





Lake-Level Frequency Analysis
for Devils Lake, North Dakota

By GREGG J. WICHE and ALDO V. VECCHIA

Prepared in cooperation with the
North Dakota State Water Commission

U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2469



U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
Gordon P. Eaton, Director

Any use of trade, product, or firm names in this publication is for
descriptive purposes only and does not imply endorsement by the
U.S. Government.

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1996

For sale by the

U.S. Geological Survey
Information Services
Box 25286

Federal Center
Denver, CO 80225

Library of Congress Cataloging in Publication Data

Wiche, Gregg J.
Lake-level frequency analysis for Devils Lake, North Dakota / by
Gregg J. Wiche and Aldo V. Vecchia
p. cm.—(U.S. Geological Survey water-supply paper; 2469)
"Prepared in cooperation with the North Dakota Sate Water Commission."
Includes bibliographical references.
Supt. of Docs. no.: 1 19.13:2469
1. Water leveis--North Dakota--Devils Lake (Lake) I. Vecchia, Aldo V.
Il. North Dakota State Water Commission. Ill. Title. IV. Series.
GB1627.D48W53 1996 96-31108
551.48'2'097843--dc20 CIP



CONTENTS

ADSLTACK.......cuinirticeccncetti e ettt ettt ettt s st b s et et as bt e b et e R ss e A as e e e e sasan b be R e R e s e R e s e Ra s S e Rt et ek e b e b et A h b et sun e aert s enaeataen 1
INEPOAUCTION oottt ettt es e e e e bbbkt bt s st toe et eaeacnsasas s aenens 2
DESCTIPLON Of STUAY AIEA......cvevreureiereieriiieisreetereceset e etrse s seesst et et sssesesessssasssesesassstsesasasssansetesssnssasesssasensssastnresessnsass 2
Lake-1EVEl fIUCHIALIONS ......cueuiuiuceereeeieieieieet ettt sttt se st s e bbb s s s s ses e s s en et saeeseeeasecensaenn 4
Previous INVESTIZALIONS .......c.ccceiiiieieierieeetetr ettt er s s e es s s e s ettt taeat e nosaniracen 6
AADPDIOACKH ...ttt ettt e st et e b e e b s he e aeeraebe b e er e e eRe s e e ateRAe et e be e beae et enst e s e aeera s renntearans 7
Lake-level frequency analysis computed using an annual lake-volume model ..........ccoveveerereeereieeernieiecneneeeecceeerecenene 7
Computation of annual 1ake-vOIUME data..........cccoiririirieeineieee ettt e st e e s sesee s e seseesesesasossemnesaseens 7
Annual 1aKe-VOIUIME MOAE] ........ooeueueuiuiiiiiieirietetsrret ettt s as s st bbb et e bbb ssastetsseseceneseseresnacacs 8
ANALYSIS Of MOAEL OULPUL......c.cvreeireiiee ettt ettt e s st s sasee st bebe s ass st s sean e st sssaesasentotssesennntsesteserernressnsens 15
Parameter-UnCertaiNty AMalySiS......ccciceiieeerirererrestetereecesasseseersessentessansentoseseessessessessansenteseessosensansenseneasassessessessenaenss 18
Lake-level frequency analysis computed using a water mass-balance mMOdeL...........ccoevvvreerernrrerenreineeneeeeeeresessaseseseseress 20
Computation of monthly precipitation, evaporation, and Inflow data............ccecvevveeirriereennerroreeneeniseesesinsisesenas 20
Statistical tests for trends and 1ong-range dEPENndenCe ...........cvurreueireeteueieeeisteereeriseesssiserese s et sreseenensns 26
Water mass-Dalance MOAEL ............ccceieeriiiiicnieiienrciete sttt st sass e s e esese st sesesesesens e s sesesemsesseasrasses 29
Analysis Of MOGET OULPUL.......ccomeureieeiriiiceeer e ettt ettt sttt ettt st e sesas sttt e nsressnessts 33
Parameter-uncertainty AnalySiS........c.ccvviirerieirerienteneriueseresiesesestassessesaessasessossessersessessessentoseesessessensensessonsesnssensesseses 37
Reduction of parameter uncertainty in seasonal inflow diStriDULIONS. ......cevevevevererrreererirrieerreneeeereeneseresneeeseseesenns 38
SUMMATY ANA CONMCIUSIONS ..uvviveritcsiieteietciet et te et res s ebes st esesrsreebassersaberersebesaebassasensesarsesastesersesassrsertasassesssersesares 43
REIEIEIICES ....ceiriieeieceice et ettt st sea R e e et et et s b s seae s b b e ten s e e s neees 47
Supplement 1. Parameter-uncertainty distributions and model fitting ProCedure .............coeeeeermrerererererereveereesisnsneeresmenenss 49
Parameter-uncertainty distribution for the annual lake-volume model.........c.ccccveveeevniieeinrinccnicencceiee 49
Model fitting procedure for quarterly precipitation, evaporation, and IlOW ........cccoevvreveieierecreneenireniererenenenens 51
Parameter-uncertainty distribution for the water mass-balance model ............cc.coevveeeereeercnnrnrerneneessns s 52
Variance of adjusted means of seasonal inflow diStribULIONS ......c.ccceeerrieriveenrerincninnicinrniree et 55
FIGURES
1. Map showing location of the Devils Lake Basifl......c.ccceccviiiieeieieniniiiriceeeerece et ene et sesnenesesrasnsases 3
2-25. Graphs showing:
2. Historic water level for Devils Lake, 1867-1904 ... cteeeeceie e eeeeesasesbeessaeessesabsessbassssrresssnsssssennes 5
3. Annual mean lake volume for year ¢ for Devils Lake, 1867-1993........cccconvieerinienennnercsenerasseresesmssesersscsesaesens 9
4. Difference between annual maximum lake volume for year ¢ for Devils Lake
and annual mean lake volume for year £, 1901-93.........ccccvivererrriiniereneienesesiene s etseestses st esse e e e esneseseens 9

5. Standardized residuals, W* (t), from autoregressive moving average

model of annual mean lake volumes for Devils Lake, 1867-1993, and

0OTMA] PODADILILY PIOL.......viriuiiiriieiciriiereeie sttt esesase s sass s e ssse e besnraoaebesebenesassaseresentenesenessassneness 11
6. Standardized residuals, Z* (t), from autoregressive moving average

model] of differenced annual lake volumes for Devils Lake, 1901-93,

and normal Probability PLOL.........cceoeuerireieircreirietec sttt et e e e e e e s neens 13
7. Relation of standardized residuals, W* (t), from autoregressive moving

average model of annual mean lake volumes for Devils Lake to standardized

residvals, Z* (¢), from autoregressive moving average model of differenced

ANMUAL JAKE VOIUINES ....ceeeivinii ettt ettt ens ettt e st esas st b euae et e sas e e e saese st sentosentosestsnemaonsrtnsesesesens 14
8. Standardized residuals, R* (¢), from autoregressive moving average model

of differenced annual lake volumes for Devils Lake after nonlinear adjustment,

1901-93, and normal Probability PLOt........cccecereiiererreerreeieieteeteeeree et es et ssst e e mens 15

Contents



9. Unconditional simulation lake-level trace from the annual lake-volume model

and corresponding lake-level changes for Devils Lake .........ccccccoiviiiiininiiinnniciine i
10. Exceedance levels for Devils Lake computed from 2,000 50-year traces from

the annual lake-volume mode! using fixed parameters and parameters adjusted

FOT UNCETLAINEY 1 ...eviveiienceeiitrte ettt ee sttt sr et b b s heo b s b e b e b et sas st s b e st e b s Asehe b s et aRestatn b aasstsnnsseraasensas
11.  Annual precipitation for the city of Devils Lake, 1950-93 .........cccccconviiinmiinniinincnceercreee e
12. Annual lake evaporation for Devils Lake estimated from unadjusted pan-

evaporation data for Mandan and Dickinson, 1950-93.........ccccoceiniinniniitt s
13. Annual lake evaporation for Devils Lake estimated from adjusted pan-

evaporation data for Mandan and Dickinson, 1950-93..........cccoviiiiiiiniiecernern e
14. Relation of Class A pan evaporation at Mandan and Dickinson to Class A pan

evaporation at Devils Lake, 1951-T1 ......cccouiicriiiiereereenerieeecensessienesreestesessesessoresnssisssesssesassssssressssssssnen
15. Estimated annual inflow to Devils Lake, 1950-93.......cccoiiieiiiiinirinirreeenieesneeseeseissseessesssesssseassssssnsssnessssscseses
16. Autocorrelation functions for annual precipitation, annual evaporation, and

natural logarithm of annual inflow for Devils LaKe..........ccccevrrrininiinincniieiiiecnrcnetisssses e enenes
17. Quarterly precipitation, evaporation, and inflow for Devils Lake, 1950-93..........ccccecverivnivimcnincnncinincrsirennnns
18. Modeled and recorded quarterly storage changes for Devils Lake, 1950-93 ..........c.ccovnninviinncnenninnnen.
19. Relation of summer inflow to fall inflow for Devils Lake, 1950-93 ......ccccoiiiiieiieerreicvierriesceeesreeenseesssesssesseeses
20. Unconditional simulation lake-level trace from the water mass-balance

model and corresponding lake-level changes for Devils LaKe ...........ccoccvvivinneinicncninennns
21. Exceedance levels for Devils Lake computed from 2,000 50-year traces from

the water mass-balance model using fixed parameters and parameters adjusted

FOT UNCEITAINEY ......iveucetevieeirinteer ettt ettt seen ettt eb et b st ese bbb e b s b ese e sashsbasb s st sasssrsnsnsbsassansanen
22. Spring streamflow for the Red River of the North at Grand Forks, 1883-1993 ..........ccoovinninicciiennee
23. Relation of spring streamflow for the Red River of the North at

Grand Forks to spring inflow for Devils Lake, 1950-93.......cc.cccoiriniiniiniiietens s ssssssssens
24. Exceedance levels for Devils Lake computed from 2,000 50-year traces from

the water mass-balance model using parameters adjusted for uncertainty and

reduced on the basis of streamflow for the Red River of the North at Grand Forks .........ccovveviveiinnneennnnn,
25. Exceedance levels for Devils Lake computed from 2,000 50-year traces from

the water mass-balance model with each trace conditioned only on the starting
AKE JEVEL...oniiiie ettt bbb r e e

TABLES

v

. Largest lake-level rises and declines for Devils Lake for 1950-93.........coccooierimnmrnicncrincncniniccrscnecsenioinsecssnens
. Selected statistics of recorded lake-level changes for 1901-93 and corresponding

values generated from the annual lake-volume model............ccoviiniiiinininininini e

. Exceedance levels for Devils Lake computed from 2,000 50-year traces from the

annual lake-volume model and the water mass-balance MOEL...........cvevueervieeciiirieniieierret e e ssseesee st e reeseanes

. Mean monthly percentage of annual lake evaporation and mean monthly lake

evaporation fOr DEVILS LaKe........c.ccvvveiiiiiiiniiciniieiteesee e sreseeiseeene st sssssee e beceaseessesaetssnessssensessessesossentensesesasossss

. Selected statistics for monthly Class A pan-evaporation data for May through

September for Mandan and DICKINSON.............c.coveevierienineiererireenisressereesssssssesssesessssessessesasessesessessossscnsesmsessersssnees

. Selected statistics of trend tests for annual precipitation, evaporation, and inflow

TOT DIEVIIS LAKE, 1950793 .....oceeeieieetieeeeete et sttt eeeeeestee et sanasessessssebasssssseases st tesbesssesessteassseesaesssesasenssnssssesnsesssassnses

. Selected statistics of precipitation, evaporation, and inflow data for 1950-93 and

corresponding values generated from the water mass-balance model.............ccccociiiiiiicnin,

. Selected statistics of recorded lake-level changes for 1901-93 and corresponding

values generated from the water mass-balance model..........occoccivrecicneiinininninin e s

. Estimated means of transformed quarterly inflows before and after adjustment to

1edUCE PATAMELET UNCETLAINLY .....c.oeeeeitiererierierraaeiieaesessesseseeaestesessensesseesessentenseseesteseasssetasanssstestsstentessostoseetessesesnnenss

Contents



CONVERSION FACTORS AND VERTICAL DATUM

Multiply By To obtain
acre 4,047 hectare

acre-foot 1,233 cubic meter

cubic foot per second 0.02832 cubic meter per second
foot 0.3048 meter
inch 254 millimeter
mile 1.609 kilometer
square mile 2.590 square kilometer

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD
of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the
United States and Canada, formerly called Sea Level Datum of 1929.
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Lake-Level Frequency Analysis for Devils Lake,
North Dakota

By Gregg J. Wiche and Aldo V. Vecchia

Abstract

Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first
approach is based on an annual lake-volume model, and the second approach is based on a statistical
water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation,
evaporation, and inflow. .

Autoregressive moving average models were used to model the annual mean lake volume and the
difference between the annual maximum lake volume and the annual mean lake volume. Residuals
from both models were determined to be uncorrelated with zero mean and constant variance. However,
a nonlinear relation between the residuals of the two models was included in the final annual lake-
volume model.

Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume
model was verified using annual lake-level changes. The annual lake-volume model closely reproduced
the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient.
However, the model output is less skewed than the data indicate because of some unrealistically large
lake-level declines.

The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation,
and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for
1950-93 revealed no significant trends or long-range dependence so the input time series were assumed
to be stationary and short-range dependent.

Normality transformations were used to approximately maintain the marginal probability
distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation
structure. Each of the coefficients in the model is significantly different from zero at the 5-percent
significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the
previous year had the largest effect on the lake-level frequency analysis.

Inclusion of parameter uncertainty in the model for generating precipitation, evaporation, and
inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are
particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was
caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A
method was developed for using long-term streamflow data for the Red River of the North at Grand
Forks to reduce the variance in the estimated mean.

Comparison of the annual lake-volume model and the water mass-balance model indicates the
upper exceedance levels of the water mass-balance model increase much more rapidly than those of the
annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the
lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea
level for the water mass-balance model. The rapid increase is caused largely by the record precipitation
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and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level
traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the
annual lake-volume model for computing exceedance levels for the 50-year planning horizon.

INTRODUCTION

Devils Lake Basin in northeastern North Dakota is a 3,810-square-mile closed basin in the drainage of the
Red River of the North (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils
Lake; the remainder is tributary to Stump Lake. The Devils Lake area has been a popular recreational area during
the last 110 years, and Devils Lake has been the main attraction for much of the recreation. Unlike most terminal
lakes, Devils Lake has been a productive sport fishing lake intermittently since settlers arrived in the early 1880’s.
Ideas and plans to stabilize the lake level to protect recreation at Devils Lake were first mentioned more than
50 years ago. In the late 1930’s and early 1940’s, various plans were developed by the U.S. Army Corps of
Engineers and the Bureau of Reclamation to divert water from the Missouri River to Devils Lake.

