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SYMBOLS

(The following symbols are listed in alphabetical order. Each symbol indicates
the basic term usually represented, with no attempt to show the many and un-
avoidable duplicate uses.)

A
D
H

SNnOYy oOmE N

8

Drainage area (square miles).

Duration of rainfall excess (hours).

Time from beginning of rainfall excess (hours); also change in elevation
between highest point on the drainage divide and channel bed at gage
(feet).

Inflow (sometimes expressed in units of cubic feet per second, but move
often in terms of the dimensionless ratio Q7T/AP,).

A coefficient in the relation between storage and outflow (hours).

Length of a drainage basin (miles).

Outflow (sometimes expressed in units of cubic feet per second, but mo-e
often in terms of the dimensionless ratio QT/AP,).

The amount of rainfall excess (inches).

Rate of discharge (cubic feet per second).

Basin storage (cubic feet).

Base length of instantaneous translation hydrograph (hours).

Increment between successive abscissa of hydrographs (usually dimension-
less).

Exponent in the relation between storage and outflow (dimensionless).



MODEL HYDROGRAPHS

By W. D. MircHELL

ABSTRACT

Model hydrographs are composed of pairs of dimensionless ratios, arrayed in
tabular form, which, when modified by the appropriate values of rainfall excers
and by the time and areal characteristics of the drainage basin, satisfactorily
represent the flood hydrograph for the basin.

Model hydrographs are developed from a dimensionless translation hydro-
graph, having a time base of 7 hours and appropriately modified for storm
duration by routing through reservoir storage, S=k0°. Models fall into two
distinet classes: (1) those for which the value of z is unity and which have all tl »
characteristics of true unit hydrographs and (2) those for which the value of z is
other than unity and to which the unit-hydrograph principles of proportionality
and superposition do not apply.

Twenty-six families of linear models and eight families of nonlinear models in
tabular form form the principal subject of this report. Supplemental discussions
describe the development of the models and illustrate their application. Other
sections of the report, supplemental to the tables, describe methods of determinir «
the hydrograph characteristics, 7, k, and z, both from observed hydrograpl <
and from the physical characteristics of the drainage basin.

Five illustrative examples of use show that the models, when properly con-
verted to incorporate actual rainfall excess and the time and areal characteristics
of the drainage basins, do indeed satisfactorily represent the observed fload
hydrographs for the basins.

INTRODUCTION

This report presents an array of model hydrographs and explairs
their development, their use, and their relation to unit hydrographs.

A model hydrograph is a generalized expression for the distribution,
with respect to time, of the surface runoff from a drainage aree.
Although expressed in terms that make it applicable to many areas,
it may be readily converted to explicit terms for a particular aree.
Like the unit hydrograph, it is not concerned with the amount of
rainfall excess that may result from a given pattern of rainfall, but
only with the time distribution of the excess.

A model hydrograph is distinctive from a unit hydrograph. The
latter normally is prepared for a particular drainage area and for a
unit amount of rainfall excess in a particular time. These restrictions

1



2 MODEL HYDROGRAPHS

limit the use of the unit hydrograph to the area from which it is
derived. The model hydrograph, on the other hand, i designed to
apply to a wide range of sizes and types of drainage areas that have
a wide range of conditions of rainfall excess. This application is facili-
tated by expression of the coordinates of the models in terms of
dimensionless ratios.

Another important distinction between the two concepts, as will
be shown subsequently, is that the unit-hydrograph principle of pro-
portionality of ordinates limits use of the unit hydrograph to those
areas for which the storage effect is linear. Many drainage areas do,
indeed, appear to have linear storage—or storage so rear to linear
that the differences may be disregarded. The widespre=d success of
the customary unit-hydrograph procedures is adequate testimony to
this fact. But occasionally an area is found for which storage effects are
so far from linear that unit-hydrograph techniques are not applicable.
For areas with marked nonlinear storage, ordinates of hydrographs are
not in linear proportion to rainfall excess, and the unit-hydrograph
techniques of proportionality and superposition cannot k= applied. To
include these types of areas, the general principles for analysis and
synthesis of hydrographs must be expanded. The term ‘‘model hydro-
graph’ has been adopted to designate this new and bro~der concept,
under which the unit hydrograph becomes a special, simplified case
of the model hydrograph.

The full implications of this more generalized approach to the
analysis and synthesis of the hydrograph are not, as yet, completely
realized. Some of the techniques which eventually may be of general
use, as well as some of those which must be restricted to the special
case of the unit hydrograph, have not yet been recognized. Much
work remains to be done, especially with regard to the effects of
nonuniform distribution of rainfall excess and the effects, for nonlinear
models, of high initial inflow from antecedent rainfall. Nevertheless,
significant progress has been made, and a record of that progress is
the theme of this report.

The basic concepts of this report were developed over a period of
several years. Materials and conclusions from other projects within
the Illinois District of the Water Resources Division have been appro-
priated as needed. For example, the adoption of the dimensionless
form for the hydrographs resulted from earlier studies (11itchell, 1948
and, particularly, Mitchell, 1962). Needed impetus for the completion
of the project did not develop, however, until intensive analyses were
undertaken in connection with a district project intended to determine
floodflows from small drainage areas and prosecuted in cooperation
with the Illinois Department of Public Works and Buildings, Division
of Highways. As it became more apparent that the techinaues described



INTRODUCTION 3

in this report were well adapted to analysis of the small-basin flond
data and that these projects would clearly benefit from each other,
the two projects were closely coordinated. Many of the tables and
most of the illustrations which appear in this report have been taken
from the work done in connection with the Division of Highways
cooperative project.

In the preparation of this report. three other members of the district
staff have rendered invaluable assistance. George W. Curtis supervised
the long and tedious manual computations for the linear models, a
chore which has extended intermittently over a period of about 8
years. Terence E. Harbaugh contributed many valuable suggestiors,
reviewed the manuscript with great care, made numerous tests of
validity, and provided the computations for the nonlinear models.
Oscar G. Lara supervised the statistical analyses and contributed
suggestions which led to the systematization of the nonlinear models.

