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Daily Water and Sediment Discharges From Selected Rivers 
of the Eastern United States: A Time-Series Modeling Approach

By Michael G. Fitzgerald and Michael R. Karlinger

Abstract

Time-series models were constructed for analysis of daily 
runoff and sediment discharge data from selected rivers of the 
Eastern United States. Logarithmic transformation and first- 
order differencing of the data sets were necessary to produce 
second-order, stationary time series and remove seasonal 
trends.

Cyclic models accounted for less than 42 percent of the vari­ 
ance in the water series and 31 percent in the sediment series. 
Analysis of the apparent oscillations of given frequencies 
occurring in the data indicates that frequently occurring storms 
can account for as much as 50 percent of the variation in sedi­ 
ment discharge.

Components of the frequency analysis indicate that a linear 
representation is reasonable for the water-sediment system. 
Models that incorporate lagged water discharge as input prove 
superior to univariate techniques in modeling and prediction 
of sediment discharges. The random component of the models 
includes errors in measurement and model hypothesis and 
indicates no serial correlation. An index of sediment produc­ 
tion within or between draingage basins can be calculated 
from model parameters.

INTRODUCTION

This paper presents a method for constructing discrete 
sediment-yield models that incorporate the input-output 
relationships between hydrologic series. Long-term rec­ 
ords of water and sediment discharge for seven rivers in 
the Eastern United States were analyzed as weakly sta­ 
tionary time series, and the results are discussed in terms 
of the relationships between statistical properties of the 
series and physical characteristics of the drainage basin.
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Review of Previous Work

Temporal variations in water and sediment discharges 
are essential considerations in the design and operation 
of water-resource developments. However, the historic 
records of streamflow and sediment yield commonly 
exclude critical periods of flood or drought. Models that 
preserve these relevant statistics of the historical record 
make possible the prediction of system response to 
major floods or droughts and thus aid in development 
design.

Where long-term water and sediment records are 
available, time series and systems concepts offer a natu­ 
ral approach to the analysis, modeling, and simulation 
of the relations between runoff and sediment yield. 
Time-series techniques preserve the mean, variance, and 
autocorrelation structure of historical records; these 
techniques are simple and require a minimum number 
of parameters to represent adequately the process for 
most practical applications.

Time-series techniques have been used in the analysis 
and planning of water-resource developments for several 
years. Matalas (1967) summarizes time-series modeling 
of streamflow and emphasizes the models' utility in syn­ 
thesizing hydrologic records of any desired length for 
evaluation and optimization of development-design 
variables. In addition to their utility in synthesizing 
hydrologic records for long-term planning, models also 
can be useful for short-term predictions. Delleur and 
others (1976) provide a good discussion of hydrologic 
time-series modeling with respect to time resolution and 
the conditions under which prediction and simulation 
can best be achieved.

Rodriquez-Iturbe and Nordin (1968, 1974) used the 
causal relationship between water discharge and sedi­ 
ment discharge in a bivariate-modeling technique to 
examine the prediction of sediment discharges from a 
given drainage basin. Though the majority of their work
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was confined to frequency-domain analysis of the hydro- 
logic system, it started time-series modeling efforts in 
sediment hydrology. Sharma and Dickinson (1980) used 
transfer-function techniques to model sediment yield as 
a function of water discharge and related the step- 
response weights of the impulse-response function to 
drairiage-basin characteristics. The study presented here 
applies the systems concepts described by Sharma and 
Dickinson (1980), with the additional aspects of extended 
record lengths and expanded spatial coverage to address 
the relations of model properties to hydrologic charac­ 
teristics.

Scope

Published records of daily water and sediment dis­ 
charge (U.S. Geol. Survey, 1956-70; 1971-79) for seven 
rivers in the Eastern United States (fig. 1 and table 1) 
were used in this study. These rivers were selected for 
several reasons. Because all sampling stations are located 
in the Middle Atlantic States, there is a gross homogene­ 
ity in physiographic variables such as climate, topogra­ 
phy, and soil type. This homogeneity permits qualitative 
comparisons of model specifications and parameter values 
to differences in such factors as land-use practices and in- 
stream regulation. Qualitative studies of sediment yield, 
sediment storage, and land-use practices have been 
made for several of these rivers (Meade, 1982), providing 
a basis for these comparisons. Finally, the records used 
are among the longest available for simultaneous mea­ 
surements of water and sediment discharge, ranging 
from a minimum of 2,048 daily values to a maximum of 
8,192 daily values. For all seven rivers, the available rec­ 
ords are longer than the records used for this study. The 
statistics in the last four columns of table 1 apply to the 
period of record used and not to the entire period of 
available record.

Spectral and cross-spectral techniques were applied to 
all seven rivers for initial examination of the relation 
between water and sediment discharges. In addition to 
the application of the spectral techniques, univariate 
time-series models were identified for each of the water 
and sediment-discharge series. Causal relations between 
members of each of the seven pairs of models were inves­ 
tigated, using the lagged cross-correlation values between 
the appropriate univariate-model residuals. Properties 
of the cross-correlations together with the univariate- 
model parameters subsequently permitted estimation of 
transfer-function models of the water-sediment systems 
for each of the rivers.

THEORY 

Spectral Analysis

Spectral and cross-spectral techniques are exploratory 
tools for system identification, providing information 
on series oscillations and indicating interrelations be­ 
tween series. The theory is well described in the literature 
(Jenkins and Watts, 1968; Otnes and Enochson, 1972; 
Bloomfield, 1976); only estimation procedures will be 
outlined here.

Let xt be a finite, discrete, stationary time series of 
Length Wand mean /*. The average lagged product of xt, 
that is, E[(xt -p)(xt+s -iJL)] t is called the autocovariance 
function and is estimated by

N-s

-l (1)

where

Table 1. Summary of drainage-basin and water and sediment discharge characteristics

[mi 2 = square miles: tons/d = tons per day; ftVs = cubic feet per second; a2 = variance of daily mean sediment discharge; o^ = variance of daily 
mean water discharge]

River

Delaware
Juniata
Monocacy
Potomac
Rappahannock
Tar
Yadkin

Drainage 
area 
(mi 2 )

6,780
3,354

817
9,651

620
2,140
2,280

Station location

Trenton, N.J.
Newport, Pa.
Frederick, Md.
Point of Rocks, Md.
Remington, Va.
Tarboro, N.C.
Yadkin College, N.C.

