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CALIBRATION OF A 
MATHEMATICAL MODEL

OF THE ANTELOPE 
VALLEY GROUND-WATER

BASIN, CALIFORNIA

By TIMOTHY J. DURBIN

ABSTRACT

Antelope Valley is a closed topographic basin in the western part of the Mojave 
Desert in southern California. A ground-water basin with a surface area of 900 square 
miles (2,300 square kilometers) and a thickness of as much as 5,000 feet (1,500 meters) 
underlies the valley floor. The ground-water system consists of two alluvial aquifers 
separated by fine-grained lacustrine deposits. During the last 50 years, pumpage of 
ground water in excess of natural recharge has resulted in the steady decline of the 
ground-water level in the basin. The change in water level has been as much as 200 
feet (61 meters). By 1972 the cumulative overdraft was about 9 million acre-feet 
(11,000 cubic hectometers). To help evaluate the possible impact of various water 
management alternatives, a mathematical model of the ground-water basin was 
constructed.

Construction of the ground-water model was the first part of a two-part study. The 
second part of the study will consist of the use of the model to evaluate the impact on 
the ground-water basin of various water-resource management alternatives. This re­ 
port describes the mathematical model.

The model was calibrated by comparing the computed hydraulic heads to the corres­ 
ponding prototype water levels for both steady-state and transient-state conditions. 
For the steady-state model the area-weighted median deviation of the computed hy­ 
draulic heads from the prototype water levels was 12 feet (3.7 meters). For the 
transient-state model the median deviation was 25 feet (7.6 meters).

The mathematical model is based on the governing equations of ground-water flow. 
The solution to the equations was approximated numerically by the Galerkin-finite 
element method.

INTRODUCTION

Antelope Valley is a large topographic and ground-water basin in 
the western part of the Mojave Desert in southern California (pi. 1). 
Ground water has been the principal source of water for economic 
development in the valley. During the last 50 years, however, pump- 
age of ground water chiefly for agricultural uses in excess of 
natural recharge has resulted in the steady decline of the ground- 
water level in the basin. During this period, water levels in wells near
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Lancaster have declined as much as 200 ft (61 m). By 1972 the 
cumulative overdraft was about 9 million acre-ft (11,000 hm3 ).

Antelope Valley is in the service area of the California Water Proj­ 
ect. The Project comprises a major system of storage and conveyance 
facilities for exporting surplus water from northern California (and 
for transferring this water) to areas of deficiency elsewhere in the 
State (California Department of Water Resources, 1957). Because of 
the depletion of local ground-water supplies in Antelope Valley, the 
Antelope Valley-East Kern Water Agency, the Little Rock Irrigation 
District, and the Palmdale Water District have contracted for a com­ 
bined maximum annual entitlement of 158,000 acre-ft (195 hm3 ) of 
imported water from the California Water Project. Deliveries of this 
water were begun in 1972, when 370 acre-ft (0.46 hm 3 ) was supplied. 
Future deliveries will be increased gradually until the maximum 
entitlement is reached in about 1990 (California State Water Re­ 
sources Control Board, 1974).

Various plans for the distribution and use of this water are being 
considered by the responsible water agencies. Plans are being consid­ 
ered also for the reclamation of waste water and the improved utiliza­ 
tion of floodwater. To evaluate the possible impact of each alternative 
on the Antelope Valley ground-water basin, the U.S. Geological Sur­ 
vey and the California Department of Water Resources are engaged 
in a cooperative investigation.

The investigation was divided into two parts: (1) development of a 
mathematical model of ground-water flow and (2) use of the model to 
evaluate the impact of each water-management plan.This report de­ 
scribes the development of the mathematical model. The California 
Department of Water Resources plans to undertake the application of 
the model.

WELL-NUMBERING SYSTEM

Wells are numbered according to their location in the rectangular 
system for subdivision of public land (see diagram, p. VI). For 
example, in the well number 7N/11W-28E1 the part (of the number) 
preceding the slash indicates the township (T. 7 N.); the number and 
letter following the slash indicate the range (R. 11 W.); the number 
following the hyphen indicates the section (sec. 28); the letter follow­ 
ing the section number indicates the 40-acre (16-ha) subdivision of 
the section according to the lettered diagram (p. VI) The final digit is 
a serial number for wells in each 40-acre (16-ha) subdivision. The 
area covered by the report lies in the northwest quadrant of the San 
Bernardino base line and meridian and in the southeast quadrant of 
the Mount Diablo base line and meridian.
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DESCRIPTION OF THE STUDY AREA 

LOCATION AND GENERAL FEATURES

Antelope Valley lies in a westward-pointing wedge formed by the 
intersection of the San Andreas and Garlock fault zones (pi. 1). The 
valley is bordered on the northwest and north by the Tehachapi 
Mountains, the Rosamond Hills, and the Bissell Hills; on the south­ 
west and south by the San Gabriel Mountains; and on the east by low 
hills and divides that separate the valley from upper Mojave Valley, 
Harper Valley, and Fremont Valley. Mountain and foothill land with­ 
in Antelope Valley covers about 1,200 mi2 (3,100 km2 ). Relatively flat 
valley land covers about 1,000 mi2 (2,600 km2). The floor of the valley 
ranges from 2,300 to 3,500 ft (700 to 1,100 m) above sea level, thus 
lying at an altitude higher than most of the nearby desert valleys and 
considerably higher than the coastal plain to the south and the San 
Joaquin Valley to the north.

Antelope Valley is characterized by interior drainage that termi­ 
nates at either Rosamond Lake or Rogers Lake playas. Broad alluvial 
fans extend as much as 15 mi (24 km) from the base of the mountains 
and hills that surround Antelope Valley.

The Antelope Valley ground-water basin covers about 900 mi2 
(2,300 km2). The basin is divided into ground-water subbasins by 
faults and other structural features. Subdivisions of the Antelope 
Valley ground-water basin are the Lancaster, Buttes, Pearland, 
Neenach, West Antelope, Finger Buttes, and North Muroc subbasins. 
The names and boundaries of the subbasins that were proposed by 
Bloyd (1967) are used in this report.

GROUND-WATER GEOLOGY

The Antelope Valley ground-water basin occupies part of a struc­ 
tural depression that has been downfaulted between the Garlock and 
San Andreas fault zones. The effect of the faulting was to stimulate 
erosion of the hills and mountains that surround the valley. The area 
presently occupied by the ground-water basin became the receptacle 
for the eroded materials. Economically important aquifers within 
the ground-water basin occur in the sedimentary deposits that were 
formed by the deposition of the eroded materials. These deposits have 
accumulated to a thickness locally of as much as 8,000 ft (2,400 m) 
(Mabey, 1960).

Consolidated, virtually non-water-bearing rocks crop out in the 
highlands that surround the ground-water basin (pi. 1). These rocks 
also underlie and form the bottom of the ground-water basin. The 
consolidated rocks consist of igneous and metamorphic rocks, which
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form the basement complex of the study area, and of indurated conti­ 
nental rocks that are interbedded with volcanic flows. The basement 
complex is of pre-Tertiary age, and the continental rocks are of Ter­ 
tiary age (Dibblee, 1967).

Water-bearing, mostly unconsolidated deposits that contain suffi­ 
cient water for economic use overlie the consolidated rocks. The un­ 
consolidated deposits consist of alluvium of Pliocene to Holocene age 
and of lacustrine deposits of Pleistocene to Holocene age (Butcher and 
Worts, 1963) which are interbedded with the alluvium.

Alluvium.
The alluvium is composed of unconsolidated to moderately indu­ 

rated, poorly sorted gravel, sand, silt, and clay. Older units of the 
alluvium are more compacted and indurated, somewhat coarser 
grained, more weathered, and more poorly sorted than the younger 
units. The hydraulic conductivity of the alluvium decreases with 
increasing age (Butcher and Worts, 1963) and, consequently, with 
increasing depth.

Butcher and Worts (1963) identified seven lithographic units with­ 
in the alluvium. These units are older fan deposits, older alluvium, 
younger fan deposits, younger alluvium, lakeshore deposits, old 
wind-blown sand, and dune sand. The older fan deposits comprise old 
moderately to highly indurated fanglomerate and stream-channel 
deposits that yield little water to wells. The older alluvium comprises 
the coarse-grained, weathered, and moderately well-sorted alluvium 
that underlies the valley areas beneath the younger alluvium. The 
older alluvium is locally as much as 5,000 ft (1,500 m) thick, and 
these deposits constitute the bulk of the water-bearing deposits in the 
Antelope Valley ground-water basin. The younger fan deposits com­ 
monly are composed of very poorly sorted boulders, gravel, sand, silt, 
and clay. The younger alluvium is composed predominantly of sand 
and gravel. Prior to about 1945, the younger alluvium was the main 
source of ground water for agriculture in the Lancaster subbasin, but 
since that time it has been substantially dewatered. The lakeshore 
deposits, the old wind-blown sand, and the dune sand are above the 
regional water table and do not contain significant quantities of 
ground" water.

Lacustrine deposits.
Buring the depositional history of the Antelope Valley ground- 

water basin, a large lake occupied parts of the Lancaster and North 
Muroc subbasins. Fine-grained lacustrine deposits formed in this 
lake.

The depositional environment of the lacustrine deposits has varied 
(Butcher and Worts, 1963). Buring pluvial periods, or times of rela-
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tively heavy precipitation, massive beds of blue clay formed in deep, 
perennial lakes. At least two pluvial periods have been followed by 
interpluvial periods, during which playa and similar deposits formed 
in shallow, intermittent lakes. Individual clay beds are locally as 
much as 100 ft (30 m) thick. These are interbedded with lenses of 
coarser material as much as 20 ft (6.1 m) thick. The clay yields virtu­ 
ally no water to wells, but interbedded materials supply some water 
to wells.

During deposition of the lacustrine deposits, alluvial debris that 
was supplied from the San Gabriel Mountains encroached upon the 
lake, forcing it northward and causing the northward transgression 
of alluvium over lacustrine deposits. Near the southern limit of the 
Lancaster subbasin, the lacustrine deposits are buried beneath as 
much as 800 ft (240 m) of alluvium, but near the northern limit the 
lacustrine deposits are exposed at the land surface (pi. 1).