ELEMENTS OF THE MODEL HYDROGRAPH

Three principal elements enter into the concept and the use of model
hydrographs. These are (1) the concept of the dimensionless, in-
stantaneous translation hydrograph, (2) the effects of storage, ard
(3) the effects of storm duration.

TRANSLATION HYDROGRAPH

To understand the translation hydrograph, consider a strang-:,
wonderland basin in which there is no such thing as storage. Runoff
from such a basin would differ greatly from that to which we are
accustomed. As soon as a rainfall excess appeared on any part of a
drainage basin, it would flow immediately to the drainage outlet.
(“Immediately” is an ambiguous term, but let it suffice for the
present.) The result at the outlet would be first, a quick, sharp rise
to a peak greatly in excess of present natural occurrence and second,
a very rapid recession to a state of no flow.

How quick, how sharp, and to what peak? These questions may ko
answered by a more deliberate consideration of translation flovs,
a purely hypothetical type of flow uninfluenced by storage. Let
a drainage area, 4, be divided into equal, minute parts, dA. Assume a
magic carpet whereby rainfall excess accumulating on any dA may ke
transported to the outlet in an interval of time proportional to the
distance it must travel. Now assume that rainfall excess of any deptl,
P,, appears instantaneously, simultaneously, and uniformly over
the entire basin, A. Then flow at the outlet would occur as follows:
During the first instant, flow from the area immediately adjacert
to the outlet;during the next instant, flow from those dA’simmediately
beyond the first; at any time, H, after appearance of rainfall excess,

446-375 0—T72——2



4 MODEL HYDROGRAPHS

flow would be from those areas removed from the outlet by the dis-
tance corresponding to the value of H, and the rate of flow would be
proportional to the number of dA’s at that particular distance. Flow
would increase to a maximum for that particular value of H at which
the corresponding distance taps the maximum number of dA4’s: it
would then begin to decrease and would fall to zero after that time, 7'
when the flow arrives from the most distant dA.

The total volume of flow, V, would equal the product of 4 and P,;
if V were expressed in cubic feet, with A in square miles and P, in
inches, V=AP, (5,280)%/12, or V=2,323,200 AP,. Since the entire
flow would pass the outlet in the period of 7 hours, the average rate
of flow would be Q,=2,323,200 AP,/3,600 T=645.333 AP,T cubic
feet per second.

The preceding considerations define, in a general way, the transla-
tion hydrograph for instantaneous rainfall excess. The hydrograph
is for a drainage area of A square miles and represents instantaneous
rainfall excess of P,inches;it has a time base of T"hours and an average
ordinate of 645.333 AP,/T cubic feet per second. The precise shape
of the graph is dependent upon the shape of the drainage srea and upon
how distances (between the dA’s and the outlet) are measured. Should
distances be measured by air line? Should they be measured along
principal stream channels? Should they be weighted to allow for
differences in slope and roughness? Experience with many hydrographs
indicates that, in general, these questions are not important. In rare
instances, one or another of these considerations may become signifi-
cant, but these will be dealt with at a later time, perhaps in a sub-
sequent report. For the present, and for the large majority of drainage
areas, a sufficiently accurate assumption is that the maximum ordinate
of the instantaneous translation hydrograph is twice the average
ordinate and occurs at time H=T/2 and that the graph is two straight
lines connecting this maximum ordinate to the zero ordinate at
H=0 and at H=T. Subsequent manipulations of this graph are so
extensive that even appreciable variations from this ideal shape
become almost completely obliterated.

One further observation concerning this hydrograph is that its
usefulness is greatly enhanced by reducing it to dimensionless terms,
QT/AP, for the ordinate and H/T for the abscissa. Figure 1 presents
in dimensionless form the instantaneous translation hydrograph.

STORAGE

The instantaneous translation hydrograph, as shown in figure 1, is
only a starting point for further developments toward a model hydro-
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Freure 1.—Translation hydrograph, instantaneous.

graph. For natural drainage areas, the runoff hydrograph never appears
in this simple form, but is modified by at least two important factors.
One of these factors is storage. (The other, duration, will be dis-
cussed later.)

The extremely diverse and complicated nature of the actual storage
facilities within a drainage basin would appear, at first glance, to
preclude any successful effort toward basin-wide evaluation. But
experience with many hydrographs indicates that, in general, and fer
the large majority of drainage areas, the effect of basin storage may
be represented as a modification of the translation hydrograph by the
techniques of reservoir routing, and that, as will be shown subse-
quently, to determine the storage relationships needed to make the
modification for a particular drainage area is usually feasible.



6 MODEL HYDROGRAPHS
ROUTING CONSIDERATIONS

The basic relation between inflow, outflow, and storage is expressed
by the equation of continuity, which for an incompressitle fluid such
as water may be written

I=0+AS/At; 1)

that is, the inflow, I, is equal to the outflow, O, plus the change of
storage, AS/A¢t. If the time increment, At=¢t,—#, is sufficiently small,
the values of 7 and O may be considered to be the average of their
respective values at time ¢, and &, or (1,4 1,)/2 and (0,4 0,)/2. Further,
AS may be expressed as the difference in storage volume at times ¢
and &, or AS=28,—S;. Equation 1 may then be expressed as

0,=(28,/At) — 0, — (28, /At) + (1,4 1,). 2

Three items of information are required by equation 2. One of these
is a starting value, or the value of O; at the beginning of the first
increment of time, At. (For succeeding increments of time, 0 is the 0,
of the preceding step.) To obtain the initial O;, simply start the com-
putations at a time for which the outflow is known, as at the begin-
ning of a flood period, when the outflow generally is equal to the inflow.
In many cases the initial outflow will be zero, or at least so small as
to be of no practical consequence. In fact, for simplicity in the de-
velopments immediately following, initial outflow is assumed to be
Zero.

The second item of information is an inflow hydrograph from which
to determine values of I, and I, for successive times at intervals of
At. This information is provided by graphs such as figure 1, the in-
stantaneous translation hydrograph.

