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SYMBOLS

Single prime mark on A, J, or @ designates association with the sam-
pling depth

Double prime mark on 4, J, I, or Q designates association with the total
depth through which suspended sediment is discharged

Subscript M designates a parameter associated with the modified Ein-
stein procedure

Subscript RM designates a parameter associated with the revised
modified Einstein procedure

Thickness of bed layer

Ratio of bed layer thickness to water depth

Ratio of d, to d,

Ratio of 2D to d

Constant, scale of ¢,

Parameter related to turbulence; equals 1/«

Constant, scale of i,

Constant

Sediment concentration for a particle having a diameter, D, at a dis-
tance a from the streambed

A variable coefficient which is a function of the median diameter of the
bed material

Sediment concentration for a particle having a diameter, D, at a dis-
tance y from the streambed

A constant

A constant

Measured suspended-sediment concentration

Mean depth of water

Vertical distance not sampled

Vertical distance sampled

Diameter of a particle

Particle size at which 16 percent of the bed material by weight is finer

Particle size at which 35 percent of the bed material by weight is finer

Particle size at which 50 percent of the bed material by weight is finer

A parameter used to represent D;y; equals V (Dg;) (D)

Particle size at which 65 percent of the bed material by weight is finer

Particle size at which 84 percent of the bed material by weight is finer

Particle size at which 95 percent of the bed material by weight is finer

Base of natural logarithms

Weisbach friction factor

Acceleration due to gravity

Fraction of bed material in a given grain size

Fraction of bedload in a given size range

Fraction of suspended material in a given size range

Fraction of total load in a given size range

Rate at which a particle of diameter D moves in suspension through a
unit width per unit of time

Rate at which a particle of diameter D moves through a unit width of
the bed layer per unit of time

Rate at which a particle of diameter D moves through a unit width of
channel per unit of time

Sediment discharge through the bed layer of particles of a given size
range, in tons per day
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Total sediment discharge through the bed layer of particles of a given
size range, in tons per day

A mathematical abbreviation

A mathematical abbreviation

A mathematical abbreviation

A mathematical abbreviation

Effective height of the roughness elements in a channel

Equivalent sand roughness for a particular roughness &

A constant at a particular time and cross section

Number of measurements in a set

Number of data sets for the particle-size range and data group.

Probability of a particle of a diameter D being eroded

Mathematical abbreviation

Rate at which the bed layer moves through a unit width of cross section

Sediment load in suspension per unit of width, measured in weight,
moving per unit of time between the water surface and the reference
levely = a

Suspended sediment through a cross section, in tons per day

Measured suspended-sediment discharge

Sediment discharge in the sampled zone

Measured sediment discharge

Computed sediment discharge

Hydraulic radius

Hydraulic radius with respect to the grain

Hydraulic radius with respect to the grains on the bed

A hydraulic radius-slope parameter

Slope of the energy grade line

Specific gravity of sediment

Standard error of estimate

Square root of mean variance

Weighted approximate standard error of estimate

Water temperature in degrees Fahrenheit

Average point velocity at a distance y from the closest boundary

Average shear velocity at the boundary; equals V 74/p,

Fall velocity for a sediment particle

Mean cross-sectional velocity of flow

Fall velocity for the geometric mean size for a size range

Fall velocity for the geometric mean size for a reference-size range

Fall velocity for the geometric mean size for a size range other than the
range

Mean cross-sectional shear velocity; equals V gRS

Mean cross-sectional shear velocity with respect to grains on the bed

Weight of a particle

Underwater weight of a particle

Width of channel in feet

Einstein’s characteristic grain size of a mixture

A dimensionless corrective factor

A variable; equals k,/k

Distance from the streambed

Pressure correction in the transition from smooth to rough flow

A theoretical exponent of the equation that describes the vertical dis-
tribution of suspended sediment of a size range

z for a reference size
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z for size ranges other than that for the reference size

A logarithmic function

A logarithmic function

A logarithmic function

Universal constant characterizing turbulence

Thickness of laminar sublayer

kg/x, the apparent roughness of a channel surface

Dgsix

Variability factor of lift; parameter varying with time which represents
the fluctuation of velocity

Root-mean-square value of 7

7 measured in ) values

Constant used to describe step movement of particies

Kinematic viscosity of water

“Hiding factor” for grains in a mixture

A correction factor

Density of fluid

Density of solids

Shear stress

Shear stress at the boundary

Intensity of transport

Intensity of transport for individual grain size for the Einstein proce-
dure

Intensity of transport for individual grain size for the modified Einstein
procedure

Intensity of shear on particles; function for correlating the effects of
flow with the intensity of bedload transport

Intensity of shear on individual grain size

Intensity of shear on representative particle



GENERAL STUDY OF THE MODIFIED
EINSTEIN METHOD OF COMPUTING
TOTAL SEDIMENT DISCHARGE

By D. E. BurkHaMm aND D. R. Dawbpy

ABSTRACT

The modified Einstein procedure was revised by applying corrections to two equa-
tions and by replacing two equations. The revision was made because D¢ was used
directly in the modified Einstein procedure to represent the equivalent sand roughness,
ks, whereas a much larger size apparently should have been used. For this study, 5.5
Dg;, an average value based on a best fit for data for several sites, was used.

The revised modified Einstein procedure apparently is an improvement over the
modified Einstein procedure. For the sediment and flow conditions at sites in five sand
channels, the sediment discharges computed according to revised modified Einstein
procedure apparently are not significantly more accurate than those computed accord-
ing to modified Einstein procedure; however, improvement is indicated because the
corrections of pertinent equations eliminates some of the empirical adjustments con-
tained in the modified Einstein procedure. The revised procedure eliminated the need
to arbitrarily divide the bedload transport intensity, ¢,, by 2 which was done in the
modified Einstein procedure. Values for ¢, are taken directly from a curve relating s,
to ¢,.. The y, to ¢, relation was developed theoretically by Einstein, and it was verified
by his experimental data. Values of ¢, determined from the ¢, to ¢, relation should be
used directly in the Einstein bedload equation.

For the same data, the revised modified Einstein procedure gives shear velocities
that are significantly larger and x values that are significantly smaller than the cor-
responding values computed using the modified Einstein procedure. The ratio of shear
velocity for the revised modified Einstein procedure to shear velocity for the modified
Einstein procedure ranges from 9.52 to 1.28 for stream velocities ranging from 0.50 to
15 feet per second. For the 292 data sets used in testing the two procedures, the value of
x ranged from 1.00 to 1.14 for the revised modified Einstein procedure and from 1.00 to
1.62, the maximum value possible, for the modified Einstein procedure. The value of x
is 1 for fully turbulent flow.

The approximate standard error of estimate for total sediment discharge determined
for the five streams is about 22 percent for the two procedures. Except for the range for
the largest particles tested, the weighted standard error is approximately equal in the
two methods for the different sediment-size ranges. Weighted approximate standard
errors for the different sediment-size ranges for the modified Einstein procedures and
the revised modified Einstein procedures are: 17 percent and 17 percent for sizes
smaller than 0.062 mm; 25 percent and 25 percent for sizes from 0.062 to 0.125 mm; 46
percent and 48 percent for sizes from 0.125 to 0.250 mm; 72 percent and 77 percent for
sizes 0.250 to 0.500 mm; and 136 percent and 91 percent for sizes 0.500 to 1.00 mm. The
standard error for wash load is relatively low because the wash load is determined
directly by sampling and the accuracy of values determined by sampling is better than
those determined indirectly by equations, which is done for relatively large particles
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2 COMPUTING TOTAL SEDIMENT DISCHARGE

moving as bedload. The approximate standard error for total sediment discharge is
only about 22 percent because a large fraction of the total sediment discharge was in
suspension and the suspended-sediment discharge is determined directly by sampling.
For a site on the Rio Grande conveyance channel, the amount of sediment is the size
ranges of 0.062 to 0.125 mm, 0.125 to 0.250 mm, and 0.250 to 0.500 mm were
significantly underestimated by the two procedures for periods when the bed form was
flat or was in transition. Conversely, for these ranges of sediment sizes and for the
total, the amount of sediment being moved was significantly overestimated for periods
when the bed form was dunes.

For two sites on Fivemile Creek in Wyoming, the total sediment discharge is
significantly overestimated. This statistic may be misleading. A sediment bed in mo-
tion at a normal section usually does not retain a fixed bed form for all flow conditions,
therefore, the bed form at the sites on Fivemile River probably is dunes, flat, or in
transition at different times. If so, the results found for the Rio Grande site probably
apply for the other sites. The fact that the total sediment discharge is overestimated for
a site may only indicate that a dune bed form was at the normal section during most of
the periods when sediment transport data were being obtained.

INTRODUCTION

The development of a reliable method of computing sediment dis-
charge at a site in a stream is one of the most important practical
objectives of research in fluvial processes. The movement of sediment
in an alluvial channel is complex, and because of this the rate of
development of a reliable method has been slow. The engineer con-
cerned with the movement of debris in a stream currently must rely
strongly on experience and judgment in determining sediment dis-
charge (American Society of Civil Engineers, 1975). Because of the
expanding awareness of the effects of man on his environment, the
need to develop better methods is increasing.

The U.S. Geological Survey is involved in research aimed at the
development of new and reliable methods of measuring and comput-
ing sediment discharge. At the same time, it is attempting to improve
methods that are already widely used. The study and the results
described in this report are a part of the latter effort.