Average sediment 2
Period of record used discharge . s , ... ,j* tons/d 2 

(tons/d)

10/01/56-03/06/79
10/01/56-03/06/79
07/14/68-09/30/79
07/14/68-09/30/79
10/01/56-03/06/79
01/09/58-08/18/63
10/01/56-03/06/79

1,173
731
667

3,745
272
427

2,698

l.OxlO8
3.1X107
1.5X107
4.9 xlO8
2.9 xlO6
4.2 xlO5
6.8 xlO7

Average water 2 
discharge ** 

(ftVs) { '

11,295
4,137
1,172

10,891
667

2,850
3,193

1.2 XlO8
3.5 XlO7
6.6 xlO6
2.3 xlO8
1.3 xlO6
8.9 xlO6
1.0 xlO7
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Figure 1. Location of rivers included in study.
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is the autocovariance function; 

x is the sample mean, an estimator of 

xt is a member of the series;

and

s is the lag. 

The estimated autocorrelation at lag s then is defined:

A plot of the autocorrelation function as a function of 
lag s indicates the extent to which one value of the proc­ 
ess is correlated with previous values. Thus, the auto­ 
correlation function can be used to measure the length 
and strength of the "memory" of the process, that is, 
the extent to which the value at time t depends on that of 
time t-s. A "white noise" sequence is one in which 
r^O) = 1 and rxx(s) = Q for s^O.

The Fourier transform of the autocorrelation function 
produces its frequency domain equivalent, the periodo­ 
gram. The periodogram provides information on the 
oscillations of the time series by showing how the vari­ 
ance of a series, consisting of mixtures of sines and 
cosines, is distributed among distinct harmonic frequen­ 
cies. The periodogram is defined as

(3)

where

u> is angular frequency; 

X(u>) is the Fourier transform of x(t), 

that is,

= J
oo

^

  oo

and

tion on the periodogram to obtain the desired estimate. 
In this study, smoothing is accomplished by averaging 
over three frequencies, using a weighting function with 
coefficients 0.25, 0.50, and 0.25.

This treatment can be extended to two stochastic 
processes. The cross-covariance function between the 
series xt and yt can be estimated according to the formula

N-s 

t=\

N-s

= (1/AO E (xt _ s -x)(yt -y) s<0.
/=!

(4)

(5)

Similarly, the cross-correlation at lag s is defined as

rxy(s) = cxy(s)/^[cx̂ ) ^cyy(G) . (6)

The cross-spectrum, Gyx, defined as the Fourier 
transform of the cross-covariance function, can be esti­ 
mated by smoothing

(l/N)[Y(a>)X*(a,)], (7) 

where

u> is angular frequency; 

y(u>) is the Fast Fourier Transform of y{', 

and

X*(u>) is the conjugate of the Fast Fourier Trans­ 
form of x(.

The complex-valued cross-spectrum can be represented 
by

(8)

where

X*(u>) is the conjugate of X(u>).

Computation of the Fourier transform is accomplished and 
through the Fast Fourier Transform algorithm (Bloom- 
field, 1976).

The periodogram is an erratic function of frequency; 
some method of averaging the available information 
needs to be used to obtain a consistent spectral estimate, 
G^w). One way of doing the averaging is to compute 
the periodogram and then perform a smoothing opera-

C(u>) is the co-spectrum, a measure of the in-phase 
covariance;

(w) is the quadrature spectrum, a measure of the 
out-of-phase covariance.

C(u>) measures the contribution of oscillations of differ­ 
ent frequencies to the total cross-variance at lag zero 
between two time series. Conversely, <2(u>) shows the

4 Daily Water and Sediment Discharges From Selected Rivers of the Eastern United States: A Time-Series Modeling Approach



contribution of the different harmonics to the total 
cross-variance, when all harmonics of the series xt are 
delayed by a quarter-period and yt remains unchanged 
(Rodriquez-Iturbe and Nordin, 1968).

The real quantity defined as coherence, 72(oo), is a 
measure of the correlation between frequency compo­ 
nents of the two processes:

where

and

is the spectrum of xt

is the spectrum of yt.

The frequency-response function, //(w), describes the 
input-output relations between series. For example, if 
xfa) and yfo) are the components of xt and yt at fre­ 
quency to, models can be constructed of the form yfo) 
= H(u>)xt(ui) + c t(u>), where e^co) is the noise that results 
from nonlinear effects. If e^w) is negligible, the fre­ 
quency response of the system can be calculated from

(10)

where A(u) is the amplitude gain of the system (the ratio 
of the amplitudes of the frequency components) and 
0(to) is the phase difference between frequency compo­ 
nents of the two processes, given by

0(co) = arctan (11)

The inverse Fourier transform of the frequency-response 
function is the impulse-response function.

Time-Series Models

While spectral-analysis techniques provide good 
exploratory tools for examining the properties within, 
and relationships between, series of data, they are some­ 
what deficient for developing stochastic models. These 
models need to include an error structure that can be 
statistically analyzed to make predictions with confi­ 
dence limits or to snythesize stochastic data streams, 
while preserving the statistics of the observed series. 
Time-series techniques permit models that provide these 
capabilities, and these techniques require only a small 
number of model parameters.

The estimation of model parameters requires that a 
time series satisfy the assumptions of ergodicity and 
weak stationarity. Stationarity dictates that the mean 
and variance of the elements of the series do not change 
with time and that the covariance between any two points 
of the series is a function only of the time difference 
between points. Ergodicity requires that values far apart 
in the series are virtually uncorrelated (Granger and 
Newbold, 1977).

