 68 67	77 27	79 81	77 97 77 97	66 6
t1de/		24 2												
		\vdash	65 63	52 51	40 40	46	43 43	52 53 52 53	70 67	71 67	74 73	77 77 80 80	78 79	69 69
hig		2 23												
7		1 22	665	5 53	2 40	4 4 6 4	11	57 57 58 57	698	72 72 73 72	78 75	79 78	1 81	74 73
approximately high		21	4,0	5,5	45	4 4 6 7 7			899				808	
1xo		20	65.5	5 2 2	4 4	2, 4	4 5 6	5.6	99	73	7 2	83	80	27
dda		61	89	5.4	43	4 4 7 4 4 7	4 4 5	59	4 4	72	77	79	80	70
		8	27	52	6 0 4	2,4	939	5.6	61	72	47	8081	78	72 8
ts	_	17	72	53	8 0 4	4 4	0 0 4	59	09	69	75	81	77	99
measurements at	Day	91	73	53	36	47	0 7	57	55	69	77	80	81	89
T ISI		12	74 73	5,4	36	4 4 6 7 7 8	4 4 4 4 4 7	5.9	59	202	78	78	808	8 8
me		72	73	ν. γ.	38	4 4 8 8	45	999	8.8	6.9	77	77	83	75
11y		23	70	52	36	4 4	4 4 6	62	63	8.9	76	78	82	75
P P		12	52	55	47	43	44	58	63	69	80	77	81	75
once-daily		=	70	53	2 4	4 0 4 1	42	55	60	73	78	79	80	76
		2	70	55	4 4	0 0 0	4 4 5	55	60	72	82	78	83	73
bottom		6	73	54	4 4 8 8	9 9	43	53	62	69	8 80	800	83	76
pue		æ	73	52	4 4	39	4 4 4 4	53	61	8 9	80	77	81	73
Top a		7	69	53	4 9	38	4 4 3	55	61	67	7.2	76	82	73
6		9	69	51	54	38	45	54 54	63	29 29	2.5	78	83	77
		2	55	5,5	53	36	47	50	65	99	7.2	83	82 30	78
		4	69	55	54	37	38	49	99	4 4	202	78	92	77
		3	6.8	54 55	53	37	04	4 5 5	65	65	69	79	93	81
		7	89	55	50	36	38	11	4 4 9	69	89	80	91	76
		-	68	57	54	36	38	4 4 5	62	65	68	81 79	9.2	77
	1	Month	October Top Bottom	Top	Top	January Top Bottom	Top	Top	April Top Bottom	TopBottom	Top	July Top Bottom	Top	Top

NEUSE RIVER BASIN--Continued

ပံ 2-925. TRENT RIVER NEAR TRENTON, N.

LOCATION (revised). --At gaging station, 50 feet downstream from Free Bridge on Secondary Road 1129, 800 feet downstream from Little Chinquapin Branch, 1.5 miles southwest of Phillips Crossroads, and 6 miles west of Trenton, Jones County.

DRAINGRARM ARM. —166 square miles:

RECORDS ANTIARES.—Chemical analyses: October 1953, January 1955 to December 1962 (discontinued).

RECORDS ANTIARES.—Chemical analyses: October 1953, January 1955 to December 1962 (discontinued).

RETERMENS 1951-65.—Chemical analyses: October 1951, Antiambrare 1962 (discontinued).

RETERMENS 1951-65.—Chemical Antiambrare 1951, Antiambrare 1962. Antiambrare 1962. Antiambrare 1962. Antiambrare 1962. Antiambrare 1963. Antiambrare 1963. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 1962. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 17, 1967. Antiambrare 1867. Antiambrare 17, 1967

		Color	120	110	90	120	80	80
		표 표	+	-			7.2	
	Specific conduct-	(micro- mhos at 25°C)	+	140			92	96
	Hardness as CaCO,	Non- carbon- ate	10	10	10	80	10	10
		Calcium, Non- (n magne-carbon- sium ate at	34	64	52	25	32	38
	Dissolved	(residue (at 180°C)	17	119	85	53	89	75
962		trate (NO ₃)	Į.				1.5	
ber 18	Fluo-	ride (F)	0.2	٦.	٦.	?	3	.2
Chemical analyses, in parts per million, October to December 1962		(CI)	5.5	2.0	8.0	5.8	7.0	8.5
on, Octobe		(so)	5.0	7.6	6.8	6.0	0.9	6.2
r millic	Bicar-	bonate (HCO ₃)	30	65	52	21	27	34
rts pe	Po-	Stum (K)	0.7	1.0	1.1	1.6	6.	1.0
es, in par	anipos	(Na)	3.4	4.5	3.9	3.2	3.8	4.4
analys	Mag-	sium (Mg)	1.7					
hemical	Cal-	cium (Ca)	11	_	_		10	
J		(Fe)	0.16	. 19	20	20	.19	.14
	Silis	(SiO ₂)	7.2	8.1	7.0	2.0	6.1	6.3
	Mean	discharge (cfs)	259	44	84	632	248	142
		Date of collection	Oct. 1-11, 1962	0ct. 12-31	Nov. 1-10	Nov. 11-18	Nov. 19-30	Dec. 1-31

Temperature °F of water, October to December 1962 /Once-daily measurement between 0630 and 163<u>0</u>7

	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 ^e	68 68 68 68 68 68 65 65 65 65 65 52 53 53 48 48 55 55 62 62 64 69 50 51 53 55 55 54 65 65 65 65 65 65 65 65 65 65 65 65 65
Day	4 15 16	6 68 68 8 49 50 5 36 37
	2 13	8 52 6
	=	0 4 4 0 8 8 0 4 4
	0.	4 4 6 5 6 5 6 5
	٥	55 4 4
	8	2 4 4
	7	8 4 4 8 8 7
	9	44
	5	2 7 8
	4	6 4 4
	က	0 0 4 0 4 8
	2	2 4 6
	-	454
Month		October 61 65 65 63 62 62 65 65 65 65 65 66 62 68 November 54 54 54 54 48 48 49 55 48 49 68 52 48 December 69 49 48 48 46 47 45 45 44 66 68 68 35 35

ŀ

132

=

57

93

1.5

0.2

8.9

6.9

26

1.0

4.4

1,7

20

0.18

6.4

average.....

NEUSE RIVER BASIN--Continued

2-925.54. TRENT RIVER AT POLLOCKSVILLE, N. C.

LOCATION .-- At bridge on U.S. Highway 17 in Pollocksville, Jones County, and O.4 mile upstream from Mill Creek. DRAINAGE ARRA.--372 square miles.

RECORDS AVAILABLE. --Chemical analyses: January 1955 to November 1958, October 1961 to September 1963. Water temperatures: January 1955 to November 1958, October 1961 to September 1963. XTREMES, 1962-63.--Dissolved solids: Maximum, 125 ppm May 1-25; minimum, 59 ppm Jan. 20-31.

Rardness: Maximum, 92 ppm May 1-25; minimum, 92 ppm Jan. 20-31.

Rardness: Maximum, 92 ppm May 1-25; minimum, 92 ppm Jan. 20-31.

Specific conductance: Maximum Maliy, 240 minimum, 92 ppm Jan. 20-31.

Ratter temperatures: Maximum, 82 pp. 1012 33, Aug. 7-6; minimum, 38 pp. 33-7.

RATTERENS: 1950-68, 1961-63.—Dissolved solidist: Maximum, 5, 1080 ppm Jan. 1-8, 1955; minimum, 57 ppm Peb. 24-28, 1962.

Rardness: Maximum, 1, 200 ppm Jan. 19, 1955; minimum, 19 ppm Sept. 21-30, 1955.

Specific conductance: Maximum Maliy, 9, 200 minimum, freesing point on many days in December 1957, 2 minimumy and Pebruary 1958.

Ratter temperatures: Maximum, 188 pp. 100-67, 1956; minimum freesing point on many days in December 1957, 2 minimumy and Pebruary 1958.

Color 991 891 85 828868 7.0 7.0 2.7.2 펌 215 96 1125 175 205 conduct-(microat 25°C) 38 22 ance mhos Nonmagne-carbon-8 5 5 5 5 4 8 5 5 5 5 4 222222 212212 8228 ate Hardness as CaCO, Calcium. 049 882 844 849 849 842 423 600 800 800 92 38 48 70 77 52 68 41 62 sium at 180°C) Dissolved (residue 85 70 74 95 93 93 110 67 105 120 120 82 82 97 solids Chemical analyses, in parts per million, water year October 1962 to September 1963 Ni-trate (NO₃) 64.66.1 Fluo-ride (F) 40040 224520 466412 4444 7.0 6.0 6.0 7.4 6.0 8.0000 6.50 6.3 Chloride (C) 9.9 Sulfate 8 Bicar-bonate (HCO₃) 25 4 5 1 5 44 117 26 39 59 68 54 35 51 39 44 74 74 50 Po-tas-stum (K) 1.9 01.001. 55.45 0.0.4.0.0.0 7.4.6.4.4 0.10.444 44.25 Sodium (Na) 8 6 4 6 1 22.3 95.00000 80441 sium (Mg) Mag-ne-Cal-cium (Ca) 34 113 24 29 23 23 17 17 19 3233 25821728 48224 Iron (Fe) Silica (SiO₂) 7.0 0.64.64.0 8.1 4.4 6.6 7.9 discharge (cfs) Mean May 1-25.
May 26-31
June 1-10
June 28-30
June 28-30
July 1-31 26-31..... lug. 1-31..... Sept. 13-39..... 1962.... 1-10 22-30..... 1-31..... 1963.... 1-28..... 1-25..... 1-30..... Sept. 1-6..... Date of collection Time-weighted 11-21far.

Nov.

Jan. Peb. A Calculated from determined constituents.

B Organic matter present; sum of mineral constituents 52 parts per million.

NEUSE RIVER BASIN--Continued 2-925.54. TRENT RIVER AT POLLOCKSVILLE, N. C.--Continued

	Aver-	age	65 54 47	4 4 4 W 4 4	64 70 76	80 80 73
	`					
		8	57	312	121	80 78
		30	57 51 43	913	66 65 72 71 77 78	80 80 78 78 68 68
		29	5 B 5 1 6 3	313	66 72 77	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		27 28	5 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	545	69 67 72 72 76 77	80 80 79 78 67 68
		27	60 51 45	£ 4 8		
		26	6.1 5.0 4.4	43 45 54 54 54 54 54 54 54 54 54 54 54 54	69 69 71 71 76 76	78 79 79 78 68 67
963		25	61 52 43	4 4 4 4	69 71 76	78 79 68
1		24	6 5 4 5 5 3	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70 68 72 71 76 75	82 80 80 79 71 70
Temperature (°F) of water, water year October 1962 to September 1963 \widehat{C} Duce-daily measurement at approximately 070 \widehat{Q}		16 17 18 19 20 21 22 23 24 25 26	5 4 4 2 4 4	4 8 5 7 2 7 2 4 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	70 72 76	
lept		22	0 0 4 0 4 6	51 45 45 59 59 59	68 70 73 72 77 77	80 80 80 80 73 73
e (°F) of water, water year October 1962 to Se Conce-daily measurement at approximately 0700		21	67 53 43	51 45 59	68 73	80 80 73
962		20	68 63 43	4 4 6 8 4 0	62 62 72 76 77	78 78 80 80 72 73
r 16		19	68 53	4 4 0 0 0		78 80 72
oxi		18	69 69 53 53 42 42	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	61 61 69 71 77	80 80 79 80 71 72
oc a		17		5 t t t t t t t t t t t t t t t t t t t		80 79 71
ear at	Day	16	69 69 52 53 40 40	4 4 4 6 5 9 5 9 5 9 5 9 5 9 9 9 9 9 9 9 9 9 9	61 61 68 68 79 77	78 80 80 79 73 72
er j ent		15	69 52 40	4 4 6 0 0 0	61 68 79	
wat		7	69 69 54 52 43 42	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	61 61 70 68 79 79	76 78 81 80 74 73
er, sasu		13	69 54 43	4 4 4 5 4 7 4 4 5 4 7 4 4 5 4 7 4 6 9 4 7 4 6 9 7 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	61 70 79	76 81 74
wat		11 12	68 68 54 55 48 45	24.2	61 61 74 72 78 78	78 81 74
of dail		=	6 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	45 47 50 54	61 61 74 72 78 78	80 78 81 81 74 74
·F)		9 10	69 68 54 54 56 49	5 4 5 2 6 5 2 6 6	63 62 70 73 76 78	81 80 82 81 73 74
o G		٥	69 54 56	42 42 45 45 50 50	63 62 70 73 76 78	81 82 73
atu		80	67 68 55 55 55 56	38 45 49 49 49	63 70 76	81 82 73
mbe:		7 8	67 55 55		65 63 69 70 75 76	80 81 82 82 75 73
Ţ.		ø	67 53 55	38 43 43 49 49 49	65 65 67 68 73 75	80 81 75
		2	55 55	8 6 4 6 8 4	65 67	80 80 75
		4	66 55 56	38 38 41 41 45 48	65 67 72	980
		ო	52	38 41 41 45 48	64 65 66 67 70 72	79 80 78
		2	65 57 53	39	490	79
			6.5 5.8 5.4	41 39 40 41 42 42	65	80 79 80 79 78 78
	Manah	Month	October 65 November 58 December 54	January 41 February 40 March 42	April May June	July 80 79 August 80 79 September 78 78

olor

20 20

CAPE FEAR RIVER BASIN

2-935. HAW RIVER NEAR BENAJA, N.

LOCATION (revised).—Temperature recorder at gaging station 200 feet upstream from site of old Righ Rock Mill, 500 feet upstream from bridge on Secondary Rocking). Sinie upstream from Rockingham—County.

COUNTY.

DENINGER AREA—Changes quare miles.

EXTRIALE.—Chanical analyses: October 1982 to September 1983.

EXTREMES. 1982-63.—"Mater temperatures: Describer 1983 to September 1983.

EXTREMES. 1982-63.—"Mater temperatures: Maximum, 81°P 1019 29; minimum, 71°P 106.

EXTREMES. 1982-63.—"Mater temperatures: Maximum, 81°P 1019 29; minimum, freezing point on many days in 1984-56, 1958-61.

Chemical analyses, in parts per million, water year October 1962 to September 1963

	핖			9.9 09	6.7
Specific condoct-	(micro-	mhos	at 25°C)	09	79
aco,	Non-	carbon-	ate	0	0
Hard 28 C	Calclum,	magne-	sium	18	30
Diagolved	(residue	at 180°C)		A46	A67
Ni-	trate	Š		0.5	۲.
Fluo-	ride	9		0.2	2
opinola O	(C1)				
400	08				
Bicar-	bonate	2		26	40
Š,	Stum	æ		1.7	1.8
1	(Na)			3.9	6.5
Mag-	sium	(Mg)		1.7	3.3
Cal-	cium	3		4.6	6.9
į	(Fe)			0.05	8
31	(SIO,			14	18
Mean	discharge	(613)			
	Date of collection			Feb. 6, 1963	Sept. 3
	ollian T. Cal. Mag- oldinm Po- Bicar- ollian	Mean Silica Iron Cal- ne- Sodium tas- Bicar- Sulfate discharge (800,) (Fe) Colm sium (Na) sium booate (80)	Mean Silica Iron Cal- cium me- sium Sodium (Rs) Pro- sodium (Rs) Bicar- bonate (SO ₄) Sulfate (SO ₄)	Mean Silica Iron Cal- ne- (Ca) (Fe) (Ca) (Re) (Ca) (Mag- (Ca) (Mag- (Ca) (Mag- (Ca) (Mag- (Ca) (Mag- (Mean Silica Iron Cal- ne- Sodium Ias- Bicar- Sulfat (Ias) (Fe) (Ca) (Mg) (Mg) (R)

A Calculated from determined constituents.

CAPE FRAR RIVER BASIN--Continued

2-935. HAW RIVER NEAR BENAJA, N. C. -- Continued .

Temperature (°F) of water, water year October 1962 to September 1963 (Continuous ethyl-alcohol actuated thermograph)

	ľ								,	S S	Continuous	Snor		y1-	100	ethyl-alcohol	actuated	uate	ğ	hera	logr	thermograph/			İ	-			į	1		L	
Manak																Ω	Day															⋖,	Aver-
Month		-	2	6	4	2	9	7	8	6	10	=	7	13	4	15	191	1 2	1 8	19	20 2	21 2	22 2	23 2	24 2	25 2	26 2	27 2	28 2	29 3	30 3	3	age
October Maximum Minimum	; ;	56	0.86	61	62	62 6	4 4	3 4	899	899	9 6 6	65	9 7	666	65	67 6	65 6	64	67 6	58 5	5.5	5.68	57 57	58 57		53	8 9	4 t 4 5 6	27	4 8 8 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	£ 80 £ 80	53	60 58
.	11	5.2	8 9	7 7 7	3 4	4 4	9 4 4 5 5	4 4 4 4 4 4	43	51	52	51 5	20 02	4 6 4	644	4 4	47 5	50 50	53 5	53 49		48 51		51 46		4 4 4	413	41 42		4 2 4 5 4 5 4 5	45	11	8 4 9
Maximum Minimum	11	4 4 5	2,4	9 4	74	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 1	7 T	4 1 4 0	0 0 4	36	36 3	3,4	34 8	34	34 8	33	33.4	34	36 39		38 3	38	37 37		34 3	34	34 3	36	37 3	37 3	36	39
88		34	4 4	3.4	4 4	44	36	36	38	38 88	98	4 4 4 4	8 1	0 80 7 7	800	9 t O	3.6	35	35	40 45 38 40		45 42		38 38		34	34	34 34 34		34	34	3 4	38 36
Maximum Minimum	11	36	3.6	35 3	35	35	36	39	39	37	36	37 3	37	39 3	35 3	34 8	34.3	3 4	34.	35 3	36 3	38 3	35	35 34		34 3	36	34 3	34	11		11	37
mnm	11	36	38	3 6 6	2 7 7	51 5	53	53	51	4 4 4 7 4	50 4	45 4	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	53 5	53	52 5	64	52 5	55 5	55 5	5.5	50 5	0.4	48 51 46 48		54 5	54 5	5.6	56 5	58 5	9 9 9 9	0,0	52
April Maximum Minimum	11	62	**************************************	8 9 9	699	9 0 9	260	57	52	2.80	5.0	58 5	58	58	55.7	5.5 7.2 7.2	3.6	59 6	4.6 5.9	68 49	71	69 67		70 67		62 6	59 5	62 6	209	580	5.8	11	63
ximum nimum	11	57	5.7	558	58	63	65	65	63	029	69	72 7	71 65	65 6	69	67 6	999	65 6	65 6	65 6	69	69 7	70 6	69 65		63 6	62 6	62 62 62 62		9 9	9 79	89	63
Maximum Minimum	11	8 8	8 9	99	6.5	70 79	72	40,	7,4	712	77	77 77	77	74 7	44 1	74 70 6	72 6	99	9 9 9 9 9	69 7	71 7	70 6	9 9 9	69 69		70 7	72 7	72 7	470	74 77	75 -		72
mum mum	- ; ;	73	9.4	76 7	75	72 7	72	72 7	75	72	72 7	717	7.1	70 6	69	72 7	47	76 7	78 87	80 8	80 76	78 7	76 7	74 72		73 7	76 7	78 7	76	81 76 7	78 7	76	75
_	11	78	76	90 8	90	90 8	90	78 7	79	74	8 4	77 77	1,1	77 77	77 57	76 7	73 7	74 7	76 77	76 77		73 7	74 7	76 78		76 7	73 6	69 89	69	71 7	72 7	47.	76
September Maximum Minimum	::	72	72	73 7	73	73 70	07	65	6.5	699	71 7	67 6	68	717 70 6	70 69	63 6	63	67 67		63 6	63	9 9	69	65 61 61 57		59 6	61 6	63 6	69	62 62		11	8 9 9 9

CAPE FEAR RIVER BASIN--Continued

2-935.49. HAW RIVER AT ALTAMAHAW, N. C.

LOCATION.--At bridge on State Highway 87 at Altamahaw, Alamance County, 1.2 miles above Reedy Fork. ALTANGER REAL--188 garae miles. Cotober 1961 to September 1963. REGORDS AVAILABLE.--Chemical analyses: October 1961 to September 1963. REMARKS.--No discharge records available.

		Chei	nical ar	alyses	in par	ts per m	illion	, water	year Octo	Chemical analyses, in parts per million, water year October 1962 to September 1963	to Sep	tember	1963					
	Mean	04150	1	Cal-	Mag-	o di	Po-		200	[4]	Fluo-	Ni-	Dissolved	Hardness as CaCO ₃		Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	(Na)	Sium (K)	bonate (HCO ₃)	(30°)	(C1)	ride (F)	trate (NO ₃)	(residue at 180°C)	Calcum, Non- magne-carbon- sium ate	Non- carbon- ate	(micro- mhos at 25°C)	H	Color
Oct. 15, 1962		19	0.04	15	5.2	92	7.2	126	32	46	1.0	16		09	0	463	7.7	20
Nov. 17		12	.04	4.9	1.6	4.3	2.1	24	5.6	4.4		1.3		18	0	64	6.5	35
Dec. 13		13	11.	7.5	3.1	23	3.0	57	17	12	4.	2.6	123	31	0	168	6.9	40
Jan. 13, 1963,		12	.02	5.2	1.9	4.2	1.3	27	4.4	3.2	•			21	0	09	9.9	œ
Feb. 14		11	90.	6.6	2.7	9.6	5.0	58	12	8.9	4.	1.8		28	4	109	6.5	20
Mar. 18		11	8.	7.5	2.4	11	2.2	30	13	12	e.	2.1		53	4	120	6.2	20
Apr. 18		17	.01	11	4.1	43		89	22		2.4	14		44	0	298	7.3	20
May 16		20	.03	13	4.4	98	9.6	154	30	49	2.8	0.9	301	20	0	200	7.1	28
June 15		ដ	00.	9.7	3.5	28		66	24		1.2	7.2		38	0	340	7.0	20
July 15		18	.01	6.5	2.7	5.9		42	3.0	4.9	.2	4.		27	0	85	6.5	7
Aug. 15		17	8.	8.0	2.8	8.3		49	2.8		77	1,1		32	0	101	7.3	9
Sept. 18		12	.04	9.9	2.4	5.3		41	3.0		۲.	9.		56	0	42	7.0	20
A Calculated from determined constituents.	etermined c	onstit	uents.															

CAPE FEAR RIVER BASIN -- Continued

2-969.59. HAW RIVER AT BYNUM, N. C.

MARINGE AREA.—1.280 quare miles, approximately.

RECORDS ANALIABLE.—1.280 quare miles, approximately.

RECORDS ANALIABLE.—1.280 quare miles, approximately.

RECORDS ANALIABLE.—1.280 quare miles, approximately.

RECORDS ANALIABLE.—1.280 quare miles, approximately.

Records ANALIABLE.—1.280 quare miles, approximately.

Records ANALIABLE.—1.280 quare miles, approximately.

EXTREMES, 1962-63.—1.281 miles and analy analy analy analy and analy analy and analy an

		Color	12	2 6	88	23	32	32	32	52	52	- 55	ŝ	12	2	2 4	P 15	3 =	9	∞	2 ;	2 5	30	20
		H	8.9	0.6	7.7	7.2	7.2	7.4	8.9	7.2	9.9	9 4	•	7.1	7.2	0.6	0 0	0.5	:	7.7				6.7
	Specific conduct-	(micro- mhos at 25°C)	260	150	280	400	110	140	68	140	16	130	077	94	115	200	120	66	-	110	140	200	250	225
	Hardness as CaCO,	n, Non- e-carbon-	0	0 0	•	0	-	0	N	0	010	5 0	>	7	0	0	9 6	40	4	0	-	-		0
		Calciu magn sium	88	33	42	44	56	31	24	္က	24	42.0	87	26	56	22	9 6	3 8	3	56	8 8	25.5	3 6	36
1963	Dissolved	(residue at 180°C)	A173	106	184	A238	87	A97	7	A99	81	282	16	A67	83	73	1 9	A00.	5	A77	A80	A104	A150	1
to September 1963	ž.	trate (NO _s)	3.9	4.0	4.3	7.7	1.5	3.4	2.2	2.9	6.	4. 1		1.6	2.8	1:1	1 %		•	3.2	6.6	9.4		!
to Sep	Fluo-	ride (F)	9.0	4. n		6.	.2	Τ.	?	4.	-:	4.0		.2	7.	-:	۱ ،	7	:	.2	ů,	. 4		· ••
ber 1962	Chloride	(CI)	30	16	34	45	9.3	14	6.8	16	9.9	, ,	71	7.4	10	7.6	200	9.0	2	8.7	9.0	9 7	98	22
water year October 1962	Sulfate	(8)	81	10	17	24	8.6	11	9.2	=	8.2	90.5	4.	9.2	01	9.6	13			0.6	2.6	2 5	14	1
, water	Bicar -	bonate (HCO ₃)	84	200	85.	112	8	43	27	40	58	5 3	e,	30	32	27	# £	8 5	1	34	40	20.0	9 6	62
million,	Po-	Sium (K)	3.9		4.00	5.2	2.6	2.4	2.5	2.4			7.0	1.6	8:	1.5	! }	* .	;	1.8	2.1	9 6	9 6	; [
in parts per m	Sodium	(Na)	44	200	2 4	64	8.6	17	7.5	81	8.2	2	2	6.6	12	9.6	1 6	0 0		12	14	7 6	98	32
	Mag-	sium (Mg)	3.7	0.0	9 10	4.1	2.5	2.9	2.4	2.8	2.5	2,0	Q.7	2.2	2.5	e .		2.5	1.0					3.4
analyses,	Cal-	clum (Ca)	9.6	2.2	: =	Ħ	6.1	7.5	5.6	7.2	5	9.0	9.	6.7	6.5			0.4	;	9.9	2.9		0 ac	9.1
Chemical a	į	(Fe)	0.03	8	8	90.	8	.20	.03	8	5	8.6	5	.03	.07	=	18	3 8	70.	8.	.07	5 5	5 =	9
Che	Silica	(SiO ₂)	17	14	12	18	13	17	13	81	7	22	9	13	12	£1	١,	7:	71	91	14	77	12	19
	Mean	discharge (cfs)	297	488	166	275	2419	697	3019	678	3035	1242	1/65	2215	1957	2039	1320	3322	0000	1432	1000	150 100 100 100 100 100 100 100 100 100	478	578
		Date of collection		ct. 5-10	Oct. 13-31	ov. 1-8	ov. 9-30				ec. 24-31	Jan. 1-9, 1963	an. 10-20		Feb. 1-17			AT. 1-4				pr. 10-30	av 15-31	June 1-2
			8	88	38	Š	Š	Ďě	ē	ě	Ž	8	3	J.	Pe	9	9	# X	z H	B M	V.	Q .		

32232	1818338	24
6.7.7. 7.7.2.2.7. 7.3.3.8.	1.7.7.4.1.4.1.4.1.1.1.1.1.1.1.1.1.1.1.1.	1
150 275 150 290 250 525	120 270 300 188 310 160	186
00000	00000	0
28 33 33 34 34 30 30	2 3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31
92 175 101 184 A159 312	83 162 183 A118 A182 A98	121
000004	0.4.0.4.4. 0.0.8.0.0	3.3
80.01.04	4 61-48 0	0.5
13 28 32 32 70	11 40 39 18 33 15	19
11 17 13 20 16 39	11 18 21 23 14	13
42 82 41 77 73	32 74 74 91 43	22
4.0.0.4.6.0	25.4.6.4.9 1.0.0.0	2.8
17 42 40 40	15 47 25 48 19	25
7.00.00.4 7.100.21	22.22.22	2.9
6.7 7.6 9.4 9.9	8.9 0.0 7.7 8.9	7.8
228828	8628488	0.05 uents.
72255 13325 16	8.7 112 112 111	14 onstitu
672 274 427 278 392		1201 14 0.
June 3-8, 1963 June 9-30 July 1-16 July 17-11 Aug. 1-18 Aug. 19-21	Aug. 22-28. Aug. 29-31. Sept. 1-18. Sept. 19-23. Sept. 29-30.	Time-weighted average

CAPE FEAR RIVER BASIN--Continued

2-989.59. HAW RIVER AT BYNUM, N. C. --Continued Temperature ('F) of water, water year October 1962 to September 1963 (Gnoc-dally massurament herween ORD) and MANOY

	4					
	Ave	age	30 4 400	39 39 52	62 70 76	78 79 17
		3]	35	38	161	85 75
		30	57 47 37	36	71 79	644
		29	55 47 39	32 57	62 70 78	82 74 65
		28	346	40 50 50	63 68 78	80 73 66
		27	53 45 39	5 6 5	62 67	78 73 67
		26	344	34	64 68 78	80 74 64
		25	53	0 4 5 0 0 6	64 68 77	75
		24	58 46 35	3 9 9	68 69 75	77 62
		23	6 4 6 8 8 8 8	5 8 4	70	78
		22	86 67 79	42 37 52	27.7	79
4 00		21	64 49 37	338	72	348
2		20	65 50 39	7 t t	67 76 74	81 81 72
20		19	36	0 1 1	77	80
90		8	66 52 38	38	73	83
een		171	37	37	61	81 76
Det.	Day	16	70 50 34	39 36 51	59 72 73	78 75 68
1	_	15 16	32	41 39 52	57 70 77	76 77 67
Once-daily measurement between 0600 and 2400/		4	70 52 32	6 1 0	55	72 22
asa		13	92	211	57 70 76	74 80 73
y me		11 12 13 14	69 51 35	4 t 1 t 5	59 71 78	42 82 78
111		Ξ	52	46 44 48 49	60 73 82	73 81 75
9		0	53	6.4.3 5.5.5	59	28 2
5		٥	244	41 51	58 73	75
		8	45	39 40 53	59 71 78	79 82 76
ļ		_	69	38 43 52	59 70 77	77 83 74
		9	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	36 41 52	60	77 82 74
		5	50	35	63 64 72	76 82 76
		4	522	34	63.	77 80 77
		6	51	3.0	67 62 69	78 81 79
		7	536	34	61	77 82 77
		-	600	8 8 9 8 9 9	59	78 77
	100	Month	October November December	January February March	April May June	July August

ä

CAPE FEAR RIVER BASIN -- Continued

2-981.56. NEW HOPE RIVER NEAR NEW HILL, N. C.

LOCATION (revised).--At bridge on Secondary Road 1700, 0.2 mile downstream from mouth of Beaver Creek, and approximately 4 miles downstream from gaging station near Patesbore, Chakhan County.

DALIANGE REL.--350 quarter miles.

BARIANGE SAVAILELE.--Chemical analyses: October 1956 to September 1963.

Water temperatures: October 1956 to September 1963.

RATEMENS: 1952-63.--Dissolved solids: Maximum, 144 ppm 0ct. 18-31; minimum, 47 ppm Jan. 19-31.

RATEMENS: 1952-63.--Dissolved solids: Maximum, 172 ppm Nov. 9, 10.

Rater conductance: Maximum, 54 ppm Oct. 18-31; minimum, 17-2 ppm Nov. 9, 10.

Rater september 1956 to September 1965 to September 1963.

RATEMENS: 1956-63.--Dissolved solids: Maximum, 177 July 19-21; minimum, 18-31; minimum, 31 ppm Sept. 1, 6-9, 1959.

Rater september 1956 to September 1965 to September 1964; minimum, 18-31, 1961; minimum, 31 ppm Sept. 1, 6-9, 1959.

Specific conductance: Maximum, 67 ppm Oct. 1-31, 1961; minimum, 18 ppm Sept. 1, 6-9, 1959.

Specific conductance: Maximum daily, 308 micromnos oct. 31, 1961; minimum, freezing point on many days in 1958-53.

REATEMENS: Maximum gally, 20, 10.

Specific conductance: Maximum daily, 2, 1999; minimum, freezing point on many days in 1958-53.

		Color	35	32	2 8	22	33	25	45	ရှိ ရှိ	3	30	32	52	200	8	45	Ç	ł	8 I	
		핊	6.9	6.0		6.7	9.9	7.3	9.9	7:1	;	7.3	4.4	7.6	6.7		7.0	9 0	6.9	7.4	
	Specific conduct.	(micro- mhos at 25°C)	140 210	250	37	65	110	110	74	94	3	80	292	120	145	8	88	120	88	140	
	Hardness as CaCO,	Non- carbon- ate	80	ο <u>ς</u>	9	4	91	0 0	4	9 9	٥	9 1	0	-	N (מ	4.0	N C	0	m 0	
	Hard as C	Calcium, Non- magne-carbon- sium ate	36 54	53	2 T	17	28	31	19	52	07	20	18	31	£ ;	7	25	, 4 4	11	3,8	
1963	Dissolved	<u> </u>	95	!		09	A74	88	9	99	7	61	A52	83	93	1	81	6	1	86 1	
ember	Ni-	trate (NO ₃)	8.0	ł		1.0	3.5	ν. 4. ω ε.	2.0	8:	7:5	2.2	2:0	4.0	6.4	1	1.7	2.1	1	4. ¦	
o Sept	Fluo-	ride (F)	0.3	ç.	1 1	۳.	Ξ.	N N	۳.	7.	-	۰	: -:	۲.			87.0		!	. u.	
water year October 1962 to September 1963	Spjeriji.	(C)	13	24	1.0	5.2	5.0	8.11	8.9	9.6	0	7.4	3.0	10	11	4.	7.3	0 4	6.6	13 23	
year Octo	on Marke	(*os)	==	14	1 1	10	11	9.6	8.4	9.6	# 6	800	7.6	7.4	9.5	!	8.0	0 1	1	=	
water	Bicar-	bonate (HCO ₃)	17	62	* œ	16	56	27	19	23	9	17	28	37	37	77	26	3 5	23.	38	
111on,	Po-	Sium (K)	5.8	6.2	1 1	2.5	3.0	2 2	1.6	8:		1.6	4:1	2.3	20	1	2.1	7. 1	١	9:	
Chemical analyses, in parts per million,	17.0	(Na)	13 24	28	1 1	5.0	10	10.5	6.3	ക്	7.0	7.5	9.9	11	13	1	7.3	12	1	12	
in par	Mag-	sium (Mg)	3.0	6,0	1.2	1.5	4.5	3.0	1.8	2.5	7.0	8.1	1.5	2.8	9.	1.5	2.2	, w	; !	3.2	
alyses	Cal-	cium (Ca)	9.8	15	2.0	4.4	7.1	0. V	4.6	4.0		5.1	5.1	7.8	80	2.5	4.0	2.5	1	22	
nical an		(Fe)	0.01	80.	1 1	.02	. 28	8.1	8.	80.5	?	8.5	88	.20	90.	¦	.03	77.	1	.05	
Che		(SiO ₂)	14 15	15	1 1	8.6	13	15	9.7	130		10	21	12	12	!	12	. 1	1	14	
	Mean	discharge (cfs)																			
		Date of collection		Nov. 1-6		Nov. 11-16		Nov. 22-30.			13-31	Feb. 1-19.	Mar. 1-31		May 1-28	May 29-31	June 1-11	June 20-21	June 22	June 23-30	

A Calculated from determined constituents.

CAPE FEAR RIVER BASIN--Continued

2-981.56. NEW HOPE RIVER NEAR NEW HILL, N. C.--Continued

	5	emical	analys	as, in	parts p	er millio	a, wat	er year	October	Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	ptember	1963	Continu	pe				
	Mean	201150	į	Cal-	Mag-	- in	Po-	Bicar-	97.9	(1)	Fluo-	Ni-	Dissolved	Hardness as CaCO,		Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	(Na)	Sium (K)	bonate (HCO ₃)	(30°)	(CI)	ride (F)	trate (NO ₃)	(residue at 180°C)	Calcium, Non- magne-carbon- sium ate	Non- arbon-	(micro- mhos at 25°C)	瑶.	Color
July 3, 1963		;	1	:	1	1	1	20	1	7.6	1	}	ł	19	2	78	7.2	1
July 4-16		12	.05	9.2	2.8	12	3,1	40	9.6	9.6	.5	2.4	96	34	8	131	7.2	30
July 17-26		12	60.	12	3.5	20	4.1	54	14	17	۳.	5.3	134	44	0	197	7.3	30
July 27-31		11	.02	7.6	2.0	8.6	2,3	26	12	8.6	ų.	2.1	22	27	9	105	7.4	40
Aug. 1-4		13	.04	8.8	2.4	8.6	2.4	31	9.6	7.4	2.	3.2	73	32	9	115	9.9	65
Aug. 5-16		17	.03	12	3.2	17	3.5	21	12	16	ĸ.	3.4	115	44	CV	170	7.3	33
Aug. 17-31		15	. 03	13	4.0	22	4.3	57	14	20	4.	3.6	136	48	г		7.3	33
Sept. 1-15		16	00	13	3.9	23	4.4	63	14	21	9	4.7	140	49	0	215	7.1	18
Sept. 16		1	}	9.6	2.4	15	ł	38	1	12	1	4.0	ł	34	82		7.3	90
Sept. 17-21		12	.04	7.4	1.7	7.0	8.8	20	16	6.2	ε,	1.3	A67	26	G	_	6.5	55
Sept. 22-30		14	.02	10	3,3	14	5.5	20	17	27	.3	2.6	112	38	22	_	6.9	32
Time-weighted average		13	0.07	8.3	2.6	12	2.9	34	10	11	0.2	3.4	88	31	4	125	1	32
A Calculated from determined constituents.	determined	constit	uents.															

69 69 87 87 84

1.61 221

Aver-

3 52 11 36 35

CAPE FEAR RIVER BASIN -- Continued

2-981.56. NEW HOPE RIVER NEAR NEW HILL, N. C .-- Continued

	l	(0)	41 7 61			1-1-1
		30	10 4 6 10 4 6 10 4 6	33	2007	75 72 63
		29	39	32 33	59 72	74 75 70 72 64 63
		17 18 19 20 21 22 23 24 25 26 27 28 29	446	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	59	
		27	24.5	4 6 6	258	72 74 70 70 61 62
		26	3 4 4 3 6	3 8 ¢	1 7 8	
63		25	51 36 36	34 36 36 49 53	60	73 72 75 71 60 60
#		24	56		63	
appe		23	59 56 51 47 38 37	39 37 36 35 46 47	67	75 74 75 75 61 62
epte 7		22			69	7.5
325		21	58 60 50 52 37 36	46 40 39 54 50	4 8 0 0	77 77 77 75 73 74 73 74 62 64 65 66
62 t		20	59 50 37		999	7.44
91 °		16	33	41 36 38 55 56	6 6 5 6 5	77 73 62
obei 052		18	51		65	422
e (°F) of water, water year October 1962 to Se Conce-daily measurement between 0520 and 13255		17	64 61 49 51 32 33	35 37 34 33 50 52	57	73 74 70 71 61 62
ear betw	Day	16	64 47 32		53 66 72	72 70 64
er y	-	15	65 47 32	42 38 38 36 54 53	55	70 72 74 70 65 64
water		14	50		55	70 270
er,		13	65 64 51 50 32 32	41 40 50 54	55 55 65 63 71 71	68 70 76 75 72 70
wat.		12			55	68 73 70
la t		1.1	64 65 54 52 37 34	43 64 4 4 4 4 4 4 8 8 4 9 4 8 8	56 55 67 67 73 72	68 68 74 73 69 70
(F)		10	64 42 39	39	57 56 64 67 70 71	69 75 68
Temperature (°F) of water, water year October 1962 to September 1963 (Once-daily measurement between 0520 and 1325)		6	65 44 41	35 37 37 38 42 43 41 39 52 49 48 49	75	71 72 72 69 75 76 76 75 68 69 68 68
ratu		8	65 44 42	F # 4	56 61 69	71 72 75 76 68 69
щре		7	6.5 4.4 4.4	35 42 52	58 61 68	71 72 75 76 68 69
Te.		9	4 4 4 6 8 8	33 35 36 38 46 52	59	
		5	49 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 6 4 6	33 35 36 38 46 52	62 56 68	71 70 76 76 72 70
		3 4 5 6 7 8 9 10 11 12 13 14 15 16	64 50 50	33	525	
			65 49 49	33	62 56 65	74 74 75 75 71 71
		2	61 49 48	34 32 36 36 36 39	59 60 58 55 65 65	
		-	4 4 9		5.9 5.8 6.5	74 75 70
	Month	monor	October November December	January February March	April May June	July

CAPE FEAR RIVER BASIN--Continued

2-1020. DEEP RIVER AT MONCURE, N. C.

ANTION (revised) .--At bridge on U.S. Highway 1, at Moncure, Chatham County, 1.2 miles downstream from gaging station, 3.5 miles downstream from Rocky River, and 3.2 miles upstream from confluence with Haw River.

DRAINAGE AREA. -- 1,410 square miles, approximately.

MEROMAN ANALYMENT ALTHOUGH AND ADDRESS OCCODET 1933 to September 1944, October 1955 to September 1956, October 1951 to September 1963.

**RECORM ANALIABLE."—Chemical mastyses: October 1943 to September 1956, October 1951 to September 1963.

**RECORM ANALIABLE."—Chemical mastyses: October 1944, October 1955 to September 1961 to September 1963.

**RECORMS: 1962-63.—Dissolved solids: **Maximum, 114 ppm Oct. 1-7; miliamum, 44 ppm Jan. 1-31.

**Record to September 1942 to September 1955 to September 1955.

**Record to September 1952 to September 1954 to September 1955.

**Record to September 1952 to September 1954 to September 1963.

**Record to September 1952 to September 1954 to September 1963.

**Record to September 1952 to September 1954 to September 1963.

**Record to September 1952 to September 1954 to September 1963.

**Record to September 1954 to September 1954 to September 1963.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1954 to September 1954 to September 1955.

**Record to September 1955 to September 1954 to September 1955.

**Record to September 1955 to September 1955 to September 1955.

**Record to September 1955 to September 1955 to September 1955.

**Record to September 1955 to September 1955 to September 1963.

**Record to September 1954 to September 1955 to September 1963.

**Record to September 1955 to September 1963 to September 1955.

**Record to September 1955 to September 1963 to September 1955.

**Record to September 1955 to September 1963 to September 1955.

**Record to September 1955 to September 1963 to September 1955.

**Record to September 1955 to September 1963 to September 1963 to September 1965.

**Record to September 1955 to September 1963 to September 1965.

**Record to September 1964

Chemical analyses: in parts per million, water year October 1962 to September 1963

		Color	20	33	22	20	65	40	30	30	30	ſ	18	20	35	2	30	23	33	:	17	31
		Hd.	6.9	8.9	6.7	7.2	8.9	6.9	7.0	7.1	6,5	7.2	9.9	7.4	7.2	7.2	6.7	7.4	6.8	6.4	7.7	1
Specific	conduct-	(micro- mhos at 25°C)	160	100	110	130	74	73	62	64	99	100	64	88	110	81	115	130	88	120	135	96
Hardness	as CaCO,	Calcium, Non- magne-carbon- sium ate	0	0	0	0	m	63	8	4	9	'n	73	0	0	=	0	0	0	0	0	τ
Har		Calclum, magne- sium	30	25	28	30	21	8						22	24	20	56	28	21	24	30	23
	Dissolved	(residue at 180°C)	114	72	A71	89	56	55	A44	54	55	!	20	57	69	70	77	82	61	A70	6	99
	ž.	trate (NO ₃)					1.2		1.4	2.4	2,3	!	2.4	1.4	2.0	1.9	2.5	1:1	2.0	1.5	1.5	1.8
	Fluo-	ride (F)	0.2	۲.	۰.	~		e.	۲.	٦.	۲.	!	۲.	٦.		_			٠.			0.1
none transported to the state of the state o	Chloride	(C1)	24	8.0	12	16	0.9	5.0	4.0	5.5	5.5	0.9	4.6	7.2	7.6	7.2	9.3	14	8.0	14	22	0.6
	Sulfate	(30°)	9.0	6.2	7.4	8.8	8.4	7.6	6.6	7.0	6.2	1	3.8	5.2	6.2	7.2	8.9	5.8	7.0	7.2	10	6.9
	Bicar-	bonate (HCO ₃)	45	36	41	46	22	20	19	16	16	18	18	30	32	24	36	45	8	34	47	30
	Po-	sium (K)	3.4	3.0	3.0	3.5	2.4	1.7	1.4	2.2	1.0	!	1,3	1:4	1.5	1.3	1.8	1.6	2.0	2:1	2.7	1.9
	Sodium	(Na)	22	91	13	16	5.9	5.6	5.3	5.7	5.2	1	5.5	8.3	9.6	7.8	11	15	9.7	13	21	8.6
	Mag-	Sium (Mg)	2.9	1.9	2.6	2.7	1.9	1.8	1.5	1.3	1.6	1	5.0	2.3	2.3	1.9	2,5	3.1	5.0	5.6	3.6	2.2
	Cal-	ctum (Ca)	7.4	6.9	6.7	7.7	2.5	4.7	4.6	4.6	3.8	1	3.4	5.1	6.1	5.0	6.2	6.1	5.1	5.1	5,9	5.4
	ı.	(Fe)	00.00	80.	.01	00.	.01	10.	90.	.04	.03	!	.04	60.	.13	90.	80.	.02	.04	.07	. 05	0.05
	Silica	(SiO ₂)	10	8.5	5.7	8.4	9,3	10	9.7	11	6.6	!	11	9.2	11	77	6.6	7.8	6.0	7.3	6.6	9.1
,	Mean	discharge (cfs)	266	132	91	131	1606	1872	2107	2670	5415	4300	2919	746	629	638	267	262	111	93	186	1193
		Date of collection	Oct. 1-7, 1962	Oct. 8-23	Oct. 24-31	Nov. 1-8	Nov. 9-30	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-14	Mar. 15	Mar. 16-31	Apr. 1-30	May 1-31	June 1-8	June 9-30	July 1-31	Aug. 1-31	Sept. 1-3	Sept. 4-30	Time-weighted average

A Calculated from determined constituents.

CAPE FEAR RIVER BASIN--Continued

2-1020, DEEP RIVER AT MONGURE, N. C. --Continued
Temperature (*P) of water, water year October 1962 to September 1963
Temperature (*P) of watery water between 0700 and 02007

	Aver-	36				
	Ϋ́	g,	524	1 4 1	118	211
		ခ	38	111	181	17
İ		30	55 54 39	312	102	7 8
		59	53	32 61	65 70 83	8 8
		78	4 6 0	50.00	68 70 80	83 76
		27	524	38	70 68 80	83
		26	51	8 8 1	66 67 81	83 76 79
1		25	51	50	1 89 1	80 71 76
		24	51	6 4 9 6 5 9	65 69 76	84
		23	644		99	83
		22	63	38	70 27 25	881
		21	63	53	71 72 76	80
		11 12 13 14 15 16 17 18 19 20 21 22	188	51	70 68 81	818
The same of the sa		61	58	5.8	6 1 0 8	82 83 78
		8	59	57	65 70 80	181
	ı	17	71	42 40 51	19	1183
1	Day	16	71 61 39	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 1 1	82 -:- 76
		15	35	53	60 71 84	83
		14	71 60 36	57	82	80
	ĺ	13	72 61 34	4 4 9 0 0 0	61 68 80	88
		12	72 61 33	4 C C	118	79 87 77
		Ξ	71 61 39	42 51	63 72 80	80 1 8
	ĺ	2	71 60 60	50	71 70 82	79 80 88 79 79
1	Ì	٥	500	39	71	79 88 79
		œ	69 58 47	40	122	18
		7	71 57 48	37	65	80 87 77
		9	71 57 50	38	69	1.6
		5	70 58 53	37	63 69 69 71 75	79 86 76 76
		4	58	98	68	80 87 75
	j	ဗ	5.00	38 4 1 4 1	72 68 70	88
	-	2	58 58 55	37	69	88 76
		_	57	37 37 59	69	82 85 77
	Month		October November December	January February March	April May. June	July August September

CAPE FEAR RIVER BASIN -- Continued

2-1025. CAPE FEAR RIVER AT LILLINGTON, N. C.

LOCATION. --At gaging station at bridge on U.S. Highway 401, 1,800 feet downstream from Norfolk Southern Railway bridge, 0.5 mile north of Lillington, Harnett Courty, and i mile downstream trom Neal Creek.

BRAINGER ARRA.-340 square miles, approximately.

BRAINGER ARRA.-340 square miles, approximately.

BRAINGER ARRA.-Seconder and any assess rowenber 1944 to October 1945, October 1954 to September 1955, November 1960 to September 1963.

Water temperatures; Newber 1944 to October 1954 to September 1955, June 1959 to September 1963.

BRAINGER 1952-63.--Market temperatures: Maximum, 88°F on several days in July and August; minimum, 37°F Jan. 363.

BRAINGES 1944-45, 1954-65, 1954-65.--Mater temperatures: Maximum, 96°F June 30, 1959; minimum, 34°F on several days in 1944 and 1955.

		Color	20	40	75	33	27	25	20	20	55	17	2	30	28
		Hd.	6.9	7.2	6.5	6.4	6.3	6.3	6.7	7.4	8.9	7.4	7.0	9.9	6.7
	Specific conduct-	(micro- mhos at 25°C)	138						85	115	130	165	160	165	92
	Hardness as CaCO,		0	0	_	·C	4	0	0	0	0	0	0	0	0
	Hard as C	Calcum, Non- magne-carbon- sium ate	28	33	24	13	21	18	21	26	26	28	28	26	16
1963	Dissolved	(residue at 180°C)	93	116	7.7	26	A52	55	57	9.	87	101	100	96V	56
ember	Ni-	trate (NO ₃)	1.2	•	.2	1.6	1.4	1.2	1.1	e,	2.1	•	e.	۲.	9.
o Sept	Fluo-	ride (F)	0.3	۳.	•	٦.	٥.	٠.	۲.	cs.	'n	'n	4.	4.	.3
water year October 1962 to September 1963	Si mo	(C1)	15	20	8.5	4.9	6.5	6.2	7.5	8.9	13	17	17	18	11
year Octo	oJesto	(30°)	8.6	12	8.4	8.2	8.0	8.2	5.6	8.0	8.8	10	12	13	0.6
٦,	Bicar-	bonate (HCO ₃)	43	62	28	17	21	22	29	43	40	26	51	47	22
111on	Po-	Stum Stum (K)	2.9	3,3	1.8	1.3	1.2	1.1	1.2	2.7	3,3	3.5	4.6	5.6	2.1
Chemical analyses, in parts per million	and in	(Na)	17	22	7.8	4.8	6.7	9.9	8.0	13	16	23	22	23	11
in par	Mag-	sium (Mg)	2.4	3.2	2.8	1.5	2.0	1.9	2.1	2.2	2.2	2.5	5.6	2.4	1.5
nalyses	Cal-	cium (Ca)	7.4	8.1	5.0	5.1	5.1	4.2	4.8	6.3	9.9	7.1	7.3	6.4	4.1
ntcal a	į	(Fe)	0.04	10.	.07	.05	.07		10.	10.	.01	то.	8.	. 02	.01
Che	041400	(810,	9.5	6.4	12	9.4	1	01	11	6.2	12	2,5	7.3	3,3	4.4
	Mean	discharge (cfs)	697						2300	3060	1190	637	1190	244	542
		Date of collection	Oct. 2, 1962	Nov. 1		Jan. 2, 1963	Feb. 5	Mar. 4	Apr. 1	May 1	June 3	July 1	July 31	Sept. 3	Sept. 5

A Calculated from determined constituents.

CAPE FEAR RIVER BASIN--Continued 2-1025. CAPE FEAR RIVER AT LILLINGTON, N. C.--Continued

	Aver-	age	71	55	4 4	475	4 4 7	51	65	112	78 76	83 80	8 8 3	11
		31	64	11	41	38	11	5.6	11	70	11	86	83	11
		30	62	20	41	38	11	58	99	70	82	8 8 5	81	11
		29	5.0	50	44	39	11	58	69	170	80	85	92	11
		82	55	20	1,1	38	39	54	69	22	81	83	77	1.1
		27	0.0	51	4 4	0 0	1 7	3.6	69	77	81	4 7 8	78	11
		56	62	52	42	14	41	53	68	72	79	83	82	11
63		25	99	52	6 4	4 4 7 7	4.4	52	69	73	76	82	85	11
19		24	668	52	43	54	41	52	72	74	75	81	86	11
aber		23	68	54	45	4 4	4 7 7 7	52	72	7.4	75	82	85	76
pte		22	6.8	53	45	9 4 9	24	54	71	77	78	82	85	79
o Se		77	68	53	42	4 6 4 6	47	54	70	76	80	9 8	7.8	79
water year October 1962 to September 1963 1-alcohol actuated thermograph $\overline{\mathcal{Y}}$		20	69	53	40	9 4	77	54	68	75	81	98	84	77
then		62	72	53	39	4 4 4 4	77	52	65	74	78	83	86	76
ber		<u>∞</u>	74	55	39	3 3	1,1	51	65	73	75	86	84	76
tua		11	76	53	39	4 4 4	4 7	51	60	74	79	83	82	76
aar Lac	Day	92	7.5	53	33	5 4	45	51	260	74	82	82	83	44
e (°F) of water, water year		15	77	54	38	47	44	52	909	74	83	91	82	76
wate-alc		4.	77	55	0,4	47	44	50	99	69	81 78	7.8	85	90
hyl		53	76	55	40	47	4 5	50	60	72	82	7.7	8.5	81
water, is ethyl		12	75	55	44	4 4 4 4	4.5	20	59	75	83	78	86	82 79
of		=	75	55	4 4	4 4	44	50	9	76	84 81	77	35	81
nt i		2	24	54	4 4	7 0	4 4	202	62	7.2	81	78	937	79
, 60 100		6	77	58	4 4 9	3 3	43	50	62	70	77	82	98	79
atu.		æ	75	58	9 6 4	39	4 4	50	4 6 2	69	76 76	81	98	81
Temperature (°F)		~	2.2	58	51	33	43	500	63	70	76	81	35	79
Te		9	44	58	52	3.9	4 0	50	6.4	6.5	75	82 80	88	79
		22	2.2	57	52	38	3 3	404	9 4	6.5	76	82	98	79
		4	74	57	52	38	39	4 4 7	999	4 6	74	86	97	82
		6	72	59	52	38	39	40	99	63	71	86	95	82
Ì		~	72	58	502	38	39	0 4 0	64	63	12	88	95	83
		_	72	6.1	50	410	39	9 9	59	69	7.1	81	936	83
			::	:::	: :	::	::	::	::	::	: :	::	:::	!!
	Month	Month	October Maximum Minimum	Maximum	December Maximum Minimum	January Maximum Minimum	Maximum	Maximum Minimum	April Maximum Minimum	Minimum	Maximum Minimum	July Maximum Minimum	Maximum	September Maximum Minimum

CAPE FEAR RIVER BASIN--Continuued

2-1057.71. CAPE FEAR RIVER NEAR ACME, N. C.

LOCATION. --At bridge on State Highway 141, 6 miles northwest of Acme, Columbus County. DRAINGE AREA. --5, 223 square miles. RECORDS AVAILABLE. --Chemical analyses: October 1956 to Soptember 1963. REMARKS. --No discharge records available.

Chemical analyses, in parts per million, water year October 1962 to September	Se	,	parts	per mi	llion	, water	year Octo	oper 1962	to Sep	tember	1963	Hard	Hardness	Specific	L	
Iron	•				Po-	Blcar-	Sulfate	Chloride	Fluo-	ž.	Dissolved solids		as CaCO,	conduct-		
(SiO ₂) (Fe) clum	E つ	sium (Mg)		(Na)	Sium (K)	(HCO ₃)	(*0 5)	(CI)	ride (F)	(NO _s)	(residue at 180°C)	Calcium, magne- sium	Calcium, Non- magne-carbon- sium ate	± 2	<u>.</u>	Color
0.15	0	Ľ	4.	11	1.7	22	8.4	8.6		1.0	70	16	0	88	1	ž
8.	•		8.	15	2.1	32	9.2	14	~	8.	A71	20	0	119	6.2	35
11.	4.		4.1	4.4	1.2	12	6.2	6.2		1.0	52	14	4	55		100
.02	7	٠.	7.	5.2	1,3	14	7.0	5.5		1.4	46	16	ıc	61		33
90.	9.	٠.	. 2	2.5	∞.	12	6.2	5.4	7:	۳.	39	12	23	52		22
8.5 .02 3.3	.3		1.5	5.4	∞.	15	8.9	5.8		1.7	45	14	23	26		28
90			c		-	9	ď	ď		٥	70	Ş	•	0		8
3 ;			9	*	:	2 :	9		_				•	3	_	3
.04 3.7			9.	7.9	1:1	22	2.2	7.5	_	9.	49	16	0	79	_	30
.04 4.9			9.	14	1.4	31	7.4	11		. 4	62	18	0	105		27
.21 3.8			4.	8.0	1.5	30	4.	8.1		۳.	61	20	0	80		12
4.0 .00 3.8			1.2	8.8	2.3	19	7.8	6.8	~	1.0	47	14	0	68	6.2	20
.10 4.4			Ξ.	12	2.0	22	7.4	12		1.2	59	16	0	96	_	32

A Calculated from determined constituents.

CAPE FEAR RIVER BASIN --- Continued

2-1070. SOUTH RIVER NEAR PARKERSBURG, N. C.

LOCATION (revised), --Temperature recorder at gaging station 5 feet downstream from bridge on Secondary Road 1503, 1.9 miles southwest of Parkersburg, Sampson County, and 2.1 miles upstream from Cypress Creek.

DRAINGE AREA.—362 square miles.

RECORDA VAILEDEL.—Chemater analyses: October 1954 to September 1955.

Water temperatures: November 1961 to September 1965 to September 1967.

EXTREMES: 1962-63.—Water temperatures: Maximum, 84°F Aug. 5-8; minimum, freezing point Dec. 14, 15, 1962.

EXTREMES: 1961-63.—Water temperatures: Maximum, 86°F Aug. 5-8; minimum, freezing point Dec. 14, 15, 1962.

REMARKS.—Recorder stopped Jan. 8-14, 20-22, 24-28.

Color 5.5 평 Specific conduct-38 (micromhos ance Calcum, Nonat 180°C) magne-carbon-ကက Hardness as CaCO, 9 8 Stum Dissolved (residue A21 A37 solids Ni-trate (NO₃) 0.5 Fluo-ride (F) 0.5 4.0 Chloride (C1) 4.4 Sulfate 8 Bicar-bonate (HCO₃) 4 Po. tas-sium (K) 0.0 3.9 Sodium (Na) 1.0 Mag-ne-sium (Mg) 1.6 Cal-Can (Ca) 0.06 (Fe) Silica (SiO₂) 3.4 | Mean | discharge | (cfs) 1090 35 Feb. 5, 1963..... Date of collection

A Calculated from determined constituents,

Chemical analyses, in parts per million, water year October 1962 to September 1963

CAPE FEAR RIVER BASIN--Continued

2-1070. SOUTH RIVER NEAR PARKERSBURG, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (Continuous ethri-alcobol actuated thermograph)

L													
Aver	age	9 9 4 4	52	24	11	4 0 4	53	62	69	75	78	90	72
	31	5.5	11	37	36	1 1	63 59	- 11	69	11	80	75	11
	30	5 4 5 4	4 4 0 8	39	36	11	61	62	6.8	77	80	77	8 9
	59	5.1	4 4	44	35	11	56	63	65	76	2 9 2	77	67
	28	50 S	42	7 0	11	37	5 8	63	6.5	76	80 7.8	76	65
	27	56	4 to 2 to 3 to 3 to 3 to 3 to 3 to 3 to 3	39	11	4 1 3 8	58 56	63	64	25	80 76	75	64
	26	5,58	4 4 6 9	9 9	11	41	55	64	63	74	73	7.4	64
	25	58	4 4 6 8	38	11	39	55	8 4	6.5	72	7.5	81 77	6.4
	24	65	0 4 0 8	3.6	11	39	50	72	6 4 6	12	75	81 78	6 4
	23	6.5 6.4	53	4 6 0 8	4 1	4 5 4 5	53	72	70	73	75	7.7	71
,	22	0 0 4	53	93	11	63	5.5	71	70	77	82	7.8	73
	21	6.5	51	4 4	11	£ £	61 56	71	73	78	83	76	73
	20	64	52	3.8	11	4 7	61	69	75	76	83	77	75
	19	6 9	52	3.6	4 2	39	59	68 65	75	7.7	82	79	7.7
ay	18	70	54	35	39	39	60	65	17.	7.5	80	78	69
	17	71	52 51	35	0 8	3.6	52	6.1 5.8	72	77	7.5	77	69
Day	16	71	51 51	34	6 4 0	39	5.5	5 CS	7.1	81	79	7.4	68
	15	57 1.7	53	33	4 4 6	4 1	58	59	71	81	76	81	71
	14	71	54	33	11	44	58	58	58	90	74	82	74 71
	13	6 8	5.4	33	1.1	4 4	60	57	17	77	74	19	76
	12	68	54	39	11	4 4	52	60	75	81	73	82 78	76
	=	70	55	3 6		43	57	62	75	7.8	52	82 79	76
	10	72	55	4 4	1 !	4 5 4 5	53	62	7.0	920	74	82	75
	6	72 71	5.5	;;	11	4 4 5 7	53	61	7.3	8 2	8 4	83	75
	8	71 69	4 4 0 8	4 4 4 6	11	4 4	54	58	70	7.5	78	84 82	75
	2	69	51	4 4 8 4	36	44	53	61	69	76	7.5	9,4	7.5
	9	68	52	5 1 4 8	3.6	39	5.5	61	67	75	76	9.2	7,6
	သ	69	53	52	33.4	39	52	63	66	73	74	81 81	78
	4	67 66	53	52	33	3,0	4 4 6 4 7	6.8	6.1	71	80	91	78
	3	99	53	52	33.4	3.8	44	67	62	69	90	93	7.
	2	65	53	51	3.5	38	404	6.5	63	99	81	83	7 8 7 5
	1	6.3 6.3	5.5	5 0 4 9	34	38	39	64	63	70	90	80	7 8 7 4 4 7
		11]	::	11	::	11	1 1	11	::	; ;	1:	11
1	MORE	October Maximum Minimum November	Maximum Minimum December	Maximum	January Maximum Minimum February	Maximum Minimum March	Maximum Minimum	April Maximum Minimum May	Maximum Minimum	Maximum	July Maximum Minimum Angust	Maximum Minimum	Maximum Minimum

CAPE FEAR RIVER BASIN -- Continued

ပ 2-1075.72. CAPE FEAR RIVER AT ROYSTER, N.

DRAIMOR AREA.—71 Royster, Brunswick County, 2.5 miles below Indian Creek.

DRAIMOR AREA.—71.00 square miles.

RECORDS AVRILABLE.—Chemical analyses: November 1961 to September 1963.

RECORDS AVRILABLE.—Chemical analyses: November 1961.

EXTREMES, 1982-63.—Ch. Christoff W. Martimum, 6,800 ppm 86pt. 29; minimum, 7.0 ppm Mar. 1-31.

Specific conductance: Maximum, 6,800 ppm 86pt. 29; minimum, 40.ppm Mar. 1-31.

EXTREMES, 1982-63.—Ch. Dride Maximum, 88° PA Aug. 10-13; minimum, 40° ppm 75.65; minimum daily, 46 micromhos Jan. 28, 80 ppm 86pt. 29, 1963; minimum daily, 19-2, 1962.

EXTREMES, 1982-64.—Ch. Dride Maximum, 88° PA Aug. 10-13; minimum, 40° Pa Jan. 3-6, 8

Pacer to emperatures: Maximum anally, 19-000 micrombos Sept. 29, 1963; minimum daily, 46 micrombos Jan. 28, 1963.

REMARKS.—Salinity station. No discharge records available.

Chemical analyses, in parts per million, October 1962 to August 1963

	Color	120	;	120	120	1 5	202	110	22 90		06	120	90	6	5	0 0	200	100	06	06
	<u> </u>	6.2	7.0	6.4	8.9	6.5	8.8	6.2	6.5		9.9	7.0	6.5	6.7		0.0		7.0	7.2	7.0
Specific conduct-	(micro- mhos at 25°C)	150	160	94	74	130	12	99	100		4 8	74	2.5	62	ę	200	8	86	150	140
Hardness as CaCO,	Non- carbon- ate	0 m	80 C	00	S	15	υ 4	9	6	•	9	ın	67 (4	4		* "	0 0	0	0	0
	Calcum, magne-	23	24	16	16	24	12	16	18		17							16		
Dissolved	residue (residue at 180°C)	104 79	100	71	7.1	13	A51	A44	70 A61		62	61	63 R	59	i i	B/2	61	65	93	18
N.	trate (NO ₃)	1.3				1 '	œα	, m	20.0		2.5	1.0	9.	2 8			1	0.1	1.1	<u>.</u>
Fluo-	ride (F)	0.2	10	? 0.	7.	1		. 01	u, rū		4 60		oi c	• -:				. 7		
Chlomido	(C1)	23 16	30	12	9.5	18	8.6	8.0	3.5			10	0.0	8	ŧ			12	19	17
on Moto	(30,	12	1 4	8.6	8.6	1	o c	7.2	4.4		* 0	9.6	4.6	7.6		0.0	7.6	8.0	7.4	8.4
Bicar -	bonate (HCO ₃)	31	20	20.2	14	11	4.5	13	13	;	14	13	22	11				8		
Pod t	stum (K)	1.6				T	6.	1.6	1.9	,	1.7	1.2	7.0	1.0				1.2		
	(Na)	12	1	11	7.3	1	4.0	6.5	12.7	,	2 00	7.7		2.0		9	0 0	11	16	14
Mag-	sium (Mg)	2.3	0.0	1:1	1.3	2.1	9.0	1.8	E 4	,	1.7	1.0	0.0	7				4:1		
	cium (Ca)	4.2	0.0	. 4	4.6	5.9	4. 4	3.5	4.0		0.4	4.6	3.5	. 6		,,	0.4	4.2	5.6	5.7
,	(Fe)	0.15	18	20	. 26	()	24	. 22	. 22		3.8							.27		
91100	(SiO ₂)	8.0	1 %	6.5	6.9	1	ສຸສ	8.9	8.9	t	0 6	8.0	2.2	6.7	,	9 0	9	9.0	6.0	5.4
Mean	discharge (cfs)																			
	Date of collection	1-5, 1962					1-2	6-10	11-18		24-31	. 1-17, 1963	. 18-25			1-31	6-20	21-30	1-11	21-31
	ц	oet.	oct.	Nov.	Nov.	Nov.	Nov.	Dec.	Dec.		Dec.	Jan.	Jan.	Feb.		Har.	Ant	Apr.	May	May

Calculated from determined constituents. Organic matter present; sum of mineral constituents 40 parts per million.

CAPE FEAR RIVER BASIN--Continued

CAFS FARE RIVER BASING-CONTINUED

2-1075.72. CAPE FEAR RIVER AT ROYSTER, N. C.--Continued
alysses, in parts per million. October 1662 to Angust 1663--contin

		Color	110	110	130	80	110	06	ŀ	110	ł
		프 뙨	6.9	7.2	7.2	6.2	6.4	6.9	9.9	8.9	7.2
	Specific conduct-	(micro- mhos at 25°C)	86	130	145	111	150	197	173	142	142
	aCO,	Calcium, Non- magne-carbon- sium ate	-	0	0	က	0	9	0	0	c
	Hard as C	Calcium, magne- sium							26		
pen	Dissolve	residue at 180°C							86		
Contil	Ni-	trate (NO _s)	9.	∞.	6.	2.4	2.2	1.6	2.0		
1963	Fluo-	ride (F)	0.1	۳.	.2	۳.	2	.2	۳.	۳.	1
Chemical analyses, in parts per million, October 1962 to August 1963 Continued	(L)	(C1)	13	15	18	17	25	37	78	23	22
Der 1962	0]	(304)							11		
n, Octo	Bicar-	bonate (HCO ₃)							33		
m1111C	Po-	sium (K)							2.8		
arts per	# P	(Na)	1						24		
s, in p	Mag-	ne- sium (Mg)							1.7		
MILE LY SE	Cal-	Cium (Ca)							7.5		
emicar	102	(Fe)							. 25		
3	041190	(SiO ₂)	6.7	7.8	8.5	5.9	2.0	4.5	4.0	2.0	1
	Mean	discharge (cfs)									
		Date of collection	June 1-6, 1963	June 7-11	June 25-30	July 3-7	July 8-11	July 14-22	July 29-31	Aug. 1-10	Aug. 12

CAPE FEAR RIVER BASIN -- Continued 2-1075.72. CAPE FEAR RIVER AT ROYSTER, N. C .-- Continued

Chloride, in parts per million, water year October 1962 to September 1963 May Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. June July Aug. Sept. 4000 2825 2475 1525 98 2 3 4 5 ||}11 43 25 7.5 800 675 **⟩13** 7 8 9 575 775 1450 27 2650 8.0 1350 22 61 202 1680 12 13 14 15 103 101 600 141 14 13 40 9.5 8.0 1850 825 900 7.0 17 18 19 20 58 775 33 725 151 43 375 144 465 280 470 910 1915 9.5 880 1100 2600 5150 22 23 24 25 122 27 109 880 280 290 9.5 3620 2250 2020 8.5 245 275 775 775 2125 2475 2775 1050 370 845 2885 1495 27 28 29 30 39 39 3620 3250 8.0 hı

5.5

CAPE FEAR RIVER BASIN---Continued

2-1075.72. CAPE FEAR RIVER AT ROYSTER, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (Once-daily measurement between 0700 and 1945)

Aver-	age	717 56 45	4 4 7 6 4 7	65 71 79	83 77
	31	413	713	111	4 6 1
	30	466	7 1 7	67	84 83 73
	29	65 52 43	4 1 6 0	69 71 81	48 67
	28	426	713	67 70 81	83
	27	64 50 42	5 4 2 5 8 5	6.9 70 82	85
	26	222	4 5 5 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69 70 81	85 73
	25	53	45 44 57	69 72 81	84 85 73
	24	67 53 42	4 4 7 7 4 7	6.9 7.3 8.1	84 85 73
	23	12 42 45	4 4 7	6. 7. 8.1	84 74
	22	71 55 42	44 59	67 74 80	84 85 76
	2	72 55 42	4 4 ° ° °	67 74 80	85 76
	20	75	4 4 U	65 74 81	83 84 76
	19	72 56 42	4 4 7 Z	65 75 80	83 85 76
	18	\$ 5 \$ 5 \$ 5 \$ 5	4 4 5	65 74 81	83 76
	17	75 55 41	4 6 4 6 5 7	63 73 82	83 77
Day	16	75 55 41	427	63 73 83	83 85 78
	15	74 54 41	45 47 57	63 73 82	83 77
	14	74 55 41	2 4 5 7 7	63 72 83	82 87 77
	13	74 56 41	45 47 57	6. 72 82	82 88 78
	12	72 62 45	4 t 4 7 6 6 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9	64 72 82	883
	Ξ	73 55	4.2 4.6 5.5	64 72 81	8 8 8 8 0
	10	72 55 47	144	4 6 72 79	883
	٥	, 74 59 64	41 53	67	8893
	80	74 60 50	446	3 57	83 86 81
	^	73 60 51	53	65 69 77	8 2 3
	•	73 59 51	4 5 5 0	69	8 4 8 8 0
	32	73 60 55	501	64 63 72	8 8 8 4 0
	4	73 62 54	0 7 8	64 68 72	8 4 0 8
	က	71 62 54	0 7 4 4 6 8 4 8 9 8 9	63 72	8228
	2	72 63 54	4 4 7 4 2 7	63 72	8 8 8 8 8 8
<u></u>	_	70	1 4 4 4	63	6 4 1
;	Month	October November December	January February March	April	JulyAugust

CAPE FEAR RIVER BASIN -- Continued

2-1075.76. CAPE FEAR RIVER AT NAVASSA, N. C.

LOCATION.—At bridge, draw section on Atlantic Coast Line Railroad at Navassa, Brunswick County.

DRAINGER ARRA.—7. Gos quare miles.

Rate. respectation analyses: October 1989 to September 1963.

Rate respectations: October 1989 to September 1963.

Rate respectations: October 1989 to September 1963.

Rate respectations: Maximum, 9,500 ppm Sept. 25-27 (B); minimum ally, 41 mirrombos Jan. 29 (T).

Specific conductance: Maximum, 9,500 ppm Sept. 25-27 (B); minimum ally, 42 mirrombos Jan. 29 (T).

EXTREMES, 1969-63.—Chloride: Maximum, 9,500 ppm Sept. 25-27 (B); 1963; minimum ally, 40 mirrombos Jan. 29 (T).

EXPREMES, 1969-63.—Chloride: Maximum ally, 25,000 micrombos Sept. 25-27 (B); 1963; minimum daily, 40 micrombos Prob. 22, 26, 1960.

Rater temperatures: Maximum, 87° F Aug. 1, 4, 1961; minimum, 36° F Dec. 14 (T), 1962, Jan. 6 (T), 1963, minimum daily, 40 micrombos Prob. 22, 26, 1960.

Rater temperatures: Maximum by 100 ppm Sept. 25-27 (B); 1963; minimum daily, 40 micrombos Prob. 22, 26, 1960.

Rater temperatures: Maximum by 100 ppm Sept. 25-27 (B); 1963; minimum daily, 40 micrombos Prob. 22, 26, 1960.

		Color		i	120	9	6	06	70	6	55	20	55	100	120	110	8	8	140	06
		Hd.	7.1	6.5	6.3	6,3	6.4	6.4	6.3	6.3	0.9	6.1	6.4	9.9	6.1	6.8	6.5	9.9	8.9	6.1
	Specific conduct-	(micro- mhos at 25°C)			115				65	91	63	63	86	80	51	9	29	84	64	29
	Hardness as CaCO,	Non- carbon- ate	25	0	9	9	e	4	30	4	4	က	0	9	4	4	œ	4	4	4
	Haro as C	Calcium, magne- sium	48	19	8	16	18	18	14	15	14	13	18	17	13	12	16	17	12	14
	Dissolved	(residue at 180°C)	1	A75	81	19	A55	81	A42	78	A42	A41	19V	11	B63	29	29	A52	C77	21
1963	Ni-	trate (NO ₃)	1	1.0	6.	∞.	۳.	ı.	1,3	۳.	∞.		1.0	۲.	٠.	1.5	1:2	1.2	6.	1.0
ugust	Fluo-	ride (F)	1	0.5	٥.	٠:	.2			۳.	۳.	۳.	87	8	٦.	۲.	۲.	۰.	ب	۰.
Chemical analyses, in parts per million, October 1962 to August 1963	9140	(CI)	101	20	20	0.6	11	12	8,5	14	8.0	8.0	13	12	6.0	8.7	7.0	12	6.5	6.2
, October	Sulfat.	(30)	1	10	10	8.0	8.6	8.4	9.9	7.6	7.2	6.0	7.8	8.8	7.2	7.6	11	7.0	0.9	2.0
illion	Bicar-	bonate (HCO ₃)	28	23	17	13	18	17	80	14	12	12	21	14	11	11	9	12	14	13
s per	Po-	Sium (K)	ı	1.6	1.5	1.8	1.7	2.0	1.7	1.5	1.4	1.2	1.7	1.0	1.0	6.	1.5	6.1	2.0	0.1
in parts	ani poo	(Na)	1	17	12	7.0	8.6	6.8	6.1	#	5.6	5.9	12	8.8	4.9	6.3	0.9	9.5	0.9	4.0
nalyses,	Mag-	sium (Mg)	7.1	1.5	2.1	1.5	1.4	1.8	1.5	1.2	1.1	1.0	1.5	1.9	1,1	1.0	1.9	1.9	6.1	1.2
ical ar	Cal-	cium (Ca)	7.7	5.3	4.6	3.9	5.0	4.2	3,4	4.7	3.5	3.5	4.6	3.6	3.4	3,4	3.1		2.9	3.5
Chen	10.1	(Fe)	1	0,14	. 16	. 24	. 23	.18	. 24	.19	61.	.17	. 18	.17	.17	.13	8	.10	.13	. 24
	64169	(SiO ₂)	ł	7.6	7.4	7.0	8.0	8.9	8.6	8.5	8.4	8.5	9.5	8.1	8.9	6.5	7.2	7.9	7.3	0.9
	Mean	discharge (cfs)																		
		Date of collection	Oct. 2(B), 1962	oct. 6	Oct. 8-10	Nov. 14(B), 15-28	Dec. 1-2	Dec. 7(B), 8-13	Dec. 14-18	Dec. 19-21				Jan. 1-19, 1963	Jan. 20-31	Feb. 1-28	Mar. 1-4	Mar. 5-8	Mar. 9-31	Apr. 1-5

A Calculated from determined constituents.