The third item needed for computation of 0, is a definitive expres-
sion for storage. In reservoir routing, storage is assumed to be a func-
tion of outflow and is represented by the generalized expression

S=*kO0?, (3)

in which % is a coefficient of proportionality, O is the outflow, and x
is an exponent dependent upon the relative slopes of the stage-dis-
charge and the stage-storage relations.

A special case arises when the value of z is unity. Tl'en, and only
then, the storage is said to be linear. Many runoff hydrographs ex-
hibit the characteristics of linear storage. The number of exceptions,
however, is so great that nonlinear storage (z other than unity) can-
not be ignored. But let us first consider the simple, snecial case—
linear storage, or

S=Fk0. (4)
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LINEAR ROUTING

In equation 4, S has the dimension of cubic feet, and O has the
dimension of cubic feet per second. Therefore, k¥ must have the dimen-
sion of time. Routing computations may be greatly simplified by
expressing k in dimensionless form, or as a ratio to 7. Let k/T=r;
then S=rT0.

In the generalized routing expression, equation 2, Af also has the
dimension of time. Here, again routing computations will be facilitated
by expressing At as a ratio to 7" Let At/T'=p. Then

28/At=2rTO/pT= (2r/p)O0.
Equation 2 then becomes

0,=(2r/p) 01— 0;— (2r/p) Ox+ (11 + 1)
or

0,2r/p+1)=0,2r/p—1)+ L+ 1,). (5)

For any specific problem with linear storage, » will have a fixed spe-
cific value, such as r=£k/T=0.20, and p will have a fixed specific value,
such as p=At/T=0.02; hence 2r/p will have a specific value, such as
2% 0.20/0.02=20, and equation 5 will assume the form

0,= (190,41, +1,)/21. (5a)

Note that this simple form of the routing equation is appropriate
only when storage is a linear function of outflow and that the constants
in the equation will vary with the values of £ and At. For example,
if & becomes 0.57(r=0.5) while At remains 0.027(p=0.02), then

Values of £ used in this report cover a considerable range, but the
value of At has been kept the same for most linear routing computa-
tions. As pointed out above, At should be small enough that the aver-
age values of 7 and O during the interval will be virtually the same as
the average of their respective values at the beginning and end of the
interval. For this purpose alone a time increment of 0.17 might he
sufficiently small; however, in order that there may be no doubt as to
the accuracy of the computations and also to provide more accurate
data concerning both time and magnitude of peak discharge, the value
of At has been taken as 0.027 for most linear routing computations.
(For exceptions, see footnotes to tables at end of report.)
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Table 1 presents a section of a typical linear routing computation.
In this instance, the storage equation is S=0.20 0, or k/T=0.20; the
routing equation assumes the specific form of equation 5¢. Columns 1
and 2 are a listing of the coordinates of figure 1, the iastantaneous
translation hydrograph, at intervals of At=0.027. Any given line in
column 3 is the sum of column 2 on that line and column 2 on the
preceding line; this process provides the I;+ I, terms of the routing
equation. Column 4 is the modified, or outflow, instantaneous hydro-
graph and is obtained by taking a value from column 4, multiplying
it by 19, then adding the value of column 3 of the following line,
and dividing the sum by 21. (See equation 5a.) The quotient is entered
as the value for the second line of column 4. The remairing columns
of table 1 will be discussed subsequently.

NONLINEAR ROUTING

Nonlinear routing must take account of problems that are numerous,
varied, and of considerable importance. One of these is the adjust-
ments for duration, but this problem must be reserved until the
whole subject of duration is considered. Other problems concern the
magnitude of flow at the beginning of rainfall excess and th« magnitude
of rainfall excess. These, too, will be reserved for later discussion.
The problem which deserves immediate attention is the solution of
the nonlinear routing equation.

When, in equation 3, z assumes any value other than unity, equation
2 cannot be reduced to a simple form such as equation 5a. Except for
a few special cases, the routing equation remains so cumbersome that
solutions are prohibitively tedious or are rough and uusatisfactory
approximations. (This situation is improved by use of an electronic
computer, but such equipment became available only near the end
of this study.)

Fortunately, there are at least two special cases in which the routing
equation may be solved with satisfactory accuracy and reasonable
speed on desk calculators which are able to abstract square root.
These cases are

z=2.0
and
2=0.5.

The first case now appears to have limited practical value in that
z for natural drainage basins appears rarely to exceed unity. On the
other hand, the second case is quite practical; several small drainage
basins have been found to have a value of 2 near 0.5.

Results of the nonlinear routings will be described as the need
arises.
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10 MODEL HYDROGRAPHS
DURATION

The preceding section has shown how the instantaneous translation
hydrograph may be modified by reservoir routing to produce hydro-
graphs such as that shown as column 4 of table 1. Some of these
begin to resemble actual, natural, hydrographs. But thers still is one
important difference: duration, or the interval of time during which
rainfall excess is generated.

In the development of the initial hydrograph (fig. 1), it was specified
that “rainfall excess of any depth, P, appears instantaneously,
simultaneously, and uniformly over the entire basin, A.” Routing
a hydrograph does not change its rainfall-excess characteristics.
We must recognize, therefore, that the resulting graphs are for
rainfall excess that ‘“‘appears instantaneously, simultarsously, and
uniformly over the basin.” Because these characteristics are unrealis-
tic, our models must be adjusted to accommodate rainfall excess as
it actually occurs. Adjustments for lack of simultaneous and uniform
excess must await later consideration, but the adjustment for duration
(finite, rather than instantaneous) may be made now.

The duration, D, or time interval during which rainfall excess is
generated, obviously has the dimension of time and normally is
expressed in hours. In keeping with the dimensionless character of
the hydrographs so far developed, however, let duration be expressed
by the dimensionless ratio, D/T.