The subsurface extent of the lacustrine deposits is shown on plate 1. 
These deposits underlie the central part of the Lancaster subbasin 
and the southwestern part of the North Muroc subbasin. They extend 
from near Little Buttes on the west to the east edge of Rogers Lake 
and from near the southern limit of the Lancaster subbasin on the 
south to the north edge of Rogers Lake.

The buried body of lacustrine deposits has a somewhat lenticular 
shape. The thickest section occurs near the center of the Lancaster 
subbasin (pi. 1), and the unit thins toward its edges. Near Little 
Buttes and near the east and north edges of Rogers Lake, the unit 
thins to extinction. Along the northern and southern boundaries of 
the Lancaster subbasin, the lacustrine deposits terminate against 
buried escarpments that have formed on the consolidated rocks; the 
thicknesses along these boundaries are 100 ft (30 m) and 250 ft (76 
m), respectively.

The principal and deep aquifers.
Two major aquifers occur within the Antelope Valley ground-water 

basin: the principal and the deep aquifers (Butcher and Worts, 1963). 
The lacustrine deposits separate these aquifers both vertically and 
horizontally.

The principal aquifer, which supplies nearly all water pumped from 
wells in the Antelope Valley ground-water basin, overlies the lacus­ 
trine deposits (pi. 1) and is unconfined. This aquifer extends over the 
area to the south and west of Rogers Lake and includes the Neenach, 
West Antelope, Finger Buttes, Buttes, and Pearland subbasins and 
part of the Lancaster subbasin (pi. 1).

The deep aquifer, in part, underlies the lacustrine deposits. The 
extent of this aquifer includes the area of the lacustrine deposits and 
the area east and north of Rogers Lake. This area includes the North
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Muroc subbasin and part of the Lancaster subbasin (pi. 1). In the area 
where the deep aquifer is overlain by the lacustrine deposits, the 
aquifer is confined; in other areas it is unconfined.

GROUND-WATER MOVEMENT

Ground water in the Antelope Valley ground-water basin moves 
centripetally from the base of the San Gabriel and Tehachapi Moun­ 
tains toward the north-central part of the Lancaster subbasin (pi. 2). 
Before the extensive pumping of ground water, the water table for the 
principal aquifer was near land surface in the north-central part of 
the Lancaster subbasin, and ground-water discharge occurred be­ 
cause of direct evapotranspiration of ground water in this area. 
Pumping of ground water and the subsequent increase in depth to the 
water table stopped this discharge.

Ground water in the Neenach, West Antelope, and Finger Buttes 
subbasins moves into the Lancaster subbasin. At the western limit of 
the lacustrine deposits, part of this water moves over the lacustrine 
deposits and within the principal aquifer, and part moves under the 
lacustrine deposits and within the deep aquifer.

Ground water in the Buttes and Pearland subbasins also moves 
into the Lancaster subbasin. The upper surface of the lacustrine de­ 
posits is below the path of the inflowing water, however, and this 
water moves into the Lancaster subbasin wholly over the top of the 
lacustrine deposits and within the principal aquifer.

In the Lancaster subbasin, subsurface discharge of ground water in 
the principal aquifer is impeded by consolidated rocks on the east and 
north and by the lacustrine deposits on the northeast. Before the 
1940's, ground water in the deep aquifer moved northward out of the 
Lancaster subbasin, under the lacustrine deposits, and into the North 
Muroc subbasin. By 1961, the direction of ground-water movement in 
the deep aquifer had been reversed in the area underlying and im­ 
mediately south of Rogers Lake, and the direction of ground-water 
movement there is now southward toward the center of the Lancaster 
subbasin (pi. 3). North of Rogers Lake, ground water moves from the 
north Muroc subbasin into Fremont Valley.

Reversal of the direction of ground-water movement in the area 
south of Rogers Lake was caused for the most part by pumping 
ground water from the principal aquifer. This pumping also produced 
significant changes from 1915 to 1961 in water levels in the principal 
aquifer (pis. 2, 3), especially in the Lancaster subbasin. The main 
change was the development of areas of low water levels near the 
west and east sides of the Lancaster subbasin.

Leakage of ground water between the principal and deep aquifers 
occurs through the lacustrine deposits. Based on hydraulic heads for 
the principal and deep aquifers that were computed by the mathemat-



THE MATHEMATICAL MODEL 7

ical model for both steady-state and transient-state conditions, the 
direction of leakage is downward from the principal aquifer into the 
deep aquifer along the western and southern periphery of the lacus­ 
trine deposits. In the north-central part of the area underlain by 
lacustrine deposits, the direction of leakage historically was upward 
from the deep aquifer into the principal aquifer. Because of pumping 
of ground water from the principal aquifer, the area in which upward 
leakage occurs is now more toward the south in the areas of concen­ 
trated pumping.

Major faults in the Antelope Valley, especially the Randsburg- 
Mojave fault, act as partial barriers to the movement of ground water. 
Water-level differentials of as much as 300 ft (91 m) occur across the 
Randsburg-Mojave fault. Along several other faults that cross the 
Antelope Valley ground-water basin the water table is several tens of 
feet higher on the upgradient side of the fault than on the downgra- 
dient side. The studies of faults near Long Beach, Calif., by Poland, 
Piper, and others (1956) and near San Bernardino, Calif, by Butcher 
and Garrett (1963) indicate that some possible causes of the barrier 
effect along faults cutting alluvial deposits are (1) local and incom­ 
plete offsetting of sand beds against clay beds; (2) sharp local folding 
of beds near the faults, causing relatively impermeable clay beds to 
be turned across the direction of ground-water movement; (3) cemen­ 
tation of gravel and sand beds immediately adjacent to the fault by 
deposition of carbonate minerals from water moving along the fault 
plane; and (4) development of secondary clayey gouge zones along the 
faults.

THE MATHEMATICAL MODEL

A conceptual approach to ground-water modeling was used in this 
study. First, a conceptual model of the ground-water system, which 
represents the reduction of the prototype to its essential elements, 
was developed. Then a mathematical analog, or mathematical model, 
of the conceptual model was constructed. The mathematical model is 
a good approximation of the physical processes that were assumed to 
operate in the conceptual model, but it is only an approximate repre­ 
sentation of the prototype.

The conceptualization of the prototype must be simplified to the 
extent that an operational mathematical model can be constructed; 
however, simplification must not be so great that the essential 
characteristics of the prototype are not retained. In practice, our abil­ 
ity to construct mathematical models is limited, and this situation 
requires that we correspondingly adjust our expectations of the 
model. We would like a model that represented all characteristics of 
the prototype but must settle for a model that represents a few of its 
more important characteristics.

The mathematical model of the Antelope Valley ground-water



8 ANTELOPE VALLEY GROUND- WATER BASIN, CALIFORNIA

basin is described in following sections. When the model is being 
discussed, the question of scale invariably arises. It is therefore im­ 
portant to emphasize that this study is being carried out on a mega­ 
scopic scale. Physical properties and processes observable on a scale of 
several miles or greater are being considered.

The mathematical model developed for the Antelope Valley 
ground-water basin treats the prototype as a two-aquifer system. The 
aquifers are linked together in the model through a leakage term that 
represents the flow through the lacustrine deposits. As mentioned 
earlier, the modeling of a ground-water system is accomplished by 
substituting a simplified conceptual model for the prototype. Some of 
the more important simplifying assumptions that relate directly to 
the mathematical model are:

1. Ground-water movement within an aquifer is strictly hori­ 
zontal.

2. Ground-water movement within the lacustrine deposits is 
strictly vertical.

3. Hydraulic head changes within the lacustrine deposits do not 
cause corresponding changes in the volume of water that is stored in 
these deposits.

4. Changes in ground- water storage in the aquifers occur instan­ 
taneously with changes in hydraulic head.

5. The physical parameters of the system do not change with the 
state of the system.

6. The aquifers are bounded by an impermeable boundary.
7. Recharge occurs instantaneously.
8. The aquifers are isotropic.
9. The barrier effect of faults can be represented by a zone of low 

transmissivity.
The general equation that approximately governs the flow of water 

in a two-dimensional isotropic aquifer is

where T is the transmissivity of the aquifer, h is the hydraulic head 
in the aquifer, S is the storage coefficient of the aquifer, W is the flux 
of a source or sink, K and b are the vertical hydraulic conductivity 
and the thickness of the lacustrine deposits, and ha is the hydraulic 
head in the adjacent aquifer.

The governing equation was solved on triangular elements by the 
Galerkin-finite-element method. Briefly, the method involved divid­ 
ing the aquifers into elements having triangular shapes (pis. 4, 5 
show the element configurations used for the principal and deep
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aquifers) and assuming that the solution to the governing equation 
can be expressed as a linear combination of relatively simple trial 
functions. Associated with the trial functions are coefficients that the 
Galerkin computational scheme adjusts in order to give some best 
approximation to equation 1. The Galerkin-finite-element scheme is 
described more completely in the section "Numerical Solution of the 
Ground-Water Equations." A computer program that embodies this 
solution scheme was written especially for this study.

The geometrical relations in the ground-water basin are specified 
in the model through the configuration of elements. The physical 
properties of the prototype are specified in the model by assigning 
parameter values to the elements. These values represent the pro­ 
totype transmissivity, storage coefficient (for the transient-state 
model), and, where appropriate, the thickness and vertical hydraulic 
conductivity of the confining member. The model uses the above 
specifications to compute hydraulic heads that mathematically 
satisfy the physical parameters of the system and also satisfy the rate 
of inflow and outflow that is applied.

One important source of uncertainty in the model is the unavoid­ 
able lack of definitive measurements of the model parameters. The 
aggregate character of these parameters makes laboratory measure­ 
ments of little use. Current methods of field testing, such as aquifer 
tests, are of limited use in providing values that can be used directly 
or extrapolated reliably to the large-scale phenomena simulated by 
the model.

To improve the prior estimates of these parameters, the model was 
calibrated by iteratively adjusting the parameter values until the 
model reproduced historical conditions to an acceptable degree. The 
model was calibrated to two different historical conditions, first to a 
steady-state condition and second to a transient-state condition. 
These calibrations were subjective and, to a large extent, based on 
trial and error.

