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Streamflow Augmentation at

Fosters Brook, Long Island, New York—

A Hydraulic Feasibility Study

By Keith R. Prince

Abstract

A 27-day streamflow augmentation test was con-
ducted in December 1979 at Fosters Brook, near the
south shore of Long Island, to investigate the hydraulic
feasibility of pumping ground water to supply flow to an
ephemeral stream during dry periods.

Measurements of soil moisture in the unsaturated
zone beneath the streambed indicate that infiltration rate
and soil-moisture content are interrelated. Initial infiltra-
tion was measured with a neutron logger; the wetting
front traversed the unsaturated zone at an average of
11.2 inches per hour and reached the water table in 5.5
hours. Soil moisture in the unsaturated zone ranged
from 20 percent at the start of the test to nearly 41 per-
cent, nearly the saturation point, 20 days later.

Stream discharge was measured at four sites along
the stream channel, and the augmentation rate was mon-
itored continuously at the starting point. Infiltration rates
increased steadily in all reaches during the first 12 days
of the test, but from the 12th to the 20th day, when dis-
charge was increased by 50 percent, infiltration rates de-
creased along the two upstream reaches but continued
to increase along the three downstream reaches. Infiltra-
tion rates remained constant from days 20 through 26.

During the first 24 hours of the test, the stream
reached a maximum length of 2,050 feet, but after 13
days, it had shortened to 1,300 feet as a result of seepage
losses. The relationship between discharge and stream
length was linear within the range of discharge investi-
gated (0.54-1.63 cubic feet per second).

Ground-water levels rose in response to flow au-
gmentation and reached a maximum rise of about 6.5
feet in a well situated 14 feet from the center of the
streambed and 225 feet downstream from the start of the
flow. Measured water-level response was compared to
levels predicted by a one-dimensional analytical model
and a three-dimensional mathematical model; results in-
dicate that ground-water response is determined princi-
pally by streambed characteristics and soil-moisture con-
tent in the unsaturated zone.

Variations in water temperature and in streambed
composition had significant effects upon infiltration

rates. Changes in water temperature, amount of vegeta-
tion, soil-moisture content, and stream stage, combined
with local variations in streambed permeability and
aquifer conductivity, make accurate prediction of seep-
age rates virtually impossible at present. Data from this
study suggest that site-specific investigations are neces-
sary wherever streamflow augmentation is planned.

INTRODUCTION

The continued rapid population growth on Long Is-
land since the end of World War II has caused concern
among the island’s planners and water managers over the
continued availability of an adequate supply of potable
water. Because all freshwater for domestic and industrial
use in the central and eastern part of the island (Nassau
and Suffolk Counties) (fig. 1) is obtained from the
ground-water reservoir, the purity of this resource should
be safeguarded. In an effort to minimize contamination of
ground water by septic waste, sanitary-sewer systems have
been constructed in parts of both counties and are planned
for most of the remaining areas.

Before construction of sanitary sewers, wastewater
was returned to the shallow aquifer through cesspools and
septic tanks and thereby caused little net draft on the
ground-water system. However, the large-scale implemen-
tation of sewers that carry many millions of gallons of
wastewater per day to treatment plants and the ocean has
caused a significant loss of recharge to the aquifer system.
In southwestern Nassau County, where sewers began op-
eration in 1952 and became fully operational by 1964,
water levels and streamflow have declined markedly
(Franke, 1968; Garber and Sulam, 1976; Pluhowski and
Spinello, 1978). An analog model used by the U.S.
Geological Survey to simulate the long-term local and re-
gional effects of sewerage indicates that, after 20 years of
sewer operation, the water table may decline as much as
20 ft in east-central Nassau County and that streamflow on
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Figure 1. Location of Fosters Brook, Nassau County, N.Y.

southern Long Island will be reduced, on the average, to
approximately 40 percent of its 1975 volume (Kimmel and
others, 1977).

Decreased water levels and reductions in streamflow
will reduce the amount of freshwater discharged through
streams to the south-shore bays, which in turn could cause
an increase in bay salinity and reduce the productivity of
Long Island’s large shellfish industry. Furthermore, the
likelihood that the upper reaches of some streams may be-
come permanently dry will have detrimental effects on the
aesthetic and recreational value of some of the island’s
wetlands and parks and on its wildlife. These issues have
created a need to investigate means to offset the undesira-
ble effects of a lowered water table. One of several
methods that have been proposed is streamflow augmenta-
tion with pumped ground water or highly treated wastewa-
ter.

Purpose and Scope

The effects of sanitary sewers on Long Island’s hy-
drologic environment have been well documented. Several
approaches to minimize these effects have been suggested,
one of which is streamflow augmentation, whereby water
pumped from the ground-water reservoir or, if available,
highly treated wastewater (reclaimed water) is discharged
into a dry-stream reach to provide streamflow.

The purpose of this report is to describe a study of
the hydrologic feasibility of using pumped ground water
to augment streamflow in a Nassau County stream that has
become dry as a result of lowered ground-water levels.
The report investigates the relationship between induced
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flow and (1) stream length, (2) infiltration rates, (3)
ground-water levels, (4) soil moisture in the unsaturated
zone during recharge, and (5) grain-size distribution of
streambed sediment. In addition, results of analytical com-
putations and computer simulation are compared with field
observations to reveal the major factors that control infilt-
ration rate and to help delineate their complex relation-
ship. The testing period covered 27 days from November
30 to December 26, 1979. Augmentation was conducted
at three different rates to investigate the hydrologic pro-
cesses under a variety of stress conditions. Water was pro-
vided at a constant rate of 1.00 ft*/s during the first 13
days, 1.64 ft*/s during the next 8 days, and 0.54 ft3/s dur-
ing the last 6 days.
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LOCATION AND DESCRIPTION OF
AREA STUDIED

The streamflow augmentation test was conducted at
Fosters Brook, an ephemeral stream near Franklin Square,
southwest Nassau County (fig. 2). The area is suburban
and surrounded by moderately to densely grouped single-
family houses.
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Figure 3. Generalized geologic cross section of Long Island (from McClymonds and Franke, 1972, p. 54).

water quality, and streambed composition. Streamflow
was measured periodically throughout the test at four
sites, and water-level measurements were made concur-
rently to determine the relationship between streamflow
and ground water.

Surface Water

Most of the water for stream augmentation was
pumped from a shallow well tapping the upper glacial
aquifer about 2,000 ft north of the study site, far enough
to avoid significant influence on ground-water movement
near the stream. The supply well was screened from 55 to
73 ft below land surface. Additional water was obtained
from Franklin Square Water District near the pump site.
The water was transmitted through underground storm
drains into Fosters Brook. Discharge was measured both
at the pump site and at the storm-drain discharge; com-
parison of values indicated no measurable loss of water
through pipe leakage.

Three rates of streamflow augmentation were sched-
uled to be used during the test: 0.50, 1.00, and 1.50 ft*/s.
Because of difficulty in regulating the pumping well, the
actual values of augmentation were 0.54, 1.00, and 1.63
ft*/s. Furthermore, because the capacity of the supply well
was approximately.1.00 ft%/s, an additional 0.64 ft*/s was
obtained from the fire hydrant near the pump site. As the
water for augmentation exited the storm drain, it flowed
through a 9-in wide by 15-in high Parshall flume. This,
combined with an analog stage recorder, enabled continu-
ous monitoring of the rate of augmentation. From there
the water flowed over a 50-ft concrete apron and into the
Fosters Brook stream channel (fig. 4).

During the test, streamflow and stage were mea-
sured at regular intervals at four additional sites spaced
300, 678, 1,159, and 1,929 ft from the start of flow (fig.
4). Stage was measured with a staff gage; discharge was
measured with current meters and wading rods. At the site
farthest downstream (which varied, depending on length
of stream at the time of measurement), discharge was
measured with a portable 3-in wide Parshall flume

Test Design and Procedures 5
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Figure 4. Location of observation wells, discharge-measurement sites, neutron-logger access holes, and water-quality sam-

pling sites. (The location of area is shown in fig. 2.)

whenever flow was low enough to avoid creating an artifi-
cally high stage. (If stage were raised by the flume, infilt-
ration rates in the area would be aitered by the higher hy-
draulic head.)

Because the length of a wetted channel of constant
width is proportional to the average rate of infiltration of
stream water into the aquifer, the length of wetted channel
was measured at least once a day during the test and more
often when the channel length was changing rapidly.
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Flow in the Unsaturated Zone

When flow augmentation was begun, the water table
was between 5 and 10 ft beneath the streambed throughout
the area. As water seeps through a streambed and moves
downward to the water table, it flows through a zone of
unsaturated material that to some extent determines the
rate of seepage through the streambed. (The relative posi-
tion of the streambed, the unsaturated zone, and the water



tables is depicted in fig. 5.) Analysis of flow through the
unsaturated zone indicates that both moisture content and
hydraulic conductivity of the material are functions of
pressure head. (Soil moisture is held between the soil
grains by surface tension; higher moisture content causes
lower surface tension and less negative pressure head, so
the reduced tension allows water to move between the soil
grains more freely. Thus the greater the pressure head, the
faster will be the infiltration through the unsaturated
zone.)