Univariate Models

Univariate models of stationary time series generally 
are one of two types: autoregressive or moving-average 
models. If a variable, zt, is a function only of its past 
values and a current random shock, then it is said to fol­ 
low an autoregressive process. The general form of an 
autoregressive process is

(12)

where the </>, are the model parameters and at is a random 
variable from a zero mean white-noise process. The 
order of the autoregressive process is denoted as/7. If we 
define an autoregressive operator of order p by

-<t>(B)P, (13)

where

t - t _ m,

then the autoregressive model may be written econom­ 
ically as

<t>(B)zt = at. (14)

If, however, the variable zt is a function of only cur­ 
rent and lagged values of at, then it is said to be a moving- 
average process of the following form:

f -<r (15)

The 0, are the parameters of the moving-average model, 
and the order of the process is denoted as q. If we define 
a moving-average operator of order q by

6(B) = 1 - d { B - 02B2 - ... - Bfft, (16) 

then the moving-average model may be written as

(17)

These models can be combined into an autoregressive 
moving-average model:
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<t>pzt-p =

This model can be written economically as

t-a- 08)

and it is referred to as a mixed model of order p and q. 
Often time-series sequences that have nonstationary 

characteristics can be differenced to produce a stationary 
series. New variables are defined by

zt~ zt~ zt-d> (19)

where z/is a cfth-order difference. A mixed model with 
a cfth-order differenced variable is an autoregressive 
integrated moving-average model and is of the form

't-q' (20)

Seasonality within a time series, like nonstationary 
characteristics, can sometimes be removed by differenc­ 
ing. Seasonal time series with a period s have similarities 
in observations that are s time-units apart. Therefore, a 
seasonal nonstationarity may be eliminated by comput­ 
ing a differenced variable:

(21)

There are three steps to constructing successfully a 
time-series model from stationary data: (1) model iden­ 
tification, (2) parameter estimation, and (3) diagnostic 
checking. Although these are listed as three separate 
steps, there is necessarily some overlap between steps. 
For a more complete explanation, see Box and Jenkins 
(1976) and Granger and Newbold (1977).

Identification of the proper model is based on the 
form of the autocorrelation and partial autocorrelation 
functions of the series. The partial autocorrelation at 
lag/? is defined as the/rth coefficient of an autoregressive 
model of order/? fit to the data (see eq. 12). The partial 
autocorrelation function then is represented by a plot of 
these coefficients as a function of lag/? (Box and Jenkins, 
1976).

The autocorrelation function or partial autocorrela­ 
tion function can appear to be a damped exponential, a 
sinusoidal curve, or both, or these functions can appear 
to "cut off" after /: lags. If the autocorrelation function 
decreases to zero or is damped while the partial autocor­ 
relation function cuts off, the model is identified as 
autoregressive. If the autocorrelation function cuts off 
and the partial autocorrelation function decreases to

zero, then the model is moving average. If both functions 
occur similarly, then a mixed model may be in order. In 
addition, a very slow decrease to zero of the autocorre­ 
lation function may indicate that a differencing opera­ 
tion is needed. The identification process in time-series 
model building is thus somewhat subjective.

Initial estimation of model parameters is based on ini­ 
tial values of the sample autocorrelation function. These 
estimates then are refined and optimized based on the 
value of the residual sum of the squares, which is obtained 
by checking actual data values with model-predicted 
values.

The final step in the time-series model building is 
diagnostic checking. After a set of parameters is opti­ 
mized, the structure of the model residuals is checked. 
These checks are made to insure that the residuals, at 
(that is, actual value minus estimated value), have an 
approximately normal distribution and that the auto­ 
correlation function of the residuals indicates a white- 
noise process; that is, that no autocorrelation exists at 
lag greater than zero. An approximate test of model 
adequacy may be made by computing a value of Q, the 
Portmanteau autocorrelation statistic, defined as

K

Q=N £ r\
k=l

(22)

and distributed as x2 (Box and Jenkins, 1976). In this 
equation, N is unadjusted degrees of freedom and raa(k) 
is the autocorrelation value at lag k of the residuals a; K 
is assumed to be sufficiently long, so that the weights ¥ 
in the model, written in the form u~t =<t>~ l (B)0(B)a( = 
¥(B)a(, will be negligibly small for j>k (Box and Jen- 
kins, 1976).

Transfer-Function Models

Bivariate modeling is an extension of univariate time- 
series model building. A special case of a bivariate time- 
series model with broad applications in hydrology 
involves one stochastic variable as input into a dynamic 
(unidirectional) input-output system, and a second 
variable as the resulting output. In such a case, there is 
no feedback from the output variable to the input 
variable, and the process can be modeled by using a 
transfer function. The general form of the model is

where

yt =v(B)x( +r) ( ,

yt is the output process; 

x( is the input process;

(23)
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if] t is a white-noise process independent of v(B)xt', 

and

v(B) is the transfer function (Box and Jenkins, 
1976).

The lag operator, B, indicates that the output >>r can be a 
function of previous as well as present values of xt [that 
is, v(B)xt= U0*r+ UjXr_ j + v1xt_2+ ..  ]  Because v(B) can be 
written as a ratio of two polynomials, yt can be a func­ 
tion of previous values of yt as well as xt. When this 
ratio is expressed as

(24} l '

statistic is the Portmanteau cross-correlation statistic, S, 
defined similarly to the Q statistic:

' ' 8(B) ' 

the transfer-function model can be rewritten as

<25>
because of the independence between 77, and v(B). There 
may be a delay parameter (b) for xt , in which case xt _ b 
is substituted for x{ . Hence, d(B) is an operator of order 
r in the output series, and u(B) is an operator of order s 
in the input series. The three stages for transfer- function 
model building, as for univariate model building, are 
identification, estimation, and diagnostic checking.

Unidirectional causality between two processes can be 
confirmed through examination of the lagged cross- 
correlation between the processes. Although the cross- 
correlation between the actual series could give some 
information as to causality, a more appropriate signature 
of causality is the lagged cross-correlation between 
residuals of the univariately modeled processes. This 
procedure is called prewhitening the input. If there is 
unidirectional causality, there would be significant 
cross-correlation values only at either positive or negative 
lags, and the sign of the lag would indicate which process 
is input and which is output.

Initial estimation of transfer-function parameters is 
based on values of the lagged cross-correlations. These 
initial parameters are then optimized, until a minimum 
sum of the squares of residuals from the model is 
achieved.

As with univariate models, diagnostic checking is 
based on statistical properties of model residuals. How­ 
ever, the statistical tests not only ascertain the serial 
independence of the residuals from the transfer-function 
model, but they also investigate the crosswise lagged 
independence between the residuals of the transfer- 
function model, ?} ,, and the residuals, at, of the univariate 
model of the input process. The relevant cross-correlation

K
S=M

k=\
(26)

where

M is the adjusted degrees of freedom;

(k) is the cross-correlation between the above- 
mentioned residuals;

and

K is chosen sufficiently large (Box and Jen- 
kins, 1976).

This statistic needs to be distributed as a x2 variable. The 
relevant serial correlation-test statistic of the transfer- 
function model residuals is the same as that described 
for the univariate model residuals.