The modified Einstein method (Colby and Hembree, 1955) of com-
puting total sediment discharge in open channels is widely used. The
method is based on the excellent and original work of Einstein (1950).
The MEP (modifed Einstein method) is an improvement over the
original Einstein method; it is simpler in computation and it uses
parameters more readily available from actual stream meas-
urements. The modified method, however, contains empirical adjust-
ments and it requires much experience and judgment in order to
obtain reliable results.

The primary objective of this investigation was to apply theoretical
corrections to pertinent equations used in the modified Einstein
method and to determine if significant improvement results. Secon-
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dary objectives were to test the modified Einstein procedure for a
wider range of flow and sediment conditions than had been previously
applied, and to identify areas where additional research might be
worthwhile. Two related criteria were used in the test for improve-
ment resulting from the addition of the theoretical corrections. First,
improvement is indicated if the accuracy of prediction for particle-size
ranges and for total sediment discharge is improved. Second, im-
provement is indicated if the correction of pertinent equations elimi-
nates some of the empirical adjustments contained in the method.

The study required extensive review of technical literature. The
study procedure was as follows:

1. The basis for the theoretical correction was developed. This re-
quired a review of velocity and resistance equations developed by
Keulegan (1938); Limerinos (1970); Leopold, Wilman, and Miller
(1964); Einstein (1950); and Burkham and Dawdy (1976a). This part
of the study is described in the section “Basis for Revision.”

2. Pertinent equations and graphs used in the modified Einstein
procedure for determining total sediment load were corrected. This
required a review of the Einstein and modified Einstein procedures;
identification of theoretical and empirical adjustments made by Ein-
stein (1950) so equations and graphs for uniform particles would
apply to mixtures; and identification of empirical adjustments made
by Colby and Hembree (1955) to eliminate bias in the modified Ein-
stein method. The review of the Einstein procedure is presented in
the section “Einstein Method.” The remainder of this part of the study
is presented in the sections “Modified Einstein Procedure” and “Re-
vised Modified Einstein Procedure.”

3. Computer programs for MEP and RMEP (revised modified Ein-
stein method) were developed. The computer programs are discussed
briefly in the section “Computation Procedure.”

4. Using test data, sediment discharges were computed and com-
pared with measured values; comparisons were made by size ranges
and for total sediment discharges. The standard errors of estimate for
sediment discharges computed by the modified Einstein method were
compared with the standard errors of estimate of discharges com-
puted by the revised modified Einstein method to give an indication of
improvement. The test data are for the following sites: Niobrara
River near Cody, Nebr.; Middle Loup River at Dunning, Nebr,;
Fivemile Creek near Riverton, Wyo.; Fivemile Creek near Shoshoni,
Wyo.; and River Grande conveyance channel near Bernardo, N. M.
Descriptions of this part of the study are presented in the sections
“Comparison of Computed and Measured Sediment Discharges” and
“Results of Comparison.”

5. Finally, a summary and conclusions are presented.



4 COMPUTING TOTAL SEDIMENT DISCHARGE
BASIS FOR REVISION

The Einstein and the modified Einstein methods (Einstein, 1950;
Colby and Hembree, 1955) of computing total sediment discharge in
open channels involve several equations and graphs that are based on
Keulegan’s (1938) solution of the Prandtl-von Karman velocity dis-
tribution equation (Prandtl, 1926; von Kdrman, 1930). The Keulegan
(1938) equations are:

v, = vx(8.5+5.75 log y/k,) (1)
and
V = V,.[(8.5-.96)+5.75 log Rlk,| 2)
in which
v, = average point velocity at a distance y from the closest
boundary;

vy = average shear velocity at the boundary; equals V7y/p,
where 7, equals the shearing stress at the boundary and
pr equals the density of the fluid,

k, = equivalent sand roughness for a particular roughnessk; k&
is the effective height of the roughness elements in a
channel;

\% mean cross-sectional velocity of flow;

V. = mean cross-sectional shear velocity; equals VgRS;

R = hydraulic radius;

g = acceleration due to gravity;

S = slope of the energy grade line;

b = 1 divided by «; and
x = universal constant characterizing turbulence; assumed to

be 0.4.
A general form of equation 2 is (Keulegan, 1938):

V=V,[(C~.95)+5.75 log (R/k)] (2A)
in which
C = a coefficient.

Equations 1 and 2 are applicable for fully developed turbulent flow in
nonwavy rough uniform channels in which the resistance to flow is
produced by the boundary surface. To use equations 1 and 2, however,
it is necessary to know the relation between the roughness factor, k&,
for a data set of interest and the equivalent sand roughness, k,. A
general equation relating £ and k&, is (Keulegan, 1938):

5.75 log k,=8.5-C+5.75 log k (3)

Equation 3, according to Keulegan (1938), is the expression which
gives the equivalent sand roughness k, for the particular roughness k.
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Physically, if a velocity v is observed at a distance y from a wall of
arbitrary roughness k under a known shear, the same velocity will be
obtained at the same point and for the same shear if the particular
roughness is replaced by closely packed uniform sand grains of
roughness k;. It is not practical to compute the equivalent sand
roughness, k;, using equation 3, for every roughness height, &, found
along the boundaries of uniform open channels. Instead, the effort
traditionally has been to find a readily measurable parameter that
could be used to approximate k, in equation 3.

Equations 2A and 3 can be combined to give a general equation that
is applicable directly to turbulent flow in nonwavy rough uniform
channels. Note that equation 3 can be rearranged to give:

C=8.5-5.75 log (kJ/k). (3A)

Equations 2 and 3A are combined to give:

VivV,.=(8.5-0.96—5.75 log x,)+5.75 log (R/k) 4)
in which
b =2.50, and
x, =kJk.

The term x, is introduced to simplify later discussions. Equation 4 is
Keulegan’s theoretical resistance equation for turbulent flow in non-
wavy rough uniform open channels. Burkham and Dawdy (1976a)
have developed a relation from which, by using equation 3A, x, can be
approximated for a wide range of sediment sizes.

Empirically defined resistance equations by Limerinos (1970) and
Leopold, Wolman, and Miller (1964) can be put in the form:

UVF = Co+2.03 log (RIk) (5)

in which
f = Weisbach (1845) friction or resistance factor, equals 8_@’
and 4
C, = a constant.

The numerical value of the constant C,, however, is different for the
different equations. The parameters used to represent the distance
from the boundary and used to represent roughness height also are
different. Data for turbulent flow in nonwavy rough uniform channels
were used by the different authors to develop the resistance equation
having the form of equation 5.
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Limerinos (1970) proposed that an equation using Dy, to represent
roughness height, %, be used to compute resistance to flow in channels
with coarse bed material. The equation is:

1VF = 1.16+2.03 log (R/Ds,) (6)

in which
Dy, = particle size, referred to as intermediate diameter, that
equals or exceeds that of 84 percent of the streambed parti-
cles by count; the sampling procedure was patterned after
the Wolman (1954) method.

Using roughness values computed from equation 6, Limerinos (1970)
determined the percentage difference between measured and com-
puted roughness for each of 50 data sets; the standard deviation of the
percentage differences amounted to 19 percent.

When Limerinos (1970) used D, to represent the roughness height,
£, the equation was

UVF = 0.35+2.03 log (R/Ds,) (7)

For equation 7 Limerinos determined that the standard deviation of
the percentage difference between measured and computed rough-
ness amounted to 22.4 percent.

An equation in which D, is used to represent £ can be approxi-
mated directly from equation 6 and data contained in table 3 in
Limerinos’ (1970) report (Burkham and Dawdy, 1976a). The mean of
the ratios, Dg,/D g, is 7.3 for the Limerinos data. If the factor Dy, in
equation 6 is replaced with 7.3 D¢, the resulting equation is

UVF = —0.59+2.03 log (R/D ) (8)

Using the Limerinos data and the procedure outlined by Limerinos
(1970), the standard deviation of the percentage difference for equa-
tion 8 was determined to be 27.6 percent.

Figure 1, developed using the Limerinos (1970) data, shows that
the standard error of estimate apparently is significantly smaller
when Dy, is used to represent the roughness height in the Keulegan
equation than when D5, or D, is used. Further improvement in accu-
racy might result if another larger size, say D,;, were used to repre-
sent the roughness height rather than Dy,.

Burkham and Dawdy (1976a) used data contained in reports by
Wolman (1954); by Leopold, Wolman, and Miller (1964); and by
Barnes (1967) to verify equation (6) for turbulent flow in fairly rigid,
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PERCENTAGE OF BED MATERIAL FINER THAN SIZE
USED TO REPRESENT ROUGHNESS HEIGHT

10 - —
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FicUure 1.—Relation between percentage of bed material finer than size
used to represent roghness height, and standard error of estimate, in
percent, for the different resistance equations for flow in rigid-boundary
streams. (From Burkham and Dawdy, 19764, fig. 3).

nonwavy channels (fig. 2). They used data contained in reports by
Culbertson and Dawdy (1964), and by Dawdy (1961) to extend equa-
tion 6 to include upper-regime flow for sand-bed streams. As shown in
figure 2, the resistance to upper-regime flow in sand-bed streams
apparently is fairly well represented by the extension of equation 6.
The standard error of estimate for the sand-bed resistance for upper-
regime flow, computed using the Culbertson and Dawdy (1964) data
and the Limerinos (1970) procedure, is about 13 percent (Burkham
and Dawdy, 1976a). Because 1NVF=VI (V+V8), equation 5 can be
changed to

VIV«=C,+5.75 log (R/k) 9
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which is comparable directly with equation 4. The different constants
for equations 2A, 4, 5 and 9 are related according to

C,=8.5—0.96—5.75 log x,=C—0.96=Cy/\V8 (10)

Equation 10 and data from reports by Limerinos (1970); by Dawdy
(1961); by Leopold, Wolman, and Miller (1964); and by Barnes (1967)
were the basis for the development of the curve shown in figure 3
(Burkham and Dawdy, 1976a). The curve shows the relation between
percentage of bed material finer than the size used to represent
roughness height and the coefficient C in equation 2A.