In response to rising lake levels from about 1969 through the early 1980’s, the U.S. Army Corps of
Engineers (1984) completed a feasibility study of possible flood-control projects to protect cities, roads, and other
properties around Devils Lake. The U.S. Army Corps of Engineers also conducted a reconnaissance study for
lake-level stabilization of Devils Lake, but the study will not be approved until additional analyses of future lake-
level probabilities and associated economic damage estimates are completed. An understanding of the hydrology
of Devils Lake and better knowledge of future lake-level probabilities is needed as a basis for implementation of
flood-control or lake-stabilization projects. The U.S. Geological Survey, in cooperation with the North Dakota
State Water Commission, conducted a lake-level frequency study in an effort to estimate future lake-level
probabilities. Specific objectives of the study were to (1) estimate lake levels for Devils Lake using an analysis of
historic lake levels and (2) estimate lake levels for Devils Lake using a statistical water mass-balance model.
This report describes the results of the study. Lake-level probability data will be used by the U.S. Army Corps of
Engineers to develop damage-frequency relations for Devils Lake. Data used to develop time-series models will
be limited to hydrologic and meteorologic data available through June 1994.

Description of Study Area

The topographic relief and surficial landforms in the Devils Lake Basin are of glacial origin. A large
number of shallow depressions and potholes occur throughout the basin. Many of these depressions arg
connected by poorly defined channels and swales.

The eastern, western, and northern boundaries of the Devils Lake Basin are poorly defined low divides.
The southern boundary is a series of recessional moraines that lie between Devils Lake and the Sheyenne River.
The major subbasins in the Devils Lake Basin and the principal streams draining the subbasins are shown in
figure 1. Edmore, Starkweather, and Calio Coulees originate in southern Cavalier County and flow in a south-
southwesterly direction. Mauvais Coulee originates along the southern flanks of the Turtle Mountains 300 to
400 feet above the elevation of Devils Lake and flows in a southerly direction.

Before 1979, streamflow from the tributaries flowed into the interconnected chain of lakes (Sweetwater
Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake, Lake Alice, and Lake Irvine), and all streamflow from
the chain of lakes flowed downstream through Big Coulee into Devils Lake (fig. 1). In 1979, the Ramsey County
and Cavalier County Water Management Boards constructed Channel A, which connects Dry Lake to Sixmile
Bay on Devils Lake (fig. 1). A levee was constructed across the natural outlet of Dry Lake in 1979. The
construction of Channel A and the levee on Dry Lake modified the drainage pattern in the basin. Discharge from
Dry Lake to Sixmile Bay via Channel A is regulated by an adjustable head-gate control at the south shore of the
lake. Runoff into Sweetwater, Morrison, and Dry Lakes discharges through Channel A into Devils Lake; the
remaining runoff discharges along the natural watercourse through Big Coulee into Devils Lake. A small
quantity of runoff also enters Devils Lake by overland flow and in small tributaries from drainage areas adjacent
to the lake.

2 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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Lake-Level Fluctuations

Since glaciation, the lake level of Devils Lake has fluctuated from about 1,454 feet above sea level, the
natural spill elevation of the lake, to about 1,400 feet above sea level (Aronow, 1957). According to Bluemle
(1981), the elevation of Devils Lake was more than 1,440 feet above sea level 8,500 years before present.
Callender (1968, p. 261) made various chemical analyses of sediment samples from Devils Lake to provide a
lake-level chronology for the past 6,500 years. Callender (1968) concluded that

“The lake was dry during the last part of the Hypsithermal (6,500 years before present) interval. The
level rose and then declined several times between 6,000 and 2,500 years before present, after which a peat
was deposited in Creel Bay approximately 1,340 years ago. Several more lake-level fluctuations culminated
in a very saline, low-water stage 500 years before present, when oak trees grew on the dry surface sediment
of East Stump Lake. The level subsequently rose until 1800 A.D., declined to a low-water stage in 1940
A.D., rose until 1951 A.D., and steadily declined from that time to the present [1968]. Comparison of the
Devils Lake chronology with those from other regions indicates that major climatic changes which caused
significant fluctuations in the lake level may have extended beyond the northern Great Plains region.”

Aronow (1955, 1957) analyzed abandoned shorelines, water-deposited sand and gravel deposits containing
buried soils and vertebrate remains, and rooted stumps uncovered by receding water around Stump Lake. In
general, Aronow's interpretation (1955, 1957) of lake-level fluctuations is similar to Callender's interpretation
(1968) although some differences do exist. Aronow (1955, 1957) indicated that a lowering of lake levels in the
Devils Lake Basin occurred during a dry period in the 15th and 16th centuries, as evidenced by the growth of burr
oak in Stump Lake. According to Brooks (1951), this dry period occurred throughout most of western North
America. Following this dry period, there was a general rise in lake levels from the mid-1500's until the mid- to
late 1800's. This period of rising lake levels commonly is referred to as the Little Ice Age. In a more recent study,
Bluemle (1988) used radiocarbon dates of soils and concluded that Devils Lake overflowed into Stump Lake in
the last 1,800 years.

All of these studies indicate that large and frequent lake-level fluctuations of 20 to 40 feet occur every few
hundred years. A rising or declining lake level seems to be a more normal condition for Devils Lake than a stable
lake level.

U.S. Geological Survey personnel have a long history of documenting lake-level fluctuations of Devils
Lake. Upham (1895, p. 595) indicated that the lake level of Devils Lake was 1,441 feet above sea level in 1830.
He based this lake level on a large, dense stand of timber that grew at and above 1,441 feet above sea level.
Below 1,441 feet above sea level, only scattered trees and brush existed. Captain H.H. Heerman informed
Upham that, based on tree-ring chronology, the largest tree cut below 1,441 feet above sea level was 57 years old
in 1887. Thus, Upham (1895, p. 595) concluded that in 1830 (57 years before 1887) the lake level of Devils Lake
was 1,441 feet above sea level. No documented records of lake levels are available before 1867.

Lake levels of Devils Lake were recorded sporadically from 1867 to 1901 (fig. 2). In 1901, the U.S.
Geological Survey established a gage at Devils Lake. For the period of record at Devils Lake, the maximum lake
level occurred in 1867; the lake level was 1,438 feet above sea level and the lake had a surface area of about
140 square miles. From 1867 to 1940, the lake level declined almost continuously until it reached a recorded low
of 1,400.9 feet above sea level and the lake was a shallow brackish body of water that had a surface area of about
10.2 square miles. From 1940 to 1956, the lake level generally rose. From 1956 to 1968, the lake level generally
declined. From 1968 to 1987, the lake level generally rose until it reached a peak of 1,428.8 feet above sea level,
which was the highest lake level in almost 100 years. At the peak in 1987, Devils Lake had a surface area of
about 94 square miles. From 1987 to 1992, the lake level of Devils Lake declined rapidly to 1,422.6 feet above
sea level. Much greater than normal precipitation during June through August 1993 caused widespread flooding
throughout the central and north-central United States, including in the Devils Lake Basin. Rainfall on Devils
Lake, streamflow during the summer and fall of 1993, and snowmelt runoff in 1994 caused the lake level of
Devils Lake to rise to 1,430.6 feet above sea level by June 30, 1994.

4 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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The largest lake-level rises and declines for Devils Lake for 1950-93 are shown in table 1. Devils Lake has
undergone rapid changes in lake level in some years. The hydroclimatic conditions in the Devils Lake area
constrain the largest lake-level declines to be grouped between 1.8 and 2.4 feet (table 1).

Table 1. Largest iake-level rises and declines for Devils Lake for 1950-93

- i Lake-level decline
Year Lake(;:\éte)l rise Year sy
1950 8.4 1976 24
1969 6.3 1952 2.0
1993 5.2 1972, 1988 1.9
1974 4.9 1959, 1961, 1963 1.8
1979 4.9 -- -

Previous Investigations

The U.S. Geological Survey, in cooperation with several State and Federal agencies, completed several
studies that describe the hydrology of Devils Lake; however, none of the studies describe future lake-level
probabilities. Swenson and Colby (1955) conducted a water-quality study to determine the dissolved-solids mass
in Devils Lake. They also developed a water balance of Devils Lake and estimated how much inflow would be
needed to maintain the lake at 1,425 feet above sea level. Mitten and others (1968) continued the water-quality
study of Devils Lake that was started by Swenson and Colby.

Wiche (1986) reviewed the climatologic and hydrologic data to determine the causes of lake-level
fluctuations of Devils Lake. He concluded that the lake level of Devils Lake fluctuates in response to climate
variability, but the hydrologic characteristics of the Devils Lake Basin distort the hydrologic response. Wiche
(1986) also conducted a literature search to determine what approaches have been used to estimate future lake-
level probabilities of terminal lakes.

Wiche and others (1986) completed a report at the request of the U.S. Justice Department that was used in a
lawsuit between 101 Ranch and the United States of America, Civil No. A2-81-89. They determined the
exceedance probability for a given lake-level rise by computing the probability for a given inflow and then
converting the inflow to a lake-level rise by using the lake-level capacity table for the desired starting lake level.
The exceedance probability for a given inflow was computed by using the procedures outlined by the U.S. Water
Resources Council (1981). The report was used to develop the list of “uncontroverted facts” agreed upon by
attorneys for all parties.

Ryan and Wiche (1988) described the hydrology of the chain of lakes upstream of Devils Lake and the
effect of the chain of lakes on lake-level fluctuations of Devils Lake. Ryan and Wiche (1988) also presented
multilake management situations by simulating lake levels of Devils Lake for different storage conditions in the
chain of lakes, for different runoff conditions in the Devils Lake Basin, and for different outlet options for Devils
Lake. Various storage conditions in the chain of lakes, the different runoff conditions in the Devils Lake Basin,
and the maximum outlet releases to the Sheyenne River were selected in consultation with the U.S. Army Corps
of Engineers (Kent Pederson and Bill Spychalla, written commun., 1986).

Woodbury and Padmanabhan (1989) developed time-series models of annual average lake levels and
annual maximum deviations from the historic average lake levels. Together, the models were used to develop a
lake-level frequency relation for Devils Lake.

To estimate lake-level probabilities for the Great Salt Lake, James and others (1977) developed an
approach that links time-series models of inflow and outflow data to a water mass-balance model. The primary

6 Lake-Level Frequency Analysis for Devils Lake, North Dakota



criterion for calibrating the model was to preserve the mean, standard deviation, and cross-correlation matrices
among the input data.

In 1986, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, began
a study to improve estimates of the water balance of Devils Lake. The U.S. Geological Survey lead an energy-
budget and mass-transfer evaporation study (Wiche, 1992), and the North Dakota State Water Commission lead a
study of ground-water movement into and out of Devils Lake (Pusc, 1993).

Approach

Many approaches have been used to estimate future lake-level probabilities of terminal lakes (Wiche,
1986), but no standard method currently exists. Two approaches were used in this study. The first approach was
an analysis of historic lake levels of Devils Lake as outlined by the U.S. Army Corps of Engineers (written
commun., June 11, 1993). The approach is based on an annual lake-volume (ALV) model and is similar to the
approach used by Woodbury and Padmanabhan (1989) in a study of lake-level frequency relations for Devils
Lake.

The second approach is based on a statistical water mass-balance (WMB) model that generates seasonal
lake volumes on the basis of seasonal precipitation, evaporation, and inflow. A multivariate time-series model
was developed to generate future realizations of seasonal precipitation, evaporation, and inflow, which are used in
conjunction with the WMB model to generate future lake-level traces. The second approach is similar to the
approach used by Bowles and James (1986) and James and others (1977). The approach also is similar to an
approach outlined by Yevjevich (1982) under contract to the U.S. Army Corps of Engineers.

One advantage of the annual lake-volume approach (hereafter referred to as the ALV approach) is that
estimates of precipitation, evaporation, and inflow are not required as inputs. Therefore, the ALV approach is
easier to implement than the water mass-balance approach (hereafter referred to as the WMB approach). Another
advantage of the ALV approach is that it is based on a longer period of record than the WMB approach because
annual lake levels of Devils Lake are available from the late 1800’s to the present (1994) but evaporation and
inflow data are available only from 1950 to the present.

Despite relative ease of implementation, the ALV approach has several disadvantages. Because the ALV
approach does not account specifically for precipitation, evaporation, inflow, and lake geometry, the lake-level
traces produced are not always realistic on a hydrologic basis. Another disadvantage to the ALV approach is that
verification of lake-level probabilities produced by the model is difficult, largely because of extremely high
autocorrelation from year to year (temporal persistence) in the recorded lake levels of Devils Lake (fig. 2).
Therefore, model performance cannot be measured by how well the lake-level probabilities produced by the ALV
model match the statistics for the recorded lake-level changes. The WMB model is easier to verify because it is
based on precipitation, evaporation, and inflows to Devils Lake that are much less persistent than the lake levels.

The WMB approach has the distinct advantage of producing lake-level traces that agree with the water
mass-balance equation for Devils Lake. Various inlet or outlet options also can be incorporated into the model in
subsequent lake-level stabilization studies. The disadvantage to the WMB approach is that the model requires
more extensive data collection and model development than the ALV approach.

LAKE-LEVEL FREQUENCY ANALYSIS COMPUTED USING AN ANNUAL
LAKE-VOLUME MODEL

Computation of Annual Lake-Volume Data

Most of the available data for Devils Lake before 1950 consist of annual maximum and minimum lake
levels. In order to develop a time-series model that uses these data, an approach similar to that used by Woodbury
and Padmanabhan (1989) was used in this study. In this approach, the time series of annual maximum and
minimum lake levels are converted to maximum and minimum lake volumes using the Devils Lake elevation-
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capacity table (Dale Frink, North Dakota State Water Commission, written commun., 1994). The maximum lake
volume for year ¢ is expressed as

VoD =X +D(1), (1

where
V. .ax (1) 18 the maximum lake volume for year ¢, in thousands of acre-feet;
X (t) is the mean lake volume for year ¢, in thousands of acre-feet; and
D (¢) is the difference between the maximum lake volume for year ¢ and the mean lake volume for year
t, in thousands of acre-feet.

X (t) is expressed as

[Viax () + V0 (D]
= x 2
X (1) 5 , 2
where
Vi (2) 1s the minimum lake volume for year #, in thousands of acre-feet;
and D (¢) is expressed as
Vmax (1) - Vmin (t):|
= . 3
pw = | : 3)

Recorded values of X (#) are shown in figure 3, and recorded values of D (f) are shown in figure 4.

Data were transformed by use of equation 1 because normality transformations were effective in converting
X (¢) and D (t) to an approximate Gaussian time series but were not as effective in converting V, . (7).
Because D (¢) is one-half the volume change for year ¢, it should be highly correlated with inflows during years
when inflows are large enough to dominate net evaporation loss.