LINEAR MODELS

For linear models, transformations for duration normally are
effected, after routing for storage, by means of the summation curve,
as follows: Prepare a summation curve for any available hydrograph
whose D/T value is z; list a second summation curve identical to
first but lagged by a time interval equal to the desirad duration,
D/T=y; subtract the ordinates of the second curve from those of the
first and divide the remainders by the value of the ratio y/z. Table 1,
beginning with column 6, illustrates the procedure. It is not possible
to start the transformations from column 4, since these are the values
for instantaneous duration and the ratio y/z would be infinity. Neg-
ligible error will result, however, in computing the hydrograph for
a finite time of very short duration, such as A{=0.027, merely by
averaging the successive ordinates, at intervals of Af, of the in-
stantaneous hydrograph. This has been done to obtain column 5,
the 0.027 hydrograph. Column 6 is the summation cf column 5.
Column 7 is identical to column 6, but has been lagged by an interval
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of 0.17. Column 8 is the differences between columns 6 and 7 divided
by y/2=0.10/0.02=35 and is the hydrograph for a duration D/T'=0.10,
or the 0.107 hydrograph. The remaining columns in table 1 illustrate
the computation of other hydrographs, all with /T values of 0.20
but with succeedingly longer values for D/T.

The question may be raised as to whether the transformations
for D/T should be made before, rather than after, the instantaneous
translation hydrograph is routed through storage. The answer is that
for linear models the choice is only a matter of convenience, for the
final results will be the same regardless of the sequence of the com-
putations. Routing computations are more laborious than D/T
transformatioms, and fewer routings are required if they are made
before, rather than after, the transformations for D/T.

NONLINEAR MODELS

In nonlinear models, an instantaneous translation graph routed
through nonlinear storage and then transformed to a particular D/T
unfortunately results in a graph different from that obtained from the
same instantaneous translation graph transformed to the particular
D|T and then routed through the same nonlinear storage. In the
sequence of their natural effects, duration is prior to storage; thus it
is necessary in nonlinear models to make D/T transformations to
the translation graph before routing.

Transformations for the translation hydrograph may be made in
a manner identical to the transformation described for linear models.
Computations for the transformations to D/T values of 0.1, 0.2, 0.5,
0.7, 1.0, 1.5, and 2.0 are given in table 2. In this table the summation
curve is given but once; the reader may obtain the appropriate value
of the lagged summation curve by deducting D/T from H/T, and then
by reading the value from the indicated line of column 4.

Translation hydrographs for these finite values of D/T are plotted
in figure 2. As D/T approaches unity the shape of the graph approacl-es
that of the normal probability curve, and for values greater than
unity, the graph approaches a trapezoid. The base of the graph, in all
cases, is (D/T)+1, and the upper base of the trapezoid is (D/T)—1.
The maximum ordinate is closely approximated by a simple relation-
ship that changes at the point D/T=1. For smaller values of D/T the
relations is @,=645.333(2.0—D/T); for higher values, @,=645.333/
DIT).

For nonlinear storage developments, the appropriate finite trans'a-
tion hydrograph should be used, rather than the instantanecus
translation hydrograph.

446-375 0—72——3
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MODEL HYDROGRAPHS

The foregoing sections have presented the concept of the translation
hydrograph, both instantaneous and finite, and have shown how these
translation hydrographs may be modified by reservoir routing tech-
niques to represent actual runoff hydrographs. It should again be
pointed out, and emphasized, that by expressing these hydrographs
in terms of dimensionless ratios, rather than absolute values, a com-
paratively few computations will provide a systematized set of takles,
of modest extent, from which an almost limitless number of flood
hydrographs readily may be computed. To compute a flood hydro-
graph, select the appropriate hydrograph from the tables and multiply
all the values by appropriate simple constants which are functions
of the time and areal characteristics of the specific drainage area.
(This conversion process is described in detail in the section “Applica-
tion to Specific Areas.””) The systematized tables from which this
final computation is made are presented in tables 3-36 and constitute

the model hydrographs.
LINEAR MODELS

Tables 3-28 constitute the linear models. Each table is distinguished
from all the others by its unique value of the ratio k/7, which ranges
from 0.2 to 3.0. Values of this ratio have been chosen such that by
using the table whose value is nearest to the actual k/T ratio for a
specific area, the tabular values will be within 5 percent of true values.
Each table is similar to all the others in that it provides model hycro-
graphs for various values of the ratio D/T ranging from instantaneous
to 2.0. To select the proper linear model, first compute &/T to deter-
mine the appropriate table, then compute /T to determine the appro-
priate column within the table.

NONLINEAR MODELS

Tables 29-36 are by no means an exhaustive array of all possible
nonlinear models, but they do appear to be a representative one. [for
all these models, the storage equation for the reservoir routing is
S=k0"?, which approximates the degree of nonlinearity most common
in analyses of actual flood hydrographs. Further experience may dem-
onstrate the need for a more extensive array of nonlinear models, but
the present array is sufficient to illustrate the techniques for nonlinear
computations and also sufficient to cover most of the problems so far
encountered.

Each of the nonlinear models is distinguished from all the others by
its unique value of the ratio k/yAP,/T, which ranges from 2.0 to 12.0.
Values of this ratio have been chosen such that by using the table
whose value is nearest to the actual ratio for a specific area, the tabular
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values will be within 5 percent of the true values. Each table is similar
to all the others in that it provides model hydrographs for various
values of the ratio D/T, ranging from instantaneous to 2.0. To select
the proper nonlinear model, first compute %/ AP,/T, to determine the
appropriate table; then compute D/T to determine the appropriate
column within the table.

APPLICATION TO SPECIFIC AREAS

All the model hydrographs, both linear and nonlinear, are expressed
in terms of dimensionless ratios. To prepare a flood hydrceraph for a
specific area, only the proper time and areal dimensions must be
incorporated into the appropriate model.

For all models, the abscissa of the hydrograph is expresred in terms
of H/T, in which H is hours from beginning of rainfall excess. To
obtain the proper time expressions for any flood hydrograrh, multiply
the values of H/T, as given in column 1 of all the tables, by the value
of T for the specific area.

Likewise, for all models, the ordinates of the hydrogr~ph are ex-
pressed in terms of @7/AP,. To obtain the proper discharge, in cubic
feet per second, for any flood hydrograph, multiply the values of
QT/AP, by the value of AP,/T for the specific area.

