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FOREWORD

This report was prepared by the U.S. Geological Survey in cooperation
with the San Joaquin Valley Drainage Program and as part of the Regional
Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey.

The San Joaquin Valley Drainage Program was established in mid-1984
and is a cooperative effort of the U.S. Bureau of Reclamation, U.S. Fish and
Wildlife Service, U.S. Geological Survey, California Department of Fish and
Game, and California Department of Water Resources. The purposes of the pro-
gram are to investigate the problems associated with the drainage of agricultural
lands in the San Joaquin Valley and to develop solutions to those problems.
Consistent with these purposes, program objectives address the following key
concerns: (1) public health, (2) surface- and ground-water resources, (3) agri-
cultural productivity, and (4) fish and wildlife resources.

The RASA Program of the U.S. Geological Survey was started in 1978
following a congressional mandate to develop quantitative appraisals of the ma-
jor ground-water systems of the United States. The RASA Program represents a
systematic effort to study a number of the Nation’s most important aquifer sys-
tems, which in aggregate underlie much of the country and which represent an
important component of the Nation’s total water supply. In general, the bound-
aries of these studies are identified by the hydrologic extent of each system, and
accordingly transcend the political subdivisions to which investigations were
often arbitrarily limited in the past. The broad objectives for each study are to
assemble geologic, hydrologic, and geochemical information, to analyze and
develop an understanding of the system, and to develop predictive capabilities
that will contribute to the effective management of the system. The Central
Valley RASA study, which focused on the hydrology and geochemistry of
ground water in the Central Valley of California, began in 1979. Phase II of the
Central Valley RASA began in 1984 and was completed in 1990. The focus
during this second phase was on more detailed study of the hydrology and geo-
chemistry of ground water in the San Joaquin Valley, which is the southern half
of the Central Valley.
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CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To obtain
acre 4,047.0 square meter
acre-foot (acre-ft) 1,233 cubic meter
acre-foot per year (acre-ft/yr) 1,233 cubic meter
foot (ft) 0.3048 meter
foot per mile (ft/mi) 0.1894 meter per kilometer
foot per second (ft/s) 0.3048 meter per second
foot per year (ft/yr) 0.3048 meter per year
foot squared per second (ft*/s) 0.0929 meter squared per second
gallon per day per foot (gal/d)/ft 0.0124 cubic meter per day per meter
inch (in.) 25.4 millimeter
mile (mi) 1.609 kilometer
square mile (mi?) 2.590 square kilometer

Temperature is given in degrees Fahrenheit (°F), which can be converted to degrees Celsius (°C) by the following equation:
Temp °C = 5/9 (°F)-32.

Sea level: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general
adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.
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Numerical Simulation of Ground-Water Flow in the
Central Part of the Western San Joaquin Valley,

California

By Kenneth Belitz, Steven P. Phillips, and J.M. Gronberg

Abstract

The occurrence of seleni-
um in agricultural drain water
in the central part of the west-
ern San Joaquin Valley, Califor-
nia, has focused concern on
strategies for managing shallow,
saline ground water. To assess
alternatives to agricultural
drains, a three-dimensional,
finite-difference numerical
model of the regional ground-
water flow system was devel-
oped. This report documents
the mathematical approach
used to model the flow system,
the data base on which the
model is based, and the meth-
ods used to calibrate the model.

The 550-square-mile study
area includes parts of the
Panoche Creek alluvial fan and
parts of the Little Panoche
Creek and Cantua Creek alluvi-
al fans. The model simulates
transient flow in the semicon-
fined and confined zones above
and below the Corcoran Clay
Member of the Tulare Forma-
tion of Pleistocene age. The
model incorporates areally dis-
tributed ground-water recharge,
areally and vertically distribut-

ed pumping, regional-collector
drains in the Westlands Water
District (operative from 1980 to
1985), on-farm drains in parts
of the Panoche, Broadview, and
Firebaugh Water Districts, and
bare-soil evaporation (which
occurs if the water table is
within 7 feet of land surface).
The model also incorporates
texture-based estimates of hy-
draulic conductivity, where tex-
ture is defined as the fraction of
coarse-grained deposits present
in a given subsurface interval.
The numerical model was
developed using hydrologic
data from 1972 to 1988. Most
of the parameters incorporated
into the model were evaluated
independently of the model, in-
cluding system geometry, the
distribution of texture, the alti-
tudes of the water table and po-
tentiometric surface of the
confined zone in 1972 (initial
condition), the hydraulic con-
ductivity of coarse-grained de-
posits derived from the Coast
Ranges, the hydraulic conduc-
tivity of coarse-grained depos-
its derived from the Sierra
Nevada, specific storage, re-
charge, pumping, and parame-

ters needed to incorporate
drains and bare-soil evapora-
tion. Four parameters were cal-
ibration variables: the hydraulic
conductivity of fine-grained de-
posits in the semiconfined
zone, the hydraulic conductivi-
ty of the Corcoran Clay Mem-
ber, specific yield, and the
transmissivity of the confined
zone.

The model was calibrated
in two phases. In the first phase,
a steady-state model of the
ground-water flow system in
1984 was used to constrain the
relation between the hydraulic
conductivity of fine-grained de-
posits in the semiconfined zone
and the hydraulic conductivity
of the Corcoran Clay Member,
thus reducing the number of in-
dependent variables from four
to three. In the second phase of
calibration, the change in alti-
tude of the water table from
1972 to 1984, the change in al-
titude of the potentiometric sur-
face of the confined zone from
1972 to 1984, and the number
of model cells subject to bare-
soil evaporation from 1972 to
1988 were used to evaluate the
remaining three variables.

Abstract 1



The calibrated model reproduces the average
change in water-table altitude (1972-84) to within
0.4 foot (average measured change 11.5 feet) and
the average change in confined zone head (1972-
84) to within 19 feet (average measured change
120 feet). The simulated time-series record of the
total number of model cells subject to bare-soil
evaporation (each cell is 1 mile square) is within
the range of the measured data. The measured
values are at a minimum in October and a maxi-
mum in July. The October values ranged from
103 in 1972 to 132 in 1984 (the drains were
closed in 1985) to 151 in 1988. The July values
ranged from 144 in 1973 to 198 in 1984, to 204
in 1988. The simulated values ranged from 103 in
1972 to 161 in 1984, to 208 in 1988.

INTRODUCTION

Agricultural productivity in California’s western
San Joaquin Valley is subject to the potentially ad-
verse effects caused by the occurrence of saline
ground water at shallow depths. Of the more than 2.2
million acres under irrigation in the western San Joa-
quin Valley, nearly 850,000 acres is underlain by a
water table that is within 5 ft of land surface (San
Joaquin Valley Drainage Program, 1989). Historical-
ly, subsurface tile drains have been used to control
the altitude of the water table and to manage subsur-
face water quality. In the early 1980’s, subsurface
regional-collector drains were installed in a 42,000-
acre area in the central part of the western San Joa-
quin Valley. Selenium-bearing water, pumped from
these drains and exported to the Kesterson Wildlife
Refuge, led to deaths and deformities of waterfowl
and aquatic biota (Deverel and others, 1984; Presser
and Barnes, 1985; Ohlendorf and others, 1986). The
occurrence of selenium toxicity at Kesterson resulted
in the closure of the regional-collector drains, which
began in March 1985 and was completed in April
1988 (Phillips and Belitz, 1991). In the absence of
drains, there is considerable concern as to how to
maintain agricultural productivity in the presence of
shallow, saline ground water (San Joaquin Valley
Drainage Program, 1989). In particular, there is a
need to evaluate alternative strategies for controlling
the altitude of the water table.

This report documents the development of a
three-dimensional, finite-difference numerical model

of the ground-water flow system in the central part
of the western San Joaquin Valley (fig. 1). The study
area is about 550 mi® and includes the Panoche
Creek alluvial fan and parts of the Little Panoche
Creek and Cantua Creek alluvial fans. The study area
also includes the 42,000-acre area (about 67 mi2) un-
derlain by the closed regional-collector drains. The
model described in this report can be used to evalu-
ate the response of the water table to changes in
management practices that affect recharge to or dis-
charge from the ground-water flow system. Because
the flow system is complex, development of the
model requires synthesis of a large data base and
evaluation of several model parameters. The accura-
cy of the model is constrained by the assumptions
and simplifications incorporated in the analysis and
by the accuracy of the input data. Thus, this report
emphasizes the mathematical approach used to
model the flow system, the data base on which the
model is based, and the methods used to calibrate the
model. In addition, this report documents the ability
of the model to reproduce measured hydrologic con-
ditions. An evaluation of management alternatives is
given in Belitz and Phillips (1992).

The model was developed as part of the com-
prehensive investigation by the U.S. Geological Sur-
vey of the hydrology and geochemistry of the San
Joaquin Valley. The studies are being done as part of
the Regional Aquifer-System Analysis Program of
the U.S. Geological Survey and in cooperation with
the San Joaquin Valley Drainage Program.

PREVIOUS WORK

Several previous studies provided a foundation
for the development of a model of the ground-water
flow system in the central part of the San Joaquin
Valley. Belitz and Heimes (1990) described the hy-
drogeology of the ground-water flow system in the
central part of the western San Joaquin Valley, in-
cluding the area of this report. They synthesized pre-
vious work and presented new data to describe the
geology of the flow system, the evolution of the flow
system since the development of irrigated agriculture,
and the state of the flow system in 1985. Gronberg
and others (1990) used a geographic information sys-
tem to evaluate the hydrogeologic distribution of
5,860 water wells in the same study area as Belitz
and Heimes (1990). Laudon and Belitz (1991)
mapped the distribution of texture (defined as the
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weighted geometric mean of the hydraulic conductiv-
ities of coarse- and fine-grained lithologic end mem-
bers. This study used a weighted harmonic mean:

K - ’ . ©)

v,k+1 ]
2 Fc,k+—/Kc f k+ llK
2 2

where
F ck+ !

2

= fraction of coarse-grained end member
present between the midplanes of layers k&
and k+1 and

= fraction of fine-grained end member
present between the midplanes of layers k
and k+1.

Fipe!
2

Similar expressions can be written for the leakance
and equivalent vertical hydraulic conductivity be-
tween layers k and k-1.

In this study, coarse-grained sediment is defined
as sediment consisting principally of sand, clayey and
silty sand, gravel, and clayey, silty, and sandy gravel.
Fine-grained sediment is defined as sediment consist-
ing principally of clay, silt, and sandy clay and silt.
These definitions are identical to those of Laudon and
Belitz (1991). Within the semiconfined zone, two
coarse-grained lithologic end members and one fine-
grained lithologic end member were identified: coarse-
grained sediment derived from the Coast Ranges,
coarse-grained sediment derived from the Sierra Ne-
vada, and fine-grained sediment independent of the
source area. These distinctions reflect the hydrogeolo-
gy of the ground-water flow system and the location
of wells that can be used to test hydraulic conductivity.

The leakance between the lowermost layer of
the semiconfined zone and the confined zone (layers
5 and 6, respectively) was assumed to be a function
of the thickness and hydraulic conductivity of the
Corcoran Clay Member (K ,.)- The transmissivity of
the confined zone beneath the Corcoran Clay Mem-
ber (T onfined) Was not modeled as a distributed pa-
rameter and hence was not evaluated on the basis of
lithologic end members. This generalization of the
confined zone reflects the primary focus on the semi-
confined zone, in particular, the focus on the re-
sponse of the water table to potential changes in
hydrologic conditions.

Sources and Sinks

Sources and sinks in the ground-water flow
model of McDonald and Harbaugh (1988) can

include specified fluxes, such as pumping, as well as
head-dependent fluxes. Two types of head-dependent
sinks, subsurface drains and bare-soil evaporation
from a shallow water table, as well as ground-water
pumping, were incorporated into the transient model.