100

Q90 +— —

80 — —

70 |- _

a0 |- -

30 —

PERCENTAGE OF BED MATER!IAL FINER THAN SIZE
USED TO REPRESENT ROUGHNESS HEIGHT
(4]
o
I
Il

10 — —

0 I | 1 I L | |
0 1 2 3 4 5 6 7 8

COEFFICIENT C

Ficure 3.—Relation between. percentage of bed material finer than size used to repre-
sent roughness height and the coefficient C in the Keulegan equation: V/V =
(C—0.95)+5.75 log R/K. (From Burkham and Dawdy, 19764, fig. 3.)
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In the Einstein and the modified Einstein methods of computing
total sediment discharge, Dg; is used directly to represent the rough-
ness height, k;, in equations developed from equations 1 and 2 (Ein-
stein, 1950; Colby and Hembree, 1955); the correction factor —5.75
log x,, which equals —5.75 log k/Dg; when Dy; is used to represent bed
roughness, was not applied. The value of x, depends on the distribu-
tion of sediment-particle sizes in a mixture of interest; however, its
value apparently decreases inversely with the percentile fractile used
to represent channel roughness. On the basis of the relation in figure
3 and equation 10, the average value of x, is about 5.5 when Dy; is
used to represent the roughness height. The use of Dy, to directly
represent roughness height in the Einstein and modified Einstein
methods (Einstein, 1950; Colby and Hembree, 1955) of computing
total sediment discharge probably introduced significant bias; empir-
ical corrections are needed to eliminate this bias.

EINSTEIN METHOD
INTRODUCTION

The Einstein method is for computing total sediment discharge in
the size ranges that are found in significant quantities in the
streambed (Einstein, 1950). The computed total sediment discharge is
the sum of the bedload discharge and the suspended-sediment dis-
charge. The bedload discharge is considered to be through a bed layer
two grain diameters thick, and the suspended sediment is considered
to be discharge from the water surface to the bed layer.

Einstein’s (1950) computations are for a representative cross sec-
tion of a channel and an average energy slope. The area and wetted
perimeter for a representative cross section are determined by av-
eraging the areas and the wetted perimeters of a number of sections
in a typical reach that is of sufficient length to permit an adequate
definition of the overall energy slope. The theoretical basis for the
Einstein method can be presented as (1) equations pertinent to
suspended-sediment discharge, (2) equations pertinent to the bed-
load discharge, and (3) equations pertinent to the transition between
bedload and suspended-sediment discharges.

EQUATIONS PERTINENT TO SUSPENDED-SEDIMENT DISCHARGE

Suspended-sediment discharge is computed as the integration of
the product of the theoretical velocity and suspended-sediment con-
centration along a representative vertical in a cross section. Einstein
(1950) combined equations developed by Keulegan (1938) to describe
the theoretical velocity distribution in his representative vertical.
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The two equations are equation 1 and an equation to represent the
velocity distribution for smooth boundaries which is

v,/V=5.50+5.75 log 3% (11)

The results of combining equation 1 and 11 can be presented as

v,/V x=5.75 log [ 30.2( ﬂ) ]=5.75 log (30.2y/A) (12)
kg

which represents the velocity distribution for smooth and rough con-
ditions and the transition between smooth and rough conditions,
where parameters in equation 11 and 12 that have not been defined
previously are:

v = kinematic viscosity of water;
x = a dimensionless corrective factor; and
A kg, the apparent roughness of the channel surface.

I

The corrective factor x is represented in figure 4 as a function of £/
in which 8 is the thickness of the sublayer of a smooth boundary;
equals (11.6 v/V). The (k/8)-to-x correction curve was developed
using equation 12 and the relation in Kuelegan’s figure 3 (Kuelegan,
1938).

1.8 . .

1.6 -

v

VV =5.75 log (30.2 %)
Y $
1.4

1.2L

—> Rough wall

0.1 1.0 10 100
K6

FIGURE 4.—Correction x in equation 12 in terms of k,/8. (From Einstein, 1950, fig. 4.)



12 COMPUTING TOTAL SEDIMENT DISCHARGE

The suspended-sediment concentration in Einstein’s (1950) repre-
sentative vertical can be represented by:

C,/C, = (ﬂ) a_|* (13)
y d—a
in which

C, = sediment concentration for a particle having a diame-

ter, D, at a distance y above the streambed;
C, = sediment concentration for a particle having a diame-

ter, D, at a distance a above the streambed;

z = an exponent.

Einstein (1950) used the formula z = [v,/(0.4V ;)] to determine values
for z, where v, represents the fall velocity for the particle.

An integral equation for the suspended load for a particle having a
diameter, D, moving through a unit width of a cross section is ob-
tained by combining equations 12 and 13 to give

d

a.= f Cy.dy (14)
a

= d [d—y \_a_ [’5.75V, logy,, | -(39-2vX) |dy (14A)
q

Ca y d-a ks

Y

or

Einstein (1950) simplified equation 14 by (1) referring the concentra-
tion to that at the lower limits of integration a; (2) replacing a with a
dimensionless expression A = a/d; and (3) using d, mean depth of
water, as the unit for y. The resulting equation to the base e is:

=5.75V.d Co { A\ | 1o 30.2dx
assravac, (127) Tien(42)

1

f (L;y_) dy+0.4371 (_1%) loge(y)dy] (15)
A

A
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in which
g, = the sediment load in suspension per unit of width, measured
in weight, moving per unit of time between the water sur-
face and the reference level y = a.
In order to present graphical solutions to the two integrals in equa-
tion 15, Einstein transformed equation 15 to:

qs=11.6V*Caa{2.0303 log,, (_30}6&) d,) +I, } (16)

in which
< — 1 F4
1,=0.216 Ar—" 1=y “dy 17)
1-AT f y
/)
1,=0.216 A" L 1=y *log,(y)d (18)
2 1oAF ( . ) g (v)dy
A

According to Einstein (1950), the product, 11.6 V , is the flow velocity
at the outer edge of the laminar sublayer in the case of a hydrau-
lically smooth bed, or the velocity in a distance of 3.68 roughness
diameters from the bed in case of a rough wall. The functions/, and I,
in terms of A and z are shown in Einstein (1950, figs. 1 and 2), Colby
and Henbree (1955, figs. 4 and 7), and Hubbell and Matejka (1959,
figs. 11 and 13).

Equation 16 represents Einstein’s (1950) theoretical basis for es-
timating suspended discharge per unit width for a size of sediment
found in appreciable amounts in the bed. It does not consider wash
load which consists of particles too small to be in the bed in appreci-
able amounts, nor is it applicable for computing sediment movement
in the bed layer in which suspension is impossible.

Equations 1, 2, 11, and 12 are applicable for fully developed turbu-
lIent flow in nonwavy, rough, uniform channels; the resistance to flow
is due to grain roughness only. Einstein’s (1950) rationale for using
equations 1, 2, 11, and 12 to develop a method of estimating sediment
transport in sand channels having significant bed forms is based on
the assumption that the energy of turbulence corresponding to shape
resistance does not contribute significantly to bedload motion and
may be largely neglected in the entire sediment picture.
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EQUATIONS PERTINENT TO BEDLOAD

The quantity of sediment transported in a stream by rolling, slid-
ing, or skipping within the bed layer is called the bedload. Einstein’s
(1950) theory for the rate of movement and concentration in the bed
layer is based on the probability that a given particle will move from
its position in the streambed and that the position in the bed will be
occupied by another particle. By assuming that the bed is neither
eroding nor scouring, Einstein (1950) developed a bedload equation
that can be represented as:

Isqp = bs 1pp8Y*DY2 (S~ 1)/ (19)
in which
igqp = the rate at which a particle of diameter D in a mixture
moves through a unit width of the bed layer per unit of
time; iy is the fraction of bedload in a given size range;
gp is the rate at which the bedlayer sediment moves
through the unit width of cross section;
¢, = intensity of transport for an individual grain size;
i, = fraction of bed material in a given grain size;
ps = density of the solids and
S, = specific gravity of the sediment.

For a given particle of diameter D, Einstein assumed that all parame-
ters on the right side of equation 19 are constant except for ¢.. The
intensity of transport, ¢,, is a function of the intensity of shear, s,
for the individual grain size. A curve relating {. and ¢, given in
Einstein (1950 fig. 10), developed by Einstein (1950, p. 37, eq. 57) is
entirely theoretical but was verified by experimental data. The nu-
merical values of the constants used by Einstein (1950) to develop the
curve are:

A, =1/0.023 = 435

B, =1/7 = 0.143

M =12 = 0.5.

The numerical values for the constants A, and B, were based on
results of bedload experiments with uniform grains; 7, is an assumed
value.