A large value of the Portmanteau cross-correlation 
statistic indicates that the fitted transfer function, v(B), 
is inadequate to represent the relationship between input 
and output processes. Possible remedies range from 
improving the univariate models to simply increasing 
the number of lagged parameters in the transfer function.

Failure of the transfer-function residuals to pass the 
X2 test can best be remedied by modeling the residuals 
series, r\ t, with a univariate model. Identification and 
estimation of these residual noise-model parameters are 
performed by using the autocorrelation function and 
partial autocorrelation function of the residuals series, a 
process identical to the previously discussed univariate 
modeling.

RESULTS

Data Compilation

Daily water-discharge rates, in cubic feet per second, 
and sediment-discharge rates, in tons per day, were 
obtained from the U.S. Geological Survey WATSTORE 
data files (U.S. Geol. Survey, 1956-70; 1971-79). Sedi­ 
ment loads considered here are suspended loads calcu­ 
lated from daily sediment samples that were used to 
define a continuous concentration-time relation for 
each station. The unmeasured sediment load that moves 
below the lowest sampling point in the cross section 
(including bedload) was not considered. However, the 
measured load should serve as a good index of the total 
sediment discharge in these rivers (Simmons, 1976).

Results 7



The time-series modeling approach requires constant 
variance. Increased variance with increased discharge, 
therefore, dictates that data need to be transformed to 
satisfy the assumptions. Log-transformation (Iog 10) of 
hydrologic data is common and is used here; reasons for 
this transformation are discussed in a later section, 
"Time-Series Models." In addition, log-transformed 
data were standardized by subtracting the mean and 
dividing by the standard deviation for spectral and 
cross-spectral analyses. Such standardization rendered 
the sequences dimensionless and offered convenience in 
the interpretation of spectral results. Data sets were 
restricted to 2^ data points (where TV is an integer) to 
speed computation (the Fast Fourier Transform algo­ 
rithm is much faster if 2^ points are used).

Spectral Results

For the rivers examined, all log-transformed water 
and sediment-discharge spectra display prominent peaks 
at the annual frequency, 0.0027 cycle per day (c/d) or 1 
cycle per year, and smaller semiannual oscillations 
(figs. 2 and 3). Annual and semiannual cycles explain a 
substantially larger percentage of total variance for the 
water-discharge series than they do for sediment records 
(table 2). If cyclic models were constructed for each 
series, these models could explain between 17 and 40 per­ 
cent of the variance for the water series, but only between 
9 and 31 percent for the sediment series. (The small 
value for the Yadkin River water discharge may be a 
result of flood-control dams constructed along the 
river.) The relatively small variance explained by these 
harmonic components indicates that random fluctua­ 
tions are the more important component. Furthermore,

Table 2. Summary of harmonic analysis

frequencies less than 0.024 c/d, or 1 cycle per 40 days, 
contain as much as 85 percent of the variance for water 
discharge, but only as much as 55 percent for sediment 
(70 percent in the Juniata River) indicating that greater- 
frequency storms exert considerable effect on the sedi­ 
ment discharge in these rivers (figs. 2 and 3).

Cross-spectral analysis examines the runoff-sediment 
discharge system. The cross correlogram for the log 
transforms of the data for each river peaks at lag zero 
with a large cross-correlation coefficient (fig. 4), indi­ 
cating that the delay parameter, b, in the transfer- 
function model is zero. If memory terms (lag greater 
than zero) are disregarded in the model, more than 
67 percent of the variability in daily sediment discharge 
can be explained by variability in daily water discharge 
(table 3).

A typical example of the cospectrum, estimated in the 
analysis for the Delaware River, is shown in figure 5. 
Low-frequency (less than 0.024 c/d) harmonics appear 
to account for most of the covariance and, thus, con­ 
tribute greatly to the large cross-correlation at lag zero. 
A peak in the cospectrum at the annual cycle (0.0027 
c/d) shows that although the annual cycle does not 
explain much of the variance it is an important factor in 
the cross-correlation at lag zero. In Piedmont rivers, 
this annual cycle most likely is related to the springtime 
snowmelt.

A plot of the coherency spectra (correlations between 
frequency components of the water and sediment series) 
shows large values throughout most of the frequency 
range (fig. 6), particularly at the lower frequencies. 
These large values of coherency indicate that a linear 
model is a reasonable representation of the daily runoff- 
sediment yield process in terms of log-transformed vari- 
ates. The decrease in coherency at high frequencies may

River Series
Percent variance of log transforms 

explained by annual cycle
Percent variance of log transforms 

explained by semiannual cycle

Delaware

Juniata

Monocacy

Potomac

Rappahannock

Tar

Yadkin

Water
Sediment
Water
Sediment
Water
Sediment
Water
Sediment
Water
Sediment
Water
Sediment
Water
Sediment

27
9

40
30
29

8
31

9
35
20
38
23
15

8

3
2
2
1
1
1
1
2
2
1
7

10
2
2
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Figure 2. Water-discharge (log transformed) spectra for the 
(A) Delaware River at Trenton, N.J., (B) Juniata River at 
Newport, Pa., and (C) Yadkin River at Yadkin College, N.C.

0.10

0

0.15

0.05

0.012 

FREQUENCY, IN CYCLES PER DAY

Figure 3. Sediment-discharge (log transformed) spectra for 
the (A) Delaware River at Trenton, N.J., (8) Juniata River at 
Newport, Pa., and (C) Yadkin River at Yadkin College, N.C.

Table 3. Cross-spectral characteristics between log-transformed daily discharge of water and sediment 

[c/yr = cycle per year]

_ i   i n Variance of log transforms explained, _ , M , . _ . M , , D , n , , 
River Cross correlation at lag 0 . . .   ... . Coherence (1 c/yr) Gam (1 c/yr) Phase (1 c/yr)

with lag 0 model (percent)

Delaware
Juniata
Monocacy
Potomac
Rappahannock
Tar
Yadkin

0.820
.894
.840
.815
.869
.918
.882

67.2
79.9
70.6
66.4
75.5
84.3
77.8

0.949
.926
.926
.985
.990
.974
.986

0.609
.878
.921
.526
.734
.777
.734

333.7
349.9
359.2
323.4
354.8
342.0
307.6
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Figure 6. Coherency spectrum between water and sediment discharges (log transformed) for the Delaware River at Trenton, N.J.

result from the disturbing effect of storm runoff on sed­ 
iment yield.