Annual Lake-Volume Model

Autoregressive moving average (ARMA) models (Box and Jenkins, 1976; Brockwell and Davis, 1987)
were adequate for modeling both X (¢) and D (¢). In order to use standard maximum-likelihood estimation
methods for fitting Gaussian ARMA models, power transformations were used to make the residuals from the
ARMA models for both X (¢) and D (#) as close to normally distributed as possible. The power transformation
for X (t) is given by Box and Cox (1964) as

(X117, 420
X (t) = 7\4 . (4)

n[X()],A =0

where
X' (¢) is the Box-Cox transformed annual mean lake volume for year ¢, in thousands of acre-feet; and
A is the power-transformation parameter.

8 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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The Gaussian ARMA model for the transformed series is given by Brockwell and Davis (1987) as

p q
X -n= Y oX0-)-pnl+> OWi-j)+W(r), )

j:] j'—'l

where

u is the expected value of X' (¢);

p is the autoregressive order;

; is the jth autoregressive parameter;

g is the moving-average order;

0; is the jth moving-average parameter; and

W (¢) is a sequence of independent, normally distributed, random variables that have an expected value

of zero and a variance of va.

For given values of the autoregressive order, p, the moving-average order, g, and the power-transformation
parameter, A, the statistical package S-Plus (Statsci, 1993) was used to obtain maximum-likelihood estimates of
the model parameters (eq. 5) on the basis of recorded values of X (#). Missing values near the beginning of the
record (fig. 3) are determined using the ARMA maximum-likelihood estimation procedure in S-Plus by use of the
Kalman filter. The best model (the best values for p, ¢, and A) was selected by using the modified Akaike
Information Criterion (AIC) statistic,

AIC(p, g, M) = =2In(L) +2(p+q+2) -2 (A-1) Y In[X (1], (6)

t

where
L is the maximum of the likelihood function of the ARMA model fitted to X' ().

The summation is over all recorded values of X (). The sum of the first two terms on the right-hand side of
equation 6 is the classical AIC statistic (Brockwell and Davis, 1987) and the last term is because of the power
transformation (eq. 4). The AIC statistic was computed for all combinations of p, g, and A values selected from
thesets (pe {0,1,2}), (g€ {0,1,2}), and (Ae {1,1/2,1/3,1/4,1/5,0} ). The model that had the
lowest AIC statistichad (p = 1), (g =1), and (A = 1/2). The resulting model is

X (1) -41.12 = 0967 [X' (¢ —1) —41.12] +0.610W (t-1) + W(1), @)
where
12
. X -1
X (1) is -()1—/2—
and

&7, is 4.624,

The standardized residuals from the fitted ARMA model and a normal probability plot are shown in figure 5. The
standardized residuals are defined as W* (1) = W (t)/6,. Data indicate that the square-root transformation is

10 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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Figure 5. Standardized residuals, W* (t), from autoregressive moving average model of annual mean lake
volumes for Devils Lake, 1867-1993, and normal probability plot.

effective in normalizing the model residuals. Graphical analysis of the residual autocorrelation function and the
residual periodogram also indicated that the residuals are uncorrelated with zero mean and constant variance
(white noise). Standard diagnostics tests, such as the portmanteau test, turning-points test, difference-sign test,
and rank test (Kendall’s fau), were conducted as described in Brockwell and Davis (1987, chap. 9) to test for
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nonrandomness in the residuals. The tests indicated no significant autocorrelation, trends, or other deviations
from white noise at the 10-percent significance level.
The power transformation for D (¢) is given by Box and Cox (1964) as

[D(H)”*-11,1%0
D (1) = ) @)

In[D()],A =0

where
D (1) is the Box-Cox transformed difference between the maximum lake volume for year ¢ and the mean
lake volume for year ¢, in thousands of acre-feet.

A Gaussian ARMA model was fitted to various power transformations of D (t) using the same procedure that
was used to fit the model to various power transformations of X (¢). The ARMA model that had the lowest AIC
statistic had (p = 1), (¢ = 1), and (A = 1/4). The resulting model is

D (1) —4.912 = 0.943[D' (1~ 1) —4.912] - 0.600Z (t—1) + Z (1), )
where
1/4
. D" -1
D) 1s —(')1/7—;

Z (1) is a sequence of independent, normally distributed, random variables that have an expected value
of zero and a variance of - ; and
A2 . z
6, is 2.110.

The standardized residuals from the fitted ARMA model and a normal probability plot are shown in figure 6. The
standardized residuals are defined as Z* (r) = Z(¢)/6,. The normality assumption is not satisfied closely in the
upper tail of the distribution. Standard diagnostics tests mentioned earlier indicated no autocorrelation, trends, or
other nonrandomness in the residuals for D (). The tests indicated that the residuals are approximately white
noise but are not normally distributed. To determine the cause of the nonnormality in the residuals from the
ARMA model for D' (t), the relation between the residuals, W (¢) and Z(t), from the two models was
examined. If the two time series, X () and D (t), are statistically independent of one another, then the two
residual time series, W (¢) and Z (¢), should be statistically independent as well. Crosscorrelations between the
two residual time series indicated a significant lag-zero crosscorrelation of 0.45. Closer graphical analysis of the
residuals indicated that a nonlinear relation exists between W (¢) and Z(¢). The standardized residuals,

W* (t), for equation 7 were plotted with the concurrent standardized residuals, Z* (¢), for equation 9 (fig. 7).
To better understand the nonlinear relation, the interpretation of the model residuals must be understood.
Brockwell and Davis (1987) showed that

W) =X()-EX()|X@-1,X(-2),...], (10)
where
EIX(t)|X(t-1),X(t-2),...]
is the conditional expectation of X' () given X' (t—-1), X' (t-2),...;
and

Z(t)y =D () -E[D'()|D'(t-1), D'(t-2),...], 11)

12 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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Figure 6. Standardized residuals, Z* (t), from autoregressive moving average model of differenced annual
lake volumes for Devils Lake, 1901-93, and normal probability plot.

where
E[D'(t)|D'(t-1), D'(t-2),...]
is the conditional expectation of D' (¢) given D' (¢t—1),D'(¢t-2),...
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Therefore, in years when X' (¢) is much larger than expected on the basis of previous lake levels [i.e., when

W (t) islarge], D' () also tends to be much larger than expected. These years correspond to years when inflows
are large in relation to net evaporation. The 5 years that had the largest annual inflows on record (1950, 1969,
1974, 1979, and 1993) are shown in figure 7.

In order to better model the nonnormality in the residuals for D' (¢), the following model was used:
Z%(t) = ag+aymax [W* (1) - 1,0] + a,R* (¢) (12)

where
a,, a;, and a, are parameters; and
R* (1) is a standard normal, random variable that is independent of W* (z).

Piecewise linear regression (eq. 12) was selected on the basis of figure 7. In order to ensure that Z* (¢) maintains
an expected value of zero, which is a very important assumption in the ARMA model (eq. 9), the model was
modified to include the following constraint:

ay = —a,E {max [W* (1) -1,0] } = -0.0881a,. (13)

The expectation of the truncated standard normal was obtained through numerical integration, and the coefficients
in the modified model were estimated by ordinary least-squares regression. The resulting model is

Z* (t) = —0.155+ 1.760 max [W* (t) —1,0] + 0.779R* (¢), (14)

and the fitted line is shown in figure 7. The adjusted standardized residuals, R* (¢), from equation 14 are shown
in figure 8 and are close to a normal distribution. No significant crosscorrelations existed between W* (¢) and
R* () out to a maximum lag of 10 years.

14 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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+

Analysis of Model Output

Equation 1, along with the time-series models for X () and D (t) [egs. 7 and 9], can be used to generate
future traces of annual maximum lake levels. Before the algorithm for generating lake levels is presented, the
difference between conditional and unconditional simulations needs to be outlined. Starting values for X', W,
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D', and Z are required by the ARMA models (egs. 7 and 9) to generate successive values of X' and D'. Two
methods can be used to obtain the required starting values. The first method, called conditional simulation, uses
the actual values of the variables from the most recent record (in this study, values are from 1993). X' (1993) and
D' (1993) can be obtained directly from the data set, and Z(1993) and W (1993) can be obtained easily from the
output of an ARMA model fitting program. In the conditional simulation, all probability statements derived from
the simulated data must be interpreted as conditional probabilities given the recorded history of X (f) and

D (t) through 1993.

The second method, called unconditional simulation, uses starting values for X', W, D', and Z that are
selected randomly from their stationary, joint probability distribution. In the unconditional simulation, each trace
is assumed to start at a random time. Because of the nonlinear relation (eq. 12) of the model residuals, the exact
stationary distribution is difficult to determine analytically. However, approximate unconditional simulations can
be obtained by starting each trace in the same way as in the conditional simulation and then dropping the first part
of each trace. In the unconditional simulations for this study, the first 200 years of each trace were dropped.
Thus, the effects of the conditioning became negligible.

The algorithm for generating conditional simulation lake-level traces is as follows:

1. Generate independent, standard normal, time-series variables, W* () and R* (¢), using a normal, random
number generator.

2. Compute the modified standardized residual, Z* (¢), from equation 14.

. “Unstandardize” the residuals to obtain W (¢) and Z (¢) .

4. Generate the time series of X' (¢) from equation 7 and D' (¢) from equation 9. Starting values for

X', W, D', and Z are obtained as described earlier.

. Reverse the power transformations to obtain X (¢) and D (¢) in original units.

. Convert X (¢) and D (t) into a time series of annual maximum lake volumes using equation 1.

7. Convert the time series of annual maximum lake volumes to annual maximum lake levels using the Devils
Lake elevation-capacity table.

To illustrate the ALV model output, the algorithm was used to generate a single, 1,000-year, unconditional
simulation lake-level trace, part of which is shown in figure 9. Because of high temporal persistence in the
generated lake-level time series, model performance cannot be measured by how well the model reproduces the
statistics of the recorded lake levels of Devils Lake for 1901-93. For example, the 1,000-year, unconditional
simulation lake-level trace was used to compute the sample mean of each of 10 nonoverlapping, 100-year lake-
level time series. The resulting sample means ranged from 1,410.6 feet to 1,425.4 feet. This indicates extremely
high uncertainty in the sample mean of the recorded lake levels, even for a time series of 100 years. Therefore,
matching the sample mean lake level for Devils Lake for 1901-93 is not a reliable measure of model performance.
The methods used to estimate parameter uncertainty associated with the annual mean lake volume, X (#), and the
difference between the annual maximum lake volume and the annual mean lake volume, D (¢), are described in
supplement 1.

Simulated lake-level changes for the ALV model, obtained by taking the difference between the maximum
lake level in year ¢ and the maximum lake level in year (z- 1), also are shown in figure 9. Because the lake-
level changes have much less persistence than the lake levels, the model output and the recorded lake levels were
compared primarily in terms of lake-level changes. To obtain more information on the simulated lake-level
changes and to better compare output from the ALV model and recorded lake-level changes for 1901-93, 100
unconditional simulation lake-level traces, each 93 years in length, were generated from the ALV model.
Statistics of the recorded lake-level changes and the simulated lake-level changes are given in table 2. Generally,
the model closely reproduces the statistics of the recorded lake-level changes except for the skewness coefficient.
The recorded values for 1901-93 are well within the 90-percent range of values generated from the ALV model
except for the skewness coefficient. This discrepancy probably was caused by a tendency for the ALV model to
produce some unrealistically large lake-level declines. For example, 1 percent of the lake-level changes in the
simulated data were less than -3.3 feet (lake-level decline greater than 3.3 feet). The largest recorded lake-level
decline for 1901-93 was -2.4 feet. The large lake-level declines in the simulated data occur when the lake is
already low (for example, note the large lake-level declines shown between years 300 and 400 in figure 9). The

(%)

AN W
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Figure 9. Unconditional simulation lake-level trace from the annual lake-volume model and corresponding
lake-level changes for Devils Lake.

ALV model does not separate inflows to the lake from net evaporation from the lake surface; this can be
accomplished only through a detailed WMB model.

The algorithm was used next to generate 2,000 conditional simulation lake-level traces, each 50 years in
length. These traces were used to demonstrate the effects of conditioning on lake-level frequency analysis.
Conditional simulation exceedance levels for Devils Lake for exceedance probabilities of 0.01, 0.25, 0.50, 0.75,
and 0.99 are shown in figure 10. The exceedance levels were computed from the 2,000 50-year traces from the
ALV model using fixed parameters. Of the 2,000 traces, 1 percent (20 traces) in any given year exceed the upper
exceedance level, 25 percent exceed the next level, and so on. The high temporal persistence in the lake levels
occurs because the effects of the initial conditions on the subsequent exceedance levels persist for several
decades. The unconditional simulation exceedance levels are obtained in the limit as the length of the simulations
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Table 2. Selected statistics of recorded lake-level changes for 1901-93 and corresponding values generated from the annual
lake-volume model

Annual lake-volume model

Statistic Recor:::nlsle(?- fevel ;‘:‘:;’_‘;‘gj;ﬁ:‘:;:;‘ 90-percent range®
Mean (feet) -0.041 -0.016 -0.199 t0 0.157
Standard deviation (feet) 1.61 1.58 1.29t0 1.99
Skewness coefficient 191 48 -.13t01.22
Lag-1 autocorrelation coefficient 27 20 -.08 t0 .39
Lag-2 autocorrelation coefficient .01 -.04 -2310.10

IDifference between maximum lake level in year ¢ and maximum lake level in year ¢-1.
2Based on 100 93-year unconditional simulation lake-level traces generated from the annual lake-volume model.
SNumbers represent range that included 90 percent of the values produced from the model.

increases. Because of the high temporal persistence, unconditional simulation frequency analysis is of little use
except in dealing with time scales of several centuries.

Because a finite number of traces (2,000) were used to compute the exceedance levels shown in figure 10,
the computed exceedance levels may not reflect the true exceedance levels of the model. Inaccuracies in the
computed exceedance levels tend to increase as the exceedance probability becomes closer to zero or 1, as
indicated by the roughness in the upper and lower curves in figure 10. To determine accuracies of exceedance
levels computed from the 2,000 conditional simulation lake-level traces, nonparametric statistical methods were
used to obtain 95-percent confidence intervals for the true exceedance levels (Mood, Graybill, and Boes, 1974,
ch. 11). The results obtained for the ALV model using fixed parameters are given in table 3. Values given in the
table are the midpoints of a 95-percent confidence interval for the given exceedance level and the half-width of
the interval.

Parameter-Uncertainty Analysis

The 2,000 50-year traces (fig. 10) were generated from the ALV model using parameters fixed at their fitted
values. This assumes complete confidence in the fitted model. However, because recorded data used to fit the
model extend over a short time period in relation to the high temporal persistence of the lake levels, a great deal
of uncertainty in the fixed parameters may exist. Stedinger and others (1985) showed that parameter uncertainty
can have a large effect on reservoir performance statistics derived from a monthly reservoir simulation model.
The approach used in this study is similar to the approach used by Stedinger and others (1985) in that a
parameter-uncertainty distribution is developed from which the model parameters for each trace are sampled
randomly. Details of the parameter-uncertainty distribution are given in supplement 1. Model parameters
included in the uncertainty analysis include those of the ARMA model for X' (¢) (eq. 7) and those of the ARMA
model for D' (t) (eq.9). Because no acceptable method exists for including the coefficients from equation 14 in
the uncertainty analysis, these coefficients were held fixed. The power-transformation parameters for both
X (t) and D (t) also were held fixed.