B Organic matter present; sum of mineral constituents 37 parts per million.

C Organic matter present; sum of mineral constituents 41 parts per million.

CAPE FEAR RIVER BASIN--Continued

2-1075.76. CAPE FEAR RIVER AT NAVASSA, N. C .-- Continued

CAPE FEAR RIVER BASIN--Continued 2-1075.76. CAPE FEAR RIVER AT NAVASSA, N. C.--Continued

1	1	i																										
September		Bottom	4200	4000	3620	200	1	1 5	4200	9000	3620	1	1	!	5150	5550	3620	2050	!	!	3620	7925	9500	9500	9200	;	1	
Sept		go.	2880	3000	2300	375	1	1 3	2710	200	2325	1	1	1	3620	4000	2625	1075	!	1	2250	2850	5550	6800	6800	1	1	
nst		Bottom	82 61		130	89	202	69	62 I		1 86	965	290	465	1410	1	1685	1455	ļ	33	1565	ł	ŀ	3960	5354	5554	5354	
August	Г	dol	33		117	62	174	21	£ 1		520	230	207	330	650	1	1620	1355	ŀ	33	755	ł	1	1560	2015	1945	2395	2363
July		Bottom	1445	960	1405	1	1	445	161	9	365	1	1	1460	1190	1200	1210	1	1	214	202	2865	39	2560	1	;	1510	405
12	[g O	510 940	250	445	1	1	470	144	900	323	;	1	675	715	875	585	1	1	229	149	1310	61	675	} }	1	234	178
1963 June		Bottom				17	i					385	1250	!	;	1675	2150	170	1360	1	ł	31	22	1150	1360	1565	32	1 1
iber 19		ŝ				17	:				_	109	450	1	1	88	1490	204	1075	!	!	29	22	237	310	575	42	: :
Septem		HOTTOH	94	9	1	1625	2000	1310	222		1 1	1230	565	3625	3175	4000	141	1	!	1	27	;	1	;			16	
May	,	O.	0 %		1	1035	975	585	430		1 1	252	55	1340	1635	2260	1 9	5 1	1	!	91	1	;	i	_) 16	_
11 15		Bottom	6.3								,	7:6									;	7					252	141
April	٠Γ	don	6.3		_		_			_	-	T. 6					_				_;	7 14				_	178	
ter ye		Bottom	7.0															6.5					_					
Chloride, in parts per million, water year October 1962 to September 1963	Г		7.0	_		_ _	_	_		_								° 6.5		_								
ary		HOLLOH											8.7														1	11
rts per mi		dol					_						8.7										_			_	1	11
in pa		BOTTOE							,	7.7													9					
January	-	61								77							_						٠					
Per Chi		BOTTOM	111	1575	1	1	_		712						x 0			14		1550	1425	1	1	96	8 00	108	æ	13
December	г	doj	# 5	675	575	1	575	_		712		_			8.5	_	~	714	_	950	_	1	1	5	8	83	8.0	13
nber		Bottom	4000	; ;	2530	4380	1625	2710	5980	,	61.	2975							- -							_	1425	
November	г	do.T	2125 3620		1575	2975	775	880	4380	- 6	2 6	880	48						6							_`	145	
per		HOTTOM	101	12	1	20	150		07	5	9 6	5	180	215	240	400	4380	3620	4000	6380	5150	5550	1	400	4380	4000	2575	4360
October	г	dol	38	94	1	20	425	ا	8	į	27	4	125	140	130	190	1055	635	2050	4380	2950	4000	1	300	2880	2675	1650	
	Day		H 81 6	3 4	'n	9	7	00 (ືຊ	;	1 2	13	14	15	16	17	81 5	202		_	23		22				_	3.5

CAPE FEAR RIVER BASIN--Continued

2-1075.76. CAPE FEAR RIVER AT NAVASSA, N. C. -- Continued

Day Aver-	18 19 20 21 22 23 24 25 26 27 28 29 30 31 age	70 71 68 67 68 68 64 57 56 68 67 69 71 70 68 68 67 69 64 55 55 68 68 69	55 54 56 54 54 52 51 50 53 51 54 54 54 52 50 53 52	47 49 41 39 40 45 46 43 45 39 37	46 44 46 37 38 42 42 43 43 47 45 46 37 38 93 43 41 42 43 43	46 46 44 47 43 44 42 45 43 47	60 61 51 55 58 58 60 58 61 60 64 64 56 60 61 52 54 59 59 60 58 61 60 64 65 56	67 65 70 70 65 66 65 66 68 66 68 66 64 70 70 66 67 66 67 69 67 69 67 69 67 69 67 69 67 69 67 69	75 70 70 75 75 70 70 70 75 75 70 70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08 08 08 08 08 08 08 08 09 08 09 09 09 09 09 09 09 09 09 09 09 09 09	80 80 80 1 80 80 80 80 80 80 80 80 80 80 80 1 1 1 1	75 75 75 70 70 70 70 70 65 65
Day	13 14 15 16 17	73 73 72 72 71 17 17 17 17 69	58 54 55 58 55 85	37 37 47 45	44 44 46	+2 43	60 57 60 61 61 56 60 61	63 63 61 64 65 64 62 62 63 65	70 70 75 75 75 70 70 75 75 75	80 80 80	80 80 80 80 80 80 80 80 80 80 80 80 80 8	80 80 80 80 80 80 80 80 80 80 80 80 80 8	75 75
	9 10 11 12	75 70 72 72 75 70 72 72	61 63 56 57 62 62 57 57	48 49 39	44 49 42	42 49	54 54 50 52 53 54 49 51	64 65 65 65 65	70 75 70 75	80 80 80	80 80 80 80 80 80 80 80 80	95 80	80 80 80
	5 6 7 8	75 75	63 60 57 61 64 61 57 61	55 52 51	38 36 39 39 37 37 40 39	1 44 43	54 54	62 65 64 66 62 65 63 65	70 70 70 70 70 70	75 75 75 75 75 75	80	80 85 85 85 90 95 95 95	1 1
	2 3 4	72 72 73 72 72 73	59	53 52 53 52 52 53	39 38	40 39 40 40 40 41	44 44 46	65 65	64 64	75 75 75 75	80 80 80 80 80	080	80 80
	Month	October Top74 Bottom74	Top 59 Bottom 69	533	January Top Bottom	Top 38 Bottom 39	0 4 4 6 4 6 4 6 4 6 4 6	April Top 63 Bottom 64	Top 64 Bottom 65	TopBottom	Top 80 Bottom 80	Top 80	Top

Ä ļ

CAPE FEAR RIVER BASIN -- Continued

2-1086.22. NORTHEAST CAPE FEAR RIVER AT CASTLE HAYNE, N. C.

DRAINOR --At bridge on U.S. Highway 117, 0.8 mile north of Castle Rayne, New Hanover County, and 4.7 miles upstream from Prince George Creek. RECORDS AVAILABLE.—Chemical analyses: October 1964 to September 1963.

Water temperatures: October 1964 to September 1963.

Water temperatures: October 1964 to September 1963.

Ratchess: Maximum, 64 ppm Feb. 150 minimum, 13 ppm and 20.7 minimum, 180-763.—Dissolved solids: Maximum, 180 minimu

		Color	160	160	140	120	110	20	1	120	120	130	160	110	120	120	110	ł	130
		푎	6.2	9.0	. 0	6.4	6.7	6.5	7.1	6.2	8.8	6.8	8.9	6.8	7.1	7.1	6.1	6.5	9.9
	Specific conduct-	<u> </u>	65	74	13	75	46			73					137				
	Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	æ	30 E	- 00	2	9	6	14	0.	∞	4	~	80	ឧ	14	=	2	9
	Har.	Calcium, magne- stum	61	75	2 2	21	13	16	34	17	18	16	8	23	22	28	55	19	18
1963	Dissolved	(residue at 180°C)	A77	77	999	63	C25	65	!	61	09	99	65	9	D65	١	80	1	20
tember	Ni-	trate (NO ₃)			* *			4.4	ŀ	5.9	1:0	1.1	1.3	2.1	3.5	:	1:9	ŀ	1.7
to Sept	Fluo-	ride (F)	0.2	N.	; •	: -:	٦.	۲,	!	-:	٦.	٦.		۲.	•	1	•	1	۲.
Chemical analyses, in parts per million, water year October 1962 to September 1963	-F1=0(1)	(C1)	10	10	10.01	11	0.9	9.5	23	91	0.6	12	12	13	16	20	12	14	11
year Octo	4	(30°)	3.5	4,0	7.0	9.5	8.9	7.6	ł	7.2	7.0	4.0	3.8	4.8	7.4	8.0	9.6	ŧ	7.0
water	Bicar-	bonate (HCO ₃)	14	12	1 7	: 7:	80	6	24	10	12	15	91	18	27	11	14	11	21
11 ton,	ď.	Stum (K)	8.0	7:5		1	6.	1.4	ł	1.4	1.2	1.4	1.2	1.7	5.0	2.5	1.4	1	1.6
ts per mi	1,700	(Na)	5.7	2.9	200	9.9	3.8	5.6	1	9.9	6.5	7.8	7.4	7.7	=	13	8.3	l	7.1
in par	Mag-	sium (Mg)	1.3			1,4	6.		1	1.0	1.4	8.	1.7	1.1	1.2	1	1:1	l	1.4
alyses	Cal-	ctum (Ca)	5.6	7.0	9 0	6.3	3.7	5.5	-	5.2	5.1	5,2	5.2	7.4	8.8	1	7.3	1	4.8
ical ar		(Fe)	0.26	E .	2.5	17	11.	.13	١	. 12	.14	.21	.27	.29	35	ł	. 23	17.	.17
Chen	i	(\$10°)	6.7	2.0	0 0	5.3	3.7	4.1	1	3.4	3.0	2.1	3.3	4.5	4.6	1	2.5	1	5.6
	Mean	discharge (cfs)													_				
		Date of collection			Dec 1-31						Mar. 1-14		Apr. 1-30	May 1-21	May 22-23	May 24	May 25-31	June 1	June 2-10

per million. per million. per million. Organic matter present; sum of mineral constituents 42 parts;
Organic matter present; sum of mineral constituents 41 parts;
Drganic matter present; sum of mineral constituents 41 parts;
Calculated from determined constituents.

CAPE FEAR RIVER BASIN---Continued

2-1086,22. NORTHEAST CAPE FEAR RIVER AT CASTLE HAYNE, N. C.--Continued

		Color	1	150	_	150	_	_	180	160		140		130	
		평.	6,7	6.8	_	_	-	6,3	6.0		6.5	7.0		1	
	Specific conduct-	ਸ਼ ਸ਼	135	98	125	92	100	06	99	72	102	85		80	
	Hardness as CaCO ₃	Calcium, Non- magne-carbon- sium ate	101	80	15	80	6	18	œ	7	10	80		æ	
pen		Calcium, magne- sium	18	18	26	21	22	28	17	22	22	21		20	
3Contin	Dissolved	(residue at 180°C)	1	74	1	76	74	82	74	79	87	84		71	
er 196	N.	trate (NO ₃)	;	1.6	1	1.0	4.7	4.7	1.4	1.8	2,0	2.0	_	1,9	
Septemb	Fluo-	ride (F)	1	0.1	1	٦.	~	~		.2				0.2	
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	9	(1.0)	18	11	14	12	15	17	8.2	9.7	17	14		11	
r October	gulfata	(30,	1	9.9	!	5.8	6.8	8.0	6.4	7.2	8.4	0.6		5,9	
ter yea	Bicar-	bonate (HCO ₃)	10	13	13	15	16	12	111	18	14	15		14	on. on.
on, wa	Po-	Stum (K)		1.7	ŀ	1.2			1.7		2.1		1	1.5	milli milli
per milli	11 PC 0	(Na)	1	7.7	1	7.7	10	8.8	6.0	8.9	01	7.6		7.2	parts per parts per parts per
parts	Mag-	sium (Mg)		1.0	!	1.1	1.6	2.4	1.2	1.4	1,3	1.2		6.0 . 1.3	nts 42 nts 41 nts 30
ses, in	Cal-	cium (Ca)	1	5.8	ŀ	6.7	6.3	7.1	5,3	9.9	6.7	6.4		6.0	nstitue nstitue nstitue
l analy	<u> </u>	(Fe)	07.0	.21	.20	.26	.13	.14	.16	.26	.24	.17	ļ	0.21	eral co eral co eral co uents.
Chemica	65150		1	5.7	!	5.8	6.3	6.3	5.9	7.4	7.7	7.3		5,4	of min of min of min
	Mean	discharge (cfs)													esent; sum esent; sum esent; sum etermined c
		Date of collection	June 11, 1963	June 12-17	June 18	June 19-30	July 1-31	Aug. 1-13	Aug. 14-31	Sept. 1-6	Sept. 7-13	Sept. 14-30	Time-weighted	average	A Organic matter present; sum of mineral constituents 42 parts per million. B Organic matter present; sum of mineral constituents 41 parts per million. C Organic matter present; sum of mineral constituents 30 parts per million. D Calculated from determined constituents.

CAPE FEAR RIVER BASIN -- Continued

2-1086.22. NORTHEAST CAPE FEAR RIVER AT CASTLE HAVNE, N. C.--Continued Temperature (°P) of water, water year October 1962 to September 1963

	-1-3	e.	!			
	Aver	ğ	68 57 45	44 2	22 17 75	82 81 76
		3	63	318	121	139
		30	623 44	3 5	20 10 10 10	83 71
		29	4 5 2 4 4 4 4	312	200	83 78 71
i		28	54 53 44	545	67 71 78	84 79 73
		27	64 53 43	2 4 5	67 71 78	4 2 2 3 3
ı		26	64 54 43	5 4 4 6 4 4 6 4 4	67 72 78	84 79 73
		25	65 54 43	5 5 5	67 72	4804
		24	65 55 42	5 4 5 5 5 5	73	98 4 0 4 7 4 6
		23	65 55 42	5 4 9 4 9	73	422
a		22	66 55 41	4 4 6 6	66 73	84 80 75
181		21	66 56 41	544	66 73 76	83
Conce-daily measurement at approximately 1800/		20	66 56 41	44 47 55	922	83 80 76
2		19	67 56 41	51	65 74 76	83 76
2		18	67 56 41	45 46 51	65 74 76	82 80 76
app		17	66 56 41	45 46 46 51 51	7 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80 77
1	Day	16	57 57	542	73	82 80 76
ent	_	15	57	45 50	427	81 77
urei		4	57	2 4 4 4	49 73 75	82 79 77
1688		13	69 57 46	0 4 4 4	422	82 80 78
7		12	70 57 47	0 4 6	63	81 78
		=	70 58 47	4 4 4 6 4 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6	427	81 82 78
nce-		2	70 59 48	4 4 4 4 8 8 8 8	63 71 73	81 82 78
2		٥	71 59	4 6 4	73	81 83 79
		80	71 60 49	4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	63 70 72	83 78
		7	71 60 50	4 7 4 4 7 4 4 7 7	63 70 72	83 78
		9	71 60 50	4 7 4	63 70 71	864
		5	72 61 51	474	120	84 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		4	72 61 51	4 4 5	62 69 71	79 83 79
ĺ		6	1201	647	62	79 83 80
		7	71 62 52	2 0 4	61 69 70	83
		-	71 62 52	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	61 61 69 69 70 70	83
	Moneh	MORE	October November	January February March	April May June	July August September

CAPE FEAR RIVER BASIN--Continued

2-1066.37. NORTHEAST CAPE FRAR RIVER NEAR CASTLE HAYNE, N. C.

DECATION:—At end of county road, 1 mile east of U.S. Highway 421 at Cowpen Landing, and 5.5 miles west of Castle Hayne, New Hanover County.

THINGER AREA.—I. 691 square miles.

THE EXCORDS ANALIABLE.—Chemical analyses: October 1959 to September 1953.

THE EXCORDS ANALIABLE.—Chemical analyses: October 1959 to September 1953.

THE EXTRACTION OF THE EXALTIME OF September 1953 in inimum, 6.0 ppm Jan. 24-31.

Sectific conductance: Maximum of September 1953 in inimum, 40 ppm Sept. 29-30 inimum, 40 ppm Sept. 29-30 inimum, 40 ppm Sept. 20 ppm Nov. 10, 1961; minimum daily and september 1953.

THE EXTRACTION OF THE EXALTIME ANALIAM OF THE SEPTEMBER 1959 of THE S

Chomical analyses in nexts nor million water year October 1969 to Sentember 1963

		Color	160	;	160	140	140	140	110	140	100	110	130	120	100	120	120	120	ł	1	145	1	1		130
		띥	6.2	6.5	6.2	7.2	6.5	6.4	6.4	6.1	6.3	8.9	6.9	6.9	6.7	8.9	6.9	9.9	7.0	6.9	7.0	8.8	7.0		1
	Specific conduct-	(micro- mhos at 25°C)	92	6	115	73	63	75	73	48	61	67	82	105	100	98	26	82	81	170	85	130	280		83
	Hardness as CaCO,	Non- carbon- ate	7	æ	10	9	7	9	7	10	6	æ	æ	9	6	80	6	'n	9	16	80	6	88		80
		Calcium, magne- sium	20	22	22	20	18	18	18	12	16	18	21	21	56	18	20	20	50	29	22	26	41		20
1963	Dissolved	(residue at 180°C)	17	A60	91	75	55	71	70	B28	53	48	61	16	74	11	7.7	73	ł	1	84	1	1		88
temper	Ni-	trate (NO ₃)	8.0						4.	~	1.2	æ.	۲.	6.	۰.	1.0	1.0	1.8	1	!	1.6	ł	1		6.0
to Sep	Fluo-	ride (F)	0.2	5.	63	۲.	۲.		.1		۲.	5	4.	۲.	0.	۲.	۲.	~	;	1	8	1	!		0.2
Chemical analyses, in parts per million, water year October 1962 to September 1963	7.1	(CI)	12	17	24	11	9.5	13	17	0.9	9.5	91	14	17	18	11	14	12	11	36	14	20	99		13
year Octo	. 16.16	(SO*)	6,2	7.2	6.0	8.8	4.6	4.4	5.4	8.4	6.4	4.8	5.6	8.9	6.0	7.2	9.9	6.4	1	!	8.8	1	!		6.0
water.	Bicar-	bonate (HCO ₃)	15	17	15	16	13	12	14	6	6.	12	16	18	20	14	14	18	91	16	17	50	16		12
11110n	Po-	Sturn (K)	1.0	1.1	1.2	1.4	1.5	1.2	.7	1.0	9	1:1	9.	9.	80.	7.	1.0	1.3	1	1	1.0	l	!		6.0
ts per m	9	(Na)	8.2	11	14	7.0	5.7	7.7	7.0	3.5	5.3	6.1	8.3	11	11	7.5	9.8	8,3	1	1	7.7	!	1		7.9
, in par	Mag-	sium (Mg)	1.8	1.6	2.6	1.7	1.2	1.3	1.2		1,1	1.2	2.1	1.6	2.1	1.2	1.0	1.5	!	!	1.7	1	!		1.4
alyses	Cal-	cium (Ca)	5.0	5.9	4.6	5.1	5.1	5.2	5.5	3.8	8.8	2.0	5.1	5.7	6.7	5.6	9.9	3.6	;	;	6.3	1	1		5.4
nical an		(Fe)	0.18	. 22	. 24	.24	.20	.18	14	.16	7	.15	.21	.18	.14	.21		.17	.13	1	.22	.25	. 22		0.17
Chei	7,000	(SiO _k)	6.7	7.2	6.9	6.1	5.9	7.2	6.0	3.5	4.2	3.0	3.0	5.5	4.0	5.6	6.1	0.9	1	1	7.3	!	!		5.4
	Mean	discharge (cfs)																							
		Date of collection	0ct. 1-31, 1962	Nov. 1-2	Nov. 3-7		Nov. 18-30		Jan. 1-23, 1963	Jan. 24-31	Feb. 1-28	Mar. 1-31	Apr. 1-30	May 1-20	May 21-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-5	Sept. 6-10	Sept. 11-35	Sept. 27-28	Sept. 29-30	Time-weighted	average

Calculated from determined constituents. Organic matter present; sum of mineral constituents 28 parts per million.

CAPE FEAR RIVER BASIN--Continued 2-1086.37. NORTHEAST CAPE FEAR RIVER NEAR CASTLE HAVNE, N. C.--Continued

)		l			
	Aver	age	3 tv 4 8 tv 3	448	46.65	87 79 87
		3	315	£ 1 9	131	72
		30	62 54 54	£13	69 76	7.20
i		29	200	713	902	77
		28	223	147	63 70 78	78 76 66
		27	92.4	6 4 4 6	4 6 9	18
		26	4 9 6 8 8	6 4 3 6 0 0	99	79
63		25	3 to 4 3 to 4	4 6 0	120	62 69
19		24	\$ 23 t	170		78
appe		23	947	27.6	73 71 70 70 72 74	80 78 79 79 69 68
epte 7		22	8 E E	4 4 6 4 4 6	72 22	
S 24		21	24.6	2 4 2	65 67 73 72 78 75	79 81 78 78 73 73
62 d		20	124	5 5 5		
Temperature (°F) of water, water year October 1962 to September 1963 $\sqrt{0}$ nce-daily measurement between 0530 and 184 $\frac{5}{2}$		19 20 21 22 23 24 25 26	54.6	44 43 43 61 62	64 65 72 73 75 77	78 78 79 79 72 72
ober 053			225	4 4 4 6 7 7 9 7 9 7 9 7 9 7 9 9 7 9 9 9 9 9 9	63 72 76	76
Oct		17 18	74 72 55 55 44 45	45 40 40 58 61	60 63 72 72 78 76	77 76 79 79 72 72
ear betr	Day	16			58 71 81	77 72
ar y	1	11 12 13 14 15 16	74 74 56 55 41 43	44 46 40 63 59	8 2 2 2	75 77 79 77 73 72
watereme		4		45 47 62	62 69	
asu		13	72 73 56 56 40 41	44 45 46 47 59 62	62 68 79	77 76 81 80 74 74
wate y me		13	57 57 40	4 4 4 8 9 8 9	73	78 83 76
of lail		=	71 22	5 4 2 2 2 2 9 6 9 6 9 9	66 73	79 78 84 83 76 76
(F)		10	7.5 7.5 7.5 7.5 7.5	41 43 51	65 74 78	
0.00		01 6	12	3 4 6	64 65 71 74 77 78	79 79 84 84 76 76
atu		80	50 51 50	0 4 4 6	63 77	80
redu		7	4 8 0 0 d	0 0 0 0	64 66 75	9 9 7
Te.		9	225	4 4 4	64 66 75	79 80 78
		3 4 5 6	70 70 60 52 55 54	017	64 65 72	79 79 80 80 78 78
		4	500	9 4	68 62 70	78 79 78
		က	55	413	65	77 78 79 79 77 78
		7	70 61 54	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	63	78
		-	5 6 9	417	63	78 77 76
	Mensh	Mount	October November December	January February March	April May June	July 78 78 August 77 77 September 77 76

247247

11818811

4080.088

Color

푄

CAPE FRAR RIVER BASIN -- Continued

2-1086.38. NORTHEAST CAPE FEAR RIVER NEAR WRIGHTSBORO, N. C.

INCATION.—At boat landing 3 miles above Ness Creek, and 3 miles northwest of Wrightaboro, New Hanover County, DALINGS ARR.—1.1697 square miles. Rovember 1962 to June 1963 (discontinued).
WRECORDS ANTIARIE.—Chemical malyses: November 1962 to June 1963 (discontinued).
WRECORDS ANTIARIE.—Structures: November 1962 to June 1963 (discontinued).
STRIGHES, November 1962 to June 1963.—Chioride: Maximum daily, 9,000 ppm Nov. 1; minimum, 6.2 ppm lan. 24-31.
STRICHES,—Salinity station. Rother proceeds and antiable.

		۵.	9	ė	ė	ė.	ė,	ı,	9	ဖ်	ė	۲.	ø	ė,	ė,
	Specific conduct-	(micro- mhos at 25°C)						47							
	Hardness as CaCO,	Calcum, Non- magne-carbon- sium ate	6	80	10	80	~	80	9				œ	_	
		Calctum, magne- sium	19	20	23	20	20	14	15	20	21	22	23	20	26
	Dissolved	(residue at 180°C)	73	A50	A61	48	63	41	51	61	9	1	80	1	ſ
1963		-	0.5	۳.	87	٥.	۲.	۲.	1.7	1.0	6.	ł	6.	1.0	1.2
o June	Fluo-	ride (F)	0.1	~	e.	٦:	٦.	~.	۲.	~?	٥.	ł	~	1	1
Chemical analyses, in parts per million, November 1962 to June 1963	Objection	(CI)	11	12	19	14	11	6.2	8.5	9.5	12	12	19	8.7	15
on, Novem		(30,	7.0	8.9	8.9	5,2	9.2	5.4	5.6	7.2	9.9	1	7.8	8.9	=
. milli	Bicar-	bonate (HCO ₃)	12	14	12	15	53	80	7	13	16	19	18	12	14
rts pel	Po-	Stum (K)	1.6	1.4	1,4	1,1	۰.	1.1	9.	1.4	1.3	1	1.5	1	ļ
es, in pa	ani jeo	(Na)	6.4	8.2	11	7,5	5.9	3.7	4.6	6.1	7.5	ŀ	#	1	1
analys	Mag-	sium (Mg)	1,4	1.4	1.2	1.1	1.3	1.3	1.5	1.4	1.9	١	2.0	2.0	2,2
emical	Cal-	cium (Ca)	5.5	5.6	7.1	6.2	5.9	3.6	3.6	5.5	5.3	1	0.9	5.0	6.9
C	18.01	(Fe)	0.27	.18	.23	.17	. 17	.20	11.	.17	.18	.81	34	1	ł
	Gilio	(SiO ₂)	5.8	8.9	7.1	7,1	5,6	3.4	4.0	2.9	2.6	1	3.1	5.6	5.7
	Mean	discharge (cfs)													
		Date of collection	Nov. 11-30, 1962	Dec, 1-12	Dec. 13-18	Dec, 23-31	Jan. 1-23, 1963	Jan. 24-31	Feb. 1-28	Mar. 1-31	Apr. 1-7	Apr. 11-12	Apr. 14-28	June 1-3	June 4-5

A Calculated from determined constituents.

CAPE FEAR RIVER BASIN -- Continued

2-1086.38. NORTHEAST CAPE FEAR RIVER NEAR WRIGHTSBORO, N. C.--Continued

		Chlc	ride, i	n parts	per mi	llion, l	November	1962	to June	1963		
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5		2880 1225 27 1000 1200)	179 51 168 48	8.7			
6 7 8 9 10		555 1350 2325 330	12				 67 	550 1450 585 1455	925 174			
11 12 13 14 15			19	11	8.5	9.5] 144	22 24 21 765 49	32 300 27			
16 17 18 19 20		11	30 32				19	975 49 365 27	900 48 16			
21 22 23 24 25			33 35					365 27 16	16 300 75			
26 27 28 29 30 31			14	6.2] 		67 147	15 19 11 14 12	600 160 615 80			

CAPE FEAR RIVER BASIN--Continued 2-1086.38. NORTHEAST CAPE FEAR RIVER NEAR WRIGHTSBORO, N. C.--Continued

j	Aver-	age	121	111	111	111
		31	117	311	121	111
		30				111
		29 ;	147	35 42	68 68 73 75 86 86	111
		28				111
		27 28	13 69	32 37	71 70	111
		26			81 69	111
		25	14 19	41 39	1 6 8	111
		23 24 25 26	1 5 4			111
		23	127	42 32	1 1 2	111
196		22				
Temperature ('F) of water, November 1962 to June 1963 Δ Once-daily measurement between 0700 and 2100		19 20 21 22	64	211 441	72 71 73 83	111
d to		20	120	441	70	111
962 a		19	75 71 48 50	38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 71 88	111
7 25			68 67 52 55	311	131	111
reen		17	68 67 52 55	38	69 64	111
Nov	Day	13 14 15 16 17 18	76 64 48 50	141	70 78 70 78 79 72	111
er,		15	1284	311	125	111
wat		7	1 8 9	45 41 11 47	61 71 83	111
of		13	75 68	411	76	111
		12	66 64	3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	68 72 74 70	111
re (=	99	3 6 1	72	111
ratu		10	71 68	111	1 60	111
mpe.		6	17	411	689	111
Te		æ	 66 72 57 54	114	59	111
		^	196			111
		9	70	45 34 51 49	60 72 76 71 74	111
		2	125	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60 72 71	111
		4	1 69 1	£ 1 1 2 2 2 1 2 2	60 60 67 80 73	111
		က	181	5	0 1 8	111
		2	73 72	1 6 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59 58 68 69 75 81	111
	L	_	73			111
	124	Month	October 73 72 November 79 72 December 70	January 40 39 March 40 43	April May June	August

WACCAMAW RIVER BASIN

2-1095. WACCAMAW RIVER AT FREELAND, N. C.

LOCATION. -- Temperature recorder at gaging station 150 feet downstream from New Britton Bridge on State Highway 130, 1 mile southwest of Freeland, Brunswick Courty, 7 miles downstream from Juniper Creek, and 117 miles upstream from mouth in Winyah Bay.

RECORDS AVAILABLE. -- Chemical manipess. October 1960 to September 1961. October 1966 to September 1963.

Water temperatures: October 1960 to September 1961, October 1961 to September 1963.

EXTREMES, 1962-63. -- Water temperatures: Maximum, 82°F on several days in May, July, and August; minimum, 35°F Dec. 14-18.

EXTREMES, 1960-61, 1960-61, 1962-63. -- Water temperatures: Maximum, 96°F June 18, 1860; minimum, 35°F Dec. 14-18, 1962.

		Chem	ical an	alyses,	in par	ts per mi	111on,	water	year Octo	Chemical analyses, in parts per million, water year October 1962 to September 1963	to Sept	ember	1963					
	Mean	271.50	į	Cal-	- Buy		è	Bicar-	1	Official	Fluo-	ž.	Dissolved	Hard as C	aco,	Specific conduct-		
Date of collection	discharge (3)	(310,	(SiO ₂) (Fe)	Ctum (Ca)	cturn ne- (Ca) (Mg)	(Na)	Sturn (K)	sturn (HCO ₃)	(80)	(SO ₄) (C1) (F) (NO ₃) at 18	rige (F)	(NO ₃)	trate (residue Calcum, Non- (micro- (NO ₃) at 180°C) magne-carbon- mhos sium ate at 25°C)	Calchum, magne-c	Non- arbon-	(micro- mhos at 25°C)	H	pH Color
Oct. 15, 1962			0.04	3.2	8.9 0.04 3.2 1.3		4.3 0.7	6	1.6	8.0	8.0 0.1 1.3	1.3	A73	14	9	48	5.7	200
Feb. 7, 1963	2000		.03	2,3	6.		4.	10	3.5	5.8	۳,	1.2		10	9	48	5.8	6
Sept. 4			.41	8.0	4.		e.	-	13	13	7	1.1		22	16	72	5.8	110
A Organic matter present; sum of mineral constituents 33 parts per million. B Calculated from determined constituents.	resent; sum letermined	of min	eral con	nstitue	nts 33 F	arts per	milli	ou.										

WACCAMAW RIVER BASIN--Continued

2-1095. WACCAMAN RIVER AT FREELAND, N. C.--Continued Temperature ("P) of water, water year October 1962 to September 1963

__Continuous ethyl-alcohol actuated thermograph/

	Aver-	age	1	54	44	7 7 7 7	2 4 5	57	65	72	47	80	90	7.5
	₹	_												
		31	56	11	4 4 3	42	11	62	- 11	6.8	11	80	780	!!
		30	56	49	4 4 3	1 0	11	59	65	67	77	8.0	78	72
		59	56	4 6 4	6 4	1,0	11	52	99	65	2,4	8 8	78	72
		28	57 56	4 4	43	43	4 4 50	59	99	63	74 73	88	78	72
		22	60	50	42	4.3	4 6	59	8 9 9	63	73	98	78	69
Ì		26	09 1 9	52	42	4 10	9 4 9	57	71	63	72	90	90	68
		22	67	53	42	7 4	4 6	55	7.1	67	72	8 8	90	69
		24	68 67	53	42	50	44	55	7.5	69	75	81	90	70
Ì		23		53	42	51	47	59	75	73	77	82	90	72
_		22	11	53	45	51	47	59	74	73	77	81	430	76
rap		21	11	53	42	51	45	6.5	71	77	77	81	91	76
Bou		20	11	53	4138	4 4 0	45	6.5	69	77	75	80	91	73
thermography		19	11	53	38	2 4	45	64	63	81	75	7.8	93	72
8		81	11	54	36	4 4	43	62	63	82	79	77	90	72
actuated		17	- 11	55	3.55	9 4	43	61	59	78	81	79	0.80	72
	Day	91		54	35	50	8 4 9	63	61	75	81	78	81	17
900		15	11	56	3.5	1.0	4 4 80 80	63	62	72	81	76	92	78
ethyl-alcohol		14	11	57	35	6.0	8 4 9	63	62	72	80	47	92	77
P.		13	11	57	37	6 4 9	4 4	59	62	7.5	81	74	92	77
9		12	11	58	40	4 9	44	56	62	78	81	42	82	79
Continuous		=	11	58	44	4 9	94	56	62	78	81	75	82	78
27		21		58	44	0,4	46	56	62	76	77	81	82	78
8		6	- 11	53	2 4	9 9	4 4	57	61	73	77	82	82	77
		80	- 11	54	4 9 4 5	40	45	57	62	47.0	75	82	82	77
		2	- 11	54	53	3.8	2 4	57	65	72	73	82	8 1 8	77
		9	11	55	53	37	6 4	54	63	7.1	73	80	80	80
1		2	11	56	53	38	2 4	51	19	69	71	82	2 62	380
		4	11	56	53	36	6,4	51	67	89	89	82	79	81 79
		6	11	56	53	36	42	6 4 4	999	63	89	82	46	190
1		2	11	57	52	38	42	42	65	65	89	82	62	3.8
ļ		1	11	54	52	38.2	45	2.4	64	999	89	80	62	19
ļ			1 :	11	1:	-::		11	11	11	11		::	1 1
	19	Month	October Maximum . Minimum .	= -	Minimum .	Eξ	mam	Maximum . Minimum .	1 ximum nimum	cimum imum	June Maximum . Minimum .	mum num		September Maximum . Minimum .

PEE DEE RIVER BASIN

2-1120. YADKIN RIVER AT WILKESBORD, N. C.

LOCATION. --Temperature recorder at gaging station 150 feet upstream from bridge on U.S. Highway 421A between North Wilkesboro and Wilkesboro, 150 feet downstream from Reddies River, and 0.5 mite northeast of Wilkesboro, Wilkes County.

DRAINGE RRAL.-453 square mises.

RAR.-453 square mises. October 1947 to September 1948, october 1961 to September 1962.

Water temperatures: (october 1947 to September 1957 to September 1963.

Water temperatures: (october 1947 to May 5.9 % 2.3, 4% infiniam, 3.5 % october 1967 to September 1963.

EXTREMEN: 1957-63.—484er temperatures: Maximum, 75 % Nug. 5.9 % 2.3, 4% infiniam, 75 % october 1963.

EXTREMEN: 1957-63.—484er temperatures: Maximum, 83 % June 24, 25, 1948; minimum, 150 % ont on several days in 1958, 1960, and 1962.

Color 6.8 푅 Specific conductmhos at 25°C) 38 (microance magne-carbon-00 Calchum, Nonas CaCO, Hardness stum (residue C at 180°C) r A29 Dissolved solids Chemical analyses, in parts per million, water year October 1962 to September 1963 1.0 Ni-trate (NO₃) Fluo-ride (F) 0.7 1.5 Chloride ថ្ង 1.8 Sulfate ĝ Bicar-(HCO,) 17 bonate Po-tas-stum (K) 2.0 Sodium (Na) Mag-ne-stum (Mg) 2.5 Cal-cium (Ca) 0.02 Iron (Fe) Silica (SiO₂) 22 Mean discharge 465 456 Dec. 28, 1962...... Date of collection

A Calculated from determined constituents.

PEE DEE RIVER BASIN -- Continued

2-1120. YADKIN RIVER AT WILKESBORD, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (Continuous ethyl alcohol-actuated thermograph)

L	_												
Aver-	age	59	51	4 1 7	4.1	39	4 4	4.9	61 58	63	71	73	70
	3	50.00		38	3 8	11	53	- 11	61	11	6.8	68	11
	3	27	64	39	39	1.1	52	κυ κυ αν 44	99	65	7.1	42	63
	59	4.2	0.84	14	3.8	11	52	4 6	64	2 %	72	69.	99
	88	52	5.5	7 0	358	9 6	52	52	62	69	4,8	69	65
1	27	57	4 7	14	38	35	52	51	61	68	73	69	63
	26	5.58	4 4	39	37	38	4 4 8 8	30	60	5 4	17 89	6.8	0.4
	25	58	4 4	3.60	38	3,6	50	7,00	6.0	6.4	70	7.2	6.0
	24	57	51	39	39	36	0 4 0 4	25	6.2 5.8	11	699	4.8	60
	23	61	50	4 4 0 4	9.8 3.8	35	0° 4	57 51	63 59	66 44	71	15	63
	22	61	50	£ 14	3.0	39	6 4	50.00	58	64	9 2 9	42	69
	21	62	4 4	43	42	39	8 4 7	56	61 59	64	71 67	7.1	1,4
	20	65	64	6 4	4 1 7	37	8 4	57	59	64	69	6.8	7.7
	19	61	49	£ 1 4	1,0	38	7 ⁴	55	58	64	70	7.2	71
	82	61	52	43	41	36	8 4	464	59	63	73	74	20
	11	65	51 50	39	3.0	39	3 4	53	59	63	73	74	71
Day	91	65	51	40	41	36	4 %	52	59	63	69	73	71
	15	65	51	39	38	39	4 4 7 4	52	53	63	99	73	70
	7.	63	51	41	39	38	Q 4	50	61	63	20	73	66
1	ಣ	65	52 48	41	4 4	39	4 4 5 5	51	58	63	70	71	69
	12	65	50	42	2 7	39	9 4	53	59	63	70	73	72
	=	65	52	4 1 4 3	44	38	11	53	58	63	71	73	71
	2	65	521	43	41	38	4 4	52	61	63	20	65	72
	6	64	51	4 4 0 6	41	38	£43	50	62 57	63	22	7.4	71
	8	65	52	4 5	41	38	43	51	6.1 56	63	72	75	72
	7	64	52	4 6 7	104	39	41	51	61 56	66	68	74	72
	9	63	52	4 4 0 10	41	41	45	4 4	54	66	70	7.4	69
	2	63 61	52 51	4 t	41 39	41 37	42	50	59 54	65	72	75 68	71
	4	61	53	49	3.8	39	643	6.4	53	63	72	6.9	71
	6	69	53	4 4 8 4	37	3.8	41	4.0	53	68	72	5.79	47
	2	61	50	8 4	37	39	38	40	58	66	7.1	4.6	73
		900	63	4 4 5 5	37	38	33.9	E 0.	53	65.	69	71	7.4 6.8
		: :	11	11	::	11	11	11	11	11	11	: :	::
	Month	October Maximum Minimum	Maximum	December Maximum Minimum	January Maximum Minimum	Minimum	Maximum Minimum	April Maximum Minimum	Maximum Minimum	June Maximum Minimum	July Maximum Minimum	August Maximum Minimum	September Maximum Minimum

PEE DEE RIVER BASIN--Continued

2-1155. FORBUSH CREEK NEAR YADKINVILLE, N. C.

LOCATION. --At gaging station, 900 feet upstream from highway bridge, 0.8 mile north of Forbush Church, 2.8 miles upstream from Logan Creek, 3.5 miles upstream from mouth, and 6 miles east of Yadkinville, Yadkin County.
DRAINGE AREA --17 square miles.
RECORDS ANIALMEL. --Chemical analyses: October 1961 to September 1963.

		Color	30	ខ្ល		4	30	20	10	ú	12	9	က	15	2	
		<u> </u>	7.0	6.7	6.5	7.2	8.8	9.9	7.2	7.2	7.0	6.4	7.2	6.5	8.8	
	Specific conduct-	<u>ਦ</u> ਵ	42	44	43	41	40	43	40	_	43			_	42	
	Hardness as CaCO,	Calctum, Non- magne-carbon- stum ate	٥	•	0	0	0	•	٥	0	•	•	0	0	0	
	Har as C	Calchum, magne - sium	14	16	14	12	13	13	14	15	14	14	15	12	14	
	Dissolved	a C	38	A39	44	41	32	A34	35	40	38	42	A38	42	A41	
1963	Ni-	trate (NO ₃)	0.2	1:0		9	_		0.	.3	4.	۳.	4.		ε.	
ugust	Fluo-	ride (F)	0.0	•	•		-:	•	0.	7	٥.	۳.	٠:	•	٦.	
Chemical analyses, in parts per million, October 1962 to August 1963	OL)	(C1)	2.1	5.9	3.0	2.3	2.2	2.5	2,08	2.0	1.9	2.4	1.4	2.3	1.6	
, October	L	(30°)	1.8	æ.	2.8	3.0	1.8	1.6	1.0	1.2	1.4	9.	2.4	1.6	3.8	
nillion	Bicar-	bonate (HCO ₃)	22	22	ຂ	61	20	200	22	23	22	22	22	20	23	
s per 1	-Po-	Stum (K)	1.2	1:0	1.4	1.0	1.0	æ.	6	1.4	2.0	1.4	6.	1.5	2.2	
in parts	ord the co	(Na)	2.8	2.8	.3	5.9	5.9	20	2.7	2.9	2.5	3.5	2.2	2.4	4.4	
analyses	Mag-	sium (Mg)		1.6									1.5			
mical s	Cal-	cium (Ca)	3.3	3.6	3.4	3,4	2.9	3,1	3.1	3.7	3.4	3.7	3,7	2.8	3.4	
Che	<u>.</u>	(Fe)	0.12	8	8	8	.07	.02	80	.0	.05	ş	6	00.	.02	uents.
	90)(00	(SiO ₂)	14	77	77	12	77	12				-	14			constit
	Mean	discharge (cfs)	12	11	56	78	21	46	22	16	14	14	8.8	10	5.6	etermined o
		Date of collection	Oct. 3, 1962	Oct. 29	Nov. 20	Dec. 28	Feb. 5, 1963	Mar. 1	Apr. 12.	May 14	June 10	July 2,	July 19	July 26	Aug. 26	A Calculated from determined constituents.

2-1165. YADKIN RIVER AT YADKIN COLLEGE, N. C.

OCATION. --At gaging station at bridge on U.S. Highway 64, 1.5 miles south of Yadkin College, Davidson County, and 6.2 miles downstream from Reedy Creek. TRANGE AREA. --2,280 square miles, approximately.

MENTION:—AT SEQUE SERVICE AND TABLE OF THE PROPERTY OF THE PRO

er 1963	Dissolved as CaCO ₃ conduct-	Calcum, Non- (r. magne-carbon-sium ate at	1.6 52 15 0 55 7.3 18 1.5 A43 14 0 55 6.4 20	47 14 0 52 6.8	8 2 6.9	48 15 0 50 6.6	43 14 0 50 7.1	16 0 51 6.8	A37 11 0 44 6.7	A41 14 0 51 6.9	2 52 16 0 58 7.0 35	55 16 0 57 7.3	48 15 0 62 6.9	7.2	24	135 8.0	6.7	
to September		ride (F)	0.0	.2	1		•	0.	۲.	•	•		•	٦.	α.	1	.2	,
water year October 1962 t		(CI)	4.6	3.3	0.	2.8	6°E	3,8	2.2	3.0	4.6	3.6	3.6	5.4	3.7	9.6	5.5	
year Octo	Oulfato	(30,	3.0	3.6	1	3.6	3.4	2.8	4.4	3.4	4.4	4.0	3.6	4.8	5.4	ŀ	6.0	
	Bicar-	bonate (HCO ₃)	42 12	20	80	18	18	19	15	20	21	21	22		23	72	24	
1111on		Sium (K)	1.9								1.2			2.0		1	2.0	,
in parts per million,	anije o	(Na)	5.5	4.3	1	3.6	3.8	4.3	3.4	4.5	4.3	4.6	8.4	6.7	6.9	1	6.9	,
tn par	Mag-	sium (Mg)	01.1	6.	æ.	1.5	1.2	1.7							1.3			,
analyses,	Cal-	cium (Ca)	4.4	3.9	1.9	3.6	3.7	3.4	2.9	3.4	4.2	4.2	4.0	4.6	4.3	1.4	4.3	
Chemical ar	Two	(Fe)	0.07	20.	1	.02	40.	.05						10.	10.	1	.07	3
Cher	20110	(SiO ₂)	12 23	13	1	173	23	12	11	12	51	14	8.3	12	14	1	ដ	;
	Mean	discharge (cfs)	1805	3157	2220	3973	2816	2555							1194			7000
		Date of collection	Oct. 1-31, 1962	Dec. 1-24	Dec. 25	Dec. 26-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31,	Apr. 1-30	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-17	Sept. 18	Sept. 19-30	Time-weighted

A Calculated from determined constituents.

age

PEE DEE RIVER BASIN -- Continued

2-1165. YADKIN RIVER AT YADKIN COLLEGE, N. C. --Continued

Month

2-1165. YADKIN RIVER AT YADKIN COLLEGE, N. C .-- Continued

Suspended sediment, water year October 1962 to September 1963

		ОСТОВЕЯ	۲		NOVEMBE	R			DECEMBER		
		Suspen	ded sediment		Suspen	ded	sediment		Suspen	ded s	sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	1600	42	181	1600	30		130	1960	41		217
2	1500	42	170	1600	29	ļ	125	1910	40		206
3	1550	39	163	1730	32	i	149	1910	32		165
5	1820 4050	50 387	246 5 4390	1910 2040	44		227 231	3550 14400	244 820	5	3970 31800
3	4050	361	3 4390	2040	42		231	14400	820	3	31800
6	3180	332	5 2890	1780	35		168	7480	355	1	7170
7	2450	140	926	1640	29		128	5260	215		3050
8	2140	79	456	1550	30	l_	126	3750	110		1110
10	2000 1820	67 59	362 290	3480 19900	319 1160	5	6180 61300	3270 3000	84 76		742 616
	1620	"	2,70	17700	1150	3	51300	1 3000	'5		010
11	1680	55	249	13500	490	S	19300	2540	5.2		357
12	1600	42	181	4600	270	5	3340	2140	42		243
13	1550 1680	38 108	159 490	3460 2900	176 98		1640 767	1500 1680	38		154 91
14	2270	128	785	2360	68		433	1960	71		376
- 1		į .						Ĭ.			
16	1820	100	491	2140	66		381	1960	23		122
17	1640	75	332	2040	66	١.	364	2360	48	1	306
18	1550	50	209	2640	235 383	5	2020	2270 2360	73		447 350
19	1460 1500	30 27	118 109	5150 3370	203	S	5360 1850	2090	55 35		198
i											
21	1550	29	121	2630	116		824	2000	31	1	167
22	1640	38	168	2900	253	S	2760	2090	30		169
23	1820	48	236	3850 2900	194	s	2070 736	2180 2140	31 41	ł	182 237
24	1640 1460	41	173 162	2540	59		405	2220	47		282
İ		İ			1						
26	1460	32	126	2360	64		408	2720	148	В	1090
27	1460	20	79	2270	51		313	3000	100		810
28	1500 1500	17 22	69 89	2270 2090	44		270 237	3090 3520	50 235	s	417 2700
29	1460	23	91	2000	42	ſ	227	6800	449	S	8250
31	1600	31	134			İ		4710	196	5	2560
Total	55950		14645	105200			112469	101820			68554
		JANUAR	Y		FEBRUAR	Y			MARCH		
1	3270	94	830	2270	68	T	417	2330	62	5	396
2	2720	72	529	2270	43	ļ	264	5730	480	5	7520
3	2540	39	267	3000	119	5	975	4870	400	1	5260
4	2270	28	172	3090	78		651	3650	238	1	2350
5	2270	28	172	2630	58		412	3370	210		1910
6	2220	29	174	2450	91		602	14100	1390	5	55600
7	2220	28	168	2450	97	[642	16600	1020	5	46900
8	2220	30	180	2360	41		261	7070	458	s	9020
9	2220	50	300	2270	40	1	245	5480	220		3260
10	2180	38	224	2630	52	1	369	4930	190	İ	2530
11	2090	33	186	2540	64		439	3750	180		1820
12	3180	246	s 2560	3180	148	5	1390	9960	805	5	37000
13	4050	272	2970	3950	172		1830	37700	1310		126000
14	3370	108	983	3090	139		1160	42500	465	S	55100
15	2720	72	529	2630	72		511	14100	330		12600
16	2450	53	351	2360	68	1	617	9040	283		6910
17	2360	32	204	2180	46		271	8780	282		6690
18	2360	31	198	2180	58	1	341	8520	280	1	6440
19	2540	53	363	2360	57		363	7040	247		4690
20	5260	766	S 11500	2900	101		791	7520	259	\$	5210
21	6140	448	s 7580	2810	58		440	6800	152		2790
22	4050	159	5 1790	2450	51		337	5040	122		1660
23	3180	120	1030	2180	43	1	253	4160	111	1	1250
24	2810	69	524	2220	68		408	3950 3650	72 77		768 759
25	2450	140	926	2360	41		261	3650	"		159
26	2450	120	794	2270	60		368	3550	95		911
27	2540	56	384	2270	8.2		503	3850	90		936
28	2360	51	325	2180	35	1	206	3750	85		861
29	2090 2270	81	457 245			1		3370 3370	72	1	655 655
30	2270 2450	40	324	==				3270	66	1	583
				 		\vdash					409034
otal	87300		37239	71530			15327	261800			

S Computed by subdividing day.

2-1165. YADKIN RIVER AT YADKIN COLLEGE, N. C.--Continued Suspended sediment, water year October 1962 to September 1963 -- Continued

-			Deciment, Wa	Joan Oc	MAY	62 to Septemb	. 100300	JUNE	
-			ded sediment	<u> </u>		ded sediment			ded sediment
_ !	Mean	Suspended sediment Mean concen-		Mean		ded sediment	Mean		ded sediment
Day	dis- charge (cfs)		Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	3180	58	498	4050	129	1410	2630	216	1530
2	3090	59	492	3460	89	831	2450	110	728
3	3090	60	501 494	2630	53 41	376 291	2360 2540	96 322	612 2210
5	3000 2900	61	470	2630 2450	30	198	2360	256	1630
6	2900	83	650	2450	31	205	2180	98	577
7	3550	89	853	2450	40	265	2220	95	569
8	3650	72	710	2360	49 47	312 288	2360	161	1030
10	3370 3090	53 50	482 417	2270 22 7 0	39	239	2180 2040	132	661
11	3000	62	502	2270	37	227	1910	71	366
12	2900	39	305	2180	32	188	1780	60	288
13	2720	52	382	2140	35	202	1640	56	248
15	2720 2810	60 32	441 243	2140 2180	33 30	191 177	1600 1640	49 58	212 257
16	2720	46	338	2220	37	222	1680	51	231
17	2630	33	234	2360	38	242	1860	5.5	276
18	2630	33	234	3000	69	559	2000	55	297
20	2630 2720	39 30	277 220	3270 2630	80 78	706 554	2040 1960	51 89	S 552
21	2630	30	213	2450	60	397	2450	512	5 3400
22	2540	60	411	2720	309	2270	2270	154	944
23	2810	69	524	2540	200	1370	2040	119	655
25	2630 2450	48 40	341 265	2270 2180	92	901 542	1910 1 8 20	52 58	268 285
26	2360	30	191	2140	73	422	1600	50	216
27	2360	37	236	2360	70	446	1640	51	226
28	2360	30	191	2810	88	668 5 8930	1960	155	820
30	2450 34 6 0	102 206	675 5 1880	4160 5150	751 724	S 10600	1960 1910	85 62	450 320
31	3460		3 1000	3850	808	5 8670			
Total	85350		13670	84040		42899	60990		20916
		JULY			AUGUST			SEPTEMBE	
1	1780	51	245	2180	514	3020	1030	90	250
3	227U 2090	229 169	S 1440 954	2360 2270	202 150	1290 919	1040 964	57 49	160 128
4	1640	88	390	1550	82	343	870	49	115
5	1370	80	296	1320	76	271	1140	170	523
6	1320	70	249	1280	61	211	1190	111	357
7	1320	57	203	1070	48	139	2090	135	762 423
9	1420 1460	52 50	199 197	1020 912	46	127 118	1780 1320	88 67	239
10	1370	45	166	933	52	131	1040	51	143
11	1280	42	145	972	49	129	1050	45	128
12	1190	38	122	1020	42	116	980	39	103
13	1190 1190	39 38	125 122	1020 912	46	127 103	912 1190	39 128	96 411
15	1420	40	153	870	32	75	1460	117	461
16	1640	53	235	849	3 3	76	1190	50	161
17	1460	38	150	800	30	65	1050	58	164
18	1320	48	171	800	25 28	54 62	980 948	55 50	146 128
19 20	1280 1240	36 40	124 134	821 800	31	67	905	40	98
21	1370	35	130	926	31	78	884	37	88
22	1370 1320	37 48	137 171	898 1190	62 46	150 148	856 807	35 30	81 65
24	1320	82	292	1140	41	126	765	29	60
25	1820	138	5 751	884	35	84	758	18	37
26	2140	434	S 2570	933	40	101	724	18	35
27	1680	160	726 505	1320	65	232 242	724 814	18	35 110
28	1640 2900	114 971	505 5 7570	1320 1140	60	185	2960	855	5 7150
30	1820	700	3440	1370	150	555	3460	369	5 3610
31	1910	350	5 1890	1240	190	636			
Total	48540		24002	36120		9980	35881		16267

PEE DEE RIVER BASIN--Continued

2-1165. YADKIN RIVER AT YADKIN COLLEGE, N. C .-- Continued

Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis B. bottom withdrawal thus; C. chemically dispersed: D, decadardion; N, in native water; P. piper; S. sieve; V. rismal accumulation tube; W, in distilled water)

Mothod	jo .	analysis	SBWC
		2.000	
		1.000	
	eters	0.500	100
	millim	0,250	96
liment	ated, ir	0.125	89 98 100 91 96 100
Suspended sediment	Percent finer than size indicated, in millimeters	016 0.031 0.062 0.125 0.250 0.500 1.0	77 86
Suspen	than siz	0.031	67 82
	t finer (0	27 41 51 53 68 76
	Percen	0.004 0.008	41 68
		0.004	27 53
		0.003	22 46
Sediment	discharge	(tons per day)	
Sediment	concen- tration	(mdd)	1280 924
	Discharge (cfs)		20600 42600
Water	ber	G	
	ling 1	point	
	Time samp-		1140
	Date of collection		Nov. 10, 1962

2-1180. SOUTH YADKIN RIVER NEAR MOCKSVILLE, N. C.

LOCATION (revised).—At gaging station at bridge on Secondary Road 1972 in Rowan County, 1 mile upstream from Little Creek, 4 miles downstream from Fifth Creek, 4.0 miles upstream from Hunting Creek, and 6.5 miles southwest of Mockeville, pavie County.

RECORDS AVAILABLE.—Chemical mailyses: October 1963 to September 1963.

Mater temperatures: October 1966 to September 1963.

Water temperatures: October 1966 to September 1963.

SYNCHARES, 1962-63.—Lossolved solids: Maximum, 56 ppm 1019 1-31; minimum, 39 ppm Mar. 1-31.

Hardness: Maximum 18 ppm on many 483 during year; minimum, 199 ppm Mar. 14.

Mater temperatures: Maximum 4811y, 79 addromatos Mar. 14.

Nactor temperatures: Maximum 4811y, 79 addromatos Mar. 14.

Nactor temperatures: Maximum 6411y, 79 addromatos Mar. 16 minimum 6411y, 8 ppm 00t. 27-29.

SYNCHARES, 1968-63.—Laster Maximum 6411y, 1260 ppm Mar. 6; minimum 6411y, 8 ppm 00t. 27-29.

SYNCHARES, 1968-63.—Laster Maximum 6411y, 1260 ppm Mar. 1-31, 1961; minimum 6411y, 1963.

Maximum 6411y, 1260 ppm 1019 11, 1561; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661.

Maximum 6411y, 1260 ppm 1019 11, 1561; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 11661; minimum 6411y, 5, 6, 11662; minimum 6411y, 5, 11661; minimum 6411y, 5, 116

		Color	18	20	12	9	12	11	15	11	88	20	88	07	18
		뜀	7.4	6.7	6.9	7.2	7.0	4.7	7.4	7.3	9.9	7.2	7.5	4.4	1
	Specific conduct-	mhos at 25°C)	49	49	20	47	46	43	20	26	25	22	54	25	50
	Hardness as CaCO,	Non- carbon- ate	0	0	0	•	0	•	0	0	0	0	0	0	0
			18	18	18	16	16	14			17				17
1963	Dissolved	(residue at 180°C)	A48	A42	47	43	42	39	A42	46	21	56	20	A47	46
tember	Ni-	trate (NO ₃)	0.4	۰.	1.1	9.	1.2	1.6	1.1	1.4	2.0	1.0	۲.	1.0	1.1
to Sep	Fluo-	ride (F)	0.0	۰.	۲.	۰.	.2	.1	0	0.	٥.	۰.	۰.	. 2	0.0
year October 1962 to September 1963	Chloride	(C1)	2.0	2.9	2.1	3.1	2.4	1.6	2.7	2.2	2.0	1.6	2.3	1.8	2.2
year Oct	gfoto	(so*)	0.8	2.2	2.2	1.4	1.8	4.4	2.0	1.6	2.0	1.4	2.4	3.4	2.1
, water	Bicar-	bonate (HCO ₃)	30	24	22	24	22	17	24	25	25	22	28	56	25
1111on	Po-	Sium (K)	1.6	1.7	1.3	1.0	1.2	1.5	1.4	1.3	1.3	1.6	1.4	1.0	1.4
Chemical analyses, in parts per million,	Sodium	(Na)	4.6	2.6	3.0	3.0	3.0	2.1	3.5	3.1	3.5	3,3	3.8	3.6	3.3
, in pa	Mag-	sium (Mg)	1.5	1.8	2.0	1.3	1.7	1.2	1.8	1.4	1.6	1.4	1.8	1.8	1.6
nalyses	Cal-	clum (Ca)	4.8	4.1	4.0	4.3	3.4	3.4	3.4	4.5	4.2	4.5	4.6	4.1	4.1
mical a	201	(Fe)	0.14	.03	.05	10.	. 07	.02	60.	10.	.03	90.	.04	.03	0.05
Che	621	(SiO ₂)	17	14	12	14	14	12	14	16	16	11	11	17	15
	Mean	discharge (cfs)	182	392	312	408	334	086	339	309	250	176	132	156	331
		Date of collection	Oct. 1-31, 1962	Nov. 1-30	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31	Apr. 1-30	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted average

A Calculated from determined constituents.

PEE DEE RIVER BASIN--Continued

2-1180, SOUTH YADKIN RIVER NEAR MCCKSVILLE, N. C.--Continued Temperature (°F) of water, water year October 1962 to September 1963 (Continuous ethyl-alcohol actuated thermograph)

	Aver-	age	5.9	5.0 8.4	39	9 8	37	50	5 60	63	39	73	74	6.5
1	À			v 4		4 60				• •	~ •			
-		3	52	11	35	36	11	5.8	11	6.5	11	74	702	11
		30	55 40	4 4 8 4	37	3.6	11	5 4	57	\$ 1	72	2.2	202	1909
		53	6 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 5	39.30	3.5	11	52	57	\$ 05	25	2 2	69	2.2
1		88	4 4 6 7	4 4 6 7	37	35	36	53	5.8	9 9	22	94	68	62 61
		27	7 4 7 2	4 4 5 5	35	35	34	53	5.6	99	2 69	74 72	69	61
		56	50	4 4	35	35	37	53 52	5.8	99	69	73	72	5.2 5.8
-		25	52 50	47	35	37	37	52 49	56	62 60	98	22	73	59 56
		24	52	4 4	37	3.0	3 4	4 4	60	61	69	22	73	58
-		23	5 8 5 4	51	39	9 6	38	4 4 6 4	6.4	65	6 6	72	73	62
7		22	58	52 51	39	4 4	38	50	6.5	66	70	74	73	70
rap		21	57	51	39	4 4 4	39	40	66	9 9	269	7.2	73	66
BOUL		20	59	52	41	24	3.8	54	63	64	69	76	74	68
thei		19	503	54	35	64	35	53	56	63	68	75	73	68
P		81	63	54	35	37	33.4	53	99	63	68	76	73	66
tras		17	65	51	34	37	334	50	56	63	69	73	72	68
ac	Day	16	99	48	3 4	39	35	50	52	49	72	17	71	9,9
oho		12	99	48	34	3.9	35	51	54	64	72	71	73	67
a1c		14	99	6 4 9	3 4	2 4 9	38	0.4	57	62	72	22	74	72 67
by1-		13	4.6	0 6 4	3.5	50	38	64	59	99	72	02 99	14	122
E		12	63	51	36	50	38	44	59	69	73	69	74	72
Continuous ethyl-alcohol actuated thermograph/	!	=	63	52	3.8	4 7 7 7	33	L 9 4	58	69	73	72	74	12
tip		10	99	52	38	10	36	4 4 5 7	58	66	74	72	7.4	71
8		6	99	52	6.1	47	37	5 5	5.08	69	72	72	76	0.89
1		80	9 4	48	643	104	39	8 4 9	5.6	64	70	72	77	69
		-	64	9 4	4 9 6 4 3	104	38	0.4	52	63	8.9	72	L 4 4	66
		ဖ	62	6 4 9 4 9	6 4 9	36	36	50	57	49	68	73	78	7.1
		2	62	8 8	64	3,4	35	0,4	6.65	58	66	42	78	77
		4	000	8 8	50	3.5	35	7 7	9 4	58	66	76	76	1,1
		e	59	8 8	149	33.	36	19	65	5.6	65	9 4	47	6.8
		7	9.0	50	8 4 9	333	36	38	60	53	65	2.2	76	6.8
		-	5.6	50 6	6 6 7	335	36	3 38	57	55	65	72	47	70
1		-	11	11		11	::	11	::	::	::	::	11	1 1
	44.0	MORE	October Maximum Minimum		c _	January Maximum Minimum	88	imum	April Maximum Minimum	ximum ılmum	kimum imum	wnw.		September Maximum Minimum

2-1180. SOUTH YADKIN RIVER NEAR MOCKSVILLE, N. C.--Continued

Suspended sediment, water year October 1962 to September 1963

Mean dire		OCTORE			NOVEMBE						
		Suspen	ded sediment		Suspen	ded (sediment		Concern tration (ppm) 26 27 25 136 189 79 68 36 19 15 15 17 15 14 16 15 17 18 33 45 43 38 37 35 140 180 86 MARCH 142 254 5139 88 37 35 35 140 86 MARCH 260 641 55 224 5 134 106 661 5 52 128 52 138 179 5	sedimen	
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day	Mean dis- charge (cfs)	concen- tration		Tons per day
1	168	35	16	190	12		5	237	26		17
2	166	39	17	180	11		5	234		1	17
3	168	40	18	201	20		11	228	25	Tons per day	
4	203	39	21	249	20	ì	13	344			125
5	309	37	31	214	10	1	6	495	189	1	253
6	237	36	23	190	9	1	5	465	79		99
7	201	34	18	180	11	Ì	5	405		l	
8	196	38	20	180	10	1	5	336	36		33
9	193	42	22	788	488	S	1620	306		1	
10	180	41	20	2050	648	5	3590	279	15		11
1	176	39	19	1160	132	s	524	264	15		11
2	173	25	12	450	67	1	81	230	13	Ī	
13	173	18	8	354	37	ì	35	160	12		5
4	176	23	11	306	28	İ	23	260			
5	180	35	17	279	27		20	260	17		12
6	178	28	13	264	29		21	260	15		11
7	176	19	9	255	28		19	260			10
8	173	25	12	390	167	5	217	252	16		11
9	171	18	8	495	108	į	144	240			10
0	166	15	7	354	68		65	234	17		11
1	168	19	9	321	67	j	5.8	237	18	İ	12
2	180	17	8	390	67	1	71	237			
3	180	11	5	405	6.2	1	68	237	45	1	29
4	171	9	4	333	29		26	228	4.3		26
5	166	10	4	300	18		15	267	38		27
6	166	9	4	279	19		14	351	37		35
7	166	8	4	264	24		17	363			
8	168	8	4	252	2.2	1	15	342			32
9	171	8	4	249	20		13	481			182
0	173 178	13 13	6	243	22		14	700 495		В	
otal	5650		380	11765		-	6725	9687		-	
-		JANUAR		11103	FEBRUAR	<u> </u>		700	MARCH	<u> </u>	
-+						· —				_	
1	375	39	39	300	27		22	416 685			
2 • •	336 321	21 19	19 16	300 480	88		23 114	560	130	3	
4	297	15	12	420	3.7	Į.	42	450			
5	285	15	12	348	29		27	521			
1				222	24	1	2.2	2450	1240		0100
6	279	18	14	333	22		22 19	2570			
7	276 276	21 18	16 13	321 309	19		16	1570	224		1120
9	267	15	111	291	16		13	685		"	
0	255	18	12	282	13		10	560		ì	
1	255	3.0	B 21	291	50	-	39	495			
2	650	340	B 597	450	171	İs	195	1240		s	
3	590	240	382	435	55	1	65	2970			
4	465	45	56	360	28	ì	27	4670	379		
5	375	25	25	327	13		11	1880	173	S	
6	339	21	19	300	14		11	775	139	1	290
7	318	20	17	279	18		14	840		5	
8	333	22	20	291	22		17	715		"	
9	390	72	5 82	348	122	s	118	590		1	
ó	1060	587	5 1640	405	77	ļ ī	84	775	289	S	
1	1030	171	S 575	363	30	1	29	635	120	į	221
2	568	100	180	324	35		31	525	74		
3	510	68	94	285	25		19	480	55	1	
4	435	40	47	306	20		17	450	5.5		67
5	351	22	21	315	24	ļ	20	435	5.5		65
6	369	18	18	306	65	1	54	435	59		
7	351	20	19	297	77	i	62	465	79	l	
8	309	22	18	297	75		60	405	60	1	
9	250	24	16			ł		390	52	1	
	324	42	37					372 366	50 50		50
0	309	36	30								49

S Computed by subdividing day.
B Computed from estimated-concentration graph.

2-1180. SOUTH YADKIN RIVER NEAR MOCKSVILLE, N. C.--Continued

Suspended sediment, water year October 1962 to September 1963--Cortinued

-		APRIL			MAY		 	JUNE	
		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded sedime
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	357	50	48	450	95	115	351	115	10
2	351	42	40	333	50	45	300	98	1 ona per day 5 lona per day 5 lona per day 5 lona per day 7 lona per day 7 lona per day 7 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 8 lona per day 9 lona
3	342	40	37	306	40	33	279	96	
4	336	43	39	291	40	31 32	309	100	
5	324	45	39	279	4.5	32	270	105	·
6	336	92	83	270	42	31	255	100	61
7	542	189	5 265	264	3.2	23	351	844	S 86
8	525	8.8	125	258	31	22	285	340	
9	420	65	74	249	39	26	249	150	10
n	190	49	52	246	36	24	231	137	8
11	354	39	37	1 240	36	23	237	138	
12	342	29	27	231	30	19	217	129	
3	333	29	26	228	32	20	198	105	
400	324	29	25	231	30	19	201	81	
15	318	25	21	234	26	16	209	105	, د
16	312	24	20	246	32	21	198	91	
17	309	21	18	315	52	44	225	75	
8	309	21	18	324	67	59	237	78	
9	300 294	28 29	23 23	270 243	51 41	37 27	220 2 0 9	67 94	5
1							1	1	
21	279 276	30 35	23	264 342	69 228	49 211	220 240	82 55	
23	297	40	26 32	282	159	121	212	60	
24	285	40	31	240	72	47	198	58	
5	264	32	23	234	52	33	188	5.8	
26	264	30	21	249	100	67	186	59	3,
27	264	22	16	318	130	112	255	281	
28	261	25	18	390	262	276	420	424	5 47
29	285	34	26	685	398	5 704	273	160	
30	575	181	281	635 420	375 180	S 644 204	270	225	16
otal	10168		1537	9567		3135	7493		357
		JULY			AUGUST	L		SEPTEMBE	R
1	212	150	86	181	162	79	133	70	2
2	198	105	56	159	110	47	119	48	
3	196	100	53	144	75	29	115	45	1
4	178	91	44	135	66	24	115	45	1
5	166	71	32	131	64	23	181	339	S 17
6	162	67	29	125	60	20	157	128	5
7	164	70	31	121	55	18	164	92	4
8	176	73	35	121	53	17	159	200	
9	183 168	73 75	36 34	115 115	50 50	16	144	112	
- 1		i					H		
11	157	67	28	135	73	27	121	48	
12	152 152	55 50	23 21	133 121	52 48	19 16	117 119	40	
14	157	50	21	115	40	12	164	102	1 4
15	171	52	24	110	38	11	171	184	
16	166	50	22	102	38	10	144	85	2
17	155	42	18	97	30	8	133	52	1
18	150	40	16	101	30	8	127	40	1
19	150	40	16	106	42	12	125	38	1:
20	159	44	19	113	43	13	123	31	1
21	157	46	19	119	52	17	119	30	1
22 • •	152	88	36	137 153	80 115	30 48	111	35 50	1
23	240 159	180 140	5 119 60	146	71	28	106	35	1
25	173	108	50	121	50	16	106	42	1.
26	201	130	71	115	60	19	106	62	1
27	212	195	112	129	48	17	106	70	2
28	183	228	113	137	64	24	119	73	2
29	234	280	S 195	137	125	46	644	583	5 105
30	207 159	265 130	S 148 56	251 167	343 120	S 239	398	298	5 34
					1 120				
11	139							+	

PEE DEE RIVER BASIN--Continued

2-1180. SOUTB YADKIN RIVER WEAR WCCKSVILLE, N. C.--Continued Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water;

	Mothod	of	002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000 analysis		SBWC	
			1.000	100		
		Percent finer than size indicated, in millimeters	0.500	86	67 72 80 81 85 87 92 95 100	
		ı millin	0.250	94	92	
	liment	ated, i	0.125	87	92	
	Suspended sedimen	e indic	0.062	17	87	
	Suspen	han siz	0.031	72	82	
		finer	0.016	65	81	
		Percent	0.008	55	80	
1		-	0.004	41	72	
			0.002	37	67	
	_	discharge	_			
	Sediment	concen- tration	(mdd)	635	466	
		Discharge (cfs)		2130	3460	
	Water tem-	Per-	(F)			
	0000	ling.	point			
		Time ling per-		1040	2030	
		Date of collection		Nov. 10, 1962	Mar. 13, 1963	

olor

PEE DEE RIVER BASIN .- Continued

ROCKY RIVER AT GADDY, NEAR NORWOOD, N. C. 2-1256.81.

LOCATION (revised).--At bridge on Secondary Road 1943, 2 miles upstream from gaging station, 0.5 mile downstream from Cribs Creek, and 5.5 miles acuthwest Norwood, 2 Rania (value). As a stanty courty.

RECORDS AVAILABLE.--Chemical manifess.

RECORDS AVAILABLE.--Chemical manifess.

CATHERS, 1962-633.--Discolved colids: Maximum, 399 ppm Aug. 196-21; minimum, 52 ppm Nov. 10-12.

EXTREMES, 1962-633.--Discolved colids: Maximum, 19 ppm Aug. 27-21; minimum, 42 ppm Nov. 10-12.

Specific conductance: Maximum daily, 100 micromhos Sept. 26; minimum, 42 ppm July 8, 10, 1958.

RATREMES, 1962-633.--Discolved colids: Maximum daily, 1,000 micromhos Nor. 31, 1960.

Specific conductance: Maximum and ally, 1,000 micromhos Sept. 68, 1967; minimum daily, 38 micromhos Jan. 31, 1960.

Specific conductance: Maximum and ally, 1,000 micromhos Sept. 7, 1957; minimum and 1952. 1955, Dec. 19, 1962.

RATREMES, 1962-633.--Discolved colids: Maximum and 1952. 1962; minimum, 1979 point Dec. 17, 18, 22, 1955, Dec. 19, 1962.