The intensity of shear, y, for uniform sand, and fully turbulent flow

is determined from,;
V= _DOs—pr ( D ) (20)
Pr R';S
in which

R’y = hydraulic radius with respect to the grains on the bed. Ein-
stein’s (1950) reason for using R’y instead of R is based on the
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hypothesis that the energy of moving water is dissipated as friction in
two ways: (1) along sediment grains of the surface as a rough wall
with the representative grain diameter equal to &,; and (2) by separa-
tion of the flow from the surface at characteristic points of the ripples
or bars. He assumed that the energy dissipation occurring at the
sediment grains creates turbulence in the bed layer that has a great
effect on bedload movement; this is the energy dissipation that must
be accounted for in developing bedload equations. The term R’y is
used to represent the hydraulic radius with respect to the grains on
the bed, and the expression V', =VgR ', Sis used to refer to the shear
velocity with respect to the grains on the bed.

Einstein (1950) developed correction parameters which could be
used in conjunction with equation 20 to estimate values of ¥, for
particles in a mixture that were based on the following assumptions
and criteria:

1. The velocity acting on all particles of a mixture must be meas-
ured at a distance 0.35D from the theoretical bed, where:

X =0.77 A if A/6 >1.80:

X = 1.396 if A/6 <1.80:

2. The particles smaller than X(X>D) seem to hide between the
other particles or in the laminar sublayer, respectively, and their lift
must thus be corrected by division with a parameter ¢ which itselfisa
function of D/X. X is Einstein’s characteristic grain size of a mixture.

3. An additional correction factor Y was found to describe the
change of the lift coefficient in mixtures with various roughness con-
ditions.

Einstein’s (1950) equation for determining i, for particles in a
mixture is:

V=Y (BB _p —pr P 21)
Pr RS
in which
B = log (10.6)
B. = log (10.6 X/A);
A = Dg/x; and
where

£ is afunction of D/X which is shown in Einstein (1950, fig. 7) and

Y is a function of Dg;/8 which is shown in Einstein (1950, fig. 8).
The empirical relations shown in Einstein (1950, figs. 7 and 8) were
based on flume experiments.

EQUATIONS FOR TRANSITION BETWEEN BEDLOAD AND SUSPENDED LOAD

Einstein’s (1950) equation relating sediment transported as bed-
load to that in suspension for all particle sizes for which a bedload
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function exists can be represented as.

i\qs = inqs {P11+12} 22

in which

P=(_1 Y\ log (30.2dx \ — 2303 1og [ _30.2dx \ (93)
0.434 k, ks

Equation 22 was developed from equation 16 and an assumption that
gp can be represented by the expression gz = 11.6V,.C,a.
The total load, i;q+, can be represented by

iTqT = quB + isqs = quB (P11+Iz+1) (24)

MODIFIED EINSTEIN PROCEDURE
INTRODUCTION

The modified Einstein procedure (Colby and Hembre, 1955) of com-
puting total load for the ranges of large particle sizes differs from that
used for the ranges of small particle sizes. In the ranges of the large
particles—ranges for the reference size and larger sizes (Colby and
Hembree, 1955), the Einstein procedure is used except that different
methods of computation are used for the shear with respect to the
sediment particles, ¢, ; the intensity of the bedload transport, ¢, ; and
the exponent z. For ranges smaller than that for the reference size,
the sediment discharge is obtained by multiplying the suspended-
sediment discharge in the sampled zone by a ratio determined on the
basis of equation 16.

EQUATIONS FOR RANGES OF LARGE PARTICLES

Colby and Hembree (1955) used a modified version of equation 24 to
compute the total discharge of sediment in the ranges of large parti-
cles. The modified equation is:

(rQr)y = (ipQply PIL+I,+1) (25)

in which

(irQr)y; = total sediment discharge through a cross section for a given
range of particle sizes, in tons per day;
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i5Q5)y = sediment discharge through the bed layer of particles of the
given size range, in tons per day; equals (ipgp)y times
43.2w;

where

(t,g,)n = sediment discharge through the bed layer of particles of the
given size range, in pounds per second per foot of width;
and

w = width of channel in feet.

The subscript M denotes a parameter that was obtained according to
MEP. The 43.2 is a constant for converting pounds per second to tons
per day.

The MEP equation for determining (i3Qp)y is based on equation 19.
The value of the intensity of the bedload transport y.,, used in enter-
ing the relation (See Einstein (1950, fig. 10)), however, is based on D
and Dg;; and the value of ¢, obtained from the relation is arbitrarily
divided by 2 (Colby and Hembree, 1955). The MEP equation for bed-
layer discharge in a cross section of a stream is

(iBQB)M = d)*M 43.2 w 1,200 ibDyz (26)

in which

buy = by/2
The 1,200 represents the constants in equation 19 in which g is the
gravitational constant, 32.2; p, equals 5.17 and S equals 2.65 (Ein-
stein, 1950). The quantity ., is computed using the equations:

Uey = (1.65 D33)/(RS)y; and 27

Yy = (0.66D)/(RS)y; (28)

and the larger .y from these equations is used for each geometric
mean particle size for a range of sizes. The slope-hydraulic radius
parameter, (RS)y, is obtained by using Einstein’s (1950) equation 9
except that the average depth, d, replaces R'; D¢ is used to represent
k.. Einstein’s (1950) equation 9 was derived by combining a Keulegan
velocity equation for a hydraulically smooth bed with another Keule-
gan velocity equation for a hydraulically rough bed. The MEP veloc-
ity equation is

ViV = 5.75 log( 12.27 [c)lx ) (29)
65

in which

Veu = VERS)y . 30)
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A value for (BS)y is obtained by solving equation 29 and 30 from a
known value for V and where x is the same function of £/5,, as given
in figure 4 and

& = 11.6v 3 (31)
V*M
Solution of equation 29 and 30 to obtain a value for V,, is by trial
with x obtained from figure 4.

A value for z must be determined before the sum of (PI,"+I,"+1) can
be evaluated for a size range of large particles. Colby and Hembree
(1955) combined equations 16, 22 and 24 to develop an equation for
determining z. They reasoned that, for a given time at a cross section
of a stream, equation 16 can be presented as:

qs = K(PJ,+dJ>) (32)
and
g = Q,1Q," = Py +ds (33)
%14 @ PJ) +d,"
or
Q) =@, | B+ (34)
PJ,/+d,
in which

Q. = suspended sediment through the cross section, in tons per day,
for a given range of particle sizes;

1

J, = f (kx) “dy (35)
A Yy
1 >

Jy = (l:i)"loge(y)dy (36)
A y

K = a constant at a particular time and cross section; and
P=2.303 log (M) 37)
Dyg;

A single prime mark designates a symbol that is associated with
sampling depth and a double prime mark designates a symbol that is
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associated with the total depth through which suspended sediment is
discharged. The function ¢/, and J, in terms of A and z are presented
in Colby and Hembree (1955, figs. 5 and 6) and Hubbell and Matejka
(1959, figs. 9 and 10). Equation 22 can be put in the form

Q" = izQzPI,"+1,") (38)

which can be combined with equation 34 to give:

Q' _ 1V R

R I (PJ,"+J,") 39)
The parameters @,’ and iz;Q; are computed independently of z(Q,’ is
determined from measurements, and izQp is determined using equa-
tion 26). Equation 39 is used to compute z by trial for the reference
size, the geometric mean size for a size range that is represented in
appreciable quantities in both bedload discharge and suspended-
sediment discharge. The z’s for the other size ranges are computed by
proportion from the z for the reference-size range by using:

( ) (40)

z, = z for size ranges other than that for the reference size; the
unknown;
z, = z for reference size;
V.. = fall velocity of the geometric mean size for the other size
ranges; and
V. = fall velocity of the geometric mean size for the reference size.

in which

EQUATIONS FOR RANGES OF SMALL PARTICLES

Equation 34 is used to compute total suspended-sediment discharge
for ranges of particle sizes smaller than the range for the reference
size. The 2’s for the different ranges of sizes are determined using z for
the reference size in equation 39. The suspended-sediment discharge
for a range of particle sizes obtained using equation 34 normally
represents the total sediment discharge for the range; if iz;Qp is
significant for the range, however, it must be added.

REVISED MODIFIED EINSTEIN PROCEDURE

The RMEP (revised modified Einstein procedure) is similar to the
MEP except several equations have been changed. Equations for
shear velocity, bedload, exponent z, and total load are affected.
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SHEAR VELOCITY

The equation used to compute shear velocity is derived from equa-
tion 29 by replacing Dg; with 5.5 D¢, (Burkham and Dawdy, 1976a) to
give

Virw =V /( 5.75 log [ 2.23 9%x_ ) (41)
65
Values for Vg, are obtained by using known values for V, d and Dy;;
and trial values of x in equation 41. Values for (RS)zy are obtained
using the equation

RSy = ( Vina )? (42)
8

The curve in figure 4 is assumed to be applicable when k,/8 is repre-
sented by 5.5 Dg;/8zy and &gy, is obtained using the expression &y =
11.6 v/(V 2 )gy. The change in the representative size from Dy as used
in the modified Einstein method to 5.5 Dy is based on results which
indicate that the k; used in the original Einstein development is a size
fraction much larger than Dg;, for which 5.5 D¢ was found to be an
average value (Burkham and Dawdy, 1976b). The subscript RM de-
notes a parameter that was obtained according to RMEP.