Conditional simulation exceedance levels for exceedance probabilities of 0.01, 0.25, 0.50, 0.75, and 0.99
are shown in figure 10. The exceedance levels were computed from the 2,000 50-year traces from the ALV
model using parameters adjusted for uncertainty. The parameter uncertainty significantly affects the resulting
exceedance levels (table 3). The upper exceedance levels are particularly sensitive as indicated by a comparison
of the 1-percent exceedance levels (0.01 exceedance probabilities) shown in figure 10. The 1-percent exceedance
level from the ALV model that includes parameter uncertainty is 4.6 feet higher in year 50 than the 1-percent
exceedance level from the ALV model that has fixed parameters (table 3). The effect becomes even more
pronounced at more extreme exceedance levels.

18 Lake-Level Frequency Analysis for Devils Lake, North Dakota
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Table 3. Exceedance levels for Devils Lake computed from 2,000 50-year traces from the annual lake-volume model and the
water mass-balance model

[Simulation year 1 corresponds to 1994 and exceedance levels are conditioned on recorded data through 1993; number in parentheses is accuracy of the
computed exceedance level, in feet; starting lake level for all simulations was 1,427.8 feet above sea level]

Annual lake-volume model Water mass-balance model
Parameters
. . . Parameters . Parameters adiust.ed for
Simulation Fixed " Fixed . Red River of
year parameters 1‘:::::::::3 parameters z‘:‘]:es:g:l:t.; the North at
Grand Forks
streamflow
0.99 exceedance probability
1,424.6 (0.2) 1,424.7 (0.2) 1,425.3 (0.1) 1,427.6 (0.1) 1,427.7 (0.1)
5 1,417.7 (0.8) 1,417.6 (0.8) 1,421.6 (0.3) 1,423.2 (0.4) 1,422.9 (0.4)
10 1,413.6 (1.1) 1,413.3(1.1) 1,418.5 (0.5) 1,419.3 (0.9) 1,418.7 (0.8)
25 1,408.8 (1.3) 1,407.1 (2.1) 1,414.5 (0.6) 1,414.0 (0.7) 1,412.3 (0.7)
50 1,404.4 (1.6) 1,403.5 (1.1) 1,413.5 (0.7) 1,411.4 (0.9) 1,409.6 (0.6)
0.75 exceedance probability
1,426.6 (0.1) 1,426.6 (0.1) 1,426.7 (0.1) 1,428.2 (0.1) 1,428.1 (0.1)
5 1,424.1 (0.2) 1,424.1 (0.2) 1,425.7 (0.2) 1,426.7 (0.2) 1,426.2 (0.2)
10 1,422.6 (0.2) 1,422.5(0.3) 1,424.4 (0.2) 1,425.2 (0.2) 1,424.2 (0.2)
25 1,419.7 (0.4) 1,419.5 (0.6) 1,422.6 (0.3) 1,422.7 (0.4) 1,420.7 (0.4)
50 1,417.8 (0.6) 1,417.3 (0.5) 1,421.7 (0.3) 1,421.6 (0.4) 1,419.1 (0.4)
0.50 exceedance probability
1,427.3 (0.1) 1,427.3 (0.1) 1,428.1 (0.1) 1,428.9(0.1) 1,428.5 (0.1)
5 1,426.5 (0.3) 1,426.4 (0.3) 1,427.8 (0.3) 1,428.7 (0.3) 1,428.2 (0.3)
10 1,425.7 (0.4) 1,425.7 (0.4) 1,427.0 (0.4) 1,428.0 (0.5) 1,426.9 (0.4)
25 1,424.0 (0.6) 1,424.0 (0.7) 1,425.9 (0.5) 1,426.6 (0.5) 1,424.5 (0.5)
50 1,422.4 (0.7) 1,422.8 (0.7) 1,424.9 (0.6) 1,425.7 (0.6) 1,423.0 (0.6)
0.25 exceedance probability
1,428.2 (0.1) 1,428.2 (0.1) 1,429.4 (0.1) 1,430.4 (0.1) 1,430.2 (0.1)
5 1,429.2 (0.2) 1,429.1 (0.2) 1,430.5 (0.3) 1,431.8 (0.3) 1,431.1 (0.3)
10 1,429.4 (0.2) 1,429.2 (0.3) 1,430.4 (0.3) 1,432.0 (0.5) 1,430.7 (0.5)
25 1,428.6 (0.4) 1,429.1 (0.4) 1,429.7 (0.3) 1,431.7 (0.4) 1,429.4 (0.4)
50 1,427.6 (0.4) 1,428.7 (0.4) 1,428.9 (0.3) 1,431.3 (0.5) 1,428.5 (0.5)
0.01 exceedance probability
1 1,432.3 (0.6) 1,432.3 (0.8) 1,436.4 (1.3) 1,439.2 (1.6) 1,439.2 (1.6)
5 1,436.1 (0.7) 1,435.8 (0.8) 1,440.3 (1.2) 1,444.3 (1.8) 1,443.4(1.9)
10 1,437.8 (1.0) 1,438.1 (1.3) 1,439.6 (0.9) 1,444.3 (2.1) 1,442.9 (2.2)
25 1,439.6 (0.9) 1,441.0 (0.9) 1,439.7 (1.2) 1,444 .4 (1.8) 1,442.5 (2.0)
50 1,439.3 (1.1) 1,443.9 (1.8) 1,440.6 (1.3) 1,445.5 (2.6) 1,443.3 (2.8)

LAKE-LEVEL FREQUENCY ANALYSIS COMPUTED USING A WATER
MASS-BALANCE MODEL

Computation of Monthly Precipitation, Evaporation, and Inflow Data

The statistical WMB model requires as inputs seasonal precipitation, evaporation, and inflow data for
Devils Lake. Although the final model was fitted on the basis of a quarterly (3-month) time scale, the required
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inputs were computed using a monthly time scale. A monthly time scale was selected because it is the smallest
interval for which reliable estimates of inflow to Devils Lake could be obtained. Monthly inputs were computed
for 1950-93 because 1950 is the earliest year in which enough data are available to accurately determine lake
evaporation and inflow. Although precipitation data for the city of Devils Lake are available before 1950, these
data were not used in this study. The assumption was made that precipitation falling on the lake surface, P (t),
during any given month is approximately equal to the corresponding monthly precipitation total at the city of
Devils Lake. Annual precipitation for the city of Devils Lake (U.S. Department of Commerce, National Oceanic
and Atmospheric Administration, Environmental Data Service, 1951-94) for 1950-93 is plotted in figure 11.
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Figure 11. Annual precipitation for the city of Devils Lake, 1950-93.

Monthly lake-evaporation estimates for 1950-93 were computed using pan-evaporation data for Mandan
and Dickinson. Ideally, monthly pan-evaporation values for Devils Lake could be adjusted using coefficients
developed to convert pan-evaporation estimates for April through September to lake-evaporation estimates.
However, because of the relatively short period of record (1951-70) for Class A pan-evaporation data (U.S.
Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service,
1951-70) for Devils Lake and the large number of missing values for April and May, the Class A pan-evaporation
data for Devils Lake were not used to estimate monthly lake evaporation. Little pan-evaporation data are
collected during October through March because minimum daily temperatures often are below freezing.

Lake evaporation for April through September was estimated by computing the ratio of the monthly pan
evaporation at Mandan and Dickinson to the mean monthly pan evaporation (1950-93) for each station. The
mean of the ratios for Mandan and Dickinson was multiplied by the mean percentage of annual lake evaporation
for a given month (U.S. Department of Agriculture, Soil Conservation Service, n.d.; table 4) and the product was
multiplied by the mean annual lake evaporation for Devils Lake (table 4). Lake evaporation for October through
March was estimated by computing the ratio of the total April through September pan evaporation at Mandan and
Dickinson to the mean April through September pan evaporation for each station. The mean of the ratios then
was multiplied by the percentage of annual lake evaporation that normally occurs in October through March in
North Dakota and the product was multiplied by the mean annual lake evaporation. The assumption was made
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Table 4. Mean monthly percentage of annual lake evaporation and mean monthly lake evaporation for Devils Lake

Mean monthly percentage of Mean monthly lake evaporation
Month annual lake evaporation’ for Devils Lake?
(percent) (inches)
January 0.75 0.25
February .95 32
March 2.30 71
April 5.85 1.96
May 10.33 3.46
June 13.57 4.55
July 18.59 6.23
August 20.16 6.75
September 14.95 5.01
October 8.53 2.86
November 3.00 1.00
December 1.00 34
Total 100.0 33.50

lys. Department of Agriculture, Soil Conservation Service [n.d.].
Farnsworth and Thompson (1982).

that if the April through September pan evaporation was different than the mean, the October through March pan
evaporation differed by the same percentage.

Annual lake-evaporation estimates computed using these methods are shown in figure 12. An apparent
step-like increase in lake evaporation occurs in 1959. The increase may have been caused by a change in the type
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Figure 12. Annual lake evaporation for Devils Lake estimated from unadjusted pan-evaporation data for Mandan and
Dickinson, 1950-93.
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of instrument used to measure pan evaporation, a change in the location of the instrument used, or a change in the
method used. Swenson and Colby (1955) indicated that Bureau of Plant Industry evaporation pans were used to
collect evaporation data at the Mandan and Dickinson Agricultural Experiment Stations. The pans were 6 feet in
diameter and 2 feet deep and were buried to within 4 inches of the top of the pan. The coefficient to convert the
sunken pan-evaporation values to lake-evaporation values is about 0.95 (Rowher, 1931), but the coefficient to
convert the standard Class A pan-evaporation values to lake-evaporation values is about 0.70. Thus, a change
from a sunken pan in 1958 to a Class A pan in 1959 could cause the step-like increase in evaporation. However,
according to current and former Department of Agriculture employees at the Mandan and Dickinson Agricultural
Experiment Stations and meteorologists at the National Weather Service in Bismarck, no changes occurred in the
type of instrument used, the location of the instrument used, or the methods used in the late 1950’s. Also, no
meteorologic equipment changes are mentioned in the annual reports issued for each experiment station. In
contrast to these claims, the monthly climatic summaries for North Dakota indicate a Bureau of Plant Industry
evaporation pan was used in the late 1950’s to collect evaporation data for Mandan and Dickinson (U.S.
Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service,
1955-64). The summaries indicate a change from the sunken pan to a Class A pan in May 1961 at the Dickinson
Experiment Station and in May 1964 at the Mandan Experiment Station.

Multiple linear regression was used to estimate the magnitude of the change between sunken pan-
evaporation data and Class A pan-evaporation data for Mandan and Dickinson (U.S. Department of Agriculture,
Weather Bureau, 1932a; U.S. Department of Commerce, National Oceanic and Atmospheric Administration,
Environmental Data Service, 1951-94). The dependent variable was monthly pan evaporation, and the
independent variables were the year and a dummy variable. The dummy variable was one for 1950-58 and zero
for 1959-92. Parameter estimates for the dummy variable for Mandan range from 0.69 inch in April to
1.94 inches in August; estimates for Dickinson range from 1.28 inches in September to 4.39 inches in July.
Parameter estimates for a given month were added to the pan-evaporation values, and the procedures previously
described were used to compute adjusted estimates of lake evaporation for Devils Lake (fig. 13). The maximum
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Figure 13. Annual lake evaporation for Devils Lake estimated from adjusted pan-evaporation data for Mandan and
Dickinson, 1950-93.
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lake-evaporation estimate of 42.3 inches (fig. 13) is in good agreement with the computed energy-budget lake-
evaporation values of 40.0 inches in 1988 and 41.5 inches in 1989. The energy-budget values are the largest for
the period of study, 1986-93.

Selected statistics for monthly Class A pan-evaporation data are given in table 5. Mean annual Class A pan
evaporation for May through September was 37.0 inches at Mandan and 40.1 inches at Dickinson.

Table 5. Selected statistics for monthly Class A pan-evaporation data for May through September for Mandan and Dickinson

[Data from U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, 1951-94; evaporation in
inches]

Mandan Dickinson
Number of Number of
Month observa- 25th Mean 75th " observa- 25th . Mean 7Sth
. percentile percentile . percentile percentile
tions tions

May 28 6.20 7.01 7.86 31 5.79 6.96 7.73
June 29 6.50 7.65 8.49 31 7.27 8.35 9.01
July 29 8.37 8.99 9.70 31 8.65 9.87 10.8
August 29 6.95 8.00 8.99 30 8.03 9.17 10.2
September 29 4.65 5.23 5.77 30 5.28 5.72 6.56
Total for May 28 34.2 37.0 39.0 30 37.1 40.1 41.8

through

September

The relation between monthly Class A pan-evaporation values for Mandan and Dickinson and monthly
Class A pan-evaporation values for Devils Lake is shown in figure 14. A linear regression was used to determine
if Class A pan evaporation at Mandan and Dickinson is a good estimate of pan evaporation at Devils Lake. The
linear regression equations are

PANEVAPp,_ . .. = 0.69 + PANEVAP,, . (0.68), (15)

where
PANEVAP, 1 1ae 1S estimated monthly pan evaporation at Devils Lake, in inches; and
PANEVAP, . ... is recorded monthly pan evaporation at Mandan, in inches;

and

PANEVAP,, . | . =097+ PANEVAP (0.62), (16)

Dickinson
where

PANEVAP is recorded monthly pan evaporation at Dickinson, in inches.

Dickinson
The coefficient of determination for equation 15 is 0.86, and the coefficient of determination for
equation 16 is 0.69. Thus, the method used to estimate lake evaporation for Devils Lake should provide a good
estimate for the period for which Class A pan-evaporation data are available.
The general equation used to compute monthly inflow to Devils Lake is

1

1
0, (1) = AS,, () + T3E,, (D4, (1) - 75

P, (DA, (1), a7
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Figure 14. Relation of Class A pan evaporation at Mandan and Dickinson to Class A pan
evaporation at Devils Lake, 1951-71.

where
Q,, (1) is total inflow for month ¢, in acre-feet;
AS,, (1) is storage change for month ¢, in acre-feet;
E, (t) is evaporation from the lake surface for month ¢, in inches;
A, (1) is lake-surface area for month ¢, in acres; and
P, (1) is precipitation falling on the lake surface for month ¢, in inches.

Annual inflow to Devils Lake for 1950-93 is shown in figure 15. The WMB model (eq. 17) was used to
compute the monthly inflow to Devils Lake. The monthly storage change was determined by subtracting the
capacity of the lake on the last day of the month from the capacity on the first day of the month. Elevation-area-
capacity tables for Devils Lake were obtained from the North Dakota State Water Commission. Monthly
estimates of evaporation and precipitation were based on the methods previously discussed.