Date of Collection Mean Silica Iron Cal. ma. Sodium Lisa Sodium Cal. ma. Sodium Cal. ma. Sodium Cal. ma. Sodium Cal. ma. Cal. ma. Cal. ma. Mag. Ma			<u>ŭ</u> _	L	_													_	_							_
Mean Silica Iron Cium Silica Iron			편.	7.1	7.4	* 4	7.2	7.9	7.6	6.9	6.9	6.7	2.0	9.	6.8	2.6	8.9	2.8	7.7	6.7	6.7	7.5	7.4	6.9	7.3	7.0
te of collection discharge (StO ₂) (Fe) (Ca) (Mg) (Te) (Ca) (Mg) (Te) (Te) (Ca) (Mg) (Te) (Te) (Te) (Te) (Te) (Te) (Te) (Te		Specific conduct-	(micro- mhos at 25°C)	310	430	380	260	490	550	220	83	140	220	140	220	290	155	210	280	120	94	110	160	82	130	7.10
te of collection discharge (StO ₂) (Fe) (Ca) (Mg) (Te) (Ca) (Mg) (Te) (Te) (Ca) (Mg) (Te) (Te) (Te) (Te) (Te) (Te) (Te) (Te		dness aCO ₃	Non- carbon- ate	0	0	50	0	0				_	_	_	0	•	0	0	-	₹	9	•	0	9	0	5
Mean Silica Iron Cual Mag				40	£.	7.4	40	23	51	40	22	31	8 3	4 5	44	42	33	42	40	် 						
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>1963</td><td>Dissolved</td><td>(residue at 180°C)</td><td>A200</td><td>A276</td><td>A244</td><td>A170</td><td>A315</td><td>A319</td><td>A135</td><td>A52</td><td>A94</td><td>A141</td><td>96</td><td></td><td></td><td></td><td>1 ;</td><td>178</td><td>!</td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>	1963	Dissolved	(residue at 180°C)	A200	A276	A244	A170	A315	A319	A135	A52	A94	A141	96				1 ;	178	!						_
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>tember</td><td>-iN</td><td>trate (NO₃)</td><td>1.8</td><td>4.6</td><td></td><td></td><td>2.1</td><td>2.4</td><td>1.9</td><td>2.4</td><td>3.0</td><td>e .</td><td> </td><td>1</td><td>2.0</td><td>2.4</td><td>1</td><td>6.5</td><td>6.0</td><td>4.0</td><td>1.8</td><td>1.1</td><td>2.2</td><td>9:</td><td>F. 3</td></td<>	tember	-iN	trate (NO ₃)	1.8	4.6			2.1	2.4	1.9	2.4	3.0	e .	 	1	2.0	2.4	1	6.5	6.0	4.0	1.8	1.1	2.2	9:	F. 3
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>to Sep</td><td>Fluo-</td><td>ride (F)</td><td>0.2</td><td><u>.</u></td><td>7.</td><td>: -</td><td>! =!</td><td></td><td>۲.</td><td>7.</td><td>٠:</td><td>7.</td><td>7.</td><td>1</td><td>e.</td><td>ď.</td><td>1</td><td></td><td>e.</td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>	to Sep	Fluo-	ride (F)	0.2	<u>.</u>	7.	: -	! =!		۲.	7.	٠:	7.	7.	1	e.	ď.	1		e.						_
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>ober 1962</td><td>Chloride</td><td>(CI)</td><td>40</td><td>9</td><td>47</td><td>22</td><td>19</td><td>63</td><td>21</td><td>5.0</td><td>14</td><td>20</td><td>12</td><td>27</td><td>30</td><td>14</td><td>21</td><td>30</td><td>07</td><td>2.6</td><td>10</td><td>18</td><td>6.2</td><td>13</td><td>16</td></td<>	ober 1962	Chloride	(CI)	40	9	47	22	19	63	21	5.0	14	20	12	27	30	14	21	30	07	2.6	10	18	6.2	13	16
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>year Octo</td><td>Sulfate</td><td>(30)</td><td>19</td><td>22</td><td>27</td><td>18</td><td>38</td><td></td><td></td><td>œ,</td><td></td><td></td><td></td><td>1</td><td>17</td><td>13</td><td>I</td><td>17</td><td>ł</td><td>10</td><td>=</td><td>13</td><td>8.8</td><td>7</td><td>12</td></td<>	year Octo	Sulfate	(30)	19	22	27	18	38			œ,				1	17	13	I	17	ł	10	=	13	8.8	7	12
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>, water</td><td>Bicar-</td><td>bonate (HCO₃)</td><td>86</td><td>138</td><td>142</td><td>65</td><td>178</td><td>177</td><td>20</td><td>21</td><td>40</td><td>42</td><td>4</td><td>89</td><td>86</td><td>23</td><td>20</td><td>693</td><td>32</td><td>24</td><td>32</td><td>25</td><td>22</td><td>4</td><td>48</td></td<>	, water	Bicar-	bonate (HCO ₃)	86	138	142	65	178	177	20	21	40	42	4	89	86	23	20	693	32	24	32	25	22	4	48
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>1111on</td><td>Po-</td><td>stum (K)</td><td>4.8</td><td>9.0</td><td></td><td>4</td><td>6.9</td><td>6,9</td><td>4.3</td><td>3.0</td><td>3.0</td><td>3.6</td><td>9.2</td><td>ļ</td><td>3.7</td><td>23</td><td>ľ</td><td>3.3</td><td>2.6</td><td>1.7</td><td>1.7</td><td>2.1</td><td>1.7</td><td>7.</td><td>1.9</td></td<>	1111on	Po-	stum (K)	4.8	9.0		4	6.9	6,9	4.3	3.0	3.0	3.6	9.2	ļ	3.7	23	ľ	3.3	2.6	1.7	1.7	2.1	1.7	7.	1.9
Mean Silica Iron Cland 1-3, 1962 (cfs) (Fe) (Cal 1-3, 1962 (17 0.06 11 9-14 17 0.06 12 9-14 17 0.06 12 10-12 15 0.06 12 10-27 15 0.06 12 10-12 15 0.06 12 10-12 15 0.06 12 11-27 17 10 14 9.6 11-27 17 11 13 14 14 19 12 11-27 17 10 12 14 9.6 13 14 14 9.6 11 13 14 15 16 11 14 15 16 16 11 17 11 17 16 11 17 16 12 16 12 12 12 12 12 12 12 12 <td< td=""><td>rts per m</td><td>Sodium</td><td>(Na)</td><td>55</td><td>84</td><td>0 20</td><td>42</td><td>91</td><td>26</td><td>30</td><td>6.0</td><td>15</td><td>35</td><td>14</td><td>1</td><td>44</td><td>20</td><td>}</td><td>45</td><td>11</td><td>7.4</td><td>13</td><td>22</td><td>7.2</td><td>16</td><td>53</td></td<>	rts per m	Sodium	(Na)	55	84	0 20	42	91	26	30	6.0	15	35	14	1	44	20	}	45	11	7.4	13	22	7.2	16	53
Mean Gischarge (Si (Cts)	, in pa	Mag-	sium (Mg)	4.1	3.9	e .	P 07	4.	4.7	3.9	2.0	3.4	3.3	e.							2.5	2.5	3.4	2.0	2.6	e.
Mean Gischarge (Si (Cts)	nalyses	Cal-	cium (Ca)	9.3	# :	122	3 6	14.	13	9.6	5.4	8.9	6	9.2	12	9.6	80	6.6	9.2	9.9	5.9	6.7	7.4	6.3	6.9	6.1
Mean Gischarge (Si (Cts)	mical a	į	(Fe)	1	0.06	88	8 4	10	111,	.14	20.	.03	87.	5	1	.10	9	!	60.	Ξ.	.07	.03	.03	90.	8	.07
ate of collection 1-3, 1962. 4-8, 1962. 24-27 24-27 24-27 10-12 13-15 13	Che	81160	(8102)	17	17	13	2 2	11	19	14	8.9	22	17	13	1	13	16	1	77	9.6	11	14	16	9.1	13	14
Date of collection (1. 1-3, 1962 (2. 4-8 (2. 13-23 (2. 28-21		Mean	discharge (cfs)																							
000000 xxxxx x00000 0555			Date of collection						Nov. 1-4	Nov. 5-9	Nov. 10-12	Nov. 13-15	Nov. 16-20								Dec. 27-31	Jan. 1-3, 1963	Jan. 4-18	Jan. 19-23	Jan. 24-31	Feb. 1-3

2.0.1.1. &1.1.1.1. 1.0.1.0.0.0 @0.0.0.4.0.0	2.08 2.08 3.09 3.09 3.09	7.7.7. 7.4.7.6.8.	8.88 11.7.7. 11.4.1.2.
1128 11158 11158 11158 11158 11158 1130 1130 1130 1130 1130 1130 1130 113	325 250 350 140 295	195 290 445 314 250 250	22 4 4 2 2 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
400000 000000	00000	00000	00000
222222 22222 222222 222222	245 39 400 47 75	240488 24568	464064 840480
A54 85 75 91 A66 A66 A83 A114 A115 A115 A115	A180 A139 A204 A235 A74 A157	A106 177 209 285 160	161
	32.1.6	33.71	114116
OHHOHN		04 444	116114
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32 21 30 42 8.0	117 28 34 37 26 24	4000000 F000004
8. 6 11. 10 10 10 8. 6 8. 6 11. 12 12. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	16 13 18 18 9.4	111 16 18 124 15	13 11 13 11
22 23 33 34 4 5 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6	101 80 111 441 36 80	54 154 104 149 77	C132 85 76 129 83
111111 10010E	6 9 8 4 9 4 6 8 8 8 0	2.4.4.0.6. 0.10.0.7.	4.0
11.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	84 30 50 41 40 41	22 42 42 78 78 35	33 78 74 74 (CO ₃):
4.00.000 0000000	4.4.0.0.0. -4.0.00.0	00.44440 0000000	11 3.8 14 5.0 11 4.1
	9.3 11 12 5.9 9.0	6.6 11 13 12 13 9.8	11 11 11 11 11 11 11 11 11 11 11 11 11
000 000 000 000 000 000 000 000 000 00	4.8.6.4. 20.8	89. 80. 80. 80. 80. 80. 80. 80. 80. 80. 80	.13 .02 .07 .07 .07 million
2412211 222222	41 11 11 11 11 11	13 21 20 18 19	115 11 11 15 constitu
			etermined (int of 3 paint of 5 paint of 5 paint
	Apr. 26-30. May 1-6. May 6-11. May 18-17. May 18-22. May 23-28.	May 29-31. June 1-7. June 8-9. June 10-14 June 15-21.	June 29

PEE DEE RIVER BASIN--Continued

	CContinued
	ż
Continued	NEAR NORWOOD,
SIN	NEAR
NIVER BASIN	AT GADDY,
- E	-
PEE DEE R	ROCKY RIVER
	ROCKY
	2-1256.81.

		Color	20							30						25
		甁.	6.4	7.9	7.7	7.8	8.5	8.4	7.4	7.3	7.0	7.2	7.2	8.3	6.8	1
	Specific conduct-	(micro- mhos at 25°C)	94	225	410	520	710	410	190	405	125	210	390	630	110	273
	Hardness as CaCO,	Calctum, Non- magne-carbon- stum ate				0			0	0	•	0	•	0	•	0
ea			19	36	46	56	28	48	24	42						37
Continu	Dissolved	(residue at 180°C)	72	137	251	309	399	1	;	248	}	A137	245	366	A74	168
r 190	N.	trate (NO _s)				æ			1	4.0	1.7	2.3	4.	1.6	2.3	2.2
premoe	Fluo-	ride (F)	0.2	8	٦.		۳.	۲.	!	۲.	77	.2	4.	۳.		0.2
, water year October 1902 to September 1903Continued	24.0	(C1)	7.8	22	55	64	104	49		25		23	49	84	10	31
October	100	(30,	10	12	22	52	53	1	1	21	;	16	23	28	13	16
er year	Bicar-	bonate (HCO ₃)	26	89	120	171	208	1	51	121	35	62	120	186	58	86
on, wall	Po-	Stum (K)				8.9			3.5	5.7	4.4	5.5	6.7	8.1	5.0	3.9
Chemical analyses, in parts per million,	Sa si po	(Na)	8.9	32	20	92	125	84	53	20	14	31	65	119	12	42
parts p	Mag-	sium (Mg)	1.7	3.1	3.4	4.6	4.7	4.1	1.6	3.0	2.0	3.9	3.6	3.1	2.2	3.4
es, in	Cal-	cium (Ca)	L			12		ដ	7.1	175	5.4	8.0	11	13	5.2	9.2
RUBIA	į	(Fe)	0.00	90.	.02	.02	.03	!		.03	. 02	.02	. 05	.03	.05	0.06
lem ich	94110	(SiO ₂)	9.0	17	17	9.5	9.1	21	1	14	12	17	17	12	8.8	14
3	Mean	discharge (cfs)														
		Date of collection	July 27-31, 1963	Aug. 1-3	Aug. 4-9	Aug. 10-18	Aug. 19-21	Aug. 22	Aug. 23	Aug. 24-31	Sept. 1-2	Sept. 3-5	Sept. 6-14	Sept. 15-27	Sept. 28-30	Time-weighted average

A Calculated from determined constituents.

PEE DEE RIVER BASIN--Continued 2-1286.81. ROCKY RIVER AT GADDY, WEAR NORWOOD, N. C. --Continued

	Aver-	age	67 52 43	4 4 n w 4 n	67 73	82 83 74
		3)	56	7 1 9	121	1 82
		30	59 52 42	38	65 73 80	82 77 66
		29	56 50 42	36	65 72 82	80 77 69
		28	53 46 45	38 44 62	4 8 4	86 77 69
		27	51 41 44	50 50 50	68 79	3
		26	53 47 40	33 44 57	66 68 78	82 75 72
83		25	20 45 E	3.4 5.7 5.7	69 69 77	82 80 75 67
r 15		21 22 23 24 25 26	59 51 40	30	70 17 75	78 82 67
m pe		23	6.6 53 4.5	346	77 72 76	81 82 69
epte		22	68 53 41	4 4 4 6 6 9 2 4 6 6 9 2 6 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9	76 76 78	81 82 74
2007		21	666 55 37	5 5 5	76 76 76 76 78 78	8 8
32 t		20	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.6 6.1 6.1		980
19(19 20	8 6 4	2,73	74 75 74 78 79	85
xim			72 55 40	45 60 60		\$ £
Octo ppro		17 18	75 25 40 4	5000	64 69 76 71 74 74	81 84 83 83 75
Temperature ('F) of water, water year October 1962 to September 1963 "Gace-daily measurement at approximately 1709." Day	Jay	91	76 53 38	4 t t t t t t t t t t t t t t t t t t t		83 81 73
	н	15	74 74 51 51 32	4 4 6	60 61 76 76 82 76	83
rate		14	74 53 35	4.5 4.6 5.6	60 72 82	
r, r		13	441	0 4 6	8 6 6	79 79 86 84 79 71
rate me		12	74 54 35		49 48 84 84	7.9 8.4 7.9
of v		-	73 7 54 5	50 53 45 45 50 51	880	79 85 79
F)		10	73 55	500	4 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
ono Que		6	75 7 54 5 41 4	4 6 0 0	60 79 79 85 85	80 78 87 86 76 78
tur		8	72 51 45	5 4 3	60 76 82	
pera		7	69 7 50 5 45 4	4 4 7 4 4 7	64 6 76 7 82 8	86 84 87 87 76 76
Tem		9		5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 6 0 8	
		5	71 70 52 51 54 49	37 44 5 55 55	76 70 78 8	87 87 86 86 79 76
		4				
		ر س	70 70 53 52 53 53	38 38 42 46 50 50	72 73 65 78 74 78	85 85 86 86 79 79
		2				
		-	70 72 55 53 54 54	38 40 43 43 43 43	68 69 64 64 72 72	83 70 86 86 76 77
						:::
	Mark	MOIIIII	October November December	January February March	April May	July 83 70 August 86 86 September 76 77

2-1290. PEE DEE RIVER NEAR ROCKINGHAM, N. C.

LOCATION:—At gaging station at bridge on U.S. Highway 74, 2.5 miles upstream from Falling Creek, 3.3 miles downstream from Blewett Falls hydroelectric DRIANGS wast of Rockingham, Richmod County, and 129 miles upstream from mouth in Winyah Bay.

DRIANGS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical analyses: October 1967 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Analyses: October 1964 to September 1963.

RECORDS ANNIABLE.—Chemical Annia Annia 1963.

RECORDS ANNIABLE.—Chemical Annia 1964.

RECORDS ANNIABLE.—Chemical Annia 1965.

RECORDS ANNIA 114, 1965.

RECORDS ANNIA 1964.

RECORDS ANNIA 1964.

RECORDS ANNIA 1964.

RECORDS ANNIA 114, 1965.

RECORDS ANNIA 114, 1965.

RECORDS ANNIA 114, 1965.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 1164.

RECORDS ANNIA 116

nor million

1	or	۰,۰		_	~				. .		_		10	اما
	Color	15		-	_	_	15	_						
	편	7.0	6.9	7.0	7.4	2.0	7.4	7.0		9	6.9	7.1	7.2	
Specific conduct-	ance (micro- mhos at 25°C)	81	120	83	92	71	75	82	99	* 88	83	88	95	85
Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	00	0	0	0	0	H	0	0 0	0	0	0	00	0
		88	212	20	61	13	22	27	17	18	21	22	222	21
Dissolved	residue at 180°C)	A60	A75	63	68	52	A57	89	40	3 10	62	9	67 A64	51
Ni.	trate (NO ₃)	5.5	. 6.	1.5	3.6	1.4	2.8	2.5	0 0 0 0	2.5	1.7	1.8	1.7	2.1
de de de	ride (F)	0.0		•	۲.	•	т,	7.	۰,۰	10	٥.	۲,	ंधं	0.1
Ricar Ni Disso	Chloride (C1)	6.6	10.01	6.7	7.5	0.9	5.6	3.5 5.0	9.4	9	6.4	8.8	7.5	5.4
1996	Sulfate (SO ₄)	9.6	5.4.	6.0	5.8	5.6	7.2	5.6		. 4	5.2	5.6	7.0	5.8
Bicar-	bonate (HCO ₃)	34	5 4	27	53	24	25	36	8 8	24	32	32	36	30
Po-	tas- sium (K)	2.0					1.6	1.3		, c	1.5	2.1	1.7	9.1
Mag- Po- Po-	Sodium (Na.)	10	12	7.3	9.5	6.7	9.9	5.3	4.0	6.7	8.2	8.3	10 9.7	8.3
	ne- sium (Mg)	1.5	1.6	1.5	1.7	1.6	1.9	2.5	1.4	. 6	1.8	1.9	1.9	8.1
Cal-	cium (Ca)	5.6	9.60	5.6	4.8	5.0	5.4	7.3	4.4	4 4	5.5	5.5	6.4 5.6	5.3
Call aliany sees,	Iron (Fe)	20.0		.08	.05	.0	90.	Ξ.	8	8 =	6	90.	.00	0.05
	Silica (SiO ₂)	112	12	12	12	11	14	20	10	0 0	10	11	12	13
Mean	discharge (cfs)	3433	7971	6942	8413	11060	11170					3278	2799	7997
	Date of collection	Oct. 1-27, 1962	Nov. 1-11	Nov. 12-30.	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-14	Mar. 15-31	Apr. 1-30	June 1-30	July 1-31	Aug. 1-31	Time-weighted average

A Calculated from determined constituents.

PEE DEE RIVER BASIN--Continued 2-1290. PEE DEE RIVER NEAR ROCKINGHAM, N. C.--Continued

	Aver-	age	55	4 4 1 2 4 2 2 1	58 67 76	80 80 78
		3	4 1 5 2	5.5	121	98
		30	44 44 44	55	63 72 79	80 79 71
		29	90.4	39	62 71 79	81 78 71
		28	86.4	33	62 71 79	81 78 72
		27	6 4 4 4 4	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62 71 78	81 79 72
		56	67 54 43	5 7 3 4 3	19 20 18	81 78 73
963		25	6.0 5.0 6.4	245	61 78 78	81 79 73
er 1		24	70 56 44	4 4 1 5 3	302	80 79 73
emp		23 24	844	240	60 60 70 70 77 77	81 80 75
sept		22	0.00 0.00 4.00	45 54 54	69	80 79 76
to Se 07007		21	54	444	200	81 78
962 913		20 21	69 55 40	4 4 4 6 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	59 76	80 81 79
r 19 mate		61	71 69 53 55 41 40	4 4 6	58 59 68 69 76 76	80 81 79
roxi				43		79 81
app		7.1	70 71 52 56 40 40	43 43 42 42 52 52	58 58 67 68 76 76	80 79 82 81 80
pear	Day	16 17 18	72 53 41	4 t 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	57 66 77	80 80 80
er	_	15	33	5031	57	79 81 80
wat		4	1251	50	56 67 77	78 82 80
er,		13	041	1 4 4	56 7 9 7 9 9 9	78 82 81
Temperature (°F) of water, water year October 1962 to September 1963 \overline{Q} nce-daily measurement at approximately 070 \overline{Q}		12	71 55	4 t t t	56 56 76	79 81 81
of		Ξ	57	2 4 4 4	57	78 82 81
(°F)		2	56	4 1 4 5 4 5 4 5 6 4 6 6 4 6 6 6 6 6 6 6 6 6	57 55 75	79 81 81
. O		٥	573	114	52	82 82
atu		8	4 8 6 4	0 7 6	57 75	80 81 81
mpe:		_	588	0,7,8	752	79 81 80
Te		9	50	007		80 80 80
		2	2882	6 7 9	57 65 65 65 74 74	910
		4		427	56 73	79 81 80
		6	71 71 58 57 51 52	222	73	0 10 8
		7	58	0 0 4		0 0 0
		-	500	275	56 56 63 63 72 73	
	_		:::	:::		:::
	, , , , , , , , , , , , , , , , , , ,	Month	October November December	January February	April May June	July

PEE DEE RIVER BASIN--Continued

2-1310. PER DEE RIVER AT PERDEE, S. C.

LOCATION. --At gaging station at bridge on U.S. Highway 76 at Peedee, Marion County, 0.2 mile downstream from Atlantic Coast Line Railroad bridge, and 8.5 miles downstream from Black Creek.
BAINAGE RREA. --B. 830 square miles, approximately.
RECORDS ANAILABLE. --Chemical analyses: October 1948 to September 1949, October 1961 to September 1963.

			Chei	nical a	nalyses	in part	s per	million	, October	Chemical analyses, in parts per million, October 1962 to August 1963	lugust	1963						
	Mean	Q11160	ron.	Cal-	Mag-	Sodium	Po-	Bicar-	Gulfate	Chloride	Fluo.	-1N	Dissolved	Hardness as CaCO,		Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	ctum (Ca)	sium (Mg)	(Na)	sium (K)	bonate (HCO ₂)	(°08)	(CI)	ride (F)	trate (NO ₃)	(residue at 180°C)	Calctum, Non- magne-carbon- sium ate		(micro- mhos at 25°C)	¥.	Color
Oct. 10, 1962	3130	8.9	0.11	4.3	2.2	9.0	1	30	6.0	7.1	0.1	8.0	A56	20	0	79	9.9	30
0ct. 17	3730	9.2	00.	4.3	1.6	10		32	6.0	7.8	٦:	۳.	61	18	0	86	9.9	6
Nov. 29	8170	9.6	90.	4.1	1.7	7.5	1.9	26	5.8	6.7	۲.	.4	26	17	0	16	9.9	33
Dec. 31	13100	9.2	.01	4.6	2.0	6,1		23	6.8	6.2		1.3	57	20	0	73	6.5	18
Jan. 23, 1963	20300	7.4	. 02	3,8	1.4	4.5		17	6.4	4.9	۳.	1.1	48	16	73	28	6.2	30
	31300	9.3	.03	4.0	1.7	4.9		20	8.8	3.8	۰.	1,3	649	17	0	64	6.3	30
Apr. 1	14100	7.3	20.	3,3	1.6	4.5	2,0	81	5.2	2.3	0	2.1		4	0	57		35
Мау 3	8710	8.9	10.	3.3	1.6	6.4	1.9	23	5.6	5.3	-	2	A44	14	0	63	6.9	40
June 28	4990	6.4	90.	4.1	1.6	8.9	1.8	88	0.9	7.2	-:	.5		16	0	72	9.9	33
July 18	3660	7.0	00.	4.4	1.4	9.5	2.1	30	5.4	8.0	۲.	.3		17	0	75	6.7	15
July 31	6750	8.0	.01	4.1	1.4	6.6	2.1	31	5.2	7.1		.3	7	16	0	84	6.4	20
Aug. 27	2220	9.1	.03	4.3	1.8	10	1:9	32	5.6	6.8	۲.	.3		18	0	88	6.9	30
A Calculated from determined constituents.	etermined c	onstitu	uents.															

PER DEE RIVER BASIN--Continued

2-1320. LYNCHES RIVER AT EFFINGHAM, S.

LOCATION. — Temperature recorder at gaging station at bridge on U.S. Highway 52, 75 feet upstream from Atlantic Coast Line Railroad bridge, and I mile south of Effingham Forence County.
DRAIMOR REAL—100 square miles, approximately.
RECORDS ANTIABLE.—Chemical analyses: October 1951 to September 1952, October 1960 to September 1963.
Which remperatures: Gotober 1954 to September 1963.
RETREMEN 1962-63.—Water temperatures: Maximum, 89 T Aug. 7, 8; minimum, 33°P mos. 13-15.
EXTRAIRS 1964-63.—Water temperatures: Maximum, 89 P on several days in 1960, 1961, and 1963, minimum, 33°P Max. 12, 1960.

Color 8888854 80 33 50 50 12 12 13 6.00000 핂 52 4 4 4 4 4 4 4 57 60 60 68 68 68 conduct-(microat 25°C) mhos magne-carbon-Non-0040000 Hardness as CaCO, Calchum, 01 2 8 11 8 8 0000000 sium at 180°C) solids (residue 47 38 50 43 445 445 Dissolved 50 53 39 36 36 Chemical analyses, in parts per million, water year October 1962 to September 1963 Ni-trate 0.7 2.1 1.3 4404440 ------Fluo-ride (F) 0004440 0.000.000.00 7.5 7.0 7.5 5.8 Chloride ĵ 444466 2860428 Sulfate (SO₄) Bicar-bonate (HCO₃) 861881 26121618 Po-tas-stum (K) 000000 1.3 .8 1.2 1.3 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. Sodium (Na) 40.004.00.00 8.6.4.00.4 Mag-ne-stum (Mg) 0 8 4 9 8 6 4 221222 Cal-cium (Ca) 52.0 91. 91. 90. 90. Iron (Fe) Silica (SiO₂) 8.5 7.6 7.6 6.1 8.66.9 8.66.9 8.7.7 8.9 | Mean | discharge | /+ | (cfs) 834 277 1190 955 3520 2730 478 478 811 1000 362 235 325 Oct. 31 Nov. 30 Dec. 31 Jan. 30, 1963. Feb. 28 Apr. 1.
Apr. 30.
May 31.
June 28. 1, 1962.... Date of collection

A Calculated from determined constituents.

36 11 36

37 37 66 11 50 66

67 73

70 67 72 72 71

70 70 72 72 72 72

22 22

7.8

22 22

77 73

77 72 85 85

04 64

68 62 62 77

50 47

April
Maximum ..
Minimum ..
May
Maximum ..
Minimum ..
June
Maximum ..
Minimum ..

1 11 11 11

11 22 11

77 77 79 69

78 86

77 73 87 87 82

81,

11 11 11

July
Maximum ..
Minimum ..
August
Maximum ..
Minimim ..
September
Maximum ..
Minimum ..

88 87 83 85 81 80 79 77

Average

Month

October
Maximum ..
November
Maximum ..
Minimum ..
December
Maximum ..

1 11

January
Maximum ..
Minimum ..
February
Maximum ..
Minimum ..
March
Maximum ..

8 9 1 4 4 7 5 8 8 4 5 5 8 8

PEE DEE RIVER BASIN--Continued

2-1320. LYNCHES RIVER AT EFFINGHAM, S. C.--Continued

			82		7 O	64	D J	8 4	46		41	38	46	45	79	9		4	4
			27		52	20	\$	47	7		7	7	47	43	49	9		67	63
			26		5.5	25	,	9 4	4 4		7,7	41	6 4	4.7	61	09		99	63
	63		25		57		7	46				9	8 4	7 7		26		7	
	1963		24		61	4:	7.	47	5		64	43	9 4	7 7	56	53		9	0
	pex		23		6 4	28		14	Ž			454	97	6		54		7.7	<u></u>
	ten		-					_			-	_		_	_		_		
	Sep int		22		99	59			4			4		46	62	57		9,	
	to S		21		6 6	52	<u>*</u>	47	2		53	51	50	4	7.0	62		2	89
	1962 to September attachment7		20		6 8 6 4	9 :	*	47	42		23	64	20	47	7	69		2	89
	. 19		19		99	29	2	46	74		49	42	47	4	2	67		2	65
•	ober		81		2.2	29	`	4	1,		£	£3	7,	9	2	65		89	29
	Oct		17	-	* = =	57		42	33			45	4	7 7	99	62		49	
	tem	Day	16		12	25	7	0,4	38		46	43	47	43	79	62		09	52
•	r y		15		7.5		2	38				9 4		94	67	79		9	
	water, water year October 1962 recorder with temperature atta		4		7.5	22	~~	37	25		2.5	64	6,0	9 †	67	63		62	28
	rde.		13		22	26		38			2,4		-05			62		63	9
	te		12			_	_				_	_	_	_		_		_	_
	# #B		71		2 2	52		41				20	20	4 9		58		63	
	2 g		11		2 2	5.	ž	43	4		2	4 6	64	4.5	3	57		99	63
:	°F) r-st		10	;	12	25	4	46	43		46	43	46	43	19	26		68	4
	ure (°F) of v Water-stage		6		2.2	55	2	47	46		45	45	49	45	59	56		99	62
•	atu.		8		72	53	5	47	94		4	4	2	64	61	57		79	26
	Temperature (°F) of Æater-stage		7		* =	52	ţ.	20	47		7	45	20	46	63	29		62	
	Ten		9		69	53	2	26	20		45	0,4	9 4	43	79	61		89	62
			2		69	25		26	_			38	43			26		7.5	
			4		69	4.5	25	55	22	-	9	38	4 4	41	26	53		7.	69
			3		69	53		55				38		7,7		52	_	72	
				<u> </u>			••				-	•••		<u>-</u>				-	_

PEE DEE RIVER BASIN--Continued

FEE DES ALVER BASIN--COSTIGUES.
2-1335. DROWNING CREEK NEAR HOFFMAN, N. C.

Color 50 5.7 핂 Specific conduct-18 (micromhos ance solids (residue Calcum, Non-at 180°C) magne-carbon-10 Hardness as CaCO, ate sium Dissolved A9 Chemical analyses, in parts per million, water year October 1962 to September 1963 Ni-trate (NO₃) 4.0 Fluo-ride (F) 0.2 3.5 Chloride ថ្ង Sulfate (SO₄) 4.4 e 4 Bicar-(HCO,) bonate Po-tas-Sium (K) 0.5 2.0 Sodium (Na) 4.0 Mag-ne-sium (Mg) 0.8 Cal-Fron (Fe) Silica (SiO₂) Mean discharge | 1. (cfs) Mar. 12, 1963..... Date of collection

PEE DEE RIVER BASIN--Continued 2-1335. DROWNING CREEK NEAR HOFFWAN, N. C.--Continued

1			ı											
	Aver-	age	620	50	43	41	7 0	55	59	5.69	12	73	22	63
		31	54	11	38	11	6.6 6.6	11	2. 4.	72	11			
		30	503	50	4 0	35	11_	52	265	67	27.	27	22	63
Temperature (°F) of water, water year October 1962 to September 1963 See 66 66 66 66 68 68 68 66 65 55 56 66 66 66 66 66 66 66 61 61 61 58 55 51 28 29 30 31 See 66 66 66 66 68 68 68 66 65 55 56 56 66 66 66 66 66 66 61 61 61 58 55 51 69 77 88 50 31 See 66 66 66 66 68 68 68 66 65 56 56 66 66 66 66 66 66 66 61 61 61 58 55 51 7 89 70 31 See 67 65 65 65 66 68 68 68 66 65 66 66 66 66 66 66 66 66 66 67 67 67 69 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50														65
	Temporature of Continuous ethyl-alcory act to the Totoler 1963 and the Totoler 1963 and the Totoler 1963 and the Totoler 1964 and the													
63		12	22	3 9										
		24	58	51	8 4 9	65	67	73	77	62				
ed E		23		54					69		68	7.2	74	66
D te		22	6.0	52	45	52	69	69	71	75	72	99		
rapi		21			7.2	73	69							
32 t		2.2	27.5	65										
ther			27	9 4										
ed d	Temperature (°P) of water, water yet at the remography. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 30 31 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6													
Ctual		17											71 72 69 70	63 64
ac ac	Day	16	66	50	35	3.9	37	232	525	99	13	73	22	63
oho]	_	15									7.2	717	7.2	9 4
alc		14	5.5	503	35	21	6.4	626	6.9	63	273	8.9	42	99
r,		13											73	71
ate		12	53.5	4.6	2.0	8 17	4 6	10.0	2.0	570	273	29	74	99
of a		=											22	69
ting.		10	8 5	4 4		27	17	2 8	2.8	926	22	2 8	75	6.8
ိုမ္မီး		6											22	68
ter		8	8 9	φ φ	ŭ 4	7.9	9 4	2 8	252	5.5	22	22	77	68
per		~											47	69
Tem		9	55	202	8 2	37	1:	92	5.8	53	0.8	27	76	69
		2											22	72
		4	99	52	52	35	36	0.4	5.8	28	999	1.2	76	22
		3											9.2	0,69
		2	52	23		2.0	99	5.2	40	6.6	2.9	22	14	69
		7											75	707
Ì					11	11			- : :	II		::	11	1 ;
	4	MOREI	October Maximum Minimum	c ~	c	January Maximum Minimum	8 8	առա	April Maximum Minimum	ximum nimum	cimum	mum num	_	September Maximum Minimum

2-1360. BLACK RIVER AT KINGSTREE, S. C.

LOCATION. --At gaging station at bridge on U.S. Highway 52 at Kingstree, Williamsburg County, and 1 mile downstream from Kingstree Swamp Canal. MakIMAR ARRI.--1,200 square miles, approximately. RECOMDS ARRI.--1,200 square miles, approximately. ReCOMDS AVIARIE.--Chemical analyses: October 1962 to September 1963.

		Chen	nical an	alyses	, in par	ts per m	111ion	, water	year Oct	Chemical analyses, in parts per million, water year October 1962 to September 1963	to Sep	tember	1963					
	Mean	7	<u>!</u>	Cal-	Mag-		Q.	Bicar-	on Marke	Chlorido	Fluo-		Dissolved	Hardness as CaCO,		Specific conduct-		
Date of collection	discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	(Na)	Sium (K)	bonate (HCO ₃)	(30°)	(C1)	ride (F)	trate (NO,)	. C	Calctum, Non- magne-carbon- sium ate		micro- mhos at 25°C)	Ħ.	Color
Oct. 10, 1962	141	11	0.37	3,6	1.2	9.9	1.6	15	2.0	8.0	0.2	1	81	14	2	19	6.5	240
Nov. 20	653	=	.12	5.9	1.5	6.3	2.1	6	7.0	2	2		27	13	9	69	2.7	120
	510	9.1	. 14	2.8	æ.	5.2	1.4	2	3.6	8.8	۲.		48	10	7	54	6.1	90
Jan. 20, 1963	1100	8.9	5.	2.7	1.0	5.4	1.2	80	5.2	8.1	7		52	11	4	20	0.9	8
Mar. 21	1970	1.9	. 16	3.3	ď.	5.7	1.7	10	7.4	9.0	۰.		A56	10	8	54	5.9	180
Apr. 21	544	3.9	01.	2.9	æ,	5.8	1.5	13	1.0	7.7	٦.	e.	B68	01	0	51	0.9	140
May 19	06	6.9	.24	3.1	1.0	6.2	6.	15	3.2	8.9		3.	63	12	0	53	6.2	140
June 20	128	7.0	11.	3.4	80.	5.9	1.4	13	5.6	5.8		e.	40	12	7	26	6.5	110
July 21	342	9.2	.26	2.6	1.0	5.8	1:0	10	4.8	7.1		4.	892	10	2	49	6.4	160
Aug. 22	27	11	.37	5.5	1:1	9.2	1.5	24	5.8	8.1		œ.	056	18	0	81	6.3	110
Sept. 20	144	2	90.	6.3	1.4	8.1	2.4	21	22	6.8		6.	83	22	14	16	9.9	82
		1				-											١	

PEE DEE RIVER BASIN -- Continued

ပံ 2-1360.7. BLACK RIVER NEAR RHEMS, S.

DOLINGO THE ALL DIEGE ON State Highway 51, 0.7 mile upstream from Black Mingo Creek, and 3.8 miles southeast of Rhems, Georgetown County.

BARNAGE AREA---168 oquare miles.

RECORDS AVAILABLE.--Chemical analyses: October 1962 to September 1963.

Rate temperatures: October 1962 to September 1963 of September 1963.

EXTRABLS: 1962-63.--Dissolved collds: Maximum, 77 ppm Jul 1-31; minimum, 49 ppm Feb. 1-28.

Rateless: Maximum, 27 ppm Rov. 1-30, Dec. 1-31; minimum, 44 ppm Jan. 1-31, Feb. 1-28 and Mar. 1-31.

Rateless: Maximum, 37 ppm Rov. 1-30, Dec. 1-31; minimum, 38 Pp. 10 several days in December.

Rate temperatures: Maximum, 37 ppm Rov. 1-31; minimum, 38 Pp. 0n several days in December.

Chemical analyses, in parts per million, water year October 1962 to September 1963 Silica Iron (Ca) (Mag- (Ca			Color	160	126	70	90	110	140	140	120	120	150	120		120
Chemical analyses, in parts por million, water year October 1962 to September 1963 Silica Iron (Ca) (Mg) (Pe) (Ca) (Mg) Sium (Rs) Sium				6.2	8.8	6.7	6.4	6.9	7.1	9.9	7.2	6.3	7.1	6.9		1
Silica Iron Cal Mag- Sodium ta- East Sodium ta- East		Specific conduct-	mhos at 25°C)	74	7.4	61	26	64		_	_					20
Chemical analyses, in parts per million, water year October 1962 to September 1963 Silika iron [Cal. Mag. Sodium tas- bonate [Sod. Mag.] (SiO.) [Fe] [Cal. Mag. Sodium tas- bonate [Sod. Mag.] Sim [Mag.] [Re] [Cal. Mag.] Sim [Mag.] [Re] [Cal. Mag.] Sign [Mag.] [Cal. Mag.] Sign [Mag.] [Cal. Mag.] [Cal. Mag.] Sign [Mag.] [Cal. Mag.] [Cal. Mag.] Sign [Mag.] [Cal. Mag.] [Cal. Mag.] [Cal. Mag.] [Cal. Mag.] Sign [Mag.] [Cal. Mag.] [C			Non- carbon- ate	ı,	4 00	m	4	67	н	0	23	4	8	3		3
Chemical analyses, in parts por million, water year October 1962 to September 1963 (SiO ₂) [Fe) (Ca) [Mag. Sodium tas. bonate (SO ₄) (Ci) [Tide train (SO ₄) (Ci) [Million (Ci) [Mill									16	16	20	20	17	20		18
Sill (Sill 100 100 100 100 100 100 100 100 100 1	1963	Dissolved	(residue at 180°C)	72	72	26	49	A69								65
Sill (Sill 100 100 100 100 100 100 100 100 100 1	tember	-iX	trate (NO ₃)	0.2	4.7	1.1	1.6	٠.	1.0	1.0	1.0	6	2.2	1.8		1.2
Sill (Sill 100 100 100 100 100 100 100 100 100 1	to Sep	Fluo-	ride (F)	0.0	0,00	٦.	٦:	τ.	۳.	۲.	۳.	~	~	.2		0.2
Sill (Sill 100 100 100 100 100 100 100 100 100 1	ober 1962	Chlorido	(C1)	7.5	12.5	9.3	7.8	6.0	8.5	8.2	7.3	5.8	10	12		8.9
Sill (Sill 100 100 100 100 100 100 100 100 100 1	year Oct	9	(30,	8.0	o 4	4.6	7.2	2.6	4.2	3.6	5.0	0.9	3.2	4.4		4.8
Sill (Sill 100 100 100 100 100 100 100 100 100 1	, water	Bicar-	bonate (HCO ₃)						18	20	22	19	19	ន		18
Sill (Sill 100 100 100 100 100 100 100 100 100 1	1111on	Po-	Stum (K)	1.1		∞.	6.	œ.	1.0	1.0	۰.	6.	1.9	0.7		7.0 1.2
Sill (Sill 100 100 100 100 100 100 100 100 100 1	rts per m	0.0d	(Na)	6.5	8 -	9.9	5.5	4.4	8.9	6.7	7.6	6.3	7.3	8.2		7.0
Sill (Sill 100 100 100 100 100 100 100 100 100 1	, tn pa	Mag-	sium (Mg)	1.5	9.4	9.	6.	o.	1.3	1,1	1.2	1.0	1.0	1.3		1.2
Sill (Sill 100 100 100 100 100 100 100 100 100 1	alyses	Cal-	ctum (Ca)						4.3	4.7	0.9	6.4	5,2			5,1
Sill (Sill 100 100 100 100 100 100 100 100 100 1	ical a	, Labor	(Fe)	0.20	8.8	01.	8	.19	. 19	.17	. 16	. 19	.12	.13		7.2 0.15
Mean (Ischarge (cfs)	Chem	20110	(SiO ₂)	10	2°01	7.5	2.0	2.3	3.5	5.3	7.3	8.6	10	9.1		7.2
		Mean	discharge (cfs)													
Date of collection Oct. 22-31, 1962. Nov. 1 30. 1 30. 1 31, 1963. Nov. 1 31, 1963. Rev. 1 31, 1963. Rev. 1 31, 1963. Rev. 1 31, 1963. Rev. 1 31			Date of collection	Oct. 22-31, 1962	Nov. 1-30	Jan. 1-31, 1963	Feb. 1-28	Ear. 1-31	Apr. 1-30	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted	average

A Organic matter present; sum of mineral constituents 35 parts per million.

PEE DEE RIVER BASIN -- Continued

2-1360.7. BLACK RIVER NEAR RHEMS, S. C.—Continued Temperature ('F) of water, water year October 1962 to September 1963

	,					
	Aver-	age	96	440	66 72 79	841
		31	63	45 11 62	121	83
		30	63 53	621	824	83
i		29	63 53 43	£3	68 72 80	81 82 71
		28	64 52 43	63 63	68 71 79	82 81 72
		27	53	4 4 5 5 9	68 70 78	81 83 72
		26	55	4.0	68 71 78	82 82 70
		25	55	4 4 6	70	83
-		24	38	4 6 4 8 6 1	71 73 78	80 83 72
		23	0 4 8 4 8	0 9 8	172	82 84 72
	i	22	6.0 3.8	50 63 63	74	83
20307		21	1 98	0.4 6.9	8 7 8	83 83 76
2 2		20	1 4 8	61.6	67 76 80	82
Once-daily measurement between 0530 and	l	61	1 4 8	8 2 5	75 25	833
053	'	18	57	4 4 9 6 4 3	44 6 8 0 8 0	82
een		17	140	3 4 6	73	9 4 8 6
etw	Day	91	1 20 4	7 4 5 63 5 63 5	873	980
t.	ш	15	150	5 4 5 6 9 4 5 6	83 22	0 9 1
еше.		14	1 52 2	9 4 4 9	4 4 6 8 3 4 4 6	0 9 1
asuz		13	127	62 1 6	83 83	81 8
me.		12	1 8 6	4 4 4 0 0 0	122	88
1113		Ξ	1 80 4	1 4 9	913	0.91
p-e:		0	104	0 4 8	813	0 % 1
on Q		6	166	0 0 1	80 21 8	0881
		8	57	7 9 1	128	986
		7	57 5	112	1002	168
		9	58	4 4 6 5 6 6	969	86
		5	18.4	2440	69 78 7	4880
		4	5.8	2 2 2 0	288	84
		3	529	4 4 6	915	81 84 80 7
		2	53	4 9 8	152	0 4 0
		_	53 5 6	4 4 4 4	67 47	8338
	Month	Month	October 6 November 6 December	January February	April	July

2-1363. BLACK RIVER NEAR PLANTERSVILLE, S. C.

LOCATION. --At bridge on U.S. Highway 701, 0.7 mile upstream from Sixmile Creek, and 6.1 miles southwest of Plantersville, Georgetown County.

DALIANGE ARRA. -2,010 qualar miles.

RECORDS ARRALES. --Chemical analyses: October 1962 to September 1963.

What temperatures: October 1962 to September 1963.

WHENDERS ARRALES. --Chicates october 1962 to September 1963.

Specific conductance: Maximum 2,580 ppm 8ept. 9; minimum 7.5 ppm Oct. 23-26.

Specific conductance: Maximum 6aily, 9,000 micrombos Sept. 9; minimum daily, 51 micrombos Feb. 4, 6.

REARRESTERS FAGE. --Chicates Fage. 10; minimum, 42°F on several days in December, January, and February.

		Color	120		140	041	2	06	011	2 5	200	<u> </u>	ļ	040	1	140	130	120	65	8	150	۱
		H H	6.9	_										_		_	_				2.4	4
	Specific conduct-	(micro- mhos at 25°C)	70	_					_	_		490			06	_	_				93	
	Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	4 6	9	9			20	000	N 11	0	0	α	5	9	4	8	9	9	4	en i	,
	Har as C	Calchum, magne- sium	8.5	21	18	200	9	14	12	9 8	8 8	3 2	46	2 6	2 2	20	19	22	24	22	61	47
	Dissolved	(residue at 180°C)	99	!	17	202	60	48	54	App	40.	3	7.5	3 1	1	82	69	74	ł	69	11	1
1963	Ni.	trate (NO ₃)	0.0	: 1	e.	٠,٠	7:	1.8		ė.	•	. "	a	?	4	1.4	₹.	6.	1.5	1.6	1:9	!
ugust	Fluo-	ride (F)	0.0	: 1	•		1.	۲.	7			9	-	: !	ł	-	۲.	۲.		۲.	~	1
Chemical analyses, in parts per million, October 1962 to August 1963	(A)	(C1)	7.5	101	0.6	010	07	8.0	80	0,0	776	38	86	2 6	91	18	11	8.5	17	8.6	14	16
, October	o. leat	(80,	4.7	; !	6.2	0.4	ř	7.0	4.6	200	200	4.6	6		2	6.0	4.4	6.4	1	7.2	7.2	:
1111on	Bicar-	bonate (HCO ₃)	87 5	8	16	25	3	11	9 !	7 5	3 5	4	ď	9 0	6	20	20	19	22	22	21	20
s per 1	Po-	Sium (K)	1.1	1	1.4	9.6		80.			1.0	;	-		1	1:1	6.	6.	1.8	1.4	2.2	١
, in parts	e i	(Na)	6.0	1	6.2	7.5	•	2.0	6.1		8.0	1	ď	3 6	: 1	12	8.3	7.7	11	7.4	4.6	1
nalyses	Mag-	sium (Mg)	4.1	1	1.3	 	7:7	. 7	6.		- 0	4.5	9	2	2.4	2.0	1.4	1.2	2.1	1.6	1.6	1
nical a	Cal-	Cium (Ca)	0.0	3 1	5.4	0.0		4.4	9.6	4 "	0 4	2.1	,	: !	5.5	4.7	5.3	9.9	6.1	6.1	6.3	١
Che	<u>.</u>	(Fe)	0.16	!!	.23	.17	1	.10	.14	3.	1:	1 1	9	1	ł	.21	.27	.31	.13	.11	7	.16
		(SiO ₂)	8.8	; ;	7.4	000		5.4	2.5	20.0	2.4	6.9	0	; ;	4.3	5.9	5.9	7.7	8.7	8.5	9.4	!
	Mean	discharge (cfs)																				
		Date of collection	Oct. 23-26, 1962						Mar. 1-31	Apr. 1-30	gay 1-5	Esy 15-16	May 99-94	20 AOM	May 27-31	June 1-19	June 20-30	July 1-23	July 24-25			Aug. 11

Organic matter present; sum of mineral constituents 37 parts per million. OH I part per million, CO 37 parts per million. Calculated from determined constituents. A B C

PEE DEE RIVER BASIN--Continued

2-1363. BLACK RIVER NEAR PLANTERSVILLE, S. C.--Continued

	Chlor	ide, in	parts	per mil	lion, w	ater ye	ar Octo	ber 196	2 to Se	ptember	1963	,
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5		24 72 135 19						12			14	390 835 1420 1100 750
6 7 8 9 10		75						28) 18		45 43	900 1500 1220 2850 1900
11 12 13 14 15					8.0		8.9	92 135 52 33	7 18	8.5	16 95 85	1480 1750 850 850 1480
16 17 18 19 20		9.0) 10) 10		8.5	6.9	51 51 52 104			105 195 115 88 108	1000 2300 1480 1600 1080
21 22 23 24 25	7.5							55 28 50) 11	} 17	146 136 148	2250 1310 1440 1800 2050
26 27 28 29 30 31) 12				===			30 16		9.8	480 470 410 330 300 245	2450 1750 1700 1020 1320

PEE DEE RIVER BASIN--Continued 2-1363. BLACK RIVER NEAR DLANTENSVILLE, S. C.--Continued

Temperature (°F) of water, water year October 1962 to September 1963

									ğ	Once-daily measurement	181]	y me	BS.	rene	n t	betv	between	054	0545 and	g	18307	^										
7	L														_	Day																Aver-
Month	_	2	6	4	5 6	9	7 8	8	6	2	11 12	12	-3	4	15	2	17 18		6	20	21	22 23	23	24 2	5	26	27 28		53	30	3	age
October November December	62 55	 61 56	109	55	52.0	51	1 9 2 2	5.8	120	1.00	10.4	5.8	1 80 4	124	1 60 10	58	1024	120	17.8	1.00	100	58	544	6.0 4.0 4.0 4.0	55	66 53 44	53	54	221	55	66	1 80 4
January February March	4 4 4 4 6 6 6 6 6	43 47 49	4 4 4 6 4 8	4 60	4 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 5 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	440	54.5	45 43 54 54 54 54		44 48 57	7 4 4 6 0 9	4 4 9 2 2 2	44 62 62	2 4 5 0	4.5 4.6 6.2	4 4 6 5 4 6	4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 6	50 66 66	4 4 6	7 4 4 2 8 4 7	5 4 6 8 4 4 9	4 4 4 8 0	6176	4 4 4 9 6 6	222	4.2	313	613	65	4 4 80 80 80 80
April May June	65 67 74	121		66		64 74	127	72 73	2262	65 74 80	64 67 80	411	4 6 9 8 0 9	64 71 81	63 74 81	67 74 82	67 76 80	69 76 78	427	67 73	640	248	70 66 72 72 79 77		67 67 72 73 78 79	73	233	0 4 0 0 4 0	646	70	121	67 11 78
July 80 80 August 83 83 Sentember 79 79	93	80 83		0 4 0	81 81 84 85 81 79		82 82 85 85 79 79		85	81 86 80	80 48 80	81 85 80	81 81 83 85 79 78		82 82 84 82 76 74		83 80 80 82 74 75		82 83 83 83 75 76		81 82 83 82 77 76	82	83 84 73 73		82 83 84 81 72 73		84 84 81 81 72 71		984	83 70	400	82 83 76

SANTEE RIVER BASIN

2-1424.41. CATAWBA RIVER AT LOOKOUT SHOALS DAM, N. C.

ANAINAGE AREA—1.452 quare miles cut to Catawba, Catawba Catawba County.

RECORDS ARIAL—1.452 quare miles

RECORDS ARIAL—1.452 quare miles

RECORDS ARIAL—1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Records ARIAL —1.452 quare miles

Reco

Chemical analyses, in parts per million, water year October 1962 to September 1963

	Color	13	ខ្ព	ß	2	ខ្ព	22	15	8	7	12	2	ລ	12
	Hď.	9.9	2.0	8.9	7.0	6.7	4.7	8.9	6.9	7.2	7.0	7.5	6.9	-
Specific conduct-	(micro- mhos at 25°C)	48	54	24	53	20	46	38	47	20	22	26	57	51
Hardness as CaCO,	Non- carbon- ate	0	0	0	0	•	•	0	•	•	•	0	0	0
_ "	Calcium, Non- magne-carbon- stum ate	12	12	12	13	12	12	6	12	12	12	14	14	12
Dissolved	(residue at 180°C)							32	34	A39	47	44	A45	40
	trate (NO ₃)						1.9			_	_	_	1.5	1.2
Fluo-	ride (F)	0.0	•	~	۰.	٩.	۰,	۰.	•	7	٠.	٠.	.2	0.0
251	(CI)	3.5	5.3	4.2	5.8	3,6	4.4	3,5	8,8	4.4	3,3	5.6	5.2	4.4
	(304)	2.8	3.0	4.2	7.8	3.5	3.6	3.2	3.5	3.4	3.2	2.8	4.6	3.3
	bonate (HCO ₃)	21	8	8	13	19	12	12	17	19	20	22	22	19
9. t	Stum Stum (K)	1.2	1.4	1.4	1.4	1.2	1,4	1,5	7.	1.2	1.2	1:1	æ	1.3
an pool	(Na)	4.9	5.1	5.4	5.4	5.5	4.6	3.1	4.5	4.9	4.7	6.4	6.2	5.1
Mag-	sium (Mg)	6.0	1:1	1.0	1.1	1.1	œ.	.7	1.2	8.	æ	1.2	1.2	1.0
Cal-	ctum (Ca)	3.5	3.1	3.4	3.4	3.0	3.1	2.5	5.0	3.4	3.5	3.7	3.4	3.2
	(Fe)	0.04	10.	8	10.	.04	.03	40.	0.	90.	.03	00.	8	0.03
94140	(810,	11	#	ន	9.6	2	01	8.0	8.5	10	11	11	1	10
Mean	discharge (cfs)	2073				1	1	1	ł	ì	1	1	ì	1
	Date of collection	Oct. 1-31, 1962	Nov. 1-30	Dec. 1-31	Jan. 1-31, 1963	Feb. 1-28	Mar. 1-31	Apr. 1-30	May 1-31	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted average

A Calculated from determined constituents.

SANTEE RIVER BASIN--Continued 2-1424.41. CATAWBA RIVER AT LOOKOUT SHOALS DAM, N. C.--Continued

	-i-	e.				
ļ	Αv	age	56	417 46 46	56 64 71	75 78 74
		31	62	38	1 % 1	7.
		30	63 45	38 38	60 72	76 75 76 76 71 70
		29	61 52 42	38	61 65 72	26 17
		28	60 52 42	39	58 66 72	76 75 78 76 71 71
		27	52	40 39 40 50 51	58 66 72	
		26	64 52 42	3 3 3	96	76 75 78 78 71 71
963		19 20 21 22 23 24 25 26 27 28	65 64 53 52 43 42	39	59 60 65 66 72 72	78 78 71
H H		24	66 53 43	98	59 67 72	76 76 78 78 73 72
embe		23	67 66 54 53 43 43	41 40 39 39 48 49	60 59 68 67 71 72	76 76 78 78 73 72
o de		22	55	41 41 48 48 48	59 67 72	75 76 78 78 73 73
080		21	67 67 55 55 43 42	41 -1 39 48 48	720	75
62 e1y		20	68 55 43	39	59	76 75 77 78 74 73
r 19		19	69 56 45	42 42 39 39 48 48	58 59 65 65 72 72	76 75 77 78 74 73
obe		18	56	41	56 66 71	7.5
a p		17	70 69	41 41 39 46 47	56 56 65 66 72 71	75 75
at	Day	16	70 55	39	56	75
er y		15 16 17 18	70 56 42	41 40 40 45 46	55	75 78 75
wat		14	69 56 43	704	52	74 74 78 78 75 75
er,		13 14	6.9 5.6 4.3	2 4 4	252	74 74 78 78 75 75
Temperature (*F) of water, water year October 1962 to September 1963 Cance-daily measurement at approximately $0800f$		12	69 57 44	4 4 4 0 0	55	75 75 78 78 75 76
of dai		11 12	57	43 40 40 40 43 43	50 43	75
°F)		10	70 57 47	40 41 39 39 45 44	50 63 71	75 74 78 79 75 75
re Ø		6 8	70 58 46	0 0 4	56	75
ratu		8	71 58 48	39	56 62 69	73 75
Epe1		7	69 58 48	9 4 4	56 62 68	73
Te		9	69 59 49	969	5.6 6.1 6.9	75 73 78 78 76 76
		5	69 58 51	40 40 42 45	5.6 6.0 6.8	75 73 78 78 76 76
		4	69 60 51	40 41	560	
		ъ	69 60 51	41 39 40	6.0	74 73 76 77 76 77
		2	200	40 40 40	5.0 6.0 6.7	47.2
		-	69 62 51	38	53 67	73 74 77 77 75 76
	Moork	MOINT	October November	January February March	April May	July 73 74 August 77 77 September 75 76

SANTEE RIVER BASIN--Continued

2-1435. INDIAN CREEK NEAR LABORATORY, N. C.

LOCATION (revised).—Temperature recorder at gaging station 250 feet upstream from remains of Rudisill Mill dam, 0.5 mile upstream from bridge on Sacotary Raad 1252. 1.5 miles upstream from mouth, 1.5 miles south of Laboratory, Lincoln County, and 3.5 miles south of Lincolnton. DRIMMGE AREA.—66.4 square miles.—70 miles to proper 1951 to September 1952.
RECORDS AVAILABLE.—Chemical analyses: October 1951 to September 1952.
RECORDS AVAILABLE.—Theories analyses: Maximum 76°F on several days in July and August; minimum, freezing point Dec. 14-16.
RETREARES, 1952-03.—Water temperatures: Maximum, 84°F Aug. 1, 2, 5, 1955; minimum, freezing point Dec. 14-16.

Mean Silita Iron Cal me Sodium tas Sodium tas Sodium tas Sodium tas Sodium	- 1		Chem	ical an	alyses,	tn par	ts per m	111100	, water	year Oct	Chemical analyses, in parts per million, water year October 1962 to September 1963	to Sep	tember	1963					
	fean	•	2012	,	Cal-	Mag-	and in	Po-	Bicar	Gulfoto	object of	Fluo-	ž	Dissolved	Hardne as CaC	ss.	Specific conduct-		
2.5 2.4 15 4.6 2.5 1.1 19 5.6	charge (cfs)		(Sios)	(Fe)	ctum (Ca)	sturn Mg)	(Na)	Sium (K)	bonate (HCO ₃)	(300,	(CI)	ride (F)	trate (NO ₃)	(residue at 180°C)	Calctum, magne-ca sium	Non- rbon-	micro- mhos tt 25°C)	HZ.	olor
2.5 1.1 19 5.6	125		11	0.01	1.9	2.3	2.5	2.4	15		0.4	0.1	1.7	A34	14	2	64	6.7	2
	60.3		13	00.	3.7	1.5	2.5	1.1	19		1.0	٥.	8.	A38	12	0	42	6.8	12

SANTEE RIVER BASIN--Continued

2-1435. INDIAN CREEK MEAR LABORATORY, N. C.--Continued Temperature O. of watery water year October 1963 to September 1963 Continued Continued Applications of the Continued Application of the

١	į.	.												
	Aver	age	61 58	50	38	39	39	53	6.2 5.8	64	69	73	27	67
		31	56	11	39	33	11	61 56	11	63	11	73	73	11
		3	52	20	39	3.9	1.1	5,0	60	63	73	75	72	61
-		62	5.2 4.8	50	404	35	_1.1	58	57	66	71	76	71	61
		88	4 4 8 7	47	47	9 8	43	54	59	61	70 68	76	69	63
		2.2	44	4 5	39	39	35	57	59	53	69	7,2	68	63
ļ		92	4 4 7 7	443	39	37	39	55	5.0	59	69	72	73	58
١		22	51	47	38	36	3 8	57	6.1 56	61	68	71	74	58
J		24	58 51	42	4138	36	37	55	99	4 6 6	8 9	170	75	59
		23	60 58	51	39	39	38	52	69	67	67 66	71	7.7	65 59
ᇫ		22	61	53	38	4.1 38	43	51	67	67	69	73	73	68
rap		21	59	51 50	42	47	44	55	68 63	65	70 69	74	77	67 64
rmo		20	59	50	45	44	39	58	6.8	99	69	76 74	73	67 63
the		61	62 59	55	38	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	39	55	63	63	65	76	73	63
Continuous ethyl-alcohol actuated thermograph/		82	66 62	54	36	39	35	52	59	9 4	65	75	25	63
ţt		11	6.0 4.0	54 51	36	3.9	37	50	5.0	65	65	73	71	63
ă	Day	91	99	1,8	33	38	39	52	56	99	72	72	69	65
ᇵ		53	66	4 4 8 0	323	38	37	404	5.5	66	73	72	68	62 61
-87		72	64 54	4 4 8 6	33	49	41	55	56	64	73	70	43	70 6 2
hy1		52	62	4 47	333	50	43	52	60 55	66 61	71	6.8	73	72
s e		21	462	50 8 4 8 8	33	0.4	4 3	4 4 7 4	57	200	7.7	69	72	72 70
nont		=	64	50 48	36	0 4	47	51	61	70	72	6 %	72	71
ntir		유	65	20	38	4.1	39	51	61	6.8	74	72	73	0 4 6 8
ě,		6	65	50 4 8	38	£ 04	4 4	4 4	59	68	72	72	75	71 69
		80	65	4 2	39	41	2 4	4 4 5	0. 4 4.	63	70 68	73	76	71.
		r-	949	4 4 4 4	38	1,04	4 4 3	52	58	65	68	5 5	76	89
		9	63	4 4 0 0	47	4138	46	53	53	65	63	72	73	72
		ß	62	94	4 4	38	38	53	57	57	67	72	75	73
		4	62	4 4 8 4	4 4	36	38	0° 4	63	55	65	7.7	75	717
		8	62	50	7 4	36	40	4 6	61	54	63	74 72	75	72
		~	62 58	50 84	7 4	3 4	39	4 4 63	59 6	52	65	72	72	0.4 6.7
		-	5.7	52	4 4	35	4 4	4 4	6.3 5.8	60	63	47.	75	72
				::	::	!!	!!	::	11		!!	::	::	: :
		Month	October Maximum Minimum	Maximum	December Maximum Minimum	January Maximum Minimum	Maximum Minimum	Maximum Minimum	April Maximum Minimum	Maximum Maximum Minimum	June Maximum Minimum	July Maximum Minimum	August Staximum Minimum	September Maximum Minimum

SANTEE RIVER BASIN--Continued

2-1439.08. SOUTH FORK CATAWBA RIVER NEAR STANLEY, N. C.

LOCATION.—At bridge on State Highway 275, 0.1 mile below Hoyle Creek, and 3 miles southwest of Stanley, Gaston County.

REACHONG ARRA.—S.—Square miles.

REMARKS.—RECORD STALLARIE.—S.—Grantal analyses: October 1961 to September 1963.

REMARKS.—Records of discloruse are given for South Fork Catawha River at Lowell. No appreciable inflow between sampling point and gaging station except during periods of heavy local runoff.

	!	Color	L	10	_	_		_	_	_			10		4	
		푅	6.4	6.5	6.3	6.7	9.9	6.2	_	6.5	6.9	6.3	6.4	6.3	6.5	
	Specific conduct-	<u> </u>	79	99	69	50	45	42		55	63	49	16	92	93	
	Hardness as CaCO,	Non- carbon- ate	0	•	0	•	•	8		0	•	•	•	•	٥	
		Calcium, magne- stum						12	_	_			18			
1963	Dissolved	(residue at 180°C)	A57							V44	A47	37	A54	A64	67	
tember		(NO ₃)	0.5							7	۰.	1:1	۳.	9.	1.2	
to Sep	Fluo-	rid F	0.0	•	٠:	۲.	٦:	٠.		7	٠:	٦.	°.	۲.	.2	
Chemical analyses, in parts per million, water year October 1962 to September 1963	9	(CI)	8.3	5.8	7.4	5.4	4.0	2.8		5.4	6.8	3,6	7.7	13	12	
year Octo	o, i fe t	(30,	3.6	3.8	3.5	2.4	2.4	4.8		4.4	2.4	4.0	3.8	4.0	3.8	
, water	Bicar -	bonate (HCO ₃)	30	56	24	18	22	77		21	25	16	27	59	30	
1111on	Po-	stum (K)	2.0	1.8	1.3	1.4	1.2	2.1		2.1	1.5	2.9	2.9	2,1	3.2	
rts per m	111770	(Na)	9.8	6.3	7.2	4.6	3,9	2.2		9.9	6.4	3.3	7.6	11	11	
, in pa	Mag-	stum (Mg)	1.7	1.7	1.6	1.7	1,5	1.1		1.8	1.9	6.	1.6	1.5	2.4	
nalyses	Cal-	ctum (Ca)	4.2	3.5	3.8	3.4	3,5	5.9		3.6	3.4	3.4	4.3	4.6	4.5	
nical a	ز	(Fe)	0.01	.17	.01	10.	10.	.02		8	.03	.04	8	8.	9.	lents.
Cpe	- 5	(810)	13	13	13	11	12	6.1		i	12	7.4	13	14	14	onstitu
	Mean	discharge (cfs)	365	463	201	780	610	3130	-	653	229	1360	374	245	229	stermined c
		Date of collection	Oct. 18, 1962	Nov. 17	Dec. 15	Jan. 15, 1963	Feb. 18	Mar. 20		Apr. 17	May 16	June 22	July 14	Aug. 16	Sept. 15	A Calculated from determined constituents.

SANTEE RIVER BASIN--Continued

2-1515, BROAD RIVER NEAR BOILING SPRINGS, N. C.

DECATION (revised).--At gaging station at bridge on Secondary Road 1186, 3 miles downstream from Second Broad River, and 3.5 miles southwest of Boiling DRAIMAGE REAL-Sequence and states are stated from the state of the state o

		Color	20	12	97	9	20	4	00	'n	11	18	30	=	97	14
		Hd	7.2	7.4	6.4	7.1	6.9	7.2	8.9	7.2	7.2	6.9	6.7	7.3	7.4	1
	Specific conduct-	(micro- mhos at 25°C)	1		42				32	38	42	44	39	47	46	40
	Hardness as CaCO,	Non- carbon- ate	0	0	0	0	•	•	٥	0	0	0	0	0	0	0
			10	14	13	11	12	97	00	11	12	13	07	14	12	12
1963	Dissolved	(residue at 180°C)	35	A40	A39	38	A36	A37	A31	A33	40	46	40	43	A43	39
ember	Ni-	trate (NO ₃)	6.0	ıs	۲.	1.1	1.0	1.3	7	1.0	6.	1.0	7:	œ.	1.5	1.0
o Sept	Fluo-	ride (F)	0.0	0.	٥.	~	•	0.	-	0	0.	•	٦.	•	7.	0.0
water year October 1962 to September 1963	Chloride	(CI)	1.0	1.4	1,3	2.1	3.2	2.2	2.0	2.2	2.5	2.2	1.7	3.6	3.0	2,3
year Octo	of of the	(80,	1.2	2.0	1.6	1.6	1.4	2.8	8	1.8	2.4	2.6	1.8	3.0	3.2	2.2
, water		bonate (HCO ₃)	17	22	22	20	17	18	14	17	11	20	17	21	21	19
111on	Po-	Sium (K)	1.1	1.2	1,1	1.0	2,0	1.0	1.0	1.0		1,1	6.	1.0	. 7	1.1
in parts per million,	a i	(Na)	2.8	3.7	3.5	3.8	3.1	3.1	2.7	3.5	3.0	3.5	2.9	4.8	4.9	3.5
in par	Мав-	sium (Mg)	0.8	1,3	1:1	.7	1.2	æ	ıC	::	1.0	9.	6.	1.0	1.0	1.7
alyses	Cal-	Clum (Ca)	2.6	3.6	3.4	3.2	2.8	3.0	9	2.6	3.0	4.2	2.9	3,8	3.2	3.2
Chemical analyses,	,	(Fe)	0.00	90.	.03	10.	10.	00.	0.50	0.0	8	00.	90.	10.	. 05	0.02
Cher		(SiO ₂)	13	15	12	14	13	14	12	121	14	14	14	12	15	14
	Mean	discharge (cfs)	1616	860	1418	1105	1458	1192	3530	1479	1457	1186	1021	989	269	1366
		Date of collection	Oct. 1-10. 1962	Oct. 11-31	Nov. 1-30.	Dec. 1-31,	Jan. 1-31, 1963	Feb. 1-28	Mor. 1.31	Apr. 1-30	May 1-31.	June 1-30	July 1-31	Aug. 1-31	Sept. 1-30	Time-weighted average

A Calculated from determined constituents.

SANTEE RIVER BASIN -- Continued 2-1515. BROAD RIVER NEAR BOILING SPRINGS, N. C. -- Continued

	<u>;</u>	e e				
	Aver	age	4 4 8 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.0 6.0 6.0	67 67 58
		31	9 1 7	0 1 %	131	0.41
		30	4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	39	63	0 4 9 4 6 4 6
		29	4 4 4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	36	63	69 64 68
		28	9 4	37 45 53	62 65	68 50
		27	4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 6 6 6 6 6	39 45 53	63	67 65 51
		26	50	1 4 4 2 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 9 9	0 0 0 0 4 8
63		25	52 47 45	5 4 5 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	64 67 66	6.5 4.6 5.6
. 1963		24	52 4 4 4 4	15	6.5	66 53
abe 1		23	58 47 44	4 6 6 5 2 5 2	69	68 63 56
pte!		22	57 48 43	45 45 52	99	69 64 58
900		21	58 48 42	44 65 53	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	70 65 57
12 12		20	0 8 7	244	62 68 67	70 66 56
196		16	62 49 38	3 2 2	6.7	69 65 55
Temperature (°f) of water, water year October 1962 to September $\widehat{\mathcal{Q}}_{\rm DCe-daily}$ measurement between 0700 and 190 \widehat{Q}		18	64 50 35	244	59	64 54
Octo		17	65 50 33	£ 4 4 5 8 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	5 6 6 8 8 9	6.9 5.6
ear bet	Day	16	65 47 32	43 41 49	57 64 70	68 63 53
r y		15	66 46 32	43 48	56	67 62 56
rem		14	65 46 32	41 64	58 73	65 65 56
r, r		13	48	4 4	58 67 75	66 65
y me		12	48	6 6 9	58	67 69 65
of Jail		11	44	41	57 68 74	68 65 65
F .		10	47	1 6 9	57	00 49
, @		6	94	£ 4 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8	56 65 73	68 70 63
atur		8	66 47 45	41	26 44 72	67 70 63
per		7	65 46 46	39 44 46	55	67 70 62
Tem		9	4 9 4 4 6 9 4	4 4 5 5 7	54 61 71	66 71 62
		5	64 48 47	38	54 60 70	66 63
		4	63 49	39 45	55 58 69	65 72 63
		3	62 48 47	0 4 4 4	54 57 68	64 64
		2	60 4 8 4 7	4 4 4 5	55 56 67	65
		-	58 48 47	417	52	62 71 63
	Moneh	TATOLICIA.	October November December	January February March	April May	July August September

SANTER RIVER BASIN -- Continued

2-1565. BROAD RIVER NEAR CARLISLE, S. C.

LOCATION.--At gaging station at bridge on State Highway 72, 2 miles upstream from Sandy River, 2 miles downstream from Seaboard Air Line Railroad bridge, 2.5 miles east of Carliste, Unino County, and 5 miles downstream from Neals Shoals Dam.

BANINGER ARS.--2,709 equare miles, approximately.

RECORNS AVAILABLE, --Chemical analyses: October 1947 to September 1948, October 1962 to September 1963.

		Color	02	14	œ	œ	2	23	15	9	2	7	2	9
		쪞	6.9	9.9	9.9	6.7	6.5	9.9	8.9	6.5	6.5	6.7	6.5	6.3
	Specific conduct-	(micro- mhos at 25°C)	89	62	7.1	26	61	47	9	53	62	52	29	84
	Hardness as CaCO ₃	Calctum, Non- magne-carbon- stum ate	0	0	0	0	0	•	٥	0	٥	0	0	0
								12	16	16	16	12	16	16
1963	Dissolved	(residue at 180°C)	A47	20	A54	47	48	45	49	A44	A46	43	53	A61
ptember		trate (NO ₃)	L			6.	~	1.5		1.3			_	٠,
to Se		ride (F)	0.0	7.	٦:	۲.	٠.	•						۲.
water year October 1962 to September 1963	oh!roldo	(CI)	5.4	4.1	4.4	3.4	4.5	2.9	3.0	4.2	5.1	3.7	4.6	6.0
year Oct	Cultata	(30°)	1.2	3.5	4.2	3.0	3.6	3.4	3.6	2.4	2,8	3.4	2.8	3.8
, water	Bicar-	bonate (HCO ₃)	32	28	32	52	28	21	26	24	22	22	24	36
11110n	9. t	Sturn Sturn (K)	1.9	1.8	1.5	1.3	1.3	1.9	1.9	1.6	1.3	5.0	1.9	4.1
Chemical analyses, in parts per million,	e de la composition della composition della comp	(Na)	6.9	4.6	8.7	4.9	6.0	3.4	4.6	4.8	5.6	4.1	5.4	27
, in pa	Mag-	sium (Mg)	1.3	1.6	1.3	1.1	1.8	1.5	1.6	1.6	1.5	1.2	1.6	1.2
nalyses	Cal-	ctum (Ca)	4.5	4.3	4.0	4.6	3.4	3.5	4.0	3.7	4.1	4.0	3.8	4.6
mical a	Ta.On	(Fe)	0.05	.02	00.	90.	.02	.04	.02	.01	8.	10.	.03	8.
Che	5	(810,	13	13	13	13	77	12	12	12	13	12	13	13
	Mean	discharge (cfs)	2320	4840	2790	3140	5120	6940	3140	3640	2860	2090	1340	1330
		Date of collection	Oct. 16, 1962	Nov. 23	Dec. 19	Jan. 9, 1963		Mar. 22	Apr. 17.	May 8	June 19	July 11	Aug. 7	Sept. 11

A Calculated from determined constituents.

SANTEE RIVER BASIN--Continued

2-1630. SALUDA RIVER NEAR PRIZER, S. C.

LOCATION --At gaging station 0.4 mile downstream from Hurricane Creek and 1.9 miles north of Pelzer, Anderson County. DRAINAGE AREA.-405 square miles.
RECORDS AVAILABLE.--Chemical analyses: October 1963 to September 1964, October 1962 to September 1963.

	Mean	-	į	Cal-	Mag-	1	9		100				Dissolved	Hardness as CaCO,		Specific conduct-		
Date of collection	discharge (cfs)	(810°)	(Fe)	Cium (Ca)	sium (Mg)	(Na)	Stum (K)	bonate (HCO ₃)	(30,	(C1)	ride (F)	trate (NO,)		Calclum, Non- magne-carbon- sium ate	Non- arbon-	(micro- mhos at 25°C)	Н	Color
Oct. 17, 1962	351	12	0.14	2.6	1.2	2.7	2.1	19	3.0	3.6	0.0				0	39	6.6	25
Nov. 19	718	12	8			3.0	_	17	1.2	3.6	1.	۲.	37	10	ō	40	6.2	2
Jan. 8, 1963	498	12	. 07	2.2		3.2	1.0		2.0		~	~.	A32		0	32	6.4	10
Feb. 14	624	11			æ.	2.3			1.4	2.6	_	_	_		0	30	6.3	so.
Mar. 25	1120	9.3	_			2.0	1.2		2.2		۰.	1:0			0	28	6.4	12
Apr. 11	629	11				2.6	_		1.2						0	36	6.4	12
May 2		6.8			9	2.0		_	2.6		0.	1.1			0	26	6.1	7
June 17	617	13	.03	2.3	7.	2.8	1.5	12	9.	2.3	۳.	۲.	32	6	0	34	6.1	10
July 11	281	=				2.9			1.6		3.0	۰.			0	33	6.4	'n
Aug. 6	531	12			1.1	2.8		_	1.0		_	_			0	34	6.1	15
Sept. 9	312	14			_	3.6			1.4		9	3.3	_		ō	45	6.3	12

EDISTO RIVER BASIN

2-1730. SOUTH FORK EDISTO RIVER NEAR DENMARK, S. C.