STEADY-STATE MODEL

Prior to the entry of man into Antelope Valley, the ground-water 
basin was in an equilibrium or steady-state condition: recharge 
equaled discharge and, considering periods of several years, the water 
levels in the ground-water basin remained unchanged with time. 
Several hundred wells were drilled in Antelope Valley prior to 1908, 
but the wells were used primarily to secure patents to government 
land (Snyder, 1955). The significant use of ground water for irrigation 
began in about 1915, and before this date the ground-water basin can 
be considered to have been in an equilibrium state.

The steady-state model of the Antelope Valley ground-water basin 
is intended to represent this condition. Input to the steady-state
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model is the natural recharge and discharge of ground water. Output 
from the model is the primordial hydraulic heads in the principal and 
deep aquifers. The calibration problem for this model was to refine 
prior estimates of the transmissivity of the principal and deep aqui­ 
fers and prior estimates of the vertical hydraulic conductivity of the 
lacustrine deposits that separate these aquifers.

NATURAL RECHARGE

Occurrence of natural recharge.
The Antelope Valley ground-water basin is recharged naturally by 

infiltration of streamflow that originates in the mountain areas con­ 
tiguous to the ground-water basin. For the most part, streamflow that 
enters the valley is ephemeral. During storm periods, streamflow 
debouches along the valley perimeter and moves down the alluvial 
fans and toward Rosamond and Rogers Lake playas. As streamflow 
moves down the alluvial fans, it infiltrates the permeable surficial 
deposits on the fans and seldom reaches the playas. The infiltrate is 
partly evaporated and partly transpired by riparian vegetation. The 
remainder percolates through the alluvial deposits until it reaches 
the water table.

Because the average annual precipitation on the valley floor is less 
than 10 in. (250 mm) (Rantz, 1969), very little runoff is generated on 
the valley floor, and probably very little precipitation penetrates 
below the root zone. In an environment somewhat similar to that of 
Antelope Valley, Blaney, Taylor, and Young (1930) and Young and 
Blaney (1942) found that precipitation does not penetrate below the 
root zone if the annual precipitation is less than about 12 in. (300 
mm). Therefore, precipitation on the valley floor was not considered 
to be an important source of ground-water recharge.

In the mountain areas the average annual precipitation is gener­ 
ally greater than 12 in. (300 mm) (Rantz, 1969). Part of this precipita­ 
tion becomes surface runoff, and part becomes soil moisture. For most 
of the mountain areas, precipitation that infiltrates the soil mantle is 
in excess of the moisture requirements of vegetation and soil evapora­ 
tion. Much of the surplus soil moisture moves along the subsurface 
contact between a thin soil mantle and the underlying bedrock. This 
water moves downslope and eventually may reach the ground-water 
basin.

Two important sources of ground-water recharge are possible: 
streamflow infiltration and near-surface horizontal percolation. The 
net recharge of ground water from both sources is equal to the total 
surface-water flow onto the valley floor, plus the total subsurface 
inflow, minus the total quantity of water removed from stream chan­ 
nels by evapotranspiration. Unfortunately, practical techniques are 
not available for estimating the subsurface inflow or the quantity of
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evapotranspiration from the stream channels. The assumption that 
was made is that these two quantities are locally equal and that the 
local net recharge is numerically equal to the surface-water discharge 
from the mountains onto the valley floor.

Mean annual streamflow.
The drainage area tributary to the Antelope Valley ground-water 

basin is about 385 mi2 (1,000 km2). Runoff from about 20 percent of 
this area is gaged. Runoff records (table 1) are available for Big Rock 
Creek near Valyermo, Little Rock Creek near Little Rock, and San­ 
tiago Creek above Little Rock Creek, all in the San Gabriel Moun­ 
tains (pi. 6). The collective mean annual discharge at these points is 
about 24,300 acre-ft (30.0 hm3 ). The mean annual runoff from other 
areas of Antelope Valley was estimated by using a method that is 
based on the measurement of the width and average depth of stream 
channels at bars and berms.

An alluvial channel adjusts in size to accommodate the discharge it 
receives (Moore, 1968; Leopold and Wolman, 1957). Although the 
channel geometry is influenced by the channel slope and pattern, 
sediment loads, cohesiveness of the banks, and vegetation, studies by 
Moore (1968) indicate that the dimensions of cross sections at the bars 
and berms are not significantly affected by these factors and that the 
dimensions of cross sections are related to the mean annual runoff. 
Using the width (W) and depth (D) in feet at bars and berms, Hedman 
(1970) developed, from southern California streamflow data, the em­ 
pirical relation

Q = 258 W°-80 D°-60 (2)

for estimating the mean annual discharge (Q) in acre-feet. The stand­ 
ard error of estimate for the relation was 29 percent.

The channel-geometry relation was used to estimate the mean an­ 
nual discharge for 25 ungaged streams. Channel geometry was mea­ 
sured in 11 stream channels in the San Gabriel Mountains and 14 
stream channels in the Tehachapi Mountains. The cumulative drain­ 
age area above the measurement points is about 27 percent of the 
ungaged tributary area in the San Gabriel Mountains and about 40 
percent of the drainage area in the Tehachapi Mountains.

The estimated discharge at the channel-geometry measurement 
locations was extrapolated to other ungaged areas by the relation

Q = CA, (3)
where Q is the mean annual runoff, A is the drainage area, and C is 
the average ratio of runoff to the drainage area at the channel- 
geometry-measurement locations. The value of C for the San Gabriel 
Mountains (fig. 1) was 50 (acre-ft/yr)/mi2 [0.024 (hm3/yr)/km2]. The 
value of C for the Tehachapi Mountains (fig. 2) was 60 (acre-ft/yr)/mi2 
[0.029 (hm3/yr)/km2].
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DRAINAGE AREA, IN SQUARE KILOMETERS 
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FIGURE 1. Relation of stream discharge to drainage area for the San Gabriel Moun­ 
tains.

By using the coefficient values, the cumulative average annual 
runoff from the ungaged drainage basins was estimated to be 16,400 
acre-ft (20.2 hm3 ) (table 1). The total average annual runoff from

TABLE 1. Average annual runoff to Antelope Valley

Drainage basin Area 
(mi 2 )

Measured discharge:
Big Rock Creek ____............. 23
Little Rock Creek ________________ 49
SanUdgo Creek ________________ 11

Estimated discharge: 
- San Gabriel Mountains______________ 174

Tehachapi Mountains ______________ 128

Runoff 
(acre-ft/yr)

11,500
12,100

700

8,700
7,700

Total runoff ________________________________________________ 40,700

both gaged and ungaged drainage basins is 40,700 acre-ft (50 hm3). 
Natural recharge to the ground-water basin, which was assumed to 
be numerically equivalent to runoff, was distributed geographically 
as shown on plate 6.
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FIGURE 2. Relation of stream discharge to drainage area for the Tehachapi Moun­ 
tains.

NATURAL DISCHARGE

Average annual discharge from ground water over an extended 
period of time will equal average annual recharge when there is no 
interference by man. Because of heavy pumping, however, natural 
discharge has been substantially reduced. Prior to the pumping of 
ground water, natural discharge occurred by subsurface outflow, by 
evapotranspiration, and by springs. Subsurface outflow and evapo- 
transpiration were the principal mechanisms for natural discharge. 
The discharge of springs was not significant and was probably less 
than 300 acre-ft/yr (0.37 hm3/yr) (Thompson, 1929; Johnson, 1911).

Subsurface outflow.
North of Rogers Lake, the land surface along the divide between 

Antelope Valley and Fremont Valley is less than 100 ft (30 m) higher 
than the lowest point in Antelope Valley. Although consolidated 
rocks crop out on both sides, the divide for a width of about 1 mi (1.6 
km) is underlain by as much as 1,000 ft (300 m) of unconsolidated 
deposits. At this location some ground water is discharged from



14 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA

the Antelope Valley ground-water basin into the Fremont Valley 
ground-water basin as subsurface outflow (pi. 6).

The quantity of subsurface outflow can be approximated by the 
relation

(4)

where Q is the subsurface outflow, A is the cross-sectional area of 
flow, K is the hydraulic conductivity of the unconsolidated deposits, 
and dhldn is the hydraulic-head gradient. Based on the subsurface 
projection of the exposed consolidated rocks beneath the unconsoli­ 
dated deposits and on the measurement of the depth to ground water, 
the cross-sectional area of flow is about 1.2xl06 ft2 (l.lxlO5 m2 ). 
Aquifer test data (Moyle, 1965) indicate that the hydraulic conductiv­ 
ity of the unconsolidated deposits is about 50 ft/d (15 m/d). The 
water-level gradient is about 10 ft/mi (1.9 m/km). The substitution of 
these values into equation 4 gives an estimated subsurface outflow of 
1,000 acre-ft/yr (1.2 hm3/yr) (pi. 6).

Euapotranspiration.
Large areas of alkali soil in the Lancaster subbasin (pi. 6) indicate 

a former discharge of ground water by evapotranspiration (Carpenter 
and Cosby, 1926). The alkali was dissolved in ground water, and as 
the result of evapotranspiration the alkali and other dissolved solids 
were precipitated out of solution at or near the land surface.

Ground-water discharge by evapotranspiration generally occurs 
when the water table is within about 10 ft (3 m) of the land surface. 
Under this condition some plant species obtain their water supply 
from either the ground water or the capillary fringe, and the con­ 
sumption of ground water by this vegetation is an important 
mechanism for ground-water discharge. If the water table is within a 
foot or so of land surface, significant quantities of ground water may 
additionally be discharged by direct evaporation of water from the 
capillary fringe. The mass balance for the Antelope Valley ground- 
water basin indicates that the annual discharge of ground water by 
evapotranspiration may have been about 39,400 acre-ft (48.5 hm3).

Where a linear relation between the depth to the water table and 
the ground-water discharge is assumed, the relation can be defined if 
two points on the relation are specified. For example, salt grass (Dis- 
tichlis stricta} was the principal plant species in the area of evapo­ 
transpiration in Antelope Valley (Thompson, 1929). Robinson (1958) 
reported that for a depth to the water table of 1 ft (0.3 m) evapotrans­ 
piration from salt grass may be as much as 75 percent of the pan 
evaporation. The pan evaporation in Antelope Valley is about 114
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in./yr (2,900 mm/yr) (Bloyd, 1967), and 75 percent of this value is 86 
in./yr (2,180 mm/yr). Lysimeter studies by Lee (1912) indicate that 
evapotranspiration from salt grass virtually stops if the depth to the 
water table is greater than 10 ft (3.0 m). The data from Robinson and 
Lee give two points on the depth-discharge relation for salt grass, 
and, given the assumption above, these data are sufficient to define 
the linear relation that is shown in figure 3.