Small negative inflows [Q,, (#) ] can occur, especially in the summer when Q, (¢) is near zero. Negative
inflows are caused by relatively small errors in the estimates of AS, (¢), E,, (¢),and P, (#). For example, if
Q,, (1) and AS, (1) are zero, E, (t) isknown, A, () is 60,000 acres, and the estimate for P, (¢) is only 0.50
inch larger than the true P, (), inflow is -2,500 acre-feet.

When the lake level of Devils Lake is higher than 1,425 feet above sea level, Devils Lake, East Bay of
Devils Lake, and East Devils Lake are one continuous water body and one water balance can be used to estimate
Q,, (t). However, when the lake level is less than 1,425 feet above sea level, separate water balances are needed

Lake-Level Frequency Analysis Computed Using a Water Mass-Balance Model 25
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Figure 15. Estimated annual inflow to Devils Lake, 1950-93.

to estimate Q, (#). For example, during 1950-79, separate water balances were computed for Devils Lake east
of Highway 20, East Bay of Devils Lake, and East Devils Lake. Only sporadic lake levels are available for East
Bay of Devils Lake for the period, and about four lake levels per year are available for East Devils Lake. Thus,
linear interpolation was used to determine monthly lake levels needed to compute the AS, and A, terms in
equation 17.

During 1950-79, outflow from Devils Lake to East Bay of Devils Lake occurred whenever the lake level of
Devils Lake was greater than about 1,415 feet above sea level. Estimates of outflow from Devils Lake to East
Bay during 1950-79 were needed to complete the water balance for East Bay. The estimates were obtained from
Swenson and Colby (1955) and the North Dakota State Water Commission (Dale Frink, oral commun., 1994).
During 1979, a large volume of snowmelt inflow filled East Bay and East Devils Lake and, by October 1, 1979,
the lakes were at the same level.

From October 1979 through July 1989, one water balance was used to estimate the total inflow to Devils
Lake. By August 1989, Devils Lake had declined to 1,425 feet above sea level and East Devils Lake was
separated from Devils Lake. The lake level of Devils Lake was less than 1,425 feet above sea level until
September 1993. From August 1989 through August 1993, two water balances were used to estimate the total
inflow; from September through December 1993, one water balance was used to estimate the total inflow.

Statistical Tests for Trends and Long-Range Dependence

The statistical time-series model that will be used to model the recorded precipitation, evaporation, and
inflow assumes that no trends or long-range dependence exists in the inputs. In order to test this assumption, the
time series of annual precipitation (fig. 11), evaporation (fig. 13), and inflow (fig. 15) were analyzed.

The sample autocorrelation functions for the three annual time series are given in figure 16. Annual inflow
was log-transformed because of the large skewness coefficient for untransformed annual inflow (the skewness
coefficient for untransformed annual inflow is 2.13; the skewness coefficient for log-transformed inflow is 0.01).
The annual precipitation and evaporation time series show no significant autocorrelations out to a maximum lag
of 10 years. However, because a significant lag-1 autocorrelation of 0.36 exists in the log-transformed inflow, the
trend tests for inflow are applied to the residuals from a first-order autoregressive model for log-transformed
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Figure 16. Autocorrelation functions for annual precipitation, annual evaporation, and natural
logarithm of annual inflow for Devils Lake.

annual inflow. Kendall’s fau, Spearman’s rho, and Pearson’s r were used to test for trends as described in Helsel
and Hirsch (1992, ch. 8), where time is used as the independent variable. Test results are given in table 6.

The p values for Pearson’s r for the annual precipitation and inflow time series indicate that r is
significantly different from zero at the 10-percent level. However, the larger p values for Kendall’s fau and
Spearman’s rho indicate no upward trend in precipitation or inflow. Assuming an upward trend in precipitation or
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Table 6. Selected statistics of trend tests for annual precipitation, evaporation, and inflow for Devils Lake, 1950-93

Precipitation Evaporation inflow!
tau =0.13,p=0.21 tau = 0.13, p = 0.22 tau =0.16, p = 0.131
rho = 0.12, p=0.21 rho =022, p=0.15 rho = 0.23, p= 0.13
r=0.30,p = 0.05 r=024,p=0.12 r=10.29, p = 0.06’

1Based on residuals from autoregressive model of log-transformed annual inflow.

inflow when no such trend exists would have serious consequences on the WMB model. Therefore, the annual
precipitation, evaporation, and inflow time series were assumed to be stationary for this study.

The completion of Channel A in 1979 may have significantly altered the distribution of inflow even though
the trend tests (table 6) are not sensitive enough to detect such a change. Therefore, the Wilcox rank-sum test was
used to test for a step trend in 1979. The p value of the test is 0.279, indicating that any changes in the
distribution of inflow caused by Channel A are not large enough to be detected using standard statistical
procedures.

Long-range dependence, often referred to in hydrologic literature as the Hurst effect (Hurst, 1951), can
have a large effect on statistical properties of inputs to the WMB model and, therefore, on resulting lake-level
frequency relations (Bowles and James, 1986). Fractional Gaussian noise was proposed by Mandelbrot and Van
Ness (1968) as a time-series model for reproducing long-range dependence. Davies and Harte (1987) derived the
locally optimal test of the null hypothesis that a given time series is fractional Gaussian noise with Hurst
parameter H = 1/2 (Gaussian white noise) versus the alternative hypothesis where H > 1/2 (long-range
dependence). Davies and Harte (1987) showed that the locally optimal test is more efficient for detecting long-
range dependence than the widely used rescaled range test proposed by Mandelbrot and Wallis (1969). The
Davies and Harte test statistic (1987), R, is given as

n

3D X -X1[X() -XIT (M ))
R=i=1j=1 ~ s (18)
Y x@) -1

i=1

where
X (i) is a time series of length n;
X is the sample mean; and

T(i,j) is
0',i=j
log2;i=jt1
) (19
. . g a2 li=j+D V] . .
3 i —jllog {1 - (i-J) }+10g{m}:|’(|l j>1).

Long-range dependence is indicated by a large value of R. The p value of the test is obtained through
numerical simulation as described by Davies and Harte (1987). The test statistic, R (eq. 18), and the
corresponding p value were computed for the annual precipitation time series (R = 0.122 and p = 0.11), the
annual evaporation time series (R = 0.104 and p = 0.13), and the first-order autoregressive residuals for log-
transformed annual inflow (R = 0.134 and p = 0.11) . No test statistics were significant at the 10-percent level.
Thus, for this study, the assumption was made that no long-range dependence exists in the inputs.
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Water Mass-Balance Model

A comparison of lake-level traces generated from monthly and quarterly (3-month) WMB models indicated
that the lake-level traces generated from the quarterly model were almost identical to the traces generated from
the monthly model. Therefore, the WMB model used in this study was based on quarterly rather than monthly
data. Quarterly precipitation, evaporation, and inflow time series obtained by aggregating monthly data are
shown in figure 17. The quarters will be referred to as winter (January, February, March), spring (April, May,
June), summer (July, August, September), and fall (October, November, December). The fitted WMB model is
given by

AS, (1) = 329.17+094 [llzpq(t)Aq(t)] -0.97[

il—qu(t)Aq(t):’ + 1020, (1) +R(), 20)
where
AS e is quarterly storage change, in acre-feet;

P p (1) 1s quarterly precipitation falling on the lake surface, in inches;

A, (1) is quarterly lake-surface area, in acres;

E . (1) is quarterly evaporation from the lake surface, in inches;

0 q (1) is quarterly total inflow, in acre-feet; and

R (1) is the quarterly model residual, in acre-feet.

Coefficients were fitted using multiple linear regression. Because monthly data were aggregated to obtain
quarterly data, a nonzero intercept exists and the coefficients for precipitation, evaporation, and inflow are not
exactly equal to one. Modeled and recorded storage changes [the modeled changes are obtained by setting
R () = 0 inequation 20] are shown in figure 18 for 1950-93. Because of the large coefficient of determination,
the residuals, R (), are set to zero. This will have a negligible smoothing effect on the lake-level traces.

Before the WMB model (eq. 20) can be used to generate future lake-level traces, a time-series model must
be developed to generate P (D, E (D), and Q0 g (D The subscript ¢ will hereafter be dropped with the
understanding that all inputs are quarterly time series. The model should reproduce the probability distributions
of each of the inputs as well as any significant autocorrelations or crosscorrelations in the recorded data.
Normality transformations were used to approximately maintain the marginal probability distributions; and a
multivariate, periodic autoregressive model (Salas and others, 1985) was used to reproduce the correlation
structure.

Quarterly inputs were transformed to an approximate Gaussian time series using the same power
transformation (eq. 4) that was used to transform annual mean lake volumes. However, the transformation
parameter was allowed to depend on the season. Because of strong temporal persistence in the annual mean lake
volume time series, X (¢), equations 6 and 7 were used to select the transformation parameter for X (¢) in
conjunction with the ARMA model for reproducing the persistence. However, because the quarterly inputs have
no significant autocorrelation from year to year, the methods from Box and Cox (1964) were used to directly
estimate the transformation parameters. For example, when considering precipitation, in all four quarters, the
best transformation-parameter value from the setA € {1, 1/2, 1/3, 1/4, 1/5, 0} was (A = 1/3). The transformed
data then were standardized by subtracting the quarterly mean, (i, and dividing by the quarterly standard
deviation, 6, as follows:

1/3 N
w m-# @1
(o}

PX(t) =
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Figure 17. Quarterly precipitation, evaporation, and inflow for Devils Lake, 1950-93.
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where

A1n1/3 Azln 1/3 N2
u_ﬁzlp (t) and & _;IZ[P (1) -f]".
t=

t=1

For example, {1 is 1.88 and &” is 0.20% in the spring. To simplify the notation, the subtraction of 1 and the
division by A in the original Box-Cox transformation (eq. 4) was absorbed in the mean and variance for the
definition of standardized precipitation, P* (t) .

The power-transformation procedure was applied to precipitation data for the remaining three quarters and
to evaporation and inflow data for all four quarters. Results of the power transformations are

Winter

Spring

P()13-1.19

P = =01

E* (1) = 1?_(1())_521_‘12

P*(1) = 1_’_(%—_1-_8?_3

Er(r) = MIE(D) =51} - 157

0.25

Water Mass-Balance Model

(22)

(23)

(24)

(25)

(26)

@27

3



[0(r) ~4,200] " ~7.03

o* (1) = 713 (28)
Summer Px (1) = fﬂ;—’_;—;-lﬁ (29)
B () < E(t)I; 1802 G0)
o (1 < 12 +££00} _9.81 al)
Fall P* (1) = 1_’_(%%—_1_.32 (32)
B ) - E(z());74.22 33)
0% (1y = 1{Q(0) + 13,000} ~9.57 a4)

0.47

The spring evaporation value and the spring, summer, and fall inflow values were modified by adding a constant
before applying the power-transformation procedure. Because the standard Box-Cox transformed data in these
cases were not close enough to a normal distribution, a location parameter was included in addition to the power-
transformation parameter. The location parameter was estimated as outlined in Box and Cox (1964).

A time-series model then was fitted to the transformed, standardized values for precipitation, evaporation,
and inflow in order to maintain the autocorrelation and crosscorrelation structure. This was complicated by the
fact that the correlations depend on season as well as lag. For example, the correlation between spring inflow and
the previous winter’s precipitation is 0.47 and the correlation between fall inflow and the previous summer’s
precipitation is 0.03 even though the lag in both cases is one season.

In order to maintain the complicated seasonal crosscorrelation structure in the inputs, a multivariate,
periodic autoregressive model was fitted to the standardized inputs using model fitting procedures described in
supplement 1. The fitted model is

Winter P* (1) = X (1) (35)
E*(1) = Y(9) (36)
Q* () = 0.47P*(1—1) + 0.89Z () (7)
Spring P* (1) = X (1) (38)
E* (1) = 0.48E* (t—1) + 031P* (t—4) —0.30P* () + 0.83Y (1) (39)
O* (1) = 0.46P* (1—1) +0.320* (1-2) +0.210* (t—4) + 0.78Z (1) (40)
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Summer P* (1) = X (1) (41)
E* (1) = 0.49E* (t—2) —0.46P* (1) + 0.74Y (¢) 42)
O* (1) = 0.540% (1) + 0.46E* (1) + 0.34P* (1) + 0.73Z(¢) 43)
Fall P*(1) = X (1) (44)
E* (1) = 0.73E*(1—1) + 0.52E* (1~ 2) +0.13Y (2) (45)
0* (1) = 0.500* (t— 1) + 0.32P* () + 0.80Z (1), (46)

where
X (1), Y (1), and Z (¢) are mutually independent, standard normal, white noise time series.

Each of the coefficients in the model is significantly different from zero at the 5-percent significance level.
Many of the coefficients make sense from a hydrologic standpoint, but other coefficients are not as easily
interpreted. For example, the negative coefficients relating evaporation to concurrent precipitation (eqgs. 39
and 42) and the positive coefficients relating inflow to concurrent or lagged precipitation (egs. 37, 40, 43, and 46)
make sense. The coefficients relating summer and fall inflows to the previous seasons’ inflows (egs. 43 and 46)
also make sense. The lagged autoregressive coefficient relating spring evaporation to the previous spring’s
precipitation (eq. 39) probably is spurious but should not have any significant bearing on the model output. The
coefficients relating evaporation to lagged values of itself (egs. 39, 42, and 45) probably are attributable, in part,
to true persistence in the evaporation time series and, in part, to the way in which the lake-evaporation data were
derived.

Spring inflow (eq. 40) had the largest effect on the lake-level frequency analysis. The spring inflow from
one year is related to the spring and fall inflows from the previous year. This persistence in inflow on an
interannual scale and the fact that extremely large lake-level rises can occur in conjunction with large spring
inflow has a significant effect on the WMB model output.

Analysis of Model Output

The first step in generating the lake-level time series using the WMB model is to generate the seasonal
precipitation, evaporation, and inflow time series. As with the ALV model, either conditional or unconditional
simulations can be used. For conditional simulations, the required starting values of the inputs are replaced by
recorded values. For example, if conditional simulations are used beginning with winter 1994, the required
values before 1994 are replaced by recorded values. The only starting values required by the model (egs. 35
to 46) would be spring and fall 1993 precipitation and spring and fall 1993 inflow. If, however, the conditional
simulations are used beginning with summer 1994, the required starting values would be winter and spring 1994
evaporation and spring 1994 inflow.

For unconditional simulations, the required starting values of the standardized inputs are selected randomly
from their stationary, joint probability distribution. The model can be used to derive an exact multivariate,
normal distribution for the required starting values. Alternatively, approximate unconditional simulations can be
obtained by setting all initial values of the standardized inputs to zero, generating a long conditional simulation,
and then dropping the first part of the conditional simulation. The initial conditions are assumed to have a
negligible effect after 50 years because of the relatively weak dependence in the inputs.
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The algorithm for generating conditional simulations of seasonal precipitation, evaporation, and inflow is
as follows:

1. Generate independent, standard normal, white noise time-series variables, X (¢), Y (¢), and Z (¢),using a
normal, random number generator.