LOCATION: --Temperature recorder at gaging station at bridge on U.S. Highway 321, 360 (revised) feet downstream from Seaboard Air Line Railroad bridge, DRAINGA AREA.--TS year from Little River, and 4.8 miles north of Denmark, Remberg County.

DRAINGA AREA.--TS squire miles, approximately.

RECORDS ANIABLE.--Chemical analyses: October 1961 to September 1963.

River personnel 1965 to September 1965 to September 1961, october 1961 to September 1963.

River personnel 1965 to September 1965 to September 1965 to September 1965.

EXTREMES, 1962-63.--Mater temperatures: Maximum, 787 to many days in August; minimum, 367 poc. 14-16.

EXTREMES, 1965-63.--Mater temperatures: Maximum, 787 to many days in 1997, 1968, 1961, and 1962; minimum, 347 pob. 19-21, 1958.

		Color	ဓ္	17	45	2	40	20	20	20	90	40	33
		뛵	6.1	6.1	0.9	5.7	5.9	6.1	9.9	6.3	6.2	6.2	5.6
	Specific conduct-	(micro- mhos at 25°C)	24	24	56	24	26	53	24	26	27	21	44
	Hardness as CaCO,	Non- carbon- ate	1	•	0	8	0	0	0	0	6	0	æ
	Haro as C	Calcium, magne - sium	8	4	9	8	9	7	2	9	8	2	12
1963	Dissolved	(residue at 180°C)					21		A20	30	36	419	46
tember		trate (NO ₃)	L		٠.	_	_	1.2			ε.		
to Sep	Fluo-	ride (F)	0.1	۰.	٦.	~	۰.	٥.	.2	٠.	۲.	~	٠.
year October 1962 to September 1963	di rotto	(CI)	3.8	3.8	4.2	3.4	2.9	2.9	3.3	3.1	4.0	3.2	3.6
year Oct	Sulfate	(*08)	9.0	4.	1.0	1.8	7.4	1.4	1.2	2.0	1.6	1.6	10
, water	Bicar-	bonate (HCO ₃)	8	80	80	9	-	80	80	7	7	7	ıc
llion	Po-	Stum (K)	9.0	۳.	9.	80	4.	9.	'n	4.		ıç.	1.1
Chemical analyses, in parts per million,	and prop	(Na)	2.2	2.1	2.5	1.9	2.4	2.5	2.3	2.7	2.4	2.3	2.6
, in pa	Mag-	sium (Mg)	8.0	۳.	4.	.7		ů.	۳.	ď.	8.		9.
nalyses	Cal-	ctum (Ca)	1.8	1.4	1.8	1.8	1.6	2.1	1.6				
mical a	1	(Fe)	0.05	.07	. 26	8.	. 02	.27	.12	90.	. 24	.12	٥.
Che	Gilio	(SiO ₂)	7.4	6.9	7.0	4.3	æ.	3.8	5.8	9.9	6.6	5.8	11
	Mean	discharge (cfs)	541	487	622	2710	1060	1050	528	585	856	279	622
		Date of collection	Oct. 16, 1962	oct. 30	Dec. 6	Jan. 22, 1963	Mar. 4	Apr. 9	May 21	June 4	July 3	Aug. 16	Sept. 18

A Caluclated from determined constituents.

EDISTO RIVER BASIN -- Continued

2-1730. SOUTH FORK EDISTO RIVER NEAR DENMARK, S. C.--Continued

Temperature (°F) of water, water year October 1962 to September 1963

Aver-	age	999	56	47	4 7	45	59	63	8 8	73	57 57	77	69
¥	œ.		~~~			4 4		9 9					• •
	3	58	11	4 4	4 1 38	11	63	11	22	11	7,	75	
	8	54	53	4 6 4 6	38	1.1	62	63	70	76	77	44	99
Į	59	54	52	4 9 4 9	38	11	200	63	71	75	77	75	66
	28	5.5	4 8 4	4 t 5 t	39	4 9 4 3	59 6	63	69	75 74	77	76	65
	27	57 55	50	43	9 9	47	59	63	68	42	77	77	64
ĺ	56	59	52	44	0 0	47	59	63	6.8	44	77	77	4 6 4
ĺ	25	59	53	44	4 2 4 0	4 4 4 4	5.5	6.8	69	2.2	76 76	77	63
	24	99	53	4 6	4 4	44	54	70	71	74	77	77	63
	23	65	59	4 5	44	45	5 4	70	72	44	77	76	69
Ī	22	65	58	4.6	6 4 5 5	48	61	69	72	22	77	77	67
	21	65	58	48	0.4	48	65	8 9 9	72	2.2	76	77	67
İ	20	6.5	58	44	50	47	6.5	65	72	44	76	77	67
Ì	61	69	59	4 6	46	45	63	65	72	75	76	77	67
Ì	81	69	59	4 7 7 7 7 7	42	40	63	64	72	75	76	11	67
Ì	17	6 6	52	38	42	42	60	61	71	4	76	7.8	68
Day	91	69	5.5	36	44	43	62	58	6.9	7.4	75	78	69
٦,	15	699	55	36	F 5 4	5.5	63	9 8 9	69	22	75	78	17
ı	4	69	52	43	52	44	63	60	68	7.2	74	78	71
Ì	22	66	29	4 4	53	7 4 4	63	62	70	74	72	7.8	17
Ì	21	69	56	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	52	46	99	63	20	42	7.2	78	72
	=	0.69	56.8	44	8 4	9 7 7	55	46	02	74	7.5	78	72
İ	9	71	58	45	4 4 4 3 4	4 4 9 9	57	64	69	73	76	18	72
Ī	6	120	53	45 4	2 6 4	47	55	262	69	7.5	92	78	72
İ	80	0.69	53	45	43	47	54	59	65	170	76	18	72
ı	-	6.6	52	454	417	7 4 4	56	596	65	22	22	7.8	23
	9	8 8	56	5 8 4	14	77	58	59	64	70	76	78	74
1	2	889	56 5	56 5	4 1 4 0 4 0 4 0	45 4	54	65 5	62 6	7 69	76 7	78 77	74 7
l	4	8 8	9 9 9	5.6	170	47	51	65	60	69	97	11	73
}	8	69	56 5	54 5	411	47 4	4 9 5	65 69	61 6	9 69	76 7	77 77	74 7
ŀ	2	199	56	5.3	41	417	50	4.6	64	02 69	76		75
	_	999	58 5	53 5	4 4 7 5 7 4	41 4	4 6 4	469	65 6	70 7	76 7	77 77	75 7
	-	- ::	::	:::		::	11	::	11				:
Month		October Maximum Minimum		December Maximum Minimum	January Maximum Minimum	EΕ	Maximum Minimum	April Maximum Minimum	ximum nimum	June Maximum Minimum	mun num	_	September Maximum

SAVANNAH RIVER BASIN

2-1850. KEOWEE RIVER NEAR JOCASSEE, S. C.

LOCATION. --Temperature recorder at gaging station 0.6 mile downstream from bridge on State Highway 11, 1.8 miles southeast of Jocassee, Oconee County, and 2.6 miles upstream from Eastatoc Greek.

DALIANGE AREA. --184 square miles.

EXTREMES ANALIABLE. -- Water temperatures: October 1961 to September 1963.

EXTREMES 1962-63. -- Water temperatures: Maximum, 80°7 June 10, Aug. 6-9; minimum, freezing point on several days in December and January.

EXTREMES, 1961-63. -- Water temperatures: Maximum, 82°7 July 24, 1962, minimum, freezing point on several days in 1962-63.

		Mean	150	101	Cal-	Mag-	200	P. 5	Bicar-	9.16040	Chlorida Onlanda	Fluo-	ž	Dissolved	Har.	aco,	Specific conduct-		
		discharge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	stum (Mg)	(Na)	Stum (K)	bonate (HCO ₃)	(SO ₄)	(C1)	ride (F)	(NO ₃)	(residue at 180°C)	Calcium, magne- stum	Non- carbon- ate	(micro- mhos at 25°C)	pH Color	Col
une 5, 1963 273 7.9 0.02 0.9 0.4 1.3 0.6 10 1.4 2.0 0.0 0.5 A19 4	te 5, 1963	273	7.9	0.02	6.0	0.4	1.3	9.0	10	1.4	2.0	0.0	0.5	A19	4	٥	17 6.5 8	6.5	Ĺ

SAVANNAH RIVER BASIN--Continued

2-1850. KEOWEE RIVER NEAR JOCASSEE, S. C. -- Continued

Temperature (°F) of water, water year October 1962 to September 1963

1	,		I										
	Aver-	age	59	11 11	38	39	51	61	67	11	73	76	717
Γ		31	55	38	39	1.1	5.8	1.1	1.1	1.1	74	74	11
		30	54	51 49 41 38	34	11	56	60	11	72	70	74	64
1		58	51	51 48 41 41	32	11	55	58	11	72 69	71	73	62
1		28	4 4 60 fV	8 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	35	40 36	55	61	65	71	74	73	65
		22	47	4 4 1 1 6 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	36	4138	55	61	09	69	72	71	63
ĺ		26	50	4 4 6 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	34	42	53	63	60	69	72	75	67
-		25	53	44 44 37 36	32	41	55	59	66	70 68	70	77	63 59
		24	5.5	4 4 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32	36	5 9	66	62	70	70	78	6.0
		23	62	4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35	35	4 6	68	99	67	74	76	6.8
ıç		22	63	34 42	37	36	8 4	6 4 9	71	70	70	202	07 67
hme		21	61 59	11 33	444	40	53 48	63	70	70 67	75	75	70 66
temperature attachment7		20	61 58	11 940	‡ *	41	53	8 4	69	69	75	76	70
9		19	61	11 24	41 38	38	5.5	66	70	6 6 6 6	74 70	76	02
atm		18	68 65	34	3.8	36	55	58	72	67	73	92	71
iper		=	69	32	32	3,6	4 6 4	53	70	70	72 71	74	71
ţ	Day	16	68 65	32 !!	32	34 6	6 4	55	7.1	77	75	73	70
with		15	68 65	32	37	35	£8 8	52	6.4	78	72	4.69	65
er		14	68 65	32	37	36	4.9	57	6.8	78	72	202	72
ord		13	99	33 4 6 32	4 4 6	38	53	560	68	76	72	7.5	72
Water-stage recorder		12	66	79 11	4 t 4 t	7 7	0° 4	57	72	76	7.1	72	75
age		=	66	# 9 1 1 1 m	38	38	4 4 5 4	58	74	78	72	73	75
F-8	1	2	66	24	38	37	4 4 5 7	561	20	73	72	78	10
ate	i	6	67	2 4 11	39	39	3 4	58	65	72	25.	2 8	70
7		8	6.8	4 4 1 1	3.8	4 4	42	5.8	70	44	75	80	44
	İ	-	63	44	3.9	39	43	58	66	72	42	75	72
		9	64	44 11	38	37	4 4	55	6.0 6.0	69	76	75	74
		2	62	44 1	37	3,8	64.6	55	62 58	11	22	7.2	75
		4	61	4 4 1 1	34	36	4 6	69	55	11	75	78	72
		3	61	64 11	34	38	4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	58	54	11	75	77	75
1		2	62	11 42	36	38	45	57	52	11	72	72	7.5
L		_	58	46 11	3.8	39	39	9 50	54	11	70	75	75
		_	: : E a .	E F . E c	:: 8 s	: : E =	: : E =	:: Es	: : E s	: : E =	::	: : E =	
	Month	INDIA	October Maximum Minimum November	Maximum Minimum December Maximum Minimum	January Maximum Minimum	Maximum Minimum	Maximum Minimum	April Maximum Minimum	Maximum Minimum	Maximum Minimum	July Maximum Minimum	Maximum Minimum	September Maximum Minimum

SAVANNAH RIVER BASIN--Continued

2-1875. SAVANNAH RIVER NEAR IVA, S. C.

LOCATION.--Temperature recorder at gaging station at downstream side of bridge on State Highway 184, 0.5 mile upstream from Little Generostee Creek, and 5.8 miles southwest of Iva, Anderson County.

DANIMAGE MEM.--2,231 agare miles agreement to the second of the secon

		pH Color	10
		퓑.	8.9
	Hardness Specific as CaCO, conduct-	(micro- mhos at 25°C)	0 46 6.8 10
	dness aco,	Non- carbon- ate	0
	Har as C	Calchum, magne- sium	10
r 1963	Dissolved	(residue at 180°C)	37
ptembe	NI-	trate (NO ₃)	1.0
to Se	Fluo-	ride (F)	0.2
Chemical analyses, in parts per million, water year October 1962 to September 1963	411000	(C) (F) (NO ₂) at 180°C) magne-carbon micro pH slum at 25°C)	2.4 3.6 0.2 1.0 37
r year 0c	40,10	(80,	2.4
n, wate	Bicar-	sium (HCO ₃)	18
millio	Po-	sium (K)	2.1
arts per	7	(Na)	4.7
s, in p	Mag-	sium (Mg)	1.0
analyse	Cal-	clum (Ca)	2.6
emical		(Fe.)	0.03
ទី		(810,	9.2
	Mean	discharge (SiO ₂) (Fe) cium si (Cfs) (f)	4270 9.5 0.03 2.6 1.0 4.7 2.1 18
		Date of collection	June 3, 1963

SAVANNAH RIVER BASIN--Continued

2-1875. SAVANNAH RIVER NEAR IVA, S. C.--Continued . Temperature ('P) of water, water year October 1962 to September 1963

	١.		I											
	Aver-	age	11	5.8	51	47	11	51 48	5.5	52	57	67 56	60	66
		31	59	11	4 4 4	4 4 6 4	11	53	11	54	11	59	72	11
		30	60	56 55	48	43	11	52	60	53	77	60	66	66
		53	58	57 56	4 4 8 8	404	11	51	57	55	57	57	64	63
		28	53	56	4 4 8 4 8 4	440	45	50	57	59	67 57	79	64	63
		27	59	58	4 4 8 8	4.4	47	50	50	54	58	67	63	69
		56	58 56	56	4 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	47	50	55	52	62 58	57	76	64
3		25	58	56	4 4	4 4 6	47	51	51	55	58 58	57	7.8	62
		24	59	56	8 4	4 1	45	52	400	56	58	61	70	61 58
		23	56	57	4 6	4 4 5 5	46	51	50	56	65	55	63	68
5		22	58	58	6 4	9 4	46	51	73	52	55	77	59	70
hmer		21	62	57	64	8 4	44	51	71	52	58	78	59	09
attachment7		20	95 56	58	64	4 4	4 3	51	90	52	55	70	59	63
e at		61	58	62	64	4 6	4 4	51	50 50	71	57 55	61	75	63
temperature		81	59	63	4 6 4 9	9 4 9	45	57	54	51	57	55	76	63
per		17	58	58	50	4 4	44	57	50 50	52	71	57	58	63
tem	Day	91	60	58	51	44	45	64	52	52	71	61	58	65
with		12	59	57	50	4 4 6	45	4 8	59	52	69	74	58	63
Jr W		14	68	58	50	0.4	45	49	61	52	55	71	62 58	61
orde		13	64	59	50	53	11	53	57	52 51	61	54	58	63
recorder		21	59	57	50	4 8 3	11	4 to	50	53	61	55	76	63
age		=	59	58	51	4 4 8 8	11	52	51	53	56	54	77	63
Water-stage		01	11	58	52	4 4	11	54	51	54	90	76	68	63
ate		6	11	58	53	8 4 4	11	4 5 5	51	54	81	2,4	57	75
		80	11	58 57	53	4 4 6 4	11	47	58	54	69	76	61	75
		7	11	58 56	54	4 4 4	11	52	58	54 51	61	76	57	68 62
		9	11	57	55	47	11	54	50	68 51	61	67	57	64
		2	11	57	55	4 9 4 9 4 9	11	50	50	69	61	71	78	66
		4	11	58	55	8 4	11	52	51	50	58	568	79	65
		3	11	58	55	4 4 6 4	11	53	52	51	72	61	70	76
		2	11	59	56	8 4 8 £ 3	11	50	51	51	72	61	58	80
		~	11	59	56	4 4 6 4	11	4 4 5	52 50	500	53	75	58	76 68
			1 1	11	11	11	11	1 1	1 1	11	11	11	11	1
	Month	Month	October Maximum Minimum November	Maximum	Maximum Minimum	January Maximum Minimum February	Maximum	Maximum Minimum	April Maximum Minimum	Maximum Minimum Find	Maximum Minimum	July Maximum Minimum	Maximum Minimum	Maximum Minimum

SAVANNAH RIVER BASIN--Continued

2-1975, SAVANNAH RIVER AT BURTONS FERRY BRIDGE, NEAR MILLHAVEN, GA.

LOCATION. --Temperature recorder at gaging station at bridge on U.S. Highway 301, 2 miles downstream from Rocky Creek, and 9 miles east of Millhaven, Streem Court, and 19 miles east of Millhaven, Streem Court, approximately.

RECORDS ANALAHLE. --8.650 square miles, approximately.

RECORDS ANALAHLE. --8.650 square miles, approximately.

EXTREMES, 1962-63. --8.650 square miles, maximum, 81.7 Unly 23, 24, 28, 30 minimum, 44.7 Jan. 29-31.

EXTREMES, 1956-63. --8.450 streemperatures: Maximum, 86.7 Aug. 25, 1959; minimum, 39.7 Peb. 19, 20, 1958.

Temperature (°F) of water, water year October 1962 to September 1963

	Aver-	age	02	60	53	50 40 40	64	55	6.5	67	73	76	78	75
	⋖		63	11	51	2 4 2 4 5	11	5.9	11	69	11	980	7.8	11
		0 31												
		30	19 0	57	51	44	++	58	67	20 40	120	81	7 7 7	17.
		29	61	57	51		11	5.88	67	70	70	81	7.8	17 02
		28	61	56	51	4 4 5	4 9	58	67	6.8	68	80	7.8	70
		27	63	56	51	4 4	35	5 8	68	68	70	80	78	70
	İ	56	63	57 56	51	4 4	50	58 57	6.8	67	72	80	78	71
		25	99	57	52	4 57	4 4	57	71	68	72	80	78	50
•		24	6 8 6 6	58	52	4 4 8	4 4	56 55	72	6.8	73	80	77	72
		23	68	58	52	4 4 80 80	47	56 55	72	71	74	8 8 8 0	77	74
Ę,		22	68	60	53	5.0 8 4	48	57 56	71	71 02	74	80	7.8	75
hme		21	68	99	53	50	4 4 8 8	58	69	125	74 73	380	78	7.4
attachment7		20	70	999	52	51	64	20.00	67	70	75	90	78	74
a		19	120	60	51	50	0 4 0 0	58	64	68	76	7.9	77	72
temperature		18	72	60	50	0 0	64 4	57	63	6.6	77	7.8	77	72
peratu		11	72	69	50	0.4	4 4	57	6.3	66	78	7.7	7.7	72
t e	Day	91	72	58	8 4 9	50	47	55	62	99	78	73	79	73
t p	_	15	72	5.9	4 6	53	8 7 7	53	63	6.5	78	73	79	72 23
recorder with		14	72	200	40	3.5	0, 80	533	63	65	78	117	80	76
orde		13	73	9 6 6	6 4 4	2 4	51	3.5	6.3	9 9 9	78	27	90 62	92
record		21	74	19	50	5.5	52	5.5	46	66	77	72 71	80	77
386		=	74	199	502	53	50.2	52	4.0	65	74	72 7	18	7.2
Water-stage		2	74	61	52	51	50	52	62	99	74	73	78	77
ater		6	47.	60	52	2.5	64	2.5	586	65	122	73	79	92
emperature (8	73	260	55	50	Q 4 Q 8	5.5	5.8	49	70	73	90	75
a a		2	73	960	55	5.0	47	5.5	2.60	63	0269	27	909	72
		9	72	61	57	0 0	47	56	61	63	02	73	80	7.7
		2	73	62	999	6 6	47 7	9 4	62	7 19	22	73 7	77 8	79 7
		4	73	62	960	6 4	F 2 4	52	62	62	69	73	77	79
		6	73 7	62 6	58.5	9 4 4	1 4	50.5	62	62 6	69 69	73 7	77 77	79 7
		2	72	62	5.58	0.64	0 4	0.6	62	6.5	69	73	77	7.7
			71 7	63 6	5 2 5	100	4 5 4	0 4	61 6	65 6	69	72 7	7 2 7	78 77
		L	1 1	11	1:	- 11		- 1 1	- ::	11	11	11	::	1:
	Mean	MORE	October Maximum . Minimum	5 -	Maximum Minimum	January Maximum Minimum	mum mum	March Maximum Minimum	April Maximum Minimum	kimum iimum	Maximum	mnu mnu	_	September Maximum Minimum

ST. JOHNS RIVER BASIN

2-2324. ST. JOHNS RIVER NEAR COCOA, FLA.

LOCATION. --Conductance recorder at graging station on downstream side of bridge on State Highway 520, 0.7 mile downstream from outlet of Lake Poinsett, and 8 miles wast of County.
BARIAGEA REA --1,27 equare miles -- October 1953 to September 1960 (Specific conductance 1953 to September 1963.
RECORDS AVAILABLE. -- Chemical analyses, October 1953 to September 1960 (Specific conductance 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 to September 1960 october 1953 o

6.7 50 6.7 200 6.5 70 등등 Hd mhos at 25°C) Specific conduct-(micro-314 1200 852 868 Calcium, Non-magne-carbon-220 137 186 Hardness as CaCO₃) ate Sium 280 188 212 666 453 510 Dissolved solids Cal-cu-lated Chemical analyses, in parts per million, water year October 1962 to September 1963 Residue at 180°C 820 612 586 Phos-phate (PO₄) Ni-trate (NO₃) 1000 Fluo-ride (F) 16.6.4 Chloride <u>5</u> 65 295 204 190 Sulfate (SO₄) 81 53 62 Bicar-bonate (HCO₃) 747 3.7 Po-tas-sium (K) Sodium (Na) 157 18032 Mag-ne-sium (Mg) Cal-cium (Ca) 60 42 56 0.06 Fe) Silica (SiO₂) 1.0 Mean discharge (cfs) 283 308 201 Oct. 24, 1962 (time 1200) July 22, 1963 Aug. 27..... Sept. 15.... Date of collection

ST. JOHNS RIVER BASIN--Continued

2-2324, ST, JOHNS RIVER NEAR COCOA, FLA. --Continued

	Ś	Specific conductance (micromhos at 25°C) water year October 1962 to September 1963	nductance	(micromh	os at 25°(C) water	year Octo	ber 1962 (o Septem	er 1963		
Day	October	October November December	December	January	February	March	April	May	June	July	August	September
1	450	360	380	950	750	9	520	461	890	2200	110	930
2	455	380	380	550	150	680	909	463	840	1850	535	046
3	415	380	345	260	150	670	900	550	820	1460	638	958
*****	405	380	420	570	150	049	900	1110	810	1210	830	965
2	405	370	450	565	150	629	900	929	830	1200	810	970
,,,,	004	360	004	960	750	610	515	570	830	1220	890	950
7	004	350	420	580	150	909	520	575	815	1240	1010	980
8	004	350	004	583	150	610	520	620	810	1260	1020	950
6	007	360	004	575	150	909	515	630	820	1270	1020	909
10	004	370	410	575	150	909	510	550	815	1300	1030	006
11	400	380	420	475	150	260	515	920	845	1330	1000	808
12	390	350	280	495	150	530	920	555	860	1300	1010	920
13	390	350	570	510	750	580	53∪	562	890	1170	1030	925
14	390	360	535	520	150	009	530	950	970	1120	1020	1040
15	380	370	909	520	150	009	930	650	696	1070	1020	866
16	360	400	420	545	750	009	670	670	076	1000	1030	916
17	380	004	450	595	150	570	804	710	930	920	1050	920
18	390	004	004	009	150	580	415	730	950	870	1060	096
19	450	380	400	280	150	570	430	680	066	845	066	1500
20	430	380	004	986	150	920	433	710	1000	845	910	675
21	004	390	495	620	750	9,60	435	725	1050	860	860	044
22	004	390	200	099	150	260	445	150	1110	1030	887	450
23	004	395	508	635	150	950	094	160	1120	1310	670	450
24	400	395	510	049	.062	250	044	980	1110	1380	430	425
25	350	395	510	649	750	545	445	096	1150	1240	360	427
26	360	004	506	675	750	530	465	880	1150	1100	370	485
27	360	004	515	200	128	530	457	666	1210	1120	678	610
28	370	4 10	523	689	200	520	450	1120	1310	1150	880	710
29	370	410	525	150	1	510	054	1150	2030	1010	046	775
30	370	450	545	150	ŀ	520	094	1060	2850	955	920	190
31	370	1	920	150	ŀ	920	ŀ	1020	1	930	920	1
Average	393	381	451	009	747	580	614	738	1060	1190	855	824
						the same of the sa					!	

LAKE OKEECHOBEE AND THE EVERGLADES

2-2725. KISSIMMEE RIVER NEAR BASINGER, FLA. (Formerly published as Kissimmee River near Cornwell)

		Col- or	200	82	72	20	20	00 00	20	20	09	6 8	120	
		Hď	7.0	4.0	9 9	9.9	8.8	00 0	6.3	8.9	6.9	6.9	8 8	
	Specific conduct-		80	94	102	110	110	115	119	128	133	134	137	
	Total	acid- ity as H ⁺ 1												
	Hardness as CaCO ₃	Non- carbon- ate	6	13	13 13	14	14	15	181	17	17	17	32 32	
		Cal- cium, magne- sium	22	9 1	8 8	30	30	33	3.5	38	40	9 8	34	
963	Dissolved	solids (residue at 180°C)			A 55		A 61	A 63	104	106	100	104	108 86	
ber 19	;	trate (NO ₃)	0.0	•	9.7	•	۲.	ų.	10	°.	0,1	• •	wt	
Septem	i	ride (F)	1	ŀ	11	ł	į		٥.	٠.	o,	• •	0.0	
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	11	12	1.5	12	12	16	16	16	17	17	168	
ear Octob		Sulfate (SO ₄)	6.4	9.2	ឧដ	10	12	173	3 7	14	14	4 4	171	
water y	i	bonate (HCO ₃)	16	16	18	20	20	88	202	26	28	20 00	88	
11on, v	-6 <u>4</u>	tas- stum (K)	7.0	æ	2.0	œ.	6.	0.4		1.5	1.8	9 -	4.5	
s per mil]		Sodium (Na)	6.3	8	ໝຸຕຸ	21	Ħ	=:	12	=	11	2 :	112 8.7	
n parte	Mag	ne - stum (Mg)	1.6	2.2	6.6	2.7	2.4	200	200	3.2	3.0	4. 4	0.00	
yses, 1	- 6	ctum (Ca)	4.9	9.9	7.6	7.6	8.0	800	10.0	91	11	12	0, 8 0, 8	
l anal	Man-	ga- nese (Mn)										-		
Chemica		Iron (Fe)	0.13	90.	0.00	.03	.02	0.00	200	90.	.05	4.8	91.	
		inum (A1)												
		Silica (SiO ₂)	3.8	2.3	2 2	2.8	1.8	20	8.1	2.	1.8	9.0	44	
	,	mean discharge (cfs)			415				294				659 1060	
		Date of collection	0ct, 11-20,1962	oct. 21-31	Nov. 1-10.	Nov. 21-30	Dec. 1-10	Dec. 11-20	Jan. 1-10, 1963	Jan. 11-20	Jan. 21-31	Feb. 1-10	Feb. 21-28	

A Calculated from determined constituents.

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

LAKE OREECHOBEE AND THE EVERGLADES--Continued 2-2725. KISSIMMEE RIVER NEAR BASINGER, FLA.--Continued

		Col-	140	92	22	2 2		2	9	20	8	3	8	140	8	9	20	45	22	20	20	100	8		75	1
		Hď	6.9	6.9	8.9	8 6	;	7.1	6.9	6.9	0.0	6.7	6.7	6.7	9.9	6.5	9.9	6.5	9	9	9.9	6.3	9.9	Ī	9.9	1
	Specific conduct-	ance (micro- mhos at 25°C)	114	113	116	123	i	125	130	128	110	108	109	75	88	100	109	112	110	113	109	8	109	Ī	112	ł
	Total	#ty as H ⁺ 1		_					_											_	_			Ť		
	Hardness as CaCO,	Non- carbon- ate	8	16	72	16	: :	15	18	19	17	1.1	17	16	14	16	23	20	18	18	17	13	16		16	
	Hard as C	Cal- cium, magne- sium	32	33	32	37	;	38	38	39	34	33	33	28	27	30	38	36	34	34	32	30	32		33	1
Continue	Dissolved	solids (residue at 180°C)	99	20	99	47	:	118	118	120	96	98	92	82	88	06	6	06	88	100	68	104	82		84	115
1963		trate (NO ₃)	0.0	۲:	۰.	0,0	:	ı,	4.	4	Ν,	7	1,	•	•	•	o.	0	0	0	0	•	0.1		0.01	10.0
ember	í	ride (F)	0.2	2	2.	٦,٢	:	8	~	2	63.6	7	2	2	4.	٥,	.2	۳.	"	"		m	1		ł	:
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued		Chloride (Cl)	14	14	14	14	:	16	16	16	4.	16	16	9,5	12.	14.	14.	15	15	15	12	13	15		15	20
October 1		Sulfate (SO ₄)	10	11	10	4.5	;	15	15	15	41	13	14	11	11	13	13	12	14	15	14	15	12		13	17
year	i	bonate bonate (HCO ₃)	53	12	17	22	;	82	22	24	77	19	20	13	16	17	18	50	20	20	18	18	82		20	27
water		tas- sium (K)	2.5	1,3	1.4	e .	:	6	1:1	1.1	1.0	o.	1.0	6	80	6	1.3	1.3	1.3	1.6	1.2	1.6	1.6	t	1.5	2.2
million,		Sodium (Na)	8.7	8.2	8.2	00	;	0.8	9.2	8.7	9.0	9.0	8.8	2.0	7.1	7.8	0.6	0.6	0.6	10	9.7	7.7	8.8	1	9.2	12
rts per	Mag-	ne- sium (Mg)	2.4	2.7	3.2	2.4	;	3.4	3.5	3.4	4	4.	2.4	1.9	1.7	1.7	4.4	2.7	2.7	4	4.6	5.9	2,5		2.5	3.5
, in pa	ē	cium (Ca)	8.8	80	8.8	9.6	3	9.6	9	ន	8	7.6	9.2	8	8.0	9.2	8.0	10	9.2	8.0	7.2	7.2	8.5		8.8	12
a lyses	Man-	ga- nese (Mn)					_									_								T		
ical ar		Iron (Fe)	0.16	.00	, 4	0.00	?	90.	90.	90.	80.	60.	116	15	60	90.	•	40.	10	03	03	19	60.0		0.07	0.12
Chen		inum (A1)																	-					Ī		
		Silica (SiO ₂)	8.0	æ	1:1	e e	;	16	1.6	2.5	5.6	 	4.1	4.6	2.2	2.3	2.1	5.1	8	2.7	9.	4.5	2.9		2.8	4.1
		discharge (cfs)		_	-	488	-				534		547	699	524	208	451	-		•		982	ŀ		519	
	i	Date of collection	Mar. 11-20,1963	Mar. 21-31	Apr. 1-10	Apr. 11-20		May 1-10	May 11-20	fay 21-31	June 1-10	June 11-20	Tune 21-30	July 1-10.	July 11-20	July 21-31	Aug. 1-10	Aug. 11-20	Aug. 21-31	Sept. 1-10	Sept. 11-20	Sept. 21-30	Weighted		Time-weighted gverage	Tons per day.

LAKE OKEECHOBEE AND THE EVERGIADES -- Continued 2-2725. KISSIMMEE RIVER NEAR BASINGER, FLA. -- Continued

Temperature ('F) of water, water year October 1962 to September 1963 Day Aver-	20 21 22 23 24 25 26 27 28 29 30 31 age	75 78 79 79 76 74 70 70 70 74 70 72 70 74 74 68 68 68 65 62 61 65 62 58 60 63 65 67 70 70 70 70 70 67 60 61	70 67 63 64 65 57 63 65 62 59 62 65 62 65 62 71 63 69 68 69 71 72 73 73 73 72 71	78 78 75 80 75 80 80 78 76 75 76 80 80 80 80 80 80 80 80 80 80 80 80 80	87 87 84 84 81 83 85 87 87 87 87 86 86 86 86 86 86 86 86 86 86 86 86 86
ber	3 2,	9 76 8 68 5 67			1 9 3 3 4 2 5 4 5 5 5
empe	23	7.9 6.8 6.5			83 81 74
Sept	22		63		84 81 77
\$	21				
362	20	75 70 58	70 62 78	7.8 8.3	87 78 78
er 1	19	75 70 58	67 65 78	75 84 87	86 78
top	18	5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62 58 65 60 78 78	884	8 6 2 2
ų v	15 16 17 18	68 55		4 6 70	88.00
year Day	16	83 80 64 65 52 55	62 69 60 59 77 77	72 73 73 83 85	85 87 81 80
ter	-				
wa.	13 14	80 45 65 64 65 70	65 55 61 61 74 76	77 74 81 83 84 85	84 87 84 84 84 84 84 84 84 84 84 84 84 84 84
ater	2 1:				
¥.	1 12	83 RC 54 65 64 55	60 67 63 67 69 77	77 77 80 80 84 85	94 83 83 83
E	0-	75 55	55 6		4 4 4 4 4 4
٥	6	1 6 4	5000	74 74 79 70 82 83	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
tur	8	1 & a	57 51 65	7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 6 7
per	7	11%	0 0 8	37.8	444
ē	9	112	60 60 74	77	2 4 4 7 7
	5	115	733	76	4 4 4
	4	70	55 72	7471	200
	က	70 70	57 55 70 67 70 72	73 74 72 71 82 82	2 E E
	2	71 70	60 60 58 70 51 66	71 77 77 73 81 82	4 L 4
	_	711	ο .cc.		4 4 8
;	Month	October November December	January February March	April May June	JulyAugust

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

2-2827.5. MIDDLE RIVER CANAL NEAR FORT LAUDENDALE, FLA.

LOCATION.--Conductance recorder on downstream side of bridge on N. W. 31st Street intersection of Seaboard Airline Railroad Bridge.
RECORDS VARILABLE.-Chemical analyses (Specific conductance: May 1862 to September 1963.
1862-63.--Specific conductance: Maximum daily, 23,100 micromhos an. 13; minimum daily, 695 micromhos Oct. 4.
EXTREMES, 1961-63.--Specific conductance: Maximum daily, 26,700 micromhos June 4, 1962; minimum daily, 680 micromhos Sept. 2, 3, 1962.

		Col- or	20	
		Hd	7.4	
	Dissolved solids Hardness Specific	ance (micro- mhos at 25°C)	487 5110 7.4 50	
	thess	Non- carbon- ate	487	
	Harc	Calcium, magne - sium	710	
	spilos l	Cal- cu- lated	3260 2900 710	
mber 1963	Dissolved	Fluo- Ni- Phos- ride trate phate Residue Cal- Calcium, Non- (micro- (F) (NO ₂) (PO ₂) at cu- magne-carbon- mhos 180°C lated sium ate at 25°C)	3260	
Septe		Phos- phate (PO ₄)		
962 to		Nì- trate (NO ₃)	0.4 2.0	
ber 19		Fluo- ride (F)	4.0	
Themical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	1450	
lon, water		Bicar- bonate (SO ₄) (HCO ₃)	214	
r m111;	272			
rts pe	838 31 272			
ses, in pa		Sodium (Na)		
analy		ne- sium (Mg)	26	
Chemica]		Cal- cium (Ca)	5.7 0.04 124 97	
		Silica Iron (SiO ₃) (Fe)	0.04	
		Silica (SiO ₃)	5.7	
		Mean discharge (cfs)		
		Date of collection	July 17, 1963.	

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

2-2827.5. MIDDLE RIVER CANAL NEAR FORT LAUDERDALE, FLA.--Continued Specific conductance (midromhos at 25°C) water year October 1962 to September 1963

					(mach demos at a c) mater year october took to deptember too	, marer	year octo		man dag on	700		
Day	October	November December	December	January	February	March	April	May	June	July	August	September
1	1	0.6	06	109	97	94	86	113	67	77	37	5.7
2	67	91	9.5	102	96	94	100	111	78	64	38	58
3	51	88	91	102	76	47	100	110	76	21	33	37
****	23	16	66	102	73	4.7	101	103	45	54	47	41
5	41	88	76	105	19	25	103	110	55	4.2	41	64
,,,,,,	52	68	8	9	ď	5.7	103	011	4.3	4	ď	ď
7	61	68	. 0	76	9 9	0,4	106	123	, 8	5.5	2 0	3 4
8	9	88	96	92	20 00	0 9	104	121	26	2 40	0 0	2.5
9	69	09	95	100	66	62	103	119	62	62	26	61
10	49	19	16	100	66	49	104	121	7.2	67	53	62
11	7.1	76	64	100	40	58	105	ţ	7.7	9	53	67
12	99	80	86	100	37	69	105	!	82	53	2.5	1.
13	73	75	80	101	54	79	110	120	24	26	102	7.3
14	98	7.2	2 6	101	000	9	109	123	t ac	2.0	100	2,4
15	78	7.8	86	66	000	71	100	119	22	09	73	2.2
16	06	19	66	89	- 67	74	110	117	7.8	37	65	77
17	83	82	- 26	95	19	82	111	119	42	34	;	19
18	92	84	96	96	29	15	111	120	85	45	ł	34
19	88	85	86	95	47	77	112	122	88	51	82	;
20	88	98	101	100	62	80	112	126	06	62	53	24
21	88	86	66	100	58	82	112	125	91	68	33	66
22	89	86	100	100	63	84	112	125	96	14	37	52
23	80	8.7	66	1	99	85	111	119	;	28	58	25
24	16	88	100	46	73	88	112	120	89	35	47	27
25	80	06	100	96	†	88	113	105	89	38	47	33
26	83	06	102	93	47	89	115	96	43	3.7	53	37
27	06	92	101	87	35	89	117	66	43	77	54	37
28	1	92	100	8 1	39	92	119	99	40	4	41	04
29	91	66	102	88	1	9.5	119	74	41	48	45	94
30	86	66	101	06	1	76	119	99	43	51	55	94
31	76	:	106	46	1	† 6	1	63	1	31	33	1
Average	74	84	7.6	96	67	1.1	108	108	99	7.4	51	47
									1	7		

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

2-2872, MIAMI CANAL EAST OF LEVEE 30, NEAR MIAMI, FLA,

		Col-	1 8	96	8 8	88	186	585
		Н	8.1	8.0	8.0	7.9	8.5	0.4.4
	Specific conduct-	ance (micro- mhos at 25°C)	441	438	435	450	428 450 460	460 443 414
	Total	acid- ity as H ⁺ 1					•	
	Hardness as CaCO,	Non- carbon- ate	1	11	თდ	10 00	0.00.00	œ æ =
		Cal- cium, magne- sium	210	208	208	212	216 216 218	220 218 154
1963	Dissolved	solids (residue at 180°C)	290	276	284 294	302 302	292 298	296 280 274
September 1963		rrate (NO ₃)	0.2	۴,	40	•••	100	644
o Septe	ı	Fluo- ride (F)	0.2	8	2,5	u, m,	1 00 00	u°.u°.4
Chemical analyses, in parts per million, water year October 1962 to		Chloride (C1)	38	88	382	8 78	25	25 25 25 25
year Octo		Sulfate (SO ₄)	8.8	1.6	44	ဝံ ဆံ	199	44
water	i	bicar- bonate (HCO ₃)	248	240	240	250	232 256 258	258 248 174
111on,	å	tas- sium (K)	1.0	6.	6,7,		0.1	8.20
ts per mi		Sodium (Na)	20	19	19	19	70 10 10 10 10 10 10 10 10 10 10 10 10 10	18 20
in par	Мад-	ne - sium (Mg)	8.0	8.1	6.9	7.4	7.1	6.8 8.1 7.1
alyses,	5	clum (Ca)	11	20	72	72	75	77 74 50
cal an	Man-	ga- nese (Mn)						
Chemi		Iron (Fe)		•05	90.00	2.8	198	200
		Alum inum (Al)						
		Silica (SiO ₂)	5.8	5.5	4.6	4.4	14.5	8.4.4 8.0.0
	100	mean discharge (cfs)						
		Date of collection	Oct. 1-10, 1962 Oct. 11-17 19	20 20	26-30 Nov. 1-10	17-20 Nov. 21-30	Dec. 1 Dec. 2-7, 9, 10 Dec. 12-20	28-31 Jan. 1-10, 1963 Jan. 11-20

80 80 80 80 80 80	88888	82223	70 60 65 65	8883	75
40000	8 8 8 8 6 4 6 4 6 0	8.7 2.9 7.9 1.8 7.8	8.8 0.8 1.4.7 8.	7.7	7.9
448 442 441 441 447	442 448 455 466 470	467 477 482 470 480	488 472 478 490 495	520 480 457 469	460
M000m	@ 4 12 0 0	⊕ ₩ 4 0 <i>F</i>	1829	1777	7
214 200 196 208 210	220 220 220 220	22222	232 242 248 248	248 232 232 4	220
290 286 312 320 286	320 308 310 320	282 304 312 320	336 322 326 330 288	348 338 344 318	307
4,044	46446	0.04.6	44,000	4.00	0.2
			ಬೆ.4 ಬೆ.ಬೆ.ಬೆ	w.4.w.4	0.3
28222	22 22 22 24 25 25 25	88888	22 28 27 24 27	3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27
00 40040		00088	22 24 02820	5.8 2.9.4.4	2.4
250 250 250 250	255 256 256 256 268	270 274 278 280 274	280 276 284 276 276	288 288 288 288 288 288 288	259
00000	00000	6666	4	0,000	6.0
8888	22222	19 19 20 21 21	22222	2222	8
00000 00000	11.7	10 8.0 7.9 6.2	4.8 0112 112	11 9.1 9.0	7.4
50 44 47 47	74 69 86 78	78 79 82 82	88888	82 78 75	92
28222	282222	488688	88888	2228	0.03
8 8 8 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	ಬಬಕುಬಕ ವಹಿವಸಿಸ	48448 00804	44400 000040	0000 0000	4.6
Jan. 21-31,1963 Feb. 1-10. Feb. 11-20. Feb. 21-28	Mar. 11-20 Mar. 21-31 Apr. 1-10 Apr. 21-30	May 1-10. May 11-20. May 21-31. June 1-10. June 1-10.	June 21- June 21-30 July 21-30 July 11-20 July 11-20 Aug. 1-8	Aug. 17-31 Sept. 1-10 Sept. 11-20	Time-weighted average

LAKE OKEECHOBEE AND THE EVERGLADES--Continued 2-2872. MIAMI CANAL EAST OF LEVEE 30, NEAR MIAMI, FLA.--Continued

Specific conductance (micromhos at 25°C) water year October 1962 to September 1963

10646 90 112111	45.8											
0w4v 0v000 10w4v		459	439	450	450	389	458	994	450	503	486	509
w4v	457	442	451	450	450	390	194	471	470	165	964	471
40 00 00 10 00 40	450	435	455	164	450	390	454	471	460	064	493	508
0.0000000000000000000000000000000000000	445	044	450	644	455	391	094	466	7460	864	493	201
% % % % % % % % % % % % % % % % % % %	455	442	451	448	644	00 7	458	994	465	504	461	109
	457	435	455	450	450	604	463	994	4 55	664	494	200
000 H2W4W	445	445	451	450	451	004	455	472	465	964	480	200
	451	437	i	644	450	104	462	466	094	513	482	498
0	460	444	455	448	451	398	494	478	460	512	453	488
22	644	452	458	644	451	395	463	455	475	518	501	964
0.04.0	448	144	457	448	450	410	465	472	4 50	164	164	767
u4n	448	144	494	6443	644	408	465	475	470	667	470	200
	450	154	461	445	044	404	195	462	044	512	492	200
2	644	445	894	445	044	398	461	468	094	514	200	184
	443	448	463	451	441	399	694	470	470	203	200	884
•••••	447	1	459	450	1 4 4	399	462	470	465	208	489	498
17	777	465	094	6443	154	398	472	472	470	509	552	498
8	ł	452	462	453	144	395	465	474	465	504	559	664
19	431	462	844	453	044	400	694	474	475	916	552	064
:::0	944	448	457	450	445	410	468	424	415	504	484	480
1	439	458	453	644	644	412	470	470	470	511	909	884
22	044	4 50	094	448	644	405	463	471	475	527	109	064
23	444	944	455	451	450	402	466	475	470	516	503	488
24	446	451	1	154	044	402	477	477	525	520	200	482
2	į	458	1	450	445	405	414	184	480	528	205	084
•••••	944	446	1	452	944	409	194	482	470	512	502	470
7	443	453	1	424	450	398	472	476	0.4	517	505	476
8	441	450	458	450	445	399	488	483	472	514	965	481
	441	445	456	451	1	397	474	485	468	530	504	479
30	444	448	456	7460	1	398	475	484	786	525	505	488
1	:	!	854	760	1	004	1	482	!	529	210	:
Average	944	944	456	450	447	004	594	472	468	910	664	490

LAKE OKEECHOBEE AND THE EVERGLADES--Continued 2-2872. MIAMI CANAL EAST OF LEVEE 30, NEAR MIAMI, FLA.--Continued

	Aver-	age				
	¥	a	81 75 71	72 71 75	77 75 79	79 80
		3	7.2	72	76	98 1
		30	80 72 72	72	72 80 78	76 87 82
		29	77 68 78	70	73 78 78	78 87 80
		28	78 70 75	70 47	96 76 76	78 88 80
		27	75	72 70 76	78 77 78	78 86 81
		26	78	72 77 76	76 76 75	83 83 80
33		25	75	70 73 72	79 76 77	80 7.8
196		24	78 70	70 73 68	77 76 98	78 80 78
ıber		23	80 70 72	74 70 70 73 64 68	76 77 74 76 88 98	79 79 78
pter		22	80 74 74	722	74 76 80	83 76 79
of water, water year October 1962 to September 1963		20 21	90 76 69	70 68 72	75 76 84	7 3 4 9 4 9 4 9
2 to			8C 78 68	727	77 76 78	8 4 8 8 0 8 0
196		19	80 70 70	72 72 77	76 76 80	80 80 80
ber		16 17 18	 74 72	70 74 68 68 86 86	76 76 76 74 78 89	800 800 800
)c to		-1	82 76 70	70 68 86		78 80 79
ar	Day	2	82 82 78 70 70	74 70 71 72 75 75	75 76 76	80 80
r ye		15	82 78 70	74 71 75	84 76 82	78 80 78
ate.		11 12 13 14	80 70 66	74 68 76	75 74 78	78 80 79
r,		13	82 76 65	78 72 74	76 74 78	78 80 81
vate	,	12	82 74 66	78 77 71 70 71 85	76 75 80	86 76 80 78 78 82
of ,			82 78 68	7177171	84 78 78	
(°F)		2	82 76 68	72 72 78	80 76 78	78 75 80
9		٥	81 74 70	75 72 78	78 74 78	9.08 0.09 0.09
tur		80	84 97 1	22 22	78 75 76	888
Temperature		^	82 76 70	68 72 70	78 74 76	82 78 80
Ter		•	94 78 70	70 72 74	80 74 76	37 80 80
		2	82 78 76	70 68 72	47 47 80	75
		4	82 78 72	72 70 72	72 72 80	78 80 78
		က	81 76 72	70 76 72	74 72 78	78 79 78
		2	82 79 73	75 76 76	72 72 76	76 78 80 78 78 84
		-	80 79 72	74 78	73	J
i	7	Month	October November December	January February March	April May. June	July August September

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

2-2886. MIAMI CANAL AT N. W. 36th STREET, MIAMI, FLA. (BELOW CONTROL)

LOCATION.--Conductance recorder just below dam, 300 feet downstream from N. W. 36th Street Bridge in Miami, Dade Contry, 1.4 whise upstream from Parkan Chani, and 5.7 miles upstream from mouth.

RECORDS AVAILABLE.--Specific conductance: April 1959 to September 1963.

EXTREMES, 1962-63.--Specific conductance: Maximum daily, 23,100 micromhos May 3; minimum daily, 412 micromhos Cot. 3, 4. Secific conductance: Maximum daily, 42,800 micromhos June 10, 1962; minimum daily, 395 micromhos REMIRES, 1959-63.--Specific conductance: Maximum daily, 42,800 micromhos June 10, 1962; minimum daily, 395 micromhos REMIRES.--Canal is tidal at low flow.

		Specific	Specific conductance (micromhos at 25°C) water year October 1962 to September 1963	ce (micro	mhos at 2	5°C) water	year Oc	tober 1962	to Septe	mber 1963		
Day	October	November December	December	January	February	March	April	May	June	July	August	September
1	430	1740	13100	5080	1850	044	20500	20300	18600	1	1	1990
2	412	1150	13100	6870	2780	470	19300	22400	18500	1	1	7280
3	412	1100	13300	8200	3210	465	18100	23100	18000	1	!	5790
*****	420	1120	12300	7750	2440	044	17400	18700	18200	;	ł	1390
5	450	1450	10700	9100	249	485	17700	18300	17500	:	!	1160
,		1700	0049	8340	1210	645	19200	17300	15600	;	;	858
7		2120	3940	9120	2060	710	21500	15300	8900		;	084
8		2130	3330	5730	3440	870	20200	13600	4610	1	;	6.80
6	428	1400	3920	2850	3880	166	18200	12200	4670	i	!	084
10	455	1100	2660	2450	4330	2380	18100	1900	3640	1	1	480
11	454	1100	1420	2860	5210	2050	19500	12300	1820	;	ļ	475
12	423	1080	1150	3230	4750	2720	20000	14600	2020	1	1	475
13	420	1050	1050	3240	3400	3320	19400	16700	1	;	1	475
14	430	1010	1400	1140	2000	3410	20300	16900	1	1	ł	475
15	433	1010	2300	1100	1200	4090	20900	17500	1	!	1	480
41	987	0001	2750	1030	9	4.790	22600	175.00	1		1	47.6
	,,,,	0.00	0040				000	000				
	26.20	0701	2250	222		000	21400	000	: 1	1	1	2 4
			200	777	,		200	2 4				
	00061	1040	0627	1130	400	9000	00661	0017	!	!	!	0.4
20	8620	1050	2850	1400	450	7200	20000	15100	:	!	1	094
21	14600	1030	2600	1100	450	8400	17600	15600	1	1	2950	485
22	11200	1040	3600	1000	445	10000	16200	15200	1	;	1970	495
23	12000	1030	4750	1020	455	11400	15300	14600	1	!	1150	495
24	12000	1030	5300	1050	455	12900	14600	15600	1	:	2310	510
25	18000	1030	3200	066	455	14300	16200	15200	1	!	9536	205
26	10200	1300	2950	1440	455	16100	17600	16200	1	ŀ	5750	200
27	_	2150	2350	2110	455	17400	18400	17900	;	1	1380	492
28		8460	1850	1880	044	19000	16800	18500	;	!	009	495
29	10000	12400	1200	1090	1	20500	15600	20100	!	1	568	505
30	9200	12400	1450	1690	!	22000	18200	19100	;	1	2450	505
31	6550	!	2890	2090	1	21300	1	17900	1	1	7580	ł
Average	2000	2200	0044	3200	1700	7200	18800	16700	1	1	1	1200

LAKE OKEECHOBEE AND THE EVERGLADES -- Continued

2-2908. TAYLOR SLOUGH NEAR HOMESTEAD, FLA.

of LOCATION.--Temperature recorder at gaging station at upstream side (north) of bridge on State Highway 27, in Everglades National Park, 1.5 miles north of Royal Paris, 9.4 miles outhwest of Homestead, the Medic County, and 12 miles north of indefinite mouth at Florida Bay.

REORDIS ATALIABLE.—Water temperatures: Annuary 1861 to September 1663.

EXTREMES, 1962-63.--Water temperatures: Marimam, 50°F Dec, 15.

EXTREMES, 1962-63.--Water temperatures: Maximum, 104°F July 22, 23, 1961; minimum, 50°F Dec, 15, 1962.

REWARKS.--No record Mar. 16 to June 8, 1963.

Chemical analyses, in parts per million, water year October 1962 to September 1963

	Col- or	23			
_	Hd	7.7 3			
Hardness Specific	ance (micro- mhos at 25°C)	348			
dness	Non- carbon- ate	œ 4			
Har	Calctum magne- sium	174			
Dissolved solids	Cal- cu- lated	198 199			
Dissolve	Residue at 180°C	198 210			
	Phos- phate (PO ₄)				
	Ni- trate (NO ₃)	0.0 0.0			
	Fluo- ride (F)	0.0			
	Chloride Fiuo- Ni- Phos- (Cl) (F) (No) (PO) at cu- magne-carbon- mhos 180°C lated sium at at 25°C)	16 16			
	Sulfate (SO ₄)	10 0.6 202 0.8 9.1 .2 208 .4			
	Bicar- bonate (HCO ₃)	202			
Po-	Sodium tas- H (K) (K)				
Mag-	ne- sium (Mg)	3.2 0.01 63 4.1 2.7 .01 66 2.3			
	Cal- cium (Ca) (66			
	Iron (Fe)	0.01			
	Silica (SiO ₂)	3.2			
	Mean discharge (cfs)	5.5			
	Date of collection	Oct. 29, 1962. Nov. 8			

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

LANE ORDERINGER AND THE EVERGLADES--CONTINUED 2-2908. TAYLOR SLOUGH NEAR HOMESTEAD, FLA.--Continued

					-	Temperature	erat	ure	(°F)	of (wa	water,		er	year	water year October 1962	ope	r 15		to S	ept	September		1963						1	
															Day																A
-		2 3	4		5 6	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Tivelage
																		ç		- 3	;	;	ç	ç	;	i	ľ				ć
ο αο : :	84 32		85 36		85 86		86 84	8 8	8 6	9 0	85	81	8 3	82	9 0	73	78	28	77	11	7.8	78	77	7.4	1.2	72	72	22	2,0	40	80
	78 7	78 7	76 76		73 7.1		70 72		16	73	3 74	7.3	72	20	72	74	74	77	78	78	4	7.8	73	7.2	72	20	99	99	69	-	74
							_	72		_		69	_	68		7.2	•	74	16	16	18	73	7.1	7.2	2	99	99		65	;	2
•	- 69		19 69					67	_			9				99		49		63	89	68	67	69	69	20	69		89	99	99
•	68 65		99 99		94 94		29 65		9 60	96	9 29	25	51	50	21	5.7	69	61	61	61	29	99	99	29	69	89	99	89	99	63	62
:		9 09	59 59		58 58		58 59	58	8 60		7.1	7.1	7.1	7.1	7.1	7.0	2	70	72	72	89	69	69	70	2	2	2		89	89	99
:	609						58 58			9		70			-	6.3	89	2	69	99	63	63	65	6 2	49	2	69	89	67	99	49
•	69 89		69 69		68 64		99 99	59 +	9 6	70	72	74		99		65	77	77	74	72	89	99	7.1	72	72	70	61	1	1	1	69
9	99 99		66 68	_	94 64				64 63	99		70	99	61	61	6.1	65	63	63	62	99	63	79	89	20	61	53	1	1	1	9 4
::	67 7						70 69	67		7.0	72	72	7	70	-	-	1	1	1	;	1	1	1	1	1	!	!	1	-	1	;
9	9 09	7 79	71 71	_	71 7		69 64	† 64	99 5	6.8		70		67	1	1	1	1	1	1	1	ł	1	1	1	1	1	1	1	1	1
Maximum	1		-	_	1		1	- 1		-	1	ļ	1	-	1	1	ļ	ļ	1	-	1	1	- 1	1	-1	ł	!	1	1	1	;
:	1	!	1		1		!	1	1	1	1	i	1	!	1	1	;	1	1	1	1	i	ţ	1	ļ	1	1	1	1	;	1
Махітит	-	1	-		1		1		1	-	4	- !	1	_	- }	ì	1	1	1	1	1	ţ	!	1	1	1	1	1	i	ł	ł
i :	1	_	1		1		1	-	-	1	1	1	!	1	1	1	1	ļ	1	1	1	1	1	ļ	1	1	1	!	1	1	ŀ
Maximum	$\frac{1}{1}$		1		1		83	94		8.7	8 8	60		8	8.9	9	97	44	95	93	6	92	95	88	82	96	63		9.7	1	ł
:	1		1	_	+		75	_	5 79	8.1	39	34	85	79	13	85	87	87	98	83	83	82	82	81	84	18	82	82	90	1	1
Maximum					1 91	_						8		8		8		85	8.7	87	98	7,8	9.4	84	48	98	85		98	- 48	87
:	85 86		86 81		84 82	_	85 84	63	3 83	_	3 79	79	4	79	78	7.8	78	8	7.8	81	90	77	77	78	78	18	62	77	73	11	80
Maximum 8	878		6 83		1		90 87	1 87	7 88	80		8.7		96	76	86	81	83	85	89	9.4	1	93	9.5	95	63	9.5	-	95	92	89
Minimum 7	77 77		78 7		1		4 84	833		83	9 83	8.2		8.1	85	8.1	81	980	4	9 8	85	1	84	83	84	84	85	85	85	4 8	82
	89 8				98		86 88	92	2 90	98	98	89	85	4,6	89	4 (80	80	42	82	84	8	8.2	81	82	88	68	87	87	1	86
:		1	1	\dashv				\dashv		\dashv		80		8		80		46		79	81	82	81	8	81		87	\neg	8.5	:	82

61 75 77 78 78 78 78 78 78

8 2 2,8

8 2 8 2

76 88

2 2

8 3

85 85

85

g &

2,8

9 9

<u>ရှိ 8</u>

8 8

8 2

:

Maximum Minimum **faximum** Minimum daximum Minimum

LAKE OKERCHOBEE AND THE EVERGLADES -- Continued

P-33 NEAR HOMESTEAD. EVERGLADES 2-2908.2.

jo

miles southeast of the 40-mile bend in the Everglades, 13 miles southeast county. 10 minum, 45°F Dec. 14. 10, 1963; minum, 45°F Dec. 14, 1962 11, T.56 S., R.36 E., in the country of Homestead, Dade Country April 1960 to September 16 Maximum, 110°F Aug. 10, mi Maximum, 110°F Aug. 10, 110°F Aug. U.S. Highway 41, and 16 miles northwest RECORDS AVAILABLE.—Water temperatures: Ap EXTREMES, 1962-63.—Water temperatures: Ma EXTREMES, 1960-63.—Water temperatures: Ma Sec recorder in

Average

1 1 Maximum .

Month

Maximum

Minimum Vovember Maximum . Minimum . Maximum

ebruary

Minimum Minimum

LAKE OKEECHOBEE AND THE EVERGLADES--Continued

2-2908.3. EVERGLADES STATION P-35 NEAR HOMESTEAD, FLA.

LOCATION.—Temperature recorder in SE2 sec.36, 7.57 S., R. 34 E., in the Everglades, 100 feet north of Rookery Branch, 8 miles upstream from Shark River, miles northwest of Royal Palm Ringer Station, and 24 miles west of Rowals.

RECORDS AVAILELE—"Meter temperatures: Maximan, 105° to 10.5 September 1863.

EXTREMES, 1962-63.—"Water temperatures: Maximan, 105° Fuller 1,3 infinam, 61° Fuller Nov. 25.—"Water temperatures: Maximan, 105° Fuller 1,3 infinam, 60° For several days in April and December 1960, January 1961.

		Col- or	7.7 30 7.4 160 7.6 110 7.2 60
		рН	7.7
	Specific conduct-	ance (micro- mhos at 25°C)	312 19800 1410 365
	lness aCO,)	Non- carbon- ate	16 2800 110 28
	Hard as C	Calcium, Non- (i magne-carbon- sium ate a	112 3160 270 146
per	Dissolved solids	Cal- cu- lated	167 13000 806 210
Continu		Residue at 180°C	194 14900 944 236
ır 1963	i	trate phate (NO ₃) (PO ₄)	0.3
eptembe	;	trate (NO ₃)	0.2 0.0 .4 5.7 .0 .6 .0 .5 0.3
2 to Sa		ride (F)	2.0 4. 0.
toper 196		Chloride (Cl)	42 7050 350 39
hemical analyses, in parts per million, water year October 1962 to September 1963Continued		Sulfate (SO ₂)	1.2 754 36 6.8
n, wate	i	bonate (HCO ₃)	118 439 196 156
mill10	Po-	tas- sium (K)	0.8 103 7.0 1.4
arts per		Sodium (Na)	21 3870 218 23
s, in p	Mag-	ne- sium (Mg)	3.5 393 24 51
analyse		Cal- cium (Ca)	39 619 68 50
emical		Iron (Fe)	0.02 .81 .08 .05
C.		Silica (SiO ₂)	0.9 20 5.8 7.3
	,	Mean discharge (cfs)	2.17 1.30 1.74 2.13
		Date of collection	Nov. 13, 1962 Apr. 23, 1963 June 26 Sept. 12

LAKE OKEECHOBEE AND THE EVERGLADES -- Continued

2-2908.3. EVERGLADES STATION P-35, NEAR HOMESTEAD, FLA. -- Continued

J.	Temperature (°F) of	J.	J.	J.	(F)	J.	J.	J.	J.	J.			۱ سه		ter,	, wat Day	er	water, water year October 1962 Day	00	tobe	r 16	62	to S	epte	mpe	September 1963	963				-	
Month	-	2	က	4	5	9	7	80	٥	2	=	12 1	13	4	5	16 1	17 1	18	19 2	20 2	21 2	22 23	3 24	4 25	5 26	6 27	7 28	8 29	9 30	0 31	Ave	Average
October Maximum	81	980	78	28	80	80 82	85	22 8	82	79 7	8 8 2	78	787	9/	80	82	76 7	73	75 7	74	72 72 70 70		72 73		72 72 70 70		70 72 67 67		73 69	69 68		77
ovember Maximum Minimum	70		69		65	65		67	70 67	68		11											74 71				69 67 61 62		65 66 65 62	11		69
December Maximum	66	67	66	66	68	66	63	65	66	65	63	63	63	633	63 6	65	70 7	74	72 6	68	68 73 66 67		74 72 68 68		75 76 71 70		77 76		78 77	71 71 67		69
January Maximum Minimum	71	70	70	69	69	69	74	71 67	69	70	73	78	217	73	81 7	76	76 7	77	76 7	79	80 79 73 73		73 77 69		75 73		77 79		77 75	2 77		75
February Maximum Minimum	71	79	72	77	76	78	69	79	70	80	387	82	80	92	73 7	77	73.7	72	81 8 75 7	73 8	81 77 70 73		74 80 72 72		85 84 75 77		80 73 72 71		11	11		78
ch laximum linimum	80	77	77	81 78	83	87	82	78	81	84	83	83	77	46.	85	83	86	78	85 8	86	82 77 77 73		76 76		79 82 72 73		89 94 75 78		89 93 80 76	88		83 76
il faximum	8 8	83	83	78	85	88	88	96	98	97	Ħ	11		11	-	11	H	11	++		11		96 98 88 91		98 92 94		98 93		86 84 82 80	11		11
May Maximum Minimum	8 2	83	83		83		89	8 28	83 88	88	4 48	97	958	8.2	88	833	95	863		88	92 94 84 84		98 95 86 89		96 98 98		97 04 86 87	_=_	03 95 95 90	88		82
June Maximum Minimum	105	98	1051	103	99	99	97	98	96	96	98	902	946	89	90 8	91	981	10010	102102 94 93		98 86		99 98 90		95 93 87 86		97 95 82 89		94 100 86 88	11		86
faximum	101	98	104 86	98	86	102	100	89	102	028	88	88	94	2.2	96	88	98	101 85	00 101 86 86		00 103 85 84		01 97 87 86		99 97 83 83		93 91 84 84		91 87 82 81	8.6		98 98
August Maximum	91		92		2.2	100	68	103	95	1001	2.2	98	828	96 18	99	98	822	98	89 9	91 5	97 94 80 80		94 98 81 82		97 98 82 83		95 95 81 82		99 97 82 84	93		82
September Maximum	90	83 88	90	92	92	92	91	92	8 1.	83	8 5	92	918	91	96	93	932	90	91 9	# S	85 87 79 81		82 82 81 82		81 89 79 79		93 93		90 90	11		3,49

PEACE RIVER BASIN

2-2970. PEACE RIVER AT ARCADIA, FLA.

LOCATION. --At gaging station on left bank, 500 feet upstream from bridge on State Highway 70, 1 mile west of post office in Arcadia, De Soto County, and

6.1 miles une formation of the control of the contr

		Col-	125	8	9	10	8	20	30	22	32	30	30	20	9	į	110	130
		Hq	7.2	7.2	7.6	7.1	7.6	7.5	7.5	7.5	7.5	7.6	7.6	7.6	7.7	2.4	7:1	7.2
	Specific	ance (micro- mhos at 25°C)	142	229	569	308	232	281	328	345	342	332	326	305			191	
	Hardness	1 5	32	63	77	88	72	11	92	100	101	96	93	82	77	1	39	38
	Hard	Calcium, magne- sium	55	94	114	127	96	118	136	144	142	138	132	124	108	132	28	8
1,963	solids	Cal- cu- lated	1	ì	;	ŀ	}	1	1	1	}	1	1	ł	}	i	1	1
September	Dissolved solids	Residue at 180°C			194				234	240	238	230	224	21.4	210	1	110	120
2 to		Phos- phate (PO ₄)	5,00	=	<u> </u>	13	12	13	2	9	6.	61	81	4.	9.80		5.40	
er 196		Ni- trate (NO ₃)	0.0 5.00	m		1.5	0	ਜ਼	0	•	.1	.1	.1 18	.1 14	•	1	۰.	0
r Octo		Fluo- ride (F)	1,3	2.2	5.6	3.1	2.3	2.1	2.5	2.8	2.8	2.8	3.0	2.7	2.2	2,2	1:1	1.5
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	9.5	12	12	38	16	16	20	17	81	20	18	20	119	1	15.	14.
million,		Sulfate (SO ₂)	23	48	26	09	25	59	47	8	8	72	69	19	46	1	22	52
ts per		Bicar- bonate (HCO ₃)	28	38	45	47	58	20	54	24	20	51	48	51	45	1	23	8
in par	Po-	tas- sium (K)	6.0	1.0	1.3	1.5	1.7	1.3	1.6	1.6	2.4	3.2	3.2	2.9	2.6	Ī	2.5	1.8
analyses,		Sodium (Na)	8.4	14	12	16	14	16	18	18	18	18	18	18	18	;	9.7	9.6
emical	Mag-	ne- sium (Mg)	4.3	7.7	13	12	8.1	8.8	12	14	13	13	==	10	8.6	1	4.4	4.3
ŝ		Cal- cium (Ca)			56				32	32	32	34	34	33	59	ł	16	12
		Iron (Fe)	0,01	8	8.	.05	10.	6.	8	8.	ş.	•03	8	ş	ន្	1	60.	.13
		Silica (SiO ₃)	8.8	13	1.	7.	12	13	12	=	8.0	7.5	8.4	8.9	9.7	1	0.9	5.7
		Mean discharge (cfs)	2067	909	363	369	623	341	386			291	322				2032	
		Date of collection	0ct. 1-10,1962	let, 11-20	Oct. 21-31	lov. 1-10	lov. 11-20	lov. 21-30	Dec. 1-10	ec. 11-20	bec. 21, 23-31	12, 13, 1963	19-23	an. 24-31	'eb. 1, 2,4-13	'eb. 3	Feb. 14-20	'eb. 21-27
- 1			. 0	0	0	z	z	Z	Р	A	Α,		•	2	=	4	4	4

11119	18898	ន្តន្ត	30	180 200 200	150	120	92	100	100 150
0.87	1.00.7.	7.3	6.7	4.24	6.8	6.7	7.1	6.9	6.0
120 110 115 151	219 300 355 400	395 400 420	350	200 160 110	125	168	218	171	241
21312	60 95 83 137	144 115 158	137	49 43 27	31	47	99	49	37
86 86 86 86 86 86 86 86	90 120 132 158	170 156 180	148	78 62 52	20	68	06	70	96.09
11111	136	111	125	111	ł	1	1	;	11
158	244 244 258 300	286 288 316	11	170 138 106	126	168	210	128	168
2.50 3.30 3.50 20 8.00	52 9.70 29 8.30	27 36	6.7	6.60 6.00 3.10	4.60	5.50	4.58	0 10	16
11119	0.084	9.1	5.8	2.4 3.5	•	۰.	ε,	۰.	4.0
8.00.11	12224 84884	5.2	1.6	£. 1. 2. 6.	1.2	2.5	3.1	1.7	5.1 5.1
14	1.5 40 22 20	20 51 18	18	13 13 9.0	13	12	14	14	14
1 98	34 60 71 102	90 120	38	8 2 2	20	34	51	30	4.5 2.5
8 2 4	31 31 26	32 50 27	13	35 23 31	g	22	53	25	32
11:11	10044	24.1	1.3	8,8,8	6.	1.0	1.0	1.3	ь. Б.4.
7.3	118 118 23	ឧដឧ	18.	13. 8.6 4.9	8.3	11	13	11	15 9,0
11118	7.9 12. 9.6	18 15 16	7.8 15.	8.4.4 8.4.1	4.3	4.	9.7	6.7	10.
HIII	33,739	88 88 54	34	14 14 14	13	8	20	11	17
11118	មេន្តម	888	80.	116	.26	.17	14	80.	1.14
11118	9.1 12 17 24	18 16 20	13.	9.78	8.0	#	14	10	13 8.3
3820 4320 4565 4020 1947	2000 926 519 339 224	144 185 149	853 205	870 1116 4382	2067	982	738	1253	729 2106
Mar. 1	Mar. 8 Mar. 15-21 Mar. 22-31 Apr. 1-9	Apr. 21-30 May 1-11 May 12-21, 27.	29, 31	June 1, 5-17 June 2-4, 18-25 June 26-30	25-27 July 7-11.	16-23, 28,29	July 12-15,24, 30, 31	20, 26-29	31 Aug. 21-25

PEACE RIVER BASIN--Continued

2-2970. PEACE RIVER AT ARCADIA, FLA.--Continued

		Col-		100	100	120	8	1
		Hd	7.0	6.7	6.6	5.2	6.4	1
	Specific	ance (micro- mhos at 25°C)	115	247	203	185	256	ł
	co.)	Non- arbon-	54	89	52 28	51	74	1
	Hardness as CaCO.	Calcium, magne-c	84	94	980	75	103	1
ntinued	d solids	Cal- cu- lated	73	1	11	ł	ļ	1
1963Cc	Dissolved solids	Residue at 180°C	1	142	156 128	151	192	372
tember		Phos- phate (PO ₂)	1	0 15	.0 13	8.80	0.6 13.40	1.5 21.70
o Sep		Ni- trate (NO ₃)	0.0	٥.	0.0.	9.0	9.0	1.5
1962 t		Fluo- ride (F)	1	2.1	2.1	2.0	3.0	4.0
water year October 1962 to September 1963Continued		Chloride (Cl)	18	16	14 14	15	18	37
water ye		Sulfate (SO ₄)	-	48	34 17	34	53	85
1111on,		Bicar- bonate (HCO ₃)	36	32	34	29	35	72
per m	Po-	tas- sium (K)	!	8.0	1.1	1.5	1.7	3.7
Chemical analyses, in parts per million,		Sodium (Na)	1	15.	13.	11	15	27
lyses,	Mag-	ne- sium (Mg)	4.6	7.1	3.3	0.4	0.5	1.0
ical an		cium (Ca)	26.	26.	20.	20	98	49
Chem:		Iron (Fe)	1	0.05	.05	0.12	60.0	0.30
		Silica (SiO ₂)	11.	12.	10. 6.6	9,1	11	23
		Mean discharge (cfs)	963	526	799 2543	1	913	
		Date of collection	Aug. 30, 1963.	Sept. 1-3,	Sept. 4-10, 12-14	Weighted average	Time-weighted average	Tons per day

PEACE RIVER BASIN--Continued 2-2970, PEACE RIVER AT ARCADIA, FLA,--Continued

Day	October	November December	December	January	February	March	April	May	June	July	August	September
1	86	328	308	301	315	110	351	426	217	111	198	228
2	111	330	318	327	319	105	351	423	175	119	198	245
3	122	323	323	322	1750	109	354	383	173	118	250	239
*****		341	337	339	300	151	352	364	176	116	178	211
2		353	338	345	562	131	366	404	192	127	178	210
,,,,		351	336	328	270	134	374	377	197	139	180	194
7	165	345	331	335	529	151	371	355	203	158	181	202
9	175	241	333	326	268	180	376	362	200	161	181	219
6	190	242	339	327	280	172	376	381	223	188	221	216
10	195	300	345	310	280	175	376	397	240	173	229	216
11	202	226	135	310	261	180	707	306	103	10%	070	1
12	208	242	333	9 6	229	120	202	127	7081	100	242	001
13.000	224	242	338	33	220	080		767	101	223	007	6.6
4	234	241	337	0 6	641	182	8 7	777	100	200	263	211
	232	7.5.	- 0	000	1 2	70	754	9 7	101	24.0	600	777
		3		3	367	2	3	7	1,1	3	663	767
16	237	250	338	324	170	208	429	474	207	199	250	250
17	251	268	348	321	179	219	459	427	221	153	248	569
18	243	258	348	318	185	558	454	421	171	172	260	254
19	556	560	369	315	171	231	405	459	171	172	268	121
20	563	270	365	318	155	238	604	445	171	168	179	108
	373	12.6	340	0.0	.,.	0 7 0	71.7			ć		
2.2	277	2.85	1 2 3	22.5	107	24.2	2 0		107	100	0 4	007
2.3	274	200	777	322	1 1	1070	1 0	100	6.71	601	6071	601
24	280	310	375	304	1991	277	200		141	210	155	129
25	283	310	355	313	165	287	398	314	156	142	169	111
26		320	355	314	170	291	384	363	76	132	180	112
27		324	351	318	130	292	398	416	88	140	180	118
28	308	330	348	311	102	321	420	217	06	169	192	120
29	312	330	348	307	1	295	419	569	7.6	172	198	134
30	318	327	326	301	;	300	014	ŀ	106	216	115	142
31	313	1	323	312	1	322	1	157	1	21	230	;
Average	228	291	345	321	264	213	395	375	171	166	205	180
			1	-						.		