The shear velocity obtained according to RMEP is significantly
larger than the shear velocity obtained according to MEP. The rela-
tion between the two shear velocities can be represented by:

(§RS) s = (1 + %) (§RS)'y (43)

The ratio @RS)"zy / (gRS)V‘M ranges from 9.52 to 1.28 for velocities
ranging from 0.50 to 15 feet per second.

Equation 41 is assumed to be valid for turbulent flow in open chan-
nels where the turbulence results totally from grain roughness. The
rationale for using equation 41 to determine shear velocity in chan-
nels having significant bed form is based on Einstein’s (1950) as-
sumption that the energy of turbulence generated because of shape
resistance does not contribute significantly to bedload motion and
may be largely neglected in the entire sediment picture. Given a
velocity, a depth, and a value for D¢ for a site in a stream having
significant form roughness, V .y would approximately represent the
shear velocity that would have occurred if no form roughness had
existed at the site.

Colby (1961) has shown that sediment transport for sand-channel
streams is primarily related to velocity of flow, approximately to the
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third power. Change of regime alters the form resistance and the
velocity of flow, but the difference in transport is directly linked to the
change in velocity. This tends to support Einstein’s assumption that
an effective shear computed without directly considering form rough-
ness should be used to estimate transport of sand for all regimes of

flow.
BEDLOAD

Equation 19 and the relation in Einstein (1950, fig. 10) are used in
the RMEP to determine bedload. However, the procedure used to
derive a value for the intensity of shear, ({r, )rsr, which is needed to use
the Y. -to-¢, relation, is different from the procedures used by Ein-
stein (1950) and by Colby and Hembree (1955). The approach used in
developing an equation to represent (s )gy was indirect, included
several assumptions, and involved several steps. A general equation
for Y, iy was developed by first developing an equation for a uniform
particle of size k, and then applying corrections to this equation so
that it would be applicable to mixtures. The equation for the uniform
particle is

‘II*(RM) = 1.65 k—s (44)
(RS )pa

which was obtained by using Einstein’s (1950) equation 49; replacing
D with k; and (R'S) with (RS)g,, and representing p,—p; with 1.65.
The general equation for Y.z, for a mixture is

W,pyy = 1.65 (€Y )y (818, —Ks (45)
ERM EY ru (B/B BSe

in which

B = log (10.6); and
B, = log (10.6x).

In developing equation 45 a basic assumption was made that Eins-
tein’s hiding coefficient and lift correction can be represented by the
single parameter (£Y )gy.

Burkham and Dawdy (1976a) found that x, is approximately 1
when channel roughness in a hydraulically rough channel is repre-
sented by a relatively large particle in a mixture of sizes. For a hy-
draulically rough channel, &, therefore, is assumed to be equal to the
diameter, D, for relatively large particles in a mixture and (£Y )y, is
assumed to be 1 for the relatively large particles in a mixture. Con-
sidering these assumptions, .z for relatively large particles in a
mixture in a hydraulically rough channel can be represented as

Yiry = 1.65 (B/By)): D /(RS )y (46)
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For the RMEP, .\ from equation 46 is assumed to represent the
largest value for the intensity of shear that is possible for a particle of
size D in a mixture; the value of ¢z, obtained by using a value of
Y«ry from equation 46 and the curve in Einstein (1950, fig. 10), would
represent the lowest possible intensity of transport.

According to Einstein, ¢ is a function of 8, Dg;, D and X; and Y is a
function of 6 and D¢;. For the current study, (£Y )y, is assumed to be a
function of &gy, Dgs, Dass, D and k, as represented by the equation;

(€Y gy = (Bgy + CD)iRy (47)
in which

C, = a variable coefficient which is a function of the median diame-
ter of the bed material (the geometric mean of D;5 and Dy,
was used to represent the median diameter).

Equations 45 and 47 are combined to give

(‘l‘* eyt = 1.65 (B/Bm)z (6RM+CSD)/(RS)RM (48)

which is used to compute (s, )z for all ranges of particle sizes where
(8gy +CD) is larger than the geometric mean diameter, D; equation
46 is used when D is equal to or greater than (8,,+C,D). Values of ¢,
obtained by entering (i )z, in the relation shown in Einstein (1950,
fig. 10) are used directly in equation 19 to compute bedload.

The empirically defined equation for C, is

C, = — 0.62+3.12 [(Dy;)D35)]* (49)

which is applicable in the range 0<C;<1. The coefficient C; is zero
when D~ equals [(Dss)(D:;s)] * - is smaller than about 0.2 mm; C, is 1
when Dy is 0.52 or larger. The development of equation 49 is de-
scribed in the section “Computation Procedure.”

EXPONENT Z AND TOTAL LOAD

The RMEP uses equation 39 with RM values inserted for the trial
determination of z. The value of Py, used in equation 39 is deter-
mined from equation 50 which is

5.5 Dy, Dy,
The total discharge of sediment in the range of large particle sizes is

then computed as in equation 25, but with RMEP parameters in the
equation:

irQr = (iBQB )R.u ((PRJI)IJN+IQ”+1 ) (51)
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Similarly, equation 34 for the ranges of small sediment sizes is re-
vised to

Q= Q) = Q, | _Prudi"+" (52)
[ PRMJI'+J2I
COMPARISON OF COMPUTED AND MEASURED SEDIMENT
DISCHARGES
BASIC DATA

Data sets for selected section in five river reaches are used in the
comparison studies. The study sites are: Niobrara River at Cody,
Nebr.; Middle Loup River near Dunning, Nebr.; Fivemile Creek at
Shoshoni, Wyo.; Fivemile Creek near Riverton, Wyo.; and Rio Grande
conveyance channel near Bernardo, N. M. In each reach the total
sediment discharge was determined by sampling at a natural or
manmade turbulence flume and data pertinent to the computation of
total discharge were collected at nearby normal or natural sections.
The total sediment discharge determined by sampling at the turbu-
lence flume was taken to be total measured sediment discharge.

NIOBRARA DATA

The data, the flume, and the normal sections for the reach along the
Niobrara River near Cody, Nebr. are described in a report by Colby
and Hembree (1955). The data were used by them in the development
of th MEP and in comparison of measured and computed total sedi-
ment discharges. They made comparisons for 24 sets of data, and
these comparisons are summarized in their table 34. Only 21 of the 24
data sets, however, were used in the current study. According to
Colby and Hembree (1955), two data sets for the normal sections
contained “obviously incorrect suspended-sediment size distribution.”
These two sets of data were not used in the current study. For a third
set, Colby and Hembree made “separate computations for each of the
two parts of the cross section” in computing total sediment discharge
for the normal section. The third set was not used in the current study
because of the uncertainty of what cross-sectional properties should
be used in computing total sediment discharge for the normal section.
Of the remaining 21 sets, some of the data used by Colby and
Hembree—stream width, depths, and velocity; concentration of sus-
pended sediment; size distribution of suspended sediment; average
depth at the verticals where the suspended-sediment samples were
collected; size distribution of bed material; and water temperature—
could not be duplicated ‘exactly. The values of sediment discharge
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computed for this study using the modified Einstein procedure, there-
fore, do not agree exactly with those contained in table 34 in the
report by Colby and Hembree.

MIDDLE LOUP RIVER DATA

The data, the flume, and the normal sections for the reach along the
Middle Loup River at Dunning, Nebr., are described in three reports.
The flume, the normal sections, and the 46 sets of data for March 1950
to September 1952 are described in a report by Hubbell and Matejka
(1959); the 6 sets of data for November 1955 to March 1956 are de-
scribed in a report by Hubbell, Jordan, Culbertson, and Hembree
(1956); and the 7 sets of data for August 6, 1956, to November 30,
1956, are described in a report by Hubbell (1960).

Hubbell and Matejka (1959, table 8) made comparisons of meas-
ured and computed total sediment discharges in which the MEP was
used in determining computed values for 63 sets of data for the study
reach of the Middle Loup River. According to Hubbell and Matejka
(1959), the following information from each section was used for the

computations of total sediment discharge:

The average bed-material size distribution that was determined from all available
samples, other than special samples, collected at the section; the measured suspended-
sediment concentration and size distribution; the measured sediment discharge com-
puted from the rated water discharge, except when the load was computed by parts;
multipliers based on fall velocities from Rubey’s equation. Most of the computed total
loads for section A and some of the computed total loads for section E were determined
from individual computations for each of two parts or more of the section . . .

The data sets for section A and some for section E were not used in the
current study because of the uncertainty of what cross-sectional prop-
erties should be used in computing total sediment discharges. Of the
remaining 46 data sets, some of the data used by Hubbell and Mate-
jka could not be duplicated exactly. The values of sediment discharge
computed for this study using the MEP, therefore, do not agree
exactly with those contained in the report by Hubbell and Matejka
(1959).

Comparisons made by Hubbell, Jordan, Culbertson, and Hembree
(1956) are shown in their table 13 and comparisons made by Hubbell
(1960) are shown in his table 5. For these two tables, the computed
values for each data set were obtained using the MEP.

FIVEMILE CREEK DATA

The flumes and the normal sections for the reaches along the
Fivemile Creek near Shoshoni and near Riverton, Wyo., are described
briefly in a report by Colby, Hembree, and Rainwater (1956). The 87
sets of data for September 1954 to June 1, 1963, for the Shoshoni
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reach and the 64 sets of data for August 26, 1954, to September 1963
for the Riverton reach were copied directly from records in the files of
the U.S. Geological Survey, Cheyenne, Wyo. Data for measured-
sediment discharge for the different sediment-size ranges were in-
cluded in 12 of the sets of data for the Shoshoni reach and in 14 for the
Riverton reach.