The following examples, involving both linear and nonlirear models,
will illustrate the procedures and indicate the accuracy of results.

EXAMPLE 1

A tributary to Second Creek, at Keptown (Effingham County), Ill.,
has a drainage area of 1.62 sq mi. As determined by methods subse-
quently described, the storage is linear, the value of % is 1.03 hr, and
the value of 7" is 1.52 hr. For the storm of July 15, 1¢57, rainfall
excess of 0.87 in. occurred in 0.67 hr, beginning at 1045 hr. Compute
the surface-runoff hydrograph from the appropriate model, and com-
pare with the surface runoff from the observed hydrograph.

By using the values just given, k/7=1.03 hr/1.52 hr=0.68; D/T=
0.67 hr/1.52 hr=0.44. The appropriate model is taken from table 12
(k/T=0.7), columns 1 and 6. The value of AP,/T is (1.62 sq mi<0.87
in.)/1.52 hr=0.927 cfs. The model is converted by multiplying the
values from column 1 by 1.52 hr and the values from column 6 by
0.927 cfs.

Four graphs are shown in figure 3. The two light lines show the total
observed runoff and the estimate for base flow. The dashed line is
the difference between the first two graphs, or the actual surface
runoff. This line should be compared with the heavy continuous line
which is the converted model hydrograph.
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EXAMPLE 2

A tributary to Kankakee River, near Bourbonnais (Kankakee
County), Ill., has a drainage area of 0.192 sq mi. As determined by
methods subsequently described, the storage is linear, the value of k is
0.405 hr, and the value of T'is 0.88 hr. For the storm of July 12, 1957,
rainfall excess of 1.90 in. occurred in 0.75 hr, beginning at 1945 hr.
Compute the surface-runoff hydrograph from the appropriate model,
and compare with the surface runoff from the observed hydrograph.

By using the values just given, k/T=0.405 hr/0.8¢ hr=0.46;
D/T=0.75 hr/0.88 hr=0.85. The appropriate model is taken from
table 8 (k/T=0.45), columns 1 and 10. The value of AP,./T is 0.192
sq miX 1.90 in./0.88 hr=0.415 cfs. The model is converted by multi-
plying the values from column 1 by 0.88 hr and the values from column
10 by 0.415 cfs.

Four graphs are shown in figure 4. The two light lines show the total
observed runoff and the estimate for base flow. The dashed line is
the difference between the first two graphs, or the actual surface
runoff. This line should be compared with the heavy cont'nuous line,
which is the converted model hydrograph.

EXAMPLE 3

Mazon River near Coal City (Grundy County), Ill., has a drainage
area of 470 sq mi. As determined by methods subsequently described,
the storage is linear, the value of k is 20 hr, and the value of T'is 30 hr.
For the storm whose peak occurred on May 12, 1943, rainfall excess
of 1.79 in. occurred in 20 hr, beginning at 1600 hr on May 10. Compute
the surface-runoff hydrograph from the appropriate model, and com-
pare with the surface runoff from the observed hydrograph.

By using the values just given, k/7=20 hr/30 hr=0.67; D/T=20
hr/30 hr==0.67. The appropriate model is taken from table 12 (k/T=
0.7), columns 1 and 9. The value of AP,/T is 470 sq miX1.79 in./30
hr=28.0 cfs.

Four graphs are shown in figure 5. The two light lines show the total
observed runoff and the est'mate for base flow. These two graphs are
the same as those shown in the report by Mitchell (1948, p. 115). The
dashed line is the difference between the first two graphs, or the actual
surface runoff. This line should be compared with the heavy continuous
line, which is the converted model hydrograph.

EXAMPLE 4

A tributary to Vermilion River, at Lowell (La Salle County), Ill.
has a drainage area of 0.126 sq mi. As determined by methods sub-
sequently described, the storage is nonlinear (z=0.5), the value of k is
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1.34 hr, and the value of T'is 0.32 hr. For the storm of June 12, 1957,
rainfall excess of 0.045 in. occurred in 0.067 hr, beginning at 0625 hr.
Compute the surface-runoff hydrograph from the appropriate model,
and compare with the surface runoff from the observed hydrograph.

By using the values just given, &/ VAP,/T=1.34/+/(0.126X 0.045) /
0.32=10.1; D/T=0.067 hr/0.32 hr=0.2. The appropriate model is
taken from table 34 (k/vAP,/T=10.0), columns 1 and 4. The value of
AP,/T is 0.126 sq miX0.045 in./0.32 hr=0.018 cfs. The model is
converted by multiplying the values from column 1 by 0.32 hr and the
values from column 4 by 0.018 cfs.

Four graphs are shown in figure 6. The two light lines show the total
observed runoff and the estimate for base flow. The dashed line is the
difference between the first two graphs, or the actual surface runoff.
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This line should be compared with the heavy continuous line, which is
the converted model hydrograph.

EXAMPLE 5

A tributary to Mud Creek, near Tower Hill (Shelby County), Ill.,
has a drainage area of 0.204 sq mi. As determined by methods sb-
sequent'y described, the storage is nonlinear (2=0.5), the value of k is
4.40 hr, and the value of T is 0.58 hr. For the storm of June 19, 1£56,
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rainfall excess of 0.47 in. occurred in 0.25 hr, beginning at 1700 hr.
Compute the surface-runoff hydrograph from the appropriate model,
and compare with the surface runoff from the observed hydrograph.

By using the values just given, k/+AP,/T=4.40/+/(0.204X0.47)/
0.58=10.8; D/T=0.25 hr/0.58 hr=0.43. The appropriate model is
taken from table 35 (k/ YAP./T=11.0), columns 1 and 6. The value of
AP,/T is 0.204 sq miX 0.47 in./0.58 hr=0.165 cfs. The model is con-
verted by multiplying the values from column 1 by 0.58 hr and the
values from column 6 by 0.165 cfs.

Four graphs are shown in figure 6. The two light lines show the
total observed runoff and the estimate for base flow. The dashed line
is the difference between the first two graphs, or the actual surface
runoff. This line should be compared with the heavy continous line,
which is the converted model hydrograph.