2. Compute P* (1), E* (t), and Q* (t) from the multivariate, periodic autoregressive model (egs. 35 to 46).
Initial conditions are obtained as described earlier.

3. Reverse the power transformations (egs. 23 to 34) to obtain P (t), E (), and Q (¢) in original units.

To compare the model output to the recorded seasonal inputs for 1950-93, 100 44-year unconditional
simulations were obtained from the model. Statistics of the recorded data and corresponding model values are
given in table 7. The model closely reproduces the statistics of the recorded seasonal precipitation. It also closely
reproduces the statistics of the recorded seasonal evaporation except for the spring skewness coefficient and the
lag-1 autocorrelation coefficient. This discrepancy has a negligible effect on the model results because of the
small variability of spring evaporation.

Table 7. Selected statistics of precipitation, evaporation, and inflow data for 1950-93 and corresponding values generated
from the water mass-balance model

[Number in parentheses is average of 100 values generated from the model; numbers in brackets represent range that included 90 percent of the values
produced from the model]

Lag-1
Season Mean gtal:lclt'ard fk:fvai:i‘:ist autocorrelation
eviation o coefficient
Precipitation (inches)
Winter 1.83 0.86 0.87 0.07
(1.81) (0.84) (0.84) (0.02)
[1.61 to 2.04] [0.68 to 1.05] [0.29 to 1.51] [-0.25 to 0.34]
Spring 6.84 2.16 0.53 -0.05
(6.88) (2.11) (0.55) (-0.01)
[6.38 to 7.37] [1.73 to 2.50] [0.05to 1.14] [-0.24 to 0.25]
Summer 6.70 2.65 0.81 0.18
(6.74) (2.60) (0.67) (-0.01)
[6.13 to 7.38] [2.07 to 3.17] [0.14 to 1.45] [-0.30 to 0.27]
Fall 2.31 1.31 0.81 0.21
2.29) (1.26) (0.92) (-0.0D)
[1.93 to 2.65] [0.93 to 1.65] [0.37 to 1.84] [-0.30to 0.27]
Annual 17.69 4.16 0.84 0.09
(17.72) (3.67) (0.36) (-0.04)

[16.95 to 18.59]

[3.13 to 4.45]

Evaporation (inches)

[-0.12 10 0.92]

[-0.28 t0 0.19]

Winter 1.38 0.12 045 0.05
(1.43) (0.23) (-0.04) (-0.01)
[1.37 to 1.49] [0.19 to 0.28] [-0.53 to 0.40] [-0.25 to 0.24]
Spring 9.98 1.35 1.71 0.68
(9.98) (1.29) (0.64) (0.45)
[9.71 to 10.30] [0.95 to 1.62] [0.09 to 1.41] [0.27 t0 0.63]
Summer 18.02 1.87 -0.03 0.18
(18.03) (1.82) (-0.02) 0.22)
[17.67 to 18.43] [1.48t02.17] [-0.56 to 0.53] [-0.05 to 0.44]
Fall 4.22 0.37 045 0.84
4.22) (0.36) (0.02) (0.84)
[4.14t0 4.32] [0.30 to 0.43] [-0.43 to 0.54] [0.73 to 0.90]
Annual 33.61 3.00 0.44 0.04
(33.66) (2.96) (0.15) (-0.03)
[33.02 to 34.45] [2.42 to 3.55] [-0.26 to 0.72] [0.28 t0 0.18]
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Table 7. Selected statistics of precipitation, evaporation, and inflow data for 1950-93 and corresponding values generated

from the water mass-balance model (Continued)

[Number in parentheses is average of 100 values generated from the model; numbers in brackets represent range that included 90 percent of the values

produced from the model]
Lag-1
Season Mean gtal?dt_ard fkefv:{nieesnst autocorrelation
eviation oeffic coefficient
Inflow (acre-feet)
Winter 6,050 5,100 0.57 0.18
(6,059) (4,962) 0.07) (0.14)
14,994 to 7,060] [4,110 to 5,704] [-0.46 to 0.61] [-0.09 to 0.37]
Spring 39,100 48,400 2.64 0.10
(39,911) (48,193) (2.40) (0.06)
125,760 to 57,407] 124,327 to 83,528] [1.28 to 4.06] [-0.17 to 0.29]
Summer 17,700 35,600 4.69 0.32
(17,333) (23,755) (2.06) (0.45)
[11,451 to 24,731] [15,274 to 35,5771 [0.94 to 3.72] [0.15 t0 0.72]
Fall 3,100 9,200 3.16 0.82
(3,184) (7,641) (1.13) 0.43)
{1,058 to 5,421] [5,663 to 10,896] [0.45 to 2.09] [0.21 to 0.66]
Annual 65,500 73,300 2.13 0.06
(66,487) (66,503) (1.97) (0.22)
{47,010 to 87,261} {38,990 to 103,456} [0.96 to 3.45] [0.02 to 0.52]

Winter and spring inflows show no significant deviations between the recorded data and the model values.
However, the recorded summer standard deviation and skewness coefficient and the recorded fall skewness
coefficient and lag-1 autocorrelation coefficient all are outside the 90-percent range of values produced by the
model. The recorded summer and fall inflows for 1993 were the largest on record (fig. 19). The large inflow
greatly affected the statistics of the recorded data, especially those for the standard deviation, skewness
coefficient, and lag-1 autocorrelation coefficient. However, the Box-Cox transformed inflows indicate the large
summer and fall inflows were not as extreme as indicated by the untransformed recorded data. The variable
power transformations are designed to alleviate this type of situation. Because the effect of the extremes is
reduced, the model values probably are a good representation of the true parameters.

Conditional simulations of annual maximum lake levels can be obtained as follows:

1. Generate time series of P (t), E (t),and Q (¢) as described in steps 1 through 3 for generating conditional

simulations of seasonal precipitation, evaporation, and inflow.

2. Given the current lake volume and lake-surface area, use the fitted WMB model (eq. 20) to generate a time
series of seasonal lake volumes [R () was set to zero for the generated data].

3. Convert lake volumes to lake levels using the Devils Lake elevation-capacity table.

4. Obtain a time series of annual maximum lake levels by using the largest of the four seasonal lake levels in each

year.

This procedure was used to generate a single, 400-year, unconditional simulation lake-level trace from the
fitted WMB model (eq. 20). To approximate an unconditional simulation trace, the starting lake volume and lake-
surface area were set to the fall 1993 recorded values, and the first 200 years of the conditional simulation trace
were dropped. The generated lake-level trace is shown in figure 20. The corresponding time series of lake-level
changes also is shown in figure 20.

To determine statistics of the simulated lake-level changes and to compare output from the WMB model
and the ALV model (table 2), 100 93-year unconditional simulation lake-level traces were generated from the
WMB model. The statistics of the simulated lake-level changes are given in table 8. The WMB model produces
fewer large lake-level declines than the ALV model, as indicated in figures 9 and 20. Therefore, the skewness
coefficient is more closely reproduced by the WMB model (table 8) than by the ALV model (table 2). However,
the WMB model tends to produce a smaller standard deviation than the recorded lake-level changes.
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Figure 19. Relation of summer inflow to fall inflow for Devils Lake, 1950-93.

To demonstrate the effects of conditioning on lake-level frequency analysis, 2,000 conditional simulation
lake-level traces, each 50 years in length, were generated from the statistical WMB model. Conditional
simulation exceedance levels for exceedance probabilities of 0.01, 0.25, 0.50, 0.75, and 0.99 are shown in
figure 21. The effect of the conditioning is shown at the beginning of the simulation period and persists for
several decades. The exceedance levels at the end of the simulation period closely approximate the stationary
exceedance levels of the model. A comparison of these stationary values with the stationary values from the ALV

36 Lake-Level Frequency Analysis for Devils Lake, North Dakota



40 LN A R B S R DA A I S B S Sy BN B B A B BN SN S B B BN R B R R I R B RS NP R S R IR I S BN R B B N NN B B

35

30

25

20

15

MAXIMUM LAKE LEVEL, IN FEET ABOVE SEA LEVEL

T T T [T T T [ 7T T T T [ T T T T [ 7T T T [T 711
1

TN N R

10 PR TR ST S I S U S S E VU Y S SN NSO S TN SR VNN ST T S S ST T ST SO S TS AT S SO TR S SN TSNS S SR EUNY WU S YA R BT S S S

10 AN A D A (N S B Bt DA D N BN SRS SR S B A B B RS R SIS B Ry AN R R S A B RS M B SR I NN B U B NN R B R B R R RN

LAKE-LEVEL CHANGE, IN FEET

PNV SO S TR S N OO ST SU R Y TOUAT ST ST WA UHUOT T | U VU SR W N SR WA ST N DU S WU SV T N S S T S S S S S

-50 0 50 100 150 200 250 300 350 400 450
NUMBER OF YEARS

Figure 20. Unconditional simulation lake-level trace from the water mass-balance model and corresponding
lake-level changes for Devils Lake.

model (fig. 10; table 3) indicates that the upper exceedance levels (25 percent and above) agree fairly well but the
lower levels do not.

Parameter-Uncertainty Analysis

The effect of parameter uncertainty in the fitted WMB model must be included to determine the reliability
of the exceedance levels from the model. This is especially important considering the relatively short calibration
period (1950-93).
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Table 8. Selected statistics of recorded lake-level changes for 1901-93 and corresponding values generated from the water
mass-balance model

Water mass-balance model

e T T B —
Mean (feet) -0.041 -0.031 -0.129 to 0.080
Standard deviation (feet) 1.61 1.26 0.99 to 1.69
Skewness coefficient 1.91 1.87 0.81t03.74
Lag-1 autocorrelation coefficient 27 27 0.10t0 0.45
Lag-2 autocorrelation coefficient .01 .03 -0.09t0 0.17

IDifference between maximum lake level in year ¢t and maximum lake level in year #-1.
2Based on 100 93-year unconditional simulation lake-level traces generated from the water mass-balance model.
3Numbers represent range that included 90 percent of the values produced from the model.

A parameter-uncertainty distribution that takes into account sampling error in parameter estimates is
discussed in supplement 1. The parameter estimates in the uncertainty analysis include the sample means and
standard deviations of the Box-Cox transformed quarterly inflows (egs. 23 to 34; 12 means and 12 standard
deviations) and the autoregressive parameters in the multivariate, periodic autoregressive model (eqs. 35 to 46;
16 autoregressive parameters). The fact that the 40 parameter estimates are not statistically independent of one
another complicates the uncertainty analysis.

Conditional simulation exceedance levels for exceedance probabilities of 0.01, 0.25, 0.50, 0.75, and 0.99
are shown in figure 21. The exceedance levels were computed from 2,000 50-year traces from the WMB model
using parameters adjusted for uncertainty. The parameters for each trace were sampled randomly from the
parameter-uncertainty distribution rather than held fixed at their fitted values. The upper exceedance levels are
particularly sensitive as indicated by a comparison of the 1-percent exceedance levels (0.01 exceedance
probabilities) shown in figure 21. For example, the 1-percent exceedance level from the WMB model that
includes parameter uncertainty is 4.9 feet higher in year 50 than the 1-percent exceedance level from the WMB
model that has fixed parameters (table 3). Also, large discrepancies exist between the WMB exceedance levels
shown in figure 21 and the ALV exceedance levels shown in figure 10. If both models are reasonable
representations of the true long-term lake levels, the stationary distributions should be similar. Even though the
ALV model produces traces that are not as realistic in terms of the lake hydrology as the WMB model traces, the
stationary distribution of the ALV traces should be fairly accurate. The long period of record used for the ALV
model results in relatively small uncertainty in the model output as shown by a comparison of the ALV output
using fixed parameters and the ALV output using parameters adjusted for uncertainty (fig. 10).

The sensitivity in the upper exceedance levels from the WMB model is caused almost entirely by
uncertainty in the fitted probability distributions of the quarterly inflows. The uncertainty in the precipitation and
evaporation distributions was only a minor contributor. Therefore, a technique for reducing parameter
uncertainty in the seasonal inflow distributions will be presented.

Reduction of Parameter Uncertainty in Seasonal Inflow Distributions

The marginal probability distributions of the seasonal inflows are governed entirely by the variable power
transformations (eqs. 25, 28, 31, and 34). As an example, consider spring inflow. Let

Y(1) = [Q(r) 42001, @7
where
Y (¢) is the Box-Cox transformed spring inflow for year # (¢ is used in this section to denote years rather

than quarters).
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The fitted probability distribution for Y (#) is a normal distribution with fitted mean,

1 1993
= 1 2 Y(#) =703, (48)
t = 1950
and fitted variance,
) 1 1993 ) )
& =x 2 [Y(2) -fi] = (2.13)". (49)
t= 1950

Considering sampling uncertainty in the fitted mean and assuming the multivariate, periodic autoregressive
model (egs. 35 to 46) is correct,

Corr[Y (1), Y(1-K)] = ¢y, (50)
where
k 1s the lag, in years; and

¢ is the lag-1 autocorrelation coefficient.

Therefore, according to Brockwell and Davis (1987, ch. 7), {i is approximately normally distributed with an
expected value and variance as follows:

1+ 0,07
1y n

E(fl) = wand Var(fi) = (51)

where
G5 is the variance of Y (), and
n is the sample size for 1950-93 (44 years).

An alternative method for determining the mean of Y (¢) was designed to reduce the variance in the
estimated mean. The new method uses long-term streamflow data for the Red River of the North at Grand Forks
to augment the inflow data for Devils Lake for 1950-93. The Red River streamflow data, which were selected
because of the long period of record, are correlated with the Devils Lake inflow data. The natural log-
transformed spring streamflow data (average daily streamflow for April, May, and June, in cubic feet per second)
for the Red River of the North at Grand Forks are plotted in figure 22. The mean of the recorded data for 1883-
1949 (when Devils Lake inflow data are not available) and the mean of the recorded data for 1950-93 (when
concurrent Devils Lake inflow data are available) also are shown. The relation between the log-transformed
spring streamflow data for the Red River of the North at Grand Forks and the Box-Cox transformed spring inflow
data for Devils Lake for 1950-93 is shown in figure 23. The correlation coefficient is 0.49.