RIO GRANDE REACH

The flumes, the normal sections, and the data for the reach along
the Rio Grande conveyance channel near Bernardo, N. M., are de-
scribed in reports by Harris and Richardson (1964); Gonzalez, Scott,
and Culbertson, (1969); and Culbertson, Scott, and Bennett (1972).
The 61 data sets for February 3, 1965, to May 4, 1966, for the Rio
Grande reach which are used in the current study were obtained
directly from the report by Culbertson, Scott, and Bennett.

COMPUTATION PROCEDURE

Colby and Hembree (1955) and Hubbell and Matejka (1959) have
presented explanations for the total-load computational procedure for
the MEP. For review and because the RMEP uses the MEP computa-
tional procedure, the explanation by Hubbell and Matejka (1959) is
repeated here; however, references are made only to the RMEP equa-
tions. A total-load computation is made using the RMEP and the data
from plate 7 in the report by Hubbell and Matejka (1959).

The computationform (fig. 5)isseparated into three major computation
blocks, which are headed: block I, preliminary data and computations;
block II, computation of is@5; and, block II1, computation by Z.

Step 1.—Fill in line 1, block I, with the basic data in pound-foot-
second units; w, width; V, mean velocity; d, mean depth; d;, average
depth at the verticals sampled; D¢ and D35, particle size at which 65
and 35 percent, respectively, of the bed material by weight is finer;
Conc, measured suspended-sediment concentration (in parts per mil-
lion); @y, measured suspended-sediment discharge (in tons per day);
and Temp, water temperature in degrees Fahrenheit. (Except when
noted otherwise, the English system of units is used throughout the
computation.)

Step 2.—Solve equations 41 and 42, line 2, block 1, for (RS )y, after
assuming a trial x where V(RS)py equals (V)ry/V8; x usually is
about 1.0.

Step 3.—Compute (RS)gy from the value for V(RS)gy determined
in step 2.

Step 4.—Compute the shear velocity, (V )y, using the expression
Viry = VERS)y in.which V(BS)g,, is from step 2 and g is the
gravity constant, 32.2 feet per second.
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Step 5.—Compute 8z, using the expression &gy, =.11-% in which
* /RM
w is the kinematic viscosity, in square feet per second, at the indi-

cated water temperature and (V.. )z, is from step 4.

Step 6.—Calculate (5.5D¢;)/(8)ry and enter figure 4 for x. If the trial
x is not about the same as the x from figure 4, repeat steps 2 through
6. dx
Step 7.—Solve for Py, using equation 51—Pp,, = 2.303 log (5-5 17“65)
Step 8.—Determine A’ on line 4 from A’ = d,/d;, in which d, is the
vertical distance not sampled, in feet; that is, the distance from the
bottom of the sampled zone to the streambed.

Step 9.—From figure 6, find the percentage of flow in the sampled
zone by using the computed A’ and Pp,,.

100 S— L T T 11T

p=8
90 |- i

80 - P=11 |

70 .

60 _

50 - -

40 m

PERCENTAGE OF FLOW SAMPLED

10 - -

0 L 1 T S B T S | 1 I N N T
0.01 0.1 1.0

FRACTION OF DEPTH NOT SAMPLED, A’

FiGURE 6.—Vertical distribution of streamflow. (From Colby and Hembree, 1955,
fig. 45.)
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Step 10.—Compute the load in the sampled zone (Q') by multiply-
ing the percentage of flow in the sampled zone by the measured
suspended-sediment discharge (Q;,,).

Step 11.—List the percentage of measured suspended sediment in
each size range under the geometric mean size of the range (line 5) on
line 6 if the percentages were determined from an actual size analysis
or on line 7 if they were determined by some other means. Line 8 is
not completed unless the size distribution of the measured total load
is known and is to be used in checking the accuracy of the computed
total load.

Step 12.—List in column 1, block II, each geometric mean size of
the size ranges that have appreciable bedload discharge (i;Qz).

Step 13.—Compute a value for (=), for each size range using the
following expressions:

(s )ryr =1.65 (B/Br,)*(Bgas +CsD)/(BS )y or
(lff* Yam = 1-65(/3/311)2(D)/RS)RM if D > (8gn +CsD)
where
B =log (10.6)

B:, = log (10.6x)

C,=0if [(Dﬁa)(D%)]vZ, in millimeters, is less than 0.20; and

C,=1.00 if [(Dﬁs,)(Dg,s)]vz, in millimeters, is larger than 0.52;
otherwise

C, = —0.62+3.12 [(D5)(D35) ] (49)

in which D¢ and D35 are in millimeters.

Equation 49 is based entirely on the data sets for sites on the
Niobrara and the Middle Loup Rivers. The following steps were taken
in developing the equation:

1. Using different numerical values for C, in equation 49, total
sediment discharges were computed for each set of data for the Niob-
rara and Middle Loup sites.

2. The difference between computed and measured total sediment
discharge were determined for each data set, and the square root of
the mean variance for the Niobrara and Middle Loup data were com-
puted.

3. Graphs showing the relation between the value of C, used in step 1
and the square root of the mean variance obtained in step 2 were
developed.

4. The values of C; for the minimum square root of the mean vari-
ance were determined from the relation developed in step 3; a value of
0.25 were determined for the Niobrara data and a value of 0.50 were
determined for the Middle Loup data.
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5. Averages of the geometric means of D3; and Dy, in millimeters,
were determined for the Niobrara data and for the Middle Loup data;
these averages were 0.28 and 0.36, respectively.

6. The values from step 3 and step 5 were plotted on a graph and a
straight line was drawn through the two points; this line is repre-
sented by equation 49.

Step 14.—Determine ¢, for each size range from a curve in Ein-
stein (1950, fig. 10) using the (4 )z from step 13.

Step 15.—List the value of 1,200D%2 for each size range in column
4. D is the geometric mean size of the size range.

Step 16.—Enter the fraction of bed material in each size range (i,)
in column 5.

Step 17.—Compute izqgp for each size range using the expression
isqp = 1,2000,D%2¢h,.

Step 18.—Compute the constant 43.2w for entry in column 7. The
width, w, is the effective width—width determined by applying an
appropriate horizontal angle correction to the width rather than the
velocity or discharge, and 43.2 is a constant converting pounds per
second to tons per day.

Step 19.—Compute izQy for each size range and enter in column 8;
izQp is the product of izgp and 43.2w.

Step 20.—List in column 9, block III, the geometric mean size of all
the size ranges that are transported. (Column numbers for block III
are at the bottom of the table.)

Step 21.—Compute the load in the sampled zone of each size range
(@;") as the product of the load in the sampled zone (@,,’) (line 4, block
I) and the percentage of measured suspended sediment in each size
range (from line 6, block I). Enter the product in column 10.

Step 22.—Copy in column 12 each iz@p from column 8, block II.

Step 23.—Compute A” for each size range from A"=2D/d and enter
in column 15. A" is equal to the distance of the lower limit of integra-
tion above the stream bed, a, divided by d. Einstein (1950, p. 25)
shows the relations, a = 2D.

Step 24.—The large box headed “Determination of Reference z,” in
block III is used in this step. Select the reference size. The reference
size should be the geometric mean size of a size range that is repre-
sented in appreciable quantities in both bedload discharge and
suspended-sediment discharge. For streams in which the bedload dis-
charge is a substantial part of the total load, the reference size range
ordinarily will be the range that has the greatest total sediment
discharge. Once the reference size is selected, it can be used for all
subsequent computations. Compute the value” of the ratio @'/izQ5
(the left-hand side of the formula Q'/is@s :_{]L(PRMJI'+J’2)) for the
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reference size. Assume a z for the reference size (figure 7 will aid in a
first approximation for many shallow streams) and solve the right-
hand side of the above formula with values determined by using A’
and A” and the assumed z with figures 5, 6, and 7 of Colby and
Hembree (1955) or figures 9, 10, and 13 of Hubbell and Matejka
(1959). When the right and left sides of the equation balance, the
assumed z is the proper z for the reference size range.

Step 25.—Because z varies with about the 0.7 power of fall velocity
and because flow characteristics that might cause z to vary are con-
stant at a given cross section and time, the z for the other size ranges
can be computed by using equation 40 and z for the reference size
range. Curves for the different size ranges of (V,,/V,,)’" (called mul-
tipliers) versus temperature were plotted by Colby and Hembree
(1955, pl. 1); the 0.25 to 0.50 millimeter size range is the reference
range. The z for any size range is the product of the z for the reference
range and the multiplier at the indicated water temperature for the
size range. List in column 13 the multiplier with each size range.

Step 26.—Compute the z for all size ranges from the z for the refer-
ence range and the multiplier.

Step 27.—Complete columns 16, 17, 18, and 19 for the ranges for
sediment sizes smaller than size in the reference size range; use
curves in Colby and Hembree (1955, figs. 5 and 6) and the z, A', and
A" for each size range.

Step 28.—Compute the ratio (Pgye "+, ) (Pgyed ' +J,"). List the
ratios in column 20.

Step 29.—Complete column 21 and 22 for the ranges of sediment
sizes not included in Step 27; use curves in Colby and Hembree (1955,
figs. 4 and 7) and the z and A" for each size range.