PEACE RIVER BASIN -- Continued

2-2970. PEACE RIVER AT ARCADIA, FLA. -- Continued

					19	nper	Temperature (°F) of water, water year October 1962 to September 1963	re C	F	of	#ate	F .	ateı	, ye	ar 0	ctol	ber	1962	to	Sei	tem	ber	196	_							
															Day																Aver-
Month	_	7	e	4	5	9	7 8	0	10	-	1 12	13	13 14	15	9	17	17 18	6	20	21	21 22 23 24	23		25	26	27 28		59	99	3	age
October November	85 74 65	80 73 67	84 71 69	81 70 73	84 8 65 7 72 7	86 8 70 7	83 84 72 74 70 74		80 85 70 70 70 64	85 72	5 85 58 58 58 58 58 58 58 58 58 58 58 58		86 87 66 76 53 55	4 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	86 7. 58	86 74 60	88 74 60	88 72 70	80 75 70	76 72	76 68 74	84 69 76	79 72 78	77 72 84	74 68 82	448	74 67 82	70 65	76 65 70	47	82 70 69
January February	67 70 66	66 70 72	64 70 68	68 60 72	67 60 60 70 6	9 69	66 70 67 67 68 67		68 68 65 65 68 69		67 65 70 70 70 70	70 64 76	68	65 61 76	64 57 78	68 040 78	68 63 82	73 65 86	74 64 80	67 63 72	67 64 72	66 40 70	65 70	400	66 74	75	65	68	66 78	68	67 73
April May June	77 78 87	80 77 84	80 78 75 70 80 83		81 7 80 7 84 8	79 7 73 8	79 76 80 85 80 81		80 85 84 84 86	882	8 8 8 8 8 8 8 8 8	7.9 8.6 8.4	74 88 88	78 86 86	78 86 85	78 37 88	79 85 89	79 88 87	8.5 8.5 8.5	883	86 85 90	8 8 6 5 6 5	8 4 4 6 5 7 4 6 5 7	8 8 8 7 4	85 87 80	4 8 8 8	0000	77	78	87	81 83 84
JulyAugust	85 81 81	87 83	85 78 88	888	8 8 8 8 8 8 8 8	86 87 87 87	87 87 88 89 86 86		87 85 87 87 88 86	9 8 1	885	88 87	87	890 58	84 87 87	8 8 8 4 8	8 8 8 5 4 8 6	87 87 80	86 79 84	86 82 83	833	8 8 8	87 78 78	85	8 8 0 4 0 8	9 4 6	87	883	889	88	85 86 48

2-2990. MYAKKA RIVER NEAR SARASOTA, FLA. MYAKKA RIVER BASIN

LOCATION.—At bridge on State Highway 72, 2 miles upstream from Lover Myakka Lake, and 14 miles southeast of Sarasota, Sarasota County.

DRAINGER AREA.—255 square miles, approximately.

REA. Chanical analyses: October 1962 to September 1963.

REA. Chanical analyses: October 1962 to September 1963.

Rear temperatures: October 1962 to September 1963.

Rear temperatures: October 1962 to September 1963.

Rear temperatures: October 1962 to September 1963.

Rear temperatures: October 1962 to September 1963.

Rear temperatures: Maximum, 46 pper May 22-25, 27-31; minimum, 43 pper Oct. 2-10.

Rear temperatures: Maximum dally, 249 micromios Mart. 17; minimum dally, 35 micromios Oct. 3.

Rear temperatures: Maximum dally, 249 micromios Mart. 17; minimum dally, 35 micromios Oct. 3.

Rear temperatures: Maximum dally, 249 micromios Mart. 17; minimum dally, 35 micromios Oct. 3.

Rear temperatures: Maximum dally, 349 micromios Mart. 17; minimum dally, 35 micromios Oct. 3.

Rear temperatures: Maximum dally, 349 micromios wailed in district office at Octala, Fla.

		Col- or	120	3888	100 100 100 100 100	100	110	150	200
		Hd	8.7.	6.7.6	00000 84407	6.8	6.7	7.2	7.0
	Specific conduct-	ance (micro- mhos at 25°C)		89488	109 121 110 120		125	100	08
	Hardness as CaCO.)	Calcium, Non- magne-carbon- sium ate	9	01 15 15	22 22 22 22 22 22 22 22 22 22 22 22 22	2, 26	56	18	16
	Hard as C	Calcium, magne- sium	77.	3225	86 88 88 84 84 86	4 4	44	52 28	27
963	solids	cu- lated							
ptember 1	Dissolved solids	Residue at 180°C	43	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 4 8 8 4 8	100	122	100	ક
to Se	i	Phos- phate (PO,)		. 4. 8. E.	8 2 2 2 8	.68	.45	.60	6.
r 1962		Ni- trate (NO ₃)	0.0		64466	r. c.	۲.	4.6	٠.
Octobe		Fluo- ride (F)	4.0	44.00	હે હે વે વે	4 4	e.	44	4.
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	0.00	၀ လ လ လ ၁ က လ လ	10 11 13 13	14 4	16	15	7,
illion, wa		Sulfate (SO ₄)	3.2	10.01	18 16 18 20	19	18	10 8.4	5.6
per m		Bicar- bonate (HCO ₃)	10	13	82828	25 24	22	14	13
parts	Po	tas- sium (K)	0.4	341.4	8,6,6,4	1.4	1.7	1.6	6.
lyses, ir		Sodium (Na)	989	. w 4. w	80 8 8 8 8	6.8	7.5	8.0	6.3
cal ans	Мад-	ne- sium (Mg)	7.0	1 4 8 8 0 4 0	ധ 4 ധ 4 4 ജൻ മ 4 ൻ	4 4 5 4	4.6	2.8	3.2
Chemi		Cal- cium (Ca)	4.0.0	7 8 8 2	9.0 11. 8.8 9.6	11 27	01	6 4 4 5	.9.6
		Iron (Fe)	0.19	11:12:	44454	.08	11.	12.	.15
		Silica (SiO ₂)	8. 4. 0		44 8 5 4 5 5	1.0	1.2	1.8	1.6
		Mean discharge (cfs)	725 160	831 459	19 14 18 18		188	430 550	182
		Date of collection	bet. 2-10,1962 bet. 11-20	Nov. 12-20	Dec. 1, 3-11 Dec. 12-21 Dec. 22-31 Jan. 1-10, 1963 Jan. 11-19, 21	Jan. 22-31	21-22	23-38	18-20
		I	, 556	, m # #	MH133		F	- = 2	-

MYAKKA RIVER BASIN--Continued

2-2990, MYAKKA RIVER NEAR SARASOTA, FLA. -- Continued

	}	Col-	200	200 120	120	100 70 120 160	220 200 200 200	2000	180	150	
		hd	6.6	4.6.4	9.9	9 9 9 9	66666	6.5 6.2 6.3 6.1	6.4	6.5	1
	Specific conduct-	ance (micro- mhos at 25°C)	93	103	126	128 130 97 99	76 69 65 56	56 880 56 58	11	91	-
	ness CO.)	calcium, Non- magne-carbon- sium ate	17	111	88	22 24 18	16 12 12 8	10 8 12 16	14	17	1
	Hardness as CaCO.)	Calcium, magne- sium	31	328	42	38 31 38	28 26 21 19	32 32 22 24 24	23	31	1
inued	solids	Cal- cu- lated				74			!	1	l
963Cont	Dissolved solids	Residue at 180°C	104	112	126	146 84 92	86 86 80 76	72 66 88 52	72	88	34
ember 1		Phos- phate (PO,)	0.80	95.	.95	93	.85 .82 .64 11	.70 .50 .62	0.61	09°0	0.1 0.28
Sept		Ni- trate (NO ₃)	1.7	6.60	1.5	04.00		0 000	0.1	0.3	0.1
.962 tc		Fluo- ride (F)	4.0	ພໍ4 ພໍ	4.	4.6.0.6	ಬೆ 4. ಬೆ ಬೆ ಬೆ	ಟ ಬೆಬೆಟೆ	0.3	6.0	0.2
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (C1)	16 15	15 17	50	20 17 13	9 6 7 9 9	6.0 8.0 7.0	8.7	11.0	4.1
ater year		Sulfate (SO ₂)	8.0	9.2 10 11	13	1129	10 8.0 6.4 5.6	6.4 7.2 8.6 6.8	7.6	11,0	3.6
lion, w		Bicar- bonate (HCO ₃)	17 15	18 16 20	19	19 16 26	15 15 11 11	15 36 12 10 6	12	16	9
er mil	Po-	tas- sium (K)	9.0	1.0	1.1	1.0	66666	0.14.7.1	6.0	g. c	0.4
n parts		Sodium (Na)	8.2	9.1 9.8	10	10 9.4 7.8 7.0	លល្អ4 ស លំបំសំម៉ស់	3.48	4.7	6.1	2.2
yses,	Mag-	ne- sium (Mg)	3.6	33.7	4.9	6 0 0 0 0 0 4 0 4	20021 7.0001	2.9	2.6	2.5	1.2
al anal		Cal- cium (Ca)	6.4	8.0	8.8	8.8 12.0 6.0 9.6	0 0 4 4 12 8 0 8 8 6	4 4 4 8 1 4 0 0 0	5.1	1,	2.4
Chemic		Iron (Fe)	0.19	.16 .21 .18	.26	.08	22 22 22 22	.22 .26 .26	0.19	9,17	0.09
		Silica (SiO ₂)	0.5	க க ப	œ,	9999	64888 7.07.7.0	8. 4.4.8 1.4.2.0.	3.2	2.1	1.5
		Mean discharge (cfs)	52 10.5	1.3	1.	6 87 98	280 171 142 289 226	520 500 289 192 1270	ł	174.0	
		Date of collection	Mar. 21-31, 1963	Apr. 11-13, 15-20 Apr. 21-30	May 11-18, 20-21	May 22-25, 27-31 June 1, 2, 4,5 June 6-15, 17. June 18-30	July 1-10 July 11-20 July 21-31 Aug. 1-10	Aug. 21-29, 31 Sept. 1-10 Sept. 11-20 Sept. 21-30	Weighted average	Time-weighted average	Tons per day

MYAKKA RIVER BASIN--Continued 2-2990. MYAKKA RIVER NEAR SARASOTA, FLA,--Continued

MYAKKA RIVER BASIN--Continued 2-2990. MYAKKA RIVER NEAR SARASOTA, FLA.--Continued

	Aver-	age	222	2 2 2 2	020	0.02
	V		77 66	62	75 78 83	90 85 82
		31	70	65	1 80	92
		30	75 64 67	61	45 80 82	8 5 5 8
		29	69 62 72	59 	76 80 80	94 86 82
		28	7.1 6.1 7.1	61 57 74	76 82 81	195
		27	71 60 71	63 58 74	80 83 82	84 84 78
		26	68 66 71	59 66 71	77	84 87 77
93		25	7.0 6.8 7.0	57 64 68	78 86 83	91 86 75
61		24	75 65 66	49	78 81 81	82 86 78
mber		23	75 68 66	68 59 64	78 81 81	91 84 79
pte		22	76 73 64	62 63 66	77 80	91 85 80
Temperature (°F) of water, water year October 1962 to September 1963		21	92	72 61 74	78 82 80	86 86 81
ζ.		20	74 71 60	 61 79	922	863
136		6	75 70 58	65	74	9 8 2 2 C S
ber		18	78 71 56	64 09 78	72 80 86	92 84 81
octo		17 18	78 65 53	51 56 79	75 81 84	95
ar	Day	9_	79 63 51	62 58 78	81	94 96 82
r Y		15	79 62 68	56 77	70 80 86	986
vate		7	79 54 2.5	69 77	10.6	0 8 8 2 0 4
, ,		13	79 65 48	61 75	78 79 86	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vate		12	80 69 7	6.8 7.4	76 76 78 80 85 80	91
of v		=	8.0 6.4 8.5	43.0	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 70 47 4
E)		2	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57 61 69	7 8 7 8 7 8 7 8	90 87 83
9		٥	224	57 61 65	73	91
tur		80	67 67	61 68 64	73	927
per		7	8.7 5.5 5.0	68 68	2 4 4 8 4 8	9 9 9 9 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9 9
Ten		9	2 4 4 5 7 7 R	136	7 t 7 t 9 7 R	2 4 4
		2	8.55 8.55 8.55	51 58 72	47 42 43	90
		4	81 67 65	7 4 4 1	440	0 4 4 C 4 4
		ო	67.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.33	2 4 4
		2	211	4 0 C	42	C 4 4
	L	_	115	5.7	72 75 87	92 86 86
	Merch	Month	October November December	January February	April May June	JulyAugust

MANATEE RIVER BASIN

2-3000. MANATEE RIVER NEAR BRADENTON, FLA.

DOCATION.—At bridge on State Highway 675, 800 feet upstream from Craig Branch, 6.2 miles northwest of Verna, and 17 miles east of Bradenton, Manatee County.
BRANNAG AREA.—96 square miles, approximately.
BRECOMIN GAREA.—96 square miles, approximately.
BRECOMIN GAREA.—96 square miles, approximately.
BRECOMIN GAREA.—96 square miles, approximately.
BRECOMIN GAREA.—96 square miles, approximately go to spetember 1963.
BRANNES. 1962.63 —10 square miles, Maximum, 92 ppm Maximum, 92 ppm Maximum, 92 ppm Maximum, 92 ppm Maximum, 93 ppm Cot.
BRANNES. 1962.63 —20 ppm Maximum daily, 126 micromhos May 20; minimum daily, 19 micromhos Sept. 16.
BRANNES. Recorded so f specific conductance of daily samples available in district office at Ocala, Pla.

		Col- o r	120	1 &	84	30	8 8 9	120	120	100 220 200 75
		Hd	6.9	6.5	0.0	6.8	6.9	7.2	6.3	8.9 8.4.7
	Specific conduct-	ance (micro- mhos at 25°C)	99	2° 8°	8 8		98	88	65	41 72 72 91
	Hardness as CaCO,)	Non- carbon- ate	9	es 40	60 60	98	r 8	12	6	တ ထာ ထာ ထာ
	Hardness as CaCO,	Calcium, magne-cz sium	8	9 0	8 %	38	338	32	18	11 16 24 34
963	d solids	Cal- cu- lated								
September 1963	Dissolved solids	Residue at 180°C	24		65		89	68	99	42 68 74 78
to Sel	1	phate (PO,)	1.0	1.5	4.0	1.4	5,4	1.3	1.0	20.11.0
1962		trate (NO ₃)	0.0		40		00	i, ič	€,	4.60.60
ctober	5	ride (F)	6.0	1 6			44	4.6	e.	रुं वं वं वं
water year October 1962 to		Chloride (C1)	7.0	7.5	88	0.0	10.0	13	10	8.5 10.8 9.5
million, wa		Sulfate (SO ₂)	2.8	1.4	4.4	44	8.6	9.0	5.4	0484
		bonate (HCO ₃)	17	29	72 %	36	32	27	11	6 10 19 32
parts per	-0 4	tas- sium (K)	0.7		φ. φ.	9.2	α. α.	æ' æ'	ď.	2000
lyses, in		Sodium (Na)	4.2	1.7	1.04 1.00	4 8	9 20	4.5	5.5	2400 4140
Chemical analyses,	Mag-	ne- sium (Mg)	1.5	18.0	200	9.6	4.8	3.00	1.5	3 2 3 8 4
Chemi	Ç	cium (Ca)	5.6	100	4.8	4.4	7.6	8.0	4.8	0000 0404
		Iron (Fe)	0,13	12	21.0	60.	8,6	10	7.	1121.08
		Silica (SiO ₂)	6.5	1 8	8 8	8.1	7.8	9.9	4.0	8 6 6 2
		mean discharge (cfs)	104	678	72 16		18 23	29	191	497 216 50 20
	Ž	of collection	0ct. 2, 3, 5-11, 1962	0ct. 4	Oct. 22-31 Dec. 1-10	Dec. 11-20	Jan. 1-10,1963 Jan. 11-20	Jan. 21, 22, 24-31 Feb. 1, 2,6-11	Feb. 3-5,14-18	19, 25, 28. Mar. 1-10 Mar. 20-31

MANATEE RIVER BASIN--Continued

2-3000. MANATEE RIVER NEAR BRADENTON, FLA. -- Continued

		Col- or	88888	120 140 100	160	180	160	120 190	150	170 100 100 150	140	100	
		Н	7.3	0.9	6,7	6.3	5.9	7.1	7.0	6.0	6.2	9.9	1
	Specific conduct-	ance (micro- mhos at 25°C)	103 110 116 114	86.88 80.88	09	20	34	66	61	109 48 51 55 35	20	77	1
		Non- carbon- ate	13 10 11 11	14	12	œ	9	റെ മ	œ	7 8 7 10 8	80	6	1
	Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate	44 44 44 46 50	24 30	24	18	11	25	23	43 19 18 24 11	17	28	1
tinned	solids	Cal- cu- lated											
1963Con	Dissolved solids	Residue at 180°C	76 80 88 86 92	88 82 90	74	99	48	99	74	1 88 89 88	59	69	19
smbe r		Phos- phate (PO ₄)	4.0.0.1	4.1.6.	1.1	.83	.62	11.7	1.7	1.0	96*0	1,30	0.31
Sept	;	trate (NO ₃)	00000	6 th	۲.	7.	۲.	2.4	۲.	14000	0.1	0.1	0.0
962 tc	ī	ride (F)	0	ক ক ক	e.	4.	e.	40	۴.	1 6.4.4.6.	0,3	4.0	0.1
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (Cl)	10 10 8.0 10.	12 8.0 9.5	7.5	7.0	5.0	8.5	0.7	12 6.0 5.2 7.0	6.7	8,2	2.2
water year		Sulfate (SO ₄)	សម្លេកក្រុក ភិជ្ជកំពុង	8.88	5.6	4.0	3.2	8.4	4.0	. 88 7. 7 5. 84 4.	4.8	5.0	1.6
lion,	i	Bicar - bonate (HCO ₃)	8 4 4 4 4 8 4 8 8	75 12 24	15	12	9	11 20	18	44 14 17 6	13	25	4
er mil	Po-	tas- sium (K)	0 8 8 9	o°4°¢	æ	ī,	r.	ô.u.	£.	1 6 7 8 7	9.0	9.0	0.2
in parts r		Sodium (Na)	មាយមាយមា	സ് സ് സ് സ്	3.9	4.0	2.8	4.8	4.9	888	3.8	4.7	1.2
yses,	Mag-	ne- sıum (Mg)	4 2 2 4 4 6 4 6 2 2	1.7 3.4 4.6	2.4	2,3	1.2	1.9	2.7	120.01	1.7	2.8	9.0
al anal		cal- cium (Ca)	1211000	80 E	5.6	3.4	2.4	4.0	8.8	4442	4.1	9.9	1,3
Chemic		Iron (Fe)	0.02	13	.15	60.	.03	.03	.15	15	0.13	0.10	0.04
		Silica (SiO ₂)	7.5 6.4 5.0 4.8 5.1	8.27	5.2	5,3	3,3	4.5	6.7	4 8 9 8	4.5	6.0	1.5
	,	Mean discharge (cfs)	11 8.1 6.5 7.5	8 9 9 9 8 9	278	161	640	46 206	51	54 208 125 249 601	1	121.1	1
		Date of collection	Apr. 1-10,1963 Apr. 11-20 Apr. 21-30 May 1-10	May 25-31 June 1-10	June 21, 22, 24-30	12, 13, 18, 19, 27-30	July 3, 4, 16, 17, 23-26,31	15, 20-27 Aug. 1-10	14-16	Aug. 20-31 Sept. 1-10 Sept. 11-18,20 Sept. 21-30	Weighted average	Time-weighted average	Tons per day

MANATEE RIVER BASIN---Continued

2-3000. MANATEE RIVER NEAR BRADENTON, FLA. -- Continued

Day	October	November	November December	January	February	March	Aprıl	May	June	July	August	September
J	ł	06	06	109	16	94	86	113	19	77	37	57
2	64	9.1	65	102	96	94	100	111	78	64	38	58
3	51	88	91	102	92	47	100	110	16	21	33	37
4	23	91	66	102	73	47	101	103	45	54	47	4 1
5	1,4	68	16	105	62	52	103	110	55	45	41	64
,,,,	52	88	50	95	86	57	103	110	62	45	86	52
7	61	68	95	46	98	09	106	123	89	20	20	4 5
80	9	88	96	9.5	88	9	104	121	25	28	64	55
6	69	09	95	100	66	62	103	119	62	62	96	19
10	19	67	16	100	66	*	104	121	7.5	19	23	62
11.	7.1	7,4	47	100	40	80,5	105	1	7.7	09	53	67
12	99	0 00	- 80	100	37	9 40	105	1	8 2	200	1 4	212
	200	200	0 0					130	1 3	1 4		
	2 9	2.5	0 0	7 .	7 0	t :	9 0	071	1 0	2,4	707	0 4
	9	- 1	8	101	200	81	501	123	ñ	0	2	0 1
15	-	8	86	6.6	20	1)	607	611	-	0	5	÷
16.22.2	06	42	66	89	67	74	011	1117	7.8	37	65	11
17	83	82	26	95	67	82	111	119	62	34	1	19
18	85	84	66	96	67	75	111	120	85	42	1	34
19	88	8	86	66	47	7.7	112	122	88	51	85	i
50	88	98	101	100	95	80	112	126	06	62	53	54
2,,,,,,	88	*	00	100	80	28	112	125	5	89	33	*
22	8	86	100	100	. 6	40	112	125	90	74	37	2.5
23	80	87	66	: 1	99	85	111	110	? }	28	28	25
24	10	80	100	16	73	80	112	120	89	35	47	27
25	80	06	100	96	44	88	113	105	89	38	24	33
26	83	06	102	66	47	68	115	96	43	37	53	37
27	06	85	101	87	35	68	117	66	43	54	54	37
28	;	92	100	81	39	95	119	99	0,	94	4.1	0,4
29	91	66	102	88	}	95	119	74	41	48	45	94
30	86	66	101	06	1	76	119	26	£4	51	22	46
31	46	1	106	16	}	46	:	63	1	31	33	1
A monogon	14	76		3	,							

MANATEE RIVER BASIN--Continued

2-3000. MANATER RIVER NEAR BRADENTON, FLA. -- Continued

					H	empe	rat	ure	Temperature ('F) of water, water year October 1962 to September 1963	ot	WB	ter,	WB	ter	year	ö	cope	r 15	29	50	Sept	eшре	1,5	963							
	L.			ļ												Day															Aver
Montn	-	2	3	4	r.	9	7	œ	٥	2	=	15	13	4	15	161	17 1	18	19 2	20 2	21 2	22 2	23 2.	24 2	25 26	5 27	7 28	8 29	9 30	0 31	age
October November	72 66	78 69 67	79	78 67 68	66	79 67 62	81 70 59	78 67 59	78 7 69 69 61 5	78 67 58	77 64 6	77 64	78 8 65 6 49 5	82 65 51	78 66 53 5	80 7 62 6 55 6	76 74 68 71 60 61		77 76 72 73 62 63		76 74 73 72 64 65		77 73 63 63 68 70		71 66 70 64 72 73	63	2 42 2	72 64	2 71 4 64 1 66	58	167
January February March	62 70 63	59 65 61	59 61 69	57	59	59	600	60 72 62	59 66 67 7	263	63	63	69 68 7 76 7	76 76 76	65 74 76 76	61 65 77	66 69 52 70 78 69		71 74 66 62 77 77		67 63 62 63 72 68		68 76 69 70		60 64 74 66 72 78	8027	7 63 2 70 76		56 66	74	465
April May	76 75 79	76 76 75 76 79 83	77 70 80	77 76 77	78	77 81 78	75 81 78	76 82 76	83 83	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.8	8 1 8	79 7 83 8 81 8	44 8 4 8 4	73 84 86 86 86	83 88	76 78 84 85 87 83		80 80 85 83 83 82		0 8 8	81 8	81 82 82 84		81 84 84 78 76		80 80 85 78 77 78	27.67	9 79 9 79 9 79	121	78 81
JulyAugust	82	83 81 80	90	81 82 78	8 83	844	883	8 33 55	48 83 48	886	883	833	84 82 85 85 85	9 8 8 9 4 4	8558	83 7	80 83 77		84 85 76 78 80		85 8 78 7 80 7	85 7 79 8 79 7	76 80 82 82 79 76		81 82 83 83 75 78	944	4 8 9 8 9 8 9	84 84 79	4 8 8 6 9 8 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9	180	82 81

SUWANNEE RIVER BASIN

2-3215. SANTA FE RIVER AT WORTHINGTON, FLA.

LOCATION.--Temperature recorder at gaging station at bridge on State Highway 23, 0.5 mile south of Worthington, Union County, and 0.8 mile doubstream from New River.

DALIANGE AREA.--630 square miles, approximately.

RECORDS AVAILABLE.--Chemical analyses: July 1957 to September 1960.

Water temperatures: July 1967 to September 1967.

EXTREMES, 1962-63.--Water temperatures: Maximum, 80°P, Nuly 7, 1962; minimum, 40°P, Peb. 19, 1958.

EXTREMES, 1962-63.--Water temperatures: Maximum, 90°P, July 7, 1962; minimum, 40°P, Peb. 19, 1958.

1063 1069 to Gontonhon (0 E) ...

	Average	Tage.	:	;	1	:		! :			25	! :	9 6		1		1	!	;	!	78	۲,	2	78	92	22
	Ť					_			- 60		_											_				╣
		3		1	_	1	55		23		1		65		1	-	1	-		1	8			79		1
		30		1	55		50		2.5				9 9		_		1	1		*	93			8	7	
		29	_ !	!	_	1	52	ñ :	47	:	!	;	63				1	!	5	=	8	۲	9	78	-	=
		28	1	;	1	}	57		2 4	~	20		9 9			_	1	1	2		8			7.8	*	
		27		1	1	1	1	1 :	4 8	26	52		6.6			_	1	!	16	*	79	7	78	78	73	5
		26		1	1	1	1	9	9		22		2 9		1		1	1	75	13	4			11	2	
1963		25	- 1	1	1	1	1	: :	; ;	ý	5.5	: :	2 6				1	!	1	1	78	7.7	7.8	11	7	9
a b		24	;	;	1	1	1	: :	7.4		23	:	2 2		1 3		1	1	1	Ł	7.7	7	78	76		7
empe		23	1	1	1	1	1	1	76	5.3	2	;	57		1		1	!	1	Ī	77		76	76	11	*
September		22	;	1	1	1	1	1 2	000	5	23	:	ç ç				1	1	1	1	11	7	2	16	78	26
to S		21	1	1	1	1	1	;	200	5.5	53		65.0				1	1	T	1	7.7	11	76	75	11	2
		2	1	1	1	1	1	1 ;	2 6		52	: ;	7 69		1		1	1	1	1	19	7.7	78	16	11	2
1962		6	1	ī	1	T	1		2 6		23		7 %				Ī	I	1	;	79		76	76	11	
oper		<u>@</u>	1	1	ŀ	1			2.5		64		7 69				1	1	1	1	18	9,	16	92	11	75
Š		17	İ	i	i	Ť	1		1 4		6,4	: 5	67				T	İ	T	Ť	11			92	11	
3ar	Day	9	73	7	1	!	1		0 4	90	64		9 9				1	1	1	ī	11	9,	26	11	11	F
i.	1	15		7	T	1	1		1 0		64		7 99				İ	Ι	T	1	1		8	62	11	
wate		14	22	17	1	;	1		2 5		64	;	7 %			-	1	-	1	!	11	75		81	11	13
water, water year October		13		5	Ť	Ť			23		21		6 6				Ť	İ	Ť	T	11		-	8	11	
wate		12	- 12	69	1	ī	1	1 2	210	5.8	57		65	-	: :	:	!	ì	1	1	76	7.	5	6	2	2
ä		=		69	Ť	T			17		54		619		2 9		Ī	Ì	Ť	1	11				75	73
£		2	2	7	1	1	1		- 4	45	22	:	24	-	2 2	:	1	1	1	1	11	2	a	22	76	2
		6		73	i	Ť		9			53		2 4		6 4		Ť	1	T	1	92			8	7.8	
tur		80	2	1,	1	1	1		10	4	54		69		9 4	:	1	1	1	1	7.8	9	2	3	78	9
Temperature		7		7	i	i	51		1 6		2		63.6		1 9			i	Ť	Ī	78			18	18	
Tem		9	- 52	73	-	1	55			20	64		67		1 9		1	!	1	1	78	2	82	28	79	핅
		ر		*	Ť	Ť	200		1		64		2 4		7 9		Ť	i	Ť	Ť	11			9	6	
		4	<u>v</u>	22	1	1	53	2	1	- 52	20		62		6 5		1	1	ī	1	92	2	15	2	78	9
		က		73	Ť	Ť	4				55		7 9		, ,		Ť	Ť	Ť	Ť	92			2	6	
		7	2	72	1	!	55	2 1	1	-05	99		58	-	6 4	-	1	1	1	1	76	5	===	79	7.8	8
		_		69	i	i	55		. 0		57		9 4		. 4			T	Ť	Ť	192			79	8	
				-	-	:	:	:	: :		•		: :		: :		:	:	-	-	-	:		-	_:	\exists
		a	:	:	:	:							: :		g		:		:	:		:	:	:	:	:
	3	Month	ctober Maximum	imun ber	Maximum	Minimum	Maximum		i i	imun	imun		in a	į	imun		in a		imur		imur.	ij.	imur	inur Per	Maximum	Minimum
		-	October	Minimum . November	Max	Minimu	Max	January	Minimum	February Maximum	Min	March	Minimum	April	Win	May	Wax	June	Maximum .	July	Maximum.	Min	Maximum	Minimur September	Max:	Z.

APALACHICOLA RIVER BASIN

2-3475. FLINT RIVER NEAR CULLODEN, GA.

LOCATION.—Temperature recorder at gaging station on left bank underneath bridge on U.S. Highway 19, 4 miles upstream from Auchimpse Greek, 5 miles domatream from Static Creek, 13 miles southwest of Culloden, Monroe County, and at mile 238.4. BRANKAG ARM.—I., 560 square miles, approximately.

RECORDS ARM.LARE.—Chemical maniyees: Gotober 1961 to September 1962.

Ret remperatures: June 1960 to September 1963.

Sediment records: October 1961 to September 1962.

EXTREMES, 1962-633.—Water temperatures: Maximum, 87° F Aug. 7-9, 14, 26, Sept. 1-4, 12, 13; minimum, 34° F Dec. 15.

EXTREMES, 1960-63.—Water temperatures: Maximum, 88° F July 30, 31, Aug. 1, 2, 1961; minimum, 34° F Dec. 15, 1962.

Temperature 'F of water, water year October 1962 to September 1963 [Continuous ethyl alcohol-actuated thermograph]

	Aronor	werage	73	55	9 4 4	4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 9	57 55	67	72	77	78 76	85 8.1	81
		31	64	11	L 2 2	43	11	63	11	7.1	11	62	8 1 8	
		30	62 59	53	48	37	11	09	63	122	73	90	85	72
		29	57	523	8 9 7	37	11	200	65	70 7	72 70	19 87	83 83	72 7
		28	2 9 0	52	0 1	37	2 4	5.50	65	44	71 20	77	83	74
		27	3 6	52 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38 37	45 4 4	59 5	9 7 9	74 7	71 7	77 77	86 8	76 7
		26	583	52	2 4 5 7	36	44	588	67	7,4	22	73	87 82	78
		25	65 6	55 55	4 4	36 3	1 t t t	56 55	71 6	74 7	71 7	73 7	86 8	75 7
		24 ;	64	5.5	6 4 9	3.8	43	55.06	71	±22	17.	78	81	470
		23	72 6	5 6 8	4 4 4 4 4	43 4	4774	52 55	717	76 7	717	78 77	83 8	81 7
		22	73	58.9	6 4 4	43 6	42	59						
f ud		21 2	73 7	58 5	4 2 4	4 4 4 6 4 6	43 4	59 5	70 71 68 68	77 77	73 72	79 79 78 77	84 83	80 82 76 78
Lnermograph		20 2	74 7	2 80			41 41	63		75 7	75 7			
eri		9	76 77	58 5	45 47	41 44	41 41	63 6	02 69	76 7	78 7	79 79 76 78	86 85 81 81	80 80 74 75
		8							-					
a rec		17 1	78 77	59 61 55 59	43 44	41 41	41 41	58 59	66 69	73 76	83 81 80 78	79 79 76 76	80 85 80 80	78 77
a reonot-actuated	Day	16 1	77 77					58 5			850			
-	Ω	5 1	7 77 77 73 7	56 56	37 41	45 44	42 42	59 5	9 99 9 99	69 71	8 80	78 79 75 76	85 85 82 80	78 76
5		4		8 4	35 3		43 4				85 79 8			
3		3	77 77 72 73	5.6	35 3	51 49	47 4 4 4 4	59 60 58 59	66 64 63 62	72 69	85 8	78 78	86 87 82 82	87 85 82 78
ernyı		12 1												
		_	77 77 77 77 72	56 56	43 41 41 38	44 48	47 47	53 58 52 53	65 66	77 77	84 84 80 79	78 78	86 85 82 82	86 87 81 81
Continuous		0 1										7		
1			7 73	56 56 56 54	44	44 45	7 47	52 52	63 65 61 61	74 75	84 84 77 79	80 78 78 76	8 8 8 8 8 1	86
3		٥	90		45		47						87	8 0 8
į		8	80	5 5 6	46	4 6	4 6	3 53	59	73	1 82	8 79	87	8 8 8 8 8 8
ĺ		7	81	54	47	44	4 4 6	53.3	62	11 67	81	78	82	81
		9	7 7 4	5.52	53	2 43	4 4 5 5	53	5 66	63	2 73	3 78	8 8 1 8 8	3 82
		5	7,4	5.6	53	42	4 4 7 7	51	65	53	77	81	86	88
		4	79	55	52	41	4 4	4 6 4 6	69	60	76	77	80	82
		3	77	59	2.2	43	4 4	4 4	6.4 6.4	60	74	77	84 79	81
		2	75	57	52	4 7 7	4.6	4 4	63	63	72	76	83	82
		-	73	62 58	5.5	4 4	43	4.5	64	63	7.1	75	82 78	83
	1	Month	October Maximum Minimum	November Maximum	December Maximum	January Maximum Minimum	February Maximum Minimum	March Maximum	April Maximum	May Maximum Minimum	June Maximum Minimum	Maximum	August Maximum	September Maximum Minimum

2-3595, ECONFINA CREEK NEAR BENNETT, FLA,

ECONFINA CREEK BASIN

LOCATION .-At gaging station near left bank on downstream side of bridge on State Highway 386, 0.5 mile downstream from Old Mill Branch, and 1.6 miles southwest or Bennett, may County.

DEALMOGE MESS.-IZS square miles (revised) and analyses: A pril 1962 to September 1963.

RECORDS AVAILABLE.—Chemical analyses: A pril 1962 to September 1963.

EXTRACT COUNTY 1962 to September 1963 to September 1963.

RECORDS AVAILABLE. 1962-63. Junuary 1962 to September 1963.

RECORDS AVAILABLE. 1963 to September 1963 to September 1963.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 24 ppm Sept. 28-30.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 37° 7 nn. 23-31, 1963; minimum, 24 ppm Sept. 28-30.

RECORDS AVAILABLE. 1963.—11, 13, minimum, 37° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 37° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 37° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 37° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 24° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 24° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 24° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 27° 7 nn. 28-31.

RECORDS AVAILABLE. 1964 to September 1963.—11, 13, minimum, 28° 7 nn. 28-31.

Hardness (April 1962 to September 1963: Maximun, 52 ppm Mar. 16, 1963; minimum, 21 ppm Sept. 28-30, 1963.
Specific conductance (April 1962 to September 1963: Maximum dally, 127 micrombos May 24, 1962; minimum dally, 43 micrombos July 27, 1963.
Water temperatures: Maximum, 77°F July 10, 11, 1962; Aug. 5-7, 11, 13, 1963; minimum, 57°F July 43 micrombos July 27, 1963.
HARMERS.—Records of specific conductance of dally samples available in district of fice at Ocala, Fla.

Chemical analyses, in parts per million, water year October 1962 to September 1963

40 2 83 44 1 92 46 1 95 44 0 100 44 2 89	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	44000
1.8 54 40 2 1.8 57 44 11 1.8 57 44 0 2.0 57 44 0	10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000	20000 200000 20000
1.8	1.8 56 2.0 0,1 0,0 44 2.8 .1 .0 54 2.5 .1 .0 52	76
1.8	1.8 56 2.0 0,1 0,0 44 2.8 .1 .0 54 2.5 .1 .0 52	76
0.08800	2.8 2.8 2.8 2.8 2.5 3.1 3.0 3.0 3.0	44400
1.28 1.88 1.88 1.19	22.22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	नन्नु००
1,8 1,8 1,8 2,0	N N N N N N N N N N N N N N N N N N N	
11.22.8		33350
11111		
	4.4.98	8 4 0 4
52 53 54 54 51	524 544 544 51	4 2 2 4 4 4 5 5 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	.5000	००००
11111	1.5	44444
11111	1212	82.84.6
11111	124 14 14 14 14 14 14 14 14 14 14 14 14 14	13 7.6 13 13
11111	0.02	11188
40404	44000 00000	4400V
489 419 384 411 418	427 430 393 453 409	514 761 484 439 465
1-10, 1962 11-20 21-31 1-10.	vv. 21–30	Jan. 12, 14-20 Jan. 13, 21, 22 Jan. 23-31 Feb. 1-10
	889 884 886 886 886 886 886 886 886	4.69 4.69 4.10

ECONFINA CREEK BASIN--Continued

2-3595. ECONFINA CREEK NEAR BENNETT, FLA. -- Continued

		Color	88	8	18	20	12	2	10	ю	25	2 8	12	20	20	36	22	45	22	10	25	5	4	18	
		푎	7.5	7.4	7.6	7.4	7.5	. 9	7.5	7.4	r 1	0.4	7.2	7,1	7.1	1.0	8	9	7.3	6.9	7.6	4 7	;	5.1	1
	Specific conduct-	(micro- mhos at 25°C)	83	87	93	92	6	100	95	16	6 6	8 2	83	72	8	7 9	86	7.7	82	81	86 4 65 64	a	26	88	1
	Hardness as CaCO,	Calctum, Non- magne-carbon- stum ate	1 2	0	0 11	4	010	7 -	-	۰	0,	- 4	· H	4	0	H 1	> H	•	. 67	'n	e	٠	7	61	1
þe			39	9	44	44	46	47	42	46	48	\$ 4	45	34	42	# E	14	36	41	46	4 ₆	1 5	2	42	1
-Continue	Dissolved	(residue at 180°C)	68 68	70	74	48	22	2 2	23	26	62	26	99	ł	99	4	26	45	54	57	4°	8	8	9	73
1963-	Ni-	trate (NO ₃)	0.0	٥.	۱۹	٥	0,0	5 6	! ?	•	4.		ļ.	ŀ	oj.	•	•	٩	•	٥.	0,0		2	0.1	0.1
tember	Fluo-	ride (F)	0.0	٦.	1.0	<u>ب</u>	٠.,	N O	: -:	۲.	Η.	• 6	7	ŀ	0,	:	17.	-	:	1.5	٠, a		7.	0.2	0.2
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	Chlorido	(C1)	2.0	2,1	2.5	2,5	25.	2 2	2.0	2.5	, co	0.4	1.5	ł	3.0	o.	3.0	0.8	3.0	3.0	0,0	9	0.0	2.7	3.4
October 1		(30°)	3.6	œ.	1,2	4.	•	2.0	8.	89.	œ, t	200	1.6	Ļ	2.0	Z.4	2.4	8.8	2.0	2.4	2°.4		0.1	1.6	2.0
r year		bonate (HCO ₃)	45	49	22 22	49	54	ა <u>ჯ</u>	54	26	60	5 4	25	37	51	\$ 5	22	40	48	20	22	40	22	20	59
, wate:	Po s	stum (K)	0.2	۲.	1 %	63	N, C	7	! -:	۲.	4, 4	. 4	: =:	4.	٦,	4.	. 4 .	4	4	3.4	4.0	4 0	**	4.0	0.5
million	11	(Na)	1.6	1.5	1.6	1.8	9.1	4.0	2	2.2	0,0	6.	1.7	2.0	8.		1.5	-	1.8	1.9	6.0	1.7	1.0	1.1	2,1
arts per	Mag-	sium (Mg)	1.6	1.2	2.2	2.2	200	2.8	2.4	1.5	6,1	2 00	2.4	1.0	ı,	0.1	1.6	10	1.5	2.7	2.7	1 1	:	1.7	2,1
i, in p	Cal-	clum (Ca)	13 13	14	14	14	15	12	14	16	16	13	14	12	16	12	15	12	14	14	14	14		14	17
nalyses	Tage	(Fe)	0.07	8.8	3.8	10.	0.0	5.5	.02	.01	5.5	5.0	10.	80.	5.	5.5	50.				9 1	0	300	0.03	0.04
ntcal g		(8102)	5.0	4.9	2.0	2.3	3	8.6	4.7	5.1	9 4	3 4	5.0	Ļ	8.1	4.7	4.9	4	2.5	4.9	4 7	2	3	5.0	6,1
Cher	Mean	discharge (cfs)	485	442	402	413	381	379	391	373	323	490	403	580	437	4 88	519				1103		1	450	1
		Date of collection	Feb. 21-28, 1963	Mar. 11-15, 17-20	Mar. 21-31	Apr. 1-10	Apr. 11-20	Apr. 21-30	May 13-21	May 22-31	June 1-10	June 18-30	July 1-8	July 9-11	July 12-22	July 23-23, 28-31	Aug. 1, 2, 4-10	Aug. 11-20	Aug. 21-31	Sept. 1-13	Sept. 14-27.	Weight of average	TO THE TOTAL PROPERTY.	Time-weighted average	Tons per day

ECONFINA CREEK BASIN--Continued

2-3595. ECONFINA CREEK NEAR BENNETT, FLA.--Continued Temperature ('F) of water, water year October 1962 to September 1963

	Average	12	67	9 9	63	64 62	8 99	17	57 17	72	27 E7	27.	74 73
-	3	69	11	11	63	11	69	11	73	11	75	75	11
	30	69	66	9 4 9	63	11	69	22	2.2	73	73	275	77
	29	69	66	6.5	63	11	69	72	22	73	73	73	73
	28	8 5	99	63	61	63	69	71	73	73	75	23	77
	27	65	999	49	61	63	69	12	2.2	417	27.	2.4	72
	26	64	65	99	61	63	69	72	2.2	22	73	47	22
	25	69	65	65	200	600	65	71	13	273	23	5.4	27
	24	0.4	65	65	61 59	63	65	7.2	173	73	27.	27.	13
	23	11 4	65	67 6	59	63	7 4 4	13	27	73	25	22	22
	22	17	69	69	59	63	67	57.	73	73	92	27.	74
	21	7 17 7	9 69	68 6	59 5	63	69 69	12 17	73 7	75 7	75 7	52 52	57
:	20	71	69	65	8 4	59	126	27	2.2	7.5	9.4	55	76
	6	72 7	69 69	65 6	65 6	63 6	72 7	72 7	73 7	73 7	76 7	- 25	72 7
	8	273	26	65	4 6		25	1.69	73	25	22	55	27.
	17 1	7 27	69 79	9 9 9	62 6	63 63	71 7	71 7	75 7	75 7	75 7	75 7	73 7
Day	16 1	73	899	63		63	69	71	47.	73	2.2	- 52	55
Da	5	73 7	9 9 9	63 6	62 61	63 6	70 67 67	69 7	73 7	75 7	73 7	75 7	7.87
	4	73			60		69		13	76	73	75	73
	3	73 7	67 67	61 63 61 61	66 6	63 62	71 7 69 6	71 71 69 67	73 7	75 7	74 7	7 7 7	75 7
	2 1									473	74 17	75 75	73
	=	73 72 17 17	65 66	65 64	65 65	65 63	69 71	73 71	74 74 71 71 71	75 7	74 7	7 77 7	75 7
;	0												
	- 6	74 73 72 71	65 65	64 63	64 65 63 63	64 65 63 63	65 67	69 71	74 73 17	72 72	73 75	25 25 25 25	27 27 23 23
	-												
3	8	73 73	7 68	63 65	64 63	63 63	64 63	69 69	73 74 70 77	74 75	76 74	77 75	25 25 73 73
	7		65										
1	9	3 73 1 71	5 65	67 65	3 65	64 65	68 66 66 66	71 71 69 68	73 73	73 74 17 17	75 75 73 73	77 77	75 75
	5	17	65		63								
	4	3 73 1 72	66	5 65	9 64	65 63	64 66 62 64	1 71 8	70 72 68 69	74 73 17 17	75 75 73 73	76 75	75 76 74 74
	က	73	64	65	63			11 68					
	2	72	69	65	63	66	63	17 67	69 6	7.7	75	7 4 4 4 4 4	7 7 2 4 7 4
	_	72	67	65	64	99	63	70	71	7.7	75	75	75
	Month	October Maximum Minimum	November Maximum Minimum	December Maximum Minimum	January Maximum Minimum	February Maximum	March Maximum	April Maximum Minimum	May Maximum Minimum	June Maximum Minimum	July Maximum Minimum	August Maximum	September Maximum

MOBILE RIVER BASIN

2-3835, COOSAWATTEE RIVER AT PINE CHAPEL, GA,

LOCATION --Midstream on upstream side of gaging station at Pine Chapel, Gordon County, 4 miles downstream from Sallacoa Creek, 5 miles east of Resaca, and 6 miles upstream from confluence with Conasauga River.

DRAINGE AREA.—866 equare miles in the control Construction of the

		Color	50 50	ß	ا د	7	ហហ	റഗദ	45	201	10	8
		뜊.	6.6	6.9	2.0	8	8 2 2	. 0 6	6.9	9.0	7.6	4.7
	Specific conduct-	೭ ಇ	59	65	99	29	909	888	29	222	57 56	33.5
	Hardness as CaCOs	Calcium, Non- magne-carbon- sium ate	00	0	00	-	но:	000) - -	00	00	5.1
	Hare as C	Calcium, magne - sium	22	24	2 4 2 4	22	888	248	24	28	2 2	16
r 1963	Dissolved	96	39	42	44	40	33	444	4	36	60 54	36
ptembe	Ni-	trate (NO ₃)	0.0	o,	ļo	•	400	ó	e,	٠.٥	00	o'si
to Se	Fluo-	ride (F)	0.1	۲.	-:	ς.		<u>.</u>	101	2.4	o:	чo
Chemical analyses, in parts per million, water year October 1962 to September 1963	Chloride	(01)	1.8	1.8	2.2	8.1	111	12.	2.0	1.5	1.8	e, e,
r year Oc	o de ding	(30°)	2.8	1.6	2.4	4.0	20.0	26.4	5.6	3.8	2 2	9.0
n, wate	Bicar-	bonate (HCO ₃)	28 31	33	35	8	818			888		
millio	Po-	Sium (K)	1.5	7	44	1.6	1.2	- ao a		œ. œ.	ထိုထ	80.
arts per	adim	(Na)	2.3	2.4	200	2.4	70,0	#0°C	1.6	1.6	8.0	2.1
s, in p	Mag-	sium (Mg)	1.7	1.8	1.8	1.7	1.0	- in c	1.6	1.3	1.8	2.7
analyse	Cal-	cium (Ca)	6.0	9.9	6.6	0.0	0 0 0	4.0.4	7.0	5.6	0 0 4	2.0
mical	Ton	(Fe)	0.01	.01	10.	.02	288	385	5	88	88	9.8
CP	Selies	(SiO ₂)	8.4	10	0.6	8.1	866	0 C 0	7.5	7.6	11.	5.1
	Mean	discharge (cfs)										
		Date of collection	Oct. 1-10, 1962	oct. 11, 12, 14-21	Nov. 1-10	Nov. 11-20	Nov. 21-30.	Dec. 21-31		Jan. 21-31	Feb. 11-20	Mar. 1-5, 9-12

132	លជួលបាល	20 20 20 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10
 	7.7.7	7.0	0.07 0.00 0.40 0.00	6.9
74 05 84 88 35 88	444 744 844 85	551 51 65 65	61 59 175 56 54 54	54
30010	00000	00000	138900	1
23 11 14 14	18 18 18 19	ដន្តដន្តន	2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	22
04 04 44 108	888888 88888 88888	04 8 36 44 4 34 8 36 8 36 8 36 8 36 8 36 8 36 8 36 8 36	42 41 48 46 52	42
40001	• +••+	44000	661664	0.1
9대대다.		49444	11 111	1.0
12200	44444	200500	11.2 1.8 2.0 2.0 2.0	1.5
80404	04444	33136	3.2 1.8 1.8 4.5	2.4
22 25 26 14 14	48484	33088	33 31 104 18 28 28	27
0.11		8.00.1	44 444 6.54 6.34	1.0
1000	00000 00000	00000	22 22 23 33 34 35 3	2.0
0.02.0.		4.04	0.12 1.2 4.2 2.3 2.9	1.7
0 0 0 0	លលល 4 4 4 ជ 4 4 &	4 8 6 6 4	6.2	6.1
88281	9999	20020	881188	0.02
8 7 8 7 8	88888	000000 04004	00 000 01 000	8.6
Mar. 15-31, 1963 Apr. 1-10. Apr. 11-20. Apr. 21-30	May 3-10. May 11-20. May 21-31. June 1-10. June 11-20.	June 21-30	Aug. 21-25, 27-31 Aug. 26 Sept. 1-10 Sept. 20	Time-weighted average

MOBILE RIVER BASIN -- Continued

ä	4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DOCULE OF CHICKCHARCO (MACCA COMPONIA) Annual Maca Total Maca Total Maca Total	T. C.		Lohenson	Mosch	Ameil	Mari	- I	Luke	φφφ	Contombas
7	October	November	December	January	rebruary	Marcn	April	May	Jane	yury	Vagast	September
	55	96	58	56	55	20	64	58	45	41	85	55
5	54	09	29	79	53	26	74	38	£ 43	43	26	25
3	25	62	58	25	8,7	25	64	84	43	64	9	9
*****	96	28	57	65	84	52	64	45	45	24	48	96
2	6*	69	61	58	4.5	9	6,	45	4.2	94	25	4.7
	19	ď	9	5	77	90		77	67	۲,	S	5
	7 4	2.5	6 4		7		7 5	₽ :	7 .			10
:	::	2 :			2 :	67	2 :		7	9 1	0 !	76
	70	6	6	2	7 :	9	2	ç	4.2		`	25
	79	6	2	56	7	4,	14	4.5	;	20	68	4
	*	55	90	9 ,	53	24	89	94	£43	64	26	23
11	09	58	55	61	53	92	84	94	7,	90	63	53
12	66	54	58	53	53	9,	84	64	43	64	99	52
3	86	28	09	52	*	*	1.4	64	6,3	90	55	54
****	63	55	29	99	35	33	64	94	7,7	94	9	62
15	9	55	57	*	54	45	4.7	24	*	47	40	63
16	62	28	51	29	40	43	9 7	7.4	+ 3	21	54	90
:	40	9	09	26	24	*	9#	4.7	7,7	25	54	90
18	9	63	53	63	53	4	47	43	7,4	47	55	15
19	9	51	53	63	š	‡	74	4.7	4,	20	2	55
50	79	64	28	62	99	£3	48	9	45	‡	69	55
,,,,,,	3	9	7	64	04	04	67	54	77	ç	87	ď
22	88	26	90		2.5		7	, 4	4	. 4	2.5	
23	20	54	2.5		ı,	57	. 0	7		4		9 4
240000	. 6	4.5				5,7	4	4		9 4		
36	3 9			2 4			9 9	2 4		; ;		- 0
:	3	3	3	ţ	;	}	?	;	3	<u>.</u>	70	6
:	63	51	54	53	55	46	52	45	20	53	139	57
27	61	52	53	58	55	21	84	- 66	62	09	53	57
28	58	55	55	55	55	94	64	67	58	51	29	28
29	09	99	72	55	1	9	40	42	52	52	55	99
30	9	96	75	63	1	97	36	44	9,	62	54	48
31	09	1	99	3,	}	C	1	\$	1	09	20	1
Average	09	95	65	98	53	45	48	45	45	90	62	54

MOBILE RIVER BASIN--Continued

2-3835, COOSAWATTEE RIVER AT PINE CHAPEL, GA. -- Continued

2-3835. COOSAWATTEE RIVER AT PINE CHAPEL, GA .-- Continued

Suspended sediment, water year October 1962 to September 1963

- 1		остовея	₹		NOVEMBE	₹		DECEMBER	
-		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	363	19	19	420	7	8	830	14	31
2	381	20	21	405	7	8	770	10	21
3	2630	565	5 6730	405	7	8	735	8	16
4	4240	375	4290	405	5	8	718	8	16
5	1070	150	433	405	5	6	735	8	16
6	700	58	110	390	5	6	752	8	16
7	578	4.5	70	390	5	6	735	8	16
8	718	55	107	405	8	9	700	8	15
9	870 630	40 27	94 46	1770 3160	150 140	5 840 1190	735 682	8 7	16 13
10			**		İ				
11	560	27	41	1740	55	258	648	6	10
12	525	26	38	1250	30	101	578	6	9
13	490	26	36	1420	25	96	420	6	. 7
14	472	25	32	1090	12	35	612 700	10	17
15	455	24	29	870	10	23	700	17	32
16	438	22	26	752	10	20	718	12	23
17	438	22	26	735	10	20	665	8	14
18	420	21	24	2520	130	885	595	7 7	11 11
19	420 405	20 18	22 20	2800 1660	100	756 157	578 560	1 7	11
		1			1		1		
21	405	15	16	1910	78	402	578	7	11
22	595	20	32	3650	154	5 1630	648	8	14
23	560	18	27	2460	70	465	718	12	23
24	455 420	10 10	12	1670 1340	31 19	140 69	630 1110	12 52	20 156
			1	ŀ					
26	405	8	9	1160	15	47	2400	178	S 1230
27	405	8	9	1050	14	40	1440	46	179
28	405	7	8	970 970	14	37 37	1130 1530	70	73 S 340
29 • •	405 405	7 7	8	890	14	34	2460	90	5 340
30	405	'7	8	890		34	1680	37	168
Total	21668		12362	39062		7339	27790	 	3135
	21000		L	77002				MARCH	L
-		JANUAR	,		FEBRUAR		!	MARCH	
1	1310	25	88	2100	40	227	1250	45	S 175
2 • •	1160	22	69	1960	31	164	2250	115	S 730
3	1050	19	54	4080	210	2310	1650	46	205 100
5	950 890	15 11	38 26	4120 2770	122	1360 366	1420 2370	26 393	S 4660
		l							
6	850	8	18	2130	35	201	13100	815	5 26300
7	810	7	15	1860	28	141	17700	262	12500
8	830	7	16	1700	24	110	9330	96	2420
9	752 718	7 7	14	1540 1420	21 18	87 6 9	4940 2870	44 35	587 271
									[
11	890	121	S 368	1380	17	63	3300	37	330
12	3760	322	S 3380	1390	16	60	4910	280	5 4200
13	2640	103	734	1380	15 13	56 44	9370	280 85	7080
14	1900 1440	46 23	236 89	1270 1210	11	36	9310 5570	43	2140 647
					1			1	
16	1230	15	50	1130	10	31	3020	30	245
17	1130	14	43	1090	10	29 29	4220	17	194
18	1240 2000	18 200	60 1080	1580	10 50	213	4390 3200	40 141	S 601 1220
19	8360	530	12000	1950	62	326	4790	230	2970
		170			3.8	156	3380	100	913
21	8420 3560	60	3860 570	1520 1310	20	71	2670	55	396
3	2150	25	145	1200	13	42	2390	48	310
24	1880	23	117	1200	10	32	2220	38	228
25	1510	72	90	1210	10	33	2100	35	198
25	1540	22	91	1130	10	31	2160	35	204
27	1550	22	92	1090	9	26	2210	36	215
28	1360	22	81	1050	9	26	1970	37	197
29	1250	22	74				1860	35	176
30	1620	55	241				1780	34	163
31	2490	70	471				1710	34	157
Total			7	46860		6539	133410		70732

S Computed by subdividing day.

SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS

MOBILE RIVER BASIN -- Continued

2-3835. COOSAWATTEE RIVER AT PINE CHAPEL, GA .-- Continued

Suspended sediment, water year October 1962 to September 1963--Continued

-		APRIL		 	MAY			JUNE	
1	Mean	Suspen	ded sediment	Mean	Suspend	ded sediment	Mean	Suspende	ed sedime
Day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	1680	30	136	15800	260	11100	1230	39	130
2	1610	29	126	9280	60	1500	1160	35	110
3	1540	28	116	4140	45	503	1120	33	100
4	1540	25	104	2180	35	206	1090	31	91
5	1460	21	83	2010	60	326	1090	30	8.8
6	1550	20	84	2140	48	277	1050	29	82
7	1970	47	250	1980	43	230	1010	31	85
8	1730	36	168	1820	41	201	990	33	8.8
9	1530	30	124	1740	39	183	990	32	86
0	1500	28	113	1620	37	162	950	31	80
1	1420	27	104	1700	35	161	910	29	71
2	1380	26	97	1660	34	152	870	27	63
3	1310	24	8.5	1500	34	138	830	25	56
4	1310	22	78	1940	34	178	810	24	52
5	1280	20	69	1750	33	156	810	24	5 2
6	1240	18	60	1530	33	136	850	26	60
7	1240	16	54	1420	32	123	1570	85	360
8	1210	15	49	1540	37	154	1390	85	319
9	1210	15	49	1380	30	112	1050	50	142
0	1210	15	49	1310	30	106	1060	61	175
1	1250	18	61	1270	29	99	3250	298	2610
2	1130	20	61	1240	29	97	2390	195	1260
3	1130	20	61	1200	29	94	1980	93	497
4	1090	20	59	1160	28	88	1950	63	332
5	1050	20	57	1130	28	85	1470	55	218
.		1			28	99	1640		248
6	1050 1010	20	57 55	1310 2050		S 1180	2030	56 65	356
7	1130	24	73	2400	192	1240	2020	50	273
9	3750	242	5 2940	1820	90	442	2130	150	863
0	12300	578	5 20000	1500	57	231	4150	385	4310
1				1330	4.5	162			
otal	53810		25422	74850		19921	43840		13257
		JULY			AUGUST			SEPTEMBER	
1	2670	130	937	1770	142	679	525	18	26
2	1930	75	391	1240	54	181	490	17	22
3	1620	60	262	1010	40	110	472	17	22
4	1420	45	173	930	3 7 3 5	93 82	490	19	25 75
5	1290	38	132	870) 22	0.2	770	36	12
6	1290	111	387	870	33	78	630	35	60
7	2440	293	1930	810	31	68	525	30	43
8	1670	94	424	770	30	62	490	28	37
9	1350 1170	61 46	222 145	735 700	28 25	56 47	472 455	23 20	25
•••			-						
1	1090	39	115	682	24	44	438	18	2.
2	1010	35	95	665	20	36	420	16	18
3	970	30	79	648	18	31	525	18	26 116
5	1050 1210	29 40	82 131	735 718	20	40 39	630 870	68	221
·••		40	151	}				1 1	
6	1090	38	112	648	18	31	578	49	76
7	1290	69	240	612	18	30	508	36	49
8	1170	70	221	595	18	29	472	28	36
9	1050	38	108	578	18	28	455	23	28
٠	1130	30	92	560	1.8	27	438	20	24
1	1910	208	1070	595	22	35	405	18	20
2	1360	113	415	700	27	51	405	16	17
3	1090	50	147	648	21	37	357	14	13
5	1050 1290	38 119	108 414	578 542	18	28 26	366 351	12	12
		1	·					[
6	1700	160	734	542	17	25	354	9	9
7	1400	193	730	542 595	17 18	25 29	351 876	116	274
9	1170 2140	280	613 1620	560	18	27	3690	116 353	3520
0	2060	84	467	630	20	34	1330	138	496
ĭ	2470	179	1190	612	19	31			
otal	45550		13786	22690		2139	19138		5357

Total discharge for year (cfs days). 589908
Total load for year (tons). 204011
S Computed by subdividing day.

MOBILE RIVER BASIN -- Continued

2-3835. COOSAWATTEE RIVER AT PINE CHAPEL, GA. --Continued

Particle-size analyses of suspended sediment, water year October 1862 to September 1963 (Methods of analysis: B. bottom withoutwal thos, C. chennically dispersed.) decantation; M. in mative water; P. cipe: S. aleves: V. vianal accumulation tube: W. in distilled water)

				P, pipet;	S, sieve; V, v.	P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water)	n tube;	v, in a	Brilled	water)								
		G	Water tem-		Sediment	Sodimont					Suspen	Suspended sediment	Iment					Mothod
Date of collection	Time (24 bour)	ling.	per-	Discharge (cfs)	concen- tration	discharge			Percen	finer t	han siz	Percent finer than size indicated, in millimeters	ted, in	millim	ters			jo .
		point	(F)]	(mdd)	(tons per day)	ay) 0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000	0.004	0.008	0.016	0.031	0.062	0.125	0.250	. 500	. 000	00	analysis
Oct. 3, 1962				2440	682		26	32	43	53	89	98	95	66	100	-	H	BSWC
Oct. 3				3560	1250		27	31	43	57	71	68	97	001	1	_	_	BSWC
0ct. 3				4660	1600		22	27	39	61	77	94	66	001	;			BSWC
0ct. 3				5870	1110		23	ဓ	43	57	92	92	66	100	ţ			BSWC
0ct. 4				6970	435		22	98	49	20	83	92	86	001	1	_		BSWC
4	1235			5430	362		53	95	67	~	66	67	99	100				PS WC
Mar. 5, 1963	1940		_	3360	626		31	43	28	12	87	96	66	001			_	BSWC
ເດ	2030			7370	1440		8	40	28	75	88	96	66	100	1	_	_	BSWC
	1325			12600	742		23	61	74	82	06	92	96	66	100			BSWC
Mar. 7	0655		_	25000	331		9	2	16	86	100	;	ŀ	!	ı		_	BSWC
	1415			7170	47		99	20	79	86	93	56	100	1	ŀ			BSWC
	1610			4890	301		34	39	47	26	89	92	87	92	100			BSWC
	0825	_	-	11100	519		33	9	21	63	72	74	93	97	66	001		BSWC
May 1	0645	_		23400	317		26	99	62	98	06	93	97	001	:			BSWC
нау 3	0630		_	10600	46		2	74	81	87	91	94	1	ŀ				BSWC

MOBILE RIVER BASIN--Continued

2-3870. CONASAUGA RIVER AT TILTON, GA.

OCATION .-- At highway bridge, 0.2 mile downstream from Swamp Creek, 0.5 mile northeast of Tilton, Whitfield County, and 12 miles upstream from confluence with

PRAINTENENT AREA——682 square miles.

RECORDS MAILEMENT - Chemical maileyses: October 1942 to September 1943, October 1962 to September 1963 (discontinued).

Right Familia.—Chemical maileyses: October 1942 to September 1963 (discontinued).

Right Familia.—Chemical maileyses: October 1964 to September 1963 (discontinued).

RIGHT SERVENT OCTOBER 1962 TO September 1963 (actober 1964 to September 1963 (discontinued).

RATERIES, 1962-633.—Indiscolved Goilds: Maximum, 218 ppm Sept. 1, 12-15, 21-29; mainemm, 22 ppm May 1-3.

Right Conductance: Maximum daily, 322 malcrombos Nov. 4; mainemm daily, 46 malcrombos May 1.

Sediment Concentrations: Maximum daily, 322 malcrombos Nov. 4; mainimum daily, 4 ppm May 1-3.

Sediment Concentrations: Maximum daily, 328 molecused Sediment 1046 maximum daily, 328 molecused Sediment 1046 maximum daily, 328 molecused Sediment 1046 maximum daily, 328 molecused Sediment 1046 maximum daily, 328 molecused Sediment 1046 maximum daily, 328 molecused Sediment 1046 maximum daily, 46 maximum daily, 46 maximum daily, 47 maximum daily, 48 maximum daily, 31 molecus 16, 1962-63): Maximum daily, 2, 2020 ppm Dec. 4, 1962; mainimum daily, 3 tons Dec. 15, 1962.

		Col.	15	-	12	Ç)	0	10	ç	ın u	0 40	'n	52
		рĦ	7.5	7.3	7.1	7.4	7.3	7.3	7.0	٠, د د	6	7.2	7.0
i	Specific conduct-	ance (micro- mhos at 25°C)	151	274	68	292	320	129	128	180	150	151	116
	Total	acid- tty as H ⁺ 1											
	Hardness as CaCO,	Non- carbon	77	0	~	•	0	20	60	64 6	4	87	9
	Hard as C	Cal- cium, magne- sium	99	74	8	78	85	4	44	4.0	62	29	41
1963	Dissolved	solids (residue at 180°C)	87	152	44	166	177	16	72	106	87	88	06
ember	j	trate (NO ₃)	-					۲.	٩	٥,	• •	9	٠.
to Sept		ride (F)	0,1	4	۲.		?	۲.	٦.	4,	:-		ت .
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chloride (C1)	14	34	2.0	40	46	e e	0.6	919	0	1	7.5
year Octo		Sulfate (SO ₄)	7.6	8.4	}	4.6	70	7.6	6.4	4.6	, c	6.4	4.0
water		Bicar - bonate (HCO ₃)	99	8	35	8	100	48	20	76	20.5	2	20
1111on,	D ₀	tas- slum (K)	2.0	2.4	2,2	2.4	2.4	1.9	1.2	0.4	0.0	. 6	1.2
ts per m		Sodium (Na)	07	26	4.2	30.	34	6.5	6.5	13	13 6		5.0
in par	Mag	ne - stum (Mg)	2.4	5.2	1.5	5.6	9.9	2.2	2.2	0.0	0.4	4	3.5
alyses,		Cal- cium (Ca)	16	ដ	9.6	22	22	14	14	19	6 6	11	13
al an	Man.	ga- nese (Mn)											
Chemic		Iron (Fe)	0.03	10.	•04	0.0	.0	.03	10.	6.	3.5	0	10.
		Alum Inum (A1)		_	_								_
	<u></u>	Silica (SiO ₂)	6.3	7.7	4.0	7.6	7.0	8.8	7.3	7.3	, a		6.9
		Mean discharge (cfs)											
		Date of collection	Oct. 1, 6-10,	Oct. 2, 11-20	Oct. 3-5	Oct. 21-31	Nov. 1-9	Mov. 10-20	Nov. 21-30	Dec. 1-10	Dec. 11-20	Ten 1-11 1963	Jan. 12-21

MOBILE RIVER BASIN--Continued 2-3870. CONASAUGA RIVER AT TILTON, GA.--Continued

		Col-	8819	10	10 10 10	8 22	65.55	12028	15	30 15 8
		Н	4.7.4	7.2	7.5	84.44.6	8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	22.1.2.2	7.6	0444
	Specific conduct-		123 111 74 131	158	146 65 113 140 157	182 57 56 129 207	149 94 122 161 190	270 127 112 170 129	150	96 125 211 245
	Total	acid- ity as H ⁺ 1								
	Hardness as CaCO ₃	Non- carbon- ate	4400	12	86168	28 0 2 I I	H400H	0.00004	9	0 to 01 to
ā	- "	Cal- cium, magne- sium	44 43 53 53	65	57 27 46 61 60	86 4 2 4 8 8 8 8 8	55 37 50 61 62	8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	44 68 77 78
-Continue	Dissolved	solids (residue at 180°C)	94 88 11 78	94	88 60 74 88 94	106 28 74	83 62 74 96 116	28 88 76 118 96	106	72 98 129 148
1963-	,	Interprete (NO ₃)	1. r. r.	•	0,000,0	#! no!	0, 4. 4. 4. 4.	1440	۲.	0000
tember	ı	ride (F)	11.11	۲.		+ ++°	44484	42444	۲.	4844
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (C1)	8.5 7.5 7.0	11	9.0 5.0 0.0	14 1,0 8,0	10 4.5 12 20 20	41 8.0 19.0 8.0	12	4 9 5 8 2 8 5 9
October 19		Sulfate (SO ₄)	0.00	5.2	លល់ 4 & 4 សំគំ 4 0 &	2 84 5 8 1	4 4 7 7 8 8 0 8 8 0 8	10400	6.4	4 2 2 2
year		bonate (HCO ₃)	54 48 32 59	65	67 29 55 63 71	79 24 60 60 66	66 40 75 74	68 57 58 70 59	99	50 76 90 91
, water	Po-	tas- sium (K)	0.9	œ.	44.4	1:2	0.0.0.0.2	10000	۰.	11.5
million		Sodium (Na)	8. 5. 8. 8. 8.	8.1	००४ ५०० ००४ ५०४	12 2.6 6.4	7.6 5.6 9.9	6.8 4.0 16 7.0	9.6	3.1 1.9 23
rts per	Mag-	ne- sium (Mg)	1.9	4.9	8.1.2 6.1.5 7.1.4	3: 8:	88884 86064	8 9 9 5 1	3.6	20.00
a, in pa	- 7	cau- cium (Ca)	16. 14 15	18	18 8.2 14 16 17	11 11 119	118 118 118	125 144 148 148 148 148 148 148 148 148 148	81	41 18 18 18 23
alyse	Man-	ga- nese (Mn)								
nical a		Iron (Fe)	0.00	.01	200000	21,863	22022	ដ ន់ខ្លួន	9.	80000
Cher	-	inum (AI)								
		Silica (SiO ₂)	7.0 6.4 6.6	8.9	8.4.7.8 6.0.0 6.0.0	8. 1 4. 6 1 5. 7 1	5.6 8.0 7.1	80.77	7.0	6.0
	, in	Mean discharge (cfs)								
		Date of collection	Jan. 22-31,1963 Feb. 1-3, 6, 7. Feb. 4, 5	26-28	Mar. 1-5, 26-31 Mar. 6-18 Mar. 19-25 Apr. 1-10, 29 Apr. 11-20	Apr. 21-28 Apr. 30 May 1-3 May 4-13	May 15-26 May 27-31 June 1-4 June 5-12 June 13-20	June 21	July 24-28	July 22, 23, 29-31 Aug. 1-6 Aug. 7-13

-		_					_	_	_	-	-		-	-	_
,8		R R	7.2	29	1,9	100	1.8	34	1 67	14.	159	87	4 n	21.2	
5.5		24	7.8	45	9.0	112	4.0	90	2,4	1.8	218	92	00	366	
	CVI		7.1	31	2.1	104	8	. 4	. 67	1.1	188	2.28	_	282	
		1	+	1	1	8	1	1	1	1	1	09	0	180	+
0.02 17.0	17	•	4.1	13.0	1.3	69	6.2	17	0.1	0.3	106	9	6	121	1

March April May June July August September 1963 September 1963 September 1964 September 1965 September 1965 September 1965 September 1966 Septe		Day	1	2	3	*****	2	••••	7	8	6	10	11	12	13	14	15			•		73	20	21	22	23	24	25		•••••	*****	28	29	30	31	Average
January February March April May June July August July June July August July June July August July June July August July June July August July June July August July July June July August July		October	189	221	96	68	83	126	139	120	147	194	237	248	292	268	225	3,0	677	7.67	311	331	346	346	274	247	247	267	;	110	339	350	272	546	335	238
January February March April May June July August July June July August July June July August July June July August July June July August July June July August July July June July August July	Specific	November	330	327	350	352	281	566	348	345	545	130	83	81	110	140	159	,	007	7/1	861	76	1,1	100	118	102	85	92		3	131	155	177	177	1	180
August 86 158 158 158 158 158 210 210 229 239	conductan	December	180	178	158	173	179	231	200	190	172	191	184	182	197	230	227	0,0	022	507	181	182	200	212	200	165	161	150		2.7	149	134	120	120	138	177
August 86 158 158 158 158 158 210 210 229 239	ce (micro	January	133	138	135	145	157	153	145	141	191	177	182	110	66	88	101	ç	121	13/	146	152	982	67	14	76	113	123		173	146	115	144	146	130	129
August 86 158 158 158 158 158 210 210 229 239	mhos at 2	February	113	108	76	89	7.7	111	109	129	123	121	140	140	160	155	160		190	155	130	150	120	121	122	131	119	119		647	161	163	1	1	:	128
August 86 158 158 158 158 158 202 216 229 239	5°C) water	March	161	130	131	120	129	70	51	41	61	92	98	16	20	43	47	;	19	6	9	* 6	110	110	111	112	110	110		7.00	130	141	142	142	145	66
August 86 158 158 158 158 158 202 216 229 239	year Oct	April	124	145	166	166	163	121	138	116	126	152	151	160	160	126	128	;	777	191	167	178	178	167	167	167	169	194		194	194	194	110	58	1	153
August 86 158 158 158 158 158 202 216 229 239	tober 1962	May	94	54	63	66	*	119	118	139	152	152	152	139	123	205	149		149	741	139	135	129	128	164	161	161	159		760	95	42	၁၈	76	113	125
August 86 158 158 158 158 158 202 216 229 239	to Septe	June	121	120	111	120	150	158	160	171	170	140	140	160	217	205	218		219	150	132	157	191	265	144	95	9.1	119		160	155	100	132	91	1	152
August 86 158 158 158 158 158 202 216 229 239	mber 1963	July	85	*6	82	116	129	126	127	123	130	151	179	160	202	199	166		129	119	112	128	140	140	14	109	131	140		143	180	141	7.8	115	66	131
September 250 250 250 250 250 250 250 250 250 250	_	August	98	133	158	158	158	152	200	214	215	226	229	190	201	237	241	1	239	233	233	536	203	261	280	263	280	226		529	216	260	569	322	317	221
		September	320	250	248	296	262	259	264	240	22.7	221	22.7	351	350	342	380	;	529	239	276	239	232	348	349	333	279	362		371	361	403	410	180	:	295

MOBILE RIVER BASIN--Continued 2-3870, COMASAUGA RIVER AT TILTON, GA.--Continued

	ė	٠. ا				
	Ave	age	61 48 41	0 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62 67 72	73 76 73
		31	42	35	151	73
		ဗ္ဗ	4 4 4 6 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36	62 70 72	73 78 65
		29	46 50 40	37	60 70 72	72 77 68
		28	49	6 4 7 6 7 6	62 65 72	75 77 78
		27	52 46 40	36 42 55	62 65 70	74 75 78 77 78 78
		26	4.6 4.6 3.8	35	60 70	75 77 65
63		25	52 46 37	3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	65 65 70	72 77 62
13		24	55 46 38	36 45 53	63 68 70	72 77 66
mber		23	60 52 38	35 00 00 00 00	67 70	74 78 68
pte		22	65 50 48	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	67 68 72	74 77 68
Š		2	553	440	68 75	¥ 7.02
Č.		20	61 50 47	54 50 50 50 50 50 50 50 50 50 50 50 50 50	65 68 75	75 76 78
61		19	61 50 38	48 42 60	65 68 72	72 75 75 76 79 78
ber		8	65 56 36	4 4 9 5 4 0 5 4 0	67 68 72	72 75 72
Octo		17	67 52 36	4 4 3 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9	52 72 72	72 72 75 75 70 72
a.	Day	16	66 52 37	4 3 8 5 0 9	60 72 75	73 72 75
Temperature (°F) of water, water year October 1962 to September 1963		15	69 52 33	38 40 58	55 60 72 72 76 75	73 73 72 72 70 75
na te		14	5.9 3.3	4 4 4 6 0 0 0	64 57 70 70 75 76	72 74 76
۲,		13	66 42 34	50 00 00 00 00 00 00 00 00 00 00 00 00 0	64 57 70 70 75 76	72 72 75 74 75 76
'a te		12	68 45 33	4 60 60	75	77 75 75
of ,		=	66 44 35	4 4 R.	69 76	72 77 75 75 75 75
E		2	65 48 38	41	5.0 5.8 7.5	7.2 80 72
9		٥	69 46 42	4 4 6 5 7 5	58 73	72 80 74
tur		æ	70 46 42	38 46 55	60 58 72	74 75 74
peri		^	68 46 43	38 45 54	58 67 72	72 75 75
Je		ø	65 47 48	38 45 50	63 56 60 65 70 77	72 72 77 74 75 76
		5	68 47 50	37	507	77 75
		4	68 50 48	4 6 3 7	55 52 70	77 75 75
		က	6.5 4.8	9 6 4 4 C 4 4 C 4 4 C 4 C 4 C 4 C 4 C 4 C	45.5	70 77 74 75 74 75
		7	65 47 48	2 4 4 5 2 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	65 70	73 73
	L.	_	8 7 7 9	38 38 40 42 45 45	65 60 70	73 72 74
	Meant	Mond	October November December	January February March	April May. June	JulyAugust

SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS

MOBILE RIVER BASIN--Continued

2-3870. CONASAUGA RIVER AT TILTON, GA.--Continued
Suspended sediment, water year October 1962 to September 1963

			ended sedimen	t, water ye			ptember 196		_
		OCTOBE			NOVEMBE		-	DECEMBER	
	Mean	Suspen	ded sediment	Mean	Suspen	ded sediment	Mean	Suspen	ded sediment
Day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	141	52	20	164	15	7	502	18	24
2	138	52	19	166	12	5	456	15	18
3 4	1870 4370	1800	9080 2 38 00	167 159	11	5	427 406	12 12	14
5	3270	180	1590	158	11	5	405	12	13
6	764	112	231	157	11	5	468	12	15
7••	451 370	90 64	110 64	149 176	11 82	39	480 422	12	16 14
8 9	322	50	43	1120	232	702	422	14	15
10	282	40	30	2900	195	1530	395	16	17
11	241	33	21	3180	115	987	359	14	14
12	218 203	26	15 14	1630 1080	72 65	5 321 190	327 259	11	10
14	187	25	13	794	12	26	281	6	4
15	183	23	11	621	12	20	297	4	3
16	181	20	10	514	12	17	310	5	4
17	177 169	18 16	9	464 1790	14 158	18 856	323 318	5	4 4
19	164 162	15 15	7 7	3600 3360	180	5 1720 762	296 289	5	4 5
21	172	16	7	1670	39	176	285	6	5
22	232	34	21	1710	114	526	305	5	4
23	285	53	41	2450	123	814	337	5	4
24	251 193	49 45	33 23	1940 1130	42 51	220 156	344 489	6 49	6 65
26	174	40	19	949	50	128	1060	60	172
27	166	35	16	789	35	75	968	35	91
28	159 161	25	11 10	678 608	26 22	48 36	716 716	15 18	29 35
30	168	23	10	555	20	30	1710	126	582
31	165	18	á	722		===	1540	56	233
Total	15989		35299	34828		9433	15900		1384
		JANUAR'	Y		FEBRUAR	Υ		MARCH	
1	1050	30	85	2120	39	223	699	23	43
2 · · · 3 · ·	821 695	15 14	33 26	1760 3020	72 121	342 987	1330 1430	80 64	287 247
4	611	13	21	4250	95	1090	1000	43	116
5••	550	12	18	3680	63	626	1660	132	S 898
6	493	11	15	2020	35	191	6910	402	5 7280
7 8	470 442	10	13 11	1580 1350	28 25	115 91	9490 12300	230 110	5890 3650
9	420	7	1 8	1150	19	58	10800	48	1400
10	399	5	5	985	16	43	5500	35	520
11	633	66	11	904	14	34	2180	448	S 2560
12	2700	228	1660	915	12	30	5550	385	S 4450
13	3340 2380	200	1800 321	917 828	11	27	8820 13600	170	4050 5140
15	1410	17	65	771	10	21	15500	60	2020
16	1050	16	45	674	10	18	9650	35	912
17	884 842	16 16	38 36	597 591	10	16 16	4660 3010	50 64	629 520
19	1220	16	53	1030	70	195	2070	15	84
20	4400	148	1760	2210	69	412	2020	35	300
21	5090 4910	105 55	1440 729	1670 1170	37 38	167 120	1880 1570	60 50	305 212
23	2180	27	159	925	32	80	1260	42	143
24 • • 25 • •	1980 1540	15 14	80 58	851 855	25 18	57 42	1130 1040	29 29	88 81
26	1270	13	45	774	13	27	1090	50	147
27	1360	12	44	701	12	22	1420	60	230
28	1360	11	40	628	12	20	1150	39	221 99
29 30	968 1050	16 30	42 85				963 868	38	89
21	1980	43	230				798	38	48
Total	48498		8976	38926		5094	131348		42659

S Computed by subdividing day.