The McDonald and Harbaugh (1988) model
uses linear head-dependent functions to simulate the
influence of drains on the ground-water flow system.
If the hydraulic head in a model cell is higher than
the altitude of the drain in that cell, then the volu-
metric flux to the drain can be calculated:

QD:] k= xj k(hi,j,k-Ei,j,k)

Y A (7a)

where
OD; ;= volumetric flux to a drain in cell i,j,k;
Ci jx = conductance of the cell/drain system in
cell i,j.k;
h; k= head in cell i,j,k; and
E;j = altitude of drain in cell i,j.k.
If the hydraulic head in a model cell is at or lower
than the altitude of the drain in that cell, then

QD,.’j,k =0 if hu k

(7b)
Equation 7a can be interpreted as a modiﬁed form of
Darcy’s Law in which the conductance term accounts
for hydraulic conductivity, cross-sectional area, and
the distance across which the head difference occurs.
The McDonald and Harbaugh (1988) model in-
corporates a linear head-dependent function to simu-
late bare-soil evaporation or evapotranspiration or
both. In any given model cell, the bare-soil evapora-
tion rate (QF) is at a constant and maximum rate
(QEmax) if the water table (or hydraulic head, ) is
above the altitude of some reference surface (Z¢):

QE=QE  if h>Z .. (8a)

If, however, the water table is at a depth below the
reference surface, the bare-soil evaporation rate is
zZero:

QE =0 if h<Zg (8b)

Dext ’
where
D¢y, = the extinction depth.

If the water-table altitude is between the reference
surface and the extinction depth, the bare-soil evapo-
ration rate decreases linearly from the maximum rate
to zero:

0E - 0,
if Zref - Dext

[h- (Z Dext)]/ ext

She z,, . (8¢)
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Storage Coefficient

The McDonald and Harbaugh (1988) model al-
lows for a storage coefficient that depends on the rel-
ative altitude of the hydraulic head of a layer and the
top of that layer. If the head is higher than the top of
the layer, then the change in storage caused by hy-
draulic head changes is a function of the elastic
properties of the aquifer:

S, = Sb, (9a)

where
Sy = storage coefficient of layer k (dimension-
less),
S, = specific storage (L'l), and
b, = thickness of layer k (L).

If the hydraulic head is lower than the top of the
layer, then changes in head correspond to changes in
water-table altitude, and thus changes in storage are a
function of the drainable porosity:

S =S, (9b)

where
Sy = specific yield (dimensionless).

Boundary Conditions

In both phases of calibration (steady-state and
transient), the lateral boundary conditions were treat-
ed identically (fig. 3). The contact between the Coast
Ranges and the unconsolidated alluvium was mod-
eled as a no-flow boundary. The northern and south-
ern boundaries of the study area approximate flow
lines and also were treated as no-flow boundaries.
Along the northeastern and eastern boundaries, the
study area is not hydraulically isolated from adjacent
areas. To account for the interaction of the flow sys-
tem with adjacent areas, the northeastern and eastern
boundaries were treated as head-dependent bound-
aries (McDonald and Harbaugh, 1988):

QB'.’]., = Cii (HBi,j,k - hi,j, PR 10)

iJ,
where
OB, ;= flux across the boundary of cell (;,j,k) (L*/t),
C; k= conductance of the deposits at the bound-
ary of cell (i,j,k) (L2/t),
HB; ;; = externally specified head (L), and
h; k= head in the model cell (i,j,k) (L).

The head-dependent boundary condition allows for
flow into or out of the study area and can be seen as
a modified form of Darcy’s Law:

Cije = Ay Koy )Ly an
where
Ajjr= areza of cell face adjacent to the boundary
€,
K; j x = hydraulic conductivity of material between

cell (i,j,k) and the externally specified head
(HB) (L/t), and

L;j; = distance between model cell and specified
head (L).

The boundary conditions at the top and bottom
of the model were treated differently in the first and
second phases of calibration. In the first phase of cal-
ibration, the semiconfined zone was modeled under
steady-state conditions with the altitude of the water
table (1984) and confined zone heads (1984) treated
as specified-head boundaries. Distributed sources and
sinks at the top of the ground-water flow system (re-
charge, subsurface drains, bare-soil evaporation) were
not explicitly incorporated; but ground-water pump-
ing was implicitly incorporated into the specified-.
head boundary at the bottom of the ground-water
flow system. Thus, the specified-head boundary
below the Corcoran Clay Member accounted for flux
across the Corcoran Clay Member and for ground-
water pumping from the semiconfined zone. The
limitations of the steady-state model were removed
in the second phase of calibration: the semiconfined
and confined zones were modeled under transient
conditions, the water table was treated as a free sur-
face, and distributed sources and sinks were explicit-
ly incorporated. In the transient model, the confined
zone was assumed to be 1,000 ft thick, and the bot-
tom of the confined zone was treated as a no-flow
boundary.

Simulation Period, Model Time-Step Size,
and Initial Conditions

The transient model began in October 1972 and
ran until October 1988. For numerical stability and
convergence, the first year was divided into 450 time
steps: 0.2 year divided into 200 time steps, 0.3 year
divided into 150 time steps, and 0.5 year divided into
100 time steps. Subsequent years were divided into
100 time steps each. The initial head distribution in
the semiconfined zone was specified as hydrostatic
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beneath the water table; the altitude of the water
table in 1972 was mapped from water-level data
compiled by Gronberg and others (1990). The initial
head distribution in the confined zone (1972) was ob-
tained from a previously published map (Ireland and
others, 1984).

PARAMETER ESTIMATION AND
AVAILABLE DATA BASE

A large quantity of data is available for the cen-
tral part of the western San Joaquin Valley that can
be used to evaluate model parameters. Many of the
parameters were evaluated independent of the model,
including geometry, texture, altitudes of the water
table and the potentiometric surface in 1972 (initial
condition) and in 1984 (specified-head boundaries
for the steady-state phase of modeling), hydraulic
conductivity of coarse-grained lithologic end mem-
bers, specific storage, recharge, pumping, and param-
eters needed to incorporate subsurface drains and
bare-soil evaporation in the model. The values of
four model parameters, however, were calibration
variables: hydraulic conductivity of the fine-grained
lithologic end member in the semiconfined zone, hy-
draulic conductivity of the Corcoran Clay Member,
specific yield, and transmissivity of the confined
zone. In the following subsections, data used for in-
dependently evaluating model parameters are dis-
cussed and the values used in the model are
presented. Those parameters that were calibration
variables also are discussed and preliminary esti-
mates of those values are presented. In a subsequent
section, the calibration methodology is discussed and
the calibrated values and preliminary estimates are
compared. Selected model input data are given at the
end of the report.

Land-Surface Altitude and System Geometry

The ground-water flow model requires specifica-
tion of the altitudes of the top and bottom of each of
the five layers that constitute the semiconfined zone
(including land-surface altitude). Because of aquifer
compaction, land-surface altitude in the study area
was remapped. This was done by digitizing 1,776
land-surface altitude data points (from section cor-
ners and along canals) from 19 U.S. Geological Sur-
vey 7.5-minute topographic maps (table 1) and by

Table 1. U.S. Geological Survey 7.5-minute topographic
maps used in remapping land-surface altitude

Map name Year
Laguna Seca .................cc..... 1956
ChounetRanch ....................... 1956
Hammonds Ranch ..................... 1956
DosPalos ..........c.c0iiiinnivnnn. 1956
MonoclineRidge . ..................... 1955
Chaney Ranch . ....................... 1955
Broadview Farms . . .................... 1955
OxaliS . ... ii i e e 1956
LilisRanch ........... ... .. ... ... .... 1956
LevisS .ot e e 1956
CoitRanch .......... .. ... . ... ... 1956
Firebaugh ............ ... ... .. ... .... 1956
PosoFarm .............. ..., 1962
Tres Pecos Farm ...................... 1956
CantuaCreek ............ ... 1956
Tranquillity .. ......... ... ... o 1956
MendotaDam ........................ 1956
SanJoaquin .............. . 00 1963
Jameson ............. . . .. . i, 1963

digitizing land-subsidence maps from four time peri-
ods: 1955-69 (Poland and others, 1975), 1963-66
(Bull, 1975), 1966—69 (Poland and others, 1975), and
1969-72 (Poland and others, 1975). The last relevel-
ing of the entire study area was done in 1972 (Ire-
land, 1986). Ireland and others (1984) and Ireland
(1986) presented data indicating that since 1972 sub-
sidence was less than 1 ft along the California Aque-
duct and at 15 sites in and around the study area.
Land-surface altitude at the centers of model cells
was interpolated from the network of digitized data
points. Given the altitude of the land surface, the al-
titudes of the top and bottom of each of the model
layers can be specified by determining the thickness
of each of the model layers.

The total thickness of deposits in the semicon-
fined zone was determined by taking the altitude of
the top of the Corcoran Clay Member (Page, 1986)
and subtracting those values from land-surface alti-
tudes. The total thickness of the semiconfined zone
was then divided into five layers. The thickness of
the Corcoran Clay Member, needed for calculation of
leakance between layers 5 and 6, was taken from a
previously published map (Page, 1986). The thick-
ness of the confined zone was not explicitly incorpo-
rated into the model but was implicitly incorporated
in the storage coefficient and transmissivity of the
confined zone.

Parameter Estimation and Avallable Data Base 11



Water Levels

Accurate water levels are needed for specifica-
tion of initial conditions and for model calibration.
Gronberg and others (1990) reported that there are
5,860 wells in an area about twice as large as the
study area for this report, of which 1,114 were in-
stalled to monitor the water table where it is within
20 ft of land surface. Most of the shallow wells are
monitored on a quarterly basis, but many are moni-
tored on a semiannual basis. Generally, the water
table is shallowest in July during the growing season
and is deepest in October after the harvest. In the
study area for this report, more than 400 wells were
used to map the altitude of and depth to the water
table. The density of the water-level data base is
such that 50 percent of the model cells are within 1
mi of a well, and 95 percent of the model cells are
within 3 mi of a well (fig. 5).

The depth to the water table and the altitude of
the water table were mapped for the entire study area
using October water levels in 1972, 1976, 1980, and
1984. Internal consistency between the depth and al-
titude maps was maintained first by interpolating
land-surface altitude (bilinear interpolation) and
water-table depth at the centers of model cells and
then by calculating water-table altitude. A large num-
ber of wells are in areas of shallow ground water
(depth to the water table less than 20 ft). Water lev-
els for these wells were mapped using bilinear inter-
polation. There are fewer wells in areas of deep
ground water; water levels for these wells were man-
vally contoured. The depth to the water table in areas
of shallow ground water also was mapped for July
and October conditions from 1972 to 1988, except
for July 1977. The large number of wells in areas of
shallow ground water permitted automated interpola-
tion of water-table depth for 32 time periods.

The altitude of the water table in 1972 was used as
the initial condition for the five layers of the semicon-
fined zone, and the altitude of the water table in 1984
was used as a specified-head boundary in the steady-
state phase of model calibration. The change in water-
table altitude from 1972 to 1984 and the number of
model cells with a water table within 7 ft of land surface
from 1973 to 1988 were used to calibrate the transient
model. Selected hydrographs from 1972 to 1984 were
used to evaluate the accuracy of the calibrated model.

The potentiometric surface of the confined zone
was taken from contour maps for 1972, 1976, 1980,
and 1984 (Ireland and others, 1984; Westlands Water

District, written commun., 1987; and California De-
partment of Water Resources, written commun., 1987).
The 1972 potentiometric surface was used as the initial
condition for the confined zone in the transient model,
the 1984 potentiometric surface was used as a specified-
head boundary for the steady-state model, and the
change in altitude of the potentiometric surface from
1972 to 1984 was used in calibrating the transient
model. Selected hydrographs from 1972 to 1984 were
used to evaluate the accuracy of the calibrated model.