DEPTH TO WATER TABLE,IN METERS

100

50

- 2000

- 1000

5 10 

DEPTH TO WATER TABLE, IN FEET

FIGURE 3. Relation of evapotranspiration to depth to water table. 

CALIBRATION OF THE STEADY-STATE MODEL

The steady-state model was calibrated to the estimated prototype 
water levels for 1915 (pi. 2). Most of the first wells in Antelope Valley 
were drilled in the Lancaster subbasin. Consequently, most of the 
early water-level measurements were made in wells that were lo­ 
cated there. For these wells, Johnson (1911) reported water-level 
measurements that he made in the winter of 1908-09. Thompson 
(1929) reported water-level measurements that he and others made 
during 1907-21. In most instances, these water-level measurements 
can reasonably be assumed to represent conditions existing in 1915.

Few early water-level measurements are available for the area 
outside the Lancaster subbasin, but water levels in much of this area 
have not changed more than a few tens of feet since 1915. Water-level 
measurements that were made as late as 1965 (Butcher and others,
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1962; Moyle, 1965; Koehler, 1966) were assumed to represent the 
water-level conditions existing in 1915. Nevertheless, in the area 
outside the Lancaster subbasin, the geographic distribution of avail­ 
able water-level measurements is not complete, and the estimated 
water levels in this area were based mainly on the subjective extrapo­ 
lation of sparse data.

The measured water levels represent for the most part the water- 
level conditions in the principal aquifer. In the part of Antelope Val­ 
ley south and west of Rogers Lake, no field data are available that 
indicate the hydraulic head in the deep aquifer. Some water-level 
measurements are available for wells in the deep aquifer in the area 
north and east of Rogers Lake.

In addition to requiring estimates of the water levels, the calibra­ 
tion procedure requires that initial estimates be made of the trans- 
missivity of the principal and deep aquifers and of the vertical hy­ 
draulic conductivity of the lacustrine deposits.

The initial estimates of the transmissivity of the principal aquifer 
were based on specific-capacity data reported by Bloyd (1967). 
Transmissivity of the aquifer can be estimated by multiplying the 
specific capacity of a properly constructed well by a factor (Theis, 
1963). If homogeneous units of measure are used for both the specific 
capacity and the transmissivity, the factor is dimensionless, and its 
value ranges between 1.0 and 1.4. The correct value of the factor 
depends in part on the duration of the pumping tests used to estimate 
the specific capacity of a well. The data reported by Bloyd (1967) are 
based on pumping tests of short duration, and a value of 1.0 was used 
for the factor.

Field data are not available for estimating the transmissivity of the 
deep aquifer, except in the vicinity of Rogers Lake where some wells 
penetrate this aquifer. In other areas of the valley, data on trans­ 
missivity are not available from the wells that penetrate the deep 
aquifer. The specific-capacity data reported by Bloyd (1967) were used 
to estimate transmissivity in the limited area for which these data 
are available. Transmissivity for the deep aquifer in other areas was 
prescribed subjectively.

The vertical hydraulic conductivity of the lacustrine deposits was 
estimated from sparse field data. Based on the probable properties of 
the lacustrine deposits, a value of 10~ 2 ft/d (3xlO~ 3 m/d) was as­ 
sumed for the vertical hydraulic conductivity of the lacustrine de­ 
posits. Using this value in the model, computed head differences be­ 
tween the aquifers were comparable to those presumed to have 
existed in the prototype, which are generally less than 20 ft (6.1 m), 
and the value was not changed during calibration.

Hydraulic heads in the principal and deep aquifers were computed 
using estimates of the system parameters that are described above.
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Originally these heads deviated locally as much as 500 ft (150 m) 
from the prototype water levels. The objective of the calibration was 
to reduce the local deviations to a reasonable level by adjusting the 
system parameters within a range of physically plausible values.

During calibration of the steady-state model, adjustments were 
made primarily to the transmissivity of the principal aquifer. 
Twenty-two calibration runs were made. During the early runs, gross 
adjustments were made to the transmissivity of large areas. Finer 
adjustments were made to the transmissivity over smaller areas dur­ 
ing the later calibration runs. The net effect of these adjustments was 
to increase the transmissivity by about 15 percent above the initial 
estimates (fig. 4). The adjusted transmissivity of the principal aquifer 
is shown on plate 7, and the adjusted transmissivity of the deep 
aquifer is shown on plate 8.

Plate 9 shows hydraulic heads in the principal and deep aquifers 
computed by the mathematical model using the transmissivity dis­ 
tributions shown on plates 7 and 8. The shape of the computed solu-
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FIGURE 4. Relative cumulative distribution of the relative deviation of the model 
parameters from their initial values.
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tion compares well with the potentiometric map of the prototype 
water levels for the principal aquifer shown on plate 2. The area- 
weighted median absolute deviation of computed hydraulic heads 
from prototype water levels is 12 ft (3.7 m) (fig. 5). The largest devia-

ABSOLUTE DEVIATION. IN METERS
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ABSOLUTE DEVIATION, IN FEET

FIGURE 5. Relative cumulative distribution of the absolute deviation of the 
computed hydraulic head from the prototype water level for the principal aquifer.

tions occur in areas where sparse field data introduce considerable 
uncertainty into the estimates of the prototype water levels. Field 
data are available for most of the Lancaster subbasin, and for this 
area the median absolute deviation was 7 ft (2.1 m) (fig. 6).

TRANSIENT-STATE MODEL

The use of ground water in Antelope Valley for agriculture dis­ 
turbed the primordial equilibrium in the ground-water basin. Over 
much of the period of ground-water use, the net extraction of ground 
water has been in excess of the net natural recharge of ground water. 
As a result, the overall ground-water trend in Antelope Valley has 
been one of declining water levels. Hydrographs of wells perforated in 
the principal aquifer indicate that from 1920 through 1972 the water 
level in this aquifer declined as much as 200 ft (61 m). The rate of 
decline has been as much as 4 ft/yr (1.2 m/yr).

The transient-state model of the Antelope Valley ground-water
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basin is intended to represent temporal changes of water levels in the 
basin. The input to the model is natural recharge of ground water 
(which was presumed to be the same as the natural recharge that was 
used in the steady-state model), pumpage of ground water, irrigation 
return, and the reduction of natural discharge. The output from the 
model is the change of hydraulic head with time in the principal and 
deep aquifers. The calibration problem for this model was the modifi­ 
cation of prior estimates of the storage coefficient of the aquifers.

PUMPAGE

In Antelope Valley the use of ground water for agricultural pur­ 
poses began in about 1880, when it was discovered that wells drilled 
in the lower part of the valley yielded flowing water in quantities 
sufficient for irrigation (Thompson, 1929). In 1891 more than 100 
wells were in use, but by that time only a few wells were flowing (R. J. 
Henton, as cited in Wright, 1924). Drilling of large numbers of wells 
began shortly before 1920 (Wright, 1924). Data presented by Snyder 
(1955) indicate a rapid increase in the number of wells immediately 
after that date; hence, it seems that the effective beginning of 
ground-water use in Antelope Valley is 1915.
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As the number of wells in Antelope Valley increased, the quantity 
of water discharged by wells also increased. In 1924 about 55,000 
acre-ft (68 hm3 ) of water was pumped. By 1930 the annual pumpage 
had increased to 170,000 acre-ft (210 hm3 ) (Snyder, 1955). During the 
period of economic depression following! 930, pumpage declined until 
in 1933 the annual pumpage was about 95,000 acre-ft (117 hm3). 
After 1933, pumpage again increased until about 1950, when the 
annual pumpage reached the highest value of about 300,000 acre-ft 
(400 hm3) (Snyder, 1955; California State Water Resources Control 
Board, 1974). Declining water levels resulted in uneconomically high 
pumping lifts in some parts of Antelope Valley, and pumpage again 
declined after 1950. In 1972 the annual pumpage was about 200,000 
acre-ft (200 hm3 ) (K. W. Mido, California Department of Water Re­ 
sources, written commun., 1973).

Long-term changes in the pumping rate usually correspond to 
changes in the acreage under irrigation in Antelope Valley. An in­ 
crease in pumpage usually means that new land has been brought 
under irrigation; a decrease in pumpage means that land has been 
removed from irrigation. At the time of the highest pumping rate, 
about 70,000 acres (28,000 ha) of land were under irrigation (Snyder, 
1955). At that time the irrigated land in Antelope Valley was mostly 
in the Lancaster subbasin. About two-thirds of the irrigated land was 
in the eastern part of the subbasin, and the remaining irrigated land 
was in the western part. The central part of the Lancaster subbasin 
has not been extensively irrigated.

On the basis of data presented by California Department of Water 
Resources (1947; K. W. Mido, written commun., 1973), the geographic 
distribution of irrigated land and of pumpage (pi. 10) in Antelope 
Valley remained generally unchanged from 1915 through 1961, al­ 
though local changes in both did occur. After about 1961 the geo­ 
graphic distribution of irrigated land changed. The centroid of irri­ 
gated land in the eastern part of the Lancaster subbasin moved about 
10 mi (16 km) south of its former position, and the centroid of irri­ 
gated land in the western part of the subbasin moved about 10 mi 
(16 km) north of its former position. These shifts in the geographic 
distribution of irrigated land were related in part to the decline of 
ground-water levels in the Lancaster subbasin; irrigation was aban­ 
doned where pumping lifts became uneconomically high.

Snyder (1955), California Department of Water Resources (K. W. 
Mido, written commun., 1973), California State Water Resources 
Control Board (1974), and Antelope Valley-East Kern Water Agency 
(W. G. Spinarski, written commun., 1976) have estimated the annual 
pumpage in Antelope Valley for periods ranging from 1 to 28 years 
(fig. 7). The estimates of pumpage that were made by these different
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FIGURE 7. Previous estimates of the temporal distribution of pumpage. Curve A is the 
estimate by Snyder (1955). Curve B is the estimate by California State Water Re­ 
sources Control Board (1974). Curve C is the estimate by California Department of 
Water Resources (K. W. Mido, written commun., 1973). Curve D is the estimate by 
Antelope Valley-East Kern Water Agencj (W. G. Spinarski, written commun., 
1976).

investigators do not agree where the periods covered by the estimates 
are coincident. For example, Snyder (1955) estimated that the annual 
pumpage in 1950 was 362,000 acre-ft (446 hm3), and California State 
Water Resources Control Board (1974) reported this pumpage to be 
285,000 acre-ft (351 hm3 ).