2-3870. CONASAUGA RIVER AT TILTON, GA .-- Continued

Suspended sediment, water year October 1962 to September 1963 -- Continued

Day	Mean dis- charge	Mean	ded sediment	Mean		ded sediment	Mean	ouspende	ed sedimen
1	dis- charge								
	(cfs)	tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
2	753	37	75	9220	90	2240	819	91	201
	712	37	71	10000	50	1350	669	90	163
3	674	37	67	7810	40	843	571	88	136
5	639 596	40 44	69 71	2870 1190	50 60	387 193	504 456	87 86	118 106
- 1									
6	639	54 70	93	1090	55	162	430 404	84 82	98
7	1450 2010	109	274 5 92	1040	52 50	146 122	384	76	89 79
9	1260	57	194	805	50	109	424	68	78
10	1010	32	87	726	50	98	388	62	65
11	869	30	70	759	70	143	342	60	55
12	763	28	58	794	105	225	312	56	47
13	709	26	50	668	64	91	289	51	40
14	646	24	42	860	62	144	271	36	34
15	618	22	37	1220	138	455	259	44	31
16	586	22	35	810	105	230	274	45	33
17	561	22	33	732	78 132	154 300	806 847	158 187	344 428
18	542 523	22	32 31	842 758	125	256	495	92	123
20	511	22	30	605	118	193	418	75	85
.,	494	20	27	666	120	216	813	94	206
21	480	20	26	616	120	200	1430	204	788
23	458	20	25	516	95	132	1670	242	1090
24	432	20	23	453	85	104	1300	159	558
25	408	20	22	438	7.7	91	994	158	424
26	403	20	22	570	150	230	971	143	375
27	398	20	21	1020	966	5 1580	1320	157	560
28	476	155	199	2950	510	4060	1320	135	481
29	2800	514 200	S 2540 S 4510	3560 1770	250 115	2400 550	1600 1400	128	552 488
31	8350	200	3 4910	1080	102	297	1400	127	400
Total	30770		9426	57345		17701	22180		7875
		JULY			AUGUST			SEPTEMBER	
1	1290	115	401	2390	312	2110	176	36	17
2	1330	145	5537	1020	150	413	169	33	15
3	1440	227	883	717	108	209	168	30	14
4	924	115	287	558	103	155	182	28	13
5	695	96	180	478	98	126	261	26	18
6	534	96	138	429	95	110	280	26	19
7	617	111	185	388	92	96	231	26	16
8	945	210	536	359 347	87 85	84 80	189	26 26	13 13
9	1110 598	124	611 200	329	74	65	179	26	13
								1	
11	449 378	80 64	97 65	300 285	63	51 46	171 166	22 18	10
12	346	48	51	285	60	46	170	16	8
14	358	42	31	281	60	46	171	10	5
15	950	348	5 789	312	58	49	175	8	8
16	1040	138	388	282	57	43	182	8	4
17	1880	279	S 1450	252	52	3.5	188	10	5
18	1630	184	810	237	47	30	174	14	7
20	1140 949	119 110	366 282	232 224	45 43	28 26	166 157	16 16	7 7 7
				i			1		7
21	1740 2930	140 235	658 1860	213 209	40	23	153	17	7
23	1520	218	895	209	34	19	141	19	7
24	860	86	200	217	34	19	141	20	8
25	828	82	183	193	34	18	134	22	8
26	1080	158	461	186	34	17	132	19	7
27	945	116	295	185	34	17	139	16	6
2P	1030	190	528	189	38	19	206	19	11
29 • •	1790	303	1460	191	43	22	475.	45	5 8 5 3
30	1880 2240	253 280	1280 1690	186 184	40 37	20 18	448		52
otal	35446		17797	11867		4060	5846		391

2-3870. CONASAUGA RIVER AT TILTON, GA.--Continued

Particle-size analyses of suspended sediment, water year October 1962 to September 1963 (Methods of analysis: B, bottom withdrawal tube; C, chemically dispersed; D, decantation; N, in native water; D pricet S, alone: N vineal accumulation tube: W in distilled water)

	Mothod	jo ,	analysis	BSWC	BSMC	BSWC	BSWC	BSWC	BSWC	BSMC	BSWC	BSWC	BSWC	BSWC	BSWC	BSWC
					_							_				
			0.002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000			-										_
		eters	0. 500								_					
		millim	0.250													
	liment	ated, in	0.125	100	801	100	100	100	100	100	100	1	100	1	9	901
	Suspended sedimen	e indic	0.062	66	66	26	66	66	66	66	66	100	92	100	66	86
	Suspen	Percent finer than size indicated, in millimeters	0.031	86	96	92	93	96	92	86	86	66	91	86	6	97
water)		t finer	0.016	93	94	84	06	95	90	96	96	86	86	94	92	92
distilled		Percen	0.008	82	000	74	83	87	74	92	93	92	20	98	88	92
w,			0,004	2,5	87	64	77	72	32	98	80	83	54	74	77	88
n tube;				89	8 8	28	22	63	23	83	22	82	43	29	69	82
P, pipet; S, sieve; V, visual accumulation tube; W, in distilled water,	Codiment	discharge	(tons per day)													
S, sieve; V, vi	Sediment	concen- tration	(mdd)	692	98	87	113	55	65	185	142	28	13	253	242	96
P, pipet		Discharge (cfs)	}	1290	2120	4010	2480	1270	2430	8450	13900	6870	2560	4300	8360	6540
	Water tem-	per-	(F)													
	0	ling.	point													
		Time (24 hour)						0730					0230	1140	0220	1230
		Date of collection		Nov. 9, 1962	Nov. 18.	Nov. 20	Nov. 23	Nov. 25	Mar. 11, 1963	Mar. 13	Mar. 14	Mar. 17	Mar. 19	Apr. 29	Apr. 30	May 4

2-3920. ETOWAH RIVER AT CANTON, GA.

LOCATION. --Center of stream on bridge on State Highway 5 spur and 140 at Cantor, Cherokee County, 0.8 mile upstream from Canton Creek, and 1.8 miles downstream from Hickory log Creek.

PRECORDS AVAILABLE, --Chemical analyses: July 1958 to September 1960.

Water temperatures: July 1958 to September 1960.

Sediment records: October 1962 to September 1963.

EXTREMES, 1962-63. --Sediment concentrations: Maximum daily, 1,540 ppm Mar. 6; minimum daily, 7 ppm Dec. 21.

Sediment loads: Maximum daily, 42,000 tons Mar. 13; minimum daily, 10 tons Fec. 21.

EXTREMES, 1958-60, 1962-63.--Dissolved solids (1958-60): Maximum, 52 ppm Feb. 11-20, 21-28, 1959; minimum, 28 ppm June 21-30, 1960.

Hardness (1958-60): Maximum, 58 ppm Sept. 13, 1959; minimum, 12 ppm Dec. 21-31, 1959 and May 1-10, 11-20, 1960.

Specific conductance (1958-60): Maximum daily, 252 micromhos May 16, 1959; minimum daily,

11-20, 1960. Specific conductance (1958-60): Maximum daily, 252 micromhos May 16, 1959; minimum daily, 30 micromhos Jan. 25 and June 9, 1960. Water temperatures (1958-60): Maximum, 80°F Aug. 23, 1959 and July 25, 1960; minimum, freezing point Jan. 5, 6, 1959. Sediment concentrations (1962-63): Maximum daily, 1,540 ppm Mar. 6, 1963; minimum daily, 7 ppm Dec. 21, 1962. Sediment loads (1962-63): Maximum daily, 42,000 tons Mar. 13, 1963; minimum daily, 10 tons Dec. 21, 1962.

Suspended sediment, water year October 1962 to September 1963

		OCTOBER	₹		NOVEMBE	R		DECEMBER	
		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded sediment
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mear dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	422	25	28	386	15	16	676	20	36
2	494	29	39	382	14	14	661	20	36
3	703	35	66	383	14	14	638	20	34
4	948	42	108	388	14	15	620	19	32
5	646	50	87	374	14	14	638	17	29
6	513	52	72	366	14	14	638	15	26
7	475	52	67	367	14	14	620	17	28
8	474	50	64	379	14	14	586	20	31
9	571	50	77	657	30	53	586	23	36
10	49C	45	60	1220	51	5 194	586	25	40
11	442	35	42	810	50	109	570	25	38
12	426	32	37	718	50	97	520	25	35
13	422	32	36	1070	48	139	520	25	35
14	410	30	33	795	45	97	500	23	31
15	409	30	33	630	38	65	520	20	28
16	400	30	32	570	35	54	550	17	25
17	398	28	30	552	34	51	565	16	24
18	397	26	28	763	34	70	533	12	17
19	386	24	25	1060	34	97	522	10	14
20	381	22	23	833	34	76	518	8	11
21	372	22	22	1370	268	S 1360	532	7	10
22	417	20	22	3560	446	S 4380	628	8	14
23	414	20	22	1690	200	913	752	9	18
24	381	20	20	1170	108	341	627	8	14
25 • •	364	20	20	975	6.3	166	1180	132	421
26	366	20	20	865	45	105	2300	223	5 1440
27	367	19	19	788	36	76	1410	4.2	5 160
28	372	19	19	749	30	61	1090	25	74
29	377	19	19	741	24	48	1300	73	5 279
30	379	18	18	710	20	38	2220	209	5 1270
31	385	18	19				1490	80	322
Total	14001		1207	25321		8705	25096		4608

S Computed by subdividing day.

2-3920. ETOWAH RIVER AT CANTON, GA .-- Continued

Suspended sediment, water year October 1962 to September 1963--Continued

- 1		JANUARY	7		FEBRUARY	7		MARCH		
F		Suspen	ded sediment		Suspen	ded sediment		Suspen	ded	sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)		Tons per day
1	1170	43	136	1330	50	180	966	51	s	167
2	1020	33	91	1280	48	166	1460	92	5	358
3	932 868	30 25	75 59	2390 2100	45 42	290 238	1220 1090	57 40		188 118
5	831	20	45	1630	40	176	1300	276	s	1440
1							1	1	1	
6	807	20	44	1420	38	146	7920	1540	5	32300
7	785 768	20 21	42	1290 1200	37	129	6060 2400	518 125		6480 810
9	720	20	39	1120	36	109	1860	50		251
10	701	18	34	1060	36	103	1610	45	Į	196
11	739	70	40	1040	33	93	1470	45		179
12	2240	229	5 1420	1110	28	84	5580	962	s	21100
13	1690	103	470	1120	25	76	16200	1014	S	42000
14	1200	53	5 174	1020	23	63	10400	694		19500
15	1030	45	125	978	22	58	3230	528		4600
16	946	40	102	945	22	56	2670	488		3520
17	894	42	101 147	921	20	50 49	3030 3200	420	İ	3440 2580
18	937 1320	58 189	s 870	907 1220	38	S 128	2640	180	İ	1280
20	5330	759	5 10800	1470	68	270	2620	122		863
21	2970	286	2290	1200	60	194	2470	100	}	667
22	1860	156	783	1080	49	143	2100	80	İ	454
23	1530	100	413	1020	42	116	1920	72		373
25	1380 1180	65 50	242 159	1010 990	35 30	95	1810 1730	70 50	İ	342 234
					1	ì				
26	1140	50	154	962	30	78 75	1870 1900	41		207
27	1140 1060	50 50	154 143	926 901	3 0 3 0	73	1670	67	!	231 302
29	976	51	134	/	1	1	1570	69	ļ.	292
30	1100	52	154				1510	63		257
31	1520	52	213				1470	60		238
Total	40784		19697	33640		3438	96946			146967
1		APRIL			MAY			JUNE		
1	1430	53	205	14900	290	S 9600	1220	61		201
2 • •	1390 1370	52 52	195 192	5000 3200	200 100	2700 864	1170 1120	58	1	186 175
4	1350	53	193	2600	75	526	1100	57		169
5	1310	53	187	2200	60	356	1100	55		163
6	1350	53	193	2000	50	270	1040	51		143
7	1490	52	209	1800	48	233	1030	48		133
8	1390	50	188	1700	46	211	1020	44		121
9	1300 1260	49 49	172 167	1700 1600	48 50	220 216	982 953	40 36	1	106 93
			141			220	031	20	ļ	
11	1220 1190	49 45	161	1600 1600	53 54	229	921 895	36 36		90 87
13	1160	41	128	1580	62	264	869	36		84
14	1140	40	123	2290	337	2080	854	41	1	95
15	1110	39	117	2050	257	1420	879	50		119
16	1090	38	112	1620	98	429	899	54		131
17	1080	38	111	1480	45	180	1440	90		350
18	1080	39	114	1440	40	156	1360 1160	127 108	1	466
19	1090 1140	45 44	132 135	1350 1320	40	146 143	1100	110		338 327
21	1160	44	138	1270	40	137	2110	267	s	1590
22	1070	44	127	1240	39	131	2600	269	-	1900
23	1030	44	122	1190	39	125	2260	193	5	1210
24	9 9 0 952	44	118 103	1160 1140	38 37	119 114	2530 1670	176 86		1200 388
26	952	40	103	1210	40	131	1580	103	s	443
27	952	45	116	1390	48	180	2570	262	s	1840
28	1140	130	400	1720	63	293	2680	189		1370
29	6430	745	S 16500	2010	70	380	2260	206		1260
30	19700	418	5 20000	1570 1320	70 65	297 232	2220	195		1160
	59316		40906	68250		22615	43572	 	-	15938
Total										

S Computed by subdividing day.

2-3920. ETOWAH RIVER AT CANTON, GA. -- Continued

Suspended sediment, water year October 1962 to September 1963--Continued

		JULY			AUGUST			SEPTEMBE	R
		Suspen	ded sediment		Suspende	ed sediment		Suspen	ded sedimen
Day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day	Mean dis- charge (cfs)	Mean concen- tration (ppm)	Tons per day
1	2100	183	1040	1270	190	652	588	55	87
2	1670	170	766	1090	128	377	559	45	68
3	1480	157	627	990	88	235	545	35	51
4	1300	142	498	914	72	178	549	30	44
5	1220	125	412	857	70	162	580	32	50
6	1220	110	362	836	70	158	566	34	52
7	1400	95	359	800			534	32	46
8	1300	82	287	764			562	32	49
9	1100	70	208	1090 128 377 990 88 235 914 72 178 857 70 162 836 70 158 800 85 184 764 98 202 746 58 117 710 48 92 692 48 90 674 48 88 748 48 97 712 48 97 712 48 97 655 49 87 668 47 633 42 72 613 36 60 604 35 57 623 36 61 775 68 142 697 65 122 614 37 61 585 31 49 570 33 51 667 39 70 667 49 67 674 45 82	526	27	38		
10	1030	60	167	710	48	92	505	23	31
11	990	58	155	990 88 235 914 72 178 857 70 158 860 85 184 77 764 98 202 77 7710 48 92 6 692 48 97 6 679 48 88 77 748 48 97 712 48 92 6 655 49 87 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 648 47 82 6 649 655 49 87 6 649 655 49 87 6 648 47 82 6 655 68 122 6 655 68 122 6 655 68 122 6 667 65 122 6 667 39 70		495	23	31	
12	990	57	152			23	30		
13	1020	56	154			40	70		
14	1100	53	157					75	S 173
15	1070	52	150	712	48	92	1140	221	S 683
16	972	51	134				753	103	209
17	1050	51	145	679 48 88 748 48 97 712 48 92 1 655 49 87 648 47 72 633 42 72 613 36 60		55	93		
18	1080	. 51	149					40	63
19	978	82	217					38	58
20	990	90	241	604	35	57	544	33	48
21	1350	93	339				525	31	44
22	1400	96	363	679 48 88 646 748 48 97 807 712 48 92 1140 655 49 87 753 648 47 82 627 633 42 72 848 613 36 60 569 604 35 57 544 623 36 61 925 775 66 142 511 697 65 122 498 614 37 61 478 585 31 49 464	30	41			
23	952	100	257			29	39		
24	1480	123	492					29	37
25	1180	133	424	585	31	49	464	29	36
26	1480	114	456					30	37
27	1180	90	287				458	38	47
28	1030	72	200				1630	304	1340
29	1400	160	S 832	674			5290	355	5 4190
30	1280	135	467	796	53	114	1640	154	682
31	1580	262	5 1120	656	56	99			
Fotal	38372		11617	22959		4094	24122		8467

Total discharge for year (cfs). 492379
Total load for year (tons). 288259

S Computed by subdividing day.

MOBILE RIVER BASIN -- Continued

2-3920. FTOWAH RIVER AT CANTON, GA. --Continued

	Mathod	Jo .	analysis	BCW	BCM	BSWC	BSWC	BSWC	BSWC	BSWC	BSWC	BSWC
			2.000									
			1.000									
		eters	0.500	1	1	87	97	96	70	93	6	96
		millin	0.250	1	;	8	87	76	54	82	73	88
ater;	iment	ted, in	0.125	1	ł	9/	6	65	47	82	68	83
ember 1963 in native wat	Suspended sediment	Percent finer than size indicated, in millimeters	002 0.004 0.008 0.016 0.031 0.062 0.125 0.250 0.500	59	46	2	26	24	41	81	65	74
N, in m	Suspen	zis usu	0.031	52	45	26	46	43	36	29	8	67
to Se ration; l		finer t	0.016	44	88	48	36	33	32	92	62	59
decan decan		ercent	900.0	36	28	37	29	22	26	67	28	50
Octobe sed; D, in di		ď	0.00	22	21	88	23	20	21	26	49	41
disper tube; W			0.002	21	14	22	20	17	19	49	46	36
Particle-size analyses of suspended sediment, water year October 1962 to September 1 (Methods of analysis: B. bottom withbrayed tube; C., Chemically dispersed; D. (decandation; N. in mathy P. pipet; S. sieve; V. yismai accumulation tube; W. in distilled water)	Sodimont	discharge	(tons per day)									
of suspended om withdrawal to S, sieve; V, via	Sediment	concen- tration	(mdd)	419	795	2340	528	899	839	270	159	153
e-size analyses nalysis: B, botto P, pipet;		Discharge (cfs)	Ì	2400	4280	9490	4430	7340	11400	23500	17300	4950
ods of a	Water	per-	(FF)									
Meth		ling										
		Time (24 hour)	Ì				_	1650	2215	1645	0920	1715
		Date of collection		Nov. 21, 1962	Nov. 22	Mar. 12, 1963	Apr. 29	Apr. 29		Apr. 30		Мау 2

2-3970. COOSA RIVER NEAR ROME, GA.

LOCATION—At gaging station on left bank at Mayo Bar lock and daw, 1.5 miles upstream from Webb Creek, 6 miles southwest of Rome, Floyd County, and 7.5 miles downstream from confidence of Dostanals and Etowah Rivers, and at mile 279.
RECORDA-4.4.4.04 organze miles, approximately.
RECORDA STAILER.E.—Chemical maniyees: October 1962 to September 1963 (discontinued)
RATHE CAPALIANE.—Dissolved analyses: October 1962 to September 1963 (discontinued)
RATHERS. 1962-63.—Dissolved Soldies Maximum, 108 ppm 88-pt. 1-10, 11-17, 22-24; minimum, 33 ppm Dec. 1, 3-9.
RECORDA STAILER.E. 1962-63.—Dissolved Soldies Maximum, 14 ppm Jan. 20.
Specific conductance: Maximum, 14 ppm Jan. 20.
RATHER STAILER.E. Maximum, 1872-187 mini

		Color	13		с		ın	1 40		10	30				£ 5
		Ħ	7.2	7.2	7.0	7:0	7.2	7.7	7.2	7.6	7.2	6.9	7.7	7.0	r . r
	Specific conduct-	micro- mhos at 25°C)	150	153	151	87	48	129	110	101	16	120	88	117	136
	Hardness as CaCO,	Calchin, Non- magne-carbon- sium ate	2	150	so o	2 62	0	e c	, es	ıc	m	90	. ~	4	. 00
	Har		946	49	84.5	33	19	946	4	8	31	14	8	48	2 %
r 1963	Dissolved	residue at 180°C)	86 A 49	8	86 6	54	33	A 43	102	28	99	1 8	8	28	38
tember	Ni-	trate (NO ₃)	٦		0		0	ų, c		0	o.	۱۰	•	•	o M
to Sep	Fluo-	ride (F)	0.2	4	200	Ÿ.F.	۲.	0,-	2	T.	τ.	-		٦.	N N
Chemical analyses, in parts per million, water year October 1962 to September 1963	100	(CI)	7.0	6.5	O 16	0.0	rυ	2.0	4.5	3.5	3.0	۱۳	4	3.8	0.0
r year Oct	- 7-31-10	(30°,	16	15	150	4.0	3.2	10	9.5	7.2	6.4	10	0	8,4	10
, wate	Bicar-	bonate (HCO ₃)	34	54	2 2	38	24	3 23	20	20	34	10	36	2	8 %
1111on	Po-	stum (K)	1.5	1.4		1.0	₹.	0.0	1.	6	1.1	1.0	6	σ.	6.1
rts per m		(Na)	8.8	12	2,5		1.5	2.0	5.3	3.6	2.6	£. 4	2.9	4.4	v 2
, in pa	Мад-	sium (Mg)	2.7	4	19	2.2	1.0	1 19	4	9.0	2.4	1 0	9	3.8	4 6
nalyses	Cal-	cium (Ca)	14.	13	7.	9.6	0.9	10	12	12	8.4	1,	4.6	13	9.8
mical a	į	(Fe)	0.00	8	5.5	18	.03	8.8	.02	00.	00.	ļ.S	5	90.	දුල්
Che		(8102)	8,3	8.8	1.0	7.5	7.4	80 80	7.7	8.5	6.4	1,0	7.2	9.2	r 4 20 80
	Mean	discharge (cfs)	2085	1961	2795	7446	5818	2645 5562	4348	5467	11160	18100	31	5328	5424 25400
		Date of collection	Oct. 1-3, 8-18, 1962 Oct. 4-7	Oct. 19-31	Nov. 1-11	Nov. 20-30	Dec. 1, 3-9	Dec. 2, 10	Dec. 16-31	27-31, 1963	21-26	Jan. 20.	Feb. 3-9	Feb. 18-28	Mar. 6-20.

10	8 8	유 !	010104	010141	12 10 10 20 20	16	14	ţ
7.0	4.0	7.5	22.44	24.0.7 0.7	6.5	7.1	7.1	1
75	115 67	130	67 101 106 96 96	76 102 109 94 94	145 156 158 149 84	98	105	1
20	но	40	1011C4	01 H 01 4 W	υ φφ⁄κ	m	4	1
33	45	18	8 4 4 4 8 8 1 4 4 8	8 4 4 4 4 4 8 0 0 2	56 58 58 36	35	41	ł
9	78 52	3 8	A 41 A 61 70 64	64 70 70 A 59	98 A 96 108 108	59	11	1100
.1	μ., e.	4 10	-	4440	00000	0.1	0.1	2.6
г.		٦٦	ननननन	9	4444	0.1	0,1	2.0
2.0	88	4 n.n.	0 0 0 0 4	00000	88.0 7.0 8.0	2.9	4.0	55
5.2	2.4	64 50	20 82 L 82	7. 8.0 6.0 6.0	14 16 20 17 6.4	8.8	8.8	126
34	30	22	8 4 6 4 4 8 5 4 5	40044 99947	220004	38	46	720
6.	1.2	1.0	0.000.00	8.7. 8.1	4444	1.0	1.1	19
2.7	2.8	5.7	44660	84448 88400	8.6 9.8 12 12 3.9	3.9	5.4	73
3.0	3.6	3.5	7.28.4. 7.4.6.4.	7.888.4 7.400.1	0.004 E	2.5	3.3	46
8.2	12,	15	7.6 12 12 9.6 9.6	11133	14 14 15 15 8,8	9.7	11	179
10.	.02	000	0.0000000000000000000000000000000000000	88988	88888	0.03	0.03	0.53
7.5	8.8	7.3	6.9 7.1 7.8 8.1 9.1	000000 0000000000000000000000000000000	80886	7.8	7.8	132
13400	5210 12500	3670	13300 6160 3990 	7390 5360 4970 7110 5020	2670 2310 2060 2260 4630	7	6879	1
Mar. 21-31, 1963	Apr. 1, 7, 10-13, 17-20, 29 Apr. 2-6, 30	Apr. 8, 9, 14-16, 21-28	May 5-18 May 19-31 June 1-11 June 12-20	July 1-7	Aug. 5, 11-13, 18-22 Aug. 23-31 Sept. 1-10, 22-34. Sept. 11-7, 22-34. Sept. 18-21, 23-30.	Weighted average	Time-weighted average	Tons per day

A Calculated from determined constituents.

MOBILE RIVER BASIN--Continued 2-3970. COOSA RIVER NEAR ROME, GA.--Continued

Aver-	age	55 53 46	52	61 64 70	73 75 72
	31	58	39	191	73
	30				
	29 3	57 55 55 56 47 46	37 39	62 62 66 68 69 72	74 75 76 76 65 64
	, 28	552	2 4 4 4	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	72 75 77 76 70 69
	27	57 52 44	38 42 54	61 64 67	
	26	80.0 0 %	5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.4 6.4 6.6	72 78 69
	25	60 52 44	36	6.5 6.5 6.8	77 66
	24	64 52 43	37 41 49	65	73 77 67
	23	65 52 45	4 6 4 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	71 66 69	75 76 70
	22	66 54 46	4 0 4 9 9 9	67 66 70	75 52
	21	68 54 48	525	689	76 76 75 75 70 73
	20	55 46	5 4 4 5 8 5 8	65 70 69	75 76 69
	19	68 54 43	5443	6 9 8 9	73
	18			61 71	
	_	69 68 53 55 40 44	40 41 40 40 56 56	60 6 65 6 75 7	74 73 72 75 70 70
, A	5 17				
Day	91	202	50 50	250	74 74 72 72 71 70
	15 1	70 50 42	5412	59 71	
	-	69 52 40	4 4 6 0 4 0 0 4 0	69 63 72	71 72 76 74 74 74
	12 13 14	71 52 40	49 40 55	63 71	
		69 53 42	4 4 4 5 3 3 4 5 5 3 4 5 5 3 4 5 5 5 5 5	60 64 72	71 77 75
	=	69 51 45	447	65	7176
	9	70 51 44	2 4 4 4 6 9	50 10 10 10	72 76 73
	0	71 53 46	24.00	53	75
	80	69 54 52	4 5 1	57 62 72	75 76 73
	_	520	1 4 1 2	202	4 1 5 1 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5
	9	57.8	1 4 7 7 7 1 2 1	5 4 4 6 6 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	57.5
	5	67 54 55 55 5	53 5	57 57 6 68 6	76 7 7 7 7 7 7 7 7 7 7 7 7
	4			58	
	3	68 69 56 57 50 55	42 41	57 5	70 71 75 75 75 76
	2				
	-	65 66 50 57 54 51	42 42	58 59 61 58 66 70	72 72 73 74 75 76
-	L				
	Month	October November December	January February March	April May. June	July August

MOBILE RIVER BASIN--Continued

2-4005. COOSA RIVER AT GADSDEN, ALA.

LOCATION. --Temperature recorder at gaging station at Etowah County Memorial Bridge on U.S. Righway 431 in Gadsden, Etowah County, 460 feet downstream from Louisville and Mashville and

			3	00	()
			30	99	53
			29	09	53
			28	61	53
	(P		27	61	5.3
	Temperature ('F) of water, water year October 1962 to September 1963 (Recorder with temperature attachment, continuous ethyl alcohol-actuated thermograph)		26	63	53
	9		25	65	53
	1963 the		24	99	53
٠.	er ated		23	68	53
2	Temperature (°F) of water, water year October 1962 to September 1963 r with temperature attachment, continuous ethyl alcobol-actuated the:		22	69	52
80	Sep 31-a		21	69	52
2	to		20	02	52
Jar	1962 1 a l		19	70	52
1°L	thy		18	7.1	52
ຕໍສີ	ctob us		17	17	52
196 Jimu	onu.	Day	16	7.1	52
Bir	yea		15	7.1	52
12,	ter.		14	70	52
Ser ug.	ment		13	70	52
T. T.	ter		12	70	52
1962	f we		11	7.0	53
E ,	o (10	70	53
cto	era.		6	70	4.5
0.2	ture		8	70 69	4,7
res	era th		7	69	55
ratu	Cemp W1		6	69	56
npe:	rde		5	69	57
t te	seco		4	68	57
ater	څ		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3	68	59
**			2	69	56
BLE -63			-	70	61
AVAILABLEWater temperatures: October 1962 to September 1963. S, 1962-63,Water temperatures: Maximum, 88°F Aug. 12, minimum, 37°F Jan. 28 to Feb. 1.		-	ICII	mm 50 69 68 68 69 69 69 70 70 70 70 70 70 71 11 11 71 70 69 69 68 66 65 63 61 60 60 60 60 60 60 60 60 60 60 60 60 60	III 61 59 59 57 57 56 55 54 54 53 53 53 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53

			٥	Recorder	rder	MITH.		temperature	rat		att	attachment,	ent,		DITE	continuous		etnyl		000	arconol-actuated	t ma		roer	80	thermograph)	,					
Manage															Д	Day															-	9000
Month	-	2	3	4	5	9	7	8	6	10	=	12	13	14	15 1	16 1	17 1	8	19 2	20	21 2	22	23 2	24 2	25 2	26 2	27 2	28 2	29 3	30 3	_	Average
October Maximum	70	69	89	89		69	_	70	2	70		70		7.0	7.1.7	1.7	7117	7 1.7	7 0 7	70	-	_	68			_			09		09	6.8
: :	69	8 9	99	67	6.8	69	69	69		02	0,	0,	70/								9 69	89		65 6	63 6	61	09 09				0	57
November	61	59	29	57	57	99	55	54	54	53	53	25	52 5	25	52 5	- 25	52 5	52 5	52 5	25	52 5	25	53 5		_		53 53	_	53 53	<u> </u>	1	54
Minimum	59	66	57	24	26	55	_	54	_	53	52	52	52 5	_		_				-				53 5	53 5	53	53 53		53 53	÷	1	53
December	:	2						9	9	9		<u></u>					~	_	- 5	_	٠,		2 7	_	- 2		- 2				_	u.
Maximum	53.3	53	53	53	53	50	0 4	404	_	4.5	454	7 7	41.4		4 0 4	0,4	4 0 0 4	0 0 0		107	_	7 7							43 44	_	1 4	1 4 0 10
	*	- 44	4	- 5	4,	- 3			- ;		4			4		- ;			- 4	-	- 4	~	-2						7 27	_	_	ç
Minimum	7 7	4	7	4		4		. 1		_		4.5			42 4		45 4	45		7,7		_			_	_	38 37			_	37	45
February	<	90	0	- 0		-;	-;	- ;					- 7	- 6	, ,		- 4						- 4		- 4		- 4		_			6,4
Minimum	3.5	38	38	36		1 0	_	42	_	1 4		. 64	_	_		_	_		_							_		-		_		1 1
March	- 1		-	Ţ	0	¢	_	9			_	:				_												_				
Maximum	43	1 3	4 4			0 4	0, 4	200	200	200	215	27	52	52	55 55	55	55	55	56 5	27.0	58	5.0	56.5	55	55.0	55.	55 55	_	56 56	_	2 2 2	25
April	- 5	19	63	4	63	63		09		62		.3																				4
Minimum	9	61	61	63		9	09	09	9	19	62	63	63	79	63 6	63	63 6	9 49	9 49	9	65 6	19	9 99	99	67 6	65 6	67 65		65 65	-	1	63
May	7	4	3	4		5		4	_	- 8		- 62							_			-			_		70					9
Minimum	65	6.5	4	4 4	4	7 4	49	65	99	67	9 9	12	707	20	707	102	707	10	717	::	727	- 2	727	: =	717	10,	70 70	-	12	÷	;	68
June							_	-		-							_			_					_			_			_	
Maximum	7.1	72	7.4	7.5	77	78	7.8	78	2 1	85	107	82	818	9 6	82.8	7 08	787	9 7	787	2 7	78/		77	7.4	76	2 2	75 75	_	10/	76 -	: :	8 4
July	:	1	,	:		-				-		-		-		-										_						2
Maximum	16	78	48	4	80	80	_	81	_	81	80	80	90	80	80 8	80	80	80 8	808	81		83	83 8	82 8	80 8	81 6	81 81	-	82 82	_	85	80
Minimum	16		77	78	18	80	80	8.1	80	80		- 62		0	_	_		_			80 80	_		_		_	0	_		_	0	4
August	81	82	82	83	84	86	98	85		86	86	88	87 8			_			858	84	83 8		8 4 8	85	_	-	87 86	_	84		- 7	85
Minimum	81	81	81	82	83	84		48	84	84	84	84	_	83	82 8	82 6	82 8	82 8	83 7			82	82 8	83 8	84 8	84	85 84		83 82		95	93
September	84	7	4	77	4	48	23	82	3	82	83	83	82		7	- 62	7 9 7	- 64	78 7	7.8	78 7	- 01	7 9 7	78	76 7	74	73 73	_	70 70	_	1	0.8
Minimum	83		82	83		82		80		80		81		080	_	_	_						_		_						-	7.8
]			İ	-		-	-	-		_	-	ند	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	

2-4070, COOSA RIVER AT CHILDERSBURG, ALA

700 feet upstream from bridge on State LOCATION.--Temperature recorder at gaging station at Central of Georgia Railway bridge, 700 feet upstream from bridge of Highway 38, 0,5 mit demonstrates from Filaseeharchee Creek, and 1 mile northwest of Childersburg, Talladega County. DRAIRAGE ARGA.--8, 390 square miles, approximately.

RECORDS AVAILABLE.--Water temperatures: October 1962 to September 1963.

RECORDS AVAILABLE.--Water temperatures: Maximum, 86°F Aug. 12, 13; minimum, 38°F Jan. 28-30.

REMARKS.--Recorder stopped Aug. 14-27; range in temperature 82°F to 85°F.

March

: :

2-4116. COOSA RIVER AT WETUMPKA, ALA,

LOCATION, --Temperature recorder at gaging station at abandoned lock, 782 feet downstream from bridge on State Highway 14 at Fetunba. Elabore County, and 6.5 alles downstream from discharge gaging station at Jordan Dam.

BRONDAN MAREAL.--10,200 square miles, approximately, upstream from gaging station.

BRONDAN MAILMBLE.--Mater temperatures: October 1982 to September 1983:

EXTREMES, 1962-63, --Water temperatures: October 1982 to September 1983 quring August and September; minimum, 43°F Jan, 30 to Feb. 2.

EXEMENES.--Stream fow regulated by several upstream reservoirs and hydroelectric plants.

	Average	26111	76	11	52 52	84	4 4 6 4	3.6	65	73	79 78	82 80	88 85 4 4	83 81
		<u>۳</u>	71	11	8 8	£ 4 6 9	11	61	11	78	11	8 8 5	84	11
		8	71	57	64	4 6	1 1	60	70	78	76 76	83	85	77
		29	72 70	57 57	4 8 4 8	3 3	11	60	68	78	7.7 7.6	85	8 8 4 4	78
	Í	28	72	57	4 9	4.5	4 4	09	69	77	77	83	86	78 77
(qd		27	72	11	64	4 4 0 0	48	60	68	77	78	83	86	79 77
ogra		26	72 70	Ш	50	4 4	4 4 8 4 8 8	09	69	77	79	9 8 3 3	84	79 78
3 erm		25	72	- 1 1	50	¢ 4	¢ 4	99	64	76 76	79	8 83	8 8	80 78
196 d th		24	74	11	50	47	47	09	68 68	76	80	83	84	80 78
ber		23	75	11	50	47	47	9 9	64	77	80	8 8 5	90 80	808
r year October 1962 to September 1963 continuous ethyl alcohol-actuated thermograph)		22	75	11	50	t t	47	909	68	77	808	83	84	83
Sej 01-i		21	75	11	50	4 4 6	47	9 9	67	75	80	84	83	82 80
to 1cohc		20	75	11	50	64	47	09	99	75	81	83	8 8 5	82 80
water year October 1962 out, continuous ethyl ald		6	76	11	5 0	6 4 9	4 4 6 4	59	99	75	79	83	84	800
oer ethy		18	76	11	50	4 4 80 80	4 6 4 6	59	66	75 73	80	83	87 84	82 80
cto		1	77	1.1	50	4 4 80 80	4 6 4 6	59	65	74	7.8	82	86	82 80
ar o	Day	16	77	-{-}	50	4 4 8 8	9 1 4 9 9 9	58	99	73	980	82	9 9	82 81
ont		15	77 76	11	51	4 8	4 6	58	65	72	81	13	83	82 81
ž .		4	77	11	51	64	9 4 9 4 9 4	57	65	72	78	81	86 84	8 8 8 8
, w		13	77	11	52	4 9	4 6 4 6	5.5	65	70	78	81	86	86
water, ttachme		12	77	11	53	646	4 4 4 6	55	63	120	80 7.8	81 79	86	83
of w		=	77	11	54	4 4	4 6	55	9.6	70	81 78	81	35	30 SB 30 SF
(°F) crature		2	22	11	54	0 00 00 00	4 4 4 9	5.5	63	70	90	81	8 9 5	83
		٥	78	11	5. 5.4	3 3	4 4 6 4 6 4	54	63	69	77	980	36 84	86
Temperature r with tempe		8	78	11	56	4 4	4 4 6	53	63	68	77	7.9	98	83
pere		^	78	11	56	4 4	45	51	63	67 67	77	90	8 5	83
Tem;		٥	7.8	-1-1	57	4 t 6 8	4 2 2	50	62	66	78	79	95	8 8 4 8
orde		2	78	11	57	3 3 8 8	44	4 4 9	63	66	78 76	79	83	8 4 4
Rec		4	7.8	68	57	4 4	7 7	4 4 8 8	63	68 67	78	7.8	83.5	83
Ŭ		ო	78	68	56	4 4	4 4	4 4	62	689	78	78	95	8 8
		7	78	68	57	# # # #	4 6 4	4 4 8 8	61	69	78	77	8 9	83
		_	77 76	70	57	4 4	43	4 4	61	70	78	77	35 84	86 84
	Month	MODE	October Maximum Minimum	November "Maximum Minimum	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	Maximum	Maximum	Maximum Minimum	August Maximum	September Maximum Minimum

MOBILE RIVER BASIN--Continued

2-4230. ALABAMA RIVER AT SELMA, ALA.

LOCATION. --Temperature recorder at gaging station on Edmund Pettus Bridge on U.S. Highway 80 in Selma, Dallas County, 1 mile upstream from Valley Oreek.

DALIANGE AREA. --17,100 square miles, approximately.

RECORDS AVAILABLE. --Water temperatures: June to September 1962, unpublished; October 1962 to September 1963.

RETHERS: 1962-63. --Water temperatures: Maximum, 86°F Aug. 6; minimum, 43°F Jan. 29 to Feb. 1.

Temperature (°F) of water, water year October 1962 to September 1963

					l										_	Day															F	
Month	-	2	е	4	2	9	7	8	٥	10	=	12	÷3	14	15	91	17	18	19	20	21	22	23	24	25	26	27	28	56	30	31	Avelage
October Maximum	73	73	73	74	74	47	74	74	7.5	75	75	75	74	74	74	74	74	74	74	74	72	72	72	70	6.8	19	65	63	62	29	69	72
November Maximum		63		62		. 60 58	5.88	58	5.9	. 0. B		5.88	59	5.0		5.0		09		096		5.9		5.8							: ; ;	. 66
December Maximum Minimum	56	56	56	56	56	56	54	54	5 2 4 5 3	53	52	50	4 9	94	9 4	47	4 4 4 7	6 4 8	0 0	64	50	51	51	50	50	50	200	50	50	0.00	000	51 51
January Maximum	50 4	64	8 4	8 8	8 4 4	8 80	4 4 8 4	8 4 7	8 4 8	4 t 8	50 48	50	50	50	644	47	4 4 5 5	4 4 0 0	2 4 7 5	4 6 5 5	47	4 8	14	14	4 6	5 4 4	1 1	1 1	4.64	6,6	6 4	47
February Maximum Minimum	4 4	44	2 4 6	9 4	4 4	45.	2 4 5	2 4 5	4 50	46	4 4	94	4 6	9 4 9	4 4 0 0	45	4 5 5	44	4 4	1 1 1	4 4	4 4	3 3	4 4 55	4.5	4 5	9 4	4 4 5	11	11	11	4 5 6 5
March Maximum Minimum	4 5	4 6	9 9	1,4	4 4	64	64	64	64	64	50	51	53	53	53	53	54	54	5.5	55	55	55	55	55	55	55	56	56	26	57	57	52 52
April Maximum Minimum	57	58	8 8	58	58	5.88	58	58	5.00 0.00	61	61	61	61	61	909	62	63	63	6.5	65	6.5	65	66	668	68	67	99	99	65	69	11	62
May Maximum Minimum	67	67	99	99	99	99	99	99	99	99	99	67	68	69	69	7.0	207	07	7.07	17	17	73	73	73	73	72	4 4	74	4 4	7.4	4 4	70
June Maximum Minimum	12	74	7 4 7	75	76	77	7.8	7.8	79	79	81	81	81	81	81	90	90	90	79	62	79	79	78	78	78	78	78	78	11	11	11	78
July Maximum Minimum	11	77	7.7	78	78	77	77	78	7.9	79	79	79	78	78	79	8 C 7 9	80	81	81	82	82	82	82	82	82	82	080	81	817	82 81	82	90
August Maximum Minimum	83	83	82	83	3 16	986	85	85	85	85	9 4	8.5	4 8	7 7 8	34	4 4 8	7 7 8 7	488	4 4	83	83	83	8 83	83	833	83	833	483	7 7 8	4.8	83	84
September Maximum Minimum	82	82	82	83	80	0.8	80	78	79	79	79	81	81	81 80	79	79	78	11	11	1.1	11	11	11	11	75	74	74	74	73	11	11	11

2-4255. CEDAR CREEK AT MINTER, ALA.

LOCATION. --Temperature recorder at gaging station at bridge on county road, 0.2 mile downstream from Snake Greek, 0.5 mile east Off Ainter, Pallas County, and 4 miles upstream from Dry Cedar Greek.

DRAINGER AREA. --217 square miles.

EXTRAGES, 1902-03, --maker temperatures: Cortober 1962; 10 September 1963.

EXTRAGES, 1902-03, --maker temperatures: Maximum, 92.7° June 9, 13, 13, minimum, 34° P Dec. 13-16.

	Average	Survey	74	35	, t4 1, 44	4 5 2 7 5	4 4 2 3	58	72	80 73	83	11	1 1	82
		5	49	11	8 4 9 6	4 4 0 10	11	70	11	82	H	11	888	11
		30	63	53	22.8	45	11	69	57	81	78	1.1	81	71 67
		29	61	53		4 1 0 4	11	68	74	80	78	11	87	72 65
		28	61	52	4 4 6 70	45	8 F	67	74	78	73	11	83	67 66
(qd		27	96	52		4 4 0 4	9 7 7	67	70	80 76	73	11	8 1	72 67
er year October 1962 to September 1963 continuous ethyl alcohol-actuated thermograph)		26	62 57	53	44	3 tc	L 4 4	67	71	80	79	11	80	73
3 erm		25	5.8	53	2,4	38	4 6	56	6.9	72	77	11	88	9 8 9 9 8 9
September 1963		24	70	42.0		4 4 4 0	7 4	55	75	77	75	11	888	81
ber ate		23	74	80.4	52	4.5	4.5	54	78	80	73	11	89	81 73
ptem		22	75	9 5		44	47	61	78	82	92	11	78	85
Se c		21	75	3 5	52	5°C	8 4	99	75	82	79	11	84 76	8 74
water year October 1962 to ent, continuous ethyl alcoho		20	75	5.8		500	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	72	42	77	81	11	81	82 72
196 71 a		19	77	59	7 4 6 7	51	44	73	75	82	76	11	11	81 71
ber eth)		18	78	50		3.0	2 4	72	75	83	81	11	11	77
oto ous		17	79	62	4 4	38	45	62	74	78	86		-1-1	78
ar C inuc	Day	7	90	58		38	4 5	62	70	78	83	11	11	76
r ye		15	79	\$ 4 4 a		38	4 4	49	59	85	92	11	11	81
ate.		1	78	3.5		4 8	4 6	69	68	81	83	11	11	85
Temperature (°F) of water, wat (Recorder with temperature attachment,		13	80	57		4 4	4 4 5	69	70	82	92		11	89
water,		12	77	5.2		5.5	0.4	999	402	78	8.50	11	11	87
of v		Ξ	77	55		54	53	57	74	83	91	11	- 1 1	87
(°F) ratur		2	72	525		5 2 5	51	53	2 7 1 8	3 83	8 6	11	11	3 78
e (٥	80	3.5		4 5	51	53	63	83	98	11	11	78
atur tem		80	- 80 7 80	45.5		4 4	1 64	5.2	999	81 81	9 90	11	11	86 87 78 78
Temperature r with tempe		7	7.9	52		4 4	51	53	62		8 8 8		11	
Ten er v		9	77 78	55 52		44 44 44 44 44 44 44 44 44 44 44 44 44	4 8 4 9 4 6 4 6	59 59	74 69	76 79 67 71	84 86 77 78	40 40	11	86 87 80 80
ord		2												
(Rec		4	77 78	56 56		42 43 38 39	58 50	55 58	74 74	73 76	81 82	7 A T T T T T T T T T T T T T T T T T T	$\frac{11}{11}$	89 86
		က												
		7	72 74 69	55 55		45 43	53 58	52 55 48 51	72 72 64	76 71	81 80	84 84 74 76	$\frac{11}{11}$	88 88 80 81
		-												
			: :	:		::	: :	::	::	::	::	::	::	:::
	N.	THOM	October Maximum Minimum	November Maximum	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	May Maximum Minimum	Maximum	Maximum	August Maximum . Minimum .	September Maximum Minimum

MOBILE RIVER BASIN .- Continued

2-4290. LIMESTONE CREEK NEAR MONROEVILLE, ALA.

LOCATION. --Temperature recorder it gaging station at bridge on State Highway 41, 3 miles northwest of Monroeville, Monroe County, and 10 miles upstream from worth.

BRAINGE AREA. --117 square miles.

RECORDS AMILIABE. --mater temperatures: Pebruary to September 1963.

RECORDS AMILIABE. --mater temperatures: Pebruary to September 1963.

STREAMERS, Pebruary to September 1963.--mater temperatures: Maximum, 81°P June 15.

Temperature ('F) of water, February to September 1963 (Recorder with temperature attachment, continuous ethyl alcohol-actuated thermograph)

			ا																								,					
Merch															ם	Day															Ayerage	۽ ا
Month	-	2	3	4	5	9	7	8	6	10	=	12	13	14	15 1	16 1	17 1	18	19 2	20 2	21 2	22 2	23 2	24 2	25 2	26 27		28 29	30	3		٥
February	1	1	1	1	T	1	1	47	94	1.4	20	47	44	4.2	42 4	45 4	41 43		43 4	7 94	7 8 7	4 8 4	43	48	848		47 46	- 1	-	-	1	1
Minimum	1	1	1	1	1	1	1	94	43	7 7	47.4	7 7	40	36	41 3	39	39 41		45 4	43	4 9 4	43 4	41	42 4	46 47		42 43	-	+	!	!	
March Maximum			53	58		0.0		52		28	-	99												_					1 62		61	
April			2 5	5 5		* :		2 5		75	_								6 7		2											
Maximum	9 7	9 6	9	6,7		99	4 5	69		5 5	2 5	2 9	89	79	69	62	0/ 69		717	7.7	73 /3		73	67	99 99	_	69 / 93	77	1 7	1 1	89	
Minimum			0		6	*		2	2	*		0		_								_						_				
Maximum	74	68	67	89	69	70	72	73	75	76	77	18	78 7	92	77 7	_	78 78		76 7	73	73 7	74 7	74 7	72 7	72 74		75 75	-	75 75	73	74	
Minimum	89	49	65	67	99	69	2	7.2	73	75	1,6	11	76 7	14	75 7	77 7	77 76	_	73 7	72	73	_	72 70	0	1 72	—	74 75	_	75 72	-	7.2	
June	74	4,	72	7.2	73	74	19/	- 11	78	- 8/	80	80	- 8	08	81	80 _	79 79		77	76	76 7	75 7	73 73		73 73		73 73	_	73 74	-	92	
Minimum	73	7.1	70	10	71 72	7.2	73	45	16	17	78	62	77 7	17	80 7	7.8	77 67		76 7	75	75 71	7	7	73 7	73 73		73 72		72 73	1		
July Maximum	75	76	16	16	77	7.8	19	78	16	7.5	75	74	747	75	76 7	77	77 78		78 7	- 61	80	80 8	80 7	78 7	74 74		76 77	77 7	7 77	-	77	
Minimum		74 75	92	75	92	77	18	92	15	74	72	73	747	74	75 7	16 7	76 77		78 7	- 22	16/	79 7	78 7	74 7	72 73		73 76		76 76	76		
August Maximum		7.8		7.8	78	80	80	8	80	-08	8	8			76 7	75 7	75 76		76 7											_	- 18	
•	_	15 76	77	77	77	78	4	80	7.8	42	4	62	80/7	. 92	75 7		74 75	_	75 7	74	73 7	74 7	75 7	75 7	16 76	-	78 78	_	77 77	78		
September	70	77	77	77	7.8	7.8	77	7.5	74	74	74	75	75 7	7.5	75 7	73	72 72	_	72 7	70	70/	73 7	73 7	70 6	68 66		99 99	67	7 67	-	_	
Minimum	76	16	16	9,	77 76	1,6	74	72		72		74			73 72	_				_	69 7			_		_		9 65		1	71	
	_																			-				_	_	_		_				

MOBILE RIVER BASIN -- Continued

2-4490. TOMBIGBEE RIVER AT GAINESVILLE, ALA.

LOCATION.--Temperature recorder at gaging station at bridge on State Highway 39 at Gainesville, Sumter County, 2 miles downstream PALINGE RIVET. BARGA.--8,700 square miles.

RECORDS AVAILABLE.--Mart responsatives: October 1962 to September 1963.

RECORDS AVAILABLE.--Mart responsatives: Maximum, 88°F June 15, 17; milnaum, 38°F Jan. 25, 26, 28-31.

	Average		11	{ }	1 1	44	4 4 6 4	9.50	68	74	79	79	88 83	90
Temperature ("F) of water, water year October 1962 to September 1963 (Recorder with temperature attachment, continuous ethyl alcohol-actuated thermograph)		31	63	11	4.5	38	1 1	6.5	11	71	11	78	80 80 7. 4	11
	Day	30	63	1.1	46	38	11	79	69	117	76	78	9.4	17 25
		29	62 61	- []	3 4 4	9 8	11	62	6.8	72	75	78	85	77
		28	62	11	9 4 6	39	4 4 5	61	6.8 6.8	76 7.2	75	78	80 5	73
		27	63	11	4 6 6	39	4 4	60	8 9	77	76	78	35	74 73
		26	69	11	4 6 4 6	38	4 4 6 3	900	69	77	76	7.7	8.5	75
		25	68	1	4 4 6	38	43	9 29	7.0	77	76	78	83	76
		24	0 4 9	11	4 4 6 4	4 5	4 5	6.0	72	7.8	77	78	833	76
		23	22		4 6	42	42	62	72	79	7.8	78	93	79
		22	11	11	4 5	43	4 7	63	72	79	8 0 2 8 9	7.8	82	7.9
		21	11	11	4 4 3	4 4	43	63	70	79	83	77	82	80 79
		2	- 1 1	11	42	4 4	42	63	69	78	8 8 3	76	82	382
		-	- 1 1	11	42	4 8	43	63	69	19	8 4	75	82	79
		18		11	11	42	4 4	62	69	861	8 8 9 9 9 9	75	82	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		17	11	11	11	4 4	4 4	62	64	980	8 8	76	81	7.8
		9	11		11	4 2	4 4	63	65	79	8 8	77	81	78
		15	11		11	4.3	4 4	63	66	78	86	81	84	81 79
		14	11	11	11	4.5	4 4	63	66	77 5	8 8 8 8 8 8	81	8 4	8 8
		13	11	- 1	11	50	4 4 6	58	67	76	8 8 3 55	81	85	8 0 0
		12	11	11	11	4.8	4 4 5	5.5	1 67	7 7 2 4 7 5	8 8 4	8 8 2 8 1	86	80
		=	- 1 1	11		4 4	4 4 5	55	67	74	83	83	86	82 79
		10	11	- 1 1	11	445	2 4 5	5.5	999	2 73	8 80	8 8 8	8 9 9 9	1 84
		6	1 1	11	_	4 4	4 4	55	99	72	78	83	86	80
		8		2.6	- 1 1	4 4	24	555	65	70 69	7 4	84 84	6 2 2	3 82
		7	. !!	57	11	4 4	4 4 4	55	65	69	76		8 8 5	83
		9		5.8	11	4 4	4 4	54 55 53 54	68 67 67 66	66 66	73 74	81 83 81 81	83 84 82 83	84 84
		5	11	50		4 4	7 7 7 7							
		4	11	60	-11	4 4	24	50 53	69 69	68 68 68 67	2 72	80 81 79 80	81 82 80 81	94 84 83 84
		3	11	62	- 1 1	1 1	2,4				72			
		2	11	63 62		45 45	39 43	47 49	66 68	69 68	71 71	78 79	79 80	85 84 84 83
		-												
	Month		October Maximum	8.8	December Maximum Minimum	January Maximum Minimum	February Maximum Minimum	March Maximum Minimum	April Maximum Minimum	May Maximum	Maximum	Maximum	August Maximum	September Maximum Minimum

MOBILE RIVER BASIN -- Continued

2-4650. BLACK WARRIOR RIVER AT TUSCALOOSA, ALA.

LOCATION. --Pemperature recorder at gaging station at bridge on U.S. Highway 82 at Thscaloosa, Tuscaloosa County, 0.2 mile upstream DRAINAGE, Mobile and to the Railorad bridge, and 0.8 mile upstream from Oliver Lock and Dam.
DRAINAGE ARRAL—-4, 826 square miles.
RECORDS ARRAL—-1, 1992 square miles.
RECORDS ARRAL—-1, 1992 square miles.
RECORDS ARRAL—-1, 1992 square miles.
RETREMES, 1994 square remperatures: Maximum, 95°F Aug. 6; minimum, 41°F Jan. 30, 31, 1963.
EXTREMES, 1994 sq.—- ** are remperatures: Maximum, 95°F Aug. 6; minimum, 41°F ann. 30, 31, 1963.
REMARKS.—Daily maximum temperatures usually caused by release of waste from industrial plants upstream.

Temperature (°F) of water, water year October 1962 to September 1963

															Day	_															
Month	-	2	3	4	5	9	7 8	8	6	10	1 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Average
October Maximum	77	7.7	78 7	77	80 7	78 7	78 7	77 7	79 79		78 78	7.8	9 7 9	79	78	7.7	7.8	77	77	76	76	75	74	7.2	7.1	7.1	0,4	89	5.	6.8	9,2
Minimum		6						_			0					0		0	_	2		*		1			0				*
Maximum		99		79		_		62 6		61 6	62 60			9				59	_	58	_	58		2.5			58		58	1	09
Mınımum	99	65	9 +9		63 6	62 6	62 6		60	_		29	9 29		29	59	29	28	28	47	28	57	22	57	57	57	22	57		1	9
December		56	58	-			_							50			20	51	64	20	20	6 7		64	64	64	8 4	64	64	- 05	25
Minimum	57	58		28	57 5	57 5	56 5	55 5	55 54	54 5	53 52	51	05		6 #	4 9		4	8 4	4	49	64	64	64	64	8 4	48	8 4	67	64	52
annary	ď	0 7	0 4	- 4	4 4 7	7 87	- C		0 7		0 4	9	0,7	7.7	4.5	4	77	77	7.7	4.6	4	7	4	7	6 4	- 7	7		7.3		47
Maximum		t 9		_				4 9		_						_		4 4		4.5		1 4		5.5	5 5		42			7 7	4
February	4	7	7	74	3	4	4	4	4		- 4	4	4	4	4 5	4 4	44	4	4	4	4	4	4	77	4.5	5.4	5	i	1	1	4.5
Minimum		64										_						43		43		4		74	4 4		2 4		-	1	, 1
March	4.5	4	7	84	4 6 4	7 64	48	4.9	50-5		52 53	_		55	5.5	57	8	59	0 9	. 09	58	53		65	5.8	20	50		_	6.5	55
Minimum		45	-			_	_			50 5	50 52	53	24	_		_		58		58		57	57	28	58		29	59	- 65	6.1	24
April	63	67	99				63		63		44	9		6.9	6	9	7.1	7.1	7	73		73	7.2	7.1	7.1	20	- 89	9			8
Maximum				3 %			_	200		200	43 64	_	3 4						_	10	7	1 7		. 0	4 00					-	9 4
Minimum		3										_						3	_	<u>.</u>				3	3		5		`		3
Maximum		67		99	9 99	67 6	_	7 0 7	75 74		75 75		1 75		-	_		77		77		76			77	4,	7.5	. 21	. 62	73	73
Minimum	65	67	65 6	_			9 99	_	68 7		71 72	72		73	7.4	65	47	75	4.	74	4,	4,	44	4,	7.4		2			73	7.1
June		73	79 8			_			85 8									8.0		78		76		75		7.8	18			-	9
Minimum	72	7.2		47	75 7	75 7	76 7	7 77		80 7	19 79	11	62 2	79	8 7	7.8	7.8	77	7.8	76	16	75	4,4	74	7.4		4/	15	. 11	1	16
huly Maximum		85	85 8								89 87	85				79	4	82	83	85		85		48	85		87			8.7	85
Minimum	7.8	2		31	93	83 8	94 3	94	84 83		-		8 82	83	42	76		78		81	82	82	83	83	83	82	48	83	85	85	82
August	86	68	91		92 9	6 6	93 9	92 9	92 9.	93 9	93 91	89	89	88	88	91	8	88	8 2	88	8	6	6	88	88	88	98	98	_	87	90
Minimum		85		87					_						_	98		86	-	85		85		86			85		78	48	87
September		, A	87.8		200		200	8.4	83 84		8.3	28	æ	0	080	70	~	8	8	80	79	7.8	7.7	77	7.7	92	75	- 74	14		8
Maximum		-		_		-	_	_		-				-														-			

MOBILE RIVER BASIN--Continued

2-4700.4. TOMBIGBEE RIVER NEAR JACKSON, ALA.

LOCATION.--Temperature recorder at auxiliary gage at bridge on U.S. Highway 43, 1.5 miles west of Jackson, Clarke County, 4.3 miles downstream from Sackson Creek, and 8.3 miles downstream from gaging station.

RECORDS AREAL--19,000 square miles, approximately.

RECORDS AVAILABLE.-- where remperatures; occorder 1862 to September 1863.

EXTREMES, 1962-63.-- where remperatures: dely 867 gebt. 2-13; minimum, 46°F Jan. 25 to Peb. 3.

Temperature (°F) of water, water year October 1962 to September 1963

			E	(Recorder		with		temperature	atu		ttac	attachment,		continuous	ř	Snc	ethy1		1col.	107	actu	alcohol-actuated	\$	thermograph)	gra	ब्र				r	
Month	Ī		ŀ	}	-	-	}	-	-	ŀ	-	-	-		Cay					1											Average
	-	2	8	4	2	9	2	8	- 6	-0	1 12	13	7	15	9	_	8	2	20	7	22	23	24	25	26	27	28	29	30	31	,
October	1	-	- 1		-	-			<u> </u>	- 1		- 1	- 1		- 1	_	- l	1	- 1	- 1	7.7	76	76	75	7.4	7.2	7.1	7.0	10	7.0	1
Minimum	1	1	1	<u>:</u>	1	-	+	-	1	1	1	1	1	1	1	1	i	1	1	1		16	75	7.4	12	7.1	20	20	20	20	;
November		10	70/7	20	69	_	67 66		99		65 65	- 49	49	62	62	6.2	62	62	62	61	9	9	59	5.6	59		58	58	28	1	63
Minimum	10	2				67 6	_		66 65									62		61		59	59	56	58	20	28	58	58	1	63
December	58	58	58	- 69	59 59	_	57 56		56 55		54 54	53		5.0	0,4	50	5	5.1	5.1	52	52	53	53	52	52	52	5.2	5.2	52	52	54
Minimum	58	58	-										20					50		51		52	52	52	52	52	52	52	15	52	53
January Maximum							52 52		52 52				_	52		50		50	6 4	49	4	4	4	4 8	46	9 4	4,6	4	46	46	20
E	52	52	52 5	52	52 5	52 5	52 5		_		52 52	52	52		20	20	20	49	64	4	4 8	4	47	46	46	9 4	4.6	46	46	94	20
February Maximum	46	9 4	48	7 8 4	48	7 8 4	48		48 48		4 8 4	4 9	6 4	64	64	4	6 7	49	4	48	4	4	8	4 8	4 8	8 4	6.4	1	1	1	8
Minimum		9+	4 9 4	_	48		48 48		48 48		48 48	4 8	4 6	4	64	4 9	6 4	4 8	8 4	48		48	8 4	4 8	8 4	48	8 7	1	-	ł	8 7
March	4	84		-05	51	53	53 54	_	5.5		55 56	57	7.58	58	50	9	9	6.2	62	62	6.2	62	62	62	62	62	62	62	62	6.2	58
Minimum		8 4							54 54								_	9	_	62		62	62	62	62		62	62	62	62	5.7
April		77			- 4		7									_		7		7		7.2		7.2	7.2	- 2	7.5	7.2	7.7	1	6
Minimum	62	62	64	65		99	99 99	_	99 99	_	67 67	67	689	68	9 9	6.8	2	2.2	2	12	1.	72	12	72	7.2	72	7.5	72	1,2	1	9
Maximum	7.2	72	72 7	7.5	72 7	717	7.1		71 71		72 71	71	73	7.4	7.5	7.5	76	7.5	75	76	76	76	16	77	77	76	76	76	92	76	74
Minimum		7.7							_		_			_				<u>. </u>		<u></u>				0	٥	0	ē	ē	e	0	ţ
Maximum	76	75	747	74	74 7	74 7	73 74		75 76		76 77	77	7 78	7.5	79	79		70	4	79		s S	3	8	2	38	30	3	1 8	1	78
Minimum		4.4														_	18	78		- 4	42	4		္ထ	္ထ	08	80	_	၁	!	11
July Maximum	82	81	818	_								81				8.1		8.1		8.1	81	80	_	83	8	80	18	81	81	8.2	8.1
Minimum	81	81	81	81	81 81	_	81 81		81 81	8	1 81	8.1	1 81	8	1 8 1	81	8 1	8	8	8		80	9	80	8	å	80	81	8.1	81	81
August	82	82	82	82		83	83 83		83 84		84 85		5 85	85		8.5	8.5	85	85	85	85	85		85	85	85	85	85	85	85	9.4
Minimum	81	82			82 8					_		82			9 2			85		85		82	82	82	85	82	85	85	85	8.5	9.4
September	85	98	86	_	86	86	86 86		86 86	_	86 86	86	84	84	89	83	83	82	82	82	8.2	81	81	81	3	9	4	48	77	!	83
Minimum				9.6			-		86 86	-	86 86		4 8 4			83	82	81		81	81	81	81	8	9.0	4	18	77	9,2	1	83

PEARL RIVER BASIN

2-4860. PEARL RIVER AT JACKSON, MISS.

LOCATION: -- Temperature recorder at gaging station on left bank of bridge on U.S. Highway 80 (old) at eastern city limits of Junes Courty, 0.2 mile upstream from Illinois Central Railroad bridge, 0.2 mile upstream from Town Creek, and 4.5 miles upstream from Inchind Creek, and Creek,

Temperature (°F) of water, water was October 1962 to Santember 1963

			(Rec	(Recorder		with	with temper		ature	. 18	tacl	attachment,		out	1 nuc	tachment, continuous ethyl	ethy		alcol	alcohol-actuated	act	ate		thermograph	ogre	(td)						
Month															I	Day																Average
MOHILI	-	7	က	4	φ	9	^	8	٥	0	=	12	13	4	15	9_	17	8	2	20	21	22	23	24	25	26	27	28	5	30	31	28 17 17
October Maximum	74	73	74	74	75	75	77	77	78	79	77	77	718	78	78 7	77	78 7	76	75	72	72	72	5 6 6	6.5	65	62	622	59	100	62	662	27
November Maximum Minimum	59	26	580	58		52		56		5.5	5,4	5.6	56	57	54	57	0.00	8 8	58	58	57	55	36	5 6	5 65	9 4	5.50	9.9	55	2 2	11	57
	57	55	0.0	5.0	5.7	54	5.4	11	11	11	ΤÌ	11	11	11	ii	11	Ti	11	11	11	11	11	11	1.1	11	11	11	11		11	11	1 1
	11	11	11	11	11		11	11	11	11	11	11	11	1 1	11	11	11	11	11	11	11	11	\exists	11	11	1.1	11	11	11	11	11	1 1
	[]	11	1.1		11		11	1 1	11				Ħ	11	ii		11	11	11	11	11	11	11	11	11	11	11	11	$\overrightarrow{\Box}$	11	11	1.1
	11	1 1	1 1	11	1.1	11	11	11	11	11	11	60	60	61	60	61	63 6	4 6 9	99	99	5 6 6 6 9	63	616	61	62	63	6.63	5 63	4 6 6	5 5	99	1.1
April Maximum	66	68	200	71	71	63	65	70	70	71	71	74	73 7	73	402	75	76 7	73	77	75	77	81	77 75	75	73	22	73 7	7.7	73 7	76	11	22
May Maximum Minimum	74	70	70	73	76	76	78	80	73	77	7.4	78	77 19	90	32 8	82	81 8	81	81	18	7.8	7.8	76 7	78	78 747	9 5 2	76 7	92	30 27	25	5,2	7.6
June Maximum	92	82	82	83	485	87	800	90	91	91	92	92	946	76	96	96	82 8	8 8	81	83	78	83	83 8	17	79 2	783	181	783	79	282	11	C C
July Maximum Minimum	80	87	87	81	83	83	83	88	78	81	400	86	85	86	86 8	98	88	93	9 4 8	88	8 9 9	89	838	83	3 8	8 8 5	9 8 8 3	8.85	67	9.7	8 6 5 5	18
August Maximum Minimum	83	93	91	90	91	92	91	91	91	90	87	91	906	8 8	83 8	81	81 8	83	88	984	83	83	689	98	86	91	87.8	0 9	9 9	48	8 4	689
September Maximum	888	89	8 8 4 8	8 4	80 80 44	888	93	88	88	888	82	87	83	886	82 8	80	76 7	73	69	91	89	88	79 7	77	69	74	77 7	74	73 7	73	11	78

PEARL RIVER BASIN--Continued

Š 2-4895, PEARL RIVER NEAR BOGALUSA,

LOCATION.—At bridge on State Highway 10, 2 miles east of Bogalusa, Washington Parish, and 2 miles upstream from Bogue Lusa Creek.
DANIANGE AREA.—6.500 square miles, approximately.
Rater temperatures in Sovember 1962 to September 1963.
Which temperatures: November 1962 to September 1963.
Rater temperatures: November 1962 to September 1967.
Rater temperatures: November 1962 to September 1967.
Rater temperatures: Maximum, 30 ppm July 11-20; minimum, 5 ppm Sept. 9-15.
Rater temperatures: Maximum daily, 125 minimum, 5 ppm Sept. 9-15.
Which conductance: Maximum daily, 125 minimum, 131 minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum daily, 32 micrombos Aug. 31; minimum, 34 ppm Sept. 34.

	l	- s	လ	ഗഗ	20 2	50	200	909	80 70	201	ខេ	20 5	3 40 4	000	
		pH Col		6.0			4000		2.4					0 4 4	
	Specific con-	duct- ance (micro- mhos at 25°C)		77			27.0		999					656	
		Borp-(1	86.	1.0	6.1.	6.7.	0.1.9	.	9.9	œ. œ.	9.1.	φ. α	, ao t	. 0, 0	-
		Non- car- bon- ate	40		n 4	4.00	0,0	00	10	9 2	æ œ	7.4	101	- 4 0	_
	Hardness as CaCO,	Cal- clum, mag- ne- stum	13	133	12	13	C 4 4	13	15 15	18	18	18	111	177	-
	solids ted)	Tons per day													
1963	Dissolved solids (calculated)	Tons per acre-	0.06	90.	90.	90.00	900	90.	90.	90.	.07	.07	9.8	90.00	
September 1963	Dia (Parts per mil- lion	43	45	4 45	39	4 4 4	42	39	46 A58	52 A54	53	4.4	46	
\$		- Pon (B)													_
1962		Ni- trate (NO ₂)		8.7.		1.3	ş	9.	1.0	5	o. o.	6.4	. 67.	. 4. r.	_
vember		Fluo- ride (F)	0.1	44	iu:	64.	177	. 		4. L.	<u> </u>	L. 4	:-:-	1.7.7	-
parts per million, November 1962		Chloride (C1)	12 13	27 77	11.		2.20		6.4	10	8.01 8.01	11	101	122	
per mil		Sulfate (3O ₄)	2.6	80.61	9.0	4.80	12.0	12	112	110	8.0	11	4.0	6 4	-
parts	Bi-	car- bon- ate HCO.	13	15	13	111	0 00 00	9	9 00	17 17	12	13	175	199	-
s, tn		of all file.	1.3	2.5	1.6	8.1.	1.6	1.4	2.0	4.8	4.4.	1.3	2	122	-
Chemical analyses,		Sodium (Na)	6.7	0.8	7.8	5.80	6.2.1	6.4	5.1	9.2	4.4.	8.0	6.9	6.9	
mical		Stron- tium (Sr)													
Che	:	Mag- ne- stum (Mg)	0.8	4.0	9.6	sir.		S.	1.3	1.5	2.2	1.3	0,0		
		Cal- cium (Ca)	1	44		4.4.F	0 4 4	4.	3.9	0.9	4 4 C O	0.4		0.0	
		Fe)	0.00	90.	19	23.5	200.5	.24	.22	80.0	.0. 40. 80.			88	
		Sil- ica (SiO ₂)	80 80 60 60	8.7	9.1	80.00	9.0.0	6.5	5.1	9 6	8.7	7.0	4.	8.8	_
		Mean discharge (cfs)	ŀ	1990		3540	5720 9380	8620	11400	3940 3120	2590 2250			1390	
		Date of collection	Nov. 15-20,1962 Nov. 21-30	Dec. 1-10 Dec. 11-20	Jan. 1-10, 1963	Jan. 11-20	Feb. 11-20 Feb. 21-28	Mar. 1-10	Mar. 11-20	Apr. 1-10	Apr. 21-30	May 10-19	May 30-June 5	June 11-20	

Residue at 180°C.