Distribution of Texture, Semiconfined Zone

Within the semiconfined zone, equivalent hori-
zontal and vertical hydraulic conductivities depend on
the distribution of texture (fraction of coarse-grained
sediment) in each of the five layers that constitute the
semiconfined zone, as well as the texture of the depos-
its present between the midplanes of adjacent layers.
Lithologic and geophysical logs from 534 wells in and
around the study area (fig. 6) were used to map the
distribution of texture. The texture maps were made as
follows: (1) each well log was examined and, from the
geologic description (or geophysical log), individual
horizons or beds were classified as coarse or fine
grained; (2) each well log then was divided into nine
discrete intervals, five intervals corresponding to the
five layers of the semiconfined zone and four intervals
corresponding to the deposits present between the
midplanes of the five layers; (3) for each interval, the
texture (fraction of coarse-grained sediment) was cal-
culated; (4) for each interval, the texture at the center
of model cells was computed using the moving aver-
age method of Sampson (1976). Laudon and Belitz
(1991) provided a more complete description of the
method used in mapping texture in the central part of
the western San Joaquin Valley. The contact between
coarse-grained sediment derived from the Coast Rang-
es and coarse-grained sediment derived from the Sierra
Nevada was mapped using published maps of the
thickness of deposits derived from the Coast Ranges
and the Sierra Nevada (Miller and others, 1971).

The mean, standard deviation, and coefficient of
variation of the textural values for the Coast Ranges
alluvium and Sierran sand are listed in table 2 for
each of the five model layers. In all five layers, the
Sierran sand contains a higher fraction of coarse-
grained deposits than the Coast Ranges alluvium and
the coefficient of variation is smaller. These statistics
are consistent with the depositional environment of
the two hydrogeologic units.
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Table 6. Drainage-system characteristics and regression parameters

[ft, foot; ft?/s, square foot per second]

Characteristics Regression
Drainage Drain Depth to Depth to
system Area spacing drains Conductance drains R?
(acres) ft) (ft) (ft¥/s) (o)
Regional collector 42,000 2,640 7 to 11 0.054 10.1 0.52
On-farm (Lord,
1988)
P1 92 260 to 1,365 6.8 to 8.4 65 7.8 .66
(average = 530)
P2 149.9 400 to 560 6 60 6.5 67
(average = 427)
BI10 1455 260 6.2 t0 6.9 31 77 .59

closer spacing of the on-farm drains. These values
were specified for the 67 model cells representing the
area serviced by on-farm drains.

Bare-Soil Evaporation

Using a linear function to simulate bare-soil
evaporation (eq. 8) requires specification of the max-
imum bare-soil evaporation rate (QF ,,,,), the altitude
of the surface at which the maximum rate occurs
(Zeg), and the extinction depth (Dg,,). These were
selected on the basis of a theoretical analysis of bare-
soil evaporation from Panoche clay loam, the pre-
dominant soil type in the study area (Harradine,
1950) (appendix B). For Panoche clay loam, bare-
soil evaporation from the water table can be approxi-
mated with the equation

E = 32.0¢° 2%,

(14)
where
E = bare-soil evaporation rate (ft/yr) and
L = depth of water table below evaporation
surface (ft).

Figure 11 illustrates the bare-soil evaporation
rate as a function of depth to the water table. A
linear approximation of equation 14 can be accurate
only for a limited depth range. Because the water
table in the central part of the western San Joaquin
Valley is rarely shallower than 4 ft, depths greater
than 4 ft need to be approximated in equation 14. A
linear approximation of equation 14 using an

extinction depth of 7 ft and a maximum bare-soil
evaporation rate of 1.0 ft/yr at the land surface ap-
proximates the exponential function closely within
the depth range 4 to 7 ft (fig. 11).

Head-Dependent Boundary Condition

Using a head-dependent boundary condition (eq.
10) along the northeastern and eastern boundaries of
the study area requires specification of the conduc-
tance of the deposits along these boundaries and the
externally specified hydraulic heads in adjacent
areas. Estimating conductance of a single model cell
along a boundary requires values for the area of the

Exponential function

EVAPORATION RATE,
IN FEET PER YEAR
©

Linear approximation |

5 6 7 8
DEPTH TO WATER TABLE, IN FEET

Figure 11. Bare-soil evaporation as a function of water-
table depth.
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cell face adjacent to the boundary, the hydraulic con-
ductivity of the deposits between the cell and the ex-
ternally specified head, and the distance between the
cell and the externally specified head (eq. 11).

In the semiconfined zone, the hydraulic head in
adjacent areas and the distance between the cell and
the externally specified head were evaluated from the
data base compiled by Gronberg and others (1990).
Examination of water levels of wells along the north-
eastern and eastern boundaries for 1976, 1980, and
1984 indicated a typical head value of 125 ft at a
distance of 2 mi. In the confined zone, the hydraulic
head in adjacent areas was specified on the basis of
measured lateral gradients for 1972, 1976, 1980, and
1984 (Ireland and others, 1984; Westlands Water Dis-
trict, written commun., 1987; and California Depart-
ment of Water Resources, written commun., 1987).
Inspection of the maps indicated that a head value of
125 ft at a distance of 10 mi generally would respect
the measured gradients for the confined zone.

Evaluation of conductance of each cell along the
boundaries was based on the geometry of the model
(cell width multiplied by cell thickness) and the tex-
ture and source area of the deposits along the bound-
aries. The semiconfined zone was divided vertically
into five layers. Along the northeastern and eastern
boundaries, the uppermost layer (layer 1) consists
primarily of flood-basin clays; therefore, head-
dependent boundaries were not specified for layer 1.
In the lower four layers of the semiconfined zone,
the deposits between the boundaries and the external-
ly specified heads are primarily Sierran sand; there-
fore, the hydraulic conductivity was calculated by
assuming a texture of 0.65 (a value representative of
Sierran sand in the valley trough) and a hydraulic
conductivity of 1.2x1073 fi/s (the mean value deter-
mined from slug-test data; table 3). In the confined
zone, hydraulic conductivity was calculated by divid-
ing the transmissivity of the confined zone (a calibra-
tion variable) by 1,000 ft (the assumed thickness of
the confined zone).

MODEL CALIBRATION

A numerical model of the ground-water flow
system in the central part of the western San Joaquin
Valley requires several model parameters to be speci-
fied. Most parameters were estimated independently
of the model; four parameters, however (K, K orc»
Sy, and Teonfineq), were calibration variables. The re-

lation between two of them (Ky and K,;.) was con-
strained by optimizing a steady-state model of the
semiconfined zone, thus reducing the number of in-
dependent variables in the transient model from four
to three. The transient model was then calibrated as a
function of the remaining three variables.

Steady-State Calibration

In the steady-state phase of calibration, the
known parameters were the geometry of the ground-
water flow system, the distribution of texture, the lo-
cation of the contact between coarse-grained deposits
derived from the Coast Ranges and those derived
from the Sierra Nevada, the hydraulic conductivities
of coarse-grained sediment derived from the Coast
Ranges and Sierra Nevada (K ., and K, respec-
tively), the altitude of the water table and confined
zone heads (specified-head boundaries), and the ex-
ternally specified heads and the conductance along
the northeastern and eastern boundaries (head-
dependent boundary condition). The unknown pa-
rameters were the hydraulic conductivities of the two
fine-grained lithologic end members (K¢ and K ).

Phillips and Belitz (1991) presented a method
for optimizing a steady-state model of the semicon-
fined flow system in the central part of the San
Joaquin Valley if there were three lithologic end
members: coarse-grained deposits (K.), fine-grained
deposits (Ky), and the Corcoran Clay Member
(Kcore)- The method of Phillips and Belitz (1991) can
be used if the four hydraulic conductivities of the
present model (K. ., K5, K¢, and K ;) are reduced
to three. This can be done if we define K = K,
and if we fix the ratio of K (/K ... Slug testing of
U.S. Geological Survey wells indicates that the mean
value of K ¢ is 3.2 times as large as the mean value
of K, ., (table 3). Thus, K. = K;..; = K..¢/3.2.

Following the procedure of Phillips and Belitz
(1991), the remaining three parameters (K, Ky, and
K orc) can be reduced to two dimensionless parame-
ters:

K' =K /K, (15)

K" =K /K, (16)

TC
The two dimensionless parameters incorporate two
known variables (K,..; and K () and two unknown
variables (K¢ and K_c). This is in contrast to Phillips
and Belitz (1991) in which the two dimensionless pa-
rameters incorporated three unknown variables (K.,
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Table 7. Location of U.S. Geological Survey well cluster sites used in calculating estimated values of head in model cells
[Well cluster site: Site where two or more observation wells installed at different depths. ft, foot]

Cluster Perforated interval Lowermost cell penetrated by a well
fsnte7 State No. Shallow well Deep well Row Column Layer

(fig. 7) (ft) (f)
F1 13S/13E-28A 88-89 193-203 12 11 4
P1 13S/15E-31J 2227 400-410 20 18 5
P3 14S/14E-10A 13-18 332-342 19 15 4
MIA 15S/15E-9D 20-25 55-65 26 15 2
MIB 15S/15E-9D 55-65 472-482 26 15 5
P4 14S/13E-24N 62-67 490-500 18 9 5
M2 15S/14E-10A 69-79 365-375 24 11 5
M3 15S/13E-11B 35-45 370-380 20 7 4

K¢, and K ). The use of the dimensionless parame-
ters in the present investigation is for consistency
with the previous work of Phillips and Belitz (1991).

The steady-state model was then run as a func-
tion of the two dimensionless parameters, K’ and K"'.
For each individual run of the model, two statistics
were calculated:

2
" (hmcas - hsim),-

RMSE = —
2

amn

n

BIAS = 2 (s ~hgm)

i=1

(18)

where
RMSE = root mean square error,

hmeas = measured head,
hgim = simulated head,
i = summation index, and
n = number of measurements..

To compare simulated and measured conditions,
water levels for wells were adjusted to values repre-
sentative of model cells. Adjusted values of head
were calculated for eight model cells at seven loca-
tions in the study area (fig. 7, table 7); each location
corresponds to a U.S. Geological Survey well cluster
site where several wells were drilled to different
depths. At each well cluster site, an adjusted value of
head was calculated for the deepest model cell (with-
in the semiconfined zone) penetrated by a well. The
adjusted value of head was calculated as follows: the
vertical hydraulic-head gradient between the shallow-
est well (typically a water-table well) and the deepest
well within the semiconfined zone was calculated,

and then the calculated gradient and the estimated al-
titude of the water table (1984) were used to calcu-
late an adjusted value of head at the midpoint of the
deepest cell penetrated by a well. At the M1 site,
contact between the Coast Ranges alluvium and the
underlying Sierran sand is at a depth of 85 ft. Two
values of adjusted head were calculated for the M1
site: one at the deepest cell consisting of Coast
Ranges alluvium and the other at the deepest cell
consisting of Sierran sand. Optimization of the
model using adjusted values of head at the deepest
model cells should reproduce the overall vertical
hydraulic-head gradient measured in the semicon-
fined zone but may not necessarily reproduce the
gradients between individual wells at each of the
well cluster sites (the vertical hydraulic-head gradi-
ent generally is not linear).

Given the adjusted values of head, the model
was systematically run as a function of K’ and K.
Figure 12 shows contour plots of RMSE and BIAS
for a set of model runs in which K’ and K" each
range more than five orders of magnitude. Along the
axis of the valley of the contoured RMSE surface, the
RMSE ranges from 13.5 to 14.7 ft; the associated
BIAS ranges from -1.5 to +0.5 ft.