Because soil-moisture content plays an important
role in the rate of infiltration through the unsaturated
zone, a soil-moisture measurement system was incorpo-
rated into the data-collection network. Soil moisture was
measured directly beneath the streambed at sites 210, 325,
and 1,465 ft downstream from the start of flow (fig. 4)
with a neutron logger that provided a graph of soil mois-
ture with depth. (Neutron loggers measure soil moisture
with a probe containing a radiation source that produces
fast neutrons and detectors that are sensitive to slow neut-
rons. As the fast neutrons from the probe radiate out into
the soil and become scattered and slowed, some are re-
flected back to the detectors. Because the quantity of neut-
rons that become slowed depends primarily upon the
moisture content of the soil, the rate at which “slow neut-
rons” reach the detectors can be interpreted as the concen-

tration of soil moisture. Examples of soil-moisture logs
are given in fig. 9 and are discussed in the “Soil Mois-
ture” section.)

Ground Water

Streamflow augmentation where the water table is
below streambed altitude is “strip recharge,” which in
time produces a rise in ground-water level beneath the
streambed. This rise, or mound, will increase in height
until a new equilibrium is reached at which the rate of
ground-water movement away from the mound is equal to
the rate of recharge to the mound. The height and areal
extent of ground-water mounding was important to this
study for two main reasons: (1) If the mound were to rise
high enough it could cause local flooding in adjacent low-
lying areas and in basements of buildings constructed
since the stream originally went dry, and (2) the data pro-
vided a basis for use in analytical and mathematical mod-
els to predict the effects of a variety of stresses on infiltra-
tion rates.

The ground-water data-collection network consisted
of 26 wells screened between 5 and 10 ft below the re-
gional water table. (Locations are shown in fig. 4.) Three
wells (N 9622, N 9632, and N 9636) were drilled in the
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Figure 5. Relative position of the streambed, the unsaturated zone, the observation-well screens, and the water-table alti-
tude on November 30, 1979, just before streamflow augmentation, and on December 12, 1979, after 13 days of flow at

1.00 ft3/s. (The location of section is shown in fig. 4.)
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center of the stream channel to monitor the water table be-
neath the infiltration area and to determine whether the
water table would rise and intersect the stream channel
during the test.

All wells were measured by the wetted tape method
at regular intervals concurrently with stream-discharge
measurements. In addition, three wells (N 9622, at the
streambed; N 9624, 45 ft east of N 9622; and N 9642,
2,000 ft east of the start of flow) were equipped with con-
tinuous recorders to allow continuous monitoring of water
levels. Well N 9642 was used to monitor regional trends
beyond the affected areas and to provide a baseline for
data analysis.

RESULTS OF STREAMFLOW AUGMENTATION

Surface-Water Response

Stream-discharge measurements were obtained to
determine surface-water losses between gaging stations so
that the areal and temporal variation in infiltration rates
could be estimated, and linear regression analyses of the
discharge measurements were done to determine trends.
(Discharge values are listed in table 2.) Figure 6 depicts
linear regression plots of discharge at each measurement
site during augmentation rates of 1.00 and 1.63 ft’/s. Re-
gression analysis was not necessary for the 0.54 ft*/s rate
because flow was measurable only at site 1, where the
Parshall flume provided high accuracy and resulted in rel-
atively little scatter in the data.

During the first 13 days of the test, when augmenta-
tion rate was constant at 1.0 ft*/s, stream discharge at
each site decreased through time, as was evidenced by the
downward slope of the regression line in figure 6A. This
indicates that infiltration rates were increasing with time
and that discharge was decreasing by a corresponding
amount in each successive reach. The initial rapid increase
in infiltration rates resulted partly from the increase in
soil-moisture content and the corresponding increase in
hydraulic conductivity in the unsaturated zone. The chan-
nel at site 5, the farthest downstream, became dry during
the second day of the test as a consequence of increased
seepage loss.

Water Temperature

During the second part of the test, December 13-
20, in which the augmentation rate was constant at 1.63
ft3/s, a greater percentage of the flow reached sites 2 and
3 than during the first part of the test (fig. 6B). The dis-
charge regression lines for sites 2 and 3 have a positive
slope; that is, discharge was increasing with time, which
indicates a reduction of infiltration rate into the
streambed. In contrast, the regression lines for sites 4 and
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5 have a small negative slope, which indicates that dis-
charge was still decreasing and that infiltration rates were
increasing.

These trends could be real or may merely reflect the
large variation inherent in current-meter measurements. If
the trends are real, the increase in discharge at sites 2 and
3 could have been caused by a decrease in water tempera-
ture, which would retard infiltration rate. Water that was
used to supplement flow in the second part of the test was
obtained from Franklin Square Water District and is as-
sumed to have been colder because it was transmitted

Table 2. Stream discharge at four sites at Fosters Brook,
November 30-December 24, 1979
[All values are in cubic feet per second]

Measurement site'

Date Time 2 3 4 5
Nov. 30————- 1600 0.84 0.75 0 0
1800 0.87 0.79 0 0
2100 1.0 0.69 0.39 0.02
2300 0.94 0.70 0.38 0.10
Dec. 1 —————- 0200 0.94 0.72 0.36 0.11
0500 0.94 0.75 0.40 0.10
0700 0.90 0.71 0.39 0.09
1000 0.95 0.81 0.49 0.05
1300 0.99 0.84 0.49 0.01
1600 0.93 0.75 0.36 0
1900 0.94 0.79 0.47 0
2100 0.93 0.67 0.38 0
Dec.2 ————- 0030 0.88 0.67 0.40 0
0400 0.92 0.68 0.40 0
0700 0.91 0.65 0.39 0
1000 0.92 0.73 0.52 0
1300 0.92 0.66 0.41 0
1600 0.93 0.68 0.44 0
1900 0.90 0.68 0.28 0
2100 0.84 0.67 0
Dec. 3 ———-—— 0030 0.87 0.65 0.34 0
0400 0.84 0.66 0.31 0
0700 0.88 0.53 0.31 0
0900 0.93 0.73 0.29 0
1400 08 076 027 O
1800 0.81 0.73 0.39 0
2100 0.83 0.76 0.32 0
Dec. 4 ——————- 0100 0.83 0.67 0.30 0
0500 0.68 0.30 0
0900 0.82 0.68 0.26 0
1300 0.80 0.63 0.26 0
1700 0.81 0.62 0.30 0
2100 0.80 0.53 0.28 0



Table 2. Stream discharge at four sites at Fosters Brook, Table 2. Stream discharge at four sites at Fosters Brook,

November 30-December 24, 1979—Continued November 30-December 24, 1979—Continued
Measurement site? Measurement site’
Date Time 2 3 4 5 Date Time 2 3 4 5
Dec. 5§ ~————--- 0100 0.83 0.43 0.28 0 Dec. 13 —————— 0030 1.4 1.1 0.75
0500 0.78 0.49 0.25 0 0900 1.6 1.3 0.94 0.26
0900 0.79 0.53 0.23 0 2300 14 1.2 0.77 0.23
1400 0.70 0.54 0.24 0
1700 0.80 0.52 0.29 0 Dec. 14 ~—————- 0200 1.4 1.2 0.80 0
2100 0.80 0.60 0.27 0 0600 14 1.2 0.74 0
1000 1.4 1.2 0.80 0.22
Dec. 6 —————~~- 0100 0.81 0.54 0.24 0 1400 1.5 1.2 0.78 0.21
0500 0.76 0.55 0.24 0 1700 1.3 1.2 0.77
090 078 057 023 0 2100 1.4 1.2 072  0.21
1300 0.74 0.53 0.21 0
1600 0.77 0.59 0.26 0 Dec. 15 ——~~~—-—— 0030 1.4 1.2 0.80 0.21

0500 1.5 1.3 0.63  0.19

Dec. 7 ~————=mmm 0500 076 0.5 034 0 09%0 1.7 1.4 0.89 0.8
0900 0.79 0.56 0.27 0 1300 14 1.4 0.88 0.18
1300 0.78 0.57 0.22 0 1700 1.6 1.4 0.81 0.18
1700 0.81 0.56 0.22 0 2100 1.4 1.3 0.75 0.18
2000 0.77 0.56 0.20 0 2330 1.3 1.2 0.80 0.18
Dec. 8 ~-=-—-——- 0100 076 056 021 O Dec. 16 ——~~~-~- 0600 1.4 1.4 0.73  0.18
0600 0.74 0.53 0.21 0 0900 1.5 1.3 0.92
0900 0.70 0.57 0.21 0 1300 1.5 1.4 0.81
1300 0.72 0.49 0.21 0 1700 1.5 1.2 0.79
1600 070 047 025 0
2100 072 042 021 O Dec. 17 ———————- 1000 1.5 1.3 0.74  0.19
1300 1.5 1.2 0.78  0.18
Dec. 9 ———-—-—- 0100 0.71 045 0.18 0 1700 1.6 1.2 0.71  0.18
0500 068 039 018 0 2300 1.6 1.3 0.68 021
090 072 042 019 0
1300 0.67 040 017 0 Dec. 18 ~————-—- 0600 1.6 1.2 070  0.20
1700 0.71 033 021 0 0900 1.5 1.4 0.77  0.18
2100 0.69 032 018 0 1300 1.5 1.3 0.76  0.18
1800 1.5 1.3 0.69 0.18
Dec. 10 ——--—-—- 0100 0.67 037 017 0
0600 0.64 041 017 O Dec. 19 ——~-——- 0900 1.5 1.3 1.0 0.18
0%0 070 050 017 0 1300 1.5 1.3 0.75  0.18
1300 0.74 052 018 O 1700 1.5 1.3 0.74  0.18
1700 070 052 0.17 0
2100 073 051 016 0O Dec. 20 ——--—-- 1010 1.4 1.3 0.79
Dec. 11 ———~~——- 0100 0.74 0.53 0.16 0 Dec. 21 ~——mmmmem 0850 0.10 0 0 0
0500 0.78 051 015 0
0900 070 048 015 0 Dec. 22 ~—----—- 1025 022 0 0 0
1300 0.68 049 015 0
1700 072 049 015 0 Dec. 23 ~—--—- 0100 020 O 0 0
2100 0.72 0.51 0.15 0 0800 0.20 0 0 0
Dec. 12 ———————- 0030 072 047 015 0 Dec. 24 —— e 0035 020 0 0 0
0500 0.72 049 015 0 1230 029 0 0 0
090 074 050 014 0 1851 030 0 0 0
1600 1.4 1.2 0.78  0.23
1900 1.4 1.1 0.80 0.27
2100 1.4 1.1 0.80 0.22 'Site locations are shown in figure 4.