Step 30.—Compute Pgyl,"+1,"+1 for entry in column 23 using the
information in columns 21 and 22. I, is always negative.

Step 31.—Compute the total sediment discharge for the ranges for
sediment sizes smaller than the size in the reference size range; it is
the product of the values in column 20 and in column 10. Enter the
total sediment discharge in column 24.

Step 32.—Compute the total sediment discharge of all the size
ranges not included in step 31, it is the product of the values in
columns 12 and 23. Enter the total sediment discharge in column 24.

Computer programs analogous to the MEP and RMEP were used to
compute sediment discharge. Documentation for the computer pro-
gram for MEP, called MODEIN, is available in a report by Burkham,
Kroll, and Porterfield (1977). The computer program for the RMEP,
called RMODEIN, is the same as MODEIN except that pertinent
equations have been changed.
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RESULTS OF COMPARISON
INTRODUCTION

Sediment discharges, by size ranges and for the total, computed by
the MEP and RMEP for each data set are compared with measured
values. The following statistics were computed for the comparisons:
the percentage of the total measured sediment discharge for each
sediment-discharge computation; the average and standard deviation
of these percentages for each of the five data groups; the square root of
the mean variance for the computed values for the size ranges and
for the total sediment discharge; mean of measured and computed
sediment discharges for the size ranges and for the total sediment
discharge; and ratio of square root of mean variance to mean of meas-
ured sediment discharges for the size ranges and for the total sedi-
ment discharge. The percentage of the total measured sediment dis-
charge is the ratio of computed total sediment discharge to measured
total sediment discharge multiplied by 100. The square root of the
mean variance which was used as an approximation of the standard
error was determined using the expression

N,
SE, = \/ igtl(QTMi _QT(‘i)2/(Ns_ 1)

in which

SE, = the square root of the mean variance;

Qv = the measured sediment discharge;

Q¢ = the computed sediment discharge; and
N, = the number of measurements in the set.

The measured-sediment data may contain significant errors; in which
case, the standard error of estimate, SE, would be different than SE,.
The ratio of square root of mean variance to mean of measured sedi-
ment is used, when multiplied by 100, as a rough approximation of
the standard error of estimate in percent.

NIOBRARA RIVER

The RMEP apparently gave better results than the MEP for the
Niobrara site (table 1). This premise is based on the following facts
and criteria:

1. For the total sediment discharge, the square root of the mean
variance for the 21 data sets is 415 tons per day for the RMEP and 674
tons per day for the MEP.

2. The mean of the computed total sediment discharge determined
according to the RMEP is more nearly equal to the measured mean
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than that for computed totals determined according to the MEP. The
percentage of measured sediment ranged from 55 to 137 and averaged
100 percent for the RMEP; the range was 70 to 148 and the average
was 94 for the MEP.

3. Using the average of the measured sediment discharges, 2,310
tons per day, as a gage, the approximate standard error of estimate is
about 18 percent for the RMEP and about 29 percent for the MEP.

4. For four of the five ranges of particle sizes, the approximate

standard error of estimate for results obtained according to the RMEP
apparently was better than that for the MEP. For most of the data
sets for the other range, only a relatively small amount of sediment
was being transported.
For the Niobrara site, the RMEP and the MEP give better results for
the ranges of relatively small particles than for the ranges of rela-
tively large particles. This should be expected because the computa-
tion for the small particles is based primarily on measured data while
that for the large particles is based largely on theoretical consid-
erations.

Statistics different from those in table 1 were reported in a previous
paper (Burkham and Dawdy, 1976b). The previous paper was primar-
ily a progress report and the statistics were of a preliminary nature.

MIDDLE LOUP RIVER

The RMEP and the MEP gave results for the site on the Middle
Loup River that have about the same accuracy (table 1). The square
root of the mean variance for the computed total sediment discharge
is 298 tons per day for the RMEP and 310 tons per day for the MEP.
Using the average of the measured total sediment discharges, 1,570
tons per day, as a gage, the approximate standard error of estimate is
about 20 percent for both methods. The percentage of measured total
sediment discharge ranged from 65 to 146 and average 105 for the
RMEP; the range is 68 to 165 and the average is 106 for the MEP. As
for the Niobrara data, both methods gave better results for ranges for
relatively small particles than for ranges for relatively large parti-
cles.

Nine of the fifty-nine data sets were not used in determining the
statistics for variance and ratios for the 1.00- to 2.00-mm range. This
was done to minimize the possibility of introducing bias in estimating
errors for the two methods. For the nine data sets, the measured or
computed value of sediment discharge is 0. For unlimited sets of data
containing 0, the mean of the deviations of computed values from
measured values could not be 0, a requirement in determining an
unbiased estimate of errors.
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FIVEMILE CREEK AT SHOSHONI1

The RMEP and the MEP yielded computed values for total sedi-
ment discharge for the Shoshoni site that have about the same ap-
proximate standard error of estimate (table 1). For the RMEP, the
approximate standard error of estimate for total sediment discharge
is 383 tons per day; it is 391 tons per day for the MEP. Using the
average of the measured total sediment discharges, 1,730 tons per
day, as a gage, the approximate standard error of estimate for total-
sediment discharge is about 23 percent for both procedures.

Both procedures gave values for total sediment discharge that are
significantly larger than measured values (table 1). The average of
the percentage of measured sediment discharge is 115 for the RMEP
and 122 for the MEP. The ratio of the average of computed total
sediment discharge to the average of measured total sediment dis-
charge is about 1.15 for both procedures.

The reason that the computed total sediment discharge is larger
than the measured value is now known, however, it could result from
either the total sediment discharge at the weir being significantly
undermeasured, or the total sediment discharge being overcomputed,
or both.

The data-set sample for the different sediment-size ranges for the
Shoshoni site is relatively small, therefore, statistics for the sample
probably are not meaningful. The different statistics, however, were
computed (table 1).

FIVEMILE CREEK AT RIVERTON

The RMEP and the MEP gave computed values for total-sediment
discharge for the Riverton site that have about the same approximate
standard error of estimate (table 1). The approximate standard error
of estimate for total sediment discharge is 249 tons per day for the
RMEP and 228 tons per day for the MEP. Using the average of the
measured total sediment discharges, 1,360 tons per day, as a gage,
the approximate standard error of estimate for total sediment dis-
charge is about 18 percent for both procedures.

Again, both procedures give values for total sediment discharge
that are significantly larger than measured values. The average of
the percentages of measured-sediment discharges is 107 for the
RMEP and 112 for the MEP. The ratio of the average of computed
total sediment discharge to the average of measured-total-sediment
discharge is 1.11 for both procedures.

The statistics for the sediment-size ranges which are given in table
1 probably are not meaningful because the data-set sample is rela-
tively small.
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RIO GRANDE CONVEYANCE CHANNEL

The approximate standard error of estimate for total sediment dis-
charge for the Rio Grande data is 2,510 tons per day for both proce-
dures (table 1; fig. 8). Using the average of the measured total sedi-
ment discharge, 8,860 tons per day, as a gage, the approximate stan-
dard error of estimate for total sediment discharge is 28 percent for
both procedures.

Both procedures gave average values for total sediment discharge
that are significantly smaller than the average of measured values;
the average of percentages is 86 for both procedures. The relatively
low averages of computed values apparently result because the
amount of sediment in the 0.062 to 0.125 mm, 0.125 to 0.250 mm and
0.250 to 0.500 mm size ranges is underestimated during periods when
the bed form is flat or in transition (fig. 8 A, C). Conversely, for these
size ranges, the amount of sediment being moved during periods
when the bed form is dunes is overestimated (fig. 8 B).

Earlier it was noted that Einstein made the assumption that the
energy of turbulence generated by form resistance does not contribute
significantly to bed-material motion. These data tend to support that
assumption and, in fact, tend to indicate that the form resistance
actually may inhibit bedload transport. Perhaps a portion of the bed,
that immediately downstream from the dunes which is influenced by
upstream eddies, does not contribute to downstream motion. That
area could easily comprise 10 percent of the bed and fully account for
the underestimation evidenced for dune conditions.

The RMEP can be readily adjusted by applying empirical correc-
tions so that it will give results that agree better with measured
sediment discharges for the Rio Grande data. For example, the indi-
cated better agreement shown in figure 8 D was obtained by using
equation 46A to represent ir.py for all data sets for the Rio Grande
site for May 4, 1966. Equation 46A is

dl*RM = 0.50 (/3/,8‘1‘1)Z D/(RS )RM (46A)

which was obtained by applying a correction,Cs = 0.30, to equation
46. Other than to force an agreement, a rational reason for applying
the correction, Cy, is not apparent at this time. Because of this and
because data for which bed form is described are not adequate for
testing when an empirical correction is applied, other equations to
force agreement between computed and measured-sediment dis-
charge for the different bed forms were not developed. Equation 46A
probably should not be used because it has not been tested.