The cross-correlation function shows that water and 
sediment discharge are in phase when considered as a 
whole. However, most high frequency components of 
the sediment series are leading the corresponding fre­ 
quency components of the water series (fig. 7). This 
indicates that the sediment system responds quickly to 
frequent storms and peaks sooner than does the water 
system. One possible explanation is that the rainfall 
intensity associated with frequent storms removes the 
erodible sediment, producing a rapid increase in sedi­ 
ment yield that decreases as the storm progresses.

The gain function consists of the ratios of amplitudes 
of frequency components. In general, for the rivers 
examined, gain fluctuates about unity (fig. 8). However, 
gain at frequencies less than 0.024 c/d does show some 
evidence of being less than 1, while at frequencies greater 
than 0.024 c/d, gain is often greater than 1. These results 
indicate that regularly occurring storms are important 
to sediment discharge. Guy (1964) asserts that, for most 
streams, the bulk of suspended-sediment transport oc­ 
curs during relatively brief storm periods when the 
drainage basin collects and routes excess precipitation.

Time-Series Models

Initial attempts at univariate modeling of water and 
sediment discharges were made with the assumption 
that no data transformations were necessary. However, 
the models' residuals for each data set did not approxi­ 
mate a normal distribution, nor was the variance of the 
residuals sufficiently constant with respect to the magni­ 
tudes of the discharges. These two departures from the 
assumptions necessary to statistically analyze the resid­ 
uals of time-series models indicated that a transforma­ 
tion of the data was needed, and the log transformation 
was used to alleviate these problems. Sharma and Dick- 
inson (1980) indicate that the log transformation is ade­ 
quate in transfer-function modeling of a water-sediment 
discharge system.

The autocorrelation plot of each data set, as indicated 
by figure 9 for the Tar River, does not decrease quickly. 
This plot of the autocorrelation function indicated that 
a differencing operation was necessary. Therefore, a 
first difference was applied to the logarithms. Autocor­ 
relations of the resulting data sets had a rapid exponen­ 
tial or sinusoidal decrease (fig. 10).

Results 11
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Figure 7. Phase spectrum between water and sediment discharges (log transformed) for the Delaware River at Trenton, N.J.
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Figure 8. Gain function between water and sediment discharges (log transformed) for the Delaware River at Trenton, 
N.J.
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Figure 9. Autocorrelation function for water discharge, Tar River at Tarboro, N.C., log transformed and undifferenced.
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Figure 10. Autocorrelation function for water discharge, Tar River at Tarboro, N.C., log transformed and differencing of order 1.
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A final consideration for model adequacy was an 
inspection of the autocorrelation function for possible 
seasonalities. Spectral analysis showed that daily water 
and sediment discharge have a periodic component with 
a 1-year cycle. The autocorrelation function of the 
undifferenced data for each data set indicated that an 
annual cycle exists. However, Kawas and Delleur (1975) 
show that first differencing can decrease significantly a 
seasonality, although not completely remove it. An 
inspection of the autocorrelation function of the differ­ 
enced logarithms (fig. 10) showed that the first differ­ 
encing operation had produced virtually the necessary 
condition of second-order stationarity for the data sets. 
As a consequence of the above considerations, the basis 
of each univariate and transfer-function model for all 
rivers is a set of first-differenced logarithms of the origi­ 
nal data.

Univariate Models

The tendency of the autocorrelation functions to 
decrease exponentially for most of the data sets indicated 
that autoregressive models are potential choices for the 
respective sets (fig. HA for the Tar River). However, 
response of the partial-autocorrelation functions for 
these same data sets did not give a clear distinction 
between an exponential decrease and a cutoff after three 
or four lags (fig. 1 IB for the Tar River). As a result, for 
these data sets, mixed models were attempted, as well as 
high-order autoregressive models. The only discrepant 
series were those of the Monocacy River (fig. 12), which 
were identified as a moving-average process. For the 
remaining rivers, mixed models yielded best results in 
terms of a minimum residual mean-square error crite­ 
rion. The type and order of the univariate models for 
each of the river's water and sediment discharge are 
listed in table 4. The percentage of the variance explained 
by the univariate models, calculated from the residual 
mean square and standard deviation of the logarithms, 
ranged from 81 to 97 percent for water and from 70 to 
90 percent for sediment. Residuals for all of the final 
models passed the Portmanteau autocorrelation test, 
based on the statistic 5, at the 10-percent level, indicating 
a white-noise structure.

The types of models adopted for each of the rivers 
can be analyzed qualitatively in terms of drainage-basin 
features. Delleur and others (1976) suggest that autore­ 
gressive coefficients are related to the longer-term stor­ 
age characteristics of the watershed, whereas moving- 
average coefficients are related to the rainfall or storm 
inputs. Steep slopes, small drainage areas, and nonvege- 
tated catchment basins, which respond quickly to storm 
rainfall, could translate into moving-average coeffi­ 
cients; slight slopes and grassy timbered areas could be 
associated with autoregressive parameters.

Of the seven rivers analyzed, the Monocacy and the

Rappahannock seem to diverge from the rest in terms of 
model type. The pure moving-average process of both 
water and sediment discharge for the Monocacy flow 
system may be a primary result of drainage area size. 
The Rappahannock River, with a smaller drainage area 
than the Monocacy, has a limited autoregressive contri­ 
bution. This may be caused by more effective storage 
overriding contributions to a pure moving-average 
process.

Transfer-Function Models

Sharma and Dickinson (1980) demonstrate that a 
water-sediment discharge system can be regarded as a 
lumped linear system. In this system, the log-transformed 
water discharge is input, and the log-transformed sedi­ 
ment discharge is output. The noise of the system would 
encompass such errors as model error, measurement 
error, or time-discretization error.

The first step in building a transfer function for the 
linear system is determination of causality. Lagged 
cross-correlation values between the residuals of each 
set of univariate models were obtained. This prewhitening 
process insured the signature of the direction and amount 
of causality. Although the lag-zero cross-correlation 
value was by far the most significant (indicating a zero- 
delay parameter), prior physical considerations elimi­ 
nated the prospect of sediment leading water discharge.

Initial estimates of the transfer functions for the loga­ 
rithms of the original data are based on transfer func­ 
tions relating residuals of the univariate models of water 
and sediment discharges. The transfer function model 
for the residuals is

ats =t(B)atw +et, (27)

where

ats are residuals from univariate model for sedi­
ment discharge,

atw are residuals from univariate model for'tw

water discharge,

v(B) is transfer function relating sediment and 
water discharge residuals,

et is a white-noise process.