EXAMPLE 6

Assume that for example 5 the rainfall excess had be-n 1.00 in.
and that all other factors were as previously given. After selecting the
appropriate model, compute the peak discharge of surface runoff.

By using the values given, k/ VAP,/T=4.40/ /(0.204X 1.00)/0.58=
7.4; D/T=0.43, as before. The appropriate model is taken from table
31(k/{/AP,/T=1.0), columns 1 and 6. The value of AP,/T is 0.204 sq
mi X 1.00 in./0.58 hr=0.352 cfs. The model indicates thet the peak
discharge will occur at 0.8>X0.58 hr=0.46 hr after beginning of rainfall
excess and will have a magnitude of 914.0X0.352 cfs=322 cfs.

This last example has been included to illustrate the feet that for
nonlinear storage peak discharges are not proportional to amount of
rainfall excess. A comparison of examples 5 and 6 shows that an in-
crease in rainfall excess of 113 percent (from 0.47 in. to 1.00 in.)
produced an increase in peak discharge of 158 percent (from 125 cfs
to 322 cfs.)

DETERMINATION OF HYDROGRAPH PARAMETERS

Two types of phenomena combine to produce the flood hydrograph.
One of these is the meteorological event—the amount, duration, and
distribution of rainfall. The other is the physiographic character of
the drainage basin. For the most part, past meteorological events are
only a rough and uncertain guide to future intensities anc durations.
Also, barring the advent of bulldozers (and neglecting the ephemeral
effects of temperature and antecedent precipitation), the physiographic
character of a drainage basin changes only imperceptibly, from day
to day, and from decade to decade. (“Eternal as the hills” is a realistic
expression.) Thus, although successive flood hydrographs for a given
basin may vary greatly because of the variations in the meteorological
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events, they will nevertheless have certain invariable characteristics,
reflecting the relatively constant, unchanging physiography of the
basin. These characteristics, once accurately determined for a basin,
may be applied with confidence to a synthesis of other hydrographs
for that basin.

The hydrograph does not, of course, provide direct information on
discrete elements of the physiography, such as area, slope, or stream
density. In fact, for area, the hydrograph provides no information
whatsoever; this must be obtained from other sources, such as topo-
graphic maps. However, information for the other physiograrhic
factors which influence the hydrograph is available in a total, in-
tegrated form as certain constant (or at least nearly constant) hycro-
graph parameters. These parameters are the characteristic time, 7
and the storage constants, &k and z.

DETERMINATION FROM OBSERVED HYDROGRAPHS

The most direct, and most satisfactory, method of determination
of hydrograph parameters is appropriate analysis of observed
hydrographs. All three of the significant parameters, 7, k, and «z,
may be determined by such analysis. The principal shortcoming of
this method is the lack of observed hydrographs for ungaged areas.

CHARACTERISTIC TIME, T

In the discussion of translation flow (section “Translation Hydro-
graph”), T was considered to be the time required for flow to arrive
at the outlet from the most distant point of the drainage basin. Many
hydrologists have assumed, although none has rigorously proved, that
this is the time from ending of rainfall excess to the point of inflection
on the recession side of the hydrograph. Even in the absence of rigornus
proof, experience has demonstrated repeatedly that this lapse of time
is a constant for a given basin and adequately serves the purposes
for which the concept of 7" was intended.

The characteristic time, 7', for any given basin is determined by
subtracting the time of ending of rainfall excess from the time of
occurence of the inflection (change of curvature from concave down-
ward to concave upward) on the recession limb of the hydrograpl-

STORAGE CONSTANTS, k AND =z

In view of the assumption upon which the model hydrographs are
developed—that the hydrograph of surface runoff is a translation
hydrograph modified by reservoir storage, S=k0*—appropriate anal-
ysis of the hydrograph should disclose the values of £ and z. For linsar
storage, the value of z is, of course, unity, and a procedure for deter-
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mining & already has been published (Mitchell, 1962, p. 23). Briefly,
this procedure involves computation of a recession coefficient, r, for
any convenient time, Af, and substitution in the formula

k=At(1+r)/2(1—7).

When storage is linear, » has the same value for all points equally
spaced in time on a recession curve, but when storage i nonlinear,
the value of » will vary with the discharge. Hence, to determine the
value of k, as well as z, for nonlinear storage a new procedure is
required.

The formula for k, just described, was developed fromr the flood-
routing equation

= (28,/At) — 0, — (28,/At) + (L1 4+ 1)

(see section “Routing Considerations’”) and the assumption that if
beyond the point of inflection on the recession limb of the bydrograph,
inflow has been completed, both I; and I, are zero. Starting with
this same assumption, Shen (1962) found that both k& and z could
be evaluated by the following procedure: On logarithmic coordinates,
plot AQ/Af as ordinate and average @ as abscissa, fit a straight line
to these points, and determine the slope and the intercept (at @=1);
to obtain the value of z, subtract the slope of the line from 2.0, and
to obtain k, multiply the intercept by z and take the reciprocal of
this product.

Figure 7 shows examples of Shen’s procedure. The points plotted
there are derived from routed graphs which appear later as figures 11,
12, and 13. Some of the points are from the curves for 1 inch of run-
off, others from the curves for 2 inches of runoff; alineraent of the
points is independent of this variation. One curve is horizontal (zero
slope), with an intercept of 50. Hence, the value of z is 2—0=2, the
value of k£ is 1/(2X50)=0.01, and the storage equation is §=0.01 02
For the second line, the slope is 1.0 and the intercept is 5.0;s0 z=2—1
=1, k=1/(1X5)=0.20, and the storage equation is §=0.2 0. For
the steepest line, the slope is 1.5 and the intercept is 0.%Z; so z=2.0
—1.5=0.5, k=1/(0.5X0.2)=10, and the storage equatior is $§=10.0
005,

Shen’s method is further illustrated by figure 8. The five sets of
data plotted here are for the same five stations that were used to
describe the application of model hydrographs to specific areas.