Phillips and Belitz (1991) reported a RMSE and
BIAS of about 19 ft and -5 ft, respectively. The lower
values in this investigation are the result of (1) a
more accurate map of the altitude of the water table
in 1984 and (2) a more careful selection of observa-
tion wells. The existence of a valley of minimum
RMSE indicates that a unique solution to the bound-
ary value problem does not exist; many solutions
optimize model fit with respect to head. However, the
existence of a valley of minimum RMSE can be used
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in further calibration of the model. If a value of K"’ is
specified (that is, if K, and K. are specified), then
figure 124 can be used to select a value of K’ that
minimizes RMSE (that is, K¢ is uniquely determined).
Because K ; and K g are specified in the transient
model, one need only calibrate for either K . or K.
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Figure 12. Root mean square error and bias mapped as a
function of two dimensionless parameters, K and K'. A,
Root mean square error. B, Bias, the sum of measured val-
ues minus simulated values. K; is hydraulic conductivity of

Transient Calibration

The transient model was calibrated as a function
of three unknowns: specific yield (S,), hydraulic con-
ductivity of the Corcoran Clay Member (K,,.), and
the transmissivity of the confined zone (T opfined)- A

EXPLANATION

LINE OF EQUAL ROOT MEAN
SQUARE ERROR - Interval 5
and 10 feet

AXIS OF MINIMUM ROOT MEAN
SQUARE ERROR

+ ROOT MEAN SQUARE ERROR
FOR INDIVIDUAL SIMULATION
AT GIVEN RATIO, IN FEET

EXPLANATION

—+100 | \NE OF EQUAL BIAS - Interval

100 feet

AT GIVEN RATIO, IN FEET

+ o+

65 7.0

coarse-grained material, K; is hydraulic conductivity of fine-
grained matenial, and Ko, is hydraulic conductivity of the
Corcoran Clay Member of the Tulare Formation of Pleisto-
cene age. Logarithms are base 10.
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dimensionless parameters) was evaluated by repeating
the steady-state modeling for two additional values of
K /K. o (1.0 and 10.0). Figure 22 shows that the
axes of minimum RMSE for the three ratios of K ¢/
K _.r are coincident where log K"’ is less than 5.0 and
divergent where log K" is 5.0 or greater. Because log
K'' was 4.78 in the calibrated transient model, one can
conclude that the coupling between Ky and Ko (K’
and K" when expressed as dimensionless parameters)
was not affected by the ratio of K. /K ;.

The applicability of using a relation derived
from the steady-state model in the transient model

can be partly addressed by using the steady-state
model to obtain an estimate of K ., and then by
comparing that estimate to the value obtained by cal-
ibrating the transient model. Toward that end, the
steady-state model was used to map the flux across
the Corcoran Clay Member as a function of K, and
K orc (fig. 23); for each run of the steady-state
model, K¢ was selected to minimize RMSE. Figure
23 indicates that the flux across the Corcoran Clay
Member is sensitive to Ko and relatively insensi-
tive to K. Thus, figure 23 can be used to obtain an
estimate of K, if one can independently estimate

300
200

i

i 100

L

-

< oF 0 W—

w

on

= 100 -

O

i

B 200

o

O 300

w

>

S 300

<

o 200

w

L [

Z 100

i

=~ 0

[11]

-

o 100

=

$ 200

(17, 5) (35, 6)
300 ' ' ' | ; |
1972 1976 1980 1984 1988 1972 1976 1980 1984 1988
EXPLANATION

® MEASURED WATER TABLE

O  SIMULATED WATER TABLE

B MEASURED HEAD IN CONFINED ZONE

O  SIMULATED HEAD IN CONFINED ZONE

Figure 19. Measured and simulated altitude of water table and head in confined zone for selected model cells in areas
where water table is within 20 feet of land surface, 1972-88. Numbers in parentheses represent row and columns of

model cell.
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the flux across the Corcoran Clay Member. Because
the steady-state model implicitly incorporated pump-
ing, the estimated flux across the Corcoran Clay
Member must account for all ground water removed
from the deep parts of the ground-water flow
system—this would include ground-water pumpage
from the semiconfined and confined zones. Ideally,
independently estimated flux across the Corcoran
Clay Member also would include the change in stor-
age in the confined zone and would account for the
influx to the confined zone from surrounding areas.
Gronberg and Belitz (1992) estimated ground-water
pumpage per unit area at 0.26 ft/yr in 1984 (the year

300 T T T
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I
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100 —

200

WATER LEVEL, IN FEET ABOVE OR BELOW SEA LEVEL

for which the steady-state model was developed).
The value of K that allows that flux across the
lower boundary of the model is about 5.0x10™ fu/s,
which, considering the assumptions incorporated into
the steady-state calibration, is reasonably consistent
with the value determined from the transient calibra-
tion (6.0x10'9 ft/s).

Accurate solution of an initial value problem re-
quires accurate specification of initial conditions. The
water-table altitude and the distribution of hydraulic
head in the confined zone for 1972 were evaluated
using extensive well data and previously prepared
maps. The initial head distribution below the water
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Figure 20. Measured and simulated altitude of water table and head in confined zone for selected model cells in areas
where water table is more than 50 feet below land surface, 1972-88. Numbers in parentheses represent row and

columns of model cell.
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table and above the Corcoran Clay Member, howev-
er, is not as well known. The initial head distribution
in the semiconfined zone below the water table was

Evapo-
Deelapt . transpiration
percolation
l ||
/ —
l LI Drains
Leakage Shallow ——> 20
= wells Qutflow
AS =60 110 Outfiow
Y Deep
wells
T +«—— 30
A S(change in storage) = 40 l?r%(ml
east

Figure 21. Water budget for study area, 1981-84 (values are
in thousands of acre-feet, rounded to the nearest 10,000).
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Figure 22. Axes of minimum root mean square error for
different values of ratio of hydraulic conductivities of
coarse-grained material derived from Sierra Nevada (K.)
to that from Coast Ranges (K;.). K; is hydraulic conductiv-
ity of fine-grained material and K is hydraulic conductivi-
ty of the Corcoran Clay Member of the Tulare Formation of
Pleistocene age. Logarithms are base 10.

specified as equal to the altitude of the overlying
water table. Although this hydrostatic initial condi-
tion is incorrect, we can show that the model is not
significantly affected by the error.

Let us examine hydrographs for model cells lo-
cated where the thickness of the semiconfined zone is
large and the misspecification of a hydrostatic initial
condition would be expected to be most significant
(fig. 24). In these hydrographs, the altitude of the
water table and confined zone heads increased
throughout the period of simulation, but heads at
depth in the semiconfined zone decreased in the first
0.2 year and then increased. The increases in water-
table altitude and confined zone head are consistent
with measured change (figs. 13, 18, 19, and 20). The
initial decrease in head at depth in the semiconfined
zone is due to misspecification of the initial condition;
however, the briefness of this decrease indicates that
the assumed initial condition in the semiconfined zone
is not critical to model performance in later years.
Transient decreases in head in the semiconfined zone
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Figure 23. Flux across the Corcoran Clay Member in 1984
mapped as a function of hydraulic conductivity of coarse-
grained material (K;) and that of the Corcoran Clay Mem-
ber of the Tulare Formation of Pleistocene age (Korc)-
Logarithms are base 10.

Discussion of Model Assumptions 39



have little effect on the overlying water table and un-
derlying confined zone because the volume of water
represented by the initial decrease in heads is small
relative to other fluxes in the ground-water flow sys-
tem (for example, recharge and pumping). In general,
the confined zone heads at depth in the semiconfined
zone can be interpreted as being in dynamic equilibri-
um with the overlying water table and underlying
confined zone.

The transient model was developed using data
sets averaged for relatively long time periods and for
relatively large areas. For example, two of the cali-
bration variables, specific yield (Sy) and confined

300

200

100

WATER LEVEL, IN FEET ABOVE OR BELOW SEA LEVEL

(25, 9)
200 | ] |
1972 1976 1980 1984 1988
EXPLANATION
| ] LAYER 1 @] LAYER 4
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[ ] LAYER 3 X LAYER 6

Figure 24. Simulated semiconfined and confined zone
heads for selected locations where thickness of semicon-
fined zone is large. Numbers in parentheses represent row
and columns of model cell.

zone (T.onfineq) transmissivity, were evaluated using
changes in water levels for a 12-year period; the
third calibration variable, hydraulic conductivity of
the Corcoran Clay Member (K_,,.), was evaluated
using a 16-year period for the total area subject to
bare-soil evaporation. In addition, many of the data
sets input to the model as known were averaged for
relatively long time periods and for relatively large
areas. For example, rates of recharge and pumping
were evaluated on a annual basis (1980 was selected
as representative) for subareas ranging in size from
16 to 155 miZ and were assumed to be temporally
constant during the period of simulation. If the
model was calibrated using seasonal or monthly data
or if the water-budget subareas were subdivided, it
might be necessary to recalibrate the model. In addi-
tion, refinement (spatial or temporal) of any of the
other mode! parameters (for example, parameters
representing drains) might necessitate a recalibration
of the model.

SUMMARY

A three-dimensional, finite-difference numerical
model was developed to simulate the regional
ground-water flow system in the central part of the
western San Joaquin Valley. The modeled area is 550
mi? and includes the Panoche Creek alluvial fan and
parts of the Little Panoche Creek and Cantua Creek
alluvial fans. Areally, the model grid is 36 rows by
20 columns with each model cell 1 mi on a side.
Vertically, the semiconfined zone was divided into
five layers, and the confined zone beneath the Corco-
ran Clay Member was represented by a sixth layer.
The model incorporates distributed recharge and
pumping, regional-collector drains in the Westlands
Water District subarea (operative from 1980 to
1985), on-farm drains in parts of the Panoche,
Broadview, and Firebaugh subareas, and bare-soil
evaporation from the water table. The transient
model was calibrated using hydrologic data from
1972 to 1988.

An extensive data base was assembled to devel-
op and calibrate the model. Land subsidence in the
study area necessitated a remapping of land-surface
altitude (land-surface altitude at 1,776 points and
four land-subsidence maps were digitized). Previous-
ly published maps were used to map the thickness of
Coast Ranges alluvium, Sierran sand, and the Corco-
ran Clay Member of the Tulare Formation of Pleisto-
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cene age. Lithologic and geophysical logs from 534
wells were used to map the fraction of coarse-
grained deposits in the semiconfined zone.

Specification of an initial condition and calibra-
tion of the model required delineation of water levels.
The altitude of the water table and the depth to the
water table in 1972, 1976, 1980, and 1984 were
mapped using October water-level measurements
from more than 400 wells. The depth to the water table
in July and October 1973 to 1988 was mapped in areas
where the water table is within 20 ft of land surface.
Confined zone heads were discretized from existing
contour maps for 1972, 1976, 1980, and 1984.

Recharge and pumping in the model were areal-
ly distributed but temporally constant in the transient
model. The rates of recharge and pumping were
based on an analysis of 1980 water budgets of nine
subareas ranging in size from 16 to 155 miZ. The
vertical distribution of pumping (semiconfined zone
compared with confined zone) was based on an anal-
ysis of the length of well perforations above and
below the Corcoran Clay Member.

The model uses linear head-dependent functions
to represent the subsurface drains and bare-soil evap-
oration. Regional-collector drains were parameterized
by regression of measured monthly drainflow volume
for the entire drainage system copnpared with aver-
age depth to the water table in the drained area. On-
farm drains were parameterized by regression of
measured daily drainflow volume compared with
depth to the water table in three agricultural fields.
Bare-soil evaporation was parameterized by a theo-
retical analysis of bare-soil evaporation from
Panoche clay loam.

Some of the hydraulic properties of the deposits
in the central part of the western San Joaquin Valley
were evaluated independently of the model and oth-
ers were calibration parameters. The hydraulic con-
ductivities of coarse-grained deposits derived from
the Coast Ranges and from the Sierra Nevada were
evaluated from slug tests done for 25 wells drilled by
the U.S. Geological Survey. Specific storage was
based on previously published values. The hydraulic
conductivity of fine-grained deposits in the semicon-
fined zone and of the Corcoran Clay Member, the
transmissivity of the confined zone, and specific
yield were calibration parameters. Two of the param-
eters (hydraulic conductivity of the fine-grained de-
posits and of the Corcoran Clay Member) were
coupled in the first phase of model calibration, thus
reducing independent parameters from four to three.