PEARL RIVER BASIN -- Continued

		Col-	10 10 10 10		41	23	1
		рн	6.94.6	C C C C C C C C C C C C C C C C C C C	6.2	6,3	
	Specific con-	duct- ance (micro- mhos at 25°C)	72 85 71 68 62 60		02	11	1
	og ,	ad- sorp- tion ratio	6. 7. 6. 7.	124612	0.7	9.0	:
		Non- car- bon- ate	12 8 11 11	1,000,000,00	7	9	1
	Hardness as CaCO,	Cal- cium, mag- ne- sium	15 20 16 13 14	1000000	14	14	-
penu	solids ted	Tons per day					
-Conti	Dissolved solids (calculated	Tons per acre- foot	90.0 .07 .06 .06		0.06	-	1
ed er 1963-	ಕ್ಷಣ	Parts per mil- lion	44 54 44 A50 A45	340 340 346 370 370	43	45	424
ntinu ptemb		Bo- ron (B)					
to Se		Ni- trate (NO ₃)	0.0 6.1 7.	124004	0.8	0.7	7.9
A, LA		Fluo- ride (F) (100040	0.2	0.1	2.0
2-4895. PEARL RIVER NEAR BOGALUSA, LaContinued in pasts per million, November 1962 to September 1963Continued		Chloride (C1)	112 113 110 100 8.3		9.2	10	06
IVER NEAL		Sulfate (SO.)	4.4 10 6.4 11 11 8.2	0.1 4.0 8.4.4	8.7	7.3	82
EARL R. per m	ä	car- bon- ate (HCO ₂)	0100	104400	80	6	80
895. PEARL parts per		Po- tas- Sium (K)	444464		1.5	1.4	15
2-48		Sodium (Na)	2 8 8 7 12 6	0.00 8.00 1.1.7	6.4	7.0	63
2-48 Chemical analyses, in		Stron- thum (Sr)					
emica]		Mag- ne- sium (Mg)	22.1.22.0	Lawre	1.1	1.2	11
Š		Cal- ctum (Ca)	2000000 200000		3.9	3.6	38
		Iron (Fe)	0.00.00.4	1999999	0.14	0.08	1.4
		Sil- ica (SiO ₂)	4.88.8	10 10 10 10 10 10	7.3	8.3	7
		Mean Si discharge ic (cfs) (Sid	1950 2540 2210 2150 1860	1700 2080 1660 1420 1370	3620	;	1
		Date of collection	July 1-10, 1963 July 11-20 July 21-31 Aug. 1-10 Aug. 11-20	Aug. 31	Weighted average	Time-weighted average	Tons per day.

A Residue at 180°C.

PEARL RIVER BASIN--Continued 2-4895. PEARL RIVER NEAR BOGALUSA, LA.--Continued

	Aver-	ge Se				1
	Ý	es"	1 %	6.51	74 80 82	80 77
		31	15	412	1 8 1	211
		30	96	410	79 84 82	80 73
		29	52	4 6	75	80 79 67
		28	54	4 4 6 1 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	77 80 75	8.5 7.0
		27	35 SE	43 49 7	76 85 75	78 80 72
		25 26	53	50 51 69	75 82 76	80 83 69
			54	42 52 67	75 87 83	86 17
6		24	91	125	215	81 83 83 77 70
196		23	60	2 4 4 6 70 10	76 78 75	81 77
ber		22	61 60 59 57	51.0	75 77 75 77 76 76	81 82 80 75 76 76
ptem		21	59	64 6	75	81 80 76
Se		20 21	61 60 55 59	8 2 8 8 2 8	76 72 76	81 74 78
to		19	55	222	77 76 75 72 75 76	84 81 81 74 78 78
196		17 18 1	64 60 54 54	50 52 71	76 80 81	83 79 78
er		17	44	42 51 74	76 76 83 80 83 81	79 83 80 79 77 78
venk	Day	15 16	53	200	76 82 87	84 79 77
No.		15	61	8 4 4 6 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	93	85 84 79
ter		14	1 9	46 51 68	73 84 85	85 81 80
P wa		13	19	50 50 67	74 73 83 84 82 85	80 81 78
0		12	1 2	56 47 67	69 72 82 83 87 85	77 83 79 80 78 77
೭		=	16	6 5 6 0	69 82 87	77 79 78
Temperature (°F) of water, November 1962 to September 1963		10	53 52	51	71 82 86	76 78 78
		٥	53	56 52 65	71 81 90	79 79 80
		8	122	55 50 62	67 81 88	82 80 79
Ε.		7	57	53	8 8 8	79 83 79
		9	1 92	54 54 59	71 79 85	8008
		5	57	53 53 55	65 78 87	7 6 6 7
		4	62	55 51 64	71 77 86	77 79 80
		က	129	56 49 60	75	76 77 79 79 84 80
		2	1 79	54 52 58	74 74 80	77 78 80
		-	60 62	57 53 53	70 75 80	78 77 78 78 83 80
	Moneh	TATOUR	November	January February March	April May June	July 78 77 August 78 78 September 83 80

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS

		hemics	l analy	Chemical analyses, in parts per million, water year October 1962 to September 1963	parts	Jer 1111	on, wa	rer year	r october	1307 10 5	and ac			-			I	-
				Cal-	Mag-	1	Po-	Bicar-	-	4110	Fluo-	Ni.	Dissolved		Hardness as CaCO,	Specific conduct-		
Date of collection	Discharge (cfs)	(8102)	(Fe)	Ca)	sium (Mg)	(Na)	Stum (K)		(30°,	(CI)	ride (F)	trate (NO ₃)	solids (calcu- lated)	Calcium, magne - sium	Calcium, Non- magne-carbon- sium ate	mhos at 25°C)	뛵	Color
							CHOWAN	CHOWAN RIVER BASIN	BASIN									
					2	32. POT	CASI	REEK NE	2-532, POTECASI CREEK NEAR UNION, N.	и. с.								
Mar. 1, 1963	470	6.0	0.28	6.2	1.2	4.4	1.9	53	7.6	5.4	0.1	0.8	34	12 26	90	139	5.9	10
					20	335. AHOS	KIE CE	BEK AT	2-535. AHOSKIE CREEK AT AHOSKIE,	и. с.								
Mar. 1, 1963	135	5.7	0.18	8.8	2.4	3.8	1.2	38	9.0	9.0	0.0	0.5	32	14	010	53 92	6.9	45
							OANOKE	ROANOKE RIVER BASIN	BASIN									
					2	385. DAN	RIVER	NEAR FR	2-685. DAN RIVER NEAR FRANCISCO, N.	N. C.								
Feb. 7, 1963	118 97.0	10	0.00	3.0	6.0	2.2	9.0	12	3.2	1.8	0.3	1.8	30	111	10	36	6.2	20.00
						2-705. MAYO RIVER NEAR PRICE,	YO RIV	ER NEAR		N. C.								
Feb. 5, 1963	245 98	12 16	0.00	3.4	1.3	4.4.	0.8	23	0.8 4.2	2.2	0.0	1.0	36	14	00	40	7.1	ကက
					2-,	2-710. DAN	RIVER	NEAR WE	DAN RIVER NEAR WENTWORTH,	N. C.								
Feb. 5, 1963	1130 340	13	0.00	3.2	1.6	2.9 4.6	1.2	30 23	3.2	2.4	0.1	0.4	88	14	00	48	6.7	တယ
						3-740, Sh	ітн ві	VER AT	2-740, SMITH RIVER AT SPRAY, N.	°.								
Feb. 5, 1963	542 267	13	10.0	6.6	2.3	5.7	1.6	34	4.8 5.2	7.4	0.0	0.0	57	26 28	00	83 76	7.3	တက
					9-75	1.9. 40m	PRESENTED IN	NEAR V	9-751.5. HOON CREEK NEAR VANCEVUILLE,	E, N. C.								
Feb. 6, 1963	36.5	15	0.02	4.6	2.2	5.5	1.1	28 49	2.8 4.0	2.5	0.2	4.0	45 68	18 34	00	67	7.1	ကက
			1	1													Ī	

					2-805	. ROANOKE	RIVER	AT ROA	2-805. ROANOKE RIVER AT ROANOKE RAPIDS, N. C.	JS, N. C.								
Mar. 4, 1963	A5660 5120	12 8.6	0.17	8.8	2.5	5.9	1.8	36	6.2	4.1	0.2	1.0	59 58	33	0	87 90	6.9	17
						4	PAMLICO RIVER BASIN	RIVER	BASIN									
					2-8	2-815. TAR RIVER NEAR TAR RIVER,	RIVER N	EAR TAR	R RIVER, N. O									
Feb. 19, 1963	105 18	12,4	0.04	4.6	1.8	3.2	2.4	22	6.0	6.0	0.0	0.2	B53	19	10	68 54	6.7	25
					2-8	18. CEDAF	1 CREEK	NEAR L	2-818. CEDAR CREEK NEAR LOUISBURG, N. C.	и. с.								
Feb. 19, 1963	55	8.0	0.09	3.4	1.1	5.6	1.2	36	3.6	3.8	0.1	0.9	39	13	00	52 71	6.9	12
					Z-2	820. TAR	RIVER	NEAR NA	2-820. TAR RIVER NEAR NASHVILLE, N.	f. c.								
Feb. 28, 1963	882 55	13	0.06	3.7	1.5	5.2	1.0	21	5.4	3.0	0.1	0.3	44 53	15 23	01	57 65	6.7	17
					2-82	5. SAPON	CREEK	NEAR N	2-825. SAPONY CREEK NEAR NASHVILLE, N. C.	N. C.								
Feb. 28, 1963	105	6.5	0.09	3.0	3.5	4.4	0.6	45	3.2	7.6	0.2	0.7	39	32	90	64 90	6.6	10
				'n	-829.5.	LITTLE !	ISHING	CREEK	2-829.5. LITTLE FISHING CREEK NEAR WHITE OAK, N.		٥.							
Mar. 4, 1963	250	13	0.19	2.2	1.6	4.5	1.0	310	4.4	3.4	0.0	0.5	42 52	14 20	00	50	6.8	10
					2-	838, CON	TOE CR	EEK NEA	2-838. CONETOE CREEK NEAR BETHEL, N. C.	N. C.								
Feb. 28, 1963	152	6.9	0.03	1.01	1.6	5.2	1.0	18	23	7.6	1.1	1.6	47 66	3.20	14	83 110	6.0	10
				1				-			1							

A Daily mean discharge. B Residue at 180°C.

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		Chemic	ıl analy	ses, in	parts	per mill.	lon, wa	ter yea	r October	Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Septemb	er 196	3Contir	pen				
	Ž			Cal-	Mag-	100 p	- Po-		0]6.040	(H)	Fluo-	Ni-	Dissolved	Hardness as CaCO,	aco,	Specific conduct-		
Date of collection	(cfs)	(SiO ₂)	(Fe)	ctum (Ca)	sium (Mg)	(Na)	sium (K)	bonate (HCO ₃)	(80°)	(C1)	ride (F)	trate (NO ₃)	(calcu- lated)	Calcium, Non- magne-carbon- sium ate		(micro- mhos at 25°C)	Hď	Color
						PAMLI	CO RIVE	R BASIN	PAMLICO RIVER BASINContinued	pe								
					63	-840. TA	R RIVER	AT GRE	2-840. TAR RIVER AT GREENVILLE, N.	и. с.								
Oct. 19, 1962 Mar. 1, 1963		13 9.3 7.9	0.04	6.9 3.8 5.1	1.2	9.0 5.1 5.8	2.2	30 14 14	7.2 6.4 11	10 6.0 6.8	1.0.2.	0.2	872 41 48	22 114 118	0 8 9	105 67 76	6.6 6.0	30 08 30 08
					2-8	45. HERR	ING RUN	NEAR W	2-845. HERRING RUN NEAR WASHINGTON, N.	, N. C.								
Feb. 28, 1963	38.5	7.6	0.02	2.2	1.2	3.9	0.6	0.4	8.6 4.	5.0	0.2	6.9	31	8 0	9	48	8.4.	45 20
							NEUSE	NEUSE RIVER BASIN	ASIN									
					23	-850. EN	O RIVER	AT HIL	2-850. ENO RIVER AT HILLSBORO, N.	. c								
Feb. 21, 1963 Sept. 3	116	111	0.05	4.4 8.7	1.8	11	2.8	19 30	6.2	3.6	0.1	0.9	42	18 30	53	54 128	6.8	27 15
					63	-850.7.	ENO RIV	ER NEAR	2-850.7. ENO RIVER NEAR DURHAM, 1	и. с.								
Oct. 18, 1962 Aug. 5, 1963	14.3	113	0.0 10.	7.2	2.6	6.2	2.1	41 29	4.8 6.4	3.2	0.1	0.2	63	22	00	92	7.1	28
					20	2-860. DIAL CREEK	AL CREE		NEAR BAHAMA, N.	υ.								
Feb. 19, 1963	47	8.4	0.08	3.2	1.3	3.9	1.2	10 28	4.6	3.0	0.0	1.1	33	12	40	40 56	7.5	15
					.2-865.	. FLAT RIVER, AT	IVER, A		DAM, NEAR BAHAMA,	MA, N. C.								
Feb. 19, 1963 Feb. 20	191 307 15	18.0	0.04	1.8.4	1.6	4.6.6	0.9	17 13 33	3.4	4.6.9 0.0		1.80.	42 35 47	16 14 24	N40	56 48 67	7.0	32 15
					2-8	2-870. NEUSE	E RIVER		NEAR NORTHSIDE,	N. C.								
Feb. 19, 1963	555 88	11	0.01	4.6	1.9	5.9	3.5	34	6.4	11,	0.0	0.1	B55	320	04	76 141	9.9	15 80

875. NEUSE RIVER NEAR CLAYTON, N. C.

					2-8	75. NEUS	E RIVER	REAR	2-875. NEUSE RIVER NEAR CLAYTON, N. C.	м. с.								
Mar. 1, 1963	2110	11	0.06	9.0	3.4	32.8	3.1	54	12	111 37	0.2	1.1	141	19	00	93	6.6	10
					2-8	80. MIDD	LE CREE	K NEAR	2-880. MIDDLE CREEK NEAR CLAYTON, N.	х. с.								
Mar. 1, 1963	224	13.8	10.	3.8	1.0	9.4	1.1	14	2.2	3.2	3.2	4.0.	31	171	00	53	6.6	25
					2-88	5. LITTL	E RIVER	NEAR	2-885, LITTLE RIVER NEAR PRINCETON,	, ×. c.								
Feb. 26, 1963	462	7.7	0.07	3.4	1.1	6.0	0.9	13	3.4	3.6	0.0	3.1	29	14	00	47	6.6	25
			:		2-9	10. NAHU	NTA SWA	UMP NEAD	2-910. NAHUNTA SWAMP NEAR SHINE, I	N. C.								
Feb. 26, 1963	. A167	12	0.04	5.3	1.2	6.0	6.1.	8 T	8.8	7.5	0.2	3.1	40	14	8	69	6.0	22
					2-915.	CONTENT	NEA CRE	EK AT 1	2-915. CONTENTUEA CREEK AT HOOKERTOWN,	N, N. C.								
Mar. 1, 1963	. 1500 . A1690	8.70	0.04	3.2	1.5	3.8	2.1	6 80	7.0	7.8	0.2	1.6	37	12	4	67 58	5.6	0 09
				2-5	117. LIT	TLE CONT	ENTNEA	CREEK	2-917. LITTLE CONTENTUEA CREEK NEAR FARMVILLE, N.	VILLE, N.	٥.							
Mar. 1, 1963	245	5.1	0.03	4.8	1.1	3.6	1.9	601	10 6.8	0.8	0.2	1.5	42	15	9	71	5.8	28 110
							NEW RI	NEW RIVER BASIN	SIN									
					2-9	30. NEW	RIVER N	IEAR GUI	2-930. NEW RIVER NEAR GUM BRANCH, N.	и. с.								
Feb. 28, 1963	232	8.1	0.10	13	0.0	9.8	1.0	33	5.2	6.5	0.3	6.0	99	34	8 11	98 170	7.3	48 95
A Daily mean discharge.	ir 8						1											

A Daily mean discharge B Residue at 180°C

7.2

59

00

18

42

6.0

0.1

4.4

39

0.7

2.1

3.8

0.06

13

32.3

Feb. 7, 1963.....

30

6.9

130

00

18

50

5.3

0.3

4.4

9.6

30 28

3,3

5.9

2.0

5.0

0.04

8.3

5150 415

Mar. 14, 1963.....

2-990, EAST FORK DEEP RIVER NEAR HIGH POINT, N. C.

2-970. HAW RIVER NEAR PITTSBORO, N. C.

28 30

6.9

75

0 4

39

28

0.5

0.2

3.4

7.0

36

3.6

3.5

8.8

0.05

11

16.5 10

Feb. 4, 1963.....

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		Color			10	l	10 25		15 15		10 20		99	
		뛵			7.0		6.8		8.0		7.2		7.0	
	Specific conduct-	(micro- mhos at 25°C)			59 64		64		538		385		103	
	Hardness as CaCOs	Non- carbon- ate			0		00		00		00		40	
ned		Calcium, Non- magne-carbon- sium ate			20		18		46		30		30	
Contin	Dissolved				43		41		318		68 235		61	
er 1963	o in	trate (NO ₃)			0.2		0,3		18		4.0		1.2	
Septemb	Fluo-	ride (F)			0.2		0.1	c.	4.0		0.1		0.0	
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	(H)	(C1)		и. с.	2.0	, N. C.	2.4	BORO, N. C	37	и. с.	5.6	GE, N. C.	3.2	٠, ٥,
r October	Oulfato	(30)	BASIN	2-938, REEDY FORK NEAR OAK RIDGE,	3,6	2-945, REEDY FORK NEAR GIBSONVILLE, N.	4.6.	2-955. NORTH BUFFALO CREEK NEAR GREENSBORO, N.	55 25		9.0	NEAR ELON COLLEGE,	10	2-968.5. CANE CREEK NEAR TEER, N.
ter yea		bonate (HCO ₃)	CAPE FEAR RIVER BASIN	NEAR O	24 36	NEAR GI	32	REEK NE	145 82	AT HAW	110	NEAR E	49	EEK NEA
on, wa	Po-	Stum (K)	PE FEA	Y FORK	1.4	FORK	1.6	TALO C	10	RIVER	5.1	CREEK	1.1	ANE CR
per milli	i :	(Na)	5	938, REEI	3.2	45. REED	4.3	NORTH BUI	81 31	2-965. HAW RIVER AT HAW RIVER,	7.4	2-967. ALAMANCE CREEK	5.6	-968.5. (
parts	Mag-	sium (Mg)		-2	1.8	2-9	2.2	2-955.	3.3	2	2.6	2-967.	3.6	8
ses, in	Cal-	cium (Ca)			7.1		4.9		16		6.3		8.3	
l analy		(Fe)			0.04		0.05		0.09		0.07		0.09	
Chemica		(8102)			14 19		11		9.2		13		16	
	400	(cfs)			25.5		121		38 93		792 101		113 17	
		Date of collection			Feb. 4, 1963		Feb. 6, 1963		Feb. 6, 1963		Feb. 6, 1963		Feb. 7, 1963	

,
,
The street was a
na /i i u
200
4

							2-2	995. DEEF	RIVER	NEAR R	2-995. DEEP RIVER NEAR RANDLEMAN, N. C.	N. C.								
Feb	t. 4,	Feb. 4, 1963	209	1191	0.04	6.3	5.3	6.3	1.3	118	31	5.0	0.1	1.3	61 209	53	13	109 340	6.5	13
							2	2-1005, DEEP RIVER AT RAMSEUR,	EP RIVE	SR AT R	AMSEUR, N.	. c.								
Mar.	29,	Mar. 14, 1963	1150 65	9.7	0.15	4.6	3.5	3.8	1.4	20	7.2	3.4	0.3	1.4	44 175	19	0.0	64 299	6.7	25 18
							3.	-1010. BE	AR CREE	SK AT RO	2-1010. BEAR CREEK AT ROBBINS, N. C.	. c.								
Mar. Aug.	. 14,	Mar. 14, 1963	335 16	7.7	0.14	4.9	1.2	3.2	0.8	10	7.8	2.0	0.0	0.6	27 50	10	80	38	6.5	30 40
						2-1	055. CA)	PE FEAR R	IVER, A	IT LOCK	2-1055. CAPE FEAR RIVER, AT LOCK 3, NEAR TARHEEL,	TARHEEL, N	N. C.							
Nov Feb.	8,	Nov. 13, 1962	31700 7000	8.5	0.02	3.5	1.5	4.9 6.4	1.0	15	7.2	5.7	0.1	1.0	40	15	20	64 57	6.0	32
							2.	-1059, HC	OD CREE	SK NEAR	2-1059, HOOD CREEK NEAR LELAND, N.	N. C.								
Feb	t. 7,	Feb. 7, 1963	47.4	5.6	90.0	5.1	1.0	5.3	0.1	14	3.8	5.0	0.2	0.8	32	17 48	9 6	57 108	6.9	3 20
							2-1060.	LITTLE C	OHARIE	CREEK 1	2-1060. LITTLE COHARIE CREEK NEAR ROSEBORO, N.	BORO, N. C.								
Feb	5,	Feb. 5, 1963	13.4	9.8	0.01	1.9	0.4	3.7	1.0	9	4.4	5.4	0.2	0.5	34	9 80	8 8	37	6.1	40
							2-1(365. BLAC	X RIVER	NEAR ?	2-1065. BLACK RIVER NEAR TOMAHAWK,	и. с.								
Feb Sept	6,	Feb. 6, 1963	2210 139	9.4	0.04	1.4	1.0	3.7	1.3	241	11	5.2	0.2	7.0	22 48	17	4.0	45 66	6.6	35
							2.	-1075. CC	LLY CRE	3EK NEAI	2-1075, COLLY CREEK NEAR KELLY, N.	и. с.								
Feb	t. 3,	Feb. 7, 1963	277	4.4	0.21	1.0	0.6	4.4	0.5	6.03	5.2	1.0	0.3	2.4	16	50 00	œ م	42	4.4	200
ပ	Acid	C Acidity as H*1.								7			1							

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

r 1963Continued
September
. 1962 to
October
vear
water
parts per million.
Der n
parts per
11
emical analyses.
Chemical

		Color			120		120		8 8			275 250			വ		13
		ь			5.9		6.6		6.1 5.9			6.5			6.9		6.9
	Specific conduct-	(micro- mhos at 25°C)			95 180		88 128		52			70			42 33		31
					10 4		10		9			80 10			00		00
per	Hardness as CaCO,	Calcum, Non- magne-carbon- sium ate			x x		16		12			23			12		8 6
Contin	Dissolved	solids (calcu- lated)			100		59 76		31			101			33		26 B29
r 1963-	Ni- Di	trate (NO ₃)			1.8		1.2		1.5			8.0			0.7		6.0
eptembe	Fluo-	ride (F) (c.	0.1	. c.	0.1		0.2			0.4			0.1		0.0
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Chloride		ıed	2-1076. NORTHEAST CAPE FEAR RIVER NEAR SEVEN SPRINGS, N.	19 46	NQUADIN, N.	15 26	. м. с.	4.5			6.0		ж. С.	1.7)RO, N. C.	1.6
c October	o-life to	(80,	CAPE FEAR RIVER BASINContinued	NEAR SEVE	8.0 6.4	2-1080. NORTHEAST CAPE FEAR RIVER NEAR CHINQUADIN,	8.6	2-1085. ROCKFISH CREEK NEAR WALLACE,	8.6	ASIN	AY, S. C.	12	ASIN	2-1110. YADKIN RIVER AT PATTERSON,	5.2	2-1115. REDDIES RIVER AT NORTH WILKESBORO, N.	1.4
er year	Bicar-	bonate (HCO ₃)	R BASII	RIVER	4* ro	RIVER	22	EK NEA	96	WACCAMAW RIVER BASIN	AT CON	18	PEE DEE RIVER BASIN	ER AT P	16	T NORT	15
on, wat	Po-		AR RIVE	FEAR	1.1	PE FEAR	1.7	ISH CRE	1.3	CAMAW R	RIVER	1.1	E DEE R	IN RIV	1.2	RIVER A	6.0
er milli	1170	(Na)	CAPE FE.	EAST CAP	13	HEAST CA	9.1	5. ROCKF	3.9	WAC	WACCAMAW RIVER AT CONWAY, S.	5.9	PE	10. YADK	3.3	REDDIES	2.4
parts p	Mag-	stum (Mg)		. NORTH	4.8	O. NORT	1.0	2-108	1.4			1.2		2-11	1.3	-1115.	0.9
ses, in	Cal-	Ca)		2-1076	2.9	2-108	5.0		3.6			6.9			3.2	23	2.1
analys		(Fe)			0.07		0.31		0.04			0.51			0.01		0.07
hemica]	041100	(SiO ₂)			3.0		7.9 8.6		1.4.1			6.5			10		11
0	3	(cfs)			149 86.7		412 97.9		314						32.7		141 A84
		Date of collection			26, 1963		Aug. 14, 1963		Feb. 6, 1963			22, 1963D			4, 1963		Dec. 28, 1962
		ă			Feb. Aug.		Aug. Sept.		Feb.			Aug.			Jan. July		Dec.

	10		10		10		15		12	1	22 2	l	15		15	
	6.5		6.9		7.1		8.9		7.2		6.8		6.9		6.9	
	28		51		44		33		110		53 198		53		93	
	00		00		00		00		00		00		10		0 0	
	8 9		13		14 14		411		28 40		16 16		10		30	1
	22		40		32		31		B62 79		121		33	-	70 59	
	0.0		4.0		0.6		0.9		0.0		2.0	(MOT	1.9		2.0	
	0.2		0.2		0.1		0.0		0.1		0.1	. (OUTFLOW)	0.0		0.1	
N. C.	1.6	, м. с.	3.5	N. C.	9.0	м. с.	0.4	N. C.	2.0	, N. C.	1.4	INT, N. C	3.6	. c.	1.4	
2-1130. FISHER RIVER NEAR COPELAND, N.	9.4	2-1144.5. LITTLE YADKIN RIVER AT DALTON, N.	3.8	2-1175. ROCKY CREEK AT TURNERSBURG,	9.8	2-1185. HUNTING CREEK NEAR HARMONY,	2.4	2-1189.1, BEAR CREEK AT MOCKSVILLE,	1.6	SOUTH YADKIN RIVER AT COOLEEMEE,	3.0	7A NEAR STONY POINT, N. C.	3.2	2-1205. THIRD CREEK AT CLEVELAND, N.	3.2	
NEAR (11	RIVER	19 27	AT TUR	19	K NEAR	14	AT MO	39	VER AT	22 110	7A NEAN	118	AT CLI	38	1
R RIVE	1.0	YADKIN	1.6	CREEK	1.6	NG CREE	1.5	R CREEK	9.1	DKIN RJ	1.4		2.7	D CREEK	2.6	1
). FISHE	1.6	LITTLE	3.0	5. ROCKY	1.9	5. HUNTI	2.3	9.1. BEA	6.0	SOUTH YA	36.7	BWATERSH	2.8	35. THIR	4.8	1
2-113	6.0	2-1144.5	1.3	2-117	1.6	2-118	1.3	2-118	4.1	2-1190.	1.6	CREEK SUBWATERSHED NO.	1.4	2-13(2.6	
	1.8		3.0		3.0		1.3		6.7	.,	4.2	THI RD (1.9		6.2	1
	0.03		0.02		0.07		90.0		0.13		0.04	2-1194.	0.02		0.02	
	8.3		13		113		11		17 22		13		9.7		22	
	225 80.5		60.6		111		168 86.3		2.72		326 213		4.71		94.2	
	28, 1962		28, 1962		Jan. 2, 1963		Jan. 3, 1963		Mar. 26, 1963		July 22, 1963		Jan. 3, 1963		Jan. 3, 1963	A Dod'l woom discharge
	Dec. 28, July 19,		Dec. 28, July 19,		Jan.		Jan.		Mar. 2 Aug. 1		July 5		Jan.		Jan.	4

A Daily mean discharge. B Residue at 180°C. D Collected at 1110. E Collected at 1735.

MISCELLANBOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLODE AND RASTERN GULF OF MEXICO BASINS -- Continued

	O	hemica	l analy	ses, in	parts p	er milli	on, wa	ter yea	r October	Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	eptemb	er 1963	Contin	pen				
		5	l	Cal-	Mag-	1	Po-	Bicar-	9	(b) = (1)	Fluo-		Dissolved	Hard as Ca	Hardness as CaCO,	Specific conduct-		
Date of collection	Discharge (cfs)	(SiO ₂)	(Fe)	ctum (Ca)	sium (Mg)	(Na)	Stum (K)	bonate (HCO ₃)	(30°)	(C1)	ride (F)	trate (NO ₃)	(calcu- lated)	Calcum, Non- magne-carbon- sium ate	Non- arbon- ate	(micro- mhos at 25°C)	띥	Color
						PEE DE	E RIVE	R BASIN	PEE DEE RIVER BASINContinued	pe								
					2-1205	.8. FOUR	TH CRE	EK AT S	2-1205.8. FOURTH CREEK AT STATESVILLE, N.	E, N. C.								
Oct, 15, 1962	7.35	20	0.01	4.6	3.0	3.6	1.7	37 36	1.0	2.5	0.2	0.3	B58 56	26 26	00	67 72	7.5	10
					2-1235.	5. UWHAR	RIE RI	VER NEA	UWHARRIE RIVER NEAR ELDORADO,	o, N. C.								
Mar. 13, 1963	4200 13.5	8.3	0.03	3.4	3.3	3,1	0.5	22	4.0	3.2	0.2	1.0	36	17	00	56 95	6.4	10
					2-12	50. YADK	IN RIV	ER AT A	2-1250. YADKIN RIVER AT ALBEMARLE, N.	м. с.								
Oct. 18, 1962 Jan. 15, 1963 July 24	38.0	11 8.4 8.1	0.03	8.4.7 8.9	1.9	7.0 4.7 5.1	1.3	30 16 37	4.0 12 6.8	4.9 7.0 8.8	0.1	2.7	B53 52 55	20 24 27	0 11 0	73 86 79	6.9 7.3	10 12 12 12
		İ			-2-	1280, LI	TTLE R	IVER NE	2-1280, LITTLE RIVER NEAR STAR, N.	N. C.								
Mar. 13, 1963	0.6 9.0	12.6	0.08	2.0	1.2	3.8	1.4	12 27	3.6	3.4	0.2	1.2	28	10 18	00	39	6.4	50
					2-130	4.9. THC	MPSON	CREEK N	2-1304.9. THOMPSON CREEK NEAR CHERAW,	W, S. C.								
May 16, 1963	25.0	5.1	0.14	2.4	1.4	4.9	1.2	1,1	1.6	5.9	0.1	0.8	34	12	0	47	6.8	40
					2-130	6. CEDAF	CREEK	AT SOC	2-1306. CEDAR CREEK AT SOCIETY HILL,	, s. c.								
May 16, 1963	43.0	4.7	0.10	9.0	0.7	2.1	9.0	4	0.8	3.5	0.1	0.3	16	4	0	20	5.6	8
					PEE	DEE RIV	ER NEA	R SOCIE	DEE RIVER NEAR SOCIETY HILL,	s. c.								
Apr. 23, 1963	4600	8.2	0.02	3.5	1.4	5.7	1.5	22	4.2	5.4	0.0	1.2	B50	15	0	56	7.0	2
					2-13	09. BIG	BLACK	CREEK N	2-1309. BIG BLACK CREEK NEAR MCBEE,	, s. c.								
May 1, 1963	163	4.6	0.07	0.7	0.3	1.7	9.4	3	1.4	3.7	0.0	6.0	B25	4	1	21	5.7	55
					2-131	4.4. LY	CHES R	IVER NE	2-1314.4. LYNCHES RIVER NEAR BETHUNE,	E, S. C.								
Apr. 17, 1963	312	6.7	80.0	2.1	6.0	9.6	1.2	24	2.4	5.4	0.0	1.0	B46	6	0	99	7.1	30

2-1314.8. LITTLE LYNCHES RIVER NEAR BETHUNE, S. C.

April 17, 1963	165	7.1	90.0	1.6	6.0	3.4	9.0	7	4.4	3.7	0.0	0.2	B29	8	2	35	6,3	20
					2-1315	LYNCHE	S RIVER	NEAR 1	2-1315. LYNCHES RIVER NEAR BISHOPVILLE,	Е, S. С.								
May 1, 1963	1060	8.8	0.16	1.8	9.0	4.2	8.0	6	3.6	3.6	0.1	0.4	B27	8	0	35	6.2	22
					2-1325.	LITTLE	PEE DEE	RIVER	2-1325. LITTLE PEE DEE RIVER NEAR DILLON, S. C.	ON, S. C.								
May 2, 1963	253	3.6	0.14	1.2	9.0	6.0	6.0	8	1.6	8.2	0.1	8.0	B41	9	0	45	5.8 110	110
					2-13	15. LUMB	ER RIVE	R AT BO	2-1345. LUMBER RIVER AT BOARDMAN, N.	· c·								
Feb. 7, 1963	3120 321	3.3	0.04	1.8	0.9	3.6	1.3	4.0	5.8	4.4	0.1	1.1	24	8 8	4.0	44	5.7	05 04
				2-13	50. LIT	TE PEE	DEE RIV	ER AT	2-1350. LITTLE PEE DEE RIVER AT GALIVANTS PERRY, S.	FERRY, S.	٥.							
May 2, 1963	1070	3.5	0.04	1.7	0.3	4.9	6.0	8	1.6	7.2	0.0	9.0	B37	9	0	40	5.9	90
					2	1355. BL	ACK RIV	ER NEA!	2-1355. BLACK RIVER NEAR GABLE, S.	. c.								
Apr. 1, 1963	418	0.7	0.27	3.4	6.0	5.8	1.2	14	2.0	8.3	0.0	8.0	B50	12	г	57	6.1	150
							SANTEE RIVER BASIN	RIVER 1	SASIN									
					-2	1370. MI	LL CREE	K AT OI	2-1370. MILL CREEK AT OLD FORT, N.	. c.								
July 11	30.7	8.5	0.00	3.4	1.4	1.3	0.7	11	4.8	0.2	0.1	0.2	31	14	0 2	34	7.0	10
					2-13	30. CATA	WBA RIV	ER NEA!	2-1380. CATAWBA RIVER NEAR MARION,	и. с.								
Jan. 19, 1963	237	13	0.03	3.2	1.4	12,6	1.0	19	2.0	7.2	1.0.	1.5	2, E	11.12	00	85 37	6.9	2 2
B Residue at 180°C.																		

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS--Continued

	I Color
	Hd
	Specific conduct- ance (micro- mhos at 25°C)
	California Cal
ned	Ha as Calciu magn
3Contil	Dissolved solids (calcu- lated)
3r 196	Ni- trate (NO ₃)
eptembe	Fluo- ride (F)
62 to S	loride (C1)
er 19	చ్
r Octob	Sulfate (SO ₄)
ter yea	Bicar- bonate (HCO ₃)
on, wa	Po- tas- sium (K)
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Sodium tas- bonate (Na) (K) (HCO ₃)
parts	Cal- Mag- clum sium (Ca) (Mg)
ses, ir	Cal- clum (Ca)
l analy	Iron (Fe)
hemica	Silica (SiO ₂)
,	Discharge Silica Iron C (cfs) (SiO ₂) (Fe) (
	Date of collection

SANTEE RIVER BASIN -- Continued

c
2
RRANCH
F
RIVER
TNVIII
-138

							2-1;	385. LIN	VILLE R	IVER AT	2-1385. LINVILLE RIVER AT BRANCH, N. C.	. c.								
Jan.	y 9.	Jan. 19, 1963	113 45.0	6.8	0.01	3.0	1.1	1.3	9.0	13	4.2	0.2	0.1	0.3	19 25	12	0 8	25	6.9	10
						2-1420	LOWER	LITTLE	RIVER N	EAR ALL	2-1420. LOWER LITTLE RIVER NEAR ALL HEALING SPRINGS, N.	SPRINGS,	N. C.							
Dec	. 21	Dec. 21, 1962	21.1	11	0.03	3.4	8.	1.7	1.5	14	4.2	1.2	0.2	0.0	33	12	00	32	6.9	ເດ ເລ
							2-143(). HENRY	FORK N	EAR HEN	2-1430. HENRY FORK NEAR HENRY RIVER,	м. с.								
Jan J	y 23	Jan. 4, 1963	74.9	8.5	0.02	1.8	9.0	1.8	1.3	12 6	3.6	9.8	0.0	0.5	25 24	6 8	00	28 26	6.9	10 2
							2-1	1430.4.	JACOB F	ORK AT	2-1430,4. JACOB FORK AT RAMSEY, N.	ပ် .								
Jul	y 16	July 16, 1963	16.9	9.5	0.00	1.3	8.0	1.5	9.0	10	2.2	1.8	0.1	0.2	22	ت 6	00	21 23	7.2	7
							2-1440,	. LONG C	REEK NE.	AR BESS	2-1440. LONG CREEK NEAR BESSEMER CITY, N. C.	, x. c.								
Jar Jul	y 5.	Jan. 23, 1963	48.1	13	0.03	4.6	1.8	3.0	1.0	23	5.2	2.0	0.1	0.3	43 56	19 27	00	59 63	7.3	15
						8	-1450. 8	SOUTH FO	RK CATA	WBA RIV	2-1450, SOUTH FORK CATAWBA RIVER AT LOWELL, N.	ELL, N. C.								
Jar	y 8.	Jan. 23, 1963	1170 515	11	0.05	3.4	1.8	5.9	1.3	16 26	5.6	4.6	0.1	2.3	44	16 24	23	67 65	6.9	25
							2-1460	CATAW.	BA RIVE	R NEAR	2-1460. CATAWBA RIVER NEAR ROCK HILL, S. C.	, s. c.								
Ap.	. 23	Apr. 23, 1963 A1980	A1980	9.3	0.07	4.8	2.3	6.9	1.7	25	7.4	5.2	0.2	9.0	B51	22	1	76	9.9	30
							Ü	SATAWBA	RIVER N	EAR CAT	CATAWBA RIVER NEAR CATAWBA, S. C.	ŗ,								
Apı	. 17	Apr. 17, 1963	1280	6.6	0.02	4.9	2.2	7.8	3.0	27	9.4	5.0	0.0	2.0	22	21	0	91	6.7	18

ن	
z	
ARLOTTE.	
Ē	
ΑT	
CRREK	
IRWIN	
SUGAR	
463	
1	

							2-1463	3. SUGAR	IRWIN (CREEK A	2-1463. SUGAR IRWIN CREEK AT CHARLOTTE,	re, n. c.								
Dec.	22, 1 1, 19	22, 1962 1, 1963	25.3 11	16 18	0.03	18 21	5.0	17 24	4.6 2.6	78 90	24 16	14 31	6.0	0.7	139	70	9 4	230	7.0	5 40
İ							2-1465.	LITTLE S	UGAR CF	REEK NE	LITTLE SUGAR CREEK NEAR CHARLOTTE, N.	ITE, N. C.								
Dec. Jan.	22, 1	Dec. 22, 1962 Jan. 23, 1963 July 1	24.1 35.8 7.9	300	0.0 0.09 0.09	21 22	8.6.3	14 9.1	4.6.2	78 66 103	20 118 113	15 6.4 13	6.9	3.1.0	137 124 137	70 63 74	960	220 180 212	6.9 7.1 7.8	30 22
						2-1466.	MCALPHI	INE CREEK	, AT S	ARDIS RO	OAD, NEAR	2-1466. MCALPHINE CREEK, AT SARDIS ROAD, NEAR CHARLOTTE, N.	E, N. C.							
Dec.	22, 1 1, 19	Dec. 22, 1962	10.5	24	0.03	01 13	3.9	7.7	1.5	61	3.2	6.0	0.2	0.0	87 95	42 51	00	120 129	7.4	35
					2-	.1467. M	CMULLIN	CREEK, A	T SHAR	ON VIEW	ROAD, NE!	2-1467. McMULLIN CREEK, AT SHARON VIEW ROAD, NEAR CHARLOTTE, N.	TE, N.	°.						
Dec.	22, 1 1, 19	22, 1962	2.06	20 17	0.11	14	5.8	9.2	2.9	77	6.2	8.9	0.2	0.1	105	58	00	170	7.2	30
							2-1469.	. TWELVE	MILE (CREEK N	TWELVE MILE CREEK NEAR WAXHAW,	W, N. C.								
Dec.	20,	1962	3.3	19	0.18	8.3	3.9	6.8	1.9	53	4.4	7.0	0.2	0.0	72	33	00	100	7.7	60 0
							2-14	2-1480. WATEREE RIVER NEAR	REE RIV	VER NEAL	CAMDEN,	s. c.								
Mar.	1, 19	Mar. 1, 1963	A3790	9.1	0.05	4.2	1.8	7.6	1.8	23	7.2	5.4	0.0	1.4	B54	18	0	7.7	6.7	30
i							=	WATEREE RIVER NEAR EASTOVER,	IVER NI	EAR EAS	ĸ.	С.								
May 1	7, 19	May 17, 1963	1720	10	0.03	5,3	2.1	8.6	2.1	59	10	0.9	0.1	2.7	B77	22	0	97	9.9	16
							2-14	190. COVE	CREEK	NEAR L	2-1490, COVE CREEK NEAR LAKE LURE, N.	и. с.								
Dec.	29, 1	Dec. 29, 1962	136 73.6	13	0.02	3.0	1.0	3.0	1.1	17	3.4	1.5	0.1	0.0	37	8 01	00	32	6.9	10
4	7114	A Daily mean discharge	ros																	

A Daily mean discharge. B Residue at 180°C.

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS--Continued

Chemical analyses, in parts per million, water year October 1962 to September 1963--Continued

		_	Chemics	il analy:	Ses, in	parts	per milli	on, wa	ter year	r October	Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	eptemp	er 196	3Contin	ned				
		D. cohour		1	Cal-	Mag-	1	Po-	Bicar-	20110	140	Fluo-	ž.	Dissolved		Hardness as CaCO ₃	Specific conduct-		
Date of o	Date of collection	(cfs)	(SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	(Na)	Sium (K)		(30°)	(C1)	ride (F)	trate (NO ₃)	(calcu- lated)	Calcium, magne - sium	Calcium, Non- magne-carbon- sium ate	micro- mhos at 25°C)	рΉ	Color
							SANTEE	RIVER	BASIN-	SANTEE RIVER BASINContinued	ğ								
						2-1510.	. SECOND	BROAD	RIVER A	SECOND BROAD RIVER AT CLIFFSIDE,	DE, N. C.								
Dec. 29, 11 July 23, 11	1962	194 233	11	0.02	3.0	1.4	7.9	1.4	25 28	4.4	7.1	0.2	1.2	53 47	14 16	00	74 61	7.1	20
						2-15	2-1521. FIRST BROAD RIVER NEAR CASAR,	BROAD	RIVER	NEAR CASA	IR, N. C.								
July 17 Aug. 19	Jan. 11, 1963 July 17	42.8 33.1 21	12 14 13	0.04	1.6 2.6 2.1	1.8 1.4 1.6	2.3 1.9	1.3	18 18 19	3.2 1.2	0.8 4.	0.1	0.2	32 33 31	11 12 12	000	36 37	7.0	01 9
						2-1525.	FIRST	ROAD R	IVER NE	BROAD RIVER NEAR LAWNDALE,	LE, N. C.								
Jan. 11, 19	Jan. 11, 1963	170 154	12	0.05	3.4	0.8	4.3	1.9	19 16	2.4	3.9	0.1	1.0	35	12	0	52 45	6.3	15
						2-1534.8.	.8. BUFFA	LO CRE	EK NEAR	BUFFALO CREEK NEAR BLACKSBURG,	RG, S. C.								
Apr. 18, 19	1963	81.5	13	90.0	3.6	1.4	8.0	2.8	23	3.6	9.5	0.0	1.5	B56	15	0	78	6,9	18
						-2	2-1535, BROAD RIVER NEAR GAFFNEY	AD RIV	ER NEAR	GAFFNEY,	s. c.								
Apr. 15, 1963	963	2040	11	00.0	3.2	1.2	3.2	1.7	19	2.4	3.0	0.0	1.1	36	13	0	20	6.9	12
						2-1	2-1536, KINGS CREEK AT KINGS CREEK,	S CREE	K AT KI	NGS CREEK	; s, c.								
Apr. 18, 19	1963	32.6	11	0.02	13	3.8	3.9	2.1	56	7.8	2.5	0.0	0.7	B74	48	2	117	7.5	12
						2-1537	2-1537.05. THICKETTY CREEK AT THICKETTY,	KETTY	CREEK A	т тискет	тх, з. с.								
Apr. 22, 1	22, 1963	38.0	9.8	0.00	2.8	1.8	3.6	1.5	18	2.6	3.9	0.1	0.8	36	14	0	49	6.3	5
						2-1	2-1538. BULLOCK CREEK NEAR SHARON,	OCK CR	EEK NEA	R SHARON,	s. c.								
Apr. 18, 1	1963	41.8	19	0.10	7.1	2.3	6.0	1.8	41	4.8	3,3	0.0	9.0	B67	27	0	06	7.2	18
						2-1545.	2-1545. NORTH PACOLET RIVER AT FINGERVILLE,	COLET	RIVER A	T FINGERY	s.	ç.							
Mar. 5, 1963	53	238	12	0.01	2.9	0.8	7.4	1.7	28	2.8	2.0	0.0	1.1	45	10	0	59	9.9	12
-																1	1		

2-1555. PACOLET RIVER NEAR FINGERVILLE, S. C.

										. WEEK !	TOOL THOUGHT WITH NEW TIMENTINES, O. C.									
Mar.	5,	Mar. 5, 1963	279	12	0.00	3.1	1.0	4.6	2.0	22	3.6	2.3	0.0	1.1	41	12	0	51	6.5	2
							2-1	560. PAC	LET RI	VER NEA	2-1560, PACOLET RIVER NEAR CLIFTON, S.	. s. c.								
Apr.	23,	Apr. 23, 1963	A382	9.7	0.02	2.7	1.1	2.8	1.2	18	1.6	3.0	0.0	1.0	835	12	0	37	9.9	8
							2-1570	NORTH .	YGER R	IVER NE.	2-1570. NORTH TYGER RIVER NEAR FAIRMONT, S. C.	T, S. C.								
Mar.	28,	Mar. 28, 1963	64	10	0.02	2.4	1.4	2.7	1.0	18	1.0	3.0	0.0	0.1	31	12	0	40	6.5	2
							2-15	75. MIDDI	E TYGE	R RIVER	2-1575. MIDDLE TYGER RIVER AT LYMAN,	, s. c.								
Mar	27,	Mar. 27, 1963	125	8.0	0.05	1.8	6.0	2.1	1.1	11	1.8	2.1	0.0	0.2	B24	80	0	30	6.2	10
							2-15	80. NORT	I TYGER	RIVER	2-1580. NORTH TYGER RIVER NEAR MOORE,	3, s. c.								
Nov. Feb.	Nov. 19, Feb. 18,	Nov. 19, 1962	175 168	12 22	0.02	3.5	1.2	30 00	3.3	75	8,8	11,	0.2	0.1	B113 101	14	00	168	6.6	10 81
							2-1585	SOUTH '	YGER R	IVER NE	2-1585. SOUTH TYGER RIVER NEAR REIDVILLE,	LLE, S. C.								
Mar.	27,	Mar. 27, 1963	308	10	0.01	2.2	0.5	3.1	1.2	14	1.8	2.6	0.0	0.1	56	7	0	36	6.1	2
							2-1590	SOUTH .	PYGER R.	IVER NE	2-1590, SOUTH TYGER RIVER NEAR WOODRUFF, S.	FF, S. C.								
Mar.	27,	27, 1963	A426	11	0.01	2.4	1.1	3.2	1.2	15	2.0	2.4	0.1	0.5	31	22	0	38	6.3	2
							2-16	OO. FAIR	OREST	CREEK N	2-1600, FAIRFOREST CREEK NEAR UNION,	, s. c.								
Mar.	Mar. 28,	, 1963	172	12	0.03	7.1	3.2	7.4	2.0	38	5.8	6.4	4.0	0.0	64	30	0	97	6.4	2
								TYGER R	VER NE	AR DELT	TYGER RIVER NEAR DELTA, S. C.									
Apr.	22,	Apr. 22, 1963	551	14	0.02	5.3	2.1	23	2.4	63	9.2	7.9	0.5	0.0	95	22	0	150	9.9	S
٩	Deil	A Daily mean dischange	200																	

A Daily mean discharge. B Residue at 180°C.

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		H Color
		<u>.</u>
	Specific conduct-	(micro- mhos at 25°C)
per	Hardness Specific as CaCO ₃ conduct-	SOLUTION (SO.) (CI) (F) (NO.) (lated) magne-carbon-minos sium ate at 25°C)
Chemical analyses, in parts per million, water year October 1962 to September 1963 Continued	Dissolved	(calcu-
er 196	Zi.	trate (NO ₃)
eptemb	Fluo-	ride (F)
1962 to S	7	(C1)
ır October	-1-26-10	(30°)
ter yea	Bicar-	bonate (HCO ₃)
on, wa	Po-	sium (K)
per milli		(Na)
parts	Mag-	sium (Mg)
ses, ir	Cal-	cium (Ca)
l analy	į	(Fe)
hemica		(SiO ₂)
٥	Discharge	(cfs) (SiO ₂) (Fe) (Ca) sium (Na) sium (HCO ₃) (K) (HCO ₃)
!		Date of collection

SANTEE RIVER BASIN--Continued

Mar. 26	Mar. 28, 1963	382	11	0.03	2.2	1.5	605. ENO	REE RIV	TER NEAF	2-1605. ENOREE RIVER NEAR ENOREE, S. 5 13 1.8 35 5.6	s. c.	0.1	0.7	B58	12	0	87	6.6	10
						2-16	05.2. WA	RRIOR C	REEK AT	2-1605.2. WARRIOR CREEK AT LANFORD, S.	s. c.								
Apr. 2	Apr. 22, 1963	15.7	20	0.03	3.5	1.9	5.2	2.1	28	9.0	4.2	0.1	2.5	B58	1.7	0	29	7.1	اص
						2-	1615. BR	OAD RIV	ER AT 1	2-1615. BROAD RIVER AT RICHTEX, S. C.	. c.								
Dec. 3,	Dec. 3, 1962	2600	13	0.01	4.2	1.6	8.9	1.5	30	3.8	4.4	0.1	9.0	B53	1,7	0	99	7.1	*
						2-162	5. SALUD	A RIVER	NEAR (2-1625. SALUDA RIVER NEAR GREENVILLE, S.	, s. c.								
Jan. 8,	Jan. 8, 1963	410	12	0.16	2.4	0.5	2.7	8.0	12	2.0	1.8	0.1	0.4	B36	8	0	29	8.9	28
						2-1635	. SALUDA	RIVER	NEAR W	2-1635. SALUDA RIVER NEAR WARE SHOALS, S.	, s. c.								
Jan. 7,	Jan. 7, 1963	772	12	0.14	2.6	6.0	4.5	1.2	18	3.4	2.5	0.1	9.0	B40	10	0	43	6.7	18
						2-165	O. REEDY	RIVER	NEAR W	2-1650, REEDY RIVER NEAR WARE SHOALS,	, s. c.								
Nov. 15	Nov. 19, 1962	133	11	0.01	3.4	1.4	22	3.9	46	11	11	0.3	3.1	B94	14	0	140	6.5	17
						2-166	9. WILSO	N CREEK	NEAR !	2-1669, WILSON CREEK NEAR NINETY SIX, S.	, s. c.								
Apr. 22	Apr. 22, 1963	27.2	20	0.02	5.8	2.8	9.6	2.1	40	4.2	8.4	0.1	2.0	B82	26	0	97	6.5	2
						2-16	70. SALU	DA RIVE	R AT CH	2-1670, SALUDA RIVER AT CHAPPELLS, S.	s. c.								ı
Mar. 2	Mar. 27, 1963	3830	7.7	0.04	2.0	8.0	4.5	1.9	16	4.6	3.1	0.0	0.1	B33	80	0	45	6.2	10
						2-1674.	5. LITTL	E RIVER	NEAR :	2-1674.5. LITTLE RIVER NEAR SILVERSTREET, S.	ET, S. C.								
Apr. 22	Apr. 22, 1953	93.5	21	0.0	5.5	2.3	8.6	5,8 1,8	36	3.6	4.4	9.1	٥.7	865	24	С	72	9.9	1
						2-16	90. SALU	DA RIVE	R NEAR	2-1690. SALUDA RIVER NEAR COLUMBIA,	s. c.								
Feb. 2	Feb. 27, 1963 A1590	A1590	7.8	00.00	3.1	1.4	7.0	2.7	25	5.0	4.1	0.0	6.0	44	14	0	70	9.9	12
									i										

2-1695, CONGAREE RIVER AT COLUMBIA, S. C.

						2112	. com	TUPE UI	TW WG.	2-1030. CONGAMBE ATTER AT COLUMBIA, 3. C.	;								
Nov. 19, Mar. 25,	19, 1962 25, 1963	A11900	11	0.01	0.4	1.3	8.3	1.6	25	2.4	3.0	0.2	1.3	B50 47	16 16	00	77 65	6.5	80 00
						2-16	95,5, 00	NGAREE	CREEK /	2-1695,5. CONGAREE CREEK AT CAYCE,	s. c.								
May	Мау 3, 1963	204	3.2	60.0	0.7	0.2	1.6	0.3	4	0.2	2.0	0.1	9.0	B22	4	0	41	5.6	30
							8	COOPER RIVER BASIN	VER BAS	NIN									
					BUS	HY PARK	DIVERSI	ON CANA	L NEAR	BUSHY PARK DIVERSION CANAL NEAR MONCKS CORNER, S. C.	RNER, S.								
Jan. Mar. Apr.	Jan. 23, 1963 Mar. 5 Apr. 10		6.5 5.4 6.1	0.04	5.6 6.0	6.2.8	8.7 10 6.5	1.7	26 22 22	6.4 7.6 6.6	8.8 12 5.2	1.0.	1.6	B61 B63 B53	19 20 18	000	85 96 72	6.9	30 28
							ED	EDISTO RIVER BASIN	VER BAS	IIN									
						2-1	725.2. S	HAW CRE	EK NEA!	2-1725.2. SHAW CREEK NEAR EUREKA,	s. c.								
May 8	May 8, 1963	42.2	5.2	0.10	1.4	0.7	4.3	8.0	8	1.2	5.4	0.0	8.0	B24	9	0	34	9.9	30
					2-1	731.5.	LIGHTWOO	KNOT .	CREEK !	2-1731.5. LIGHTWOOD KNOT CREEK NEAR LEESVILLE,	s.	c.							
Apr.	22, 1963	8.35	2.2	0.04	8.0	0.4	2.5	6.0	9	1.0	3.4	0.1	1.0	B18	4	0	26	5.8	30
					N	-1733.	NORTH FO	RK EDIS	TO RIVE	2-1733. NORTH FORK EDISTO RIVER NEAR NORTH, S.		· .							
May 1	May 13, 1963	345	4.3	01.0	6.0	0.1	1.7	0.3	4	4.0	3.3	0.2	6.0	B17	2	0	17	6.1	28
					2-1	735. NO	RTH FORK	EDISTO	RIVER	2-1735. NORTH FORK EDISTO RIVER AT ORANGEBURG, S.		٠.							
Mar.	Mar. 4, 1963	1060	0.5	0.04	1.8	0.5	2.2	0.3	7	2.0	2.7	0.0	6.0	B18	9	-	24	6.1	45
						2-174	O. EDIST	O RIVER	NEAR E	2-1740, EDISTO RIVER NEAR BRANCHVILLE,	E, S. C.								
May 2	Oct. 17, 1962	1660	7.8	0.06	1.8	8.0	3.4	9.0	8 2	1.8	5.0	0.1	0.2	B36 B28	8	0.00	29	6.4	60
A I	A Daily mean discharge. B Residue at 180°C.	arge.																	

14 6.6

B19

1.2 0.0 0.5

2-1845. WHITEWATER RIVER AT JOCASSEE, S. C.

1.1 0.4

0.4

7.9 0.01 0.6

90

June 5, 1963.....

2-1866. CONNEROSS CREEK AT RICHLAND, S. C.

54 6.6

B45

0.0 1.2

7.1

0.4

21

6.8 1.0

1.2

2.5

53.6 13 0.02

June 6, 1963.....

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS--Continued

Chemical analyses, in parts per million, water year October 1962 to September 1963 --Continued

	, de la constant de l	61150		Cal-	Mag-	ani jou	Po-	Bicar-		Chlorido		, i X	Dissolved	Hardness as CaCO,		Specific conduct-		
Date of collection	(cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	(Na)	sium (K)	bonate (HCO ₃)	(304)	(C1)	ride (F)	trate (NO ₃)	1.0	Calcium, Non- magne-carbon- sium ate		(micro- mhos at 25°C)	Hď	Color
						EDISTO	RIVER	BASIN	EDISTO RIVER BASIN Continued									
					2-1	750. EDIS	TO RIVE	SR NEAR	2-1750. EDISTO RIVER NEAR GIVHANS, S. C.	s. c.								
Mar. 5, 1963	4590	0.9	0.03	4.6	7.0	3.7	6.0	14	3.6	4.5	0.0 1.5	1.5	B30	14	3	51	9.9	7.5
				2-1750	3. EDIS	TO RIVER	(UPPER	STATION	2-1750.3. EDISTO RIVER (UPPER STATION) NEAR JACKSONBORO, S. C.	CKSONBORO	, s. c.							
Oct. 1-31, 1962 A2432	A2432	7.1	0.23	3.5	2.0	2.8	9.0	12	3.8	5.0	0.1	2.4	B51	18	8	42	6.3	100
			••	2-1750.	4. EDIS	TO RIVER	(LOWER	STATION	2-1750.4. EDISTO RIVER (LOWER STATION) NEAR JACKSONBORO, S.	CKSONBORC	, s. c.							
Oct. 1, 1962		1	1	4.1	1.7	1	!	11	ţ	8.4	i	1	1	17	80	61	8.9	;
Oct. 3-5	A2650 A4340	6.1	0.13	2.5	1.8	1.4	9.0	122	7.4	7.0	0.0	3.1	1 4	18	97 8	27	9 0	09
Oct. 6.	_	7.5		4.4	2.0	4.5	1'.	E 4	2.4	23 8.5	! =:	4.2	B65	18	6 2	110	6.4	100
						COM	BAHEE F	COMBAHEE RIVER BASIN	NISIN									
					2-175	5. SALKEH	ATCHIE	RIVER	2-1755. SALKEHATCHIE RIVER NEAR MILEY, S. C.	, s. c.								
Apr. 3, 1963	236	4.4	90.0	8.6	0.7	4.6	6.0	30	3.2	4.8	0.1	0.2	B53	24	0	78	6.5	20
						SAV	ANNAH I	SAVANNAH RIVER BASIN	NISIN									
					2-1834	.9. CHAUG	A RIVE	R NEAR 9	2-1834.9. CHAUGA RIVER NEAR WESTMINISTER, S. C.	ък, s. с.								
June 6, 1963	122	11	0.01	2.0	7.0	2.0	0.7	16	8.0	2.2	0.0	0.4	B31	8	0	26	8.9	7

ċ
S.
STARR,
NEAR
CREEK
GENEROSTEE
BIG
2-1873.

						701010	ord ord	ENCOILE	CNEEN	4-10/3. BIG UENENUSIEE CREEN NEAR SIRAN, 3. C.	,, o,								
June 3,	June 3, 1963		13	0.01	66.8 13 0.01 3.1	1.3	5.2 1.9	1.9	21	1.8	4.1 0.5 1.6	0.5	1.6	43	13	0	56	6.4	2
						2-1880	. ROCKY	RIVER	NEAR CAI	2-1880. ROCKY RIVER NEAR CALHOUN FALLS, S. C.	.s, s. c.								
Jan. 9,	Jan. 9, 1963	268	13	0.17		1.0	4.2 1.0 5.0 2.1	2,1	23	2.8	3.3	0.1	0.1 1.6	44	14	0	55	8.9	27
:						2-1890.	SAVANNAH	RIVER	NEAR C	2-1890. SAVANNAH RIVER NEAR CALHOUN FALLS, S. C.	LS, S. C.								
Jan. 9,	Jan. 9, 1963	5660	8.2	0.02	3.7	0.7	4.3 1.8	1.8	21	3.6	2.9	0.2	0.7	B36	12	0	46	9.9	8
						2-1	970, SAV	ANNAH	RIVER A	2-1970. SAVANNAH RIVER AT AUGUSTA, GA.	GA.								
Jan. 8,	Jan. 8, 1963	5460	9.5	0.01	3.8	1.1	3.6	1.6	22	2.8	3.0	0.1	9.0	37	14	0	50	9.9	80
					-	-2	1985. SA	VANNAH	RIVER	2-1985. SAVANNAH RIVER NEAR CLYO, GA.	GA.								
Feb. 26	Feb. 26, 1963 14700	14700	7.8	0.04	4.3	2.2	3.0	1.2	21	3.6	4.2	0.1	4.0	B51	20	3	53	6.9	20
A Dail B Res	A Daily mean discharge. B Residue at 180°C.	rge.																	

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GILF OF MEXICO BASINS -- Continued

		col-	!	200 150 350		70 120 175		10		30
		Hd		6.7 6.5 5.9		6.7		5.6		7.0
	Specific conduct-	ance (micro- mhos at 25°C)		113 104 71		119 109 90		100 98		346
	_	Calcium, Non- magne-carbon- sium ate		171		7 20 14		12		22
	Hardness as CaCO ₃)	Calcium, magne- sium		34 28 26		29 37 28		15 15		150 106
	solids	Cal- cu- lated		63 57 45		65 64 55		51 48		209
er 1963	Dissolved solids	Residue at 180°C		128 108 126		69 116		72 64		250 88
Septem	3	phate (PO,)				1.0				
12 to 8		trate (NO ₃)		0.2	FLA.	0.0		2.8		0.9
er 196	1	ride (F)), FLA.	0.2	N PARK,	0.3 .0	FLA.	0.4		0.6
Chemical analyses, in parts per million, water year October 1962 to September 1963		Chlor ide (C1)	BASIN NEAR BITHLO, FLA	18 15	2-2332, LITTLE ECONLOCKHATCHEE RIVER NEAR UNION PARK,	18 19 14		21 20	ENS, FLA.	23
n, water		Sulfate (SO ₄)	ST. JOHNS RIVER BASIN OCKHATCHEE RIVER NEAR	0.4.2	EE RIVER	5.2	2-2362.1. LAKE LOWERY NEAR HAINES CITY,	6.0	LAKE APOPKA AT WINTER GARDENS, FLA	20 16
millio		bonate (HCO ₃)	т. ЈОНМ	28 17 18	СКНАТСН	27 20 17	LOWERY	4.0	A AT WI	156 104
ts per	Po-	tas- sium (K)	CONLOC	1.5	ECONLO	1.9	. LAKE	8.8	APOPK	8.E
Chemical analyses, in parts		Sodium (Na)	ST JOHNS RIVER 2-2331. ECONLOCKHATCHEE RIVER	10 8.7 7.6	. LITTLE	112 10 9.4	2-2362.1	12	LAKE	17
analyse	Mag-	ne- sium (Mg)		1.7	2-2332	2.4		1.7		13 8.8
mica1		cium (Ca)		10 8.4 10		8.8.2		8.8		38
Che		Iron (Fe)		0.29		0.21		8.8		0.03
		Silica (SiO ₂)		6.9		4.6.9		0.1		15, 9
		Discharge (cfs)				5,7 11				
		Date of collection		Dec. 13, 1962. Jan. 24, 1963. July 22		Nov. 1, 1962 Jan. 24, 1963. July 23		Nov. 1, 1962		Feb. 28, 1963. July 24

INDIAN RIVER BASIN

2-2525. NORTH CANAL NEAR VERO BEACH. FLA.

30	40	20	20	30	40		20	45	40	09	45	20		20	20	9	9	45	09	
7.5	7.7		0.8	7.3	0.7		H	_	7.7	_	-			7.6	7.7	7.7	7.1	7.3	7.2	
605	099	713	550	889	689		1050	1020	1250	870	1080	1000		540	565	609	540	619	1000	
86	72	16	74	15	82		132	136	188	138	158	130		42	46	45	20	47	143	
194	218	736	200	234	224		320	330	380	332	325	288		176	192	212	184	234	310	
345	373	422	352	380	375		571	292	744	583	625	533		298	323	358	304	392	575	
		_																		
0.0	٥.	e.	•	۳.	o.		0.2	۰.	.7	۰.	1.8	0.		0.0	۰.	۲.	6.	4.	٥.	
-						, FLA.				•	_		H, FLA.	_		•	**	•		
94	102	122	103	107	108	10 BEACH, FLA	170	180	260	176	214	170	RO BEAC	92	80	98	84	8	186	
54	38	00 I	37	38	34	2-2530. MAIN CANAL AT VERO	65	72	88	7.1	73	63	NEAR VERO BEACH,	24	58	59	56	28	99	
132	178	96	154	194	169	IN CANA	228	236	234	536	204	192	2-2535. SOUTH CANAL	164	178	204	164	228	204	
2.3	2.6	3.5	4.2	2.3	2.9	530. MA	3.6	3,9	5,3	3.8	3.8	4.7	5. SOUT	2.0	2,5	2,2	1.8	2.2	7.4	
51	55	99	22	54	09	2-2	91	8	135	88	107	86	2-253	42	44	53	42	28	92	
12	13	13	12	15	4		17	21	34	21	25	20		7.1	4.6	7.9	17	11	21	
58	99	7.4	26	69	64		100	86	96	66	89	82		_		72		_	_	
00.0	-05	.03	. 01	2.2	.04		0.00	.12	10.	8	1.1	.03		0,02	.14	.03	8	3.2	.04	
8.6	8.8	80	7.8	7.9	80 80		12	=======================================	27	9.8	11	11		7.2	9.7	7.6	6.2	9.7	13	
9.4	0.8		A8.0	8.6Y	A9.4		34	45	A59	A84	A54	A64		A9.1	10	A4.8	1.64	A8.3	A54	4 cohonne
17, 1962	20	11, 1963	13	67	15		Oct. 17, 1962	20	11, 1963	10	27	15		17, 1962	21	11, 1963	9	28	Sept. 15	Daily mean dischange
0ct. 1	Nov.	Jan.	Mar.	July	Sept.		œt.	Nov.	Jan.	Mar.	July	Sept.		Oct.	Nov.	Jan.	Mar.	July	Sept.	

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

Chemical analyses, in parts per million, water year October 1962 to September 1963 --Continued

		Col- or		30					120 100 50 50		180				86.5
	ا ن	Hd . (C		7.7	8.7	7.6	7.7.		7.4		1.6.9	6.2	6.4	6.4	9 9
	Specific conduct-			1120	1750	1240	1260		991 1000		58 273	217	181	4,8	109
	Hardness as CaCO ₂)	Calcium, Non- magne-carbon- sium ate		155	272	206	188		130 114 136		ဖဆင္	34	56	22	116
	Hardness as CaCO,	Calcium, magne-c sium		322	456	400	392		310 270 320		16 21	44	38	32	2 2 2
ned	solids	Cal- cu- lated		648 814	1030	168	738 787		577 515 575		43	112	9.1	50	975
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Dissolved solids	Residue at 180°C												102	-
er 196		Phos- phate (PO ₄)													
eptemb		trate (NO ₃)	FLA.	6.0	4	9	.0	FLA.	1.00.		0,0,0	000	o. A	0.5	
2 to S		ride (F)	SINS CITY,					LUCIE, F		, FLA.			in, FL	0.0	
ctober 196		Chloride (C1)	LAKE OKEECHOBEE AND THE EVERGLADES BASINS. NORTH FORK ST. LUCIE RIVER AT WHITE CITY, FLA.	220	405	240	250 275	AT ST, LI	190 158 178	PALMDALE,	8.0 14.0	25.0	NEAR LAKE PLACID, FLA	110	27.5
er year 0		Sulfate (SO ₄)	THE EVE	84 121	133	120	114 106	RIM DITCH (DIVERSION CANAL) S-49, AT ST,	49 69	2-2565. FISHEATING CREEK AT PALMDALE,	0.27	13.8	15 13 AT S-68, NEAR	13	80 4
on, wat	i	Bicar- bonate (HCO ₃)		204	F224	236	200	ION CAN	220 190 224	EATING	212	222	15 ET AT S	12	61
. m1111	Po-	tas- sium (K)	OKEECH UTH FOR	5.2	8. 8 L. 4	4.7	5.0	(DI VERS	4.8.4	FISH	1.0	2.2	1.0 A OUTL	1.3	10.9
parts per		Sodium (Na)	LAKE OKEECHOBEE 2-2540. NORTH FORK ST.	111	206	135	135 138	M DITCH	8 2 2 2	2-2565	4.6	24.8	4 21 1.0 LAKE ISTOPOKA OUTLET	6.2	000
es, in	Мад-	ne- sıum (Mg)	9	20 24	38	27	25 26	E	24 16 18		5.00	5.4.1.	5.4 LAN	2.7	2.7
analys		cal- cium (Ca)		96 116	120	116	100		82 8 82 8		0.25	9 6	6.4	8.0	. 00 a
nemical		Iron (Fe)		0.02	8.5	18	8.8		0.07 .58 .02		0.14	3 2 2	.10	0.07	2.2.5
ฮ		Silica (SiO ₃)		22	##	8.9	9.1		6.9 9.5		1.9	0.8	3.0	9.6	, r. a
		Discharge (cfs)		A0.83 A.18	A.18	1	.53				68 60 60	A142 A4.2	A33		
		Date of collection		Oct. 29, 1962 Nov. 23	26	r. 9	July 29		Mar. 12, 1963 July 30 Sept. 15		Oct. 22, 1962 Nov. 26	ty 12.	pt. 17	Feb. 8, 1963.	July 31

FLA.
HAVEN,
MOORE
NEAR
OKEECHOBEE,
LAKE
AT
CANAL
POND
HARNEY
2-2580.

A Daily mean discharge. F Includes equivalents 8 parts per million of carbonate $(\ensuremath{\mathsf{CO}}_3)$.

Col-or

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

Hd Calcium, Non- (micro- Pagner) ance carbon- magne- rarbon ate at 25°C) Specific conduct-Hardness as CaCO₃) Dissolved solids cal-cu-lated Chemical analyses, in parts per million, water year October 1962 to September 1963 -- Continued Residue at 180°C Ni- Phos-trate phate (NO₂) (PO₄) LAKE OKEECHOBEE AND THE EVERGLADES BASINS -- Continued Fluo-ride (F) Chloride (Cl) Sulfate (SO₄) Bicar-bonate (HCO₃) Po-tas-sium (K) Sodium (Na) Mag-ne-sium (Mg) Cal-cium (Ca) Iron (Fe) Silica (SiO₂) Mean discharge (cfs) Date of collection

				i °	2-2634. EAST TOHOPEKAL	AST TOH	OPEKALI	GA LAKE A	2-2634. EAST TOHOPEKALIGA LAKE AT ST. CLOUD, FLA.	UD, FLA	١.							
Dec. 12, 1962. Mar. 4, 1963. Aug. 1	3.5 1.3	0.16	6.0 5.6 5.6	2.2 1.7 2.2	10 9.5 9.5	1.6	8 8	16 11 12	16 14 16		0.1		53 53	24 21 23	18 13 16	112 97 101	6.4	30 4 50
					2-2637	7. SHIN	GLE CREI	EK NEAR V	2-2637. SHINGLE CREEK NEAR VINELAND, FLA	FLA.								
Dec. 13, 1962. Dec. 16 July 24, 1963.	7.5 8.8 4.7	0.04	21 10 14	3.3 2.4	28 16 20	1.8	62 29 36	13 4.4 12	37 23 24	0.5	3.7	168 106 142	150 80 98	91 31 45	15 7 16	265 139 165	7.0 6.5 6.4	50 100 120
					2-2649.	LAKE T	ОНОРЕКАІ	2-2649. LAKE TOHOPEKALIGA AT KISSIMMEE		FLA.								
Dec. 13, 1962. Mar. 4, 1963. Aug. 1,	8.9 5.5 3.9	0.00	27 18 14	6.0 5.6 5.1	6.2 8.7 12	1.1 2.2 .6	102 71 38	6.8 12 13	9.0 13 18		0.8 1.0		116 100 86	92 68 56	8 10 25	195 160 141	8.1 7.4 6.8	15 90 60
					2-2652	. CYPRE	SS LAKE	NEAR ST.	2-2652. CYPRESS LAKE NEAR ST. CLOUD, FLA	ĽA.								
Mar. 13, 1963.	1.5	0.11	5.6	1.9	12 9.6	1.2	9	9.6	18 18		0.3		54	30	16 22	113	6.0	120 60
					2-2655.	. LAKE	GENTRY 1	NEAR ST.	2-2655. LAKE GENTRY NEAR ST. CLOUD, FLA	Α.								
Dec. 12, 1962. Mar. 4, 1963. Sept. 19	1.0 2.1 1.0	0.14 .03	2.0 2.4 1.6	1.0	8.8.8	0.6 	264	4.0 4.0 8.	16 14 18		0.0		34	9 10 12	∞ ∞ ∞	74 67 66	5.5	00 00 4
				2	-2674. L	AKE HAT	CHINEHA	2-2674. LAKE HATCHINEHA NEAR LAKE WALES,		FLA.								
Mar. 13, 1963. Aug. 1	2.9	0.19	11	3.4	7 1 8.9	1.6	24	14	15 15		0.3		68	44	34	120 118	6.4	200

						2-2685.	#EOHYAK	APKA CR	EEK NEAR	2-2685. WEOHYAKAPKA CREEK NEAR LAKE WALES, FLA.	, FLA.								
Mar. 12, 1963. Sept. 1		5.4	0.15	6.8	1.0	6.5	0.7	10 15	8.0	111		0.1		45	21 24	13	77 74	6.3	100
						2-2689.	LAKE K	ISSIMME	E NEAR LA	2-2689. LAKE KISSIMMEE NEAR LAKE WALES,	FLA.								
Mar. 13, 1963 Aug. 1		3.8	0.30	12 15	3.5	9.6	1.8	32	17 15	16 16		0.0		74	1 46	26	130	6.6	220 190
						2-2720.		OGA CAN	AL NEAR (ISTOKPOGA CANAL NEAR CORNWELL, F	FLA.					_			
Oct. 17, 1962 Dec. 19 Dec. 22	154 177 7.1	1.8	0.20	5.6	262	4.6.8	1.0	12 10 9	11 11	8.2 10		1.0.		14 4 6	26 23	16 18 16	80 67 86 86	0.9	190
Feb. 1, 1963. Feb. 8	5.7 6.5	6. 6. 6. 6. 6. 6.	.50	00 00 00 00 00 0	9.9. w 4.4.4.	8.0 10.0	0.4.0	16 14 14	13 16	112	0.0	0.0.1					109	8 8 8 8 0 8	
						2-2725.	KISSIM	MEE RIV	KISSIMMEE RIVER NEAR BASINGER,	-	FLA.				:				
Aug. 1-10,1963 Aug. 11-20 Aug. 21-31		2.1 5.1 2.8	0.04	8.0 10 9.2	2.7	0.00	1.3	18 20 20	13 15 14	14 15 15	9.0	0.00	06 88	64	38	- 18 18 18	109 112 110	8.0 8.0 8.0	50 45 555
						2-2745.	TAYLOR	CREEK	ABOVE OKEECHOBEE,		FLA.								
Oct. 19, 1962 Nov. 21 Jan. 18, 1963 Jan. 22	A10 A9.6 A8.8 A10	3.5	0.09 1.02 10.	18 21 148 164	4.6 5.7 90 99	22 28 520 700	0.1 3.1 30	46 46 136 108	6.8 16 288 328	41 58 1050 1350		0.008		119 158 2200 2730	64 3 76 0 740 0 815	26 38 628 726	3600 3600 4360	6.9 7.0 7.1	9011 000 000 000
(time 1630)	A14	2.7	11.	27	11	43	55	80	17	81		٠.		226	1112	46	385	7.1	160
(time 1645) July 30 Sept. 17	A14 A3.8 A15	9.6		56 36 114	22 10 57	109 50 360	6.4 4.0	116 96 113	68 32 174	207 88 710			·	529 274 1490	132	139 54 9	850 483 2720	7.7.7.9	160 130 90
A Daily mean discharge	discharge.																		