Results of Streamflow Augmentation 9
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Figure 6. Linear regression of stream discharge (A) at three sites during flow augmentation at 1.00 ft3/s, November 30-
December 12, 1979 and (B) at four sites during flow augmentation at 1.63 ft3/s, December 12-20, 1979. (Site locations are shown

in fig. 4.)

through pipes lying near land surface, probably within 10
ft, where it would have been cooled by the winter air tem-
perature. In contrast, water pumped from the well instal-
led for this study would have been warmer because the
local water table was approximately 25 ft below land sur-
face and was less susceptible to winter cooling. (Effects
of water temperature are covered in detail in a later sec-
tion, “Temperature.”)

If the water mixed from two sources were indeed
cooler during the second part of the test than during the
first, infiltration rates would decrease as a result of the
greater viscosity of the water and streamflow would de-
crease less rapidly. Moreover, because the water was
warmer than the winter air, it would be cooled as it
moved downstream and would produce still lower infiltra-
tion rates in the downstream reaches--a pattern not fully
supported by the data. Table 3 gives data on average in-
filtration rates for all reaches during each test period and
average infiltration rates for the entire test. Infiltration
rates in each reach were calcuated as follows. First, linear
regression analyses of the discharge data for each reach
and each augmentation rate were done to obtain a dis-
charge value for the middle day of each test period and
each reach. Seepage losses for each reach were then cal-
culated for each augmentation rate by determining the dif-
ference in stream discharge at successive downstream
sites. The seepage-loss values of each reach were then di-
vided by the approximate area of wetted channel to yield
an average infiltration rate per unit area. Comparison of
infiltration rates (table 3) reveals that they differed widely
from reach to reach, with no consistent trend toward

10 Streamflow Augmentation at Fosters Brook, New York

higher infiltration rates in the upper reaches. For example,
the infiltration rate on December 16 in reach A was 4.43
ft/d and in reach C it was 8.81 ft/d, 99 percent higher. In-
filtration rates in reach C also clearly reflected the change
in augmentation rate; for example, the infiltration rate on
December 6 (discharge 1.00 ft*/s) was 5.56 ft/d and on
December 16 (discharge 1.64 ft%/s) it was 8.81 ft/d (table
3), an increase of 58 percent.

These examples are extreme but are cited to indicate
the variability of infiltration rates during the test and also
the potential for error in interpreting discharge data. Infilt-
ration rates may vary along the stream for a number of
other reasons; for example, pools and riffles having large
differences in stream stage would produce local areas of
high and low infiltration rate, and local variations in
streambed composition would also cause local differences
in infiltration rate. Thus, water temperature alone was
probably not a major cause of spatial or temporal variation
in the infiltration rate at Fosters Brook; this variation
probably resulted from a combination of several factors,
of which temperature was only one component.

Wetted Channel Length

A further indicator of average infiltration rates over
the entire stream is total length of wetted channel. Stream
length (distance from augmentation site to beginning of
dry channel) was measured daily during the test period
and is plotted in figure 7. Thirteen hours after augmenta-
tion began on November 30 (1.00 ft¥/s), stream length had
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reached 2,050 ft. Thereafter it gradually shortened and by
December 12 was only 1,300 ft, a 36-percent decrease as
a result of increasing infiltration rate. Similarly, when the
augmentation rate was increased to 1.63 ft’/s on De-
cember 12, the stream extended to 2,719 ft, but by De-
cember 20, it had decreased to 2,154 ft. On December 20,
augmentation rate was reduced to 0.54 ft3/s, and that day
the stream shortened to 815 ft and remained at that length
until the test ended on December 26.

Duration of Wetting

The distribution of data points for the first two
periods of the test (fig. 7) indicates two distinctly different
hydrologic regimes. When the channel was initially wet-
ted, infiltration rates, as indicated by stream length, in-
creased in response to increasing soil-moisture levels, less

entrapped air in the unsaturated zone, and surface wetting.
As a result, stream length shortened quickly. After a few
days, however, the stream length began to stabilize as the
factors controlling infiltration rates approached equilib-
rium. The similarity of regression slope for days 1-6 with
that for days 15-17 reflects this tendency, and the same
is true of the curves for days 6-13 and days 17-20. The
number of days from the time augmentation began (or was
increased) until the break in slope was about 5 days in
both tests; the break in slope reflects the stabilization of
some major factor(s) controlling seepage rates from the
stream, most notably soil moisture in the unsaturated
Zone.

As was stated previously, stream length during the
first two periods of the test (1.00 and 1.63 ft*/s) decreased
rapidly then more gradually, but during the last part of the
test remained constant. The major controlling factor would
seem to be the wetting and saturation of the streambed and

Results of Streamflow Augmentation 1



Table 3. Infiltration rates calculated from linear regression for
five stream reaches at Fosters Brook in December 1979
[Location of reaches and sites is shown in fig. 4]

Infiltration rate (ft/d)

material beneath it. At the beginning of the test and at the
start of the second test period, a long channel length
(greater than 1,000 ft) was being wetted for the first time
in several days, whereas during the last test period, the
channel had been under water for 21 consecutive days.

Date Average of . .
(discharge, Reach Reach Reach Reach Reach all reaches This suggests that 21 day.S would have b‘een enough time
ft3/s) A B C D E (ft/d) for stream length at the higher augmentation rates to have
stabilized also. A graph of discharge in relation to stream
length as it approached stabilization is given in figure 8.
Dec. 6--— 5.62 5.04 556 5.77 Dry 5.50 Although the three data points in figure 8 are
(1.00) grouped closely about the line, implying close linear re-
Dec. 1 443 477 8.81 654 446 5.80 lationship between stream length and discharge, three
( 132'3) 6-— 4. : ) ) ) -8 points and zero discharge at zero flow are not enough to
' provide confidence in the relationship. Great caution must
Dec.23-—— 5.64 577 Dry Dry Dry 5.70 be exercised. in .the adoption of this simplified model tfe-
(0.54) cause any bias in measurements of stream length or dis-
charge would result in a biased regression coefficient. Al-
Average—— 523 5.19 7.18 6.16 4.46 5.67 though the relationship between stream length and dis-
charge may genuinely pass through the origin, it may not
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Figure 7. Wetted stream length in relation to the augmentation rate and lines of best fit as calculated by least-squares regression,

November 30-December 26, 1979.
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Figure 8. Relationship between stream length and discharge after stabilization, December 1979.

be linear over the whole range of discharge values. Ex-
trapolation of the regression line to higher flow values, for
example, to 10 ft*/s, would be even less certain because
larger discharges would increase stream stage and hydrau-
lic head, thus altering the relationship. The data in figure
8 indicate that infiltration rates at low discharge (less than
2 ft¥/s) are not sensitive to small changes in stage; rather,
the major controlling factor seems to be the numerous
pools and riffles along the stream channel. The stream
stage in various pools is controlled by the outlet elevations
from those pools and not by the discharge rate at low
levels of streamflow. At higher discharges, the pools and
riffles would no longer be significant, stream stage would
be the dominant factor. Furthermore, at low stages the
pools provide greater wetting and the riffles less wetting,
which causes the local variations in infiltration rate.

Relationship of Soil Moisture
to Infiltration Rate

After precipitation or some other form of surface re-
charge, the amount of water held in the interstices of the

soil in the unsaturated zone gradually decreases as a result
of draining and evapotranspiration. Because the rate of in-
filtration through the unsaturated zone is partly dependent
on soil moisture, prediction of infiltration rate requires
knowledge of the degree of saturation before infiltration
begins. As soil moisture increases in response to recharge,
the rate of infiltration through the unsaturated zone in-
creases until saturation occurs, at which time the rate re-
mains constant.