The open circles are for the tributary to Second Creek at Keptown,
I1., and for the storm of July 15, 1957. The values of actual surface
runoff (the dashed line of fig. 3) were used to compute t}ese points.
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FIGure 7.—Analyses for storage constants of model hydrographs.

Slope of the line is 1.0, and the intercept is 0.94; thus the constants
are z=1.0, and k==1.06. (Determinations for other storms, not shown
here, give an average value for k of 1.03, as used in ‘“Example 1.”)

The solid circles are for the tributary to Kankakee River near
Bourbonnais, Ill., and for the storm of July 12, 1957. The values of
actual surface runoff (the dashed line of fig. 4) were used to compute
these points. Slope of the line is 1.0, and the intercept is 2.8; thus
the constants are z=1.0 and £=0.357. (Determinations for other
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storms, not shown here, give an average value for k£ of 0.405, as used
in “Example 2.”)

The open triangles are for Mazon River near Coal City, Ill. The
published unit hydrograph (Mitchell, 1948) was used to compute
these points. Slope of the line is 1.0, and the intercept is 0.05; thus
the constants are 2=1.0 and k=20, as used in ‘“Example 3.”
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The solid triangles are for the tributary to Vermilion River at
Lowell, 111., and for the storm of June 12, 1957. The values of actual
surface runoff (the dashed line of fig. 6) were used to compute these
points. Slope of the line is 1.5, and the intercept is 1.5; thus the
constants are z=0.5 and £=1.34, as used in “Example 4.”

The open squares are for the tributary to Mud Creek near Tower
Hill, Ill., and for the storm of June 19, 1956. The values of actual
surface runoff (the dashed line of fig. 6) were used to compute these
points. Slope of the line is 1.5, and the intercept is 0.45; thus the
constants are z=0.5, and £=4.40, as used in ‘‘Example 5.”

From these examples, which initially were chosen with other
objectives in view, it should not be assumed that all observed hydro-
graphs will result in plots for which slope of the lines will be precisely
1.0 or 1.5. Present knowledge concerning nonlinear hydrographs
is so meager that slopes cannot be predicted. Our present experience
indicates that for most of these plots the slopes will be near to 1.0
and that for the few others the slopes will tend to cluster about 1.5;
but any slope appears to be possible. Thus, because a better under-
standing of nonlinearity is needed and models presently are available
only for the two cases cited, the lines for all analyses should be drawn
with slopes of either 1.0 (when possible) or 1.5 (when necessary).

DETERMINATION FROM BASIN CHARACTERISTICS

The storage effect results from physiographic influences. Therefore,
the expression for a hydrograph may be correlated with the observable
physical characteristics of its drainage basin.

Efforts have been made by means of multiple regression analyses
to relate T and k for basins having linear storage characteristics to
observed values of area (A), length (L), slope between pointz 10
percent and 85 percent of the distance along the channel from the
site to the divide (Sio/s5), soils infiltration index (S;), a surface-storage
index giving percentage of the basin in lakes, ponds, and swamps
(S, percentage of basin covered by forest (F), rainfall intensity
(Z342), and drainage density (Dg). Many of the drainage basins lrave
no forest cover or surface storage; so a constant of 0.5 was added to
these two basin characteristics to prevent the computer from stopping
when attempting to take logarithms of zero values. Data for 48
stations were used in the regressions for 7, and data for 43 stations
were used in the regressions for k. The initial array of data follcwed
the general arrangement described by

T=f(A, L, Slo/ss, S'l, Sz, F, Iz;,z, Dy)
and
k=f(A, L, Slo/ss, Sc, Sz, F, Iu,z, Dy).
446-375 0—72——5
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Stepwise multiple regression performed on these data indicated that
only three independent variables were significant at either the 1-percent
or 5-percent level. The general equations are

Tc= OzLaSm/ss S P
and

k a OdeSm/sseS zf,
where

T.=computed lag time,

k.= computed storage time,

C,, Cy=regression constants,

L=length of stream, in miles,
Swms=slope, in feet per mile,

S ,=surface-storage index+0.5, in percent,
a, b, ¢, d, e, f=regression coefficients.

The following table gives the regression coefficients, significant at
the 1-percent level, to be used in the above equations and also
indicates the coefficient of correlation and standard errcr of each
equation:

Regression factors for T'.
Coefficient of Standard error

Ct a b c correlation (percent)

0. 837 0.898 ... 0. 885 56. 2
5. 02 . 650 —0.460 ____________ . 929 44 4
5.33 . 602 —. 448 10.231 . 939 41. 9

Regression factors for k.
Coefficient of Standard error
Ck d e f correlation (percent)
67.2 .. —-120 . 0. 921 48.9
16. 5 0. 392 —. 873 . __. . 959 35. 4
17. 6 . 339 —. 860 0. 258 . 970 30. 6
1 Stgnificant at 5-percent level.

The equations giving the best estimates of T and k were used to
compute T, and k. for those stations used in the regression analyses.
Figures 9 and 10 show the extent of agreement between the computed
and actual values.

Data for more stations are being continually added to those data
for stations described in the previous section. It is hoped that continued
study based on these additional data and minor refinements to those
existing will eventually lead to more accurate correlations.

For nonlinear storage effects, the data are, as yet, too few to warrant
any attempt at correlations.

UNIT HYDROGRAPH

Many hydrologists now regard the unit hydrograph as a translation
hydrograph modified by some element of reservoir-type sto~age. Only
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recently, however, has there been a realization that to define a true
unit hydrograph, the reservoir storage must be a particular type,
namely linear storage.

A principle of the unit-hydrograph technique is that for rainfall
excesses uniformly distributed over a given area and within a given
time, the ordinates of the graph of surface runoff are in linear prcvor-
tion to the amounts of the rainfall excesses. This principle requires
that the storage effect be a linear one. A rigorous mathematical de-
velopment of this statement is not presently available, but a derion-
stration is quite simple.