A Daily mean discharge.

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS--Continued

		col-		55	40	45	30	20	20		95	06	20	20	20	45	ر ا
		Hg.		9.7		_		_	_							7.7	
	Specific	ance (micro- mhos at 25°C)		585	_		_	_	7		-	_	_		_	633	
	Hardness	Calcium, Non- magne-carbon- sium ate		54	46	38	46	46	44		22	129	43	23	21	36	42
	Har	Calcium, magne- sium		218	174	168	180	184	181		144	310	230	240	228	232	717
panu	Dissolved solids	Cal- cu- lated		346	263	.257	290	278	289		225	1030	378	412	368	375	382
63Cont	Dissolve	Residue at 180°C													_		
er 18		Phos- phate (PO4)															
Septem		trate (NO ₃)	inued LA.	9.0	6.	6.	4.0	۲.	0.	FLA.	0.0	5.2	0.	£.	0.	0.	7.
62 to		Fluo- ride (F)	-Cont							TUART,				_	_		
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (C1)	LAKE OKEECHOBEE AND THE EVERGLADES BASINSContinued 2-2765. ST. LUCIE CANAL AT LAKE OKEECHOBEE, FLA.	61	47	45	23	20	54	2-2770. ST. LUCIE CANAL AT LOCK, NEAR STUART, FLA.	44	460	88	100	82	77	46
ter year		Sulfate (SO ₄)	EVERGLAD	54	38	36	40	38	44	AL AT LOC	16	92	31	40	38	33	36
ion, wa		Bicar- bonate (HCO ₃)	AND THE	200	156	158	120	168	168	CIE CAN						240	
r mill	Po-	tas- sium (K)	TOBEE ST. LU	2.8	2.3	2.2	2.5	2.2	2.2	ST. LU	2.7	12	3.0	3.4	3,1	2.8	4.0
parts pe		Sodjum (Na)	AKE OKEECI 2-2765.	44	33	31	32	35	38	2-2770.	26	280	22	65	25	20	62
ses, in	Mag-	ne - Sium (Mg)	ij	18	13	91	13	16	14		4.1	34	9.2	13	14	9.1	12
l analy		Cal- cium (Ca)		28	48	20	54	48	20		51	89	77	74	69	18	99
hemica		Iron (Fe)		0.02	.05	.03	0.	9.	.21		0.11	16	.03	.02	00.	.22	.02
		Silica (SiO ₂)		8.7	4.1	4.1	4.9	5.1	4.0		7.8	7.7	3.1	4.4	4.1	8.9	0.9
		Mean discharge (cfs)									10	10	10	10	10	10	10
		Date of collection		ov. 2, 1962.	ec. 3	Jan. 3, 1963.	Feb. 5	Mar. 12	July 29		Oct. 29, 1962	lov. 23	ec. 26	an. 23, 1963	Mar. 9	July 29	kept. 15
1		İ		ž	ă	J.	ĸ	坐	ŗ,		Ιŏ	ž	Ā	ij	芝	5	ď

FLA.
JUPITER.
NEAR
RIVER
LOXAHATCHEE
FORK
SOUTHWEST
2-2777

	55 33 10 10 40 50		50 70			0 1	טוט	00	200	1	0	0 0			ıc.	0
	7.7 7.7 7.9 1.2 8.0 8.7 8.7 8.7		7.5 5		į.				7.7	-	. 9 32	7.7 280	3 6 7 8 7 8 9	25		.8
										+						
	412 22600 37000 32000 575 482 326		450 507 611		64	36	23.0	47	507		151	1470	71	141	62	82
	19 3020 4480 5540 32 26 22		48 44 40		75	25	.09	54	47		46	19	97	9.5	52	38
i	170 3180 4620 5680 280 196 140		188 186 220		242	.138	212	188	188		366	330	000	410	226	89
	239 16600 30500 30700 390 288 191		285 297 347		380	200	317	271	284	 	920	877	947	874	377	516
								,		FLA.						-
FLA.	38 0.0 38 1.3 3.2 .0 .0	FLA.	0.0	, FLA.	9.6	2,1	.0.	4.		-1 .	2.3	6.1	٠.۲		10	2.2
PITER,	- m			POINT	_					CAHATC	-	_		_		\dashv
2-2777. SOUTHWEST FORK LOXAHATCHEE RIVER NEAR JUPITER, FLA	36 9020 16900 16600 60 46 26	S-76, NEAR CANAL POINT,	52 52 74	2-2780. WEST PALM BEACH CANAL AT HGS-5, AT CANAL POINT, FLA	19	33	28	94.	5 5 3 4 5 4	S-5A NEAR LOXAHATCHEE	265	270	105	220	73	128
HATCHEE RI	15 1200 2220 2310 26 26 25 16	S-76, NE	39 50 32	L AT HGS-	61	16	45	38	04	WEST PALM BEACH CANAL ABOVE S.	92	29	24.6	000	84	39
K LOXA	184 196 165 170 302 208 144	ANAL AT	170 174 220	CH CANA	204	138	186	164	172	CH CANA	390	380	304	432	212	280
EST FO	0.8 203 372 350 1.2 1.2	TEE 8 C	888	ILM BEA	3.0	न	70	0,0	4 64 64	ALM BEA	7.3	9	न प ० ल		n n	4.6
7. SOUTHW	23 5160 9690 9860 38 28 17	2-2778. LEVEE 8 CANAL AT	39 38 41	WEST P	90	22	40	33	3 8 8		210	204	146	170	57	95
2-277	3.8 629 885 1160 8.6 4.0	2	18 15 12	2-2780	21	0.8	13	15	15.0	2-2784.5.	35	30	72	32	19	21
	62 238 393 371 98 72 46		46 50 69						50		ĺ	83				- 1
	0.04 .12 .01 .00 .02 .15		0.02		0.15	69	3.5	.02	883		0.10	.16	22.	::	26	40.
	7.0 5.5 1.8 2.6 8.9 10		5.1 3.8 7.1		8.6	9.6	7.5	4.1			28	23	11	. 60	6.2	14
					!	-	214	161	360		1310	1	1		400	51
	Oct. 29, 1962. Nov. 23 Dec. 26 Jan. 23, 1963. Mar. 9 July 30 Sept. 15		Mar. 12, 1963. July 31 Sept. 17		Oct. 2, 1962	Nov. 1	Dec. 4	Jan. 3, 1963	July 30		Oct. 1, 1962	Oct. 31	Jan 9 1963	Mar 9, 1303:	July 30	Sept. 17

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

	-lo	a			55	65	30		260	160	400			240	160	98	82	06	980
	7				7.2	2.8	8.1 7.6		}		7.8			7.7	8.0	7.4	9.7	7.5	7.4
	Specific conduct- ance	mhos at 25°C)	-		-		490 549 669				1380			1060	006	806	190	403	541
	CO ₃)	75 1			6	68	8 0 4 8 0 4		224	94.	107			25	14	22	25	12	20
	Hardi as Ca	magne- sium			89	230	182 194 208		620	360	520 199			286	231	274	274	108	148
panu	d solids	cu- lated			116	525	281 318 387		1030	657	333			619	513	475	462	220	316
to September 1963Continued	Dissolved solids Residue Cal-	at 180°C										}		}	610	486	478	1	ł
er 196	Phos-	(PO,)		FLA.															
Septemb	Ni- trate	(NO ₃)	g	TCHEE,	0.3	. 6	9.7.7.	FLA.	15	2.7	2.0	FLA.		0.3	2.	8.	1.2	r.	٥.
52 to 8	Fluo-	(F)	ntinue	LOXAHA				BAY, FI				EACH, 1			8.0	9.	۰.	!	1
Chemical analyses, in parts per million, water year October 1962	Chloride	<u>(1)</u>	LAKE OKEECHOBEE AND THE EVERGADES BASINSContinued	2-2785.5. LEVEE 8 CANAL AT WEST PALM BEACH CANAL, NEAR LOXAHATCHEE,	28	215	52 100		200	160	290	DEERFIELD BEACH,		170	152	104	86	58	06
er year 0	Sulfate	(°Oc)	ERGLADES	BEACH CA	5.6	62	34 30 30	HGS-4, NEAR SOUTH	196	42	109 51	NEAR		44	28	25	24	8.8	21
on, wat	Bicar- bonate	(нсо³)	THE EV	T PALM	72	198	176 182 212	BELOW	484	384	504	AT S-39,		318	264	308	304	118	156
. milli	Po- tas-	(K)	EE AND	AT WES	0.5	20 CZ	01 01 01 01 02 05	CANAL	4.7	4.6	9 9 6	CANAL		5.8	4.8	3.4	3.2	1.7	2.6
parts per	Sodium	(na)	ОКЕЕСНОВ	E 8 CANAL	17	5.4	36 46 64	HILLSBORO	127	119	218 49	HILLSBORO		128	107	92	11	49	64
es, in	Mag- ne-	(Mg)	LAKE	5. LEVE	2.6	21	16 12	2-2805.	65	34	19	2-2813. H		27	21	8.4	8.4	8.6	13
analys	Cal-	(Ca)	i	2-2785.	23	58	54 54 64	~	142	8 5	120 48	2		7.0	58	96	96	59	38
hemical	Iron				0.05	.13	 1.0.		0.20	20.	60.0			0.11	.12	90.	90.	.15	.03
Ü	Silica	(SOIS)			8.8	7.2	4.2.0		36	11:	31. 4.6			17	11	9.4	9.7	6.4	10
	Mean	(cfs)			319	170	166 98 -51		-274	- 101	-275 103				7.4				
	Date of	collection			Oct. 1, 1962	Dec. 3	Jan. 2, 1963 July 30 Sept. 17		Oct. 2, 1962				Nov. 2, 1962	trol)	control)	(above control)	trol)	(above control)	(above control)

	ı	1 :	\$	8	9	9	Ş	3	3	40	20		20	70	9		80	85	8	8	80	9	80		55	70 70	l
7 90 7 100		Ł_		_									L						_								-
		t	-	_	-	-	-			_			┢	_	_		-		_						-		-
694		000,	1380	1120	1050	750	1420	1	1200	201	689		612	520	673		629	200	9	635	280	909	689	l	565	565	
36 11		3	134	56	22	43	e e	3	5.	23	22		16	17	12		4	22	24	56	16	48	15		10	20 18	
216		900	209	343	330	948	1 4	2	410	176	232		232	248	260		260	284	286	288	276	291	280		245	252	
372 421		3	891	699	644	438	200	200	860	322	379		353	373	394		406	413	400	436	382	352	403		333	338	
456																						426			344	386	
	, FLA.											E, FLA.		_											_		-
0.8 .7	TH BAY			4.1	2	-		:	ů.	u,	1.0	DERDAL	0.1	4.3	1.0	¥	10.7	2.0	۰.	5.5	6.	1.0	1.1	FLA.	0	1.3	
0.3 .6					_					_		r. LAU			0.0		_					0.4			0.5	4.4.	
102	1	3	130	175	160	60	3 6	0 0	225	39	80	1	89	72	91	NEAR DAV	62	68	63	99	28	54	20	MIAMI	48	43	
6.4	CONTROL	1	1/9	45	44	20	1 6	5 1	92	91	45	AY LATERA	12	10	8.3	AT S-13,	24	20	19	17	12	16	12	NEAR NORT	10	14	
220 260		150	438	320	376	959	466	2 9	434	120	216	HOLLOW	264	282	303	CANAL	312	320	320	320	318	296	324	4AY 7,	286	284 288	
1.7	R CANAI		9.	5.7	5.3	. 4	. 4		7.0	2.2	3,6	NAL AT	1.9	2.1	1.4	W RIVE	1.5	2.1	1.2	1.8	7.	1.0	1.0	T HIGH	8	1.8	
62 75			96	122	120	67		2 1	173	46	28	RIVER	46	21	23	SOUTH NE	54	47	45	45	43	21	48	K CANAL A	35	333	
10		ŀ	23	30	59	0	78	2:	44	17	77	TH NEW	11	13	12	2-2861.	6.2	12	13	12	14	19	14	KE CREE	ď	6.8	
70	2-2835	:	154	88	84	0	200	1	35	42	29	348. NO	7.5	78	82		94	94	93	96	88	85	68	SNA	84	888	
0.05		-	0.13	11.	1.9		35	::	90.	.12	.02	2-2	0.04	.03	1.6		0.05	.37	.05	90	8	.04	2.1		0 03	6.0	
6.8		1	22	19	16	-	2 6		24	10	6.2		8.6	7.2	7.9		9.1	9.5	7.4	35	7.3	8.6	7.5		8 4	5.8	
			-266	193	101	170		1	62	442	199						1	188	1	;	;	251	1				
pr. 4, 1963. uly 16			ct. 1, 1962.	ov. 1:	ec. 3	1063	ah 7, 1000.		ar. 11	uly 31 {	ept. 16		ov. 8, 1962.	an. 10. 1963	uly 30		ct. 10, 1962	ov. 8	ec. 6	an. 10, 1963	ar. 9	ulv 17	uly 30		1963	uly 15	
	. 9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 8.9 0.07 71 75 2.6 260 17 106 .6 .7 454 421 224	4, 1963. 9.3 0.05 70 10 62 1.7 220 6.4 102 0.8 0.8 456 372 216 36 694 16 2-2835. NORTH NEW RIVER CANAL BELOW CONTROL HGS-4, NEAR SOUTH BAY, FLA.	16 9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 10 62 1.7 260 17 10 62 1.7 260 17 10 62 1.7 260 17 10 62 1.0 106 1.0 106 1.0 10 106 1.0 10 106 1.0 10 100 100 100 100 100 100 100 100	16 9.3 0.05 70 71 72 72 72 72 72 73 74 74 74 74 74 74 74	8.9 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 36 694 1 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.9 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 11 746 2.2 250 17 106 0.3 0.8 0.8 454 421 224 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746 11 746	8.9 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 36 694 17 76 106 0.5 7 454 421 224 11 746 107 71 10 10 10 11 18 18 12 12 12 12 12 12 12 12 12 12 12 12 12	9.3 0.05 70 10 62 1.7 220 6.4 102 0.5 0.8 454 421 224 11 746 745 75 75 75 75 75 75 7	9.3 0.05 70 10 62 1.7 220 6.4 102 0.5 0.7 454 421 224 11 746 421 224 11 746 421 224 11 746 421 224 12 244 421 224 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 12 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 24	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 421 224 11 746 421 224 11 746 421 224 11 746 421 224 12 224 11 746 421 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.5 0.07 71 15 2.6 2.6 2.6 17 106 0.6 0.6 0.7 71 454 421 224 11 746 2.5 0.13 154 29 122 5.7 4.9 130 4.5 4.5 120 669 372 216 36 694 101 16 0.19 84 29 122 5.7 4.9 130 4.5 122 4.1 1380 102 103 104 46 105 122 222 222 222 222 223 103 104 105 224 105 224 105 224 105 104 105 0.13 154 29 122 25.3 256 25.3 256 25.3 105 105 0.13 154 46 173 262 222 222 105 105 224 105 224 234 234 105 105 224 234 234 234 105 105 225 225 225 225 105 227 235 227 235 105 227 235 235 235 105 227 235 235 235 105 227 235 235 235 105 227 235 235 105 227 235 235 105 227 235 235 105 227 235 235 105 227 235 235 105 227 235 105 227 235 105 227 235 105 227 235 105 227 235 105 227 235 105 227 235 105 235 235 105 235 235 105 235 105 235 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 105 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 36 694 2.2885 NORTH NEW RIVER CANLI BELOW CONTROL HGS-4, NEAR SOUTH BAY, FLA. 10 10 11 18 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 19	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 36 694 2.2855 NORTH NEW RIVER CANAL BELOW CONTROL HGS-4, NEAR SOUTH BAY, FLA. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	10, 0.05	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.6 2.5 0.07 70 12 2.6 2.6 1.7 2.0 1.7 1.06 0.3 0.8 3.6 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.2835 NORTH NEW RIVER CANLI BELOW CONTROL HGS-4, NEAR SOUTH BAY, FLA.	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.6 2.5 0.07 71 84 53 12.6 2.6 17 106 1.6 1.6 1.7 106 1.6 1.7 106 1.6 1.7 106 1.6 1.7 106 1.6 1.7 106 1.6 1.8 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 1	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.2835 NORTH NEW RIVER CANLI BELOW CONTROL HGS-4, NEAR SOUTH BAY, FLA.	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 2.6 2.5 0.07 70 12 2.6 2.6 1.7 2.0 1.7 1.06 1.6 1.6 1.7 1.06 1.6 1.7 1.06 1.6 1.7 1.06 1.6 1.7 1.06 1.6 1.7 1.0 1.8 1.2 1.1 1.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 11 746 12 106	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 11 746 11 106 0.5 0.7 11 84 33 2.6 11 12 136 12 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 13	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 456 372 216 36 694 8.9 0.07 71 1.8 33 96 4.8 4.8 4.8 130 179 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 1	9.3 0.05 70 10 62 1.7 220 6.4 102 0.3 0.8 454 421 224 111 746 110 6.5 1.7 220 1.7 106 0.5 0.7 454 421 224 111 746 110 110 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124	10 10 10 10 10 10 10 10

90

20 9 20

35

45 35 50 50

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS--Continued

320 30 30 Col-or 92.7 7.3 7.7 9.7 펁 Specific conductance (micromhos 558 512 530 505 477 500 500 480 653 488 530 730 500 500 528 470 553 533 magne-carbon-Non-Hardness as CaCO₃) 27 10 22 30 118 133 144 70 16 22 15 24 24 Calcium, sium 260 252 252 244 264 244 244 252 260 324 --156 188 240 176 220 278 284 264 Dissolved solids Cal-cu-lated 306 304 304 390 390 312 329 39 281 330 324 309 parts per million, water year October 1962 to September 1963 -- Continued Residue at 180°C 346 324 324 354 318 318 346 356 334 396 374 360 Phos-phate (PO₄) Ni-trate (NO₃) LAKE OKEECHOBEE AND THE EVERGLADES BASINS--Continued 2-2863.2. BISCAYNE CANAL AT RED ROAD, NEAR OPA-LOCKA, FLA 1.1 FLA 0.4 0.1 0.2 4.6 2.6 2-2863.8. LITTLE RIVER CANAL AT S-27, AT MIAMI, FLA HARBOR, FLA, 0.3 Fluo-ride (F) 0 0 0 0 4 4 0.1 4.0 4.4. n FLA FLA. MIAMI CANAL LATERAL, AT PENNSUCO, Chloride (C1) MIAMI. LAKE CANAL, 37 30 35 59 62 64 64 28 30 ΑT AVENUE. S-3, AT MIAMI 14 6.8 112 113 113 5.4 Sulfate (SO₄) 9.6 148 18 16 57 ---48 45 AND 27th CANAL AT HGS-3 GLADES CANAL bonate (HCO,) OPA-LOCKA CANAL AT Bicar-27.8 2.88 310 139 160 290 278 286 275 282 282 260 226 257 320 320 304 Po-tas-sium (K) 4.6.6.6.6 2 2 3.1 3.6 0.3 1.4 POLDEN MIAMI 2-2880 Sodium (Na) 116 113 146 146 26 46 20 18 44 46 44 $^{22}_{21}$ 13 18 20 2-2864. 7.4 6.9 6.1 4.7 Chemical analyses, in 8.0 7.9 6.8 5.3 2.3 Mag-ne-sium (Mg) 17 12 17 12 2 | 2 4 Cal-cium (Ca) 83 88 77 101 9 102 0.15 10.08 10. 8.0 03 0.05 93 .02 Iron (Fe) 40.00.00.00.00.00 .02Silica (SiO₂) 6.00.00.7 7.0 4.19.4. 5.8 7.3 6. discharge | to 6.0 -606 -215 297 291 Oct. 1, 1962.. Feb. 4, 1963.. July 31..... Sept.16 (above control).... (below control).... Oct. 1, 1962. Nov. 1..... Dec. 3..... June 27, 1963 July 15.... Sept. 15.... July 15, 1963. Sept. 16..... 1963 July 15, 1963 Sept. 14..... : Date of collection 15, July 1 Sept.

FLA
HIALEAH,
PLANT,
WATER
AT
CANAL
MIAMI
2885.

	30 45 75		50		98	8 20 8	!	35		25	40 25	45
	7.7		7.8		7.5	7.7	•	8.2 7.4		4.7	7.8	7.5
	463 473 500		488 488		488	468 511 442		462		438	440	450
	8 2 41		208		24	23 16		13 16		18	202	0 0
	226 237 242		242 254		242	242 250 222		226		220	230	240
	272 283 295		290		297	271 304 251		273 281		258	267	271 278
	310 320 344		324 324		340	322 354 298		290 302		284	304	312
	0.0		4.4.		3.1	22.8	I, FLA.	0.5	NEAR SOUTH MIAMI, FLA.	1.0	3.0	0.0
, FLA.	4.0		e. 0 E. E.	FLA.	0.2	ω'4, ω'	AT MIAMI, FLA.	0.3	UTH MI	0.2	4.0	4. c.
T, HIALEAH, FLA	200 200 200	GABLES, FLA	28		18	20 28 19		26 23		20	19	22
2-2885. MIAMI CANAL AT WATER PLANT,	6.4 9.2 7.2	RUSSIAN COLONY CANAL AT CORAL GABLES,	4.6	TAMIAMI CANAL AT BRIDGE 45, NEAR MIAMI,	2.4	5.2 17 9.2	TAMIAMI CANAL ABOVE CORAL GABLES CANAL,	10 16	LLER DRIVE,	9.6	10 8.3	4.8
AL AT	266 274 278	CANAL	286 286	T BRID	300	270 277 252	BOVE CO	260 264	L AT M	246		- 1
AMI CAN	0.1 .6 1.3	COLON	0.3	CANAL A	0.5	2,1.8	CANAL A	0.6	EK CAN	0.7	۲- 65	ന് മ
2885. MI	17 17 20	RUSSIAN	18	TAMIAMI	12	11 18 3.5	TAMIAMI	16 14	SNAPPER CREEK CANAL AT MILLER	14	15	15
-2	6.4 7.3 7.3		6.9		1.8	4.4.4. E.4.E.	2-2905.	3.6		8.4	0.0	5.6
i	80 83 85		98		86.	8 83	Ö	82	2-2907.	82	88	83
	0.04		0.04		0.05	90.00		0.02		0.03	.03	.0°.
	4.6 5.3 6.2		4.9 6.0		3.9	4.0 4.8 6.1		5.8		4.4	4, 4, 8, 8,	5.6
					01 *							
	June 27, 1963 July 15 Sept. 14		July 15, 1963 Sept. 16		Oct. 15, 1962 Dec. 14	Dec. 15. July 15, 1963 Sept. 14		Nov. 9, 1962 Sept.15,1963		Oct. 1, 1962. Nov. 1	bec. 4	July 15 Sept. 14

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		Col-		1100		300	160		200	140	20	1	120 120 120		160 100		001
		Нd		7.7 6.8 6.7		7.4	8.6		8.9	6.9	7.0		7.5		7.5		7.1
	Specific conduct-	ance (micro- mhos at 25°C)		88 110 125		472	1000		100	100	128		1050 1000 1050		1010 1000 1200		1120
	Hardness as CaCO ₃)	Calcium, Non- magne-carbon- sium ate		9 12 14		12	22		27	12 4	#		0 4 0		28 3 3		54 26
	Harc as C	Calcium, magne-	i	19 22 24		146	27.0		23	23	28		297 280 297		300 248 252		340
per	d solids	Cal- cu- lated		44 51 58		298	297		1.4	46 54	09		625 592 625		620 578 693		67? 643
Contin	Dissolved solids	Residue at 180°C															
r 1963-	Phos-	phate (PO,)									-						
ptembe	Ni-	trate (NO ₃)	eq			0.0	٦.		0.0	12.4	٥.		4.80.4		0.1 1.0 4.6		2.0
to Se	Fluo-	ride (F)	Continu	0.1.2													
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chlor ide (C1)	LAKE OKERCHOBEE AND THE EVERGLADES BASINSContinued EVERGLADES STATION 1-7, FLA.	17 22 26	i, FLA.	87	180	, FLA.	16	52 23 25 25	22	I, FLA.	167 140 148	s, FLA.	158 162 218	5, FLA.	153 150
r year oc	5	(SO ₄)	BEE AND THE EVERGLADES BASIN EVERGLADES STATION 1-7, FLA.	4.0	EVERGLADES STATION 1-5,	11	35	STATION 1-9,	1 2	4.80	2.6	STATION 2-14,	27 32 23	EVERGLADES STATION 2-16,	55 34 33	EVERGLADES STATION 2-15,	38
n, wate	Bicar-	bonate (HCO ₃)	THE ADES S	12 22 21	ADES S	164	282	ADES S	24	14	20	DES ST	354 336 244	DES ST	332 295 304	DES ST	399
m11110	Po-	tas- sium (K)	OBEE A! EVERGI	4.0 .9	EVERG	2.6	5.3	EVERGLADES	1.3	1.1	4.	EVERGLADES	3.5	EVERGL/	8.5 8.2 8.2	EVERGL	£.9
parts per	:	(Na)	КЕ ОКЕЕСН	113		62	132		25	111	11		130 118 104		11.9 11.8 162		115
s, in	Мав-	stum (Mg)	LA	1.22		10	26		4.0	22	٦.		24 8.0		27 5.7 4.3		9.6
analyse:	Cal-	cium (Ca)		5.6 6.8 6.4		42	99		11 8	8.0	11		80 99 62		75 90 94		118 120
emical		(Fe)		0.10 .09 .08		0.18	.10		0.09	113	89		0.11 11.0 11.		0.17 11. 13		2.0
5	;	(SiO ₂)		2.1		2.1	3.5		2.5	ယ္ဆ	2.9		17 23 22		17 17 19		34
	Mean	discharge (cfs)															
	Date	of		Nov. 6, 1962 Dec. 3 Jan. 4, 1963		Jan. 15, 1963.	Jan. 15 (time 1:55 p.m.)		Oct. 8, 1962	Dec. 3,	Sept. 9		June 10, 1963. Aug. 6 Sept. 9		July 1, 1963 Aug. 6		Aug. 6, 1963 Sept. 9

	100		50 100	1	60 70 50	1	25 15		10		65 65	1
	7.2		6.9		7.6		7.9 7.6		7.7		8.1	-
	752 532		681 500		539 628 689		413 520 274		428 441 264		10900 580 485	-
	22 12		114		32 18 18		12 20 4		28 73 12		1210 640 86	
	195 152		208 160		192 200 164		150 164 112		150 120 108		1460 880 144	
	457 313		408 300		313 385 396		224 297 149		230 204 142		6720 3510 272	
							238 268 152		274 232 156		7600 3950 304	
							0.03		0.60		0.13	
	0,6		0.0		2.0.		1.0.1.		0.2		14 8.9	
						D, FLA.	2.0	D, FLA.	0.2	, FLA.	0.3	
.9, FLA.	132 76	1, FLA.	110 68	2, FLA.	66 82 126	2-2908.1. EVERGLADES P-37, NEAR HOMESTEAD, FLA	53 77 22	EVERGLADES P-38, NEAR HOMESTEAD,	67 69 26	2-2908.4. ROOKERY BRANCH NEAR HOMESTEAD,	3540 1800 81	
EVERGLADES STATION 2-19,	32 18	EVERGLADES STATION 2-21,	8.2	EVERGLADES STATION 2-22,	11.52	-37, NEAF	4.0	-38, NEAF	4.0	NCH NEAR	439 186	
DES ST	212 171	DES ST	236 180	DES ST	196 196 178	ADES P.	168 176 132	ADES P	148 106 118	RY BRA	303 266 144	
EVERGLA	3.4	EVERGLA	3.4	EVERGLA	2.0	EVERGI	1.0	EVERGI	1.0 8.	. воок	75 33 1.9	
	94		75		47 66 87	2-2908.1.	28 48 14	2-2908.2.	30 33 13	2-2908.4	2060 1050 47	7
	3.8		1.9		15 6.2 4.1		5.0 6.0 3.5		5.0 4.9		219 105 7.1	
	72 56		80 61		53 59		3 2 2 3		52 40 40		224 180 46	
	0.14		0.23		0.24		0.01		0.01		0.08	-
	14		14 21		11 18 18		3.8		3.7		3.8	
	Aug. 1, 1963 Sept. 2		Aug. 1, 1963 Sept. 9		June 10,1963 Aug. 1 Sept. 2		Nov.16,1962 July 25,1963 Sept. 19		Nov.16,1962 July 25,1963 Sept. 19		Feb. 4, 1963 Feb. 4	

MISCELLANEOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		Col-		90		100		100		2 4 4 6		20023	3
		Hd		8.0		7.9		7.8		7.9		7.6	?
	Specific conduct-	ance (micro- mhos at 25°C)		21300 1200		33000 19100		29100 11500		304 360 273		365 398 340 371 540	377
	Hardness as CaCO,)	Calcium, Non- magne-carbon- sium ate	•	2670		4330		3900		69 10	-	10 10 16 64 2	4
	Hard	Calcium, magne- sium		2920		4550 2420		4140 1350		144 176 124		176 198 174 200 206 210	777
eq	solids	Cal- cu- lated		4800		24600 12900		21900		170 210 151		199 219 230 224 233	2
-Continu	Dissolved solids	Residue at 180°C		6100		26300 13600		23100 7200		182 264 164		214 2330 214 238 256 256	007
1963-		Phos- phate (PO ₄)		0.05		.07		0.11		.00.0			_
ptember		trate (NO,) (led	29		172 0		155	Ā.	0.0	SE, FLA.	3.1.0.	•
to Se	1	ride (F)	Continu	0.5	"LA.	0.9	, FILA	0.8	AD, F	0.0	оснор	8.0000	:
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chloride (Cl)	LAKE OKEECHOBEE AND THE EVERGLADES BASINSContinued 2-2908.42. TARPON BAY NEAR HOMESTEAD, FLA.	7890	2-2908.5. SHARK RIVER NEAR HOMESTEAD, FLA.	13200	HARNEY RIVER NEAR HOMESTEAD, FLA	11700 3690	2-2908.7. EVERGLADES P-34, NEAR HOMESTEAD, FLA	18 20 17	86, NEAR OCHOPEE,	16 17 17 15	77
r year Oc.		Sulfate (SO ₄)	EVERGLADES AY NEAR HO	1010	SR NEAR HO	1770 933	LIVER NEAR	1560 453	S P-34, NE	0.8 14 1.2	TAMIAMI CANAL AT BRIDGE	44.0.04	D. 1
, wate		Bicar- bonate (HCO ₃)	D THE I	300	RK RIV	272 216	ARNEY F	288	RGLADES	168 184 140	CANAL	2008 2228 2344 2344 2544	* 0.7
million	Po-	tas- siu.n (K)	OBEE AN	131 6.5	.5. SHA	298 149	2-2908.6. н	247 75	.7. EVE	0.8	ТАМІАМІ	1.0.1	7.
arts per		Sodium (Na)	КЕ ОКЕЕСН 2-2908	4810 188	2-2908	7740	2-29	7060 2080	2-2908	9.9 12 9.6	2-2909.75.	8 / 8 8 6 7 8 4 4 8	0
s, in p	Mag-	ne - sium (Mg)	LA	532 19		858 462		967 245		2.3 4.0	2	8.4.689.	2.1
a na lyse	,	Cal- Cium (Ca)		294 48		410		136		54 48 48		66 75 74 75 82	70
emical		Iron (Fe)		0.02		0.02		0.02		0.01		80.0.0.0.0	3
C		Silica (SiO ₂)		7.0		3.2		4.1		3.9		11.2 0	0.0
		Mean discharge (cfs)				0.84		0.84					
		Date of collection		Feb. 4, 1963. Sept. 11		Feb. 6, 1963. Sept. 11		Feb. 4, 1963. Sept. 11		Nov. 13, 1962. July 26, 1963. Sept. 17		Nov. 15, 1962. Dec. 14. Mar. 14, 1963. Apr. 29.	

					1	2-2920.	ALOOSA	HATCHEE	CANAL AT	2-2920. CALOOSAHATCHEE CANAL AT MOORE HAVEN, FLA.	VEN, FL	Α.					[
Oct. 22, 1962. Nov. 27	10 10 10	5.0	0.10	58	9.6 13	333	22.0	196	3.98	44 48 50		0.0.0			272 291	198	34 46 54	472 500 497	41.0	980
Mar. 12	22	4	.0.		13	42	4.	192	36	28					312	200	42	534	7.7	100
Sept. 16	10	2.7	.02		13	36	2.2	136	41	43 52		0.0			196	128	50	352 462	4.7	60 50
				3-7	2924, C.	ALOO SAHA?	TCHEE C	ANAL AT	ORTONA L	2-2924. CALOOSAHATCHEE CANAL AT ORTONA LOCK, NEAR LA BELLE, FLA	LA BEL	LE, FL	Α.							
Ot. 22, 1962		5.2	0.18	45	3.6	14	8.0	132	8.0	20		0.0			159	120	12	280	7.5	120
Jan. 2. 1963		4.0	5.5	869	24.3	17	2.5	174	30	26 44 44		0,0			213	162	20 40	365	9 6	20 20
July 31.		6.3	61.0	72	4.0	15.5		224	233	42		.0			298	218	. # E	200	7.7	200
					2-2930	2-2930. ORANGE RIVER	RIVER	AT BUCKINGHAM,		E	MYERS,	FLA.								:
0ct. 1, 1962.		6.0	0.01	ì	5.2	24	8.0	172	29	38	1	0.0		:	250	176	35	\vdash	7.6	20
Dec. 31,		7.2	8.		14	20	1.5	300	26	92	0.0	•		558	419	332	98		7.8	20
Apr. 2, 1903 July 1		. 60	58	87	9.5	443	2.2	240	38	75	4. w	. 0.		470	370	300	60	650	7.7	0° 6
							MXA	KKA RIVI	MYAKKA RIVER BASIN											1
i						2-2982.	MYA	MYAKKA RIVER AT	AT MYAKKA	CITY, FLA.										
Feb. 18, 1963	A 247 1940	9.4.	0.15	8.7 8.0	1.2	6.1	0.2	ဖဖ	1.6	12	0.4	0.0.	0.66	72 56	34	17 01	12 0	35	6.1	120
						2-2990.	MYAKK	A RIVER	NEAR SAR	2-2990. MYAKKA RIVER NEAR SARASOTA, FLA	a .									
May 11-18, 20-21, 1963.	0.1	8.0	0.26	8.8	4.9	10	1.1	19	13	20	0.4	1.5	0.95	126	11	42	26	126	6.6	120
27-31	τ.	۳.	0.3	8.8	3.9	10	1.2	13	13	20	4.	2.0	. 93	146	10	38	22	128	9.9	100
D-17:	14 h																			

A Daily mean discharge.

MISCELLANBOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

	col- or		8 6		65 100		150		100 35 25 100		98	100
	Hd		7.0		7.2		7.2		0.4.4.0.0.		9.9	6.7
Specific	ance (micro- mhos at 25°C)		188 140		496 440		193 142		359 318 455 428 482		376	343
Hardness	Non- carbon- ate		48		172		28		98 106 164 174 139		104	102
Hard	Calcium, magne- sium		71		238		78		102 108 168 174 174		114	112
ued I solids	Cal- cu- lated		112 80		349		119		210 237 336 332 280		208	209
Continued Dissolved solids	Residue at 180°C		148 114		426 330		138 82		230 266 362 334 330		216	226
per 1963	Phos-phate (PO ₄)		0.10		1.4		1.2		47 50 66 72		33	30
eptem	Ni- trate (NO ₃)		1.1		6.1	ER	1.5		1.2 2.1 4.7		1.8	2.4
62 to S	Fluo- ride (F)	, FLA.	0.3	, FLA.	0.8 7.	FIA RIV	0.4	.А.	9.4 12 9.9 3.4	FLA.	9.9	9.9
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued	Chloride (C1)	SHAKETT CREEK BASIN COW PEN SLOUGH NEAR BEE BRIDGE, FLA.	17	PHILLIPPI CREEK BASIN PHILLIPPI CREEK NEAR SARASOTA, FLA	22 26	COASTAL BASINS BETWEEN MYAKKA RIVER AND ALAFIA RIVER MAIN B CANAL AT SARASOTA, FLA.	13 20	IN ITHIA, FLA.	20 21 28 88	2-3017.3. ALAFIA RIVER AT RIVERVIEW, FLA.	32	34
er year o	Sulfate (SO ₄)	SHAKETT CREEK BASIN PEN SLOUGH NEAR BEE	40 20	PHILLIPPI CREEK BASIN ILLIPPI CREEK NEAR SA	163 112	INS BETWEEN MYAKKA RIVER AND MAIN B CANAL AT SARASOTA, FLA	25	ALAFIA RIVER BASIN 2-3015. ALAFIA RIVER AT LITHIA,	54 64 103 101 65	VER AT RI	51	20
on, wat	Bicar- bonate (HCO ₃)	HAKETT EN SLOU	35	ILLIPPI LIPPI C	81 87	WEEN MY	61 40	ALAFIA LAFIA R	G 28 G 28 G 28 G 28	AFIA RI	13	12
: milli	tas- sium (K)	S COW P	0.9		6.4	INS BET	2.8	3015. A	0.1 1.8 4.7.4 3.7.4	7.3. AL	1.8	1.6
parts per	Sodium (Na)	2-2997.	10 6.1	2-2997.5.	6.4	STAL BAS	10 8.1	6	15 17 24 23 38	2-301	19	21
es, in	mag- ne- sium (Mg)		3.2		17 39	COA	13		11 9.2 14 11 9.0		12	11
analys	Cal- cium (Ca)		21 16		71		28 16		23 28 52 44 46		226	22
lemical	Iron (Fe)		0.06		0.04		0.11		0.09 17 .03 .05		90.0	.12
8	Silica (S102)		3.0		9.5		4.6 5.8		23 24 25 23		18	19
	Discharge (cfs)		A 102 35		A 177 50				A 568 A 451 A 205 A 236 A 731			
	Date of collection		Feb. 20, 1963. Sept. 20		Feb. 19, 1963. Sept. 20		Feb. 19, 1963. Sept. 20		Oct. 2, 1962 Oct. 5 Nov. 27 Jan. 22, 1963. Aug. 26		Oct. 1, 1962 (time 1055)	(time 1630)

	0.4.4.0.0		6.6	6.7
	359 318 455 428 482		376	343
	98 106 164 174 139		104	102
	102 108 168 174 152		114	112
	210 237 336 332 280		208	209
	230 266 362 334 330		216	226
	47 50 66 72		33	30
	3.1 7.7 4.7 0.		1.8	2.4
Α.	9.4 12 9.9 3.4	FLA.	9.6	9.9
2-3015. ALAFIA RIVER AT LITHIA, FLA.	20 21 34 88 88	2-3017.3. ALAFIA RIVER AT RIVERVIEW, FLA.	32	34
IVER AT I	54 64 103 101 65	VER AT R	51	20
LAFIA R	G 28 G 28 G 28 G 0	AFIA RI	13	12
015. A	0.1.1.0. 8.4.7.4.	3. AL	1.8	1.6
2-3	15 17 24 23 38	2-3017	19	21
	11 9.2 11 11 9.0		12	11
	23 44 52 46 46		226	27
	0.09 .17 .03 .05		90.0	.12
	23 24 25 23		18	19
	A 568 A 451 A 205 A 236 A 731			
	Oct. 2, 1962 Oct. 5 Nov. 27 Jan. 22, 1963.		Oct. 1, 1962 (time 1055)	

						2-3017.6. ALAFIA RIVER AT GIBSONTON,	ALAFIA	RIVER	AT GIBSO	NTON, FLA.										
0ct. 1, 1962 (time 1025). (time 1600).		9.5 5.5	0.02	188	380 572	3430 4780	118 178	52 78	856 1230	5950 8500	5.1	0.3	21	11300	10800	2030	1990 2870	15800	7.1	60 50
					2-30	30. HILLS	HILLSBC	RIVER	HILLSBOROUGH RIVER BASIN BOROUGH RIVER NEAR ZEPHY	RHILLS,	FLA.									
Oct. 3, 1962 Nov. 2	211 102 103	8.6 11.	0.14	54.5	6.02 4	5.3 6.1	0.10	178	4.4.0	9.0 10	6.3	1.0		166	120	156	E G a	315	2.7	130
Aug. 26, 1963.	343	6.8	.12	56	2.7	5.4			8.0	12	. 4.		1.6	108	100	16	22		. 2.	10
				COAST	AL BASI	NS BETWEE 2-3100.	N HILLS ANCLOTE	BOROUG	S BETWEEN HILLSBOROUGH RIVER AND WITHLA 2-3100. ANCLOTE RIVER NEAR ELFERS, FLA	COASTAL BASINS BETWEEN HILLSBOROUGH RIVER AND WITHLACOOCHEE RIVER 2-3100. ANCLOTE RIVER NEAR ELFERS, FLA.	хосне	RIVER								
Oct. 16-21, 25, 1962	A15 A7.7	6.9	0.22	32	1.5	5.7	7.0	141	6.4	112	0.3	0.0	0.00	147	111	131	112	190	7.5	140
					2-31	2-3107.5. CRYSTAL RIVER NEAR CRYSTAL RIVER,	STAL RI	VER NE	AR CRYSTA		FLA.		Ì							
Feb. 15, 1963 Site 1		9.9		36	7.1	27	0.8		16	45	0.2	0.3		204	194	119	27	335	7.5	
61 67		1 1		31	20.0		T	104	1	15	!	••		1	1	86	13	223	7.6	
4		6.9		26	. 4	340	-=	140	74	550	=:			1240	1150	308	194	2000	. 6.2	
2		1		40	15	1	1	128	-	134	!	•		1	;	160	22	650	8.0	
8		16.9		51 48	30.4	208	18.9	134	51	400 350	=:	E 6		824	992	266	156	1550	6.8	
A Doily mean discharge	dicohouge					- (-		

A Daily mean discharge. G Adjusted for phosphate (PO,) value.

MISCELLANBOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

		Col- or		150 150		90				8 20		45 50
	0.1	Hd (5.5		7.2		7.6		7.5		6.6
	Specific conduct-			115		252 246		185		28300 27000		32
	Hardness as CaCO,)	Non- carbon- ate		14		31 27		24		3620		4.0
	Hard	Calcium, Non- magne-carbon- sium ate		18		121		91		3700		ယ္တ
ned	Dissolved solids	Cal- cu- lated		64		144				20500		20
Contin	Dissolve	Residue at 180°C	pa	84		180 180				21400		37
r 1963	i	Phos- phate (PO ₄)	ontinu			0.17						
ptembe		Ni- trate (NO ₃)	IVERC	0.1		6.0			CREEK	183		7.0
to Se		Fluo- ride (F)	снее в	e. e.		0.3			NFINA	0.8 183		0.0
Chemical analyses, in parts per million, water year October 1962 to September 1963Continued		Chlor ide (C1)	COASTAL BASINS BETWEEN HILLSBOROUGH RIVER AND WITHLACOOCHEE RIVERContinued 2-3107.6. LAKE MATTIE NEAR POLK CITY, FLA.	19	IS, FLA.	10	APALACHICOLA RIVER BASIN 2-3570. SPRING CREEK NEAR IRON CITY, GA.		COASTAL BASINS BETWEEN APALACHICOLA RIVER AND ECONFINA CREEK 2-3599.2. NORTH BAY AT LYNN HAVEN, FLA.	12400 11300	IKA, FLA.	4.5
r year oc		Sulfate (SO ₄)	IIVER AND	17	RIVER NEAR INGLIS,	19	APALACHICOLA RIVER BASIN SPRING CREEK NEAR IRON CI		SINS BETWEEN APALACHICOLA RIVER ANI 2-3593.2. NORTH BAY AT LYNN HAVEN,	1530	WETAPPO CREEK NEAR WEWAHITCHKA, FLA	0.0
n, wate		Bicar- bonate (HCO ₃)	ROUGH F	4.6		110	HICOLA CREEK	109	PALACH	96	K NEAR	40
m11110	Po-	tas- sıu.n (K)	HILLSBO	6.2	WITHLACOOCHEE	0.6	APALAC		TWEEN A	246	PO CREE	0.5
arts per		Sodium (Na)	BETWEEN 1	13	WITHLA	5.3	2-3570.		3ASINS BE 2-3593.	6240	WETAP	2.8
s, in p	Mag-	ne- Sium (Mg)	BASINS	1.0		2.7			OASTAL	745	•	0.5
analys		Cal- cium (Ca)	OASTAL	6.4		4.4 4.0			0	256		2.8
emica1		Iron (Fe)		0.10		0.07				0.01		71.0
Che		Silica (SiO ₂)		2.1		4.7				1.4		5.7
		Discharge (cfs)						122 225				44.3 10.5
		Date of collection		Nov. 1, 1962 Site 2		Mar. 21, 1963 Above dam Below dam		Oct. 12, 1962 Oct. 12, 1962		Nov. 29, 1962 Jan. 17, 1963		Nov. 25, 1962 May.14, 1963.

9 0

ECONFINA CREEK BASIN

	6.9		0.09 0.08		6.1		5.2		6.7 5.0 7.2
	53		28 27 29		17 17		14		32 19 35
	-8		000		00		0 8	'	0
	55 26		10		44		8 13		12 2 41
	33		16				18		12
	32 36		20 22 14		111		15 24		25 12 8
LĂ.									
IN, F	0.5						0.0		0.0
FOUNTA	0.0	FLA.		FLA.		FLA.	0.2	FLA.	0.1
2-3594.5. ECONFINA CREEK AT WALSINGHAM BRIDGE NEAR FOUNTAIN, FLÁ	3.2	2-3595.5. BEAR CREEK NEAR YOUNGSTOWN, FLA	2.0 3.0	2-3596. LITTLE BEAR CREEK AT YOUNGSTOWN, FLA	1,5	2-3596.1. WHITE OAK CREEK NEAR GREENHEAD, FLA	3.5	2-3596.5. BIG CEDAR CREEK NEAR BENNETT, FLA.	3.0
SINGHAM BR	0.0	NEAR YOU	0.4	EEK AT YO		K NEAR GR	0.4	EEK NEAR	0.0
AT WALS	26 30	CREEK	122	BEAR CR	5	NK CREE	67.00	EDAR CR	14 19
CREEK	0.4	5. BEA	0.3	ITTLE 1		HITE O.	0.0	BIG C	1.0
ECONFINA	1.8	2-3595.	2.0	2-3596. I		3596.1. 1	1.7	2-3596.5.	1.4
594.5.	1.5		0.5			2-	0.4		0.1 .1
2-3	8.0		2.8				2.8		5.4
	0.04		4.7 4.8 1.7 0.10				4.5 4.8 0.12		0.10
	2.8		4.7 4.8 1.7		3.3		6.4		4.0 4.9 2.3
	86.4 75		46 65 52		27.4		4.9 8.1		9.9 9.0
	Oct. 31, 1962. May 12, 1963		Oct. 30, 1962. Dec. 17 May 13, 1963		Oct. 30, 1962. Dec. 19		Nov. 29, 1962. Jan. 17, 1963.		Nov. 28, 1962. Jan. 16, 1963. May 13
	0 로		Sea		o a	l	No	,	o R a

MISCELLANBOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

				Che	mical	analyses	s, in p	arts 1	er mil	lion, w	Chemical analyses, in parts per million, water year October 1962 to September 1963	r Octo	ber 1	962 to	Septem	ber 196	53						
					;			_ ′	占						1 000	Dissolved solids (calculated)	solids :ed)	Hardness as CaCO,	nees aCO,	ß,	Specific con-		
Date of collection	Mean S discharge i (SS (SS)	Sil- ica (SiO ₂)	Iron (Fe)	ctum (Ca)	Mag- ne- sium (Mg)	Stron- thum (Sr)	Sodium (Na)	Fo- tas- sium (K)	car- bon- ate (HCO ₂)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F) (Ni- trate (NO ₃)	's G	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, mag- ne- stum	Non- car- bon- ate	anum ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	р на	Col- or
									MOB	ILE RIV.	MOBILE RIVER BASIN												
						2-4	4365. W.	EST FC	RK TOM	BIGBEE	2-4365. WEST FORK TOMBIGBEE RIVER NEAR NETTLETON, MISS	AR NET	TLETO	N, MIS	38.								
Feb. 5, 1963 Sept. 8		1.1	0.06	41 54	3.7		7.8	3.5	106	27	9.5	0.3	1.3		A151 A243	0.21		112	25 25	0.3	264	7.7	30
							2-4	115.	OMBIGB	EE RIVE	2-4415. TOMBIGBEE RIVER AT COLUMBUS,	MBUS,	MISS].									
Sept. 12, 1963. Sept. 17		6.6	0.02	12 21	1.5		3.9	1.4	40	4.4 4.4	3.0	0.2	0.1		A62 A64	90.0		36	200	9.2	108	6.6	10
							2-4	2-4710.	HICKAS	AW CREE	CHICKASAW CREEK NEAR WHISTLER,	IISTLE	R, ALA.	A.									
Nov. 6, 1962 Sept. 11, 1963.		5.8	0.14	0.1	1.0 ,		2.8	0.0 4.	တက	0.0	3.1	0.1	2.2		17	0.14		€ 4	00	4.	19	6.9	202
The state of the s									PASCA	GOULA R	PASCAGOULA RIVER BASIN	×											
						ļ	2-4	2-4730.	LEAF R	IVER AT	RIVER AT HATTIESBURG, MISS.	URG,	MISS.										
Nov. 26, 1962		5.9	0.10	3.2	1.0		4.6	3,1	20 20	0.08	290	4.0	2.2		36 A518	0.05		12	18	0.6	966	8.9	30
							2-478	5. CHI	CKASAW	HAY RIV.	2-4785. CHICKASAWHAY RIVER AT LEAKSVILLE, MISS.	KSVIL	LE, M	ISS.									
Nov. 27, 1962 July 3, 1963		8.7	0.02	1.5	5.5		4.8	1.6	18 30	5.2	95 52	0.0	0.2		185 145	0.25		45	30	3.1	364	6.2	120
							2	2-4795.	ESCATA	ESCATAWPA RIVER	ER NEAR WILMER,	TITMER	, ALA										1
Nov. 6, 1962 Sept. 12, 1963.		8.0	0.12	1.2	1.7		3.4	4.0	m m	3.0	9.6	0.0	0.3		26	0.04		8 10	9 80	e. 0	37	8.8	20
									PEA	PEARL RIVER BASIN	R BASIN											1	
							••	2-4860.		L RI VER	PEARL RIVER AT JACKSON, MISS	NON, M	ISS.										
Jan. 11, 1963		8.0 4.4	0.36	5.3	1.4		3.5	1.9	12	2.4	6.0	0.0	4.0		35 37	0.05		11	3.1	9.0	51	51 6.0 100 69 6.0 30	30

MISS
MONTICELLO.
Υ
RIVER
PEARL
-4885.

					N	-4885.	PEARL	2-4885. PEARL RIVER AT MONTICELLO, MISS	MONTICEL	rro,	uss.								
Jan. 3, 1963 May 20	8.60.6	0.25	3.6	2.1	8 4.6 6.2	2.1	7.41	19.8 14.	7.8 8.0 5.8	0.1	1.4	47 62 49	0.06 .08 .07	12 24 18	0 17 0	1.0	76 98 80	6.1	5 2 3
					2-4892	.25. н	ALF MO	2-4892.25. HALF MOON CREEK NEAR BAXTERVILLE, MISS	NEAR BAXT	TERVII	LE, MISS.								
Nov. 20, 1962 July 17, 1963	7.3	0.05	0.0	0.7	2.3	9.0	6	0.0	4.6	0.0	0.2	16	0.02	w ro		0.0	18	6.3	20 20
•					2-4892	.30. н	URRICAL	2-4892.30, HURRICANE CREEK NEAR BAXTERVILLE,	NEAR BAXT	TERVII	LE, MISS.								
Nov. 20, 1962 July 17, 1963	7.6	0.13	1.0	1.1	2.3	9.8	9	0.0	3.6	0.0	0.3	19 A17	0.03	40	7	0 0.5	17	6.8	30 40
					2-4	892,35	. BAY (2-4892.35. BAY CREEK NEAR BAXTERVILLE, MISS	R BAXTERY	VILLE,	MISS.		!						
Nov. 20, 1962 July 17, 1963	8.8	0.14	6.0	0.5	2.5	8.5	9	0.0	3.5	0.0	0.3	20 A 20	0.03	4.0		0.6 0.6	20 21	6.4	30
					2-4892.	37. LO	WER LI	2-4892.37. LOWER LITTLE CREEK NEAR BAXTERVILLE,	K NEAR BA	AXTERV	TLLE, MISS								
Nov. 20, 1962 July 17, 1963	9.2	0.09 20.	1.0	6.0	2.3	8.2	~ ™	0.0	3.7	0.0	0.2	17	0.02	4	W 44	0.6	119	6.8	88
					2-48	92.39.	GULLY	2-4892.39. GULLY CREEK NEAR BAXTERVILLE, MISS	AR BAXTEI	RVI LLE	, MISS.								
Nov. 20, 1962 July 17, 1963	6.9	0.07	8.0	0.5 6.	2.3	6.0	5	0.0 8.	3.0	0.0 0.2	0.2	18 A17	0.02	44	4.4	0 0.5	20	7.0	20 15
A Residue at 180°C.	.:																		

MISCELLANBOUS ANALYSES OF STREAMS IN SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS -- Continued

	Hardness So-Gothic con- cal. Non- and ance pH Col- chum, car- stop (micro- nag- bon- ratio mhos at atlum are ratio 23°C)					
	ecific	uct- unce price icro- icro- ice at 5°C)				
	So-S	ad- ad- sorp-(m tion mh ratio 28				
	Hardness as CaCO, Cal- hum, car- nage- ne- ate					
	Hard as Ca	Cal- clum, mag- ne- slum				
63	Dissolved solids (residue at 180°C)	Tons per day				
er 196	ssolved	Tons per acre- foot				
Septem	re D	Chloride Fluo Ni- Bo- Parts (Cl) (Fluo Ni- Bo- Parts (Cl) (Fluo (NO.) (B) per per per per per per per per per per				
961 to		(B)				
ber 1		Ni- (NO ₂)				
r Octo	de rid.					
ter yea						
Chemical analyses, in parts per million, water year October 1961 to September 1962	Sulfate (SO ₄)					
er mt]	ä	car- bon- ate (HCO ₂)				
arts p		Po- tas- sium (K)				
s, in p		Sodium (Na)				
nalyse	Stron- ttum (Sr)					
nical a	Mag ne- stum (Mg)					
Che	Cal- ctum (Ca)					
	Iron (Fe)					
		Sil- ica (SiO ₂)				
		Nean Sil				
		Date of collection				

PASCAGOULA RIVER BASIN 2-4730, LEAF RIVER AT HATTIESBURG, MISS.

						2-4	1730. 1	EAF R	2-4730. LEAF RIVER AT HATTIESBURG, MISS.	IATTIESBU	RG, MJ	SS.									
Oct. 23, 1961, Aug. 13, 1962.	610 766	8.0	8.7 0.00 3.4 0.1 8.0 .00 4.2 .9	4.2.	0.1	51 102	1.2	1.2 12 1.2 1.9 12 4.4	4.4	159	0.1 0.0	0.0	161 292	0.22	265	9.1	1	4 12	286	6.1	20
						2-478	0. PA	CAGOUI	2-4790. PASCAGOULA RIVER AT MERRILL, MISS.	AT MERRI	EL, M	ss.									
Mar. 28, 1962.	9300	7.1	7.1 0.16 5.5 0.7	5.5	0.7	21	6.0	0.9 14 2.8	8.8	34	0.0 0.0	0.0	87.9	0.11	0.11 1980	17		2.2	5 2.2 143	6.3	20
Aug. To.		۲٠,	3.	۰ و	1.2	ž.	1.7	18	3.4	3	٥.	0.	180	97.	980	7.7		٥٠٠	337	٥.	n
						2-4793.3.	PASCA	GOULA	2-4793.3. PASCAGOULA RIVER AT CUMBEST BLUFF, MISS.	CUMBEST	BLUFF	, MISS.									
Mar. 29, 1962.		7.1	7.1 0.15 4.9 0.4	4.9	0.4	13	6.0	0.9 7 2.4	2.4	25	0.1 0.1	0.1	A58	90.0		14		1.5	8 1.5 110	6.5	20
Aug. 16		7.3	6.	6.0	1.7	31	1.3	16	1.2	54		•	133	.18		22		2.	211	6.4	
								PEAR	PEARL RIVER BASIN	ASIN										-	

2-4860. PEARL RIVER AT JACKSON, MISS.

Oct. 2, 1961	282	8.6	0.00	0.9	0 2.9	4,1	1,4	33	4.6	4.2	0.1 0.0	0.0	A49	0.07	37.3	27	0
May 22, 1962	740	9.1	.20	7.8	6.	4.6	1:1	53	5.8	3.1	٠.	۳.	47	90.	93.9	23	0
Sept. 4		9.4	01.	5.0	1.3	3.4	1.3	21	3.4	4.4	۰.	۳.	A40	.05	22.0	18	
A Calculated	from dete	rmined	const	tuent													

0.3 78 6.7 20 .4 74 6.8 40 .4 64 6.1 0

INDEX

A	Page	Page
Abram Creek at Oakmont, W. Va	159	Collection and examination of
Acidity	18 292	samples
Acidity	418	Composition of surface waters 9-24
Albemarle Sound near Edenton, N.C	238-240	Conssauga River at Tilton, Ga 471-407
Albemarle Sound	238-240 281	Connecticut River basin 45-47,195
Altamahaw, N.C., Haw River at	10	Connestoga Creek at Lancaster, Pa 154-158 Cooperation
Aluminum	170	Coosa River at Childersburg, Ala 416
Apalachicola River basin	390,464	at Gadsen, Ala
Arcaula, Fia., Peace Kiver at	370-360	near Rome, Ga
В		Coosawattee River at Pine Chapel,
Back Creek near Jones Springs,		Ga
W. Va	168	Corey Creek near Mainesburg, Pa 127-136 Cortland, N.Y., Tioughnioga River
Baldwin Creek at Baldwin Lake, near	70-73	Cortland, N.Y., Tioughnioga River
Pennington, N.J	37	Cranston, R.I., Pawtuxet River at 4:
	16-17	
Basinger, Fla., Kissimmee River near	361-363 58	near
Basinger, Fla., Kissimmee River near Beacon, N.Y., Fishkill Creek at Belvidere, N.J., Delaware River at Benaja, N.C., Haw River near	82-83	
Benaja, N.C., Haw River near	279-280	D
Bernett, Fig., Econting Creek near	105-108	Dan River at Leaksville, N.C 230-23
Bennett, Fla., Econfina Creek near Berne, Pa., Schuylkill River at Bethlehem, Pa., Lehigh River at	84	
Bicarbonate, carbonate and	12	Danville, Pa., Susquehanna River at. 135-136 Davisville, R.I., Hunt River near 4: Deep River at Moncure, N.C 239-286
hydroxide	146-150	Deep River at Moncure, N.C 238-28
Bixler Run near Loysville, Pa Black River, at Kingstree, S.C near Plantersville, S.C	337	Delaware River, at Belvidere, N.J 82-8: at Bristol, PaBurlington,
near Plantersville, S.C	340-342	N.J. Bridge
Black Warrior River at Tuscaloosa.	000-009	at Chester, Pa
Ala	422	at Delaware Memorial Bridge,
Blackstone River at Woonsocket, R.I. Blanchard, Pa., North Bald Eagle	40	Wilmington, Del
Creek at	140	at League Island, Philadelphia,
Bogalusa, La., Pearl River near	425~427	
Boiling Springs, N.C., Broad River	348-349	at Lehigh Ave., Philadelphia, Pa 100 at Marcus Hook, Pa
Boron	14	at Montague, N.J. (Milford, Pa.) 8
Bradenton, Fla., Manatee River	205 200	at Philadelphia, PaBenjamin Franklin Bridge (Philadelphia-
near Bridgeville, Del., Nanticoke	303-300	Camden Bridge) 101-103
River near	124	Camden Bridge
Bristol, PaBurlington, N.J. Bridge, Delaware River at	92-94	pa
Broad River near Boiling Springs.		Pa.)
N.C. near Carlisle, S.C	348-349	at Wharton Street, Philadelphia,
Bromide	17	Pa
Bynum, N.C., Haw River at	282-284	Denmark, S.C., South Fork Edisto River near
С		Dennys River at Dennysville, Maine 3
		Dennys River at Dennysville, Maine. 3: Dennysville, Maine, Dennys River at. 3: Dissolved solids. 1:
Cacapon River at Great Cacapon,	166	Dissolved solids
Calcium		Drowning Creek near Hoffman, N.C 325-336
Canton, Ga., Etowah River at	408-411	R
Cape Fear River, at Lillington, N.C	299-302	_
at Navassa, N.C. at Royster, N.C. near Acme, N.C. Cape Fear River basin	295-298	Easton, Pa., Lehigh River at 85-86 Econfina Creek near Bennett, Ga 3:1-39
near Acme, N.C	292 432-434	Econfina Creek basin
Carlisle, S.C., Broad River near	300	Eddystone, Pa., Delaware River at 11
Carlisle, S.C., Broad River near Cashie River at Windsor, N.C	237	Econfine Creek basin
Castle Hayne, N.C., Northeast Cape Fear River at	303-305	
Fear River at	306-307	Effingham, S. C., Lynches River at 333-33- Elizabeth City, N. C., Pasquotank
Catawba River at Lookout Shoals		River at
Dam, N.C	419	Pasquotank River near 215-21
Chemical quality	4	Elk Kun near Mainesburg, Pa 131-13.
Chester, Pa., Delaware River at Childersburg, Ala., Coosa River at	416	Enfield, N. C., Fishing Creek near 244-24 Etowah River at Canton, Ga 408-41
Chloride	13	Everglades P-33 near Homestead, Fla. 37: Station P-35 near Homestead, Fla. 374-37:
Chowan River at Winton, N.C	221-223	Expression of results 6-
near Edenhouse, N.C	226,428	
Chromium	15	F
Clinton, N.J., Spruce Run at Cocoa, Fla., St. Johns River near Colesville, Md., Northwest Branch	359-360	Falls, N. C., Neuse River at 259-26
Colesville, Md., Northwest Branch		Falls, N. C., Neuse River at 259-260 Falls Village, Conn., Housatonic
Anacostia River near	184-187	River at 4

470 INDEX

Page	r bage
Farmington River at Rainbow, Conn 47 Fishing Creek near Enfield, N. C 244-245 Fishkill Creek at Beacon, N. Y 58	Laboratory, N. C., Indian Creek near $345-346$ Lake Okeechobee and the
	Everglades
Folsom, N. J., Great Egg Harbor	Branch Anacostia River at 181-182
Forbush Creek near Yadkinville, N.C. 315 Fort Lauderdale, Fla., Middle River	Lead
Canal at	Donalds Branch in
G	Lillington, N. C., Cape Fear River at 290-291 Limestone Creek near Monroeville,
Gadsen, Ala., Coosa River at 415 Gainesville, Ala., Tombigbee River	Ala
at	Little Falls, N.J., Passaic River
at 100	Little River near Orange Factory
Great Egg Harbor River at Folsom, 78-80 Great Egg Harbor River basin 78-80,209 Green Island, N. Y., Hudson River at 56	N. C
Green Island, N. Y., Hudson River at 56	River at
Hancock, Md., Potomac River at 167	River at
Hardness	Anacostia River tributary at 183 Lynches River at Effingham, S. C 333-334
at	M
near Benaia, N.C.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	McDonalds Branch in Lebanon State Forest, N. J
High Bridge, N. J., South Branch Raritan River near	Magnesium. 11
Raritan River near	Mainesburg, Pa., Corey Creek near 127-134
near	Elk Run near
Taylor Slough near 371-372	Manatee River basin
Taylor Slough near	Manganese. 10-11 Marcus Hook, Pa., Delaware River at. 119 Marlboro, N. H., South Branch Marlboro, N. H., South Branch Marlboro, N. H., South Branch Marlboro, N. H., South Branch Marlboro, N. H., South Branch Marlboro, N. W. Openum Creek
at Stevenson, Conn	
Housatonic River basin	near
at Hudson Falls, N.Y	at
at Mechanicville, N. Y	Miami Canal at N.W. 36th Street, Miami. Fla (below control) 370
at Poughkeepsie, N. Y	Miami, Fla., (below control) 370 east of levee 30, near Miami, Fla. 366-369 Middle River Canal at Fort Lauder-
Hunt River near Davisville, R. I 42	dale, Fla
Hunt River near Davisville, R. I 42 Huntingdon, Pa., Juniata River at 141 Raystown Branch Juniata River near	dale, Fla
near	at
I	North Atlantic slope basins 191-214
Indian Creek near Laboratory, N. C 345-346 Indian River basin	South Atlantic slope and eastern Gulf of Mexico basins 428-468
Introduction1-3	Mobile River basin 394-423,466
Iron 10	River near
Iva, S.C., Savannah River near 356-357	River near
J Jackson, Ala., Tombigbee River near. 423	Moncure, N. C., Deep River at 288-289 Monocacy River at Jug Bridge, near Frederick, Md
Jackson, Miss., Pearl River at 424,466,468 Jamesville. N. C., Roanoke River at. 235-236	
Jewett City, Conn., Quinebaug River at	Montague, N.J., Delaware River at 81
Jones Springs, W. Va., Back Creek	South Branch Potomac River near. 164 Myakka River near Sarasota, Fla 381-384 Myakka River basin
Juniata River at Huntingdon, Pa 142 at Newport, Pa 143-145	n
ĸ	Nanticoke River near Bridgeville, Del
Kayaderosseras Creek near West	Navassa, N.C., Cape Fear River at 299-302 Neuse River, at Cowen Landing near
Milton, N. Y	Neuse River, at Cowen Landing near Vanceboro, N.C 267-268
Kingstree, S.C., Black River at 337 Kinston, N. C., Neuse River at 266 Kissimmee River near Basinger, Fla 361-363	at Falls, N.C
Kinston, N. C., Neuse River at 266 Kissimmee River near Basinger. Fla 361-363	at Goldsboro, N.C
Kitzmiller, Md., North Branch	at New Bern, N.C

INDEX 471

Page	l R	Page
Neuse River at Streets Ferry, near	Rainbow, Conn., Farmington River at. Randolph, Va., Roanoke River at. 227 Rappahannock River at Remington, Va. 188 Rappahannock River basin	47
Neuse River at Streets Ferry, near Vanceboro, N.C	Rappahannock River at Remington, Va. 188	-229 3- 19 0
Neuse River basin 256-278,430-431	Rappahannock River basin 188	3-190 3-206
New Hill, N.C., New Hope River near. 285-287		
New Hope River near New Hill, N.C 285-287	Huntingdon, Pa	142
Newport, Pa., Juniata River at 143-145	Remington, Va., Rappahannock River	
Nickel and cobalt	Rhems S.C. Black River near 338	⊱190 3339
North Atlantic slope basins 37-214	Roanoke River (Staunton) at James-	
miscellaneous analyses of streams in	ville, N.C	-236
North Bald Eagle Creek at	Roanoke River basin 227-237	,428
Blanchard, Pa	Rockingnam, N.C., Pee Dee River near 330 Rockville, Md., Watts Branch at	180
Kitzmiller, Md	Rocky River at Gaddy, near Norwood	-990
North Whitefield, Maine, Sheepscot	Rockingham, N.C., Pee Dee River near 33 Rockville, Md., Watts Branch at Rocky River at Gaddy, near Norwood N.C 32 Rome, Ga., Coosa River near 41 Royster, N.C., Cape Fear River at 295	-414
River at	Royster, N.C., Cape Fear River at 295	-298
Castle Hayne, N.C	s	
near Wrightsboro, N.C 308-310	St. Croix River at Baring, Maine	37
Northwest Branch Anacostia Kiver	St. Johns River near Cocoa, Fla 359	-360
near Colesville, Md 184-187 Northwest Branch Anacostia River tributary at Lutes, Md	Saluda River near Pelzer, S.C	351
tributary at Lutes, Md	Santa Fe River at Worthington, Fla Santee River basin	389 443-7
	St. Croix River at Baring, Maine St. Johns River near Cocoa, Fla 355 St. Johns River basin 359-366 Saluda River near Pelzer, S.C Santa Fe River at Worthington, Fla. Santee River basin 343-351, 437 Sarasota, Fla., Myakka River near 381 Savannah River at Burtons Ferry	-384
o	Bridge, near Millhaven, Ga	358
Oakmont, W. Va., Abram Creek at 159	near Iva, S.C	-357 -445
Oakmont, W. Va., Abram Creek at 159 Opequon Creek near Martinsburg, W. Va	Bridge, near Millhaven, Ga	-108
Orange Factory, N.C., Little River near 256-257		
Organics 21	at Pottstown, Pa	109
Oxygen consumed	Scuppernong River basin 241	-243
P	Sediment 5-6,2 Selma. Ala Alabama River at	₹-24 418
Paces, Va., Dan River at	Sediment	170
N.C 253-255	near	
N.C. 253-255 Pamlico River basin 244-255 Parkersburg, N.C., South River near, 293-294 Pasquotank River at Elizabeth City,	Maine	39 171
Pasquotank River at Elizabeth City,	Silica Sinnemahoning Creek at Sinnema-	10
N.C	honing, Pa	137
Pasquotank River basin 215-220	honing, Pa	261 1-12
at two bixages, here	Sodium-adsorption-ratio	19
Passaic River basin 60-62,199-205,214 Pawtuxet River at Cranston, R.I 41 Peace River at Arcadia, Fla 376-380 Pearl River at Jackson, Miss 424,466,468 near Bogalusa, La 425-427 Pearl River basin 424-427,466-467,468 Pee Dee River at Pee Dee, S.C 330-331 Pee Dee River basin 313-342,434-437 Peekskill N.Y. Hudson River at 59	South Atlantic slope and eastern Gulf of Mexico basins 215	-468
Peace River at Arcadia, Fla 376-380	miscellaneous analyses of streams	
Pearl River at Jackson, Miss 424,466,468	in	- 406
near Bogalusa, La	Webb, near Marlboro, N.H South Branch Potomac River near	46
Pee Dee River at Pee Dee, S.C 332	Petersburg, W. Va	-163
Pee Dee River basin 313-342,434-437	South Branch Raritan River at	165
Pee Dee River Dasin	Petersburg, W. Va	6-69
Pennington, N.J., Baldwin Creek near 70-73	South Fork Catawba River near	04.
Petersburg, W. Va., South Branch Potomac River near 162-163	South Fork Edisto River near	54,
Philadelphia, Pa., Delaware River	Denmark, S.C	-353
Schuylkill River at 110-113,114-115	River near Moorefield, W. Va	164
Pine Chapel, Ga., Coosawattee River	Denmark, S.C	-294
at	M.C 321	-325 19
near	Springfield, W. Va., South Branch	
Point of Rocks, Md., Potomac River at 172-175	Spruce Run at Clinton, N.J	165 65
at	Specific conductance. Springfield, W. Va., South Branch Potomac River near Struce Run at Clinton, N.J Stanley, N.C., South Fork Catawba River near Stanton, N.J South Branch Raritan	347
Potomac River at Hancock, Md 167		
Potomac River at Hancock, Md	Stevenson, Conn., Housatonic River	6-69
Pottstown, Pa., Schuylkill River at. 109	at	49
Princeton, N.J., Stony River at 74-77	Streamilow	4-77 4-25
Properties and characteristics of water 17-24	Strontium	11 2-13
water	Susquehanna River, at Danville, Pa 135	-136
Q	Sulfate. 1 Susquehanna River, at Danville, Pa. 135 at Harrisburg, Pa. 151 at Vestal, N.Y	126
Quinebaug River at Jewett City,	Susquehanna River basin	-158 389
Conn	Swift Creek near Vanceboro, N.C 271	-272

Ť	Page	₩	Page
Tar River at Tarboro, N.C Tarboro, N.C., Tar River at Taylor Slough near Homestead, Fla	246-249	Waccamaw River at Freeland, N.C Waccamaw River basin	
		River at	253_255
Temperature	101-104	Tranters Creek near	250-252
Tilton, Ga., Conasauga River at		Watts Branch at Rockville, Md	180
Tioughnioga River at Cortland,	401-401	West Branch Susquehanna River at	100
N. Y	125	Lock Haven, Pa	138-139
Tombigbee River at Gainesville,		West Fork of Northwest Branch	
Ala	421	Anacostia River at Layhill, Md	181-182
near Jackson, Ala	423	West Milton, N.Y., Glowegee Creek at	51
Tranters Creek near Washington, N.C.		Kayaderosseras Creek near	52
Trent River at Pollocksville, N.C	277-278	West River at Newfane, Vt	45
near Trenton, N.C	277	Wetumpka, Ala., Coosa River at	417
Trenton, N.C., Trent River near	276	Whitehall, N.C., Neuse River at	265
Trenton, N.J., Delaware River at	87-91	Wilmington, Del., Delaware	
Turbidity	23	River at	121-123
Tuscaloosa, Ala., Black Warrior		Wilkesboro, N.C., Yadkin Rive at	313-314
River at	422	Windsor, N.C., Cashie River at	237
Two Bridges, N.J., Passaic River		Winton, N.C., Chowan River at	221-223
at	60	Wooddale, Del., Red Clay Creek at	120
Pompton River at	61	Woonsocket, R.I., Blackstone River	
		at	40
U		Worthington, Fla., Santa Fe R'ver at	389
		Wrightsboro, N.C., Northeast Cape	
Utica, N.Y., Mohawk River at	54	Fear River near	308-310
v		Y	
Vanceboro, N.C., Neuse River at		Yadkin River at Yadkin College, N.C.	316-320
Cowen Landing	267-268	near Wilkesboro, N.C	313-314
Neuse River at Streets Ferry		Yadkinville, N.C., Forbush Creak near	315
Swift Creek near	271-272		
Vestal, N.Y., Susquehanna River at	126	Z	
Vischer Ferry Dam, N.Y., Mohawk			
River at	55	Zinc	16