Three measures of the state of the ground-water
flow system were used to calibrate the transient
model: (1) the change in water-table altitude from
1972 to 1984 was used to calibrate for specific yield;
(2) a time-series record (1972 to 1988) of the num-
ber of model cells susceptible to bare-soil evapora-
tion (defined as number of model cells with a water
table within 7 ft of land surface) was used to cali-
brate for the hydraulic conductivity of the Corcoran
Clay Member; and (3) the change in confined zone
head from 1972 to 1984 was used to calibrate for
confined zone transmissivity. Three additional meas-
ures of the state of the ground-water flow system
were used to help evaluate the fit of the model: depth
to the water table in 1984, distribution of model cells
susceptible to bare-soil evaporation in 1984, and
time-series hydrographs (1972-88) of water-table al-
titude and confined zone head. Overall, the model re-
produces long-term changes more accurately than
short-term changes (for example, decade compared
with yearly changes) and large-scale features more
accurately than small-scale features.

The transient model described in this report can
be used to evaluate the response of the water table to
changes in management practices that affect recharge
to or discharge from the ground-water flow system.
Such activities include land retirement (cessation of
recharge and pumping), improved irrigation efficien-
cy and consequent reduction in recharge, installation
or shutting down of drainage systems, and increased
ground-water pumping. The response of the ground-
water flow system can be quantified in terms of
changes in one or more of the following: water-table
altitude, confined zone head, number (and distribu-
tion) of model cells subject to bare-soil evaporation,
and changes in the water budget, including drainflow
and bare-soil evaporation. Because the model was
calibrated with data that were averaged for relatively
large areas (16 to 155 n1i2), the model is best suited
for evaluating changes that occur across relatively
large areas. Because the model was calibrated on an
annual basis for a 16-year period (1972-88) using a
representative water budget, the model is best suited
for evaluating changes for relatively long time peri-
ods (years to decades).
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APPENDIX A: SPECIFIC YIELD

Specific yield (Sy) can be defined as the change in moisture content for a unit change
in the altitude of the water table. Given a mathematical function describing moisture con-
tent as a function of tension and assuming equilibrium drainage, specific yield can be
calculated as a function of water-table depth. If the moisture characteristic curve is de-

scribed by the equation

0 = A+ Blny, (19)
where
0 = moisture content = volume of
water per unit volume of soil
(dimensionless) and

Y = tension (L),
then at time ¢4,

L,

OT = f(A+Bln\p)dlp,
0

(20)

where
07 = moisture stored in the profile
from the land surface to depth L,
(L) and
Ly = depth of the water table at time ¢,
L),
and at time f,,

L,

6, = ¢(L,-L,) +f (A+Blny)dy, (21)
0
where
0 = porosity (dimensionless) and
L, = depth of the water table at time ¢,
(L).

The change in moisture content (A07)
therefore is

L,

AB, = ¢(L;-L,) +f(A+Bln1p)d\p
0

L,

—J‘ (A+Blny)dy. (22)
0

The specific yield thus can be calculated:

L

f (A +Blny)dy

. (23)

Equation 23 can be integrated:

B

L -L

Sy =¢-A+

L2
(Winp-y),* (24)
2

Equation 24 can be expanded and simpli-
fied:

Sy=¢—A+B
B

1'L2

(25)

+

7 (L,InL,~L,InL))

Equation 25 provides an estimate for spe-
cific yield for a change in depth to the
water table from L; to L,. Equation 25 can
be applied to Panoche clay loam using data
from Lord (1988), who presented moisture
content and tension data for a core taken
from a field site in the Panoche Water Dis-

trict (P1-1). The porosity of the core is

¢ = 0.526. (26)

Regression of moisture content against ten-
sion (in meters) indicates

® = 0.367-0.0471 1ny, (27)

with Rz-adj = 99.6 percent.
Substitution of 26 and 27 into 25 leads
to

S =011 - 0.471
Y L

- (L,InL,-L,1nL,). (28)

2

Equation 28 can be used to estimate specif-
ic yield for Panoche clay loam. If depth to
the water table changes from L,=30 meters
to L,=29 meters, then Sy=0.3l; if depth to
the water table changes from L{=7 m to
Ly=6 m, then $,=0.25; and if depth to the
water table changes from L;=3 m to L,=2
m, then §,=0.20.

Appendix A: Specific Yield
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APPENDIX B: BARE-SOIL EVAPORATION

Evaporation from bare soil can be evaluated as a function of the depth to the water
table by solving the appropriate boundary-value problem (Hillel, 1980). The governing

equation is

E = K(y) (dy/dz-1). 29)
Boundary conditions are

¢y =0 at z = L, (30a)

Y = ymax  at z = 0, (30b)

where
E = evaporation rate (L/t),
Y = soil-moisture tension (L),
K (y) = hydraulic conductivity, a function

of tension (L/t),

z = vertical distance, positive upward
(L), and

L = water-table depth (L).

fK)= ae'bq’, equation 29 can be solved
by separation of variables:

PL=bYax) 1Pl - 1). (31)

If ymax—c then e?L®¥max—0, and if bL
> 1 then ¢’ >> 1 and

E=a(l-e

E = ae bt (32)

Thus, the bare-soil evaporation rate can be
calculated as a function of water-table

depth if one can estimate the parameters a
and b.

Nielson and others (1973) compiled a
large amount of data on soil moisture, soil
tension, and hydraulic conductivity data for
Panoche clay loam. Synthesis of data from
Nielson and others (1973, their tables 2 and
4) provides an estimate of hydraulic con-
ductivity as a function of tension: at 0.0,
0.33, 1.0, 2.0, and 3.0 ft of tension, the hy-
draulic conductivity was 243.0, 85.0, 30.0,
4.9, and 0.73 ft/yr, respectively. Regression
of In K compared to soil tension for the
three data points at largest tension indicates

K = 320709V (33)

where

K = hydraulic conductivity (ft/yr).
Application of equation 33 to Panoche clay
loam indicates

E = 32,0 %%L, (34)

where
E = evaporation rate (ft/yr) and
L = depth of water table below evap-
oration surface (ft).
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APPENDIX C: SELECTED MODEL INPUT DATA

The following data were used directly as model input or used in combination with
other data presented in this report to generate model input:

Altitude of land surface, in feet above sea level,
Model layer containing interface between Coast Ranges and Sierran deposits;

Thickness of the semiconfined zone and of the Corcoran Clay Member of the Tulare For-
mation of Pleistocene age, in feet;

Altitude of the water table, October 1972 and 1984, in feet above sea level;

Altitude of the piezometric surface in the confined zone, 1972, 1976, and 1984, in feet
above and below (-) sea level;

Texture of materials in layers 1, 2, 3, 4, and 5 is in percentage of coarse-grained materials;

Texture of materials between midpoint of layers 1 and 2, 2 and 3, 3 and 4, and 4 and 5 is
in percentage of coarse-grained materials; and

Matrix (modflow ibound array) indicating distribution of potentially active cells for layers
1 to 5 and distribution of active cells for layer 6.

These are presented below in tabular form.

Appendix C: Seiected Model input Data
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Thickness of the semiconfined zone

[--, null value)

Row 1 2
1 .- -
2 .- -
3 .- -
4 - -
5 - -
6 - -
7 - -
8 - -
9 - -

10 - -
11 - -
12 - 299
13 - 323
14 299 323
1§ 323 349
16 349 399
17 349 399
18 -- 424
19 399 500

20 450 599

21 623 723

22 - 799

23 - 824

24 . .-

25 - -

26 - .-

27 - -

28 -- -

29 - --

30 -- --

31 - -

32 -- -

33 - --

34 - -

3s - -

36 - -

584

610

639

Thickness of the Corcoran Clay Member - modified from Page (1986)

Row 1 2
1 - -
2 - -
3 - .-
4 .- .-
5 - -
6 .- -
7 . .-
8 .- -
9 . -

10 - -
11 -- -
12 - 45
13 -- 50
14 50 55
15 50 60
16 50 80
17 50 90
18 -- 100
19 50 80
20 40 60
21 35 40
22 -- 35
23 -- 35
24 - -
25 - -
26 -- --
27 -- -

28 - -

29 - -

30 -- --

31 -- --

32 -- --
33 - -
34 - -
35 - --
36 - -

Column
10 11
- 95
130 97
140 120
135 145
120 130
105 105
65 75
56 55
70 65
9 90
9 90
80 80
5 15
7 13
80 70
103 75
80 60
59 58
60 S8
78 57
60 56
82 60
85 80
83 80
70 70
56 55
58 60
58 65
59 62
58 62
60 59
78 59
62 59
58 61
64 64
40 61

13 14 15 16 17 18 19 20
%
349 323 . e e e e e
354 334 319 - - o~ o~ -
370 349 329 313 - - - -
379 370 349 329 319 - - -
403 383 364 344 334 - - -
424 409 389 364 349 334 - -
444 424 409 389 370 349 - --
453 439 424 403 379 370 349 -
473 450 439 414 383 373 349 -
489 469 450 419 389 373 359 -
504 483 450 419 389 373 361  --
524 499 450 419 389 379 364 349
530 514 469 424 393 379 364 349
530 519 473 429 399 383 370 349
530 514 473 434 399 383 373 350
549 509 473 450 419 393 379 370
574 524 479 463 429 409 393 -
574 530 499 469 444 424 414 -
550 524 499 473 450 434 419 -
550 524 494 473 450 434 - --
550 524 499 473 450 439 - --
549 524 504 479 459 450 - --
543 524 504 483 473 473 - -
530 524 514 499 499 499 499 -
530 524 514 514 519 519 514 -
533 524 524 533 539 549 530 509
530 533 533 549 552 552 549 524
549 543 539 549 559 549 539 524
553 551 549 549 563 549 549 -
563 563 563 563 569 559 559 -
579 574 579 579 579 569 553 -
584 579 594 594 483 569 - --
594 579 594 - - o~ -~ -
13 14 15 16 17 18 19 20
95 e e e e e
9% 95 -~ - e e e -
100 97 95 - o~ - - -
110 100 97 90 - - - -
10 105 99 8 84 - - -
105 100 8 79 79 0 - -
80 92 8 77 77 80 - -
75 8 8 77 75 80 - -
89 8 8 78 75 1718 82 -
8 8 8 8 75 74 8 -
79 8 8 8 75 70 68 -
75 75 82 8 78 65 58 -
7 75 78 8 80 60 58 57
65 69 72 80 80 58 58 57
60 65 60 75 75 65 59 57
74 65 65 65 15 65 61 57
62 65 6 69 69 65 60 56
55 60 60 63 64 62 58 -
55 52 52 58 60 60 57 -
60 6 60 58 56 56 56 -
s3 53 53 52 52 53 - -
52 53 59 56 52 S50 - -
60 60 76 6 54 S0 - -
9 55 55 70 58 S50 - -
50 50 50 56 55 S0 40 -
50 50 55 59 58 S50 47 -
45 52 68 72 59 54 50 60
45 54 8 8 60 55 50 55
45 60 8 8 55 46 45 46
59 6 8 8 58 38 40 -
70 70 70 70 60 39 36 -
62 62 64 70 70 S50 39 -
56 56 56 68 8 74 - -
70 6 S0 - o~ - - -

Appendix C: Selected Model Input Data
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Altitude of the water table, October 1972

[--, null value]

~
WW\IQ\(’IAONH%
'
i

22 -

-~ 559.0 460.0 380.0 331.0 28

429.0

Column

5 6 7 8 9 10 1
- - -- -- -- - 146.8
- - -- -- -- 172.0 156.8
- -- -~ 212.0 1904 173.4 161.7
-~ 289.0 252.0 219.0 197.5 176.3 164.8
331.0 281.0 245.0 217.1 201.0 182.0 171.9
353.0 287.0 241.5 217.1 197.0 182.1 175.9
386.0 305.0 255.1 221.4 203.6 190.9 181.5
398.0 310.0 252.9 223.6 207.0 199.1 188.7
387.0 294.0 250.0 235.0 224.0 210.0 197.0
347.0 290.0 265.0 254.0 235.0 219.0 206.0