In figure 11, the lower curve results from routing the transletion
hydrograph of figure 1 through linear storage, S=0.20 0. (See table 3,
cols. 1, 2.) Suppose now that for figure 1 P, had been in units of
““double inches,” of sixths of a foot, rather than twelfths. In that case,
the ordinates of figure 1 would all have been doubled. The higher
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curve in figure 11 results from routing these doubled ordinates through
the same linear storage, S==0.20 0. Comparing the curves ¢f figure 11
shows that all ordinates of the second curve are twice those of the
first. This relation meets the requirement of the unit-hydrograph
principle that ordinates of the unit hydrograph be in linear proportion
to rainfall excess.

In figure 12, the same two translation hydrographs have been
routed through nonlinear storage, S=10 0%% to obtair the two
graphs. Obviously there is no constant of proportionality between the
ordinates of these graphs;hence they cannot be true unit hydrographs.

In figure 13, the same translation hydrographs have been routed
through nonlinear storage, S=0.01 (*. Again, the resulting graphs
have no constant of proportionality, and thus fail to meet the specifi-
cations for true unit hydrographs.
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A quick method for testing linearity of storage effect in any hydro-
graph is to plot it semilogarithmically and note the shape of the re-
cession limb. If the value of « is greater than unity, the recession will
be concave downward; if less than unity, concave upward. Only when
this recession is a straight line is the storage effect linear, and only
then is the graph a true unit hydrograph. These statements are illus-
trated in figure 14, which shows the semilogarithmic plot for the re-
cession limbs of the curves of figures 11, 12, and 13.
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It is interesting to note the extent to which some of the so-called
unit hydrographs in the published literature conform to the criterion
of straight-line recession. Figure 15 shows some typical examples
(from Mitchell, 1948). Figure 16 shows the hydrograph devived from
observed data for Money Creek above Lake Bloomington, Il
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(Mitchell, 1948) and also the graphs derived by the synthetic methods
proposed by Commons (1942), the U.S. Department of Agriculture
Soil Conservation Service (1957), and Mitchell (1948). The graph
labeled ‘“Mitchell (1962, synthetic)” is the graph derived by methods
described earlier in the section ‘‘Application to specific areas.”
Although some of these last examples have been called unit hydro-
graphs, we should not be swayed by this fact, for the recession lines
must be straight in semilogarithmic plots if the storage effect is to be
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considered linear. And the storage effect must be linear if the graphs
are to meet the requirement of linear proportionality of ordinates
and thus be considered true unit hydrographs.

As mentioned in a foregoing section, areas occasionally are found
for which the semilogarithmic plot for the recession limb of the actual
hydrograph (even after eliminating base flow) departs significantly
from a straight line. True unit hydrographs cannot be developed for
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these areas. Instead, they must be approached with the broader
concepts of the model hydrograph.

The special case of the unit hydrograph is applicable only to those
areas for which linear storage effect may be assumed. The model
hydrograph with its broader concepts is applicable to those areas for
which the storage effect is nonlinear.

SUMMARY AND CONCLUSIONS

Model hydrographs are composed of pairs of dimensionless ratios
(H/T, QT/AP,) arranged in tabular form. Under appropriate condi-
tions these dimensionless models may be converted to flood hydro-
graphs for specific areas. The conversion is accomplished merely by
multiplying the abscissas (H/T) by the value of T for the drainage
basin and multiplying the ordinates (Q7/AP,) by the appropriate
value of AP,/ T.

A dimensionless, isosceles translation hydrograph, for which the
time base is 7" hours, is transformed by summation-curve techniques
to a family of hydrographs with storm duration (D/T) ranging from
0.1 to 2.0. Each of these hydrographs is then routed through various
single elements of reservoir storage, S=k0® to provide families of
model hydrographs. Twenty-six of the families are linear models
(2=1.0), with values of k ranging from 0.27 to 3.07. The remaining
eight families are nonlinear models, for which z is 0.5 and for which
the value of k/{/AP,/T ranges from 2.0 to 12.0. The linear models are
sufficiently extensive to cover most computational needs; the range of
nonlinear models may eventually need to be extended, particularly
to cover values of 2 other than 0.5 and conditions of initial inflow
other than zero.

For a specific drainage area, the appropriate model is selectec by
the following procedure:

1. Determine 7, in hours, for the basin. If a suitable runoff hydro-
graph is available, take T as the tlme from ending of rainfall excess
to the point of inflection on the recession limb of the hydrograph.
If such hydrograph is not available, use the formula

T=533 L0.602 S10/85—0.448 St0.231.

2. Determine values for the storage factors, k¥ and z. (k should be
computed in hours; z is a dimensionless number.) If a suitable
runoff hydrograph is available, follow the method outlined in the
section “Application to Specific Areas’ and illustrated by examples
1-5. If such hydrograph is not avallable, assume z=5.0, and
compute k£ by formula

k=17.6 L0339 /g5 0560 §,0-258,
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(Techniques are not yet available for computing nonlinear storage
factors from measured physiographic characteristics.)

3. Determine the storm characteristics, D, in hours, and P,, in inches.
These are obtained from meteorological data and from estimates of
precipitation losses, except that when reproducing an observed
hydrograph, P, is the volume of surface runoff.

4. Determine the appropriate model family (tables 3-36). If the storage
is linear (2=1.0), the family is identified by the value of the ratio
k/T; if the storage is nonlinear (z=0.5), the family is identified by
the value of the ratio k/vAP,/T

5. Determine the appropriate member of model family (the column
of the table containing proper values of the ordinates QT/AP,).

This column is identified by the value of the ratio D/T.

The conditions under which the models may be used are often the
same as those usually described for unit hydrographs, but with one
restriction. In general, the models may be used only to compute the
flood hydrograph from storms for which rainfall excess is evenly dis-
tributed with respect to both time and area and unaffected by ice or
melting snow. For linear models, the unit-hydrograph techniques of
superposition may be used to develop complex hydrographs for
storms for which rainfall excess is nonuniform with respect to time.
But for nonlinear models superposition techniques are not appropriate.
Further, nonlinear models presented here all are predicated on initial
flow of zero; more work will be required to determine adjustments
necessary when initial flow is substantially greater.
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