Cross-correlation values between residuals at nonneg- 
ative lags determine the transfer function for the resid­ 
uals v(B), that is,

(28)

14 Daily Water and Sediment Discharges From Selected Rivers of the Eastern United States: A Time-Series Modeling Approach
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Table 4. Estimates of parameters for univariate models*

[p = order of autoregressive model; d = order of differencing; q = order of moving-average model; 4> n = autoregressive parameter of order n; 
0n = moving-average parameter of order n; a2a = variance of residuals; R 2 = variance explained; 95-percent confidence limits in parentheses]

River

Delaware

Juniata

Monocacy

Potomac

Rappahannock

Tar

Yadkin

_ . Order of model 
Series , , <PI <j> 2 0, 

(p,d,q)

Water

Sediment

Water

Sediment

Water

Sediment

Water

Sediment

Water

Sediment

Water

Sediment

Water

Sediment

(2,

(2,

(2,

(2,

(0,

(0,

(2,

(2,

(2,

d,

(2,

(2,

(2,

(2,

1,2)

1,2)

1,2)

1,2)

1.4)

1,4)

1,2)

1,2)

1,2)

1,2)

1,2)

1,2)

1,2)

1,2)

0.982
( ± .049)

.924
(±.033)

.958
(±.055)

.919
( ± .066)

 
 
 
 

1.119
(±.053)

1.054
(±.063)

.533
(±.087)

.630
(±.032)

1.367
( ± .050)

1.214
(±.078)

.634
(±.053)

.748
(±.073)

-0.153
( ± .050)
-.115

( ± .038)
.110

( ± .056)
-.093

( ± .068)
 
 
 
 

-.282
(±.054)
-.233

( ± .066)
.063

(±.079)
 
 

-.465
(±.048)
-.323

( ± .096)
-.010

( ± .049)
-.053

(±.069)

0.591
(±

(±

(±

(±
-

(±
-

(±

(±

(±

(±

(±

(±
1

(±

(±

(±

.047)

.765

.028)

.619

.052)

.699

.064)

.033

.031)

.035

.031)

.574

.052)

.711

.063)

.495

.083)

.754

.036)

.875

.035)

.005

.073)

.479

.048)

.677

.072)

02 0j dt

0.311    
(±

(±

(±

(±

(±

(±

(±

(±

(±

(±

(±
-

(±

(±

(±

.049)    

.214    

.032)    

.295    

.055)    

.247    

.069)    

.325 0.167 0.103

.031) (±.031) (±.031)

.391 .223 .128

.030) (±.030) (±.031)

.328    

.053)    

.256    

.068)    

.341    

.081)    

.156    

.028)    

.063    

.027)    

.037    

.096)    

.441    

.048)    

.273    

.075)    

1

0.006

.097

.009

.083

.033

.190

.007

.062

.027

.272

.007

.042

.012

.105

R2 
(percent)

94.9

81.8

95.5

89.8

83.8

70.0

95.8

88.2

89.8

77.1

96.5

90.3

81.2

76.4

*Note: All series are subjected to differencing of order 1.

and

where

and

... v k(Bk), (29)

a* is standard error of univariate model for tw 
water discharge;

ofi is standard error of univariate model for"ts
sediment discharge; 

0^ is impulse response weight at lag k\

s fi is cross correlation between residuals oftw"ts
water and sediment discharge univariate 
models.

Substituting, in equation 27, the expression for atw 
and ats in terms of their univariate models yields an ini­ 
tial estimate for the transfer function for the lags of the 
original data. For example, if the models for sediment 
and water discharge are

and

then

<i> 2(B)xt =02(B)atw,

a = y.'

(30)

(31)

(32)
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and

<33)

where

is sediment output,

and

xt is water output.

These expressions for ats and a(w yield initial parameter 
estimates for a transfer-function model in terms of xt 
and yt. The assumed model is

yt =v(B)xt +rj t 

with the transfer function v(B) written as

(34)

v(B) =

where

yt is the sediment output; 

xt is the water input;

and

u(B) is the input lag function; 

b(B) is the output lag function;

77, is the noise contribution.

Written in this form, sediment discharge is not only a 
function of lagged values of water discharge, but also a 
function of lagged values of sediment discharge.

None of the transfer-function models originally passed 
the Portmanteau autocorrelation test. Therefore, it was 
necessary to model the r/ ? noise process with autoregres- 
sive, moving-average modeling. Since adequate noise 
models were found, the Portmanteau autocorrelation 
statistic passed at the 10-percent level for all the transfer- 
function models. Similarly, cross-correlations between 
residuals of the transfer-function model and residuals of 
the input (water) univariate model passed the Portman­ 
teau cross-correlation test at the 10-percent level. Final 
coefficient values of the co and 5 functions, as well as the 
magnitudes of the residual mean-square error, are shown 
in table 5.

The reason for using a transfer-function approach in 
modeling the water-sediment discharge system is the 
search for a better predictor of sediment yield than 
either a univariate model or a simple regression of sedi­ 
ment and water discharge (memoryless model) can pro­ 
vide. In all cases, the residual sum of the squares is

Table 5. Estimates of parameters for transfer-function models*

[6n = output operator of order n; wn = input operator of order n; a2 = variance of residuals; R 2 = variance explained; 95-percent confidence limits 
for parameters in parentheses]

River

Delaware

Juniata

Monocacy

Potomac

Rappahannock

Tar

Yadkin

6,

0.887
(±.018)

0.798
(±.048)

 
 

1.433
( ± .030)

.866
( ± .042)

.338
(±.114)
-.588

(±.117)

,
  3.275
  (±.056)
  2.477
  (±.038)

0.745 2.206
( ± .054) ( ± .035)
-.469 2.346

(±.010) (±.054)
  2.450
  ( ± .044)
  2.039
  ( ± .062)
  2.555
  ( ± .034)

«,

3.403
(±.119)

2.097
(±.143)

1.449
( ± .028)

3.501
(±.127)

2.311
(±.133)

1.057
(±.192)
-1.310
(±.305)

«,

-0.296
( ± .065)

.021
(±.046)

1.695
(±.115)
-1.203
( + .055)
-.080

(±.052)
0.000
 

0.000
 

°\

0.036
 

.027
 

.039
 

.023
 

.107
 

.013
 

.029
 

R2 

(percent)

93.3
 

96.7
 

93.9
 

95.6
 

91.0
 

97.0
 

93.7

*Note: All input and output series were subjected to log transforms and differences (V) of order 1.
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much smaller and R2 greater for transfer-function mod­ 
els of sediment yield than for univariate models ( tables 4 
and 5).