The data shown in figure 7 are only estimates of the true pumpage, 
and individual data points would be expected to deviate from the true 
pumpage. If, however, the pumpage used in the calibration of the 
transient-state model deviates from the true value, the estimates of 
the storage-coefficient values obtained from the calibration most 
likely will also deviate from the true values. Thus, it becomes impor­ 
tant to devise a method that will allow estimation of the pumpage as 
accurately as possible.

A commonly used method for improving estimates of a quantity is 
to average several estimates. This average is, as are the original 
estimates on which it is based, only an approximation of the true 
value. The probable deviation of the average from the true value,
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however, will generally be smaller than the probable deviation of any 
one of the original estimates from the true value.

The pumpage curve A in figure 8 represents an average of the 
pumpage data shown in figure 7. This curve was constructed by giv­ 
ing approximately equal weight to the curves A, B, C, and D in figure 
7 (curve D was extrapolated backward in time parallel to general 
trend of curves B and C until it intersected curve A). Other estimates 
of the true pumpage can be obtained by giving unequal weight to the 
available data. Curve B in figure 8 represents an unequally weighted 
average of the data in figure 7. For this average, little weight was 
given to curve D because of the short time interval covered by the 
estimate.

By giving different weights to the available data, pumpage esti­ 
mates within a continuous range can be developed. The weights used 
in the development of curves A and B in figure 8 represent two rea­ 
sonable interpretations of the pumpage data, and other pumpage data 
were not considered. The problem remains, however, to choose which 
of these pumpages to use in the calibration of the model. A discussion 
of this is held until later.

500

400

300

200

100

-600

- 500

- 400

- 300

- 200

- 100

FIGURE 8. Alternative temporal distributions of pumpage for possible use in the 
mathematical model. Curve A is the average of all data shown in figure 7. Curve B is 
the average of curves A, B, and C in figure 7.
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IRRIGATION RETURN

When land is being irrigated, water in excess of the moisture re­ 
quirement of crops is applied to control the salt level in the root zone. 
The question arises as to the fate of water that gets below the root 
zone. If part of the applied water percolates downward until it reaches 
the zone of saturation, it becomes available for reuse.

A necessary input to the model is the quantity of water returned to 
the zone of saturation. Estimates of irrigation return are necessarily 
linked with estimates of pumpage, which was discussed in the previ­ 
ous section. Snyder (1955) estimated that in Antelope Valley about 70 
percent of the applied water is actually consumed by the crop or 
otherwise lost and that the mean annual application of water to the 
irrigated lands is about 6 ft (1.8 m). Correspondingly, the mean an­ 
nual percolation past the root zone is about 2 ft (0.6 m). This percolate 
moves generally downward through the unsaturated zone toward the 
water table. Two separate lines of evidence, however, suggest that by 
about 1955 most of this water had not reached the water table.

The first line of evidence involves a consideration of the historical 
trend of the dissolved-solids concentration in water below the water 
table. If the irrigation-return percolate, which has a dissolved-solids 
concentration of about 700 mg/1 (milligrams per liter) (R. E. Lewis, 
written commun., 1976), is mixing with water below the water table, 
which from 1908 through 1955 had a concentration of about 250 mg/1 
(Johnson, 1911; Koehler, 1966; Moyle, 1965), the concentration below 
the water table probably should have increased with time. For 1908 
through 1955, however, a general increase in dissolved-solids con­ 
centration was not observed (fig. 9), which tends to support the as­ 
sumption that by 1955 the irrigation-return percolate had not 
reached the water table. During the 1960's the concentration did 
increase, suggesting that during that period the percolate began to 
mix with ground water.

The second line of evidence involves the existence of perched 
ground-water bodies. The presence of perched ground water in An­ 
telope Valley is indicated by falling water in some wells. The de­ 
velopment of perched ground-water bodies indicates the presence of 
subsurface geologic conditions that retard the downward movement 
of the irrigation-return percolate. Thus, the perched ground-water 
bodies provide the mechanism for the retention of irrigation-return 
percolate above the water table.

The evidence supporting the assumption that most of the percolate 
was retained above the water table during the model calibration 
period, 1915 through 1961, is not conclusive, and significant uncer­ 
tainty exists as to the true state of the prototype. The resolution of 
this uncertainty is discussed in the following section.
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SELECTION OF NET PUMPAGE FOR MODEL CALIBRATION

The pumpage that is actually input to the model is the net pump- 
age, which is the quantity of water extracted from wells minus the 
quantity of irrigation return that reaches the water table. Significant 
uncertainty exists regarding both of these quantities, and a possible 
consequence of using the wrong net pumpage in the model calibration 
is storage-coefficient values that deviate from the true values. The 
following section describes the decision process used to select, from a 
limited number of alternatives, the net pumpage that probabilisti­ 
cally is nearest to the true net pumpage.

If the true state of the prototype were known, the consequence of 
using a given net pumpage could be determined. Under uncertainty, 
however, the consequence cannot be determined simply because the 
state of the prototype is not known for certain, and thus it is neces­ 
sary to use the concept of expected value. The expected value of the 
consequences of a decision is the weighted sum of the consequences of 
the decision for the various states of nature. The weights are the 
probabilities that a particular state is realized in the prototype. For 
each net pumpage it is possible to compute the expected consequence, 
and the best decision is the decision with the smallest expected con­ 
sequence. An index of the consequence of using a particular net 
pumpage is the deviation of the pumpage from the true pumpage. The 
best pumpage to use, then, is the one for which the expected value of 
the deviation is the least.

The possible pumpages are defined as Pi and Pa, which symboli­ 
cally represent pumpage curves A and B in figure 8. The possible 
irrigation returns are defined as /?i and /?a, which represent full 
irrigation return to the water table and no irrigation return. Thus, 
there are four possible joint states of the ground-water basin; Pi can 
occur with either/?! or/?2, and Pa also can occur with either/?! or/?a. 
For 1950 through 1961 the net pumpages Pi/?i (where Pi/?i symboli­ 
cally represents the joint occurrence of Pi and/?i) andPa/?a are about 

, equivalent because Pi equals about 1.4 Pa. Pi and Pa are assumed to 
be equally likely true states of the prototype. Similarly, /?i and/?2 are 

| assumed to be equally likely true states of the prototype. It follows, if 
Dhe'pumpage and irrigation states occur independently, the joint oc­ 
currence of any of the possible combinations of pumpage and irriga­ 
tion return is equal to one-fourth.

A way of presenting decisionmaking problems involves the use of 
tree diagrams. In figure 10 a tree diagram for the selection of the net 
pumpage to use in the calibration of the model is presented. The point 
at the left-hand node of the diagram represents the initial position, 
and the four branches of the tree emanating from that point represent 
the four decisions in the problem. Thus, the left-hand fork is called a
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ASSUMED STATE 
OF NATURE

ACTUAL STATE 
OF NATURE

FIGURE 10. Decision tree showing selection of net pump- 
age for calibration of transient-state model.

decision fork. At the end of each of the four branches representing the 
possible decisions, there is another fork with four branches. These 
four branches represent the possible states of the ground-water basin, 
and these forks are called state forks.
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The numbers on the state branches are the probabilities of the 
states. The numbers on the right-hand side of the tree diagram are 
the relative deviations of the assumed net pumpage from the true net 
pumpage under the realization of a particular state. For example, if 
the decision is taken to use net pumpage PiRi in the model calibra­ 
tion, but the true state of the prototype is net pumpage PiRz, the 
consequence is the deviation of assumed pumpage from the actual 
pumpage by the relative amount 0.4. The numbers at the state forks 
are the expected values of the deviation.

At the decision fork, the net pumpages PiRi and PzRz have the 
lowest expected deviation. Pumpage PiRi represents pumpage curve 
A in figure 8 combined with an irrigation return equal to 30 percent 
of the pumpage. Pumpage PzRz represents pumpage curve B in figure 
8 combined with no irrigation return.

The above analysis applies only for 1950 through 1961. The results 
of a similar analysis for 1915 through 1949 indicate that all the net 
pumpages have equal expected deviations. If the probability of no 
irrigation return during 1915 through 1949 is greater than one-half, 
however, which would be a reasonable assumption given the assump­ 
tion of equal likelihood for 1950 through 1961, the decision analysis 
indicates that net pumpages PiRz and PzRz (which are similar net 
pumpages because curves A andfi in figure 8 coincide for much of the 
period 1915 through 1949) produce the smallest expected deviation of 
the assumed pumpage from the true pumpage.

The equal likelihood for all possible states was assumed in the 
analysis. Pz is probably a more likely state of the prototype than Pi, 
however. Likewise, Rz is probably a more likely state than R\. The 
revision of the analysis with probabilities reflecting these subjective 
evaluations clearly indicates the use of net pumpage PzRz in the 
calibration of the transient-state model. This net pumpage was in fact 
used.

REDUCTION OF NATURAL DISCHARGE

Natural discharge of ground water by evapotranspiration is 
greatest if the water table is near the land surface. If the position of 
the water table moves downward, the rate of natural discharge is 
suppressed. If the water table moves beyond the reach of roots of 
plants, natural discharge by evapotranspiration will become 
insignificant.

Pumping from the Antelope Valley ground-water basin has caused 
lowering of the water table and, consequently, the suppression of 
natural discharge. Field data are not available on the effects of 
water-level declines on the level of natural discharge, but operation of 
the model indicates that this discharge may have ceased in about 
1950 (fig. 11). The mass balance for the Antelope Valley ground-
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FIGURE 11. Reduction of evapotranspiration computed by the mathematical
model.

water basin indicates that the annual discharge of ground water by 
evapotranspiration may have been about 39,400 acre-ft (48.5 hm3 ) in 
1915.