12
135.2
145.8
152.3
155.4
165.7
172.7
177.1
183.7
189.5
195.0

419.0 338.0 299.0 280.0 263.0 241.0 225.0 214.0 201.0
407.0 338.0 311.0 295.0 269.0 248.0 232.0 219.0 206.0

-- 4920 401.0 346.0 321.0 305.0 283.0 262.0 241.0 225.0 210.0

- 469.0 382.0 354.0 331.0 308.0 289.0 268.0 248.0 232.0 217.0
532.0 441.0 394.0 362.0 337.0 318.0 296.0 276.0 256.0 234.0 222.0
469.0 424.0 396.0 369.0 345.0 323.0 301.0 282.0 256.0 240.0 222.0
461.0 429.0 397.0 368.0 346.0 324.0 303.0 282.0 257.0 236.0 219.0
514.0 444.0 403.0 373.0 344.0 322.0 298.0 278.0 258.0 237.0 222.0
572.0 480.0 423.0 380.0 339.0 310.0 286.0 271.0 258.0 236.0 221.0
595.0 516.0 457.0 404.0 351.0 306.0 277.0 262.0 246.0 229.0 217.1
21 721 0 621.0 544.0 478.0 419.0 356.0 306.0 270.0 254.0 238.0 221.0 213.1
647.0 539.0 476.0 418.0 362.0 305.0 262.0 242.0 228.0 213.0 209.2
660.0 546.0 462.0 402.0 346.0 300.0 256.0 232.0 217.0 213.3 202.9

453.0
465.0
509.0
513.0

243.0 221.0 208.0 201.4
230.0 205.0 195.6 193.1
218.0 202.3 1874 181.1

2.0
355.0 306.0 266.0
369.0 298.0 252 0

2.0

6.0
0
0

414.0 320.0 252.0 220.0 208.6 191.3 179.9
427.0 348.0 276.0 240.0 227.6 206.0 188.1
478.0 381.0 305.0 268.0 237.7 213.8 192.6
477.0 386.0 335.0 293.0 249.0 222.4 202.2
474.0 410.0 357.0 311.0 264.0 228.0 205.2
483.0 435.0 372.0 318.0 276.0 240.0 214.0

476.0 423.0 377.0 326.0 277.0 247.0 226.0

195.4
185.6
175.8
173.0
1754
180.5
188.4
194.0
198.8
211.0

13
1333
1445
148.0
158.9
166.8
1723
180.3
189.5
196.2
198.3
196.4
198.0
203.0
205.0
207.0
208.0
209.2
2173
211.0
207.2
200.3
193.9
185.2
176.1
170.2
166.3
167.7
171.3
179.5
188.8
192.9
194.2

491.0 446.0 393.0 346.0 309.0 278.0 255.0 234.0 218.0 202.0
443.0 405.0 371.0 337.0 310.0 285.0 261.0 242.0 223.0 206.0
-~ 514.0 430.0 401.0 374.0 345.0 316.0 292.0 270.0 250.0

Allitude of the water table, October 1984

13 -

- 2191
- 2028
-~ 2085
- 1879
- 1843
- 176.5
180.2 188.8
182.4 187.9

14  188.1 189.2 186.0
15 2146 219.8 2115
16  271.0 266.9 228.0
17 2132 2174 1914

18 -

1834 153.0

19  188.8 147.7 103.9
20 1657 127.0 81.0
21 1573 152.8 139.5

22 -

184.6 1674
169.5 159.1
160.4

- 299

4

2122
212.9
2153
215.0
209.7
207.2

Column

5 6 7 8 9 10 1
- -- - - - - 1452
- - -- -- - 1714 1519
-- -- -- 2060 192.8 1729 158.5
-- 2209 217.7 204.5 191.6 176.3 163.7
231.5 226.8 224.9 213.1 193.8 181.7 171.5
238.7 2589 241.1 218.5 198.9 184.5 177.7
238.2 317.8 252.0 219.5 207.8 194.3 187.5
239.6 320.8 247.0 227.6 218.2 208.5 200.5
237.0 277.7 2389 226.7 228.2 216.1 206.5
224.1 250.0 247.5 237.4 230.6 219.1 210.3

12
134.2
142.7
149.9
154.1
164.7
173.1
183.1
190.8
199.5
203.6

210.6 211.6 235.1 238.8 235.6 224.7 215.8 210.7 208.7
186.6 2074 219.9 2244 216.8 211.6 210.7 209.9 213.7

184.5
176.0
196.4
213.1
174.7
144.7
120.9
118.5
153.2
163.4
158.8
158.8
157.9
157.8
127.7
102.4

5.0
36.7
61.6

196.9 207.0 212.9 204.6 201.0 202.9 206.9
194.0 192.5 190.9 184.5 182.6 190.3 203.6
191.1 184.7 167.5 160.0 169.7 189.4 204.9
194.6 175.0 147.7 147.2 171.3 188.4 210.6
189.9 187.3 181.6 183.1 192.5 201.3 214.6
185.7 192.3 198.9 2123 214.0 2229 2282
173.7 198.6 224.6 229.7 237.7 241.4 236.5
177.8 224.8 261.2 250.5 249.1 244.9 238.6
185.7 235.3 281.7 267.7 2579 251.4 232.8
188.3 248.0 285.3 269.1 249.5 242.5 225.1
197.5 266.3 299.2 249.7 232.8 229.6 222.1
196.4 283.1 285.7 250.6 231.2 217.3 206.1
169.4 291.5 273.5 238.2 201.6 197.5 198.7
162.5 256.1 266.8 225.5 204.3 190.0 186.3
158.3 253.0 260.5 2314 211.6 196.1 186.2
1319 204.5 267.7 256.5 229.0 208.3 190.
128.3 188.3 267.2 271.0 246.4 214.6 194.
114.0 159.9 233.8 280.9 259.1 228.1 204.
91.7 150.1 216.2 275.4 273.9 242.5 21
67.0 140.8 202.1 263.6 288.3 253.4 21
46.4 128.8 194.4 248.3 278.7 251.4 22
67.8 122.5 182.9 244.1 274.9 244.8 22
90.5 120.4 182.7 261.1 281.1 247.5 23
99.4 130.3 180.1 243.8 272.6 253.1 23

0
9
4
6.4
9.9
7.8
7.0
9
2

L.
8.

2104
215.9
231.1
227.4
227.1
229.2
2319
227.0
218.8
211.1
203.8
194.0
189.1
183.6
177.0
176.5
181.1
189.1
200.4
208.5
213.9
216.3
218.7

13
131.2
142.8
145.9
157.2
165.4
173.4
181.5
190.7
197.3
205.0
208.6
210.1
214.8
216.8
217.7
2184
2175
2186
214.0
206.6
197.7
191.4
183.7
1724
171.1
165.1
168.5
171.1
180.0
189.1
197.9
202.0
208.4
211.6

14

134.2
141.9
151.0
161.8
168.4
178.1
185.0
189.9
194.6
196.6
192.9
196.3
201.6
207.2
201.2
204.9
202.2
198.8
194.5
187.7
181.0
175.6
169.6
167.1
160.9
160.5
164.3
167.7
173.7
185.3
185.5
188.8
188.4

14

134.5
141.4
150.3
159.1
165.0
176.1
185.1
190.8
194.5
196.0
197.4
202.5
203.9
206.3
204.4
204.3
203.9
199.5
192.5
186.4
179.5
174.4
169.2
165.6
159.2
163.0
164.3
169.7
174.4
185.4
184.7
191.5
198.6

15

137.0
136.5
152.5
161.5
169.7
174.9
175.0
180.6
183.3
186.6
188.2
192.0
193.9
189.6
189.4
187.6
183.6
178.7
171.5
167.3
163.4
160.1
1574
154.0
157.8
159.7
156.4
156.1
161.4
166.2
179.9
184.3

136.8
137.2
152.2
159.6
169.8
178.2
179.1
181.7
186.6
1854

193.0
191.1
188.6
189.6
1873
185.2
180.7
174.1
167.9
164.8
158.4
153.0
149.2
155.6
1579
156.8
162.5
161.6
162.7

1352
143.8
152.1
160.6
165.0
165.9
169.2
170.6
173.8
174.1
177.1
179.0
178.7
179.1
180.3
175.3
166.7
161.7
155.3
152.5
154.9
148.9
146.0
1517
1489
143.1
148.0
152.0
154.0
155.0

135.4
142.7
149.5
151.8
157.7
156.4
154.6
157.1
157.1
160.5
163.7
164.8
167.9
166.0
160.6
151.6
148.7
143.8
147.0
146.7
1454
139.9
140.9
143.0
141.0
144.0
146.0
150.0
151.0

1539
151.3
145.4
147.7
148.4
140.8
1433
144.1
143.1
141.8
141.2
138.2
135.5
127.7

149.1

143.0
143.2
148.5
144.9
155.2
158.7
145.6
1433
139.9
143.1
146.5
148.9
146.6
1374
134.0
136.0
143.7
144.0
144.0
146.0
148.0
149.0

Numerical Simuiation of Ground-Water Flow in the Central Part of the Western San Joaquin Vailey, Caiifornia



Altitude of the piezometric surface in the confined zone, 1972
[--, null value]

Column
Row 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
1 -- -- - - - - - - - - 18 34 - -- -- -- - -- - --
2 - -- -- -- -- -- -- -- --  -10 3 23 4 -- -- -- -- - - -
3 -- -- -- -- -- -- - 39 39 26 -8 12 38 60 -- - -- - -- -
4 -- - - - - 45 -56 -60 -50 -43 -18 2 28 54 1 -- - -- -- -
5 -- - - 35 47 59 -69 -72 -64 -48 -28 -3 23 50 66 91 -- -- -- -
6 -- - 35 47 59 75 90 -89 -75 -56 -33 -8 13 40 61 81 98 -- -- --
7 - - -45 -57 -74 95 -117 -105 -8 -65 -38 -8 13 35 56 71 93 -- - -
8 -- - 60 -72 -94 -130 -135 -132 -99 -72 -4 -8 8 30 51 67 88 98 -- --
9 -- - 75 -97 -129 -137 -139 -135 -109 -79 -49 -13 8 30 46 66 83 93 -- --
10 - -- -120 -132 -139 -145 -143 -137 -119 -86 -58 -21 3 24 41 56 72 88 98 --
11 -- -- -145 -148 -149 -151 -147 -140 -130 -99 -66 -31 -3 13 30 51 66 78 88 --
12 - -165 -176 -173 -167 -155 -151 -143 -136 -108 -78 -37 -10 7 24 36 46 67 78 --
13 -- -185 -186 -190 -190 -177 -157 -150 -138 -116 -88 -48 -18 7 13 30 46 56 67 --

14  -190 -191 -196 -209 -221 -199 -173 -156 -142
15§ -195 -201 -217 -234 -257 -235 -187 -159 -144

-121 95 59 28 9 2 16 30 46 56 67
-125 -101 -70 -39 -21 -5 8§ 24 35 46 56
16 -205 -216 -227 -235 -258 -236 -186 -159 -144 -125 -105 -78 -53 -29 -1I5 0 14 30 36 51
17 -216 -226 -229 -231 -235 -212 -176 -155 -142 -125 -110 -84 -64 -41 -22 -7 9 25 31 41
18 -- =227 -230 -222 -209 -183 -159 -149 -136 -123 -109 -8 -70 -52 -29 -12 5 16 26 31
19 226 -227 -230 -219 -203 -178 -155 -142 -134 -121 -108 -89 -71 -51 -29 -12 3 15 26 --