Soil moisture was measured at three sites before the
start of the test. Soil-moisture content in the unsaturated
zone ranged from 16 to 25 percent at access holes 1 and
2 (fig. 94 and B); at hole 3, it ranged from 19 to 32 per-
cent (fig. 9C). This difference is attributed to differences
in soil composition because access hole 3 seemed to be in
slightly finer grained material, which would have a higher
negative soil pressure head and therefore higher moisture
levels.

In the logs for all three access holes, moisture levels
peak at about 42 percent within the capillary fringe (just
above the water table), where the sediment is fully satu-
rated. At this depth the water has filled all available pore
space, and the moisture content is equal to the effective
porosity of the aquifer material.

Results of Streamflow Augmentation 13
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Figure 9. Soil-moisture logs showing moisture content of unsaturated zone beneath stream channel. A, Access hole 1
before the start of the test; B, access hole 2 before the start of the test; C, access hole 3 before the start of the test; D, ac-
cess hole 1 as the wetting front moved downward at the start of the test. (The location of access holes is shown in fig. 4.)
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As soon as streamflow was induced, water began to
infiltrate the streambed and move toward the water table.
(As water moves through the unsaturated zone, some is
held in place by tension forces, and as the amount held in
place increases, the tension forces decrease, allowing the
water to move more quickly.) To document this process
in detail, soil-moisture logs were run at access hole 1 sev-
eral times during the test. The initial soil-moisture level
beneath the streambed before the test averaged 20 percent.
After 6 hours of flow it had risen to 30 percent, but after
4 days it had risen only an additional 2 percent, to 32 per-
cent. After 20 days of flow, soil moisture had risen to 41
percent, almost the saturation level of 42 percent, but the
area beneath the stream never became totally saturated.

Water in transit to the water table through the un-
saturated zone causes the water table to rise rapidly be-
neath the recharge area because of a greatly reduced effec-
tive specific yield. The effective specific yield is equal to
the specific yield minus the soil-moisture level. In other
words, if the saturated level is 42 percent and the soil-
moisture level is 41 percent, the effective specific yield
(volume of pore space yet to be filled with water) is only
1 percent. Thus, a very small increase in soil moisture re-
sults in saturated flow.

A soil-moisture log run on December 23, after 24
days of testing and 3 days after the flow had been reduced
from 1.63 ft/s to 0.54 ft3/s, showed that moisture levels
had decreased to about 30 percent, the same level re-
corded in the first few days of the test. Evidently, the de-
creased flow produced slower infiltration rates, probably
because of lower water stage in the stream. Because the
high soil-moisture levels could no longer be maintained,
some of the stored moisture drained to the water table, re-
ducing the infiltration rate.

Additional soil-moisture logs were run after the end
of the test to obtain data on the subsequent decline in
moisture level. Streamflow was stopped on December 26,
and by December 31, the moisture level had decreased to
22 percent, just 2 percent above the initial level.

When the flow was begun, nine soil-moisture logs
were run at irregular intervals over a 6-hour period at site
1 to determine the rate of movement of the wetting front
through the unsaturated zone. (In figure 9D, the wetting
front is evident as a sharp increase in soil moisture at a
depth between 6 and 7 ft). During this period, the wetting
front traversed the unsaturated zone in about 5.5 hours at
arate of 11.2 in/h.

The rate of advance of the wetting front through the
unsaturated zone at Fosters Brook was much lower than
rates calculated for three recharge basins on Long Island.
Seaburn and Aronson (1974) calculated rates that range
from 18 to 74 in/h, and the average for all storms studied
at the basins was 40 in/h. Because these storms occurred
from November through March, the extreme difference
between infiltration rates at the basins and at Fosters

Brook is not attributable to temperature but to geohyd-
rologic differences. For example, the larger amounts of
fine-grained sands or clay beneath Fosters Brook would
produce significantly lower infiltration rates. (Grain-size
distribution is discussed in the “Streambed Composition”
section.) Also, the depositional environment in the stream
is considerably different from that in a recharge basin in-
asmuch as stream deposition occurs in moving water,
whereas deposition in the recharge basin occurs in stand-
ing water. This would affect the orientation of the sedi-
ment as it settles out. Furthermore, recharge basins are lo-
cated in areas favorable to infiltration of water and are
scoured and cleaned routinely to maintain high infiltration
rates.

Ground-Water Response

Ground-water levels near Fosters Brook began to
rise as soon as the wetting front reached the water table,
as evidenced by measurements at well N 9622, in reach
A at the center of the streambed (fig. 4). During the first
12 days, water levels rose sharply, but thereafter they rose
more slowly and at some wells eventually declined. The
maximum rise was 6.47 ft in well N 9627, located 14 ft
east of the stream and 225 ft downstream from the start
of flow, on December 13. Although the range of water-
level change at N 9627 was greater than it was in most
other wells in which maximum change was generally less
than 3 ft, the overall trend at all wells was similar, as was
indicated by a hydrograph of wells N 9624, N 9622, and
N 9642 (fig. 10).

The influence of recharge can be readily seen as a
rise in water levels along the entire stream length. For ex-
ample, water levels in reach E (wells N 9634, N 9635,
and N 9639) rose in response to the arrival of streamflow
and decreased rapidly when stream length receded. (Well
records are given in the appendix, at the end of the re-
port.)

The areal extent of ground-water mounding could
not be closely defined because the wells were insufficient
in number and distribution. (The density of housing pre-
cluded installing wells where they might have helped to
define the ground-water mound; drilling operations were
thus confined to the narrow right-of-way along Fosters
Brook and outlying streets where a drill rig could be man-
euvered.) However, the data indicate that the mound was
of relatively limited width and that it dissipated quickly
with distance from the stream. The hydrographs in figure
10 indicate that well N 9624, 45 ft from the stream, rose
a maximum of 1.75 ft and that well N 9622, directly in
the streambed, rose 3.91 ft. Beyond 45 ft, net change in
water levels decreased even more rapidly with distance;
for example, none of the nearby houses (within a few
hundred feet) were affected by the ground-water mound,

Results of Streamflow Augmentation 15
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Figure 10. Water-level measurements obtained in three wells with continuous recorders during a streamflow augmentation test,
November 30-December 26, 1979. Well N 9622 is in reach A at the center of the stream, N 9624 is 45 ft east of the stream, and
N 9642 is 2,000 ft east of the stream. (Locations are shown in fig. 4.)

and at well N 9642, 2,000 ft from the stream, no response and to the bend in stream channel just north of well N
to augmentation was discernible. 9625 (fig. 4). In addition, the wells were not drilled to

At three sites along Fosters Brook, a pair of wells exactly the same depth below the water table. (Because a
was drilled equidistant from the stream center. These were ground-water mound had formed, flow was three dimen-
wells N 9621 and N 9623 in reach A, wells N 9626 and sional, that is, radial and downward away from the center
N 9627 in reach A, and wells N 9629 and N 9630 in reach of the mound, so that wells screened at different depths
C (fig. 4). Comparison of water levels on either side of would indicate different pressure heads.) Thus, the
the stream (Appendix) indicates that the ground-water ground-water mound could be expected to be symmetrical
mound was not symmetrical in relation to the center of the only under ideal conditions, that is, with uniform areal re-
stream channel nor was the amount of ground-water charge from the stream and an isotropic, homogeneous
mounding uniform along the channel length. For example, porous medium. At Fosters Brook, recharge was not uni-
the difference between net water-level increase at the two form along the length of the stream, as exhibited by the
wells of each group from November 30 to December 12 variation in infiltration rates (table 3) both longitudinally
was as follows: and transversely, and in addition, the aquifer material was
neither isotropic nor homogeneous. Thus, a certain degree

reach A (N 9621 and N 9623): 0.40 ft of asymmetry is to be expected.

reach A (N 9626 and N 9627): 0.90 ft
reach C (N 9629 and N 9630): 1.29 ft
FACTORS AFFECTING SEEPAGE RATES
In addition, water levels were consistently higher on
the east side of the stream than on the west. This discre- Much of the information presented thus far demon-
pancy is attributed to variation in streambed composition strates the variability of rate at which water will seep from
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the stream channel into the aquifer. As was explained ear-
lier, several factors influence these seepage rates, some of
which are (1) composition of the streambed and aquifer,
(2) soil-moisture conditions, (3) water temperature, (4)
stream stage, and (5) clogging of streambed. An under-
standing of the relationship among these factors is neces-
sary to evaluate the feasibility of streamflow augmentation
at any given site.

Streambed Composition

Composition of the streambed and surrounding
aquifer determines the basic characteristics of seepage
from the stream. Variations in composition will produce
local differences in seepage rate from the stream; for ex-
ample, seepage will be much slower where sediments con-
sist of silt and clay than in areas of coarse sand and
gravel.

Samples of streambed sediment were collected at 11
sites along Fosters Brook for grain-size distribution

analyses to be related to seepage rates in this study and to,

provide data for studies on other streams.

Streambed samples were taken at 250-ft intervals
along the stream channel. At each site one sample was
collected at the center of the stream with a small hand
shovel from a depth less than 2 in., and another was col-
lected in the same manner from the 6- to 8-in. depth inter-
val. At a site 500 ft downstream from the point of flow
augmentation, an additional sample was collected from the
3- to 5-in. depth interval because the sediment there
seemed to differ considerably from that in the rest of the
reach. Results of the grain-size analyses are listed in table
4; a graph (fig. 11) depicts results of the grain-size
analyses as average percentages for all samples in the
given grain-size ranges. The unshaded area above and
below an individual bar represents the range from the
highest to lowest percentage encountered in each grain-
size group. For example, in the column representing the
grain-size range from 8 to 4 mm, the highest percentage
of grains of that size among all samples was 74 percent
and the lowest was 1.02 percent. The average of all sam-
ples in the 8- to 4-mm range was 32.46 percent by
weight, as indicated by the bar.