Theoretical research on the discharge of ground water by evapo­ 
transpiration has been restricted to determining the annual use of 
water by different plant species when the depth to the water table 
does not change greatly with time. Very little is known about the 
quantitative effects of large temporal changes in the depth to the 
water table. Prediction of changes in the use of ground water is dif­ 
ficult because roots of established plants may, to a limited extent, 
keep pace with a declining water table, especially if the depth to the 
water table increases slowly. This phenomenon has not been quan­ 
tified by researchers, however. Therefore, its possible occurrence was 
ignored in the construction of the model. The relation shown in figure 
3 was assumed to relate temporal changes in evapotranspiration dis­ 
charge to temporal changes in the depth to the water table, even 
though the relation shown in figure 3 actually applies only to the case 
of a time-invariant depth to the water table.

CALIBRATION OF THE TRANSIENT-STATE MODEL

The transient-state model was calibrated to the prototype water 
levels for 1961. Hydraulic heads that were computed for 1915 by the 
mathematical model were used as initial conditions, and the model 
simulated changes in hydraulic heads for 1915 through 1961. For
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operation of the model, this period was divided into 235 time steps, 
each of 73 days. The pumpage for a given year (fig. 7) was assumed to 
be distributed uniformly throughout the year.

Even though a large number of water-level observations are avail­ 
able (Butcher and others, 1962; Moyle, 1965; Koehler, 1966), accurate 
potentiometric maps of the principal and deep aquifers cannot be 
constructed from field data. Intraaquifer confining members occur in 
both the principal and deep aquifers (a condition that was not consid­ 
ered in the conceptual model), and differential pumping from between 
these members has caused the development of vertical hydraulic- 
head differentials within the aquifers. Head differentials of as much 
as 80 ft (24 m) in places occur over a vertical interval as small as 400 
ft (120 m). In the principal aquifer, the heads in shallow wells are 
typically higher than heads in deeper wells; however, in some areas 
this situation is reversed. Consequently, the indicated head at a point 
in the potentiometric map (pi. 3) is intended to represent the average 
head over the saturated thickness of the aquifer at that point.

The calibration procedure was started by making initial estimates 
of the storage coefficient of the principal and deep aquifers. Using 
lithologic logs for wells, geologic data, and laboratory tests of similar 
deposits, Bloyd (1967) estimated the storage coefficient of the princi­ 
pal aquifer and of the deep aquifer for areas where the deep aquifer is 
unconfined. For the applicable areas these estimates were used as 
initial estimates of the storage coefficient in the calibration proce­ 
dure. In the area where the deep aquifer is confined, the storage 
coefficient of the deep aquifer was estimated by using the rule of 
thumb that the ratio of the storage coefficient to the aquifer thickness 
is about 10~6 per foot (3xlO~6 per meter) (Lohman, 1972). The aver­ 
age thickness of the aquifer in the confined area is about 1,000 ft 
(300 m), and a storage coefficient of 0.001 for this area was used in the 
model.

The transmissivity of the principal and deep aquifers and the verti­ 
cal hydraulic conductivity of the lacustrine deposits were obtained 
from the calibration of the steady-state model and were used in the 
transient-state model. These parameters were invariant during the 
calibration of the transient-state model; hence, the objective of this 
calibration was to fit the transient-state model to the prototype water 
levels by adjusting the storage coefficient. Only the storage coeffi­ 
cients of the principal aquifer and of the deep aquifer where it is 
unconfined were adjusted during the calibration.

Plates 11 and 12 show the final storage coefficients for the principal 
and deep aquifers. The storage coefficients do not deviate signifi­ 
cantly from the initial estimates (fig. 4).

Hydrographs of computed hydraulic heads and measured water 
levels in the principal aquifer are shown in figures 12 and 13. The
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FIGURE 12. Hydrographs of computed hydraulic heads in the principal aquifer at 
node 144 and measured water levels in well 8N/13W-11Q1. Water-level mea­ 
surements are from Moyle (1965).

hydraulic heads were computed by the mathematical model using the 
storage-coefficient distributions given on plates 11 and 12 and the 
transmissivity distributions given on plates 7 and 8. Plate 13 shows 
the geographic variation of hydraulic heads in the principal and deep 
aquifers that were computed by the mathematical model. The general 
shape of the computed solution compares well with the potentiometric 
map of the prototype water levels shown on plate 3; however, the 
areas of low hydraulic head that are associated with areas of concen­ 
trated pumpage are more disperse in the computed solution than 
those observed in the prototype. Considering all areas of the 
ground-water basin, the area-weighted median absolute deviation of 
the computed hydraulic heads from the prototype water levels was 25 
ft (7.6 m) (fig. 5).

DESCRIPTION OF MODELING ERRORS

SOURCES OF ERROR

The observed deviation of the computed hydraulic heads from the 
prototype water levels is the result of errors associated with the con­ 
ceptual model, the computational scheme, the system parameters, the
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FIGURE 13.   Hydrographs of computed hydraulic heads in the principal aquifer at 
node 248 and measured water levels in well 7N/11W-28E1. Water-level mea­ 
surements are from Koehler (1966).

input data, the initial conditions, and the prototype water levels. 
Table 2 gives a subjective assessment of the relative importance of 
these sources of error in explaining the observed deviations.

TABLE 2.   Importance of various possible sources of the deviation of 
the computed water levels from the prototype water levels

Source of error
Relative Importance

Steady-state model

Conceptual model _____-_---______ Low
Computational scheme -_-_.,______ Low
System parameters ____-_._-_____ Low
Input data ______________________ Intermediate
Initial conditions _-_---__________ None
Prototype water levels ____________ High

Transient-state model

Intermediate
Low
Low
High 

Intermediate
High

Conceptual model
The errors associated with the conceptual model are errors that 

result mainly from the simplifying assumptions used in the concep­ 
tualization of the prototype. Although errors of conceptualization are 
probably not large compared to other errors in the model, these errors 
result mostly from the assumption that intraaquifer ground-water
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flow is strictly horizontal and that the transmissivity of the principal 
aquifer is time invariant.

Computational scheme
Errors associated with the computational scheme are errors result­ 

ing from the numerical approximation of the solution to the govern­ 
ing equations. The numerical solution converges to the true solution 
as the elements are reduced to zero area (Hutton and Anderson, 
1971). The use of elements with nonzero area results in the departure 
of the numerical solution from the true solution, especially where 
large changes in hydraulic-head gradients are involved. The compu­ 
tation scheme is not a serious source of error in the model, however.

System parameters
The system parameters consist of the transmissivity and storage 

coefficient of the principal and deep aquifers and the vertical hy­ 
draulic conductivity of the lacustrine deposits. Prior estimates of 
these parameters are refined during the calibration of the model. The 
objective of the calibration is to identify parameter values that 
minimize the deviation of the computed hydraulic heads from the 
measured water levels while keeping the parameter values within 
physically reasonable limits. It is difficult to recognize when 
minimum-deviation parameter values have been found, however, and 
the calibration procedure is usually terminated prematurely. The 
presumption always remains that, if additional calibration runs had 
been made, perhaps the fit of the model to the prototype water levels 
could have been improved.

In using the model to make predictions of the response of the pro­ 
totype to specified inputs, errors associated with the system parame­ 
ters result from the deviation of the system parameters from their 
true values. Relatively small adjustments were made to the system 
parameters during the calibration of the steady-state and transient- 
state models. A consistency exists between estimates of the system 
parameters obtained from field data and estimates obtained from the 
calibration procedures. Consequently, the probability that the system 
parameters used in the model are close to the true parameters is 
greater than if that consistency did not exist.

Nevertheless, uncertainty as to the actual pumpage and irrigation 
return creates a corresponding uncertainty as to the adequacy of the 
storage-coefficient values obtained from the calibration of the 
transient-state model. Although not previously discussed, the actual 
natural recharge to the ground-water basin is known uncertainly, 
which creates uncertainty as to the adequacy of the transmissivity 
values obtained from the calibration of the steady-state model.
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If different estimates of the state of the prototype had been used in 
the calibration, different estimates of the system parameters proba­ 
bly would have been obtained. Figures 14 and 15 show the effects that 
changes in the system parameters would have on the predictions of 
hydraulic head that are made with the model. Figure 14 shows the 
effects on the computed hydraulic heads of relative changes in the 
storage-coefficient values. The measure of the effect on the computed 
hydraulic heads is the relative deviation of the computed changes in 
hydraulic heads at the end of a 20-year simulation period. The 
maximum and the median deviation are indicated in figure 14. Cor­ 
respondingly, figure 15 shows the effects on computed hydraulic 
heads of relative changes in the transmissivity values.

The maximum relative deviation is quite sensitive to changes in 
the system parameters. The maximum relative deviation, however, is

0.5 1.0

RELATIVE STORAGE-COEFFICIENT VALUES

2.0

FIGURE 14. Sensitivity of computed hydraulic heads to changes in 
the storage-coefficient values used in the model.
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FIGURE 15. Sensitivity of computed hydraulic heads to changes in the 
transmissivity values used in the model.

generally associated with areas that have smaller head changes. The 
median deviation is less sensitive to changes in the system parame­ 
ters than is the maximum deviation. This is especially true for 
changes in transmissivity.

Input data
Errors associated with the input data are errors that result from 

the estimation of natural recharge, natural discharge, pumpage, and 
irrigation return. Techniques used to obtain these estimates typically 
bias the estimates, and the bias is for the most part transferred to the 
system parameters during the calibration process. This may be a 
relatively important error source.

Initial conditions
Operation of the transient-state model requires specification of ini­ 

tial hydraulic heads. Errors in the initial hydraulic heads produce 
errors in the computed hydraulic heads. In general, however, these 
errors become less important as the duration of the period of simula­ 
tion increases.

Prototype water levels
Errors associated with the prototype water levels are errors of mea­ 

surement, sampling, and interpretation. The largest errors of mea­ 
surement probably result from locating wells incorrectly and thereby 
incorrectly estimating the altitude of the land surface at the well 
from topographic maps. Some water-level measurements may not be
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representative of the aquifer. Measurement of water levels in wells 
that are being affected by local pumping or in wells tapping perched 
water bodies, for example, will not be representative of aquifer condi­ 
tions. These are sampling errors. Interpretation errors arise where 
field data are contoured or extrapolated to areas without any data. 
Prototype water levels probably are a serious error source.