20 -226 -227 -230 -225 -211 -182 -153 -137 -124 -113 -98 -81 -62 -43 -25 -10 3 12 22 --
21 226 -227 229 -230 -213 -215 -154 -135 -120 -104 91 -74 -54 -39 -24 -11 -1 8 19 --
22 - =226 -229 -222 -205 -213 -153 -135 -121 -107 -91 -75 -57 -43 -33 -21 -8 4 -- -
23 -~ -226 -222 -205 -195 -201 -148 -131 -119 -105 -95 -8 -67 -53 -42 -32 -14 2 -- --
24 - - 212 -195 -182 -158 -139 -126 -113 -105 -95 -87 -69 -61 -47 -32 -11 2 - -
25 - - - -189 -171 -154 -136 -124 -111 -101 -91 -79 68 -57 -41 -23 -4 5 -~ -
26 -- -- - -189 -170 -154 -136 -125 -113 -99 -8 -72 -58 45 -32 -14 -1 7 15 --
27 - -- - -192 -172 -158 -141 -127 -114 -97 -82 -68 -52 42 -27 -12 0 9 17 --
28 - - - -196 -175 -157 -148 -132 -116 -97 -79 -66 -52 -41 -28 -13 2 8§ 18 27
29 -- -- -- -- -183 -169 -157 -140 -119 -99 -81 -70 -56 -4 -32 -17 2 9 20 31
30 -- -- -- - 202 -181 -166 -148 -129 -107 -89 -74 -60 -45 -30 -15 3 12 22 35
31 -- -- - - 242 -194 -178 -158 -136 -111 -97 -78 -61 -4 24 -6 5 16 27 -
32 - - -- - -262 -204 -179 -164 -141 -120 -98 -77 -57 -40 -19 -1 10 21 30 -
33 - - -- - -274 205 -170 -167 -145 -124 -97 -75 -54 -37 -17 1 13 23 32 -

34 - -~ - 317 -265 205 -177 -164 -145 -120 96 -73 -52 35 -6 2 16 26 - -
35 -~ - 319 256 -197 -178 -162 -142 -118 92 -70 49 32 -15 - = - - -
36 - - 352 314 -227 -188 -177 -158 -136 -116 90 - - - o = = e -

Altitude of the piezometric surface in the confined zone, 1976

Column
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 - - - -- -- -- - -- - - 17 24 -- -- -- -- -- -- -- -
2 -- - - -- -- -- - -- -- 7 13 18 24 -- -- -- -- - - --
3 - -- - -- - -- -~ -10 -4 1 13 13 23 30 -- -- -- -- - -,
4 -- - -- -- - 42 32 22 -12 -4 3 10 18 24 131 - -- -- - --
5 - -- - 72 -54 43 33 21 -10 2 6 14 25 31 41 -- - -- -
6 -- - -84 -82 -65 -57 -41 29 -18 -6 2 11 20 26 31 43 - - -
7 -- - -9 -88 -77 -58 -46 -37 -25 -11 -1 8 18 26 31 38 -- -- --
8 -- - 9% -9 -82 66 -51 -42 -30 -18 -4 5 15 21 32 38 43 -- --
9 -- - -101 -9 -86 -71 -54 -4 -35 22 -6 3 13 21 26 38 43 -- -
10 -- - -105 -104 90 -74 -65 -48 -39 -25 -9 1 12 21 26 32 43 43 -
11 -- -- -108 -108 97 -83 63 -50 -42 -29 -13 -2 8 18 26 31 38 43 -
12 - -115 -113 -111 102 91 -63 -51 -4 .31 -16 16 26 31 37 43 -
13 --  -119 -116 -113 104 -89 -65 -53 -37 -25 -17 15 25 31 36 42 --

- -4

- -5

-101 -87 65 -43 36 -24 -17 -6

-105 -87 63 -36 -29 -23 -15 -6

-107 -84 -58 -34 -28 -22 -13 -4

98 -78 -53 35 29 -21 -12 0

-86 -75 -58 -37 -33 24 -11 1

-85 -74 -67 -52 -41 -27 -11 1
83 75 65 -55 -45 -29 -12 0 12 23 29 35 35 41 -

1

1

3

5

5

5

6

7

8

-82 -73 64 53 41 -27 -12

[

a

‘

—

'S

oo

'

D

w

(=]

'

—

[

O

'

—

N

h

Vo e

o o et gk ek gk ek b ek fmd pd e pmk ek kg g
00 ~) 00 8gooo8v—v—-—-—-—-ooo~o\oo¢qo\
-0 O —— N WO —=~OOANANOHALON

22 -~ -151 -154 -119 -79 70 -61 -49 -35 -21 -8 11 22 28 34 40 - --
23 - -151 -147 -120 -78 67 -54 38 30 -14 -5 11 23 28 34 40 -- -
24 - - -134 -111 -87 -74 -62 -47 32 -22 -13 -4 12 23 29 35 40 -- --
25 -- -- - -102 <70 -59 -46 -33 -23 -13 -3 14 23 29 35 40 -- --
26 - -- -- -101 -68 -56 -4 -30 -21 -10 -2 13 20 27 34 40 46 -~
27 - - - -107 66 -52 40 -27 -15 -6 0 13 19 27 34 42 46 -~
28 - - - -113 -82 -60 -45 -32 -21 -7 -2 3 12 19 27 34 43 51 51
29 - - -- - -8 54 -39 26 -17 7 -1 4 14 20 28 36 44 51 51
30 -- - - - -85 52 -3 -26 -16 -3 0 6 12 17 23 31 37 4 51 352
31 -- -- -- - -8 56 -40 -27 -17 4 1 8§ 15 21 31 36 40 45 52 -
32 - -- - - 92 59 -4 31 -19 4 3 10 17 28 39 43 44 46 52 --
33 - - -- - 9 72 54 -40 22 -8 4 13 24 37 46 56 53 46 47 --
34 -- -- - 202 -103 75 -62 -4 26 -7 6 13 35 44 58 68 68 46 -- --
35 - -- - -204 -101 -75 -65 -47 28 -9 5 17 40 54 70 -- -- - -- --
36 - - 222 207 97 -76 -63 -46 -29 -14 2 - - -- -- - -- -- -- --

Appendix C: Seiected Modei input Data 53
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Altitude of the piezometric surface in the confined zone, 1984
[--, null value]

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- -
2 - e e e e e e e . 8023 03849 - e e e
3 - - e« e e~ 2 71T 2 42 365 - - e e -
4 - - - - - 29 25 2 2 7 21 42 53 64 76 -~ o~ - o~ -
5 -~ .~ - 30 27 29 25 42 3 7 27 42 S3 65 76 8 - - -
6 - - 35 37 34 30 26 -12 -3 6 32 42 53 70 8 91 98 - - -
7 -~ - 40 37 34 30 26 -12 -4 S5 31 42 53 70 8 91 103 - - -
8 - - 40 37 34 30 26 -17 -5 S 35 47 53 70 8 92 103 103 - -
9 . - 40 42 -39 35 26 -17 -4 10 35 47 53 75 8 91 103 103 - -

10 - - 45 42 -39 35 26 -15 -4 14 40 SI 63 74 81 91 102 103 108 -

11 - - 45 43 44 36 -27 -15 0 28 39 49 62 73 8 91 101 103 108 -

12 - 45 46 43 -45 36 -27 -13 10 31 42 48 65 72 8 96 101 102 108 -

13 - 45 46 -43 45 36 -31 -10 30 35 44 57 64 77 8 9 101 101 107  --

17 46 46 -4 43 28 -17 28 34 40 46 56 61 63 70 77 78 89 100 101 106

22 - 46 -4 42 23 -11 25 28 30 34 38 42 46 50 57 68 84 95 -
23 - 46 42 -4 -18 -1 27 29 31 36 38 42 46 49 53 68 84 95 - -
4 - - 42 -39 -17 1 18 29 33 37 41 49 47 49 52 69 8 100 -- -
25 - - - 32 12 10 20 29 35 41 45 49 50 52 53 69 90 100 - -
26 -- - - 21 5 12 20 29 37 45 Ss2 57 67 13 73 81 90 100 101 -
27 -- - - -16 2 16 20 27 37 49 62 72 78 8 8 90 95 101 106 --
28 - - o 8§ 19 22 27 36 53 73 178 8 8 8 92 95 101 106 106
29 - - - - 13 20 23 28 37 53 74 78 8 8 92 95 101 101 106 106
30 - - -- - 15 21 24 29 37 53 75 8 8 9 94 9 101 101 106 107
31 -- - - - 18 22 26 30 3% 52 75 8 8 92 9% 9% 101 101 102 -
32 - -- - - 18 23 29 33 41 57 75 8 8 91 96 9% 96 96 97 -
33 - -- -- - 16 25 30 33 44 57 74 78 8 9 94 95 95 95 97 =
34 -- - - =27 13 24 31 37 47 Ss9 72 77 83 8 S 8 8 89 -- --
35 - - - -4 14 29 33 39 48 60 72 77 8 8 90 - - - -~ -
36 -- - <127 19 14 30 36 42 S3 60 69 - - - - - - - - -
Numericai Simuiation of Ground-Water Fiow in the Centrai Part of the Western San Joaquin Vailey, Caiifornia



Texture of materials in layer 1 -- percentage coarse-grained
[--, null value]

Column

Row 1 2 3 4 5 6 7 8 9 10 1 12
1 -- - 26 32 50 43 19 13 10 9 6 4
2 -- - 20 17 1 7 21 8 3 2 1 2
3 -- 13 14 13 12 24 31 15 3 0 0 1
4 .- 7 6 9 18 28 28 19 5 0 0 1
5 -- 6 5 5 11 21 21 2 8 0 1 2
6 -- 5 5 5 11 19 20 16 5 2 2 2
7 6 5 5 6 8 16 17 6 2 1 1 3
8 10 6 5 5 5 7 8 3 5 1 0 1
9 24 10 4 5 5 6 7 5 3 3 2 7
10 38 21 2 2 7 7 8 9 3 12 16 14
11 46 33 1 0 14 9 7 5 0 9 19 14
12 50 43 0 1 18 18 21 1 1 6 11 7
13 32 48 0 0 33 27 49 14 2 4 5 5
14 5 0 0 0 11 4 41 1 1 11 6 9
15 1 0 0 35 47 27 24 3 10 37 36 23
16 0 1 2 13 35 26 33 5 19 40 43 26
17 39 38 34 18 59 47 43 31 39 40 40 28
18 74 80 57 1 29 40 41 39 43 41 41 17
19 72 74 62 5 2 0 4 11 40 40 24 7
20 70 69 46 24 4 4 7 28 20 12 2
21 68 56 8 67 45 17 9 15 29 21 11 2
22 75 75 15 171 35 1 28 37 30 17 4 0

Column

13 14 15 16 17 18 19
5 5 5 21 52 55 40
5 5 6 8§ 17 28 38
5 8 9 10 18 21 24
4 7 9 10 17 18 45
2 2 1 6 18 16 28
1 0 0 5 31 32 27
2 1 0 1 23 31 29
2 1 0 0 3 22 25
5 0 0 0 4 15 25
9 5 2 2 2 0 49

10 8 5 3 1 25 0
6 7 10 9 6 2 1
5 6 18 23 15 0 1
7 7 15 23 22 0 0
8 5 3 3 15 12 16
0 4 1 0 19 25 34

12 9 11 2 8 3 21

10 10 27 17 2 5 26

11 15 61 16 0 2 9
4 4 21 8 0 14 24
9 15 57 11 13 43 4

14 34 60 13 8§ 21 73
23 31 67 29 20 21 34

6 10 18 20 20 22 25

3 9 11 30 35 56 20

4 1 9 22 66 70 7

7 9 6 14 30 44 16
14 9 6 48 69 54 44
14 2 22 49 32 33 22
19 7 9 49 56 32 32
13 10 1 40 63 26 42
13 3 3 25 58 56 47
37 8 6 22 38 53 50
53 19 0 20 24 24 26
50 30 16 25 23 23 29
29 36 21 26 19 31 32
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Texture of materials in layer 3 -- percentage coarse-grained