The largest range in percentage of total sample
weight was in the 8- to 4-mm size group (1-75 percent)
followed by the 0.5- to 0.25-mm group (7.5-46.5 per-
cent). In addition, the average percentage in these two
groups (32.5 and 20.5, respectively) are the highest of all
size fractions examined (fig. 11), which indicates that
gravel and sand form the largest percentage of streambed
sediment. The smallest range in percentage of total sample
weight was in the 0.125- to 0.063-mm and the < 0.063-
mm groups (the silts and clays), both from 0 to 4 percent.
These groups also form the smallest average percentage of

total weight in the samples (1 percent and 0.8 percent, re-
spectively).

The small range in amount of silt and clay contained
in samples (<0.125 mm) may be misleading in relation to
their influence on infiltration rate. In poorly sorted aquifer
material, the permeability is generally controlled by the
amount of clay because the fine particles occupy the inter-
stices between larger particles and inhibit the flow of
water. Even small amounts of silt and clay can retard this
flow, therefore, small differences in silt and clay content
can produce large differences in permeability. However,
the permeability of the streambed depends also upon
shape, size, compaction, and distribution of the silts and
clays; therefore, grain-size analysis alone is not sufficient
to determine permeability of the source material.

Comparison of grain-size data from Fosters Brook
with data from another stream to predict results of
streamflow augmentation could be of questionable value
owing to differences in depositional environment and the
source of material available to the streams. Fosters Brook
is no longer a natural stream channel such as is found
elsewhere on Long Island because flow occurs only during
storms, and this flow as well as most of the sediment is
derived from local surface runoff instead of the natural
stream deposits. The washed-in sediment is coarser and of
a different color than that typical of perennial Long Island
streams; also, the streambed contains broken glass and
trash to depths as great as 6 in. The washed-in material
may have significant bearing upon seepage rates; how-
ever, this was not investigated.

Soil Moisture

As was discussed earlier, both soil-moisture content
and hydraulic conductivity are functions of pressure head,
and as soil moisture increases, hydraulic conductivity also
increases. This is described by Darcy’s Law for one-di-
mensional flow in an unsaturated isotropic soil:

0=-k®3 M

where

Q is flow through an unsaturated medium,
K is hydraulic conductivity,
¥ is pressure head, and

dh i gradient.
ax

This relationship implies that, given a constant gradient,
flow rate increases as soil moisture (and consequently
pressure head) increases.

Factors Affecting Seepage Rates 17



Table 4. Grain-size distribution analysis of streambed samr
[Weight columns indicate absolute weight held by each sieve, in gr

Grain—-size range, in millimeters

Sample
source 8 -4 4 - 2.8 2.8 -2 2 -1
Distance
from start Depth
of flow interval
(ft) (in.) Weight Percent Weight Percent Weight Percent Weight Perce
0 0 -2 22.62 17.96 4.75 3.77 7.11 5.65 18.58 14.75
6 -8 47.93 26.19 7.72 4,22 15.01 8.20 42,64 23.30
250 0 -2 57.65 39.45 11.67 7.99 14.10 9.65 26.72 18.29
6 -8 76.52 41,70 15.93 8.68 14.75 8.04 26.02 14.18
500 0 -2 74.66 36.32 25.18 12.25 20. 34 9.89 30.16 14.67
3 -5 9.54 8.79 3.11 2.87 2.91 2.68 12.30 11.34
6 -8 31.71 20.85 5.01 3.29 6.20 4.08 15.45 10.16
750 0 -2 26.15 16.02 8.42 5.16 9.47 5.80 18.57 11.37
6 -8 60.13 30.56 9.96 5.06 10. 47 5.32 22.84 11.61
1000 0 -2 81.11 49.30 11.90 7.23 10.42 6.33 19. 42 11.80
6 -8 25.19 16.82 5.02 3.35 4.25 2.84 6.71 4.48
1250 0 -2 105. 00 50. 84 13.92 6.74 11.03 5.34 18.08 8.75
6 -8 84.99 52.06 9.50 5.82 8.06 4.94 13.35 8.18
1500 0 -2 104.95 48.78 13.97 6.49 13.66 6.35 24,78 11.52
6 -8 147.92 74.00 4,41 2.21 3.06 1.53 6.01 3.01
1750 0 -2 90.61 47,22 12,42 6.47 9.64 5.02 18.57 9.68
6 -8 1.19 1.02 1.32 1.13 2.02 1.73 6.82 5.85
2000 0o -2 55.51 28.75 13.44 6.96 14.16 7.33 31.70 16.42
6 -8 27.13 14.69 11.12 6.02 13.17 7.13 26.74 14.47
2250 0 -2 62.96 33.74 6.54 3.50 5.95 3.19 11.79 6.32
6 -8 6.76 3.96 4,31 2.52 7.61 4.45 23.85 13.95
2500 0o -2 104.15 51.81 11.78 5.86 8.43 4.19 15.97 7.94
6 -8 60. 89 35.67 10. 80 6.33 10.51 6.16 18.07 10.58
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l'osters Brook, Nassau County, N.Y., December 1979
~2nt columns indicate percentage of composite sample weight)

Grain-size range, in millimeters

1-0.5 0.5 - 0.25 0.25 - 0.125 0.125 - 0,063 < 0.063
“aight Percent Weight Percent Weight Percent Weight Percent Weight Percent
“7.59 21.91 32.31 25.66 11.78 9.35 0.94 0.75 0.25 0.20
+2.66 23.32 24,73 13,52 1.71 0.93 0.38 0.21 0.19 0.10
«<1.88 14.97 9.98 6.83 2.51 1.72 1.11 0.76 0.50 0. 34
"2.04 17.46 16.26 8. 86 1.44 0.78 0.33 0.18 0.19 0.10
"5.99 17.51 16.93 8.24 1.76 0.86 0.36 0.18 0.16 0.08
<9.06 26.78 33.43 30.81 11.04 10.17 4,21 3.88 2.91 2.68
«5.22 16.58 47.24 31.06 15.42 10.14 2.78 1.83 3.08 2.02
“0.99 25,11 52.70 32.28 5.66 3.47 0.65 0.39 0.65 0.39
22.08 26.47 37.88 19.25 2.52 1.28 0.49 0.25 0. 36 0.18
23.51 14,29 14.80 8.99 2.20 1.34 0.59 0. 36 0. 56 0.34
'6.43 10.97 52.06 34.76 34.42 22.98 4.55 3.04 1.13 0.75
28,21 13. 66 25.41 12.30 3.04 1.47 0.90 0.44 0.95 0.46
“ho4l 8.83 21.52 13.18 9,31 5.70 1.38 0.85 0.72 0.44
34.00 15.80 21.75 10.11 1.36 0.63 0.32 0.15 0. 34 0.16
"4.39 7.19 19.59 9. 80 3.08 1.54 0.86 0.43 0.56 0.28
28.47 14,84 29.02 15.12 2.31 1,20 0.42 0.22 0.41 0.21
25.44 21,83 54.14 46.46 16.49 14,15 4,46 3.83 4.65 3.99
50. 56 26.18 26.36 13.65 0.78 0.40 0.25 0.13 0.35 0.18
49.82 26.97 50.83 27.52 5.01 2.71 0.54 0.29 0.34 0.18
31.40 16.83 59.81 32.05 6.80 3.64 0.66 0.35 0.71 0.38
47.39 27.73 61,51 35.99 13.38 7.83 3.12 1.83 2.98 1.74
33,27 16.55 26.13 12,99 0.93 0.46 0.15 0.07 0.21 0.10
25,47 14,92 31.62 18.52 8.97 5.25 2.25 1.32 2.14 1.25
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Figure 11. Grain-size distribution of streambed sediment in
Fosters Brook. A bar indicates the average grain-size fraction
among all samples. The unshaded area represents the range of
values in a grain-size fraction among all samples.

Within a limited range of recharge (infiltration)
rates, soil moisture varies in response to recharge. The
change in soil-moisture content at neutron-logger access
hole 1 during and shortly after the augmentation test is de-
picted in figure 12. On the first day of the test, soil mois-
ture increased abruptly from approximately 20 percent to
approximately 30 percent (see also fig. 5), and from days
2 to 15 it continued to increase because seepage from the
stream was faster than flow through the unsaturated zone.
By the 15th day (December 14), soil moisture had reached
a peak of about 41 percent, which represents saturated
flow under negative pressure head or unsaturated flow
very close to the effective porosity of the aquifer. After
day 21, soil moisture decreased in response to the abrupt
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decrease in augmentation rate. At the lower augmentation
rate (0.54 ft’/s), stream stage declined, and seepage
through the streambed decreased as a result of the lower
pressure head. This lower seepage rate was not sufficient
to maintain the nearly saturated flow conditions above the
water table, and soil moisture decreased accordingly. In
time, a new soil-moisture equilibrium for this new re-
charge rate would have been reached.