Let X () denote the natural log-transformed spring streamflow data for the Red River of the North at
Grand Forks for year ¢. To use the extra information available through X (¢), the following method for
determining the mean of Y (¢) was considered:

'=fi+a(X-X;), (52)
where
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Figure 22. Spring streamflow for the Red River of the North at Grand Forks, 1883-1993.

fi is given in equation 48,
a is a constant, and

1 1949 1 1993
X, = = z X(t) and X, = v 2 X(1). (53)
t= 1883 t = 1950

Assuming that Y (¢) and X (¢) are both stationary time series, equation 52 is clearly an unbiased estimator of
the true mean of Y (¢) for any value of the constant a. Assuming the autocorrelation structure (eq. 50) for

Y (t) and a similar assumption for X (¢), the value of a that minimizes the variance of equation 52 is shown in
supplement 1 to be approximated by
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12

M G_Y{(1+¢Y>(1—¢X>} N (54)

om0y [(1-0,) (1+ 0y

where
¢ is the lag-1 autocorrelation coefficient for X (¢);
n, is the sample size for 1883-1949 (67 years);
n, is the sample size for 1950-93 (44 years); and
p=Corr[Y(t) =0, Y(t-1),X(1) -0, X (t-1)]. (55)

The approximate variance of the resulting adjusted sample mean (see supplement 1) is

Var[fi+a (X, -X,)] GZY“(‘)Y{I ' i } (56)
ar a - = — - .
w m 1 2 n21—¢Y n1+n2

The same procedure was used to obtain adjusted estimates of the mean of transformed inflows for winter,
summer, and fall (table 9). Estimates of the correlation parameters obtained from the recorded data also are given

42 Lake-Level Frequency Analysis for Devils Lake, North Dakota



Table 9. Estimated means of transformed quarterly inflows before and after adjustment to reduce parameter uncertainty

Before adjustment After adjustment Correlation parameters
Standard Standard co:-:?a-:ion co:':?a-:ion Cross-
Mean deviation Mean deviation . . . correlation
of the mean of the mean coefficient coefficlent coefficient
m for X forY P
Winter 16,051.50 11,143.40 15.710.30 11,117.60 0.54 0.14 0.26
Spring 7.03 47 6.73 43 .30 .37 .50
Summer 9.81 18 9.78 .18 53 34 17
Fall 9.57 .01 9.55 .01 .70 22 22

Value was not transformed.

in table 9. The largest relative adjustment occurs in the spring when the crosscorrelation parameter was the
largest (p = 0.50). The adjustments for winter, summer, and fall are very small and result in only slight
decreases in the standard deviations of the fitted means.

In order to illustrate the effect of the adjustment, 2,000 conditional simulation lake-level traces were
generated using the adjusted mean, [i”, rather than the original mean, {i. The effect of the adjustment is shown in
figure 24. The adjustment essentially lowered the stationary distribution of the lake levels by about 2 feet
(table 3). This downward adjustment results in much closer agreement between the stationary exceedance levels
of the ALV model (fig. 10) and those of the WMB model (fig. 24), especially in the upper levels. Some disparity
exists in the lower levels, but, when considered in terms of lake volumes rather than lake levels, the disparity is
not large. The lower exceedance levels of the ALV model probably are caused by the model’s propensity to give
unrealistically large lake-level declines when the lake is already low, as discussed previously. For this reason, the
lower exceedance levels of the WMB model probably are more realistic than those of the ALV model.

Further comparison indicates the upper exceedance levels of the WMB model (fig. 24) increase much more
rapidly than those of the ALV model (fig. 10). For example, the 1-percent exceedance level for the WMB model
that has parameters adjusted for uncertainty and reduced on the basis of streamflow for the Red River of the North
at Grand Forks increases 15.6 feet from year zero to year 5; however, the 1-percent exceedance level for the ALV
model increases 8.0 feet (table 3). Although this does not signify a problem with either of the models, it does
indicate that care must be taken in the interpretation of lake-level frequency distributions. The WMB model,
which is based on quarterly precipitation, evaporation, and inflow, uses more data than the ALV model, which is
based only on annual maximum and minimum lake volumes. Because the WMB model uses more data, the
conditional simulation exceedance levels are more sensitive to antecedent conditions. Record precipitation and
inflow in the summer and fall of 1993 are largely responsible for the rapid increase in the upper exceedance levels
of the WMB model (fig. 24).

To better illustrate the effect of the conditioning on the WMB model output, an additional 2,000 traces were
generated from the WMB model. The traces were conditioned only on the starting lake level. Starting values of
precipitation, evaporation, and inflow for 1993 were generated from stationary, joint probability distributions
rather than held fixed at recorded values. The early exceedance levels are extremely sensitive to antecedent
conditions as indicated by comparing the 1-percent exceedance levels in figures 24 and 25. Exceedance levels
shown in figure 25 for years 1 to 20 are more comparable to exceedance levels of the ALV model than those
shown in figure 24 for years 1 to 20.

SUMMARY AND CONCLUSIONS

Two approaches were used to estimate future lake-level probabilities of Devils Lake. The first approach is
based on an annual lake-volume (ALV) model, and the second approach is based on a statistical water mass-
balance (WMB) model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation,
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and inflow. A multivariate time-series model was developed to generate future realizations of seasonal
precipitation, evaporation, and inflow, which are used in conjunction with the WMB model to generate future
lake-level traces.

The ALV model is based on a decomposition of the annual maximum lake volume into the sum of two
parts. The first part, X (¢), is the annual mean lake volume; and the second part, D (t), is the difference between
the annual maximum lake volume and the annual mean lake volume. Autoregressive moving average (ARMA)
time-series models and variable normality transformations were used to model both X (¢) and D (f). Both
models have a first-order autoregressive and first-order moving-average component. A square-root
transformation was applied to X (¢) and a fourth-root transformation was used for D (¢). Residuals from the
model for X (¢) were white noise (uncorrelated with zero mean and constant variance) and approximately
normally distributed. Residuals from the model for D (¢) also were white noise but were not normally
distributed. Nonnormality in the residuals for D () was modeled by including a nonlinear relation between the
residuals from the two models. Adjusted standardized residuals, R* (¢), were close to a normal distribution.

Because of high autocorrelation (temporal persistence) in the lake levels of Devils Lake, the ALV model
was verified using annual lake-level changes. The model closely reproduces the statistics of the recorded lake-
level changes except for the skewness coefficient. However, the model output is less skewed than the data
indicate because of some unrealistically large lake-level declines in the simulated data. For example, 1 percent of
the lake-level changes for the simulated data were less than - 3.3 feet (lake-level decline greater than 3.3 feet).
The largest recorded lake-level decline for 1901-93 was -2.4 feet.

To estimate lake-level exceedance probabilities, 2,000 conditional simulation lake-level traces, each
50 years in length, were generated from the ALV model using parameters fixed at their fitted values. The high
temporal persistence in the lake levels occurs because the effects of the initial conditions on the exceedance levels
persist for several decades. The unconditional simulation exceedance levels are obtained in the limit as the length
of the simulations increases. Therefore, unconditional simulation frequency analysis is of little use except in
dealing with time scales of several centuries.

To account for estimation error in the parameters of the fitted ALV model, a parameter-uncertainty
distribution was developed. Model parameters for each 50-year trace were sampled randomly from the
parameter-uncertainty distribution rather than held fixed. The parameter uncertainty significantly affects the
resulting exceedance levels. For example, the 1-percent exceedance level from the model that includes parameter
uncertainty is 4.6 feet higher in year 50 than the 1-percent exceedance level from the model that has fixed
parameters. The effect becomes even more pronounced at more extreme exceedance levels.

The statistical WMB model requires as inputs seasonal precipitation, evaporation, and inflow data for
Devils Lake. Although the final WMB model was fitted on the basis of a quarterly time scale, the required inputs
were computed using a monthly time scale. Precipitation data for the city of Devils Lake for 1950-93 were used
in the WMB model. Lake evaporation for April through September was estimated by using monthly pan-
evaporation data for Mandan and Dickinson. An apparent step-like increase in lake evaporation for Devils Lake
occurred in 1959. Multiple linear regression was used to estimate the magnitude of the change in evaporation and
to adjust the monthly pan-evaporation values for 1950-58. Monthly inflow to Devils Lake for 1950-93 was
computed using a water mass-balance model. Monthly inflow was estimated on the basis of storage change,
evaporation, lake-surface area, and precipitation.

Kendall’s tau, Spearman’s rho, and Pearson’s r were used to test for trends in the annual precipitation,
evaporation, and inflow time series. The p values for Pearson’s r for the annual precipitation and inflow time
series are significant at the 10-percent level. However, the larger p values for Kendall’s tau and Spearman’s rho
indicate no upward trend in precipitation or inflow. The annual precipitation, evaporation, and inflow time series
were assumed to be stationary.

The Davies and Harte test statistic (1987) was used to test for long-range dependence in the annual
precipitation, evaporation, and inflow time series. No test statistics were significant at the 10-percent level. Thus,
the assumption was made that no long-range dependence exists in the inputs.

Because the quarterly time scale was sufficient to generate realistic lake-level traces, the WMB model was
based on quarterly rather than monthly data. Monthly precipitation, evaporation, and inflow data were
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aggregated to a quarterly (3-month) time scale and the model was fitted to the quarterly data using multiple linear
regression. The model can be used to generate future lake-level traces given future precipitation, evaporation,
and inflow time series. In the time-series model developed for quarterly precipitation, evaporation, and inflow,
normality transformations were used to approximately maintain the marginal probability distributions; and a
multivariate, periodic autoregressive model was used to reproduce the correlation structure. The model closely
reproduces the statistics of the recorded seasonal inputs for 1950-93 and the statistics of the recorded lake-level
data for Devils Lake. The unrealistically large lake-level declines produced using the ALV model were
eliminated in the WMB model.

The WMB model was used to generate 2,000 conditional simulation lake-level traces, each 50 years in
length. Model parameters for each trace were held fixed at their fitted values. A comparison of the exceedance
levels from the WMB model and the exceedance levels from the ALV model indicates that the upper exceedance
levels (25 percent and above) at the end of the simulation period agree fairly well but the lower levels do not.

The effect of parameter uncertainty in the fitted WMB model was included to determine the reliability of
the exceedance levels. The parameters for each trace were sampled randomly from the parameter-uncertainty
distribution rather than held fixed at their fitted values. A comparison of the 1-percent exceedance levels for the
2,000 50-year lake-level traces from the model that has fixed parameters and the 2,000 50-year lake-level traces
from the model that includes parameter uncertainty indicates that the upper exceedance levels are particularly
sensitive. The sensitivity in the upper exceedance levels is caused almost entirely by uncertainty in the fitted
probability distributions of the quarterly inflows.

To reduce parameter uncertainty in the seasonal inflow distributions, long-term streamflow data for the Red
River of the North at Grand Forks were used to reduce the variance in the estimated mean. The only significant
effect of the adjustment was to reduce the estimated mean of the transformed spring inflow as well as the standard
error of the estimated mean. The adjustment essentially lowered the stationary distribution of the lake levels by
about 2 feet. For example, the 50-percent exceedance level for year 50 decreased from 1,425.7 to 1,423.0. The
adjusted value of 1,423.0 is in agreement with the corresponding value from the ALV model, which adds
confidence that both models are giving accurate estimates of the stationary exceedance levels, at least near the
center of the distribution.

The WMB model required more extensive data collection and model development efforts than the simpler
ALV model. However, there are several advantages to the WMB model that make it superior to the ALV model
for estimating future lake-level probabilities of Devils Lake. The WMB model produces lake-level traces that
closely follow the hydrology of Devils Lake as reflected by the water mass-balance equation. Because the lake-
level traces from the ALV model are not constrained to follow the water mass-balance equation, many of the lake-
level changes produced by the ALV model are unrealistic in terms of the amount of precipitation, evaporation, or
inflow that would be required to produce those changes. The WMB model can be modified easily in future
analyses to simulate the effects of various flood-control measures on the lake-level probabilities. The ALV model
is not easily suited for simulating the effects of flood-control measures. Finally, the conditional simulation lake-
level traces from the WMB model are much more sensitive to antecedent conditions than the conditional
simulation lake-level traces from the ALV model. For example, the record precipitation and inflow in the
summer and fall of 1993 caused the exceedance levels computed from the WMB model to increase much more
rapidly in the first 20 years of the simulation period than the exceedance levels computed from the ALV model.
The ALV model was not sensitive enough to predict the rapid rise because it is based only on annual lake
volumes. Although the precipitation and inflow in the summer and fall of 1993 were extreme, the total annual
precipitation and inflow for 1993 were not unusually large.
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SUPPLEMENT 1. PARAMETER-UNCERTAINTY DISTRIBUTIONS AND MODEL FITTING
PROCEDURE

Parameter-Uncertainty Distribution for the Annual Lake-Volume Model

The annual lake-volume (ALV) model is based on autoregressive moving average (ARMA) models for the
annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake
volume (eqgs. 7 and 9). Uncertainty in the fitted parameters of both models must be considered in order to assess
the reliability of the lake-level frequency analysis on the basis of output of the ALV model. The model for the
annual mean lake volume (eq. 7) can be expressed as

X(H-u=0¢[XU-1)-pl+0WE-1)+W(), (A1)
where
fl is41.12,
 is 0.967,
2@ is 0.610, and
6. is 4.624.

w

Using the theory of maximum-likelihood estimation for fitting ARMA models (Brockwell and Davis, 1987,
ch. 8), the estimated mean, i, has an approximate normal distribution with the mean and variance givenby

2
E’lv(1+6)2

E() = pand Var (1) = — -0’

(A2)

The estimated autoregressive and moving-average parameters have an approximate bivariate, normal distribution
with the mean and variance-covariance matrix given by

-1
2. -1 -1
E$,01 = [0,6] and var($,8] = 5| (1700 (1409 | (A3)
(1+60)™ (1-07)
The estimated residual variance has an approximate normal distribution with the mean and variance given by
E( cfv) = o and Va r( ofv) = ’%oj (Ad)
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Furthermore, the estimated mean, the estimated autoregressive and moving-average parameters, and the
estimated residual variance are approximately independent of one another. These results are asymptotic (large
sample) approximations that should be accurate considering the relatively large sample size (n = 98) used for
parameter estimates.

To obtain the parameter-uncertainty distribution, the roles of the parameter estimates and the actual
parameters are pivoted or reversed. The actual parameters are treated as random variables and the parameter
estimates are treated as fixed quantities. The pivoting step is similar to the Bayesian approach used by Stedinger
and others (1985) in which a posterior distribution of the model parameters is derived with respect to a
noninformative prior distribution. Although the interpretation of the parameter-uncertainty distribution derived
here using classical maximum-likelihood estimation results is different than the Bayesian interpretation used by
Stedinger and others (1985), the parameter-uncertainty distributions obtained from the two approaches are
similar.

The parameters in equations A2 to A4 were pivoted and the estimated parameter values from equation A1l
were used to obtain the following parameter-uncertainty distributions for X' (¢):

W: Normal, E(p) = 41.12, Var(p) = (10.65)2; (A5)
[, 8] : Bivariate normal, E($) = 0967, Var(p) = (0.026)2, (A6)
E(8) = 0610, Var(8) = (0.081)2, Corr(¢,9) = 0.127;
and
o.: Normal, E(ci) = 4.624, Var(cij = (0.664)2. (A7)

The three distributions are mutually independent. The largest parameter uncertainty is associated with the mean.
For example, 95 percent of the values of (L generated from equation A5 are between 20.25 and 61.99. If
equation 4 (with A = 1/2)is used to convert these values to original units, 95 percent of the generated means of
X (1) are between 123,800 acre-feet and 1,024,000 acre-feet. This large range of uncertainty is caused by the
high temporal persistence in the annual average lake-volume time series and causes the fitted autoregressive
coefficient in equation A1 to be close to 1.0. Uncertainty in the fitted autoregressive coefficient also has a strong
effect on the generated model output. The marginal distribution of ¢ in equation A6 is a normal distribution with
a mean of 0.967 and a standard deviation of 0.026. Therefore, about 10 percent of the values of ¢ generated from
equation A6 will exceed 1.0. Because ¢ must have an absolute value of less than 1.0 in order for the stationary
distribution of X' (¢) to exist (Brockwell and Davis, 1987), parameter sets in which ¢ > 1.0 were not used. This
reflects the assumption that the annual average lake-volume time series is stationary.