Accuracy of Model Prediction

Predicting system response to severe flood or drought 
is a major objective of statistical investigation. Although 
transfer-function models better account for variance in 
sediment yield than univariate models do, each series 
represents only one realization of the sediment-yield 
process. Notwithstanding that several of the data sets 
went back longer than 22 years, the question is how well 
do corresponding transfer-function models describe 
critical periods outside that time frame.

Hurricane Connie, during 1955, represents the storm 
of record for the Delaware River, but is not included in 
the data set used for model construction. To evaluate 
the model, an attempt to predict the sediment discharge 
associated with this storm was made, using the final 
model with existing discharge measurements as input. 
The data in table 6 show sequential, updated 5-day pre­ 
dictions for the logarithms of the sediment discharge; 
thus both rising and falling stages are included, the 
model is accurate in predicting peak sediment discharge 
1 day ahead, but it overestimates the rising stage. How­ 
ever, actual values are within the 95-percent confidence 
limits; therefore, the model is useful in development 
design. Although the transfer-function model predicts 
the storm of record reasonably well, the question remains 
as to how long a record is necessary to construct a model 
with sufficient accuracy for practical use in development 
design and management.

DISCUSSION

While spectral analysis can be used to make inferences 
about an underlying process, time-domain techniques 
are used to formulate parsimonious models of the proc­ 
ess itself. Both approaches form a basis for inferences 
drawn about the dynamic components of that process.

A comparison of model statistics between drainage 
basins could serve as a means of evaluating the general 
effects of differing land use and drainage-basin manage­ 
ment. The unit step-response function provides one way 
of representing these composite effects (Sharma and 
Dickinson, 1980). For the runoff-sediment-yield system, 
the step-response function describes the system response 
(sediment yield) to a step increase in runoff. Step-response 
weights Vk are calculated, using impulse-response weights:

where u^'s are defined by y   v(B)x. A constancy in step- 
response weights indicates a system without memory 
and produces a constant ratio, Vk/V^ of 1. Such a sys­ 
tem might indicate a drainage basin with readily erodible,

thick soils; dense stream network; and sparsely vegetated 
land. A decrease of Vk/VQ from unity with respect to k 
would form an index of the retardance capability of a 
fluvial system in transporting eroded sediment. Differ­ 
ences in the plots of Vk/ VQ versus lag k between rivers 
would express differences in drainage-basin characteris­ 
tics and in land management.

Plots of Vk/VQ versus k (fig. 13) were constructed for 
each river. The Yadkin River drainage basin showed the 
most production of sediment while the Delaware and 
Tar Rivers, the least production. Meade (1982) states 
that sediment concentrations are consistently large and 
increase significantly with streamflow in rivers of the 
Southern Piedmont (for example, the Yadkin River). 
Because of these large concentrations, sediment yields 
from the Southern Piedmont are consistently the largest 
per unit area of any physiographic province on the 
Atlantic slope (fig. 14). By contrast, in the Coastal Plain 
(for example, the Tar River), sediment yields per unit 
area are among the smallest. The minimal sediment pro­ 
duction of the Delaware, in turn, may be a consequence 
of reservoir construction and urbanization, large drain­ 
age area, or its glaciated upper reaches.

Storm-period variables have been shown to have con­ 
siderable effect on sediment production in fluvial sys­ 
tems (Guy, 1964). Spectral and cross-spectral analyses 
indicate that frequent storms have a significant role in 
the sediment-yield process; this conclusion is supported 
by the strong moving-average component in sediment 
models. In addition, frequency analysis of sediment dis­ 
charge shows that between 50 and 90 percent of the sus­ 
pended sediment is discharged in only 10 percent of the 
time (table 7).

SUMMARY

The theory of time series and spectral analysis is pre­ 
sented in some detail, and the techniques are applied to 
log-transformed, daily water- and sediment-discharge 
records from seven rivers in the Eastern United States. 
The method presented not only provides for the formu­ 
lation of predictive models, but also gives insight into 
the hydrologic processes operating within a drainage 
basin. Through the combination of spectral and time- 
domain techniques, statistical properties are related to 
physical characteristics of the drainage basin, and the 
hydrologic factors affecting interrelations of water and 
sediment discharges are indicated.

All spectra of water and sediment discharge show sig­ 
nificant peaks at the annual frequencies, probably re­ 
lated to the springtime snowmelt. The annual cycle ac­ 
counts for 17 to 40 percent of the variance for the water 
series, but for only 9 to 31 percent for the sediment, 
indicating the importance of random fluctuations in the 
sediment series. The small annual peak for the Yadkin
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Table 6. Predictions of logarithms of storm of record sediment discharge for Delaware River at Trenton, N. 
function model

[Prediction origin is final point in data set used in predicting]

using transfer-

Days ahead

1
2

3
*4

5

1
2

*3

4
5

1
*2

3
4
5

Lower confidence limit

Prediction origin is 4 days

2.240
1.956
4.896
4.990
2.958

Prediction origin is 3 days

2.495

5.190
5.180
3.099
2.268

Prediction origin is 2 days

5.940
5.608
3.391
2.502
1.997

Predicted value Upper confidence limit

prior to storm peak

3.079
3.207
6.359
6.580
4.633

prior to storm peak

3.335
6.441
6.643
4.690
3.943

prior to storm peak

6.779

6.859
4.854
4.092
3.672

Prediction origin is 1 day prior to storm peak

*1

2

3
4
5

1

2

3
4
5

5.333
3.165
2.296
1.779
1.541

Prediction origin is

3.466
2.438
1.853
1.577
1.119

6.172
4.415
3.759
3.369
3.216

(with 95-percent confidence limits).

3.918
4.457
7.822
8.171
6.308

(with 95-percent confidence limits).

4.174
7.691
8.105
6.280
5.618

(with 95-percent confidence limits).

7.618
8.109
6.317
5.683
5.347

(with 95-percent confidence limits).

7.011
5.666
5.222
4.960
4.891

Actual value

3.238
3.754
5.928
6.036
4.728

3.754
5.928
6.036
4.728
4.136

5.928
6.036
4.728
4.136
3.801

6.036
4.728
4.136
3.801
3.604

storm peak (with 95-percent confidence limits).