The decrease in soil moisture after the streamflow
rate was reduced indicates that the soil-moisture level was
controlled by the rate of seepage from the stream and that
seepage rate was more dependent on pressure head at the
streambed than on soil-moisture content in the unsaturated
zone, although the reverse may be true at certain times,
such as during the initial wetting phase at the start of au-
gmentation.

Temperature

Changes in water temperature alter the viscosity of
water and thus affect the rate of flow through an aquifer.
Hydraulic conductivity of an aquifer can be expressed as

K=k Q8

p @

where

K is hydraulic conductivity,

k is intrinsic permeability,

o is density of water,

g is gravitational constant,

p is kinematic viscosity of water

and density (p) and kinematic viscosity () are temperature
dependent.

Although the changes in density and viscosity of
water resulting from seasonal extremes in air temperature
are not great, they can have a significant effect on the rate
of infiltration. During the initial phase of flow augmenta-
tion, when water was derived solely from the nearby well,
the stream temperature was 14°C. If this were to decrease
by 2°C, hydraulic conductivity would decrease by approx-
imately 5-6 percent (from eq. 2).

During the second phase of the test (days 13-21),
when additional water was supplied by Franklin Square
Water District to increase the flow, the added water was
presumably colder than the well water so that when the
two were mixed the temperature would have dropped
about 2°C. The hydrograph of well N 9622 (fig. 10) sub-
stantiates this assumption because when the additional
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Figure 12. Average soil moisture beneath streambed at neutron-logger access hole 1, November 30-December 31, 1979. (The

location is shown in fig. 4.)

water was added to the stream on day 13, the water level
in the well began to decline, and on day 21, when the ad-
ditional water was shut off, the water level rose. This
water-level response reflects changes in infiltration rates
that are inconsistent with a stream stage (discharge)/infilt-
ration rate relationship until the effects of temperature are
considered.

Temperature of stream water will also fluctuate
daily and seasonally in response to air temperature. De-
spite wide variations in air temperature from day to day,
an overall trend was determined from a 5-day moving av-
erage by the following procedure. First, the mean daily
values for the first 5-day series were averaged, and that
value was assigned to the last day of the S5-day period.
The next 5-day series began with day 2 of the first group
and ended with day 6 of the test, and the mean daily
values for that group were averaged. The process was
continued until the period of interest had been covered.

Mean daily temperatures were obtained from the weather
station, which is maintained by the U.S. Department of
Commerce, National Oceanic and Atmospheric Adminis-
tration, at Mineola, N.Y. (fig. 1); the record derived by
this method is shown as a graph in figure 13. The trend
of mean daily air temperature (fig. 13) shows a general
similarity to the hydrograph of well N 9622 (fig. 10).
Even though air temperature is only partly responsible for
the changes in infiltration rates and water levels, a correla-
tion seems evident.

The effect of ambient temperature on stream water
is also evidenced by a change in seepage rates from the
stream during several periods of rainfall. Rain fell on De-
cember 6-7, 13, 16-17,19, and 24-25, and each storm
was intense enough to generate overland runoff and to in-
crease flow through the stream channel. Early in each
storm, ground-water levels within 50 ft of the stream rose
sharply but peaked and began falling before the storm had
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Figure 13. Five-day moving average of mean daily air temperature at Mineola, N.Y., November 30-December 30, 1979. Data are
from U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

ended, and shortly after the end of each storm, water
levels resumed the trend they had exhibited beforehand.
The temporary decline in water levels during each
rainstorm (fig. 10, well N 9622) is attributed to a decrease
in seepage rates during the storm in spite of the elevated
stream stage. These decreases were probably caused by a
lowering of water temperature by the addition of winter
runoff, which was substantially colder than the ground
water being pumped for the test.

The above example implies a strong correlation be-
tween infiltration rate and water temperature. The relation-
ship between temperature and water density and viscosity
is not linear, and as the temperature approaches freezing,
the viscosity and density increase faster. During the
storms mentioned above, the water falling as precipitation
was just above 0°C, the range in which temperature
changes would have the greatest effect.

Other Factors

Algae

A moderate growth of algae developed on the
streambed during the stream-augmentation test. In warm
weather the algae might eventually become thick enough
to reduce seepage rates from the streambed, but because
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the test was relatively short and the season not conducive
to algal growth, its effect on seepage rates could not be
determined. However, it may be advisable to study the ef-
fect of algal growth on seepage rates before major deci-
sions concerning streamflow augmentation are made.

Chemical Reactions

To determine chemical interactions between the
water and the streambed sediments that might affect seep-
age rates or the quality of stream water, water samples
were taken at three sites. Results of these analyses are
listed in table S.

The change in chemical character of the water as it
moved downstream was relatively small. Some con-
stituents showed no change at all, and among those that
showed a change, the differences were probably within
the range of laboratory precision or where zero is the re-
ported value, the actual value is below detection limits.
The only changes of any significance were in dissolved
iron, manganese, and pH. Dissolved iron was 20 pg/L at
the upstream site and was below detection limit at the two
downstream sites. Manganese was 210 pg/L at the up-
stream site and had decreased to 160 pg/L at the down-
stream site, and pH decreased from 6.5 to 6.0 between the
upstream and downstream sites. Even though these



Table 5. Chemical quality of water in Fosters Brook, Nassau County, N.Y. during flow augmen-

tation, December 19, 1979
[Site locations are shown in fig. 4]

Concentration or value

Constituent or characteristic Unit of measure Site 1 Site 3 Site 5
Alkalinity, total (CaCO3) mg/L 33 32 31
Calcium (Ca) mg/L 16 17 17
Chloride (Cl) mg/L 20 20 19
Fluoride (F) mg/L 0 0 0
Hardness, noncarbonate mg/L 21 24 25
Hardness, total mg/L 54 56 56
Iron, Dissolved (Fe) ug/L 20 0 0
Iron, Suspended (Fe) pg/L 40 40 40
Magnesium, dissolved (Mn) mg/L 33 3.3 33
Maganese, total (Mg) pug/L 210 200 160
Nitrite NO, (as N, total) mg/L 0.01 0.01 0.01
Nitrate NO; (as N, total) mg/L 4.5 5.1 5.0
Nitrogen NH, (as N, total) mg/L 0 0 0
Nitrogen NO; (as N, dissolved) ~——~—-—~———~ mg/L 0.01 0.01 0.01
Nitrogen NO;j (as N, dissolved) ~——~-———~-———~ mg/L 4.0 5.3 4.1
Nitrogen, total (as N) mg/L 4.7 5.5 5.2
Nitrogen, total organic (as N) —-~—~——-~——-—~ mg/L 0.21 0.39 0.18
Nitrogen (as NHy, total) mg/L 0.0 0.0 0.0
pH 6.5 6.3 6.0
Phosphate, total (as P) mg/L 0.01 0.01 0.01
Phosphorus, total (as P) mg/L 0 0 0.01
Phosphorus, total (as POy) mg/L 0 0 0.03
Potassium, dissolved (K) mg/L 2.0 2.0 2.1
Silica, dissolved (Si) mg/L 12 12 12
Sodium adsorption ratio 1.1 1.0 0.9
Sodium, dissolved (Na) mg/L 18 17 16
Specific conductance pmho/cm 215 210 225

@25°C
Sulfate, dissolved (SOy4) mg/L 28 27 27
changes are minor, they could affect the streambed sedi- ANALYSIS

ments and in turn alter seepage rates from the stream
channel, possibly through clogging of the streambed by
precipitate.

Impoundments

Artificial impoundments may locally increase seep-
age rates from the stream by raising the stream stage and
therefore the hydraulic head driving the water into the
aquifer. Fosters Brook contains several artificial impound-
ments that have been created behind cement spillways
where storm drains emptied into the stream. The normal
depth of the stream during augmentation was usually less
than 0.5 ft, but behind the spillways it reaches 1 or 2 ft
during periods of runoff. However, determination of the
effect of impoundments on local seepage rates was beyond
the scope of this study.

The hydrologic mechanisms involved in stream au-
gmentation are highly variable and interact in a complex
manner that is as yet poorly understood. To assess the
workings of these factors during flow augmentation and to
evaluate their effects individually and collectively, field
data were compared with solutions from both analytical
and numerical models.

Analytical Solution

Analytical expressions to determine the growth of
water-table mounds beneath recharge sites have been pre-
sented by Bittinger and Trelease (1965), Hantush (1967),
and Marino (1974). The expression selected for this analy-
sis, presented by Glover (1966), is an adaptation of
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Darcy’s Law, the basic ground-water flow equation, and
is written as

Ol

__ 4. ®
vaaf

3

where

h is change in head (ft),
g, is rate of recharge (ft3/s),
x is distance from center of stream (ft),
K is aquifer hydraulic conductivity (ft/d),
D is aquifer thickness (ft),
KD is aquifer transmissivity (ft2/s),
a is KD/V where V is the specific yield (ft2/s),
and
t is time since recharge began (s).

This solution assumes an isotropic, homogeneous
aquifer and uniform seepage rate from a straight channel
of infinite length. Percolation beneath the recharge site
(streambed) is vertically downward to the water table, and
the space which can be filled is a constant equal to the
drainable porosity. The analysis of flow in this case
examines only one-dimensional flow beneath the water
table.