Column
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 3 3 2 2 2 4 11 17 19 18 21 21 21 34 68 8 8 79
2 2 1 1 1 0 0 3 10 7 4 4 2 6 23 76 86 88 84
3 1 1 1 0 0 0 1 3 0 0 0 0 1 13 55 83 8 83
4 1 1 1 0 1 1 4 7 4 1 1 1 1 7 19 57 83 88
5 2 1 0 0 0 4 11 14 14 15 10 3 2 5 7 22 78 99
6 4 1 0 0 0 7 17 17 18 20 15 1 0 4 6 5 37 83
7 9 4 1 1 4 12 17 18 19 19 13 1 0 3 1 1 4 27
8 19 15 10 7 15 21 22 23 24 21 13 7 10 9 4 0 2 32
9 26 27 27 31 4 52 55 53 49 39 26 15 14 6 5 19 57 174
10 28 29 33 42 55 64 66 63 50 41 29 25 14 6 11 52 75 74
11 27 28 33 39 49 60 70 66 46 36 26 30 19 17 20 49 44 66
12 25 27 33 37 47 48 66 76 69 28 22 29 21 18 23 45 54 171
13 27 30 34 37 48 51 57 64 68 40 40 S0 42 30 34 38 62 70
14 39 39 49 76 78 49 38 34 43 49 54 57 53 37 36 37 56 72

36 61 60 58 56 54 53 58 65 73 S8 50 26 12 1
Texture of materials in layer 4 -- percentage coarse-grained

Column

Row 1 2 3 4 5 6 7 8 9 160 11 12
1 42 41 41 41 41 37 24 19 21 35 49 48
2 45 46 45 46 47 47 41 26 21 20 14 8
3 46 47 47 47 47 47 4 29 19 19 8 1
4 48 48 49 S50 49 46 38 23 19 18 13 5
5 47 49 50 52 51 42 25 18 18 18 14 6
g 46 49 S50 52 52 36 16 14 17 24 12 %
8 5
9 12

31 36 39 36 31 27 21 18 15 11 9

Numericai Simulation of Ground-Water Fiow in the Centrai Part of the Western San Joaquin Valley, Caiifornia



Texture of materials in layer 5 -- percentage coarse-grained
{--, null value)]

Column
Row 1 2 3 4 5 6 7 8 9 10 11 12
1 21 22 22 22 23 25 28 31 35 38 40 38
2 22 22 23 23 25 27 30 34 36 35 24 16
3 22 22 23 23 24 26 29 33 38 42 22 10
4 22 2 22 22 22 22 24 28 33 38 28 16
5 21 2 22 21 21 20 20 20 20 19 19 16
6 20 21 22 22 21 19 19 18 16 15 14 7
7 21 21 22 23 22 20 19 18 16 14 12 8
8 20 21 22 24 25 24 20 17 10 8 9 15
9 19 19 21 23 26 26 24 15 6 5 8 22

27 8 9 10 1 12 14 16 17 17 17 18 27
28 5 5 5 6 7 10 12 12 12 11 8 10
29 3 2 2 3 3 5 9 13 12 10 7 8
30 2 1 1 1 2 3 9 16 19 17 15 15
31 2 1 1 1 1 2 7 19 28 32 34 34
32 2 2 1 1 1 1 7 22 33 38 38 39
3 3 2 1 1 1 2 8§ 24 35 37 38 4
34 4 4 3 2 2 4 12 26 35 35 33 4
35 = 6 5 5 5 8 15 28 35 35 34 43
36 = 8 8 8 8 11 16 27 35 37 40 48

Appendix C: Selected Model Input Data
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Texture of materials between midpoint of layers 1 and 2 -- percentage coarse-grained

[--, null value]

Column

Row 1 2 3 4 5 6 7 8 9 10 1

1 -- - - 26 42 34 21 32 33 23 9

2 -- -- - 15 1 6 6 19 18 7 1

3 -- -- - - 8 7 8 18 13 0 0

4 -- - - - 11 9 10 12 6 0 0

5 -- - - 10 11 10 10 9 4 1 1

6 -- - 10 9 8 8 7 5 2 1 1

7 - - 10 6 2 3 4 3 1 1 1

8 -- - 10 2 2 3 4 5 3 1 0

9 51 41 20 2 2 2 4 6 7 7 3
10 56 45 21 3 2 1 4 7 6 19 26
11 66 53 13 3 3 0 3 0 4 17 31
12 70 62 6 4 7 6 5 18 16 15 25
13 46 67 9 10 13 10 0 4 9 12 21
14 12 0 0 1 13 15 12 (4] 3 11 17
15 11 0 0 43 57 49 58 11 10 16 18
16 0 18 35 38 52 47 43 13 14 18 27
17 19 280 50 38 51 S50 43 32 47 37 28
18 73 52 3 17 24 28 12 46 70 64 24
19 72 42 20 15 3 Q 0 12 63 62 31
20 80 68 2 38 26 1 Q 3 28 54 60
21 63 36 54 56 85 32 2 7 26 41 42
22 63 42 65 73 70 35 9 6 17 6 0
23 84 95 91 69 24 30 28 17 11 9 19
24 72 47 43 22 3 3 (4] 3 5 21 28
25 20 12 19 79 6 10 0 1 1 11 26
26 41 5 97 6 37 19 13 2 Q 4 19
27 78 98 99 99 96 22 12 8 Q 3 18
28 90 95 90 83 47 17 12 26 8 6 10
29 75 78 8 8 92 16 20 15 1 6 6
30 75 66 32 8 67 27 34 12 7 9 8
31 76 72 59 92 73 30 27 49 74 56 34
32 76 79 88 86 95 76 56 74 19 72 61
33 80 91 92 77 53 57 82 38 33 44 36
3 73 86 98 75 59 55 52 20 33 32 31
35 39 47 43 36 23 14 19 25 2 27 131
36 19 16 19 20 18 7 12 37 24 19 15

Column

Row 1 2 3 4 5 6 7 8 9 10 11
1 -- -- -- - 19 19 18 22 24 25 28
2 -- -- -- - 19 19 19 20 20 19 11
3 -- -- - 19 19 19 19 20 20 21 8
4 -- 19 19 19 19 19 20 20 20 20 13
5 17 19 20 20 21 21 22 22 22 20 17
6 -- - 18 22 26 31 35 35 34 34 29
7 12 13 15 23 31 41 49 52 53 53 48
8 12 13 15 19 28 38 47 54 57 58 59
9 12 13 14 16 24 35 47 54 52 54 57
10 11 13 15 14 18 29 45 57 51 40 23
11 11 12 17 14 13 19 35 66 51 31 9
12 11 12 21 11 16 21 37 62 58 13 4
13 5 11 14 2 6 28 43 51 58 27 31
14 1 2 3 10 21 31 25 27 42 47 55
15 (4] 11 4 65 73 42 14 56 54 49 53
16 6 98 98 81 84 44 47 68 54 42 43
17 83 94 92 71 75 67 50 40 37 42 41
18 96 71 33 63 59 61 38 30 32 47 49
19 60 61 55 56 57 51 46 37 42 44 46
20 52 56 44 43 36 45 49 42 39 34 45
21 50 48 45 40 18 30 31 20 36 46 45
22 44 4 46 36 22 26 10 8 23 35 35
23 49 54 67 56 22 24 23 21 25 32 29
24 53 54 52 37 9 26 36 35 31 25 19
25 52 st 51 70 16 27 36 34 27 17 11
26 51 51 52 30 36 41 35 24 21 19 14
27 49 499 45 39 43 31 23 23 21 20 15
28 40 52 52 51 27 22 18 29 25 21 16
29 29 49 63 60 29 9 15 29 28 27 18
30 21 37 74 84 40 32 34 39 52 47 24
31 20 31 73 78 53 51 54 63 77 54 17
32 25 47 86 93 88 55 53 69 80 52 9
3 50 78 93 93 8 64 37 36 45 41 13
34 64 8 98 8 60 56 35 30 38 39 37
35 53 55 44 36 38 30 23 28 59 41 39
36 36 31 24 23 20 5 9 48 53 50 44

Numericai Simulation of Ground-Water Flow in the Centrai Part of the Western San Joaquin Valley, Caiifornia
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Texture of materials between midpoint of layers 3 and 4 -- percentage coarse-grained

Column

1 2 3 4 5 6 7 8 9 10 11 12
23 2120 19 18 17 12 10 11 26 39 38
25 24 2 22 20 19 17 13 14 15 11

~
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Column
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 55 5 57 60 61 52 25 13 14 30 43 43 43 51 65 69 70 70 71 N
2 59 62 64 68 72 73 60 30 25 28 23 19 23 35 65 71 72 713 77 75
3 59 61 64 68 73 74 68 43 30 30 20 14 16 27 56 71 74 81 81 77
4 58 S9 60 62 65 66 55 33 26 28 23 16 16 28 41 63 78 84 84 77
5 54 56 57 57 57 S50 31 21 17 16 15 10 12 31 36 49 75 81 8 79
6 50 54 55 57 57 4 21 18 15 16 12 2 1 29 36 52 67 79 80 78
7 41 48 51 51 47 30 19 18 14 12 1 2 1 27 5 6 69 73 70 65
8 21 31 37 32 25 21 20 18 15 12 10 8 11 19 47 72 73 70 58 60
9 11 17 19 18 18 19 20 18 16 19 16 13 20 27 65 75 69 52 62

33 - 74 77 79 19 75 67 48 25 21 19 29 54 62 63 65 71 1 78 7I5
34 - - 74 75 15 71 66 53 36 27 34 49 62 63 65 64 66 70 715 74
35 - - 68 69 68 67 64 58 47 41 47 571 63 63 64 64 64 65 66 66
36 - - 68 64 66 66 64 59 54 50 53 59 62 63 63 63 63 62 61 61
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Matrix (modfiow ibound array) indicating distribution of active
Column

cells for layer 6
[0, inactive; 1, active]

Column

Matrix (modflow ibound array) indicating distribution of

potentially active cells for layers 1-5
[0, inactive, 1, potentially active)
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APPENDIX D: DATA GENERATED FROM MEASURED WATER LEVELS
AND USED FOR COMPARISON WITH SIMULATION RESULTS

Cells subject to bare-soil evaporation (water table within 7 ft of land surface) from
October 1972 through October 1988 are tabulated below, “1” signifying that the cell is
subject to bare-soil evaporation. Data are given for July and October conditions for each
year, except July 1977.

Appendix D: Data Generated from Measured Water Levels 61



Cells subject to bare-soil evaporation in October 1973
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Cells subject to bare-soll evaporation in July 1974

Cells subject to bare-soil evaporation in July 1973
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Cells subject to bare-soil evaporation in October 1975

Cells subject to bare-soll evaporation in October 1974
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Cells subject to bare-soil evaporation in July 1976

Cells subject to bare-soil evaporation in July 1975
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Appendix D: Data Generated from Measured Water Levels



Cells subject to bare-soil evaporation in July 1978

Cells subject to bare-soil evaporation in October 1976
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Cells subject to bare-soll evaporation in July 1980

Cells subject to bare-soil evaporation in July 1979
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Cells subject to bare-soil evaporation in July 1982

Cells subject to bare-soil evaporation in July 1981
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Cells subject to bare-soll evaporation in July 1984

Cells subject to bare-soil evaporation in July 1983
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Cells subject to bare-soil evaporation in October 1984

Cells subject to bare-soil evaporation in October 1983
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Cells subject to bare-soil evaporation in July 1986

Cells subject to bare-soll evaporation in July 1985
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Cells subject to bare-soil evaporation in October 1986

Cells subject to bare-soil evaporation in October 1985
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Cells subject to bare-soil evaporation In July 1988

Cells subject to bare-soil evaporation in July 1987
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Cells subject to bare-soil evaporation In October 1988

Cells subject to bare-soll evaporation in October 1987
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Data Generated from Measured Water Levels

Appendix D