4.305
3.689
3.316
3.168
2.794

5.144
4.939
4.778
4.758
4.469

4.728
4.136
3.801
3.604
3.448

*Denotes storm peak.
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Figure 14. Sediment concentration-water discharge relations for (A) Juniata River at Newport, Pa., and (B) Yadkin River at 
Yadkin College, N.C. (from Meade, 1982).
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Table 7. Frequency of suspended-sediment discharge 

[Data from Meade, 1982]

Years 
River and gaging station of 

record

Period 
of 

record

Mean annual 
sediment discharge 

(103 tons)

Percentage of suspended-sediment discharge in

1 percent 
of time

2 percent 
of time

5 percent 
of time

10 percent 
of time

Delaware River at Trenton, N.J. 

Delaware River at Trenton, N.J. 

Juniata River at Newport, Pa. 

Juniata River at Newport, Pa.

Potomac River at Point of Rocks, Md. 
Monocacy River' near Frederick, Md. 
Rappahannock River at Remington, Va. 
Tar River at Tarboro, N.C. 
Yadkin (Pee Dee) River at Yadkin 

College, N.C.

30

29"

28

27b

19
19
28
10

1950-79
(1950-54) 
(1956-79/
1952-79
(1952-71 ) 
(1973-79/
1961-79
1961-79
1952-79
1958-67

28 1952-79

749

696

281

252

1,173
195
98

123

963

49

44

44

41

49
46
48
10

25

61

57

59

54

62
62
63
17

38

76

74

75

72

78
82
80
34

58

85

84

85

83

87
90
88
52

72

'Tributary of Potomac River that enters Potomac downstream of Point of Rocks. 
aMinus 1955, the year of Hurricanes Connie and Diane.
bMinuts 1972, the year of Hurricane Agnes. These storms produced floods and large sediment discharges whose recurrence intervals may be 

longer than the period of daily sediment record.

River water discharge may be a result of flood-control 
projects.

Storms with frequencies of less than 40 days account 
for as much as 45 percent of the variance in the sediment 
series. Furthermore, frequency analyses indicate that 
between 50 and 90 percent of the suspended sediment is 
discharged in only 10 percent of the time. These data 
indicate that storms have a significant effect on sediment 
yield.

Cross-spectral analyses show that both water and sedi­ 
ment discharge are in phase, when considered as a whole, 
with cross-correlation coefficients at lag zero ranging 
from 0.82 to 0.92. However, most high-frequency com­ 
ponents of the sediment series lead respective frequency 
components of the water series, indicating that the sedi­ 
ment system responds quickly to storms. One explana­ 
tion is that rainfall intensity associated with storms 
quickly removes credible sediment, producing a rapid 
peak in sediment discharge that decreases as the storm 
progresses.

Univariate models constructed for individual records 
of water and sediment discharge explain between 81 and 
97 percent of the variance for the logarithms of water 
discharge, and between 70 and 90 percent for the loga­ 
rithms of sediment. Six of the rivers analyzed produce 
mixed models. If it is accepted that autoregressive coef­ 
ficients are related to long-term storage characteristics 
whereas moving-average coefficients are related to 
storm inputs, then both long-term and storm records are

important. However, the Monocacy River diverges 
from the rest in terms of model type. The pure moving- 
average process of both water and sediment discharge 
for the Monocacy River may result from its small drain­ 
age area.

Large values of coherence between water and sediment 
series indicate that a linear representation of the runoff- 
sediment yield system is reasonable. At high frequencies, 
coherence does decrease, a consequence of the effects of 
storm runoff on sediment yield.

Bivariate models with water discharge as input and 
sediment discharge as output account for a larger per­ 
centage of the variance of the sediment series than uni- 
variate models do; thus, they are better predictors. Step- 
response weights calculated from these transfer-function 
models describe system response (sediment yield) to a 
step increase in water discharge, which provides an 
index of sediment production. The Yadkin River had 
the most production of sediment, and the Delaware and 
Tar Rivers, the least production. The Yadkin is located 
in the Southern Piedmont, where sediment yields are the 
greatest per unit area of any physiographic province in 
the Eastern United States. By contrast, the Tar River is 
located in the Coastal Plain, where sediment yields per 
unit area are among the smallest. The minimal sediment 
production of the Delaware may be a consequence of 
urbanization, drainage area, or its glaciated upper 
reaches. The plotting of yearly changes in step-response 
weights may provide possible explanations for variable
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sediment production.
The facility of transfer-function models warrants 

their consideration in examining the economics of data 
collection for a water-sediment discharge system. The 
use of models in split-sample analyses (Burkham and 
Dawdy, 1968) can provide some insight into the aspect 
of time-sampling error in network-design problems. 
Cumulative or random subsets of the time series are 
used to estimate model parameters, and the predicting 
accuracy of each successive model is the basis of model 
performance. Marginal improvements in model perfor­ 
mance as a function of the data base extension could 
thus be evaluated. The merit of the transfer-function 
models also could be assessed in similar network-analysis 
methods such as that developed by Moss and Gilroy 
(1980).

Another potential extension of transfer-function 
modeling is that involving multiple-input series. The 
multiple input can be similar inputs from different loca­ 
tions, differing inputs applied to the same location, or a 
combination of each. An example of the first situation 
is a model of water discharge from two or more upstream 
stations relating to sediment yield at a downstream loca­ 
tion. An example of the second situation is a model of 
sediment yield with water discharge and rainfall as inputs.

Intervention analysis, a special case of multiple-input 
transfer-function modeling, could be considered as a 
procedure for determining effects of abrupt changes in a 
drainage basin. The intervention series, usually repre­ 
sented by a step function, could address the effects of 
drainage development, basin development, or climatic 
change on the sediment yield.

Some applications of the systems approach may focus 
on a limited frequency range because it is often unrea­ 
sonable to suppose that the same parametric model is 
valid throughout a wide range of frequencies. Modeling 
that describes various frequency ranges of hydrological 
systems is a potential area of significant return. For 
example, autoregressive, moving-average models with 
time-varying autoregressive coefficients can be made to 
preserve the long-range dependence of hydrologic series 
(Delleur and others, 1976).
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Metric Conversion Table

Multiple inch-pound unit By To obtain metric unit

mile 1.609 kilometer
cubic feet per second (ftVs) 0.02832 cubic meter per second
ton per day (ton/d) 0.9072 megagram per day
square mile 2.590 square kilometer
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