The model for the difference between the annual maximum lake volume and the annual mean lake volume
(eq. 9) can be expressed as

D'(t) -p = ¢[D'(1-1) —u] +0Z(t-1) + Z(1), (A8)

where
f is 4.912,
 is 0.943,
? is -0.600, and
67 is 2.110.

The parameters in equations A2 to A4 were pivoted and the fitted parameter values from equation A8 were used
to obtain the following parameter-uncertainty distributions for D' (¢):
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w: Normal, E(p) = 4912, Var(n) = (1.057)%; (A9)

[0, 8]: Bivariate normal, E(¢) = 0.943, Var(¢) = (0.044)°, (A10)

E(8) = —0.600, Var(8) = (0.105)%, Corr(d,0) = —0.608;
and
o} Normal, E( 6% ) = 2.110, var &} | = (0309)°. (Al1)

As with X' () , about 10 percent of the values of ¢ generated from equation A10 will exceed 1.0. Parameter sets
in which this occurs are not used in order to ensure that D' (¢) is stationary.

To obtain a lake-level trace from the ALV model that includes parameter uncertainty, parameters from the
ARMA models of X (¢) and D (¢) are generated from the previous parameter-uncertainty distributions. A new
set of parameters is generated for each new trace.

Model Fitting Procedure for Quarterly Precipitation, Evaporation, and Inflow

The seasonal Yule-Walker equations (Salas and others, 1985) were used to obtain estimates of the
autoregressive parameters in the multivariate, periodic autoregressive model for the standardized quarterly
precipitation, evaporation, and inflow (egs. 35 to 46). In order to define the estimates, the quarterly data for all
three inputs were combined into a single, one-dimensional array as follows:

W = [P*(1), E*(1), Q*(1); P*(2), E*(2), 0*(2); (A12)
...; P*(176), E*(176), 0*(176)].

Each input time series has 176 observations (44 years of data times 4 quarters per year) and W has 528 (176x3)
total elements. W (j) is defined as the jth element of W. For example, W (6) corresponds to spring inflow for
1950, W (18) corresponds to spring inflow for 1951, and so on. To define the estimates, each quarter and each
input variable were considered separately. For example, spring inflow, which corresponds to elements
{W(6+12k),k=0,1,...,43}, can be expressed as

p
W(6+12k) = Y ;W (6 +12k~1) + 6Z(6+ 12k); k=0, 1,...43, (A13)
j=1
where
[61. 82, . by] = 1R 6" = 1-77R)'r and (A14)

lj is the jth lag.
R, is a (pxp) matrix with ij th element as follows:

43
1
(R, =27 2, W(6+ 12k~ 1) W(6+12k~1). (A15)
k=0

" is a (px1) vector with ith element as follows:
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43
1
[r,], = 4—4k20W(6 +12k) W (6 + 12k-1). (A16)

In equations A13 to A16, W (j) should be set to zero whenever j < 1. The method for determining the
individual lagged inputs, lj , for the model will be given later. Pagano (1978) showed that the seasonal Yule-
Walker estimators defined in equation A14 have an approximate normal distribution with the mean and
covariance matrix given by

E[$y, §3, s 0, 1=[0;, 0,, .., ¢,] and (A17)
Aoa A & -1
Cov [(1)1, ¢2, veey ‘bp] = —;RP .

A parameter estimate, (T)j , is significant at the 0.05 level if |<T)]| / Var ((T)j) > 1.96 and the variance of the estimate

is obtained from the jth diagonal element of the covariance matrix in equation A17.

Model variables were selected by a stepwise variable inclusion procedure. The procedure is demonstrated
for spring inflow as follows:

1. Set p = 1and fit the model (eq. A13) for each value of /; = 1,2, ..., 12. A maximum value of 12 was
selected to allow lags of up to 1 year in the model.

2. Select the value of /, that results in the smallest residual variance. If the corresponding autoregressive
coefficient is significant at the 0.05 level, keep the coefficient in the model and continue to step 3.
Otherwise, set p = 0 and stop.

3. Given that W (6 + 12k —1,) is in the model, set p = 2 and fit the model (eq. A13) for [, = 1,2, .., 12,
excluding the value obtained for [, .

4. Select the value of [, that results in the smallest residual variance. If the corresponding autoregressive
coefficient is significant at the 0.05 level, keep the coefficient in the model and continue to step 5.
Otherwise, set p = 1 and stop.

5. Continue in like manner until all significant autoregressive coefficients are included in the model.

The variable inclusion procedure for spring inflow resultedin p = 3,1, = 5,1, = 6,and [; = 12. The
fitted model was “decoded” by converting the elements of W back to the individual lagged inputs. The resulting
model is given by equation 40. The same procedure was applied to each of the seasons and each of the variables,
resulting in the final fitted model (eqgs. 35 to 46).

Parameter-Uncertainty Distribution for the Water Mass-Balance Model

The parameter-uncertainty analysis for the water mass-balance (WMB) model is complicated by the
relatively large number of parameters in the final fitted model. The parameter estimates in the uncertainty
analysis include 12 sample means and 12 sample variances of the Box-Cox transformed inputs (egs. 23 to 34) and
16 autoregressive parameters in the multivariate, periodic autoregressive model (egs. 35 to 46).

Uncertainty in the sample means will be considered first. To simplify the derivation, a vector-valued
annual time series from the elements given in equation A12 is defined as
U, = {W({+12k), W(2+12k), .., W(12 + 12k) } T, k=0,1,..,43. (A18)

A similar array from the elements of the unstandardized Box-Cox transformed inputs is defined as
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W =[P (1),E(1),Q(1); P'(2), E(2), 0 (2); (A19)
. P'(176), E'(176), Q' (176) 1.
Let
U, = [W(1+12k), W (2+12k), ..., w12+ 1201 k = 0, 1,..., 43, (A20)

The sample means in equations 23 to 34 can be expressed in vector form as
{ 43
A T.
n= 4—Zk E OUk = [119, 1.43, cers 957] 5 (A21)

and the multivariate, periodic autoregressive model given by equations 35 to 46 can be expressed in vector form
as

LU, = AU,_,+DZ,, (A22)

where

L and A are (12x12) matrices whose elements depend on the autoregressive parameters,
D is a diagonal matrix with the residual standard deviations on the diagonal; and
Z, is a vector of independent, standard normal, random variables.

The particular form of L, A, and D can be determined from equations 35 to 46. L and A are both sparse
matrices that have many zero elements. Using equation A21, equation A22, and results from Brockwell and
Davis (1987, ch. 11), the vector of sample means has a normal distribution with the mean and approximate
covariance matrix given by

E() =, Cov(fi) = }lS(L—A)“D%(L—A)"]Ts, (A23)

where
L, A, and D are defined in equation A22;
n is the number of years of data (44); and
S is a diagonal matrix,

43 12
S = [diag [‘-‘%2 (U— ) (U - ) TD = diagl0.19, 0.24, ..., 0.47); (A24)
k=0

that has the estimated standard deviations of the Box-Cox transformed inputs on the diagonal. The square roots
of the diagonal elements of the covariance matrix in equation A23 are the estimated standard deviations of the
sample means of the Box-Cox transformed inputs. These values are given in table Al. The estimated
crosscorrelation matrix of the sample means is obtained by converting the covariance matrix in equation A23 into
a crosscorrelation matrix. The resulting crosscorrelation matrix is given in table A2.

To simulate uncertainty in the sample means, the vector of 12 means for each trace is generated from a
multivariate, normal distribution. Expected values for the sample means and estimated standard deviations are
given in table Al. The estimated crosscorrelation matrix is given in table A2.
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Table A1. Sample means and estimated standard deviations of the sample means for Box-Cox transformed quarterly
precipitation, evaporation, and inflow

Estimated standard

Quarter Variable Sample mean deviation of
sample mean
Winter P 1.19 0.029
E 143 .036
Q 16,051.50 769.242
Spring P 1.88 .030
E 1.57 .036
Q 7.03 468
Summer P 1.85 .038
E 18.02 282
Q 9.81 .148
Fall P 1.27 .038
E 4.22 .055
Q 9.57 .081

Value was not transformed.

Table A2. Estimated crosscorrelation matrix of sample means for Box-Cox transformed quarterly precipitation, evaporation,
and inflow

P1 0 0 0 0 0.48 0 0 0.29 0 0 0.15
El 0 0 .50 .04 0 49 21 0 62 A1
0l 0 0 .05 0 0 .03 46 0 A5
P2 .02 0 0 0 0 0 .01 0
E2 .02 0 25 11 0 .69 .06
Q2 .02 05 71 A1 05 .60
P3 -46 A2 0 -34 .06
E3 .28 0 .86 15
Q3 07 .26 .67
P4 0 32
E4 .14
[

Uncertainty in the fitted autoregressive parameters in equations 35 to 46 will be considered next. The
autoregressive parameters from any particular row of the model have an approximate multivariate, normal
distribution with a mean and covariance matrix as given in equation A17. The estimated standard deviations and
crosscorrelation matrices are given in table A3. Pagano (1978) showed that the set of autoregressive parameters
from any particular row of the model are asymptotically independent of the autoregressive parameters from any
other row.

To simulate uncertainty in the autoregressive parameters, the parameters of each trace are generated from a
multivariate, normal distribution. The estimated standard deviations and crosscorrelation matrices obtained are
given in table A3. The parameters of equations 35 to 46 are generated independently.
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Table A3. Estimated standard deviations and crosscorrelation matrices of autoregressive parameters in the fitted multivariate,

periodic autoregressive model for quarterly precipitation, evaporation, and inflow

Mot:_el Fitted Estimated ) ,
er:.‘:ll:‘a: I;::‘ coefficient :':’?:t?;: Crosscorrelation matrix
37 0.47 0.13 A M 0
39 48 13 1.00 0.19 0.02
31 13 19 1.00 -.06
-30 12 .02 -.06 1.00
40 46 12 1.00 06 20
32 12 .06 1.00 -21
21 11 -20 -21 1.00
2 49 11 1.00 -04 ®
-46 11 -.04 1.00 A
43 54 A1 1.00 11 20
46 12 11 1.00 46
34 13 20 46 1.00
45 73 .02 1.00 21 [0)
52 .02 21 1.00 )
46 50 12 1.00 14 [©)
32 12 14 1.00 )

1One-l:oy-one matrix.
2Two-by-two matrix.

Uncertainty in the sample variances of the Box-Cox transformed inputs is considered last. Two approaches
can be used to include the uncertainty. In the first approach, the variances of the transformed inputs in
equations 23 to 34 vary and the variances of each of the standardized inputs in equations 35 to 46 are equal to

one. In this approach, the residual variances in equations 35 to 46 are fixed functions of the autoregressive

parameters because of the constraint on the variances of the standardized inputs. In the second approach, the
variances of the transformed inputs in equations 23 to 34 are fixed and the residual variances in equations 35
to 46 vary according to the proper parameter-uncertainty distribution. The second approach will be used in this
report. Pagano (1978) showed that the estimated residual variance from any particular row of the model
(eq. A14) has an approximate normal distribution with a mean and variance of

E(8?%) = 62and Var(6?) =

2,
-0
n

4n

(A25)

Furthermore, the estimated residual variances are independent of one another and of the estimated autoregressive
parameters. The residual variances of the fitted model and the estimated standard deviations are given in
table A4. To simulate uncertainty in the residual variances, the residual variances of each trace are sampled from

an independent, normal distribution.

Variance of Adjusted Means of Seasonal Inflow Distributions

The variance of the adjusted mean of the seasonal inflows (eq. 56) is derived from the following bivariate
time-series model for log-transformed streamflow data for the Red River of the North at Grand Forks and Box-
Cox transformed inflow data for Devils Lake for a particular season:
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Table A4. Residual variances and estimated standard deviations of residual variances for the multivariate, periodic
autoregressive model for quarterly precipitation, evaporation, and inflow

Model equation Residual variance Estimated standard deviation
number es arla of residual variance
35 1.00 0.21
36 1.00 21
37 .78 17
38 1.00 21
39 .68 .14
40 .61 13
41 1.00 21
42 .54 12
43 .53 A1
44 1.00 21
45 .02 .004
46 .64 14
GI
X(t) = (1-¢)u +0,X(r-1) + - (1) (A26)
,/1 -0,
Gy
Y(1) = (1=, + Y (1-1) + ——=="—=1[n (1) +pE(1)]

J1-001-p

where
X (1) is log-transformed streamflow data for the Red River of the North at Grand Forks;
Y (2) is Box-Cox transformed inflow data for Devils Lake;
¢, = Corr[X (1), X(t-1)];n, = E[X(D)];
0, = Corr[Y (1), Y(1-D]:n, = E[¥(];
p = Corr[X(t)-0X(t-1), Y (1) —-¢yY(t-— 1)];and
€ (1) and m (¢) are independent, white noise time series with a mean of zero and a variance of 1.

Equation A26 is based on the assumption that X (¢) and Y (¢) each follow a first-order autoregressive model with
cross-correlated residuals. The model (eq. A26) gives a good approximation of the recorded data from 1950-93.

The following expression was used to determine the constant, a, in equation 52 that minimizes the
variance of the estimated mean:

Var (') = Var(fl) +a2Var(X -X,) +2aCov (fi, X;-X,).
1~ 42

Minimizing this expression with respect to a, the following value of a is obtained along with the corresponding
minimized variance:

a = -Cov (i, X, -X,) _ Cov(fi, X,) — Cov (fi, X;) (A27)
™" Var(X,-X,)  Var(X,) + Var(X,) -2Cov(X,, X,)
Var[fi+a, (X,-X,)] = Var(fl) —a.Var(X,-X,). (A28)
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Assuming that the model (eq. A26) is correct and using large-sample approximations such as discussed in
Brockwell and Davis (1987, p. 212), the following expressions are obtained:

Var ({1 g?+¢””{l)

n21—¢y n,
o 1+
Var(X;) = —n—xl—ix-'-o(l.)

Cov(t, X)) = Cov(X,, X)) = O(nl)
1

po,o, [(+0) (1+0) (1
Cov(fi, X,) = —2 ad Y — .
ov(fi, X;) n, J(1—¢x) (1_¢y) +0( )

n,

The approximations given in equations 54 and 56 are obtained by substituting these expressions into
equations A27 and A28 and ignoring terms of smaller order than 1/n, .
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