ERRORS OF PREDICTION

The predictive accuracy of the model, when measured in terms of 
the deviation of the computed hydraulic heads from the prototype 
water levels, is directly proportional to the magnitude and duration of 
pumping. The greater the pumpage or the longer the duration of 
pumping, the greater will be the probable errors in computed hy­ 
draulic heads. If the future magnitude and duration of pumping are 
similar to those used in the calibration of the transient-state model, 
the deviation of the computed hydraulic heads from the prototype 
water levels that were obtained from the calibration of the transient- 
state model is probably indicative of the predictive accuracy of the 
model. It may be possible, however, to improve the predictive accu­ 
racy of the model by selective use.

Consider three questions that can be asked about model predic­ 
tions:

1. What will be the future pumpage and what will be the response 
of the prototype to that pumpage?

2. What will be the response of the prototype to any specified 
pumpage?

3. What will be the differential response of the prototype to two 
specified pumpages that are defined to be mutually exclusive?

The answer to the first question will contain errors that result from 
errors in the conceptual model, errors in the system parameters, 
errors in the initial conditions, and errors in the pumpage. The ans­ 
wer to the second question, however, will not contain errors resulting 
from errors in the pumpage. The third question eliminates initial 
conditions from consideration, and the answer to this question will 
not contain errors that result from either pumpage or initial 
conditions.

The elimination of pumpage errors from the second question will 
improve the probable accuracy of the answer to this question relative 
to the accuracy of the answer to the first question. The additional 
elimination of initial-condition errors from the third question will 
improve the probable accuracy of the answer to this question relative 
to the accuracy of the answers to both the first and second questions. 
Therefore, the best predictions are made with the model for interro­ 
gations involving the differential response of the prototype.
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NUMERICAL SOLUTION OF THE 
GROUND-WATER EQUATIONS

THE GALERKIN-FINITE ELEMENT CONCEPT

To solve numerically the governing equations of ground-water flow, 
the solution is expressed by a Mite number of parameters. Secondly, 
we transform the equations of ground-water flow into expressions

FIGURE 16. Finite-element discretization scheme used in the mathematical model.
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relating these parameters. If the equations are linear, then the rela­ 
tions among the parameters expressing the solution are also linear, 
that is, we are led to a linear system of algebraic equations. In this 
process we cannot avoid dealing with a large system of equations. To 
ameliorate this situation, it is necessary to choose the parameters in 
such a way that the resulting coefficient matrix is sparse. One method 
reflecting this feature is the Galerkin-finite element method.

The Galerkin-finite element method was applied to the analysis of 
single-aquifer ground-water systems by Finder and Frind (1972). Ex­ 
tension of the Galerkin-finite element method to the analysis of two- 
aquifer ground-water systems follows. Development of the solution 
scheme for this system follows the development presented by Finder 
and Frind (1972). The difference between their approach and the ap­ 
proach used here results from the selection of a different element 
shape and the application of the method to a two-aquifer system.

The fundamental idea of the Galerkin-finite element method is to 
replace a continuous function by values of the function that are 
specified at a finite number of discrete points called nodes. Function 
values between these points are calculated using piecewise continu­ 
ous interpolating functions defined over a finite number of subdo- 
mains called elements.

Consider a two-aquifer ground-water system. The first aquifer in­ 
cludes the domain O, which is surrounded by the boundary F. The 
second aquifer includes the domain O', which is surrounded by the 
boundary F'. The subdivision of this system into triangular elements 
is shown schematically in figure 16. The domains O and O' are not 
everywhere coincident; however, in the areas where these domains 
are coincident, the elements are also coincident, that is, the nodes ij, 
and k respectively have the same locations in the x-y plane as the 
nodes p, q, and r. The discussion that follows is based in part on the 
above characteristics of the layout of nodes and elements.

GALERKIN APPROXIMATION

Let us define the linear operators L and L' as

dt

-W- (h-h'} = 0 (5)

and



38 ANTELOPE VALLEY GROUND-WATER BASIN, CALIFORNIA

-W- ^-(h'-h) = 0, 
6

(6)

where x, y are cartesian coordinates,
T is the transmissivity of the first aquifer,
S is the storage coefficient of the first aquifer,
W is the flux of a source or sink in the first aquifer,
h is the head in the first aquifer,
K is the vertical hydraulic conductivity of the confining layer,
b is the thickness of the confining layer,
T 1 is the transmissivity of the second aquifer,
S' is the storage coefficient of the second aquifer,
W is the flux of a source or sink in the second aquifer, and
h' is the head in the second aquifer.

Equations 5 and 6 are to be solved in domains H and (!', which are 
enclosed by the boundaries F and F'. The boundary conditions are

and

dh -. r  - = 0 on F 
dn

= 0 on P,

(7)

(8)

where d/dn is the outward-pointing normal derivative on F and F'.
To solve L(h)-0 and L'(h')-0, we assume trial solutions of the 

forms

and

h(x,y,t)=*h(x,y,t)=

h'(x,y,t)^h'(x,y,t)=

(9)

(10)

where h and h' are series approximations to h and h'\ 4>t and <f>'i are 
linearly independent trial functions defined over the domains (I and 
H' and are chosen beforehand. C; and C",- are undetermined coeffi­ 
cients, and n and n' are the number of nodal points.

The Galerkin-finite element approximation to equation 5 only will 
be considered. (It will be shown later how the simultaneous solution 
to both equations 5 and 6 can be obtained.)

The series approximation to equation 5 will provide an exact repre­ 
sentation as n approaches infinity (Forray, 1968, p. 191). For a finite 
series, the approximation will not exactly satisfy equation 5, and 
there will be a residual R. The residual is defined by
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R(x,y,t)=L\ 2 Ci(f)«fe(x,y) | 
[i = l J

(11)

If the trial solution were the exact solution, the residual would van­ 
ish. We attempt to force this residual to zero, in an average sense, 
through our selection of the undetermined coefficients Q.

The d are calculated by setting the weighted integrals of the re­ 
siduals to zero. In the Galerkin method (Galerkin, 1915), trial func­ 
tions are used as weighting functions, that is,

j JL I | C,-(f)<fc(xoOJ $i(x,y}dxdy = 0. (12)

n
i = l, 2,..., n

From equation 12 we obtain n linear equations, which can be solved 
for the n values of Q.

First, equation 12 can be simplified. By expanding equation 12 we 
obtain

/> ) ^ (>4 />)-*! />

-w- f-(^'- 2 c/<£/) \

i = 1, 2,..., 7i

The quantity h', which occurs in the leakage term of equation 13, can 
be replaced by the trial solution for h'. By making this substitution 
into equation 13 we obtain

* d v r>^8 * .^ 1 Ĉ

i = 1, 2,..., w
Equation 14 can be integrated by parts. By assuming transmissiv- 

ity to be constant over each element and recalling that Cj is a function 
of time only, we obtain from integration by parts of equation 11 (Pin- 
der and Frind, 1972)
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(15)

i = 1, 2,..., n.

where d/dn is the outward-pointing normal derivative on the bound­ 
ary. Recall that this derivative is everywhere defined to equal zero 
(eq. 7); therefore, the term containing this derivative vanishes. 

The n equations of equation 15 can be written in matrix form as

[A]{C] + (B}{ ^} + (D]{C'} + {F} = 0, (16)

where [A] and [B] are nxn dimensional matrices; [D] is an nxn' di­ 
mensional matrix; {C}, {dC/dt}, and {F} are n dimensional vectors; 
and { '} is an n' dimensional vector. Using terminology from struc­ 
tural engineering, [A] is called the stiffness matrix, [B] is called the 
dynamic matrix, and {F} is called the force vector. The matrix [D] will 
be called the leakage matrix.

Typical elements of [A], [B], [D], and {F} are

Bij = I) S^^dxdy (18) 
 /»
a--$   
a

I I faWdxdy. (20)

a
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TRIAL FUNCTIONS

In order to generate the set of algebraic equations represented by 
equation 16, it is necessary to perform integrations of the trial func­ 
tions of the form

JJ 
ff

and
Cf

fadxdy.S-
The suitability of the Galerkin approximation for computer applica­ 
tion depends on the selection of the trial functions, such that the 
computational effort for the integrations is minimized.

To facilitate these integrations, the trial functions are defined 
piecewise in the element sense to obtain global trial functions in the 
domain H. Within an element the approximate solution (equation 9) 
can be expressed as

3
h(x,y) = 2 C^)<0c,;y), (21)

where a> e represents local trial functions that are defined only within 
the element e.

The local trial functions used in this study are linear and are de­ 
nned on triangular elements. The trial functions are defined such 
that o>-e are nonzero only over element e, equal to unity at the node i, 
and equal to zero at all other nodes. These functions for the node i (fig. 
17) are given by

for (x,y)in element e; otherwise,

ft)/ (x,y) = 0, (22)

where A represents the area of the element. Subscripts i,j, k refer to 
the vertices of the triangular element, and the subscripts progress in 
counterclockwise order around the element. The area of the element 
is given by
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Node k 
(x k,yk)

Node]

FIGURE 17.   Local trial function used in the mathematical model.

A = 1 
2

X V 1

r v 1j JJ

** ^jfe 1 (23)

The global trial function fa is the union of those values of <a e. that 
are found to be nonzero at node i. Thus, the global trial functions are 
given by

(24)

where {6>^,o>^, ..., w^} is the set of all local trial functions that are 
nonzero at the node i.

An examination of equation 15 indicates that about 4n2 integra­ 
tions are required. Because the integrals have nonzero values only
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where two trial functions share the same element, the number of 
integrations that actually must be evaluated is much smaller.

INTEGRATION OF THE APPROXIMATING EQUATION

The integrations in equations 17, 18, 19, and 20 are most easily 
performed on an element basis. Element matrices are generated, and 
the information is then transferred to the global matrix. Because 
there are three nodes in an element, each element matrix will be of 
order three.

Stiffness matrix.
A typical element stiffness matrix [a] will be of the form

dx dx dx dx dx dx

dx dx dx dx

dx dx dx dx dx dx

dxdy

+ Tff
K_
b

do) 1 d(»)

fy dy
da) 2 da)

dy dy

dy dy

dy dy

dy dy

dy dy

dy dy

dy dy

dy dy

dxdy

CUg Wg

dxdy. (25)

Aquifer parameters that appear in the stiffness matrix are assumed 
to be constant over an element. Because the integration is performed 
over an element, these parameters are moved from under the integra­ 
tion. The indices used in the element stiffness matrix are local, and 
they pertain to nodes numbered counterclockwise around the 
triangle.