A more fundamental approach to adjust RMEP would be to deter-
mine more exactly the proper representative particle size that should
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be used to represent ;. The parameter 5.5 D¢ is an average value
based on a best fit for several sites (Burkham and Dawdy, 1976a).
Certainly k; >Dy;, and on the average it is on the order of 5.5 D,. A
future study which better determines k, and allows the multiplier, x,,
to be related to the size distribution may further improve the applica-
tion of the RMEP.
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CHARACTERISTICS FOR THE FIVE DATA GROUPS

The weighted approximate standard error of estimate for the dif-
ferent ranges of particle sizes is given in figure 9. The weighted per-
centage for a range size was obtained using the equation

SEu. = EI—(SE,)')(n‘)*F .. .(SES)Z(U_—-))] (53)
3(n+. .. .ny)

in which SE, . . . SE; denotes the approximate standard error for the
particle-size range for the five data groups and =, ... n; represents
the number of data sets for the particle-size range and data group.
The Rio Grande data for the range for the 0.500 to 1.00 mm particle
sizes were not used in computing a weighted approximate standard
error of estimate; the quantity of sediment being transported for the
range was small.

Figure 9 shows the weighted percentage error by size class for the
total load of sands transported for the five data groups. For the
smaller sizes, most of the sediment is moving in suspension, therefore
large errors of estimation of that portion moving as bedload still
result in small errors in terms of percent of total load for a class. For
large sizes, almost all the sediment is moving as bedload, and any
error in estimation of the bedload is translated almost directly into
errors in total load.

The data for standard errors for the range of particle sizes less than
0.062 mm offers an excellent opportunity to approximate the stan-
dard sampling error for wash-load discharge for the diversified flow
and sediment conditions found at the five study sites. A wash-load
sampling error is the error introduced in determining the wash-load
discharge by sampling. The wash-load sampling error depends on the
accuracy of the water-discharge measurement, the sediment-
sampling instrument, the sediment-sampling technique—including
sampling time and the fluctuation in sediment concentration during
this time-—laboratory analysis, and the computation of concentra-
tion. In order to approximate the standard sampling error, the follow-
ing assumptions were necessary:

1. The sampling error for wash load for a normal section is inde-
pendent of the sampling error for wash load for a weir or contracted
section.

2. The mean sampling error for wash load for a section is zero.

3. For comparable periods of records and discharges for a site, the
true wash load at a normal section equals the true wash load at a
weir.

4. For a site, the standard wash-load sampling error for a normal
section equals the standard wash-load sampling error for a weir.
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Considering these assumptions, the approximate standard error of 17
percent (the 17 percent is the weighted approximate standard errpr of
estimate that is shown in figure 9 for the range of particle sizes less
than 0.062 mm in diameter) is significantly larger than the standard
error for wash load. The variances for independent errors are addi-
tive,therefore, the washload sampling error can be represented as:

V2 (SE?, = 17 or (SE),, = 12.0 percent

The 12.0 percent represents the standard wash-load sampling error
for the five study sites.

The 12.0 percent for particle sizes less than 0.062 mm probably is a
better approximation of the true standard error of estimate for the
RMEP and MEP than the 17 percent that is shown in figure 9. The
values shown in figure 9 for the other ranges of particle sizes also
probably are slightly biased on the high side because they are com-
puted as a difference of two terms. The amount of bias, however,
cannot be determined because the relative sizes of the two compo-
nents of error cannot be estimated as they were for the wash load.

Based on figure 10, the ratio of computed to measured total sedi-
ment discharge apparently increases with an increase in the median
diameter of sediment particles in a mixture. Figure 10, however, may
be misleading. As previously discussed for the Rio Grande site, the
total sediment discharge is underestimated for periods when the bed
form was flat or in transition and overestimated for periods when the
bed form was dunes. A sediment bed in motion in a normal section
usually does not retain a fixed bed form for all flow conditions, there-
fore, the bed form at the sites on the Niobrara, Middle Loup, and
Fivemile Rivers probably is dunes, flat, or in transition at different
times. If so, the results found for the Rio Grande site—overestimates
for dunes and underestimates for flat bed—probably applies for the
other sites. The fact that the total sediment discharge is overesti-
mated for a site may only indicate that a bed form of dunes was at the
normal section during most of the periods when sediment transport
data were being obtained.

SUMMARY AND CONCLUSIONS

The modified Einstein procedure (Colby and Hembree, 1955) is re-
vised by applying corrections to equations 29 and 39 and by replacing
equations 27 and 28 with equations 46 and 48. The revision was made
because Dy, was used directly in the modified Einstein procedure to
represent the equivalent sand roughness, k,, whereas a much larger
size apparently should have been used (Burkham and Dawdy, 1976a).
For this study, 5.5 Dy an average value based on a best fit for data for
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several sites, was used. The modified and the revised modified Ein-
stein procedures were tested by comparing computed and measured
sediment discharge for 292 sets of data for five sites in sand-channel
streams.

Conclusions resulting from the study are:

1. The revised modified Einstein procedure apparently is an im-
provement over the modified Einstein procedure. For the sediment
and flow conditions tested, the computed sediment discharges appar-
ently are not significantly more accurate; however, improvement is
indicated because the correction of pertinent equations eliminates
some of the empirical adjustments contained in the modified Einstein
procedure.

2. The revised procedure eliminated the need to arbitrarily divide
the bedload transport intensity, ¢., by 2 as was done in the modified
Einstein procedure (Colby and Hembree, 1955). Values for ¢, are
taken from a curve relating i, intensity of transport, and ¢,. The
P.-to-dy curve is theoretical, however, it was verified by exper-
imental data (Einstein, 1950). Einstein’s equation for bedload (Eins-
tein, 1950, p. 59, step 34) which was used in the modified and revised
modified Einstein procedures requires that values taken from the
Ys-to-¢x curve be used directly to represent the bedload transport
intensity.

3. For the same data, the revised modified Einstein procedure
gives shear velocities that are significantly larger and x values that
are significantly smaller than the corresponding values computed
using the modified Einstein procedure. The ratio of shear velocity for -
the revised modified Einstein procedure to the shear velocity for the
modified Einstein procedure ranges from 9.52 to 1.28 for stream ve-
locities ranging from 0.50 to 15 feet per second. For the 292 data sets
used in testing the two procedures, the value of x ranged from 1.00 to
1.14 for the revised modified Einstein procedure and from 1.00 to
1.62, the maximum value possible, for the modified Einstein proce-
dure. The value of x is 1 for fully turbulent flow.

4. Based on data sets for the five sites, the approximate standard
error of estimate for total sediment discharge determined by the two
procedures is about 22 percent. Except for the range for the largest
particles tested, the weighted standard error is approximately equal
between the two methods for the different sediment-size ranges.
Weighted standard errors for the different sediment-size ranges for
the MEP and RMEP, respectively, are: 17 percent and 17 percent for
sizes smaller than 0.062 mm; 25 percent and 25 percent for sizes from
0.062 to 0.125 mm; 46 percent and 48 percent for sizes from 0.125 to
0.250 mm; 72 percent and 77 percent for sizes 0.250 to 0.500 mm; and
136 percent and 91 percent for sizes 0.500 to 1.00 mm. The standard
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error for wash load is relatively low because the wash load is deter-
mined directly by sampling and the accuracy of values determined by
sampling is better than those determined indirectly by equations,
which is done for relatively large particles moving as bedload. The
approximate standard error for total sediment discharge is only about
22 percent because a large fraction of the total sediment discharge
was in suspension and the suspended-sediment discharge is deter-
mined directly by sampling.

5. For a site on the Rio Grande conveyance channel, the amount of
sediment in the 0.062 to 0.125 mm, 0.125 to 0.250 mm, and 0.250 to
0.500 mm sizes ranges were significantly underestimated by the two
procedures for periods when the bed form was flat or was in transi-
tion. Conversely, for these ranges of sediment sizes and for the total,
the amount of sediment being moved was significantly overestimated
for periods when the bed form was dunes.

6. For two sites on Fivemile Creek in Wyoming, the total sediment
discharge is significantly overestimated. This statistic may be mis-
leading. A sediment bed in motion at a normal section usually does
not retain a fixed bed form for all flow conditions, therefore, the bed
form at the sites on Fivemile River probably is dunes, flat, or in
transition at different times. If so, the results found for the Rio
Grande site probably apply for the other sites (see conclusion 5). The
fact that the total sediment discharge is overestimated for a site may
only indicate that a dune bed form was at the normal section during
most of the periods when sediment transport data were being ob-
tained. Information on the type of bedform at the time samples were
taken was not available.

7. The revised modified Einstein procedure needs further study
before it is considered as a replacement for the modified Einstein
procedure. The revised procedure has been tested for a wider range of
flow and sediment conditions than those for which the modified Ein-
stein procedure was originally tested. Basically, however, the revised
procedure still has only been tested for sand-size sediments. Tests for
conditions in which large amounts of coarse sediment—gravel and
small boulders—are moved as bedload have not been made; these
tests will be feasible only after good data (usable as measured values)
for the bedload movement of coarse sediment are available.

8. Given more test data, a future study which determines more
exactly the proper representative particle size to be used to represent
k. might be fruitful. The study should allow the multiplier x, to be
related to the size distribution as well as the percentile fractile used
to represent roughness height; the multiplier x, probably should
gradually decrease from some positive value to 1 as the size distribu-
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tion approaches uniformity and as the percentile fractile used to rep-
resent roughness height approaches 100.

9. The revised modified Einstein method, like the modified Ein-
stein method, requires much experience and judgment in order to
obtain reliable results.

10. New and innovative approaches for explaining the physical
principles of the bed-form phenomena as related to sediment
transport are needed in order that the method presented by Colby and
Hembree—the modified Einstein method—can be moved towards the
original intent of the Einstein procedure, an approach based on phys-
ical principles.
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