Glover’s solution (1966) was applied to a hypotheti-
cal well 45 ft from the center of the stream channel, simi-
lar to well N 9624 in reach A (fig. 4). This distance was
chosen to avoid the following problems in mathematical
representation of the system: (1) changes that develop in
pore space which can be filled beneath the recharge area
during infiltration, (2) flow in more than one dimension
near the recharge mound, and (3) anisotropy of streambed
and unsaturated zone and aquifer.

Analysis of ground-water mounding at adequate dis-
tance from the recharge strip (streambed) minimizes the
disparity between the fillable pore space and the drainable
porosity of the aquifer. For example, when the unsatu-
rated zone is under conditions similar to those beneath the
streambed, recharge causes soil moisture to increase and
fillable porosity to decrease as a result of in-transit water,
but the potentially drainable porosity remains the same.
Thus, if soil moisture in the unsaturated zone were to rise
to 30 percent through recharge and the total drainable
porosity were 35 percent, the fillable pore space beneath
the recharge area would be only 5 percent. The effect of
this decrease in the pore space yet to be filled would be
that the ground-water mound would rise more rapidly than
was predicted by analytical solutions that do not consider
this phenomenon. In addition, flow in two or three dimen-
sions instead of one, as assumed by Glover’s solution,
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would also cause a more rapid rise in the ground-water
mound than was predicted, as evidenced by water levels
ohserved in well N 9622 (fig. 10), which rose much more
quickly than was predicted by Glover’s solution.

A comparison of Glover’s solution with measured
water-level change at well N 9624 is given in figure 14.
Aquifer characteristics used in this analysis were hydraulic
conductivity of 200 ft/d, specific yield of 0.35, and
aquifer thickness of 70 ft.

Initial calculations used an average recharge rate
that had been determined from seepage rates calculated
from the regression analysis of streamflow measurements
(fig. 6); the resulting analytical solutions showed the
ground-water mound to be rising more rapidly than the
field data indicated. A different approach was then used,
whereby a recharge rate was calculated for each day,
again from the regression analysis; this method more ac-
curately simulated the water-table rise observed through
the first 12 days of the test.

When the augmentation rate was increased from
1.00 to 1.63 ft¥/s on day 13, ground-water levels began
to decline partly as a result of slower infiltration rates (fig.
9) caused by the lowered water temperature. In the analyt-
ical solution for days 13-20, infiltration rate was reduced
by 30 percent, considerably more than the calculated 5-
percent reduction, in an attempt to represent the assumed
real-world conditions; but still the predicted water-level
decline was smaller than the observed decline at well N
9624. In fact, the predicted water level declined for only
1 day and then began to rise again. The analytical proce-
dure was not extended to the third period of testing be-
cause water levels and overall trends were not being simu-
lated, and the results would therefore have been meaning-
less.

The analytical solution can accurately predict
changes in water level only if the values used for aquifer
characteristics and seepage rates are correct. Because the
change in water levels during the second phase of the test
was not accurately predicted (the decrease in infiltration
rate as a result of lower water temperature was not suffi-
cient to account for the decline in water levels), some ad-
ditional factor governing infiltration--possibly hydraulic
characteristics of the streambed combined with the be-
havior of flow in the unsaturated zone--is indicated.

Numerical Model

Computer simulation was done with a three-dimen-
sional numerical model presented by Trescott (1975)
which represents flow at or beneath the water table but not
in the unsaturated zone. Even so, the model provides a
more useful representation of the flow system than the
analytical solution because it simulates flow in three di-
mensions and can also represent a finite stream channel.
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Figure 14. Observed water-level change in well N 9624, 45 ft from the center of the stream, in comparison with change pre-
dicted by Glover’s solution for a hypothetical well similarly located.

Model water levels were set at zero elevation at the
start of simulation, and all changes calculated by the
model represent net change in water-table elevation. The
simulation represented only one side of Fosters Brook be-
cause ground-water flow was assumed to move symmetri-
cally away from the center of the recharge strip
(streambed).

The numerical model uses a variable grid spacing,
as depicted in figure 15. The area modeled is surrounded
by constant-head boundaries on three sides, and the center
of the stream is represented by an impermeable boundary.
The aquifer system is represented as six layers: layer 1
(bottom layer) represents the Magothy aquifer, 700 ft
thick; layer 2 represents a Pleistocene clay, 10 ft thick, of
limited areal extent but continuous throughout the mod-
eled area; and layers 3—6 represent the saturated thickness
of the upper glacial aquifer with thicknesses of 20, 20, 15,
and 10 ft, respectively. (The Raritan clay is considered a
no-flow boundary because flow through it is minimial.)

The water-transmitting properties of the aquifers in
the modeled area were assumed to be areally uniform. Hy-
draulic conductivity and storage coefficients for the
Magothy aquifer were obtained from Franke and Cohen
(1972); hydraulic conductivity and storage coefficients for
the clay layer were assumed to be similar to those of the
Gardiners clay, an extensive Pleistocene unit described
also in Franke and Cohen (1972). Values of hydraulic

conductivity and specific yield for the upper glacial
aquifer were those used in the analytical solution previ-
ously discussed.

As was discussed earlier, water in transit through
the unsaturated zone reduced effective specific yield be-
cause it occupies part of the drainable pore space. The
model accounts for this phenomenon by reducing the spe-
cific yield in the streambed nodes to 0.2 times the value
used elsewhere in that layer.

Seepage from the stream channel into the aquifer
could not be simulated directly by the numerical model
and was therefore represented as wells injecting water into
the uppermost layer of the model. The stream was simu-
lated by two nodes in each row acting as injection wells;
these nodes are identified in figure 15 as stream channel.
Injection rates were based on stream-length data (fig. 7)
and stream-discharge measurements (table 2). Simulation
of the augmentation test was divided into three pumping
periods that correspond to the three different rates of
stream augmentation. Average seepage rate for each of the
five reaches was calculated as follows: (1) linear regres-
sion analysis was done on discharge data obtained by
streamflow measurements given in table 2, (2) discharge
values for the middle day of each of the three pumping
periods was calculated by the linear regression equations,
(3) seepage loss per stream reach was calculated as the
difference between discharge values measured at the upper
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and lower end of each reach, (4) seepage rate per unit area
of stream channel was calculated by dividing seepage loss
for each reach by the area of the reach, and (5) the appro-
priate injection rate for each node was calculated from the

area represented by each individual block. The total

stabilized stream length for each pumping period was ap-
proximated as closely as the model grid would allow.

As was stated previously, the principal goal of the
model simulation was not to obtain a precise prediction of
water levels but to compare simulated trends and re-
sponses with observed data to observe and assess the dy-
namics of factors governing the ground-water response to
flow augmentation.

Simulated water levels were within an order of mag-
nitude of observed values, and ground-water trends ob-
served in two of the three test periods were successfully
duplicated by the three-dimensional model. Figure 16
compares water levels at well N 9624 (fig. 4) with simu-
lated water levels in a hypothetical well similarly located.
The simulated water levels rise more sharply than the ob-
served levels over the first 4 days of the test, but from
days 4 through 12, the observed levels rise more sharply
than the simulated levels. This discrepancy is attributed to
use of an average infiltration rate for the entire 12-day
period when in fact that rate of infiltration was increasing,
as is indicated by trends depicted in figure 6.

Simulated water levels from days 20 to 26 also fol-
low the general observed water-level trends, rising at the
beginning of the new pumping period and falling after the
first few days; total simulated change in water levels dur-
ing this 6-day period is also fairly close to the observed
change. Simulated water levels from days 12 to 20 do not
follow the observed trend; the simulated levels drop
slightly on day 13 but slowly rise over the next 7 days,

whereas observed water levels fell steadily from beginning
to end. This discrepancy is similar to that produced by the
analytical equation (fig. 14); in both cases the error is at-
tributed to exclusion of factors affecting infiltration at the
streambed and in the unsaturated zone.

Alternatively, the infiltration (recharge) rates used
in the numerical model, which were obtained from the
linear regression of discharge measurements (fig. 6), may
be in error because of the inherent variability of
streamflow measurements. However, when the recharge
rate in the analytical solution discussed previously was
changed to account for the decrease in water temperature,
the result was similar to that produced by the three-dimen-
sional model.

When the entire 27-day test period was simulated,
water level at the hypothetical well on the last day was
close to the observed level at well N 9624, with a differ-
ence of less than 0.3 ft. However, simulated and observed
water levels near the start of flow differ significantly, as
indicated by the water-level net change contours in figure
17. The observed water-level changes are asymmetrical
about the center of the stream channel, especially at wells
N 9626 and N 9627, near the lower end of reach A (fig.
4), where the water-level increases were 1.7 and 6.2 ft.
This asymmetry reflects the heterogeneity of streambed
sediments and the corresponding variation in hydraulic
conductivity; under ideal conditions the ground-water
mound beneath the stream would develop symmetrically
around the center of the streambed. Thus, it is probable
that the source of error in the model representations is
local variation in hydraulic conductivity of streambed and
aquifer.