The integrations in equation 25 are performed in the global coordi­ 
nate system. The following integration formulas are used:

s (26)

r =
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jf ^rdxdy = h (Xr+*-x^} (Xk ~Xj}

s s
r = i, j, k

>,o)j dxdy =   A

dxdy = TA,

(27)

(28)

(29)

r = j, k

where Xi and yi are the coordinates of the node i.
The global stiffness matrix is obtained by summing, for a given 

global node, the contribution to that node from each element stiffness 
matrix. For example, if nodes i and j in the element nodal system 
correspond to nodes p and q in the global nodal system, the a,j in the 
element stiffness matrix is added to Aw in the global stiffness matrix. 
This operational procedure is repeated for each node in an element 
and for all elements in the domain ft.

Dynamic matrix.
A typical element dynamic matrix [6] will be of the form

(b]=S
6^ 602 6t)j CUg

dxdy. (30)

The integrals are evaluated using equations 28 and 29, and the global 
dynamic matrix is assembled according to the operation procedure 
described previously.

Leakage matrix.
A typical element leakage matrix [d] will be of the form

<DI o)i 0)1 o)z 6% cog
0)20)1 602^2 (*)z<*>3

0)^0)2

dxdy. (31)

As we did for the element dynamic matrix, the integrals in the ele­ 
ment leakage matrix are evaluated using equations 28 and 29; how­ 
ever, the assembly of the global leakage matrix is somewhat differ­ 
ent. The form of the leakage term arose in part from the introduction 
of the trial solution for the head in the second aquifer (eq. 10) into 
equation 13. If nodes i andj in the element nodal system not only
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correspond to nodes p and q in the global nodal system for the first 
aquifer but also correspond to nodes k and m in the global nodal 
system for the second aquifer, then ay- in the element leakage matrix 
is added to Dkm in the global leakage matrix.

Force vector.
The flux term in the force vector arises because of point sources and 

sinks and because of distributed sinks. Recharge and pumpage are 
represented mathematically by point sources and sinks. Evapotrans- 
piration discharge is represented mathematically by distributed 
sinks. Accordingly, the force vector can be expanded to include these 
flux terms separately. From the expansion, equation 20 is modified to 
obtain

(32)t = (( <fc2 Qk 8(x - xk y - yk )dxdy + ff

n n
where

Qk is the point volumetric recharge to or pumpage from the
aquifer, 

Xk and yk are the coordinates of the location of the point source or
sink,

8 is the Dirac delta function, 
m is the number of point sources and sinks, and 
E is the volumetric evapotranspiration discharge per unit area. 

Because of the properties of the Dirac delta function (Korn and 
Korn, 1961, p. 876), the integral

ff m1 1 fc = l Qk8(X ~ *k'y ~ yk)dxdy 

fl

is equal to Qk , ifxk and^ are the coordinates of a node. The global 
force vector is assembled by simply adding Qk to F-, where Qk is 
located at the node i.

Distributed sinks are handled somewhat differently. The discharge 
per unit area is given by the relations

E(x,y)=E0 2<0

E(x, y)=E0 - ES*^) f0r0^z^z0 (33) 2o
E(x,y)=Q forz>z0 ,
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where
E is the volumetric discharge per unit area,
E0 is the discharge when the water table is at the land surface,
z is the depth below the land surface to the water table, and
z0 is the depth at which discharge ceases.

The function E can be approximated by using trial functions to 
interpolate nodal values over an element. The function E is replaced 
by the series

E(x,y)

where Ej is the value of E at the nodej. The integral

ti­
a

is then replaced by the integral

ll'
n

This integral is best evaluated on an element basis. A typical ele­ 
ment force vector {/"} will be of the form

0)jO)2 OJJC03

0)30)2

dxdy (34)

The integrations in equation 34 are evaluated by using equations 28 
and 29. If node i in the element nodal system corresponds to nodep in 
the global nodal system, then the global force vector is assembled by 
adding fi in the element force vector to Fp in the global force vector.

FINITE-DIFFERENCE APPROXIMATION OF THE TIME DERIVATIVE

Although the matrices [A], [B], and [D] and the vector {F} can now 
be evaluated, we must still solve the set of ordinary differential equa­ 
tions

[A]{C] + + [D]{C'} + {F} = 0. (16)
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To do this we approximate the time derivative by using the first-order 
correct, implicit, finite-difference scheme

~ Ct } = 0. (35)

Equation 35 can be rearranged to obtain

= [B]{Ct} ~ (36)

Equation 36 applies to the first aquifer. The parallel expression for 
the second aquifer is

~ (B']{C't} - {F'}. (37)

ASSEMBLY OF THE TWO-AQUIFER SOLUTION

The simultaneous solution of equations 36 and 37 for {Ct+iu } and 
{C't+£u } can be obtained by first assembling the matrix equation

([II] + -f

where

[II] -

[Y] -

= - [Y]{XJ -

W [D]

[B] O 

10 (B']

(38)

Equation 38 can then be solved for 
decomposed into {C} and

, which can be easily
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RECURRENCE ALGORITHM

To bring together the concepts outlined up to this point, the solu­ 
tion scheme for obtaining heads in the two-aquifer system at discrete 
points in space and time will be presented in a stepwise fashion.

Step 1.  Evaluate [A], [B], [D], [A 1 ], [B'], and [!>'] and assemble [H] 
and [Y].

Step 2.   Assign the initial heads to
Step 3.   Evaluate

Step 4.   Evaluate {F} and {F 1 } and assemble {^}. The evapo- 
transpiration discharge (eq. 33) depends on the head in the aquifer. 
Because this discharge is nonlinearly related to the head, equation 38 
is also nonlinear. To maintain the linearity of this equation, we can 
devise a numerical scheme wherein the evapotranspiration discharge 
is obtained by extrapolating head values from earlier known time 
levels to the current, unknown, level. An extrapolation based on the 
latest two calculated heads provides satisfactory results. Notice, how­ 
ever, that we solve this nonlinear system of equations only approxi­ 
mately when using this quasi-linearization procedure.

Step 5.   Evaluate the vector

^[Y] {X,} - {*}.

Step 6.   Solve equation 38 for {Xt+dt} by the point iterative succes­ 
sive over-relaxation method (Varga, 1962). {Xt+At} then can be easily 
decomposed into {Ct+At } and (C^ +At }. Consequently, the previously 
undetermined coefficients in the trial solutions

n
h (x,y,t) = 2 C. (t}^(x,y} (9)

and
n' 

h' (x,y,t) = 2 C'fiWitoj) (10)

are now known, and these solutions can be used to approximate the 
continuous distribution of heads in the aquifers. Recall that the trial 
functions were defined such that they are unity at the node for which 
they are defined and they are zero at every other node. Because of 
these characteristics of the trial functions, the trial solutions reduce 
at the nodal locations to
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h(xk ,yk ,t) = Ck (t) (39)

and
h'(x'k ,y'k ,t} = C'k (t\ (40)

where xk and yk are the coordinates of node k in the first aquifer and 
*£ and y^ are the coordinates of node k in the second aquifer. At the 
nodal locations, heads in the aquifers are the coefficients Ck and C£.

Step 7. Replace {Xj with {X, +AJ.
Step 8. Add A£ to the elapsed time. Then, if A£ has been changed, 

return to step 3; otherwise return to step 4.
The above cycle is repeated until the desired period of simulation is 

covered.

SUMMARY

The Antelope Valley ground-water basin, which has a surface area 
of 900 mi2 (2,300 km2 ) and a thickness of as much as 5,000 ft (1,500 
m), consists of two alluvial aquifers separated by fine-grained lacus­ 
trine deposits that are as much as 400 ft (120 m) thick. Natural 
recharge to the ground-water basin occurs mostly by the infiltration 
of streamflow. The average annual recharge is 40,700 acre-ft (50.2 
hm3). Before the extensive use of ground water for agriculture, the 
ground-water system was in equilibrium, and the recharge equaled 
the discharge, which occurred mainly by evapotranspiration.

Extensive pumping of ground water has caused the suppression of 
evapotranspiration of ground water, and pumping is presently the 
principal means of discharge from the ground-water basin. During 
the last 50 years, pumping of ground water in excess of natural re­ 
charge has resulted in the decline of water levels as much as 200 ft 
(61 m). Cumulative pumpage for the period before 1973 is about 10 
million acre-ft (12,000 hm3).

Part of the applied irrigation water is consumed by the crop, and 
part percolates below the root zone. A large part of the cumulative 
percolate may be stored in the unsaturated zone, and the recharge of 
the zone of saturation by irrigation return may have been small 
through the end of the calibration period, 1961.

A mathematical model of the ground-water basin was developed on 
the basis of a simplified conceptualization of the ground-water sys­ 
tem. The model was calibrated by comparing the computed hydraulic 
heads with the corresponding prototype water levels for both steady- 
state and transient-state conditions. For the steady-state model, the 
area-weighted median absolute deviation of computed hydraulic 
heads from the prototype water levels was 12 ft (3.7 m). For the 
transient-state model, the median deviation was 25 ft (7.6 m).

The data used to calibrate the model contained errors. These errors
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in part caused the observed deviation of the computed hydraulic 
heads from the prototype water levels. The errors contained both 
systematic and random components. In general, the systematic errors 
were probably transferred to the parameters during the calibration 
procedure.

Predictions made with the model will be in error because of the 
transfer of data errors to the aquifer parameters during the calibra­ 
tion. The predictions will also contain errors that can be related to the 
initial conditions and assumed future pumpage. If these three types of 
errors are present, the median error of water-level prediction will 
probably be about the same as obtained from calibration of the 
transient-state model, or about 25 ft (7.6m), if a similar magnitude 
and duration of pumping are considered.

Prediction errors due to initial conditions and the assumed pump- 
age can be eliminated if the model interrogation is designed to pre­ 
dict the differential response of the prototype to different pumpage 
characteristics. If the model is interrogated in this manner, the me­ 
dian error of prediction will probably be substantially less than 25 ft 
(7.6 m).
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