In an idealized flow system, the area of greatest
water-level rise would be beneath the stream channel
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Figure 16. Comparison of the observed water-level change in well N 9624, 45 ft from the center of the stream, with change simu-

lated by a three-dimensional numerical model for a well similarly located.
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Figure 17. Net increase in ground-water levels near Fosters Brook after 27 days of streamflow augmentation, as simulated by
a three-dimensional numerical model. A, general view. B, detail of upper reaches.

about 400 ft downstream of the point of flow augmenta-
tion. However, model response does not conform to ob-
served data, as evidenced by wells in the center of the
stream channel (N 9622 and N 9632 in reaches A and D,
respectively) which had a net change of less an 2.5 ft,
whereas wells in the streambank at other locations indi-
cated more than twice this increase. Furthermore, the
point of maximum ground-water buildup along the stream
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channel was much further downstream (about 700 ft at
well N 9627) than was indicated by model analysis.

From wells N 9629 and N 9630 in reach C (fig.
17A) to N 9635 in reach E (fig. 17B), net change would
be expected to diminish gradually, as shown by the water-
level contours. However, the field data indicate areas of
small net increase (N 9632) surrounded by areas of greater
net increase (N 9631 and N 9634), which implies a sub-
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Figure 17. Net increase in ground-water levels near Fosters Brook after 27 days of streamflow augmentation —Continued.

stantial variability of infiltration rates along the stream
channel.

Results of the three-dimensional simulation indicate
specific aspects in which the errors may have occurred. Of
all factors in the stream-augmentation process, flow in the
unsaturated zone is the least understood, and the
mathematical model does not account for it. Infiltration
rates vary not only along the length of stream channel but

also across it, but studies to obtain sufficient data on the
minute variations in composition and hydrologic charac-
teristics of the aquifer and streambed would not be
economically feasible.

As was stated previously, the simulated infiltration
rates did not duplicate field conditions exactly; the dispar-
ity is attributed mainly to inherent error in the discharge
measurements from which infiltration rates were calcu-
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lated. Division of the stream into small reaches to provide
more precise delineations of infiltration rates did not yield
substantial improvement because, again, measurements
are too imprecise for this purpose. Changes in water-level
trends after the augmentation rate was increased on day 12
of the test are assumed to have been related to this in-
crease; however, simulation with analytical and mathemat-
ical models indicated that neither temperature change nor
local variations in aquifer hydraulic conductivity alone
could produce changes as great as those observed.

Thus, infiltration rate varies locally within the
stream channel and is affected by external forces such as
temperature, evapotranspiration, and clogging. The major
factor seems to be hydraulic conductivity of the
streambed, but transient changes within the unsaturated
zone during infiltration may offset the general trends,
making precise calculation difficult or impossible.

SUMMARY AND CONCLUSIONS

Large-scale construction of sanitary sewers in Nas-
sau and Suffolk Counties has caused ground-water levels
to decline and streamflow to decrease in many areas, and
expansion of sewerage in the future is expected to cause
similar effects in other areas. A 27-day streamflow au-
gmentation test was made at Fosters Brook in December
1979 to determine the hydraulic feasibility of pumping
ground water into the stream channel to restore
streamflow in the dry upper reaches.

Stream discharge, flow in the unsaturated zone,
ground-water levels, and water quality were monitored at
several points to determine the hydrologic effects of flow
augmentation. During the first 12 days, water was pro-
vided at 1.00 ft*/s, from day 13 to day 21 at 1.63 ft3/s,
and from day 22 to day 27 at 0.54 ft*/s. Stream length
was monitored regularly.

Soil-moisture measurements were made beneath the
stream channel at seven locations throughout the test.
Background soil-moisture levels were about 20 percent,
but after 20 days of streamflow they had increased to 41
percent, almost saturation level. Soil-moisture logs indi-
cate that the initial wetting front moved through the un-
saturated zone at an average rate of 11.2 in/h.

Stream discharge was measured periodically at four
sites along the reach and continuously at the point where
augmentation was begun. During the first 12 days of the
test, discharge decreased with distance from the source,
but during the next 6 days it increased within the first
1,500 ft but decreased downstream. Infiltration rates var-
ied greatly from reach to reach.

Stream length, an indicator of average infiltration
rates, was monitored throughout the test and indicated that
infiltration rates were constantly changing. The stream at-
tained a maximum length of 2,719 ft at a discharge of
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1.63 ft¥/s but shortened to 2,154 ft over the next 8 days
even though discharge remained the same. Minimum
stream length was 815 ft after day 21 at a discharge of
0.54 ft*/s. The data suggest two distinct infiltration re-
gimes at any given discharge. When the channel is in-
itially wetted, the stream attains maximum length and then
shortens quickly because infiltration rates increase rapidly.
After a few days, however, when the soil-moisture con-
tent approaches saturation, stream length decreases at a
distinctly slower rate. Analysis of stream length and au-
gmentation rate indicate a linear relationship within the
discharge range studied. However, this relationship was
not projected to significantly greater discharge and may
become invalid as stream discharge and stage increase
beyond values investigated in this study.

Infiltration rates from the stream were affected by
several factors including streambed composition (grain
size and clay content), water temperature, stream stage,
presence of algae, and soil-moisture content. These factors
are interdependent, but their relationships are so complex
as to make quantified assessments of each nearly impossi-
ble.

Ground-water response to flow augmentation was
measured at 26 shallow wells along the stream; three were
equipped with continuous stage recorders. Response var-
ied areally; the maximum net increase of 6.47 ft occurred
about 700 ft below the start of flow during a discharge of
1.63 ft*/s, while water levels at outlying wells merely re-
flected the regional decline that occurred during the period
studied.

The observed response was compared with results
from an analytical and a numerical model to determine
and evaluate the hydrologic mechanisms involved. Both
analyses indicated that changes in infiltration rate and the
resultant water levels in wells could not have been caused
solely by temperature changes in the water.

The three-dimensional numerical model simulated
the recharge mound as being symmetric about the center
of the stream channel with maximum head changes near
the point of flow augmentation. The comparison of model
results with field data shows that recharge rate varied con-
siderably along the stream and that net change as mea-
sured in wells was not symmetrical with respect to the
center of the stream. This discrepancy is attributed to vari-
ations in infiltration through the streambed as a result of
streambed composition and stream-channel alinement. The
three-dimensional model successfully duplicated the gen-
eral trend in water levels during the first and last parts of
the test but not the decline in the second test period.
Again, this difference is attributed to imprecise measure-
ment of stream discharge and the resulting error in calcu-
lated seepage rates.

The test at Fosters Brook demonstrated that flow au-
gmentation in a dry stream channel is hydrologically feasi-
ble on Long Island. Small quantities of water (less than 2



ft’/s) introduced into the dry stream channel flowed over
a channel length ranging from 1,000 to 2,000 ft.

If augmentation of a stream similar to Fosters Brook
were desired and the initial augmentation rate were less
than 2 ft3/s, water would need to be added downstream to
offset seepage losses. If a minimum flow of 0.5 ft3/s were
desired, additional augmentation would be required every
1,000 or 2,000 ft.

The feasibility of augmenting streams at rates ex-
ceeding 5 ft*/s was not tested; this would produce greater
velocities and higher stream stages than were considered
in this study. Because higher stage would increase infiltra-
tion rates, the linear relationship between stream length
and augmentation rate would probably not apply.

Before streamflow augmentation is considered as a
valid method of replenishing dried-up stream reaches, site-
specific studies should be done to evaluate potential haz-
ards. For example, the Fosters Brook study was done
where the water table was at sufficient depth that recharge
would not raise it to streambed level; in areas where the
water table is at lesser depth, flooding could result. Also,
even though this investigation was conducted during De-
cember, when air temperature was frequently below freez-
ing, algal growth on the streambed was sufficient to de-
crease infiltration through the stream channel. It is likely
that algal growth and other aquatic vegetation during
warm seasons would be far greater.

The Fosters Brook test demonstrated that the interre-
lated factors involved in flow augmentation are complex
and difficult to assess. The variability of hydrologic char-
acteristics along any stream may be so great as to make
prediction of response almost impossible and to make it
likely that the responses observed at Fosters Brook differ
from those at other Long Island streams.
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CONVERSION FACTORS AND ABBREVIATIONS

The following factors may be used to convert the units of measurement in

this report to the International System of Units (metric system).

Multig}z
inch (in)
feet (ft)
miles (mi)

square miles (miZ)

cubic feet per second (ft3/g)

gallons per minute per foot
[(gal/min)/ft]

feet per day (ft/d)

millimeter (mm)
centimeter (cm)
gram (g)

degrees Celsius (°C)

Inch-Pound Units

by T? obtain
2.54 centimeters (cm)
<3048 meters (m)
1.609 kilometers (km)
2.59 square kilometers (km2)
28,32 liters per second (L/s)
.02832 cubic meters per second
(m3/s)
.01923 liters per second per meter
{(L/s)/m]
.3048 meters per day (m/d)
SI Units
.03937 inch (in)
.3937 inch (in)
.03527 ounce (oz)

(1.8 + 32) degrees F

Other Abbreviations

ahrenheit (°F)

National Geodetic Vertical Datum of 1929 (NGVD) (formerly mean sea level)

Milligrams per liter (mg/L)

Micrograms per liter (mg/L)

Conversion Factors and Abbreviations
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